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Abstract
The development of quantum computers presents new opportunities but also introduces
a threat by compromising currently used cryptographic algorithms. This threat signif-
icantly impacts blockchain technology, which relies on various cryptographic principles.
The objective of this work is to design and implement a blockchain that incorporates
new post-quantum cryptographic algorithms resistant to attacks performed by quantum
computers. The main part of my solution involves analyzing blockchain components vul-
nerable to quantum attacks, selecting appropriate post-quantum algorithms, and subse-
quently implementing them within the blockchain. The result of this work is an overview
of blockchain vulnerabilities and their solutions in the post-quantum era. Additionally, the
implemented solution compares the performance of multiple post-quantum and currently
used algorithms. The results show that post-quantum cryptography can have a significant
impact on blockchain performance. However, post-quantum blockchains will still be usable,
and they will withstand the era of quantum computers.

Abstrakt
Vývoj kvantových počítačov prináša nové možnosti s ktorými však prichádza aj hrozba
v podobe prelomenia súčasne používaných kryptografických algoritmov. Táto hrozba v zna-
čnej miere ovplyvňuje aj technológiu blockchain, ktorá pre svoje fungovanie využíva mno-
žstvo kryptografických princípov. Cieľom tejto práce ja navrhnúť a implementovať block-
chain, ktorý bude aplikovať nové post-kvantové kryptografické algoritmy, ktoré sú odolné
aj voči útokom realizovaným kvantovými počítačmi. Podstatou môjho riešenia je analýza
častí blockchainu, ktoré sú ohrozené kvantovým útokom, výber vhodných post-kavantových
algoritmov a nakoniec ich implementácia v blockchain. Výsledkom tejto práce je hlavne
prehľad možných zraniteľností a riešení pre blockchainy v post-kvantovej dobe. Navyše,
implementované riešenie porovnáva výkonnosť viacerých post-kvantových aj súčasne použí-
vaných algoritmov. Výsledky ukazujú, že post-kvantová kryptografia môže mať významný
vplyv na výkonnosť blockchainov. Avšak technológia blockchain bude naďalej použiteľná
a určite prežije dobu kvantových počítačov.
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Rozšírený abstrakt
V rýchlo sa rozvíjajúcom svete technológií ponúka vzostup kvantových počítačov nové

riešenia pre komplexné problémy, ktoré sú náročne riešiteľné pre súčasné počítače. Tieto
nové výpočetné možnosti však prinášajú aj nové hrozby. Vývoj kvantových počítačov môže
predstavovať vážnu hrozbu pre súčasne používanú kryptografiu.

Blockchain je technológia pôvodne popularizovaná známymi kryptomenami ako Bitcoin
alebo Ethereum. Technológia blockchain však našla využitie aj v mnohých iných apliká-
ciách. Blockchainy sú však veľmi závislé na mnohých kryptografických princípoch, ktoré
ohrozuje vzostup kvantových počítačov.

Našťastie výskumníci a relevantné inštitúcie sú si vedomé hrozby, ktoré kvantové počí-
tače predstavujú. Americký inštitút pre štandardy a technológie (National Institute of Stan-
dards and Technology – NIST) už niekoľko rokov aktívne pracuje na štandardizácii nových
post-kvantových algoritmov, ktoré budú odolné voči útokom klasických, ale aj budúcich
kvantových počítačov.

Táto práca sa venuje hlavne možnostiam integrovania novej post-kvantovej kryptografie
do technológie blockchain. Hlavným cieľom je analyzovať kritické komponenty blockchainu
ohrozené kvantovými útokmi, analyzovať vhodné post-kvantové algoritmy a prakticky ich
implementovať do blockchainu. Implementované riešenie navyše porovnáva výkonnosť via-
cerých post-kvantových algoritmov spolu so súčasne používanými. Výsledkom je aj prehľad
dopadov novej post-kvantovej kryptografie na blockchainy.

Druhá kapitola sa zaoberá základmi blockchainu, jeho fungovaním a vlastnosťami. Sú
tu popísané štruktúry blokov, transakcií, účel konsenzus mechanizmu a peer-to-peer (P2P)
siete.

Tretia kapitola pojednáva o kvantovej hrozbe a novej post-kvantovej kryptografii. Dô-
ležité sú taktiež odporúčania od relevantných inštitúcií pre zaistenie post-kvantovej bezpe-
čnosti.

Štvrtá kapitola spája predošlé dve dohromady. Venuje sa špecifickým komponentám
blockchainu, ktoré sú ohrozené kvantovými útokmi a opisuje riešenia existujúcich imple-
mentácií, ktoré o sebe tvrdia, že sú odolné voči kvantovým útokom. Na záver tejto kapitoly
sú diskutované vhodné post-kvantové algoritmy pre použitie v blockchainoch.

Piata kapitola opisuje môj návrh post-kvantového blockchainu s použitím post-kvantovej
kryptografie a so zabezpečením všetkých komponent analyzovaných v predošlej kapitole.

Na záver šiesta a siedma kapitola obsahuje popis implementácie a testovanie navrhnutého
riešenia.

Moje riešenie sa primárne zameriava na zaistenie bezpečnosti a integrity transakcií
v blockchaine. Tento cieľ je dosiahnutý využitím novej post-kvantovej kryptografie, dodrža-
nia bezpečnostných odporúčaní od relevantných inštitúcií a zabezpečením všetkých kriti-
ckých komponent blockchainu, ktoré sú ohrozené kvantovými útokmi. V implementácii sú
zahrnuté post-kvantové algoritmy pre digitálne podpisy – Dilithium a Falcon vo všetkých
ich bezpečnostných úrovniach. Pre porovnanie sú tu implementované aj súčasne používané
algoritmy Ed25519 a ECDSA.

Počas testovania bola overená funkčnosť a výkonnosť implementovaného riešenia so vše-
tkými spomenutými algoritmami. Výsledky ukazujú, že post-kvantová kryptografia má
na rozdiel od súčasne používanej horšiu výkonnosť. Stále je však prakticky použiteľná.
Hlavným problémom je veľkosť post-kvantových kľúčov a digitálnych podpisov. Táto vlast-
nosť post-kvantovej kryptografie spôsobuje, že v blockchainovej sieti sa musia prenášať
väčšie objemy dát a celková veľkosť blockchainu taktiež výrazne rastie. Ďalšie zistenia
a výsledky sú uvedené v kapitole testovanie a zhrnuté v samotnom závere práce.
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Chapter 1

Introduction

In the rapidly evolving landscape of technology, the rise of quantum computing offers solu-
tions to complex problems that are challenging or even impossible for classical computers.
However, this great computational power also introduces a significant vulnerability. As
quantum computing advances, it poses a significant threat to the cryptographic systems
driving our digital world.

Blockchain is a technology initially popularized by cryptocurrencies like Bitcoin or
Ethereum, but it has found usage in broader applications. However, blockchains strongly
rely on various cryptographic principles, which makes them vulnerable to potential threats
from quantum computers.

Fortunately, researchers are aware of the quantum threat, and institutions such as the
National Institute of Standards and Technology (NIST) are actively working on establishing
new standards for secure cryptographic algorithms against both quantum and classical
computers.

This work explores the potential of integrating new post-quantum (PQ) algorithms
into blockchain technology. The objective is to analyze blockchain components vulnerable
to quantum attacks, identify appropriate PQ algorithms, and practically implement them
within the blockchain. Additionally, the implemented solution compares the performance
of multiple PQ and currently used cryptographic algorithms.

The second chapter provides an overview of key concepts and components of block-
chain technology. It covers the structure of blocks, transactions, the purpose of consensus
mechanisms, and peer-to-peer networks.

The third chapter discusses the quantum threat to existing cryptographic systems and
the newly developed PQ cryptography algorithms. This chapter also includes recommenda-
tions from relevant institutions such as NSA or NIST. Furthermore, it thoroughly examines
PQ algorithms selected as finalists of the NIST competition.

The fourth chapter delves into the specific components of a blockchain that are vulner-
able to quantum threats. It explores solutions implemented by existing blockchains that
claim to be quantum-resistant and analyzes appropriate PQ cryptography for inclusion in
blockchains.

The fifth chapter outlines my design of a PQ blockchain, using PQ cryptography and
securing all vulnerable components analyzed in the previous chapter.

Finally, the sixth and seventh chapter provides a detailed overview of the implementa-
tion and testing of the designed solution.
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Chapter 2

Blockchain technology

This chapter serves as a brief introduction to the blockchain technology. It covers the basis
of blockchain, how it works, what structures it uses, and what principles it employs.

2.1 Blockchain overview
Blockchain is a distributed ledger of cryptographically signed transactions grouped in
blocks. These blocks are then linked together so that each block contains a cryptographic
hash value of the previous block, as shown in Figure 2.1 [54]. The purpose of this design
is to ensure the integrity of the blockchain. Even a minor change in any transaction will
change the block’s cryptographic hash. Since blocks are linked, changes cascade through
the subsequent blocks, which makes it easy to detect any alternation. While it is techni-
cally possible to recalculate hashes for all blocks, blockchains employ one additional feature
preventing such changes. This feature is called a consensus mechanism, and it ensures that
changes made to the blockchain require majority agreement among its participants. The
consensus mechanism will be discussed later in Section 2.6.

Block 0

BlockHash
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Pre
vio

us

Blo
ck

Block 1

BlockHash
Has

h o
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Pre
vio

us

Blo
ck

Block 2

BlockHash
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h o
f

Pre
vio

us

Blo
ck

Block Hash: 1FE5C
Hash of previous block: 00000

Block Hash: A8C3E
Hash of previous block: 1FE5C

Block Hash: 4E9CA
Hash of previous block: A8C3E

Figure 2.1: Linked chain of blocks – blockchain

From an evolutionary standpoint, a blockchain is characterized as a digital, distributed,
decentralized ledger wherein individual participants share and update the ledger within
a peer-to-peer (P2P) network according to specific protocols [7]. Figure 2.2 illustrates

5



the progression from traditional ledgers to blockchain technology. The peer-to-peer (P2P)
networks topic will be covered later in Section 2.5.

Ledger Digital
Ledger

Distributed
Digital
Ledger

Decentralized
Distributed

Digital
Ledger

Blockchain

Connotation for
database of  records
that are updated over
time

The ledger is replicated
and stored in different
locations

A P2P network of nodes
sharing and updating
the ledger

Records are digital
assets

Technology with protocol
and transactions grouped
in blocks and linked
together

Figure 2.2: Evolution from traditional ledger to blockchain [7]

Blockchain technology contains its own key features such as [43]:

• Security – transactions must be cryptographically signed to prevent falsification and
blockchain changes must be validated by the majority of participants or validators.

• Transparency – transaction history is available to all blockchain participants.

• Decentralization – there is no central authority controlling the validation of the
transactions.

• Immutability – once the transaction has been validated and inserted into a block-
chain, it is impossible to change or remove it.

• Programmability – ability to execute smart contracts.

Furthermore, blockchains do not depend on centralized trusted authorities to process
transactions. Also, there is no need for third-party verification and validation of the trans-
actions [43]. Verification and validation in blockchain are accomplished through mutual
confirmation of transactions and consensus among participants in the network. Not all
of these features are always applied to every blockchain. As will be discussed further in
Section 2.2, different types of blockchain may have other purposes so that they may use
just some of the mentioned features.

Blockchain technology became popular mainly because of the popular cryptocurrency
Bitcoin, which idea was described by Satoshi Nakamoto in the original paper [35] from 2008.
Nakamoto’s paper presents an important idea and possible solutions for a decentralized
payment system. Bitcoin as a cryptocurrency was created later in 2009 based on this idea.
It is important to note that blockchain is not synonymous with cryptocurrency. While
blockchain is the underlying technology for many cryptocurrencies, its applications extend
beyond payments or currencies. For example, blockchains can be used for storing electronic
medical records, digital certificates, tracking supply chain management, voting systems,
and many other applications.

However, despite its unique features and popularity, blockchain technology is not suit-
able in all cases. Belotti et al. in [7] delve into the considerations for determining the
suitability of blockchain for specific purposes. It includes a straightforward decision map
that shows whether it is appropriate to use blockchain or traditional ledger technology.
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2.2 Blockchain classification
There are two main classifications of blockchains based on access control: permission-less
and permissioned blockchains [43].

2.2.1 Permission-less blockchain

A Permission-less blockchain network is accessible to anyone who wants to join the block-
chain network. Anyone can publish a new block or create/read the transactions on the
blockchain. Furthermore, there are no specialized nodes with any privileged rights. Be-
cause anyone can publish a new block, there has to be a mechanism that prevents malicious
users from publishing blocks in a way that subverts the system. For this reason, an essen-
tial part of the permission-less blockchain is a consensus mechanism. An example of such
a blockchain is a public blockchain. Well-known public blockchains are, for example,
Bitcoin or Ethereum [54].

2.2.2 Permissioned blockchain

A permissioned blockchain network is accessible only with permission from some authority.
Since only authorized nodes maintain the blockchain, it is possible to restrict read access,
who can issue transactions, and who can publish a block. Additionally, it increases the
level of trust in a blockchain. Permissioned blockchain also uses a consensus algorithm, but
these methods often do not require as significant resources as in the case of permission-
less blockchains [54]. Permissioned blockchain can be further divided into three categories:
private blockchain, consortium blockchain, and hybrid blockchain.

Private blockchain

A private blockchain is a type of permissioned blockchain suitable, for example, for a smaller
company. It can bring scalability because it does not influence speed and efficiency even if
the network grows. Moreover, in case of any mishap, it is easy to identify the nodes involved
in the transactions. The main disadvantage is that the whole blockchain is controlled by
the organization as a centralized unit [43]. In addition, data on the blockchain has great
redundancy. Each node on the blockchain can own a copy of the data which can serve
as a backup. Well-known private blockchains are, for example, Hyperledger Fabric or
Ethereum Enterprise.

Consortium blockchain

A consortium blockchain is similar to a private blockchain, but it is managed by multiple
organizations. It incorporates features from both private and public blockchains. Some
important aspects of the organizations could be private, while others can remain public [43].
Well-known consortium blockchains are, for example, Quorum or R3 Corda.

Hybrid blockchain

A hybrid blockchain takes the best from private and public blockchains. The consensus
mechanism can be optimized since only a few nodes are authorized to validate the transac-
tion [43]. As an example, it can serve the Dragonchain blockchain.

7
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Blockchain

PermissionedPermissionless

Public HybridConsortiumPrivate

Figure 2.3: Classification of blockchains [43]

2.3 Blocks
A blockchain block is a data structure composed of transactions (data) and a header. The
header contains metadata designed to identify the block and enable the verification of its
content.

Each implementation of a blockchain can define its own block structure. However, some
data fields are frequently utilized by the majority of them [54]:

• Block Header

– The block number, also known as block height or sequence number. It is a unique
identifier of the block.

– Hash value of the previous block
– A hash representation of the block data. It can be a hash of all the combined

block data, or a common practice is to generate a Merkle tree and store the root
hash there (more about Merkle trees is discussed further in this section).

– A timestamp
– The size of the block

Blockchains utilizing the Proof-of-Work (PoW) consensus mechanism can also include
a nonce value field. It is a number manipulated by the publishing node to solve the
PoW puzzle.

• Block Data

– A list of validated transactions and ledger events included within the block
– Other data may be present (account balances etc.)

8
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Block header
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Timestamp

Hash of Block Data
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Figure 2.4: Generic Chain of Blocks [54]

Merkle trees

Merkle tree (patented in 1989 [34]) is a hash tree procedure that consists of data (transac-
tions) that are iteratively hashed in pairs [7]. The transactions, represented as leaf nodes,
are hashed, and then every two hashes are put in a pair and hashed again until everything
is hashed in one root hash. If the number of transactions is odd, the last transaction is
duplicated and hashed with itself. The example of a Merkle tree is shown in Figure 2.5.

The primary purpose of the Merkle tree root hash in a block header is to easily verify
the integrity of the transaction in the block.

2.4 Transactions
Transactions come into place whenever users want to interact with one another in the
blockchain network. Transactions do not have to be strictly financial and do not just carry
and store transaction data. Different blockchain implementations can implement their own
structure of transactions and the way transactions are performed. The usage of blockchain
transactions is not limited, for example, a transaction can be a piece of code that will be
executed after certain circumstances are met, this is also called a smart contract [7].

The journey of a transaction (also illustrated in Figure 2.6) [7]:

• Creation: The transaction’s sender defines, according to blockchain transaction struc-
ture, the digital asset’s source and destination.

• Propagation: The transaction is propagated through leading nodes1 to validating
nodes in a Peer-to-Peer (P2P) network.

1Nodes that are distributing transactions, blocks, and other blockchain messages
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Figure 2.5: Merkle hash tree with transactions 𝑇0-𝑇9.

• Validation: During this stage, transactions, organized into blocks, must successfully
navigate the various phases of the envisioned consensus mechanism to be considered
valid and, consequently, executable. Afterward, the block with transactions can be
attached as the next block to the blockchain.

• Propagation: The block with the transaction is propagated through the blockchain
network to let all nodes update their copy of the blockchain.

• Confirmation: The transaction is executed only if the block with transactions is
validated and eventually published on the blockchain. If there are two valid chains,
nodes must agree on a single chain of blocks (this is also the function of the consensus
mechanism). Once confirmed, this block will become an immutable part of the final
ledger version and may no longer be discarded.

Transaction
Creation

Transaction/Block
Propagation

Block
Validation

Block
Propagation

Block
Confirmation

Verification and Collection

Data Sender

Data Receiver

Signing phase

Verification and Collection

Validating Nodes

Leading Nodes

Leading Nodes

Figure 2.6: The Transaction Journey [7]
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It is crucial to note transactions are critically dependent on cryptography. Each trans-
action requires a unique sender signature to prevent falsification and ensure integrity. If
a transaction is altered or includes an invalid signature, it is rejected. Figure 2.7 shows
how digital signature is performed. It is essential to securely store the private (secret) key
to prevent potential attackers from gaining access. If the private key is stolen, an attacker
could exploit the opportunity to sign transactions.

Hash Encryption with sender's private key Signature

Transaction Signed Transaction

SignatureDecryption with sender's public keyDecoded Data

Hash
equal
==

Valid Tx Invalid Tx

Signing

Signature verification

Figure 2.7: Example of signing a transaction

Another challenge that blockchain addresses is double-spending. In transactions involv-
ing electronic assets, the blockchain must verify that the sender is the legitimate owner
of the asset. To guarantee ownership, the blockchain maintains a record of asset owner-
ship. This is commonly addressed through data models like UTXO, Account, UTXO+, or
Key-value.

2.5 Peer-to-peer network
Peer-to-peer (P2P) networks are interconnected collections of nodes, which communicate
together. Participants in P2P are known as peers. The main benefit of using the P2P
network is file/data sharing. In centralized systems, the download mainly depends on the
strength of the server, while in the decentralized P2P network, if one of the peers fails to
operate, the other peers in the network can finish the required action [43]. The difference
between centralized and decentralized (P2P) network is illustrated in Figure 2.8.

Blockchains utilize a P2P network to maintain decentralization. There is no central
server functioning as an intermediary to process transactions; instead, transactions are
distributed among nodes within the blockchain.
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Centralized - Server based network
Decentralized - peer-to-peer

network

Figure 2.8: Comparison of centralized and P2P network

2.6 Consensus mechanism
Since there is no trusted third party or central authority a consensus mechanism is an al-
gorithm based on predefined rules that determines the node that publishes the next block
or ensures that nodes cooperate to create the next block. To add a new block to the block-
chain, all nodes must reach a common agreement over time. In permission-less blockchains
publishing nodes usually compete to publish the next block. They do this to get revenue
through cryptocurrency or transaction fees. In permissioned blockchains, a consensus can
be reached more easily because of the trust between nodes [54]. Nodes responsible for
reaching consensus are called validators; in the case of the Proof-of-Work (PoW) consensus
mechanism, they can be called miners.

The consensus mechanism also solves situations when different nodes publish a block at
approximately the same time. This event is also called a fork. The example of a blockchain
fork is shown in Figure 2.9. In most of the blockchain networks is ”longer“ chain viewed
as the correct one. The other chains will be considered invalid and discarded [54]. This
mechanism relies on the assumption that the majority of nodes in the blockchain are honest
so they always create longer chains than malicious ones.

A scenario in which a fork may occur is when a malicious node publishes a block con-
taining invalidated transactions that were not propagated. If the malicious node eventually
wins in the competition and publishes this block on the blockchain, other nodes with a dif-
ferent block will persist in trying to publish their own block, leading to the creation of two
branches. One of these branches includes the block with invalid transactions. While the
malicious node continues to compute new blocks on its branch, other nodes on the block-
chain persist in working on the correct branch. Over time, the correct branch will naturally
become longer and be chosen as the correct chain.

There are many types of consensus mechanisms. Each blockchain can implement its
own to exactly meet its needs and purpose. The widely used consensus mechanisms are
Proof-of-Work (PoW) and Proof-of-Stake (PoS), which are described more in detail below,
but there are many others like Proof of Burn (PoB), Proof of Capacity (PoC), Proof of
Space (PoSpace), and others. The final consensus mechanism among the three outlined
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Figure 2.9: Example of a blockchain valid nodes

below is the XRP consensus mechanism. It claims more detailed exploration, as it is chosen
for utilization in subsequent design and implementation.

Proof-of-Work (PoW)

The proof-of-work consensus mechanism operates on the principle of solving a computation-
ally intensive puzzle. Nodes engaging in the solution of this puzzle are commonly referred
to as miners or miner nodes. The successful solution of the puzzle serves as ”proof“ that
they have expended computational effort. It is based on the concept that computing the
puzzle is hard, but verifying is easy [54].

As an illustration, a common method involves determining a nonce value for the block.
The nonce is a value that, when hashed with the block’s hash, produces a hash containing
a specific number of leading zeros. The computational challenge lies in finding this nonce,
which requires extensive trial and error. Conversely, the verification process is simple, it
requires to calculate just one hash [54].

A notable drawback of the PoW consensus mechanism is its demand for computational
power, which can lead to significant electricity consumption. This characteristic raises
concerns about its environmental sustainability, as the energy-intensive character of the
process is not aligned with eco-friendly practices.

Proof-of-Stake (PoS)

The proof-of-stake consensus mechanism is based on an election of the validator that val-
idates the next block. Participation in the validator election requires the possession of
a stake, denoting a certain amount of cryptocurrency. A higher stake means a higher prob-
ability of being elected as the next validator. This is far less computationally intensive than
PoW, but it concentrates the validation among the wealthiest nodes. On the other hand,
the wealthier nodes may have a vested interest in accurate validation [7].

XRP Ledger Consensus Protocol

XRP Ledger Consensus Protocol is a type of Federated Byzantine Agreement consensus
mechanism. It consists of a special type of nodes called validators that are trusted by other
nodes. Each participant on the network creates a unique node list (UNL) of chosen validator
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nodes. This list is in full competence of each node so each node can choose other nodes it
trusts. The philosophy behind this is that nodes gravitate toward reliable validators, while
nonreliable validators have a smaller impact.

Validators receive candidate transactions and proposals. Candidate transactions are
transactions seeking inclusion in the next version of the ledger2. Proposals are a special kind
of message between validators. It contains a set of transactions that a validator proposes
to other validators. Validators communicate and update proposals until a supermajority of
chosen validators agree on the same set of transactions. Consensus is an iterative process.
At the start of the first round, at least 50% of validators must agree. In subsequent rounds,
this threshold is increasing up to 80%. Candidate transactions not included in the agreed-
upon proposal remain candidate transactions and may be considered again in the next
version of the ledger. This phase is called the deliberation phase [11, 12].

The next phase is called validation. In this phase, nodes decide whether to fully
validate a ledger based on the validations issued by trusted nodes. It can be broken up into
two parts [11, 12]:

• Calculating the resulting ledger version from an agreed-upon transaction set.

• Comparing results and declaring the ledger version validated if enough trusted val-
idators agree.

If the network fails to achieve supermajority agreement on validations, it stops making
further progress, and the consensus mechanism is repeated. Over time, there is an increasing
likelihood that a majority of the validators within the network have received an identical set
of candidate transactions. This ensures that each consensus round decreases disagreement
among the validators [11, 12].

Notice that XRP consensus is built on a different principle than PoW or PoS. While in
PoW and PoS, the next block publisher competes to become the next validator, in XRP,
consensus nodes rather cooperate to achieve the consensus.

Blockchain technology summary
To summarize, a blockchain is a distributed, decentralized, immutable ledger of transac-
tions organized into blocks and connected through cryptographic hashes. Fundamental ele-
ments of blockchain include asymmetric cryptography, digital signatures, and cryptographic
hashes. Communication within the blockchain occurs through a peer-to-peer (P2P) net-
work. The verification and validation of transactions on the blockchain are accomplished
through a specific algorithm known as the consensus mechanism.

2In the case of XRP a ledger is something like a block. It represents a new blockchain state.
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Chapter 3

Quantum threat and post-quantum
cryptography

This chapter discusses the risks posed by quantum computers and the corresponding solu-
tions. A significant concern is their potential to undermine current cryptography. However,
there is promising progress in developing new post-quantum (PQ) cryptographic algorithms
designed to withstand attacks from quantum computers.

The first Section 3.1 outlines challenges, threats, and existing solutions in the PQ world.
It also provides an overview of the PQ algorithms that will be analyzed in this work.
Section 3.2 delves into recommendations for PQ cryptography from relevant institutions.
Sections 3.3 and 3.4 offer a more detailed examination of Key Encapsulation Mechanism
(KEM) algorithms and digital signature algorithms, as they are particularly vulnerable to
quantum threats. Lastly, Section 3.5 presents a comprehensive comparison, assessing the
sizes of public and private keys, ciphertexts, signatures, and performance of the mentioned
PQ algorithms. It concludes with a summary of this chapter and highlights the disparities
between currently used cryptography and new PQ cryptography.

3.1 Quantum threat
Quantum computers are a new type of computers that utilize the principles of quantum
mechanics. In the future, there are assumptions that quantum computers at some tasks
will outperform the current microtransistor-based systems, which are already reaching their
limits. Although new technologies bring new opportunities and solutions, they also bring
new risks and vulnerabilities if misused. In the case of quantum computers, the risks are
mainly associated with threats to the currently used cryptography [42].

A specific concern arises from the capability of quantum computers to solve certain
mathematical problems much more efficiently than classical computers. Many existing
encryption algorithms rely on these mathematical problems’ complexity, which makes them
vulnerable to quantum threats [14].

There are already algorithms designed specifically for quantum computers that pose
a direct threat. Notably, Shor’s algorithms [49] address the efficient factorization of large
numbers and the Discrete Logarithm problem. These problems exhibit exponential com-
plexity on classical computers but only linear complexity on quantum computers. This
poses a direct risk to current asymmetric cryptography. Specifically for algorithms RSA
and DSA, as well as elliptic curves algorithms Ed25519 or ECDSA. All currently used
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asymmetric algorithms based on the problem of factoring large numbers and the problem
of solving a discrete logarithm can be broken in the future precisely with the use of a
quantum computer and Shor’s algorithm.

Additionally, Grover’s algorithm [21], a quantum search algorithm, can search an un-
sorted database with 𝑂(𝑛1/2) complexity [6]. This algorithm can be used to efficiently
search for collisions in currently used hash functions, which pose a threat to applications
that require non-collision hash functions.

From this point of view, the current situation is somewhat unusual. We know how to
break current cryptographic algorithms such as RSA – we need to efficiently factor large
numbers. We know an algorithm that can do this – Shor’s algorithm. The only thing
we still lack is a sufficiently powerful quantum computer. In the last year, IBM launched
the Osprey quantum computer which has 433 qubits. However, Microsoft Research has
calculated that around 2 500 qubits are needed to compute elliptic curve discrete logarithms
to crack a standard 256-bit key. For 2048-bit RSA it is around 4000 qubits. Nevertheless,
expectations are high. IBM wants to build a 100 000 qubit machine within 10 years and
Google is targeting a million qubits by the end of the decade [32, 50].

The response to the quantum threat lies in quantum-resistant cryptography, often re-
ferred to as PQ cryptography. This form of cryptography is designed to provide robust
encryption against the capabilities of both quantum and classical computers. Notably, the
National Institute of Standards and Technology (NIST) has taken a significant initiative
in this domain, launching a competition to standardize one or more quantum-resistant
algorithms. From this competition, four algorithms have already been selected for stan-
dardization. The CRYSTALS-Kyber algorithm was chosen for the Key-Encapsulation
Mechanism (KEM) category, and three algorithms – CRYSTALS-Dilithium, Falcon, and
SPHINCS+ – were selected for the digital signature category. While these are the currently
chosen algorithms, other candidates from the fourth round of the competition are also note-
worthy. While these algorithms have not yet been selected for NIST standardization, some
of them are expected to be considered in the future.

These algorithms are slowly but surely making their way into existing cryptographic
libraries. A notable project is the PQClean library [30, 29] which contains a collection of
original implementations of algorithms from the NIST competition. PQ algorithms from
this library will also be used in the subsequent implementation part of this work.

It is crucial to note that PQ cryptography currently represents the most practical ap-
proach to the quantum threat. However, the long-term resistance of PQ cryptography
against quantum attacks remains uncertain [55].

For this thesis, the analysis will focus on algorithms from the NIST competition that ad-
vanced to the finals and the fourth round. The remaining algorithms from the third round
will not be included in the analysis due to their similarity to the competition finalists and
the shortcomings noted by NIST in the report from the third round of the competition [1].
Furthermore, despite the SIKE algorithm advancing to the fourth round of the NIST com-
petition, shortly afterward, it faced a security breach driven by a classical computer attack.
Consequently, SIKE is currently considered insecure and is not recommended for use. Se-
curity concerns, described in more detail by Nosouhi et al. in [39], also applies to the BIKE
algorithm. Although both algorithms reached the fourth round of the NIST competition,
they will not be part of the analysis because of their security concerns.

Two PQ digital signature algorithms, Extended Merkle Signature Scheme (XMSS) and
Leighton–Micali Signatures (LMS), were already standardized by NIST in 2020. However,
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these are categorized as stateful hash-based signatures, which makes them less suitable for
general use due to their security reliance on careful state management [36].

3.2 Official recommendations
Although no standard for PQ algorithms has been released (the first NIST plans for 2024),
relevant institutions have already provided recommendations for the transition to quantum-
resistant encryption. This section will summarize the recommendations from the Czech
National Cyber and Information Security Agency(NCISA) [40, 41], the National Author-
ity for Cybernetic and Information Security, and the American National Security Agency
(NSA) [37, 38].

3.2.1 Symetric encryption and hash functions

For symmetric encryption and hashing functions, the solution is relatively straightforward.
Achieving quantum security in symmetric encryption involves using a sufficiently long en-
cryption key. Similarly, for hash functions, maintaining quantum resistance is achieved by
utilizing a sufficiently long output length.

Symetric encryption

The quantum resistance/vulnerability of block and stream ciphers, according to NCISA,
can be summarized as follows: Ciphers with a key length of 256 bits are quantum-resistant,
while those with key lengths of 128 bits and 192 bits are quantum-vulnerable. NSA in the
Commercial National Security Algorithm Suite 2.0 (CNSA 2.0) only accepts AES-256 [41].

Hash functions

The quantum resistance/vulnerability of hash functions according to NCISA can be sum-
marized as follows: Hash functions with output lengths of 384 bits or more are quantum-
resistant, while those with key lengths of 256 bits or less are quantum-vulnerable. NSA in
the CNSA 2.0 suit only accepts SHA-384 and SHA-512 hash functions [41].

3.2.2 Asymmetric cryptography

For asymmetric cryptography, the solution is no longer so simple. These cryptographic
processes often rely on mathematically challenging problems that quantum computers can
effectively solve. Consequently, ongoing efforts involve the development of new algorithms
designed to withstand even the computational power of quantum computers. The earlier
mentioned NIST competition is specifically dedicated to advancing solutions in this area.

PQ cryptography algorithms can be divided by their theoretical base to Lattice-Based
Cryptography, Hash-Based Cryptography, Code-Based Cryptography, Multivariate Cryptog-
raphy, and Isogeny of Elliptic Curves. For a more in-depth discussion on these bases, refer
to [14, 55].

Asymmetric cryptography primarily finds application in the secure exchange of a sym-
metric key, referred to as the Key-Encapsulation Mechanism (KEM), and in the generation
of digital signatures. Newly developed PQ asymmetric algorithms are specifically tailored
for these fundamental use cases. More detailed descriptions of specific algorithms are pro-
vided in Sections 3.3 and 3.4.
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3.2.3 Hybrid usage of classic and post-quantum cryptography

In the scientific community, there is a general opinion, particularly in the early stages, that
quantum-resistant cryptography should be employed in conjunction with classical cryptog-
raphy. This opinion is shared by the majority of European authorities, such as the German
Federal Office for Information Security (BSI) or the French Agence nationale de la sécu-
rité des systèmes d’information (ANSSI). The main reason for this opinion is the relative
novelty of some PQ algorithms, which lack sufficient guarantees about the unsolvable math-
ematical problems upon which they are built. Notably, the occurrence of successful attacks
using only classical computers highlights the importance of carefulness when adopting PQ
cryptographic solutions [41].

The NSA holds a slightly different perspective on this matter, as it does not require the
use of hybrid cryptography for the algorithms approved in the CNSA 2.0 document [37].
The agency justifies this standpoint by expressing confidence in the approved algorithms.
Simultaneously, the NSA believes that overly complex protocols implementing hybrid cryp-
tography could potentially reduce the performance and security of these approved algo-
rithms [38].

3.3 Key-encapsulation mechanisms
This section provides a detailed exploration and key aspects of the selected PQ KEM
algorithms, namely Kyber, McEliece, and HQC. The focus is placed on security, the sizes
of public keys, the resulting ciphertext size, and the overall performance of each algorithm.
The size of private keys is considered less crucial, as they are typically securely stored on
the user’s side, and their disk storage requirements are negligible in modern computing
environments. For a more in-depth understanding of each algorithm, more details can be
found on their official websites (Kyber [46], McEliece [2], HQC [33]) or in the report from
the third round of the NIST competition [1].

For these algorithms (KEMs and digital signatures) NIST has defined 5 security levels [41]:

1. corresponds to the difficulty of a brute force attack on AES-128.

2. corresponds to the difficulty of generic collision search on SHA-256.

3. corresponds to the difficulty of a brute force attack on AES-192.

4. corresponds to the difficulty of generic collision search on SHA-384.

5. corresponds to the difficulty of a brute force attack on AES-256.

CRYSTALS-Kyber

Kyber is an IND-CCA2-secure1 KEM, whose security is based on the hardness of solving
the learning-with-errors2 (LWE) problem over module lattices [46]. This algorithm comes
with 3 security levels – level 1, 3, 5 which differ in the lengths of keys and cyphertexts.
The key characteristics of Kyber are [1]:

1Indistinguishability under Chosen-Ciphertext Attack – it is a level of security property that crypto-
graphic encryption schemes aim to achieve.

2LWE is a mathematical problem used in quantum cryptography. More about this method is covered in
Regev et al. [44].
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• It is a lattice-based KEM chosen by NIST for standardization (draft of the upcoming
standard [24]).

• It has a strong theoretical security foundation supported by decades of lattice cryp-
tography literature.

• Public key and ciphertext sizes are on the order of a thousand bytes (see Table 3.1)
which is comparable to other algorithms in the same category.

• Fast key generation, encapsulation, and decapsulation (see Table 3.3).

• Excellent performance overall in software, hardware, and many hybrid settings. Fur-
thermore, researches indicates that the Module-LWE model, upon which Kyber is
constructed, has a very good performance, which, however, does not dramatically
affect the algorithm’s security.

It is noteworthy to mention that the NSA approved the utilization of the Kyber level 5
algorithm in non-hybrid usage. The NSA’s motivation primarily rests on the reliability of
the Kyber algorithm, its security, and its efficacy [41].

Classic McEliece

Classic McEliece is a code-based KEM with an IND-CAA2 security level. This algorithm is
already more than 45 years old, and there have been no cases of breaking it during this time.
During the NIST competition, McEliece has been upgraded for greater efficiency and better
security [14, 2]. Just like Kyber McEliece comes in 3 different security levels, but there are
more variants. Each variant has a number next to the name, for example mceliece348864.
The number 348864 refers to the key parameters. A higher number means better security
and larger key sizes, which is the major problem with the McEliece algorithm.
The key characteristics of MecEliece are [1]:

• It is a code-based KEM that advanced to the fourth round of the NIST competition
(draft of the possible standard [3]).

• Old and reliable algorithm, its security is supported by a long history of successfully
withstanding cryptanalysis.

• Very large public key size and fairly slow key generation, but smallest ciphertext sizes
from all mentioned algorithms (see Tables 3.1 and 3.3).

Hamming Quasi-Cyclic

HQC is a code-based KEM and follows an LWE-like encryption protocol. Just like Kyber
HQC comes in 3 different security levels – level 1, 2, and 3. Level 1 was broken during the
second round of the NIST competition, but levels 3 and 5 remain secure [14, 33].
The key characteristics of HQC are [1]:

• It is a code-based KEM that advanced to the fourth round of the NIST competition.

• Levels 3 and 5 appear secure and reliable, with no known security breaches.
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• In comparison with Kyber, HQC features slightly larger public keys and significantly
larger ciphertexts. However, these key sizes remain relatively small compared to the
McEliece keys.

• It has good performance comparable with Kyber.

3.4 Digital signatures
This section thoroughly explores key aspects of the selected PQ digital signature algorithms:
Dilithium, Falcon, and SPHINCS+. Like the KEM algorithms, the primary focus is
evaluating security, public key sizes, signature size, and overall algorithmic performance.
The size of private keys is not that important, and it is for the same reason as with KEM
algorithms. For a more in-depth understanding of each algorithm, more details can be
found on their official websites (Dilithium [47], Falcon [18], SPHINCS+ [48]) or in the
report from the third round of the NIST competition [1].

CRYSTALS-Dilithium

Dilithium is a lattice-based digital signature algorithm based on the Fiat-Shamir with aborts
technique of Lyubashevsky (see [31]), which uses rejection sampling to make lattice-based
Fiat-Shamir schemes compact and secure. It comes in 3 security levels – level 2, 3, and
5 [1, 47].
The key characteristics of Dilithium are [1]:

• It is a lattice-based signature algorithm chosen by NIST for standardization (draft of
the upcoming standard [23]).

• It has a relatively simple implementation and strong theoretical security.

• The public key and signature are larger than those in the algorithm, Falcon. Nev-
ertheless, they still maintain an acceptable size (see Table 3.2).

• Among the mentioned algorithms, Dilithium has a very good performance and relia-
bility (see Table 3.4).

Notably, the NSA approved using the Dilithium level 5 algorithm in non-hybrid usage.
The NSA’s motivation primarily rests on the reliability of the Dilithium algorithm, its
security, and its efficacy [41].

Falcon

Falcon (Fast Fourier Lattice-based Compact Signatures over NTRU3) is a lattice-based
signature scheme utilizing the “hash-and-sign” paradigm. It comes in 2 security levels – level
1, and 5 [1].
The key characteristics of Falcon are [1]:

• It is a Lattice-Based signature algorithm chosen by NIST for standardization.

• It has strong theoretical security, but more complex implementation.
3Number Theory Research Unit – it is an asymmetric cryptosystem that uses lattice-based cryptography.
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• Keys and signature sizes are the smallest among all compared algorithms.

• Signature verifying is fast, but signing and key generation are slower than in the case
of Dilithium (see Table 3.4).

SPHINCS+

SPHINCS+ combines the use of one-time signatures, few-times signatures, Merkle trees,
and hypertrees. In contrast to the XMSS and LMS algorithms discussed earlier in this
chapter, SPHINCS+ is stateless. SPHINCS+ comes in 3 security levels – level 1, 3, and
5, but there are also different variants based on the underlying hash functions, which are
SHAKE256, SHA-256, or Haraka [48, 1].
The key characteristics of Falcon are [1]:

• It is a hash-based signature algorithm chosen by NIST for standardization (draft of
the upcoming standard [25]).

• It has a complex implementation with numerous parameters for each security category.
The complexity of the implementation also poses concerns about the overall security
of the algorithm because it is hard to evaluate the whole scheme.

• Among the compared algorithms, SPHINCS+ has the smallest public keys, measuring
only in tens of bytes. However, the signatures are very large, ranging from 7 to almost
50 kilobytes.

• SPHINCS+ also has fast key generation and signature verification, but the signing is
much slower.

It is worth mentioning that the security of SPHINCS+ also relies on the security of the
underlying hash functions.

3.5 Post-quantum cryptography comparison
This section contains an overview of key sizes, ciphertext or signature sizes, and the perfor-
mance of all previously mentioned PQ algorithms. The performance information for indi-
vidual algorithms was sourced from the [52] website, and performance testing was performed
on an Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz. The comparison involved dis-
tributable values obtained from C-code implementations compiled with optimization for
AVX2 vector instructions.

To summarize this chapter. The detailed PQ algorithms in this chapter offer the most
practical approach to ensuring PQ resistance. Since these are relatively new algorithms,
their use requires a certain degree of caution and it is also advisable to follow the recommen-
dations of the relevant institutions. The information about the mentioned PQ algorithms
will be used later to select suitable cryptographic algorithms for blockchain. Addition-
ally, here is a short comparison, which highlights the differences between currently used
cryptography and new PQ cryptography.

Currently, widely used algorithms for asymmetric cryptography include RSA (Rivest,
Shamir, Adleman), DSA (Digital Signature Algorithm), and elliptic curve-based algorithms
ECC (Elliptic Curve Cryptography). RSA is employed for asymmetric encryption and
digital signatures, while DSA is only used for digital signatures. Elliptic curves can be
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Algorithm Claimed Security Public key Private key Ciphertext
Kyber512 Level 1 800 1632 768
Kyber768 Level 3 1 184 2 400 1 088
Kyber1024 Level 5 1 568 3 168 1 568

Classic McEliece348864 Level 1 261 120 6 492 128
Classic McEliece460896 Level 3 524 160 13 608 188
Classic McEliece6688128 Level 5 104 992 13 932 240
Classic McEliece6960119 Level 5 1 047 319 13 948 226
Classic McEliece8192128 Level 5 1 357 824 14 120 240

HQC-128 Level 1 2 249 40 4 481
HQC-192 Level 3 4 522 40 9 026
HQC-256 Level 5 7 245 40 14 469

Table 3.1: Key and ciphertext sizes (in bytes) for the KEM algorithms [1]

Algorithm Claimed Security Public key Private key Signature

Dilithium
Level 2 1 312 2 528 2 420
Level 3 1 952 4 000 3 293
Level 5 2 592 4 864 4 595

Falcon-512 Level 1 897 7 553 666
Falcon-1024 Level 5 1 793 13 953 1 280

SPHINCS+-128s Level 1 32 64 7 856
SPHINCS+-128f Level 1 32 64 17 088
SPHINCS+-192s Level 3 48 96 16 224
SPHINCS+-192f Level 3 48 96 35 664
SPHINCS+-256s Level 5 64 128 29 792
SPHINCS+-256f Level 5 64 128 49 856

Table 3.2: Key and signature sizes (in bytes) for the digital signatures algorithms [1]

utilized alongside the Diffie-Hellman algorithm (ECDH) to exchange shared secrets or with
the DSA algorithm (ECDSA) to make digital signatures. All these algorithms are based
on the mentioned problems of factoring large numbers or the problem of solving a discrete
logarithm.

Compared to currently used cryptography, PQ cryptography has lower performance and
there are also large differences in the sizes of keys, ciphertext, and signatures. Typically, in
current cryptography, the size of keys and digital signatures is in the order of hundreds to
thousands of bits, significantly less than in PQ cryptography.

Particularly for blockchain technology, the size of keys and digital signatures can pose
significant challenges. Since they are often stored within a blockchain, this can cause
substantial growth in its overall size.
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Algorithm Keygen Encapsulation Decapsulation
Kyber512 29 172 36 768 26 943
Kyber768 45 407 54 332 42 098
Kyber1024 61 960 74 939 60 053

Classic McEliece348864 151 761 145 47 503 119 873
Classic McEliece460896 385 383 414 90 694 231 764
Classic McEliece6688128 591 004 800 191 851 273 034
Classic McEliece6960119 567 788 742 164 539 251 788
Classic McEliece8192128 625 667 532 203 624 268 867

HQC-128 104 115 197 030 360 575
HQC-192 244 636 459 309 766 797
HQC-256 447 179 845 083 1 425 978

Table 3.3: Performance of the KEM algorithms (in processor cycles) [52]

Algorithm Keygen Signing Verifycation
Dilithium2 90 195 236 975 87 348
Dilithium3 153 215 380 755 144 980
Dilithium5 247 152 476 989 236 726

Falcon-512 21 234 790 888 844 143 976
Falcon-1024 63 158 867 1 800 943 292 065

SPHINCS+-128s 5 9910 564 447 597 974 745 416
SPHINCS+-128f 933 692 21 966 943 1 891 461
SPHINCS+-192s 96 144 674 1 080 729 340 1 152 859
SPHINCS+-192f 1 405 335 38 270 621 2 709 479
SPHINCS+-256s 59 723 455 786 789 398 1 565 715
SPHINCS+-256f 3 740 593 79 046 495 2 729 293

Table 3.4: Performance of the signature algorithms (in processor cycles) [52]
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Chapter 4

Post-quantum blockchain

This chapter serves as a bridge between the preceding ones. Its primary objective is identify-
ing parts of blockchain technology that may be vulnerable to quantum threats, as explained
in Section 4.1. Subsequently, Section 4.2 explores blockchains that claim to be quantum-
resistant. This section also discusses well-known blockchains that are considering adopting
PQ cryptography, explaining their concerns and the cryptography they are currently using.

Since blockchain technology heavily depends on cryptography, Section 4.3 focuses on
selecting appropriate PQ algorithms for inclusion in blockchains among those mentioned in
the previous chapter.

4.1 Blockchain components affected by quantum threat
Block hashes and Merkle trees – Each block in a blockchain contains a hash representing
data within that block, as well as the hash of the previous block, typically calculated using
the Merkle tree procedure. As mentioned in the Section 3.1 Grover’s algorithm can be
employed to search for hash collisions, which may enable the replacement of a block in the
blockchain while maintaining its apparent integrity [16]. To mitigate this threat, it is crucial
to employ a hashing function with an adequate output length, as detailed in Section 3.2.1.
Transaction signatures – Each transaction in a blockchain must feature a digital signature.
To ensure PQ resistance signatures have to be created by a quantum-resistant algorithm,
these algorithms were discussed in Sections 3.4.
Transactions confidentiality – For blockchains prioritizing data confidentiality, attention must
be given to communication encryption. The KEM algorithms discussed in Section 3.3 are
employed to ensure the secure exchange of a symmetric key. Recommendations for sym-
metric cryptography were mentioned in Section 3.2.1.
Consensus mechanism – Regarding consensus mechanisms, in the case of the PoW consen-
sus mechanism, it is advisable to use a PoW variant that does not grant quantum computers
an advantage over classical ones.

For example, as previously discussed in the Section 3.1, Grover’s algorithm can accel-
erate the generation of hashes, which poses a challenge for blockchains employing a PoW
consensus mechanism or a similar approach. A user equipped with a quantum computer
could gain a significant advantage, potentially leading to dominance over the blockchain
network by outperforming classical computers [16] .

A notable alternative is the Lattice-based Consensus mechanism, or Lattice-based Proof-
of-Work (LPoW), which is quantum-safe. LPoW presents a challenging puzzle for both clas-
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sical and quantum computers; this ensures security while the verification process remains
simple as in the case of traditional PoW consensus mechanisms [19].

In the case of PoS and other consensus mechanisms that use the concept of randomness,
it is important to choose a reliable random generator. Theoretically, PQ computers will be
able to find the deterministic nature of the pseudo-random generated values, as long as this
process is based on the phenomenon of classical physics [28]. In PoS, this vulnerability could
empower a malicious actor to manipulate stake height to increase the likelihood of being
more frequently chosen as the final validator. This issue is not restricted to consensus
mechanisms; many cryptographic algorithms rely on pseudo-random number generators.
However, the solution lies in quantum random generators, which are also a hot topic in
the PQ era. The key is to integrate them into existing solutions and use them instead of
current pseudo-random generators as soon as they are available.

Some consensus mechanisms, like PoS, Ouroboros, or XRP consensus mechanism, also
use digital signatures. As for transactions, it is crucial to use PQ digital signature algo-
rithms.

Other options for PQ consensus mechanisms are discussed by Gomes et al. in [20],
which also deals with quantum consensus mechanisms based on quantum computations.

4.2 Existing post-quantum blockchains
Many well-known blockchains realize the PQ threat and are actively preparing to secure
against quantum attacks. However, the practical implementation of PQ algorithms in
blockchains presents numerous challenges, including speed, key size, signature size, and ci-
phertext size concerns. Doubts persist about the overall security of existing PQ algorithms.
Additionally, the development of quantum computers capable of executing substantial quan-
tum attacks is anticipated to occur within a timeframe of 10 to 30 years1 [16].

For these reasons, well-known blockchains such as Cardano, Ripple (XRP Ledger), and
Hedera are cautious about implementing PQ algorithms. Cardano is willing to transition to
PQ cryptography but is awaiting the standardization of new PQ algorithms from the NIST
competition. Currently, Cardano employs the Edwards-curve Digital Signature Algorithm
(EdDSA), specifically Ed25519. The consensus mechanism, Ouroboros, operates on a prin-
ciple similar to PoS and is considered usable even in the era of quantum computers [26].

Similarly, Ripple (XRP Ledger) is considering implementing PQ algorithms but believes
the current ones are inefficient, fearing a decline in blockchain performance. Ripple presently
employs the ECDSA or EdDSA algorithms. Despite this, Ripple’s consensus mechanism,
which was described in Chapter 2.6, is believed to be secure even in the quantum computing
era [53].

Hedera, so-called as a ”third generation blockchain“, expresses interest in adopting the
Falcon algorithm due to its balance between security and key size. However, Hedera awaits
the NIST standard for Falcon algorithm which is expected in 2024 before implementing
it [55].

Some blockchains, like Quantum Resistant Ledger (QRL), have already implemented
PQ-resistant algorithms. QRL uses the Extended Merkle Signature Scheme (XMSS), a stan-
dardized PQ stateful algorithm, for digital signatures. As a consensus mechanism, it uses
PoS [55].

1The estimated timeline for the development of truly efficient quantum computers varies among different
sources. Some experts claim that a truly efficient quantum computer may never be built.
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IOTA, until 2021, utilized the Winternitz One Time Signatures (WOTS) algorithm,
which is considered resistant to quantum attacks. However, in 2021, IOTA transitioned to
EdDSA for better performance and reduced transaction size. IOTA currently uses a PoW
mechanism but plans to adopt PoS in IOTA 2.0 [27].

Corda, in contrast, introduced a PQ algorithm based on SPHINCS+, providing users
with choices like RSA, ECDSA, EdDSA, and SPHINCS+ for digital signatures. EdDSA is
the default, with SPHINCS+ as a PQ alternative [55].

In summary, current blockchain implementations often withhold from adopting new
PQ algorithms due to significant drawbacks and pending standards. Some blockchains
implement already standardized PQ algorithms like WOTS, WOTS+, or XMSS. However,
these algorithms come with their own set of drawbacks. WOTS operates as a one-time
signature scheme, necessitating the use of a different private key for each signature. XMSS
is a more complex stateful algorithm derived from WOTS and also requires key management
and periodic updating. From this point of view, this work is unique for its original focus
on implementing new PQ algorithms in blockchain. The Table 4.1 offers a summary of the
mentioned blockchain platforms. The green cells indicate the utilization of PQ resistant
algorithms, while red cells signify algorithms that are considered insecure in the PQ era.
Notice that Hedera and Corda have empty cells in the consensus mechanism column. This
is because they employ custom consensus mechanisms which were not analyzed for their
PQ resistance yet.

Blockchain Utilized cryptography Consensus mechanism
Cardano Ed25519 Ouroboros

Ripple (XRP) ECDSA, Ed25519 XRP Consensus Protocol
Hedera Falcon
QRL XMSS PoS
IOTA Ed25519 PoW

IOTA 2.0 Ed25519 PoS
Corda ECDSA, RSA, Ed25519, SPHINCS+

Table 4.1: Summary of existing post-quantum blockchains

4.3 Post-quantum cryptography for blockchain
To create an efficient PQ blockchain, several factors are important [16]:

• Small encryption key sizes. Devices interacting with the blockchain need to store
private keys and often multiple public keys. Particularly for Internet of Things (IoT)
devices, small key sizes are essential for space-saving and efficient work with these
keys.

• Small sizes of digital signatures. Since every blockchain transaction requires a digital
signature, the size of these signatures significantly impacts the size of a block and the
entire blockchain.

• Fast execution. Post-quantum schemes must be optimized for speed to enable the
blockchain to process a maximum number of transactions.
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• Low computational complexity. This ties in with the previous point, but it is impor-
tant to note that certain post-quantum schemes may work more efficiently on specific
hardware without necessarily being computationally simple.

• Low energy consumption. Ensuring the long-term sustainability of the blockchain
requires energy-efficient computing processes.

However, achieving these ideal properties is challenging in practice, especially concerning
key size, digital signatures, and efficiency. It often involves a balanced trade-off between
security and practicality, or key size and performance [55].

Key-Encapsulation Mechanism (KEM)

In the KEM category, the optimal choice among the algorithms is quite evident. While
HQC shares similarities with Kyber, Kyber holds a slight advantage across all measure-
ments. McEliece stands out for its compact ciphertexts and longstanding reliability, but its
drawback lies in the size of public keys. So, Kyber emerges as the most favorable choice.
It offers a balanced combination of reasonable public key and ciphertext sizes with very
good performance. Kyber is also trusted by the NSA and other institutions as a safe and
reliable choice.

Digital signatures

In the case of algorithms for digital signatures, the decision is no longer as straightforward.
In the blockchain, where each transaction requires a digital signature, the SPHINCS+

algorithm could be impractical due to excessively large signatures.
So, the primary argument arises between the Falcon and Dilithium algorithms. Both

exhibit comparable properties, with Falcon having slightly smaller public keys and signa-
tures, while Dilithium has slightly better performance. Both algorithms are trusted by rel-
evant institutions, with Dilithium being particularly favored by the NSA. Ultimately, both
Falcon and Dilithium are deemed as the best choices for deployment in the blockchains.
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Chapter 5

Design of post-quantum blockchain

This chapter presents my design for a PQ blockchain. It consists of four sections. The initial
Section 5.1 describes the requirements and goals of this design. Since one of the main goals
is to test the performance Section 5.2 describes the strategy and chosen evaluation metrics.
The subsequent Section 5.3 outlines the possible usage of this design. Section 5.4 details
my approach to achieving PQ security, with the description of employed algorithms, cryp-
tography, etc. The last two Sections 5.5 and 5.6 defines my design of the entire blockchain
with all its components and data structures.

5.1 Requirments
The main requirement is to achieve PQ resistance of the blockchain with an emphasis on
ensuring the integrity and security of transactions. This goal will be achieved by integrating
new PQ cryptography and adhering to practices outlined in Section 4.1. Figure 5.1 illus-
trates the high-level blockchain scheme with highlighted components on which the main
focus will be placed. This blockchain stack is inspired by the stacked model presented in
the Article by Homoliak et al. [22].

Additionally, particular emphasis will also be placed on evaluating the performance
of this blockchain with the usage of various PQ digital signatures as well as with digital
signatures currently in use.

Recognizing the complexity of developing an entire blockchain system, certain aspects
of the final implementation will be abstracted. Additionally, these abstractions will simplify
the subsequent testing. All used abstractions will be clearly marked and supplemented with
proposals for full functionality.

5.2 Performance testing design
Testing of a whole blockchain can be a complex task. There are various metrics and
properties that can be considered. Also, there are multiple testing methods like empirical
analysis, live monitoring, experimental analysis, simulation, mathematical modeling, etc.
Often monitored properties are transaction execution time, latency, transaction through-
put, and scalability. However, these properties mostly depend on the utilized consensus
mechanism [15]. For this work, the important metric is the performance of different digital
signature algorithms within the blockchain.
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Figure 5.1: High-level scheme of designed blockchain

The monitored attributes will be similar to those in the analysis made by Chandel et
al. [10], who compared the performance of the Rivest-Shamir-Adelman (RSA) algorithm
and the Elliptic-Curve Cryptography (ECC). Their comprehensive analysis results are based
on the key sizes and performance of key generation, sign, and digital signature verification
operations [15]. The same attributes were observed by the Open Quantum Safe project [52]
which has created benchmarks and has compared new PQ algorithms from the NIST com-
petition.

It would make sense to compare even cryptography hash functions. However, this
comparison was already done by Ferreira et al. [17], who conducted a study on blockchain-
based IoT to explore the performance of hash functions in blockchains. Particularly, the
authors developed a blockchain in an IoT scenario to evaluate the performance of different
cryptographic hash functions such as MD5, SHA-1, SHA-224, SHA-384, and SHA-512. The
results show that SHA-224 and SHA-384 are the best hash functions for blockchains due
to their lack of collision attacks [15]. However, from these algorithms, only SHA-386 and
SHA-512 are recommended for use in the PQ era.

Direct comparison with different blockchain platforms is also difficult. The main prob-
lem is large differences in consensus mechanisms. Additionally, each blockchain may serve
distinct purposes [15]. Specifically for this design and implementation, direct comparisons
with other blockchains might be misleading due to the used abstraction, which may lead
to inaccurate results. Therefore, the comparison focus will be only on different digital sig-
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nature algorithms, as this represents the most significant difference from current solutions.
Especially compared will be new PQ algorithms with currently widely used ECC.

5.3 Usage
Blockchain can have various uses. I decided to implement proposed blockchain as an open
cryptocurrency for exchanging digital funds using an Account-based model. To simplify
the implementation, there will be several related abstractions:

1. Blockchain will be started with a fixed number of pre-initialized accounts. Each node’s
account database will be then pre-initialized with these accounts. This ensures easier
testing, as it will be possible to set the attributes of individual accounts. Furthermore,
nodes will not have to discover and synchronize with each other, because everything
will be manually set. Adding new accounts to a running blockchain can be achieved by
treating the account creation process as a transaction. Such a transaction would also
go through the consensus process, wherein validators verify if the same account does
not already exist. Upon successful validation and creating a new block, all validators
update their account databases to include the newly created account.

2. Since individual nodes will be pre-initialized, there will not be a mechanism for node
discovery within the blockchain network. However, a possible solution can involve new
nodes attempting to connect to specific, publicly known, and trusted nodes. These
nodes can then provide a list of other nodes available for connection.

3. This design also lacks a mechanism that would ensure the synchronization of a new
node that joins the blockchain network after the blockchain has made some progress.
Synchronization involves a node contacting its peers to obtain valid blocks and ac-
counts created during its absence or inactivity. This functionality is not implemented
under the assumption that during testing there will be a fixed number of nodes ini-
tialized simultaneously. However, this mechanism can be integrated into the current
implementation. The key is to ensure that nodes synchronize only with valid blocks
and accounts. This can be achieved by having the node contact trusted peers (peers
included in its Unique Node List1), and if 80% of these peers report the same blocks
and accounts, they can be considered valid.

With the mentioned abstraction this will be the primary scenario for using the proposed
design:

1. All nodes of the blockchain will be launched simultaneously. Before the actual launch,
the account databases of each node will be pre-initialized with existing accounts.

2. After the pre-initialization nodes will create connections with each other, they will
start communicating and creating transactions.

3. Subsequently, it will be possible to stop the nodes, check the results, and examine the
final blockchain state.

4. The process will be repeatable, for example with a different algorithm for digital
signatures.

1UNL is a list of peers trusted by some node. Each node can create its own UNL. This concept was
described in Section 2.6 as a part of XRP ledger consensus protocol.
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Theoretically, until the nodes are stopped, the entire network can continue functioning.
This scenario is designed specifically for testing.

5.4 Achieving quantum resistence
This section will detail the approach I have taken to secure the essential components of
the blockchain against quantum attacks, as previously outlined in Section 4.1. It will also
discuss the PQ algorithms that I decided to select and provide an explanation for my
choices.

Hash function

As a hash function, I decided to utilize the SHA-512, primarily because it aligns with the
recommendations from the NCISA and the NSA also recommends it in their CNSA 2.0
suite.

Post-quantum cryptography

I decided to utilize several algorithms for PQ digital signatures, the performance of which
will be compared in the testing chapter. These are Falcon and Dilithium algorithms in
all their levels, namely Falcon-512, Falcon-1024, Dilithium2, Dilithium3, and Dilithium5.
Additionally, I have decided to compare these PQ algorithms with the currently preva-
lent ECDSA and EdDSA algorithms, specifically Ed25519, commonly used in existing
blockchains. Despite recommendations, I have decided against implementing a hybrid use
of PQ and current cryptography due to potential implementation complexities and also to
preserve the meaning of the subsequent comparison of PQ and current algorithms.

Consensus mechanism

As for the consensus mechanism, I have decided for the algorithm employed by Ripple
(XRP Ledger), which was detailed in Section 2.6. Even though this mechanism is a little
more complex, it is very effective. In terms of PQ resistance, it does not use the principle of
PoW or random selection of validators, but validators cooperate to achieve the consensus.
However, this consensus uses a special type of messages called proposals that require digital
signatures, so even there has to be employed mentioned PQ cryptography.

Transactions confidentiality

Ensuring confidentiality of transactions will not be a part of this implementation, as it
primarily pertains to permissioned blockchains, and this aspect is already addressed by
new PQ protocols such as KEMTLS, which ensure encrypted communication. Especially
KEMTLS (see [51]) is interesting mainly because for authentication it uses PQ KEM algo-
rithms instead of digital signatures since cyphertexts of KEM algorithms are usually almost
2 times smaller than PQ digital signatures.

Quantum entropy

Section 4.1 also mentioned doubts about the security of pseudo-random generators in the age
of PQ computers. The consensus mechanism I chose does not use the concept of randomness.
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However, entropy is necessary for the used cryptographic algorithms. My design still uses
a pseudo-random entropy generator provided by the operating system, because quantum
entropy generators are not widely available. Nevertheless, Allende et al. in [4], deals with
a similar topic to this thesis, and presents a solution with the implementation of a server
that serves as a source of PQ entropy.

5.5 Blockchain design
This Section serves as an introduction to the designed blockchain, with its high-level illus-
tration in Figure 5.2. A node has a copy of the blockchain (chained blocks with transactions)
and the account data of all nodes in the blockchain network. The node communicates with
other nodes in the P2P blockchain network. The important messages are transactions and
proposals. When a node obtains a transaction it verifies it and broadcasts to other nodes.
Proposals are messages specific to the chosen consensus mechanism, which is the XRP Con-
sensus Protocol described in Section 2.6. Nodes exchange proposals to reach a consensus
with each other. Finally, to ensure that a node works properly it is necessary to keep it
in synchronization with other nodes in the network. All details about the functioning of
a node will be described in the subsequent Section 5.6.

Node

Blockchain network

Blockchain

Accounts

Transactions

Proposals

Synchronization data

Figure 5.2: High-level design of blockchain protocol

5.6 Node design
The design is segmented into several distinct components, as illustrated in Figure 5.3. Each
link symbolizes communication between these components. Detailed explanations of these
components and their functionalities are provided later in this section, along with data
structures used for blocks, transactions, proposals, and messages.

The illustrated design corresponds to the implementation of the validator node. How-
ever, I also considered other types of nodes:

• Validator node: Holds the full copy of the blockchain, broadcasts received transactions
to other validators, can create its own transactions, and most importantly participates
in validation and the process of reaching consensus.
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• Server node: Do the same as a validator node including consensus, but with the
important change. Servers do not create proposals for consensus. They observe pro-
posals created by their chosen validators, ensuring they remain informed and updated
with the network’s activity.

• Stock node: These are just user applications that can connect to a server node or
directly to a validator and create transactions.

Although these different types of nodes are designed, only the validator node will be
implemented, as it contains all the necessary functionality for testing. Implementation of
the server node and stock node would make sense without using the mentioned abstraction.
In this scenario, server nodes would be intermediaries for distributing blockchain state
information to stock nodes. Most of the code implementation would be the same as for
the validator node. However, it would be necessary to add special messages that would be
used for communication between the server and the stock node. For example, a request for
information about the current state of blockchain, individual accounts, transactions, etc.
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Figure 5.3: Design of blockchain node components

5.6.1 Components

Signer

While this component is not directly presented in Figure 5.3, it plays a crucial role in this
application. It is used by all of the components, except the Storage, and its primary task
involves generating key pairs, signing transactions and proposals, and verifying signatures.
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Wallet

The Wallet stores and manages configurations of the local node account. This encompasses
the generation and storage of key pairs for digital signatures, creating new transactions, and
storing records of transactions associated with the local account. Additionally, it maintains
information about the node’s UNL, current available balance, and unique sequence number
used for creating transactions.

When a transaction is created, it is added to the transaction pool2 in the consensus
mechanism and broadcasted to known peers.

Storage

It is an interface that enables communication with the local database for blocks and ac-
counts. Changes in the database are performed only by the consensus mechanism. Upon
validating transactions, it updates the status of individual accounts and appends a new
block to the database. However, other components also require read-only access to the
database. This includes a Connection Manager for retrieving a node’s IP address or host-
name and a Message Processor that responds to GetData type messages (message types
will be discussed later in this section).

Connection Manager

The Connection Manager enables P2P communication between nodes. It is responsible for
accepting connections from peers and initializing connections with them. Additionally, the
Connection Manager handles scenarios where peers disconnect and manages connections
to ensure only one connection with each peer. Another crucial function is sending and
broadcasting messages, as well as receiving messages from other peers. Received messages
are then delegated to the Message Processor for further processing.

Message Processor

The Message Processor is responsible for taking actions based on received messages. These
actions involve informing other components about received information or providing direct
responses to these messages.

Consensus mechanism

The role of the Consensus Mechanism is quite clear. It executes the algorithm that ensures
nodes on the blockchain reach a consensus on the next block. I have decided to utilize
the XRP Consensus Protocol which was described in Section 2.6. As illustrated in Fig-
ure 5.3, the Consensus Mechanism interacts with most other components. It adds new
blocks and updates accounts in Storage, generates message proposals, and forwards them
to the Connection Manager for transmission. Moreover, if the newly created block contains
a transaction related to a local account, the Wallet will be notified about this transaction.

2Set of transactions waiting for inclusion in the next block.
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5.6.2 Data structures

Account

The account structure is illustrated in Figure 5.4. Each account is assigned a unique
identifier, generated by hashing the account’s public key with SHA-512. Subsequently, the
account possesses the following attributes:

• Public key: The public key is utilized for verifying signatures associated with an
account.

• Balance: The current balance of an account.

• Transaction sequence number: This denotes the sequence number of the last trans-
action made. Upon the creation of a new account, this number initializes to 1. Sub-
sequent transactions increment this number by 1. The purpose is to prevent the
duplication of the same transaction multiple times. Transactions are validated only
if the sequence number is higher than the last recorded one.

• List of IP addresses/hostnames: IPv4/IPv6 addresses or hostnames where this node
can be reached.

Account ID Balance TX sequence number

Public key List of IP addresses/hostnames

Figure 5.4: Account structure

Transactions

The main objective of transactions is to transfer resources between accounts. Transac-
tions are simplified to always involve one sender and one receiver; there is no option for
transactions with multiple receivers.

Each transaction must include a digital signature, the address of a recipient and sender,
a timestamp, an amount of transferred funds, and a unique sequence number within a single
sender to prevent duplication of transactions. The illustration of transaction structure is
in Figure 5.5.

TX ID Sender Addr. Receiver Addr. Amount

Sequence number SignatureTimestamp

Figure 5.5: Transaction structure
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Blocks

Figure 5.6 illustrates the structure of a single blockchain block. The block header incorpo-
rates all the essential elements detailed in Section 2.3. Meanwhile, the data section contains
validated transactions.

# Block Index

Transactions

Block header

Version

Previous block hash

Hash of block data

Hash of all accounts

Block size

Figure 5.6: Block structure

Proposals

Proposals, illustrated in Figure 5.7, are specific structures within the chosen consensus
mechanism, with two main types: transaction set proposals and block proposals.

A transaction set proposal provides information to other validators about the transac-
tions being considered for inclusion by the issuing node. It typically includes the following
components: the issuer’s identifier, a timestamp, a sequence number of a proposal, unique
for each issuer (reset at the start of each consensus round), the identifier of the proposed
transaction set (represented by the Merkle root hash of the proposed transaction set), the
proposed transaction set itself, and the issuer’s signature.

On the other hand, a block proposal notifies other validators about the next block being
considered by the issuer. It indicates that the issuer has reached a consensus on a specific
set of transactions and is proposing the creation of the next block. This type of proposal
contains the issuer’s identifier, the identifier of the proposed block (represented by the block
header’s hash), the proposed block header, and the issuer’s signature.

Messages

There are several types of messages, some of which were inspired by the messages used
by the Bitcoin protocol [8]. Each message consists of a message header, which remains
consistent across all message types. This header contains identifiers for the message type,
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Issuer ID TimestampSequence number

Issuer ID Proposed block ID Signature

Proposed block header

TX set ID

Signature List of proposed transactions

Block Proposal

Transaction set proposal

Figure 5.7: Proposals structure

message size, a control checksum, and a magic number, a constant used to ensure proper
message parsing.

Types of messages:

• Version: The message sent by the node that initializes a connection. It contains
a version number, node type identifier, and node identifier. Based on this message,
a node can decide whether to accept the connection.

• Ack: A positive response to the Version message. If a node does not wish to accept
a connection from another node, it simply closes the connection without sending any
additional messages.

• Transaction: A message containing a transaction.

• Account: A message containing an account.

• Block: A message containing a block.

• GetAccount: A message requesting an inventory message with account identifiers
from a particular point in the blockchain.

• GetBlock: A message requesting an inventory message with block header identifiers
from a particular point in the blockchain. (inspired by the Bitcoin protocol [8])

• Transaction set proposal message: A message containing a transaction set pro-
posal.

• Block proposal message: A message containing a block proposal.

• Inventory: A message containing inventories known to the transmitting peer. In-
ventories consist of an inventory type and identifier, which can be used to identify
a transaction, account, or block. These messages can be sent to announce new ob-
jects or in response to GetAccount or GetBlock messages. (inspired by the Bitcoin
protocol [8])
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• GetData: This message requests data from another node. It shares a similar struc-
ture to the inventory message. As a response to this message, a Transaction, Account,
or Block message with the specified object identifier will be sent. (inspired by the
Bitcoin protocol [8])

The Block, Account, GetAccount, and GetBlock messages are listed here for complete-
ness, but will not be used due to the chosen abstraction.

Figure 5.8 illustrates possible scenarios with designed messages. There is no scenario for
proposal messages because they are in competence of the consensus mechanism and there
is no response for them.

Version

Ack

GetAccount/GetBlock

Inventories

GetData

Account/Block

Get Data request

Transaction/Account broadcast

Transaction/Account

Connection initialization

Figure 5.8: Designed message scenarios
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Chapter 6

Implementation

This chapter provides a detailed overview of the design implementation outlined in Sec-
tion 5.6. The development platform selected for this project is Linux Ubuntu 22.04, and
the entire implementation is conducted using the C++ programming language.

6.1 Signer
As outlined in the design, various algorithms for digital signatures were utilized. PQ digital
signature algorithms were sourced from the PQClean library [30, 29], which contains original
implementations of algorithms from the NIST competition. I chose implementations only
with AVX2 hardware optimization. Currently used algorithms such as Ed25519 and ECDSA
were sourced from the Crypto++ library [13], which also provides the implementation of the
SHA-512 algorithm.

The class model of this component is illustrated in Figure 6.1. The Signer is always
initialized with the chosen algorithm at the start of the program. Subsequent calls to the
Signer then utilize the selected algorithm.

<<Interface>>
SignatureAlg.

+ genKeys()
+ sign()
+ verify()

Signer

+ Chosen algorithm instance

+ GetInstance() : SignatureAlg.

Falcon1024 Ed25519 . . .

Figure 6.1: Signer class diagram
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6.2 Storage
The Storage component was implemented with the use of LevelDB1, which is an embedded
key-value database. This database stores keys and values as arbitrary byte arrays. The
decision to use LevelDB was based on its simplicity and efficiency in storing all the necessary
data. The database’s data storage structure is illustrated in Figure 6.2. Blocks are stored
under the block identifier, which is the hash of the block header. Account data are stored
under the account identifier. For optimization purposes, accounts’ IP addresses/hostnames
are stored separately from other account data. This is because IP addresses/hostnames are
only used when establishing a connection with a node. Other account data are accessed
more frequently, so loading IP addresses/hostnames from the database along with other
data would be unnecessary.

The substantial implementation primarily consists of methods that enable commu-
nication with the database. These methods typically include operations such as Get,
Set/Update, etc.

Block Storage

Block ID Block data

Account Storage

Account ID Balance data Account ID Address data

Figure 6.2: Structure of data storage

6.3 Peer-to-peer network
To enable P2P communication, nodes must be capable of creating and accepting connections
from other nodes. In essence, within the traditional client-server architecture, a node in
a P2P network operates as both a ”client“ and a ”server“ simultaneously. This functionality
is facilitated by the Connection Manager, which is implemented in three parts:

”Server:“ Implemented using the BSD socket interface, the server listens on port 8330
for incoming connections from both IPv4 and IPv6 addresses. Unlike traditional server im-
plementations, it has no dedicated thread that continuously checks for connection requests.
Instead, this functionality is managed by the connection management part.

1https://github.com/google/leveldb
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”Client:“ Also implemented using BSD sockets, the client can establish TCP connec-
tions with other nodes using their IPv4, IPv6 address, or hostname. After establishing
a TCP connection, the client sends a Version message to the connected node. If the node
accepts the connection, it responds with an Ack message; otherwise, it closes the TCP
connection. In cases where two nodes simultaneously attempt to establish a connection,
one connection has to be closed so there will be just one connection between two nodes. To
deterministically resolve this issue, the connection initialized by the node with the lexico-
graphically smaller identifier is always closed.

Connection management: This is the largest part of the Connection Manager re-
sponsible for managing all established connections and handling new connection requests.
It was implemented as a separate thread running a loop that performs the following tasks
(see also Figure 6.3):

1. Utilizing the poll()2 function, it checks for incoming connection requests and notifies
the server to accept these connections.

2. It iterates through sockets of established connections, and using the poll() function,
it checks for input events. Such events indicate that a new message was received or
a connection was terminated. The received messages are also filtered. For example, if
a node receives different kinds of messages before the Version message or consensus-
related messages from nodes not included in its UNL.

3. It processes requests from other components to send messages by iterating through
these requests and sending messages to other nodes.

4. Similarly, it processes requests for creating new connections by iterating through these
requests and attempting to establish new connections.

Accept new
connections

Receive messages

Send messages
Create new
connections

yes

no

If loop

Figure 6.3: Connection Manager tasks

Multiple components can generate requests for sending messages, such as the Wallet for
broadcasting newly created transactions and the Consensus Mechanism for broadcasting

2The poll() function is a system call in Unix operating systems that can monitor I/O events of file
descriptors. In the context of this implementation, it is used to monitor the input events of socket descriptors.
https://man7.org/linux/man-pages/man2/poll.2.html
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proposals, etc. To ensure synchronization, there is a priority queue with exclusive access,
where other components can add requests to send messages. In this queue, messages are
sorted according to message priority. For example, Transaction messages have higher prior-
ity than Inventory messages, as the propagation of new transactions is important for faster
progress. These requests are periodically processed within the mentioned loop.

The same mechanism is applied to create new connections, though with a standard
queue.

6.4 Message processing
Once the Connection Manager receives a message, it delegates it to the Message Processor.
The Message Processor can either process the message immediately or insert it into the
processing queue, which is a priority queue where messages are ordered based on priority,
similar to the Connection Manager. Messages that do not require access to the database,
such as Version or Ack messages, are processed immediately. However, messages requiring
more intensive processing or database access are placed into the queue.

The Message processing functionality was implemented as a separate thread that re-
trieves messages from the queue, processes them, and potentially generates a response to
messages, which are then delegated to the Connection Manager for sending. The interaction
between the Connection Manager and the Message Processor is illustrated in Figure 6.4.

Connection Manager

Receive messages

Message Processor

Early processing

yes

no

if processed

Send messages

Late processing

Sending queue

Processing queue

Figure 6.4: Communication of Connection Manager and Message Processor

Different types of messages were discussed in the previous Chapter 5.6.2, they are im-
plemented as designed. However, it is worth mentioning how transactions are propagated
between nodes. When a node creates a transaction it directly sends it to its known peers
(other nodes). These nodes then propagate only the Inventory message of the transaction,
as it is smaller than the actual Transaction message. If some node requires the actual
transaction, it can request it with the GetData message.
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6.5 Consensus Mechanism
The high-level concepts of utilized consensus mechanism were already described in the
Section 2.6. This section will describe more in-depth details about the final functioning and
implementation. This implementation was inspired by the original generic implementation
of the Ripple (XRP) Consensus Protocol [45] and the article by Amores-Sesar et al. [5],
which provides a simplified pseudo-code explanation of the original implementation.

I have decided against copying the entire original implementation because it strongly
depends on different code structures and it would be problematic to integrate it into my
solution with noted abstraction.

The Consensus Mechanism is the last component that functionality was implemented
to run in a separate thread. It employs a transaction pool structure, which is a set of
candidate transactions that may be considered for inclusion in the next block. Transactions
in a block and proposals must be in a deterministic order so each node would calculate the
same Merkle tree hash of transactions. The process of reaching consensus runs whenever
there is a transaction in the transaction pool, and it operates in three phases within a loop:

• Open: During this phase, consensus waits for a certain duration for transactions
to accumulate in the transaction pool. The duration of this phase depends on the
duration of the previous consensus round.

• Established: After the time for the Open phase expires, consensus decides to close
a block and moves to the established phase. In this phase, validators propose and
update their transaction sets.

• Accepted: Once there is 80% consensus among a node’s chosen validators3 on
a transaction set, the block with this set is considered valid, and the block proposal is
broadcasted. However, transactions in this block are executed only if the same block
is proposed by 80% of a node’s chosen validators. Subsequently, consensus restarts
from the beginning.

Figure 6.5 with the description below illustrates a more detailed explanation of consensus
steps:

• Get preferred block: At the start of each iteration, a node checks if it is working
on the same block as its chosen validators. If other validators work on a different
block, the node switches to this block and restarts the consensus. The node obtains
information about the preferred blocks of other nodes from block proposal messages.

• Begin consensus: Restarts the consensus process.

• Close block: Transactions in the transaction pool are added to a new block and this
transaction set is proposed to other nodes.

• Create transactions disputes: A transaction becomes disputed when it is pro-
posed by the node itself and some other node does not propose it, or vice versa.
Creating disputed transactions involves comparing the node’s transaction set with
the transaction sets of other nodes.

3Node’s chosen validators are nodes on the Unique Node List (UNL). UNL is a list of trusted validators.
Each node manages its own UNL.
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• Update proposals: The node’s proposal updates based on disputes. If the majority
of other nodes propose a transaction not in the node’s transaction set, it may add it
there or erase a transaction if the majority of other nodes do not propagate it.

• Accept block: When 80% of the node’s chosen validators agree on a specific set of
transactions, it creates a block proposal for a new block with this transaction set. If
80% of the node’s validators agree with this new block, transactions are executed,
and the new block is fully validated.

Consensus failures can occur due to insufficient overlap between validators’ UNLs or if
many validators disconnect from the network. In such cases, the network may stop making
further progress. However, delving into the limitations of the utilized consensus mechanism
is beyond the scope of this work. The analysis of this consensus can be an extensive topic.
For more in-depth insights refer to articles [11, 5] that delve into the analysis of the Ripple
consensus protocol.

There may occur a scenario where a node accepts a new block early and the rest of
the nodes make some more additional changes. In such cases, the node must synchronize
with other nodes and restart the consensus process. However, because the synchronization
process is abstracted this scenario will be mitigated by ensuring the initial synchronization
and very good overlap of nodes UNLs.

6.6 Wallet
The purpose of the wallet, as described in Section 5.6.1, has been fully implemented with all
the mentioned functionality. Configuration data for the wallet are stored in JSON format.
For operating with JSON files was utilized the Nlohmann JSON library4. While it is not
the fastest JSON library available for C++, it is simple and sufficient for this purpose.

6.7 Console Interface
The application is controlled through a command-line interface based on the Model-View-
Controller (MVC) design. The model manages and communicates with all components
mentioned above. The View enables users to enter commands for the application and
displays outputs. The Controller processes the commands entered from the console, checks
them, and invokes model functionality.

4https://github.com/nlohmann/json
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Figure 6.5: Steps of implemented consensus mechanism
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Chapter 7

Testing

The testing aimed to evaluate the overall functionality, security parameters, and perfor-
mance of the implemented blockchain with the utilization of various algorithms for digital
signatures. Testing was performed by initializing several Docker1 containers, with each
container running one node instance. As described in the design Chapter 5.3 for testing
purposes the blockchain will have a fixed number of nodes with pre-initialized accounts and
account databases. The test setup process can be outlined as follows:

1. Generate configuration files for blockchain accounts.

2. Create the Docker image for a node and copy the generated account configuration
files.

3. Create a YAML file for Docker Compose.

4. Start the Docker containers.

5. Initialize each node’s account database.

6. Run the main application.

All these steps were automated, so it is enough to create one configuration file where
each line specifies the settings of one node, including IP address, initial balance, and UNL.
For fully automatic testing, there is also a script that sends commands to the application
input according to a predefined scenario.

7.1 Functionality testing
Before testing the overall functionality, there are also unit tests implemented using the
GoogleTest library2. These tests cover all blockchain components, except for the Connec-
tion Manager and Consensus Mechanism, as they require communication between multiple
nodes.

To test the Connection Manager and Consensus Mechanism, as well as the overall
functionality, was employed the test setup described above. Tests were performed with 3,
5, 10, 15, and 20 nodes. However, checking the test results was no longer automatic but

1https://www.docker.com/
2https://github.com/google/googletest
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manual by inspecting the final state of the blockchain (created blocks and account states),
and possibly reviewing logs generated by each node.

The test scenario involved each node creating 20 transactions over 50 seconds. After
that, another 30 seconds were left to reach the consensus and new blockchain state. This
scenario was repeated multiple times for each configuration of 3, 5, 10, 15, and 20 nodes.

An important consideration was the overlap of nodes’ UNLs. With a 100% overlap
(meaning each node has all other nodes in its UNL) the blockchain always succeeded in
reaching the correct final state. However, if a node’s UNL overlap is not sufficient the
network might fail to reach a consensus. The lower the overlap in a node’s UNL, the
greater the likelihood of failure to reach the correct final state. Tests with different overlaps
were also performed, but finding sufficient overlap of nodes’ UNLs and testing the precise
properties of the consensus mechanism was not within the scope of this work. For this work,
it is sufficient to use the overlap of nodes’s UNLs above 80%. Under these circumstances,
the network should always reach a consensus.

7.2 Evaluating security parameters
The security of the blockchain mainly relies on the employed cryptography. However,
practical tests on PQ cryptography are not currently possible due to the lack of sufficiently
powerful quantum computers. Therefore, the security parameters can be evaluated just
theoretically, based on mathematical proofs, scientific papers, and recommendations from
relevant security institutions. These aspects were previously discussed in Section 3.2.

7.3 Performance testing
Performance testing was made with PQ algorithms Flacon1024, Falcon512, Dilithium5,
Dilithium3, Dilithium2, and currently used algorithms Ed25519 and ECDSA. All tests
were done on the operating system Ubuntu 22.04 and processor AMD Ryzen 5 5600.

Measured attributes were the number of processor cycles, memory utilization of the
application in the 35th second of the runtime, and the amount of data sent/received during
the runtime. Processor cycles were measured using the Linux utility perf stat3, memory
utilization data was obtained from Docker stats, and the amount of transferred data was
tracked by the application itself. Although measuring memory utilization in this way might
seem unconventional, the proposed scenario generated the transactions evenly, and the
consensus was also constantly validating new blocks, so the allocated memory was almost
at the same level during the entire program runtime. The 35th second was chosen because
it is in the middle of the transaction-generating phase. All these measured attributes
correspond to the testing design outlined in Section 5.2. These metrics align with other
studies, mentioned in that section, that were made on similar topics.

The testing scenario was the same as for functionality testing. The purpose of this
scenario is to measure how size and performance requirements grow with the increasing
number of nodes and transactions. Tests were performed with 3, 5, 10, 15, and 20 nodes,
each creating 20 transactions over 50 seconds with an additional 30 seconds to reach a con-
sensus. After this time, all nodes were stopped and performance statistics were captured.
The overlaps of UNLs were always 100% to keep the same conditions for each test round.
This scenario was used for all tests, and the only changing aspect was the algorithm utilized

3https://perf.wiki.kernel.org/index.php
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Figure 7.1: Measured complexity of the validator application with different digital signature
algorithms.

to make digital signatures. Five tests were performed for each algorithm in each config-
uration (3, 5, 10, 15, 20 nodes). Subsequently, the results from all nodes across all five
rounds were averaged. So, for example, with 10 nodes, there were averaged performance
results from 10 nodes, and this process was repeated five times, and finally, all results were
averaged.

Complexity

The chart in Figure 7.1 shows the average number of processor cycles performed by the
application using different algorithms for digital signatures. Falcon’s PQ algorithms are al-
most at the same level as the currently used Ed25519 algorithm. Dilithium’s PQ algorithms
are somewhat worse, but their results are not bad for practical use. In the categories of
PQ algorithms, Falcon dominates mainly because it has a very fast signature verification
process (see Table 3.4). Although the Dilithium algorithms have a much faster signing
process, in blockchains the signing is only used when creating transactions and proposals
and is performed only by their creator, while each node performs the signature verification
of all transactions.
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Figure 7.2: Measured memory allocation of the validator application with different digital
signature algorithms.

Allocated memory

Chart 7.3 shows the average amounts of allocated memory during tests with different dig-
ital signature algorithms. The growth in memory allocation is not too steep across con-
figurations with different node numbers. This is primarily because the utilized consensus
mechanism creates a new block every few seconds, and after that, the new block is saved,
and allocated data are freed. As a result, transactions do not accumulate and take up less
memory.

Amounts of transferred data

The chart in Figure 7.2 shows average amounts of sent/received data during tests with
different digital signature algorithms. Currently used algorithms Ed25519 and ECDSA
are almost at the same level. The results of PQ algorithms correspond to their security
levels; higher security levels entail larger keys and signatures, which results in a higher
volume of transferred data. This graph highlights one of the major disadvantages of PQ
cryptography for blockchains. The data transfer requirements grow significantly as the
number of executed transactions or nodes in the network increases. While the growth is
relatively moderate with the currently used algorithms it becomes more influential with PQ
algorithms. For example, in the case of Dilithium5, when doubling the number of nodes
from 10 to 20, the amount of transferred data is more than tripled. This growth is logical,
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Figure 7.3: Measured amounts of transferred data by the validator application with different
digital signature algorithms.

and the results of this observation did not even need to be tested practically, as they can
be approximately calculated.

7.4 Performance testing discussion
The important findings from performance testing are:

• The measured complexity of PQ cryptography compared to currently used ECDSA
and Ed25519 algorithms is not so terrible. The most significant factor is the effective-
ness of a signature verification process. In this metric dominate Falcon algorithms,
which are in terms of performance very close to the currently widely used algorithm
Ed25519. Dilithium algorithms are somewhat worse, but in my opinion, they are still
usable.

• Because of the sizes of PQ keys and signatures, applications utilizing PQ cryptography
may necessitate the allocation of additional heap memory. This could potentially im-
pact performance, as extensive heap memory usage might result in increased swapping
to disk swap space. For blockchains, the results show that a consensus mechanism
that creates new blocks more often with fewer transactions in one block can ensure
that the program uses less allocated memory.
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• The primary concern for blockchains arises from the sizes of PQ keys and signatures.
The results indicate that with PQ digital signature algorithms, individual nodes are re-
quired to transfer larger volumes of data compared to the presently employed ECDSA
and Ed25519 algorithms. This not only escalates network traffic but also accelerates
the overall growth of the blockchain’s size. The key factor here is the number of active
nodes in the blockchain network and the volume of transactions they generate. Fur-
thermore, this issue may get even more significant if a hybrid combination of classical
and PQ cryptography is employed for enhanced security.

As mentioned in Section 5.2 it is not possible to comparatively evaluate this implemen-
tation with other blockchain platforms. Nevertheless, it is viable to estimate the potential
impact of PQ cryptography on the overall size of other blockchains. For instance, let’s
consider Bitcoin. The following data was sourced from the Blockchain.com project [9]. In
contrast to the implemented blockchain, Bitcoin transactions involve both a digital signa-
ture and a public key. Bitcoin employs various transaction types, but for simplicity, let’s
assume each transaction contains only one signature and one key, although this is not true
and it may lead to significant inaccuracies. Bitcoin utilizes the ECDSA algorithm for digital
signatures, with a key size of 32 bytes and a digital signature size of 72 bytes. Currently,
the average block size in Bitcoin is approximately 1,5MB, and it contains an average of
3800 transactions, this results in an average transaction size of about 400 bytes.

Suppose Bitcoin were to adopt the Falcon-512 PQ algorithm, which, according to
Table 3.2, has a key size of 876 bytes, and a signature size is 666 bytes. In this case, the
size of one transaction would increase to 1 859 bytes, and only 800 transactions would fit
into a 1,5MB block.

Considering the largest keys and signatures from the mentioned PQ algorithms, the
Dilithium5 algorithm has a key size of 2 592 bytes and a signature size of 4 595 bytes. In
this scenario, the size of one transaction would be approximately 7 483 bytes, with only 200
transactions fitting into a 1,5MB block.

From the available data of the Bitcoin.com project, it is also possible to track the
growth of the Bitcoin blockchain, which closely follows an exponential curve due to Bitcoin’s
increasing popularity over time. Presently, the entire Bitcoin blockchain size is around
569GB, with the total number of transactions reaching one billion. This indicates that
average transaction size is 570 bytes. If Bitcoin had utilized the Falcon-512 PQ algorithm
throughout its existence, its size today would be around 2 terabytes. In the case of the
Dilithium5 algorithm, it would be around 7,6 terabytes.

This is just a very simplified illustration. The purpose was to highlight the major
problem with the employment of PQ cryptography in the blockchain. Bitcoin was not
originally designed to accommodate cryptography with such large keys and signatures.
Future blockchain developers face the challenge of adapting the structure and functionality
of new blockchain platforms to optimize them for the utilization of PQ cryptography.

Testing summary
The implementation still has several limitations due to the abstraction used, but it was also
mainly designed for performance testing of different digital signature algorithms. However,
according to the performed tests, the application performs well and meets the defined goals.

Performance testing reveals that a PQ blockchain’s primary challenge is likely its size.
This is primarily due to the larger PQ signatures and keys compared to current algorithms.
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Chapter 8

Conclusion

This thesis aimed to design and implement a blockchain that would be secure against threats
that may possess future quantum computers. These declared aims were mainly achieved.
The solution describes the complete design and implementation of the PQ blockchain with
some degree of abstraction.

The important part of this thesis was also the analysis of blockchain and its vulnerabil-
ities against quantum threats. Most of the threads are related to cryptography. For this
reason, this thesis analyzed new PQ algorithms and examined their suitability for use in
blockchains. These analyses were then used to design and implement a blockchain resistant
to quantum attacks. The implementation employs multiple PQ and currently used algo-
rithms, which were compared in terms of performance to highlight the differences between
PQ and current cryptography in blockchains. It would be interesting to compare the re-
sults with existing implementations; however, not many blockchains have implemented PQ
cryptography yet, and because my implementation uses a certain degree of abstraction, the
results might also be inaccurate.

The performance tests showed that PQ cryptography in blockchains is usable. Beneficial
are mainly algorithms with fast digital signature verification. However, the main problem
is the size of the public keys and digital signatures. The nodes in the blockchain network
have to transfer larger amounts of data, and the overall size of the blockchains also grows
significantly faster.

Personally, this work gave me a very detailed insight into blockchain technologies and
cryptography. I was really interested in decentralization and blockchain systems. It is easy
to understand the concepts, but after writing this thesis, I know many more details and
insights into practical solutions.

Future works may try to find solutions to the downsides of using PQ cryptography in
blockchains. It can be a challenging task. The main problem will be a reduction of block-
chain sizes and optimization of data transfers between nodes. It would also be interesting
to create stochastic models for testing, bottlenecks searching, or analyzing the use of PQ
cryptography for specific blockchain platforms.
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