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Abstract

The doctoral thesis focuses on increasing the efficiency of signal data processing and clas-

sification using convolutional neural networks. The topic is divided into three significant

sub-areas: data processing, data fusion, and model architecture analysis. The thesis covers

the literature on signal processing and classification that leads to cutting-edge approaches

and their time consumption gaps.

The main building blocks of the proposed work are freely available datasets from several

healthcare sectors, their preprocessing, fusion, and classification. In all of these domains,

the thesis accomplishes findings, compares them to current methodologies in the literature,

and explains the differences. With appropriate precision for application, the suggested

approach for signal classification outperforms the complexity of existing papers.

Keywords:

CNN, CAD, data processing, data fusion, EEG, ECG, BCG
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Anotace

Disertační práce se zaměřuje na zvýšení efektivity zpracování a klasifikace signálových dat

pomocí konvolučních neuronových sítí. Téma je rozděleno do tří významných podoblastí:

zpracování dat, fúze dat a analýza architektury modelu. Práce zahrnuje literaturu o zpracov-

ání a klasifikaci signálů, která vede ke špičkovým přístupům a jejich nedostatkům v rychlosti

výpočtů.

Hlavními stavebními bloky navrhované práce jsou volně dostupné datové soubory z

několika odvětví zdravotnictví, jejich předzpracování, fúze a klasifikace. Ve všech těchto

oblastech práce naplňuje poznatky, porovnává je se současnými metodikami v literatuře

a vysvětluje rozdíly. S náležitou přesností pro aplikaci navrhovaný přístup ke klasifikaci

signálů překonává složitost stávajících prací.

Keywords:

CNN, CAD, zpracování dat, fúze dat, EEG, ECG, BCG
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1

Introduction

Machine learning research has gained significant popularity in recent years due to ad-

vancements in technology and performance. These improvements have enabled solving

increasingly complex issues that were previously impossible to calculate within a reasonable

timeframe. This has led to the development of more sophisticated models and systems for

classifying and detecting problems. One of the most notable areas where machine learning

has significantly impacted image processing. With the use of two-dimensional equipment,

three-dimensional objects can now be scanned, and their diversity in terms of position, size,

color, shape, and other features can be identified and solved.

Despite the technological advances in machine learning, there are still areas where it

is appropriate to explore the possibilities of system optimization for lower computational

demands without compromising performance. One such area is the classification of vital

healthcare data. Medical health analysis devices typically measure data in vectors or sets

of vectors, which are then sampled to an appropriate form. Based on this data, machine

learning algorithms can be used as decision support systems to detect health issues. The key

benefit of such systems is that they allow for continuous monitoring of patient conditions,

saving time for medical professionals in hospitals or carers at home. Early signaling is critical

in the event of therapy, and such systems are referred to as computer aided detection (CAD).

CAD systems offer several benefits in the field of healthcare. In addition to saving time

for medical professionals, CAD systems can reduce the likelihood of human error, especially

when detecting complex patterns. These systems can also detect health issues that might

not be immediately apparent to medical professionals, allowing for early intervention and

potentially better patient outcomes. However, CAD systems are not without limitations.

For example, they may not be able to detect certain health issues, and false positives can

1



sometimes occur. Therefore, CAD systems should be used as decision support tools and

not as a substitute for medical professionals.

During the research, it is essential to evaluate not only the quality of the models but

also their deployment possibilities. This is particularly important in the healthcare industry,

where the availability and application of modern approaches are necessary, even in the

absence of cutting-edge hardware. The healthcare industry is constantly evolving, with

the adoption of modern technologies playing a significant role in its progress. However,

the high cost of modern hardware can pose significant financial constraints, making it

challenging to provide quality healthcare services. Therefore, exploring alternative methods

to improve healthcare services and make them more accessible to everyone is necessary.

Hence, exploring alternative methods to provide quality healthcare services is necessary.

One of the popular machine learning techniques used in various industries is convolutional

neural network (CNN). This technique was designed initially for image classification and

detection but has since been applied in other fields. CNN is a feed-forward neural network

extended by convolution operations to improve classification performance. To improve the

efficiency of the CNN architecture, this thesis focuses on a literature review of existing ap-

proaches and identifies potential improvements in computational complexity. Additionally,

experiments will be conducted to analyze the efficiency increase.

The thesis presents a methodology based on long-term research focused on various

health issue databases. The first approach was made using electrocardiogram (ECG) databases

and was published in articles [32, 33]. The subsequent research involved working with

balistocardiography (BCG) data and was presented in papers [21–23]. The last part of the

study was focused on seizure detection from electroencephalogram (EEG) signals and is

presented in article [24]. Experiments were performed in reverse on datasets from older

publications to confirm the evaluations from articles.

The proposed solution’s flowchart is illustrated in Figure 1.1. The first step involves

loading the data from databases that are briefed in subsection 3.3 to conduct experiments on

health issues described in subsection 3.2. The following part involves preparing the raw data

into a suitable form, which is discussed in section 3.4, with the results presented in section 4.1.

In the case of multi-channel data, channel fusion is provided, and the motivation for the

proposed solution is discussed in section 3.5, with experiments presented in section 4.2. The

third part of the system deals with frequency analysis, with theory and hypothesis presented

2



Figure 1.1: Flowchart diagram of the system [created by the author]

in section 3.6, and evaluation in section 4.3, together with an analysis of the architecture.

The training and testing tasks were carried out with two CNN architectures using common

experiment settings from section 3.1. Since the thesis is divided into numerous submodules,

each portion’s discussion is presented with the results in the same section to improve text

readability and comprehension.
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2

The work’s objectives

This dissertation aims to suggest improving the computer processing of signal data for proper

categorization in informatics. These enhancements will be evaluated and illustrated using

signal data from a hospital setting. One of the most important things is to thoroughly analyze

the raw data to extract many crucial components for further target selection. Suitable CNN

designs for data classification will be explored, which have lately seen a surge in popularity

and are utilized to reduce several typical procedures before data classification itself [5, 32].

The suggested technique will establish an ideal classifier for accuracy and reliability and

decrease the computing complexity and time necessary to acquire the classification result.

The dissertation’s main goal is to increase the efficiency of the classification system,

which is solved by the following objectives:

1. Data processing

CAD systems are often constructed in standard flowchart ways with preprocessing,

feature extraction, feature selection, and classification operations. The goal is to

investigate the sections in conjunction with the CNN classifier for system reduction

by reducing computing time or deleting some processes entirely.

2. Data fusion

Because healthcare involves measuring additional devices or channels, the data fusion

procedure was explored to reduce complexity and reliance on utilized channels. With

the correct parameters, network architecture may be simplified by one dimension

without sacrificing performance to detect health risks.

3. CNN analysis

Model input resolution does not have to be of the best quality regarding picture

categorization. The CNN model must discover the major patterns that distinguish

4



classes. It led to frequency reduction experiments and an architectural evaluation of

all healthcare problems by selecting a suitable collection of blocks and filters based

on the input shape.
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3

Methodology

3.1 Experiments setup and CNN architectures

The work includes several experiments involving various components of the classification

system. Despite this diversity, the training and testing processes follow some of the conven-

tional practices commonly used in literature. Furthermore, the experiments employ two

design CNN architectures developed in the research.

3.1.1 Training and testing

The dataset is first divided using a stratified ten-fold cross-validation strategy [28] to assess

the model’s performance. This strategy aims to ensure that the distribution of classes in each

fold is representative of the entire dataset. This method divides the data into ten equally

large groups, each with a similar proportion of samples for each class.

Nine of the ten groups are used for training and testing to evaluate the model’s perfor-

mance, while the remaining group is held out for validation. Specifically, the training and

testing sets are split into 70% and 30% parts, respectively. The training part of the system

depends on two main hyperparameters: the number of epochs and the learning rate.

One epoch passes each training sample, followed by validation on testing samples. An

epoch is a single pass through the entire training dataset. During training, the model learns

to adjust its weights to minimize the difference between its predictions and the true labels of

the training data. The validation step evaluates the model’s performance on the testing data

to detect overfitting, where the model fits the training data too well and cannot generalize

to new data.
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Figure 3.1: Data division process [created by the author]

The learning rate is a crucial hyperparameter determining the weight changes’ size

during each model update. A low learning rate means the model will take longer to converge

to the optimal weights, while a high learning rate can result in large weight changes that

overshoot the optimal values. Therefore, the learning rate value does not have to be constant

for the entire training process. In this study, we set the learning rate parameter to 1 ·10−3 for

the first 25 epochs, with a dropping factor that varies depending on the number of epochs.

This strategy provides balanced learning of the dataset where the main patterns are

recognized in the first part of epochs, and more detailed differences of patterns are learned

in the later epochs. The initial learning rate was chosen to be low to ensure that the model’s

weights are initialized close to their optimal values. At the same time, the dropping factor

allows for gradual increases in the learning rate to promote more efficient learning. This

approach enables us to assess the model’s performance systematically and reliably, which is

critical for developing accurate and generalizable machine learning models.

Table 3.1 describes the hyperparameters used in the model training process. One of

the key strategies used is the step decay approach, which involves decreasing the learning

rate parameter according to a predetermined schedule. Specifically, the learning rate is

decreased every 25 epochs by a value of 2 · 10−1 from its initial value of 1 · 10−3, using the

Adam optimizer. This strategy is based on the appropriate gradient descent techniques

7



Table 3.1: Hyperparameters used for training the model [created by the author]

Input Size Optimizer
Learning

rate
Learning rate

schedule
Learning
rate drop

Mini batch
size

Epochs

499x1 Adam 1e-3 Step decay 2e-1 32 100

[75]. During the initial stages of the training process, the model focuses on learning the

main pattern differences between the different classes. This is followed by fine-tuning the

weights and biases of the model to improve its accuracy (Acc) and performance. Another

important parameter is the batch size, which determines the number of inputs the model

processes before it is updated. In this case, the batch size has been set to 32, considered an

appropriate value for this model type. This ensures the model can process sufficient data

without being overwhelmed or experiencing memory issues.

The evaluation of classification results to assess the performance of a model is made by

confusion matrix, a useful tool for this purpose that allows tabulating the number of true

positive (TP), true negative (TN), false positive (FP), and false negative (FN). These metrics

are shown in Table 3.2. TP and TN correspond to the correct classification of normal and

abnormal signals, respectively. FP and FN represent the wrong decisions made by the model.

When dealing with more than two classes, the normal data encompasses all signals

without health problems, and the abnormal data refers to the rest of the dataset. In binary

classification, the Acc of the test is a statistical measure of how well it can detect or eliminate

a condition. In other words, Acc represents the fraction of correct predictions, including

true positives and negatives, among all instances evaluated.

The positive predicted value (PPV) is a proportion of cases with positive test results that

are already patients. This measure provides information about the probability of a true

positive result when the test is positive. sensitivity (Sen) and specificity (Spec) are two other

important metrics used to evaluate the Acc of a test that reports the presence or absence of a

disease. The criteria for a positive result are met when an individual is considered "positive",

while a "negative" result means that the criteria are not met. Sen, also known as the true

positive rate, represents the chance of a positive test result when an individual is positive.

On the other hand, Spec, also known as the true negative rate, refers to the likelihood of a

negative test result when an individual is negative.
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Table 3.2: Confusion matrix description [created by the author]

O/P Normal Abnormal Acc (%) PPV (%) Sen (%) Spec (%)

Normal TP FN TP+TN
TP+TN+FP+FN

TP
TP+FP

TP
TP+FN

TN
TN+FP

Ubnormal FP TN TP+TN
TP+TN+FP+FN

TN
TN+FN

TN
TN+FP

TP
TP+FN

3.1.2 Architecture 1

CNN consists mainly of convolutional layers and max-pooling layers. The network’s order

and number of layers can vary and are characterized by their kernel size, which describes

the filter’s dimensions, the number of filters, and the stride of search.

In the model, the input layer has a resolution of 499x1, and the first layer after it is a

convolutional layer with 12 filters and a kernel size of 19. This means the layer performs a

convolution operation on the input image using 12 filters of size 19x1. The output of this

layer is a feature map, which is then passed through a max-pooling layer with a kernel size

of 2. Each pair of values in the feature map is compared in this layer, and the larger value is

retained for the next layer. This effectively halves the number of neurons in the feature map,

and the number of filters remains the same as in the previous layer.

This convolutional and max-pooling layer sequence is repeated twice in the model. In

the second convolutional layer, the kernel size is set to 19, but only 11 filters are used. In

the third convolutional layer, 12 filters are used with a kernel size of 11. In both cases, the

max-pooling layer has the same kernel size and stride as in the first layer. The stride of

convolutional layers is set to 1, and the stride of max-pooling layers is set to 2. After these

six layers, the number of output neurons is 550, consisting of 11 vectors with a size of 50.

The next layer of the architecture is fully connected. In this layer, each neuron is con-

nected to every neuron in the previous. Specifically, there are 11 neurons in this layer. The

final layer is also fully connected, with four outputs representing the four classes. The

whole model is summarized in Table 3.3 and Figure 3.2 and has been created by several

experiments and analyses of architecture properties.

Moreover, dropout layers and rectifier linear unit (ReLU) layers address the problem

of over-fitting and optimization [83]. The ReLU is an activation function used in all con-

volutional layers, which introduces non-linearity into the network. The dropout layer is

implemented after the first fully connected layer, with a value of 0.3, which means that 30%

of the neurons in that layer are randomly dropped out during training.
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Figure 3.2: The architecture of the proposed CNN model 1 [created by the author]

Table 3.3: The details of CNN structure 1 with n classes depending on classification task
[created by the author]

Layers Type No. of output neurons Kernel size Stride

0-1 convolution 481 x 11 19 1
1-2 max-pooling 240 x 11 2 2
2-3 convolution 220 x 12 19 1
3-4 max-pooling 110 x 12 2 2
4-5 convolution 101 x 11 11 1
5-6 max-pooling 50 x 11 2 2
6-7 fully connected 12 - -
7-8 fully connected n - -

Additionally, normalization is necessary to obtain suitable results in the network. Our

model uses a normalized exponential function called the softmax function as the final layer’s

activation function. The softmax function ensures that the output values of the network lie

between 0 and 1 and sum up to 1, making it easier to interpret the output as probabilities

belonging to different classes.

3.1.3 Architecture 2

The second CNN architecture underwent modifications due to a different input shape,

as it was designed in a 2-dimensional form in the last paper about disordered breathing
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Figure 3.3: The architecture of the proposed CNN model 2 [created by the author]

from BCG [23]. The model was subsequently modified to the proper form to evaluate vector

inputs. The architecture presented in this paper is shown in Figure 3.3 and table 3.4.

o reduce the complexity of the architecture, the input to the network is represented by

downsampled features from 450 to 200. The first four layers constitute two combinations of

convolutional and max-pooling layers. All max-pooling layers have a kernel with a resolution

of 2. Due to the resolution of features, the architecture continues with a convolutional layer

of kernel size ten without a max-pooling operation. After that, two fully-connected layers,

which analyze features from previous layers, are implemented with 30 and 25 neurons,

respectively.

The last fully-connected layer with n neurons corresponding to classes predicts the result

by a softmax activation function. This function normalizes the result of the architecture

to a suitable form on the value between 0 and 1 with a threshold of 0.5 for prediction.

Moreover, mechanisms for over-fitting prevention, which have an important impact on the

model training process [83], are applied too. Specifically, there are ReLU layers between

all convolution and max-pooling layers and a dropout layer with a drop parameter of 0.3

between the first and second fully-connected layers.
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Table 3.4: The details of CNN structure 2 with n classes depending on classification task
[created by the author]

Layers Type No. of output neurons Kernel size Stride

0-1 convolution 186 x 30 15 1
1-2 max-pooling 93 x 30 2 2
2-3 convolution 84 x 25 10 1
3-4 max-pooling 42 x 25 2 2
4-5 convolution 33 x 20 10 1
5-6 fully connected 30 - -
6-7 fully connected 25 - -
7-8 fully connected n - -

3.2 Health problematics

The research deals with vector data in the health care task and works with various datasets

reflecting various health conditions. The following subsections describe what and how the

devices measured data and explain what each aberrant class represents in medicine.

3.2.1 Electrocardiography

The ECG operates by measuring the projection of the heart polarization vector [79]. This

vector is measured by electrodes placed on the human body in the correct position, de-

pending on the number of electrodes used. While it is possible to use only two electrodes,

using three electrodes provides a better signal-to-noise ratio. More than three are used for

measuring different projections of the polarization vector [95]. This measurement is vital in

the diagnosis and monitoring of various heart conditions.

Exploration of cardiac activity is based on the search for unambiguous patterns that

describe beat-to-beat processes. These processes are called T wave, P wave, and QRS

complex [61]. P and T waves represent the depolarization and repolarization of the atria.

The P wave occurs before the QRS complex, while the T wave occurs after. On the other

hand, the QRS complex represents the depolarization of the heart chambers. QRS complex

detection is one of the basic approaches used for detecting abnormal heart behaviour, and

it is used extensively in ECG analysis [99].

Arrhythmias and flutters are common heart diseases characterized by abnormal heart

rhythms. The prevalence of these conditions is high, and there is a constant increase in the

number of cases detected in the population. These diseases fall under the category of heart
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arrhythmias, which affect a higher percentage of males in the population, and the elderly

population is predominantly affected [20, 25, 86].

The most occurring type of arrhythmia is called atrial fibrillation (Afib) manifested by the

absence of repeating P waves [48] and uncoordinated atrial activation due to the behaving

of the atrioventicular node (AVN) [53].The AVN reacts to signals with a precise intensity, but

in the case of Afib, this intensity is disrupted, leading to irregular rhythms. Another atrial

illness is atrial flutter (Afl) which does not influence AVN. Afl occurs in a macro reentrant

circuit and has a typical underlying electrophysiological mechanism [73]. Although there is

evidence of interdependence between atrial fibrillation and atrial flutte Afib and Afl [89, 90],

but Afl may have an impact on morbidity and mortality despite the non-attendance of Afib.

The ventricular fibrillation (Vfib) is an arrhythmia established in the specialized conduc-

tion system or ventricular muscle. It is characterized by the absence of necessary peaks in

the sinus process of the measured signal. These peaks represent the correct electromagnetic

pulse of the heart [66].

3.2.2 Balistocardiography

BCG is a non-invasive method of sensing body micro-movements evoked by heart activity

and blood flow in large arteries. Since the first research of ballistic displacements of the

body [37], there has been considerable progress in BCG and ballistocardiography sensors

despite a lack of interest in the past because of insufficient knowledge of physiology and

physics behind the method [46]. However, recent technological advances, including the

development of highly sensitive sensors and fast computers for real-time calculations, have

renewed interest in this field of science. Nowadays, physicians mostly work with ECG signals

to disclose heart-related health problems of patients [30]. However, it is possible to detect

similar and even more information by BCG signals, and unlike the ECG, measurement

by BCG is unobtrusive.

Breathing disorders are a prevalent sleep-related issue that affects the entire population

regardless of age or gender. The most significant group affected by these disorders are those

who suffer from obesity or are overweight. The primary manifestation of these disorders

is the collapse of the pharyngeal airway during sleep, which prevents regular breathing.

As a result, patients suffer from somnolence, poor daytime cognitive performance, and

cardiovascular morbidity and mortality [41].
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There are three types of disordered breathing: sleep apnea, central sleep apnea, and

nocturnal hypoventilation. Sleep apnea is caused by an obstruction in the upper respiratory

tract, but the breathing effort is maintained. On the other hand, central sleep apnea is

caused by a central nervous system issue and has no breathing effort. The difference lies

in their causation [84]. Nocturnal hypoventilation, the third type of breathing disorder, is

characterized by shallow and slowed breathing in which the airflow is insufficient for the

body’s requirements [67].

3.2.3 Electroencephalography

EEG is a medical diagnostic technique that enables the detection and recording of the elec-

trical activity in the brain using non-invasive or invasive methods [15]. Non-invasive EEG

testing is typically performed by attaching electrodes to the scalp to capture the brain’s spon-

taneous activity. The recorded signals are then analyzed to diagnose various neurological

and psychiatric conditions. Invasive EEG testing is performed by placing electrodes directly

on the brain’s surface or within the brain tissue. This method is used when non-invasive

testing fails to provide sufficient diagnostic information. The information obtained from

EEG testing can be used to operate various medical devices and equipment, including

brain-computer interfaces.

Evoked potentials are the brain’s responses to external stimuli detected using EEG. So-

matosensory potentials are elicited by stimulating peripheral nerves in the upper and lower

limbs. Auditory potentials are generated in response to brief noises, while visual potentials

are elicited using a reverse checkerboard pattern. The electrical signals recorded from the

brain in response to these stimuli are analyzed to assess the integrity of the brain’s sensory

and motor pathways. The potential to diagnose several neurological conditions, such as

multiple sclerosis, optic neuritis, and brainstem lesions.

Epilepsy is a chronic neurological disorder characterized by epileptic seizures [85]. These

seizures are sudden episodes of abnormal brain activity that manifest as temporary changes

in consciousness, perception, behavior, movement, or sensation. Epilepsy is a common

disorder that affects individuals of all ages, genders, and ethnicities worldwide. The exact

cause of epilepsy is unknown in most cases, but it may result from brain injuries, infections,

genetic factors, or developmental disorders. The diagnosis of epilepsy is primarily based on

clinical history, EEG testing, and imaging studies. The treatment of epilepsy involves the
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use of antiepileptic drugs, surgery, or a combination of both. The goal of treatment is to

reduce or eliminate the occurrence of seizures and improve the quality of life of the affected

individuals [97].

3.3 Data description

As specified in the documentation, the databases chosen for this study were evaluated

using several parameters, including frequency, number of channels, device type, and data

labeling. As a result, various source code implementations were developed to convert the

data into the necessary format for analysis. The subsequent subsections provide a detailed

description of each of these settings and the data they entail.

3.3.1 Electrocardiography

The ECG samples used in this work were collected from the public PhysioBank database [36],

concretely three different databases to obtain the necessary data for the experiments. The

first database, known as the MIT-BIH malignant ventricular arrhythmia database (VFDB)

provided data on Vfib, the MIT-BIH atrial fibrillation database (AFDB) for both Afib and Afl,

and the MIT-BIH arrhythmia database (MITDB) contains data on Afib, Afl, Vfib, and normal

samples. A detailed summary of the ECG databases and the number of samples obtained

from each database are provided in Table 3.5.

It is worth noting that these databases are raw data containing no pre-processing or

normalization steps. This lack of preprocessing and normalization makes these datasets

ideal for our research, as it allows us to analyze and compare the performance of different

models under the same conditions. Additionally, the PhysioBank database is frequently used

in healthcare research, ensuring that our results are directly comparable to other studies

using similar data. The AFDB database includes 25 ECG, each lasting 10 hours, of humans

withAfib, mostly paroxysmal. The MITDB contains 48 half-hour excerpts of two-channel am-

bulatory ECG recordings, which cover all the categories mentioned earlier. Finally, the VFDB

includes 22 half-hours ECG recordings of subjects who experienced episodes of sustained

Vfib. In sum, 25287 inputs to the CNN model with a two-second duration were prepared for

experiments. These inputs were created without data overlapping so no section was used

more than once.
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Figure 3.4: An illustration of ECG segments of normal, Afib, Afl, and Vfib patterns [32]

Table 3.5: Number of samples overview used from PhysioBank databases for each class [32]

Type No. of samples Used databases

Nr 3, 567 MITDB
A f i b 19, 276 AFDB, MITDB
A f l 1, 518 AFDB, MITDB
V f i b 923 MITDB, VFDB

To better understand the different categories of ECG data obtained from the PhysioBank

database, we have included sample examples of all four categories in Figure 3.4. The fig-

ure shows representative ECG waveforms from each category, demonstrating the unique

features of each category.

3.3.2 Balistocardiography

The BCG samples used in this work were collected from the public Mendeley database

[82] and measured in the laboratory of the University of Hradec Kralove. The dataset was

obtained from twenty tested individuals, consisting of 11 men aged 23 to 33 years and 9

women aged 24 to 65 years. During the measurements, the subjects were lying on a bed with
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Figure 3.5: BCG Measured force signals (x : time/[ms], y : AU, standardized raw data) [21]

sensors placed on the bed legs, as illustrated in Fig 3.5. Table 3.6 provides clear information

on the preferences of the 20 individuals. The schedule of measuring was conducted in

two types, V1 and V2, as described in Table 3.7. Each breath-holding was performed for

approximately 30 seconds, and some samples were ignored due to classification ambiguity.

Measurement of a force plate in the form of a bed is used. The force plate had four

tensometers embedded in its four corners. Each tensometer could measure the force in

three orthogonal directions with a precision of up to 0.1 N. Therefore, it is feasible to obtain

12 force signals. The ECG signal is measured simultaneously with the force measurement.

All the signals are registered using a 24-bit AD converter with a sampling rate of 1 kHz.

The data are then stored on a computer’s hard drive. This yielded 13 time-series, with 12

force signal time-series representing a coordinate projection of a 12-dimensional curve

parameterized by time, as shown in Figure 3.6 with an example of three signals.

Data annotation is made manually based on measuring observation. Every measure

is represented by a matrix, where rows are individual samples every 1 millisecond and 14

columns are one value of data loading (0 correct, 1 incorrect), twelve force signals, and

ECG value. Unlike the other databases, feature extraction is done by the Cartan Curvature

method shown in Figure 3.7, where at 300 ms, R peak trigger is shown and from 450 ms to

800 ms is a range of important patterns.

The most important events in a typical cardiac cycle, as described in [16], occur between

approximately 150 and 500,ms after the R-peak. The aortic valve opens at approximately

80 ms, and closes at approximately 300 ms after the R peak. The pulse wave velocity through

the aorta is approximately 30 m/s. The important reflections of the pulse wave emerge

at the aortic arch (in the starting part of the aorta, right next to the aortic valve) and at
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Figure 3.6: BCG experiment measuring [21]

Figure 3.7: Example of Cartan curvature with important section [22]

the bifurcation in the abdomen (ending part of the aorta). The distance from the aortic

valve to the bifurcation is approximately 60 cm. This implies that if the pulse propagates

immediately after the aortic valve opening, it arrives at the bifurcation in approximately

20 ms. However, the rapid ejection phase of the cardiac cycle takes approximately 100 ms,

and thus, the region between 150–500 ms after the R peak is sufficient to record all the

important reflections of pulse wave related to changes in blood pressure that is relative to

changes in breathing.

3.3.3 Electroencephalography

The first dataset in EEG problematic is the Bonn University EEG database, which was pre-

sented by Andrzejak et al. [11], a valuable resource for researchers in the field. The dataset
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Table 3.6: List of individuals with their preferences [22]

No. of subject Sex Age Schedule No. of subject Sex Age Schedule

1 male 26 V1 11 female 62 V1
2 male 26 V2 12 female 35 V2
3 male 23 V1 13 female 65 V1
4 male 28 V2 14 female 35 V2
5 male 28 V2 15 female 35 V2
6 male 28 V1 16 female 35 V2
7 female 24 V1 17 female 28 V1
8 male 30 V1 18 male 30 V2
9 female 36 V1 19 male 33 V2
10 male 30 V2 20 male 33 V2

Table 3.7: Schedules of measuring [22]

V1 schedule V2 schedule

Time (s) Event Time (s) Event

0 start of measuring on back 0 start of measuring on back
60 breath-hold during inhalation 60 breath-hold during inhalation
120 breath-hold during inhalation 150 breath-hold during exhalation
180 breath-hold during exhalation 240 breath-hold during inhalation
240 breath-hold during exhalation 330 breath-hold during exhalation
300 legs underlay for position change 420 end of measuring
420 turning on the side
480 breath-hold during inhalation
540 breath-hold during inhalation
600 breath-hold during exhalation
660 breath-hold during exhalation
720 end of measuring

comprises five sub-sets that are divided into three classes based on the type of EEG activity

recorded. The first two sub-sets, A and B, contain EEG recordings from five healthy subjects,

with the subjects’ eyes open and closed, respectively. These recordings provide a baseline for

normal EEG activity. The third and fourth sub-sets, C and D, contain EEG recordings from

patients with pre-ictal activity, i.e., EEG changes preceding a seizure. These recordings are

useful for identifying early warning signs of seizures. The fifth and final sub-set, E, comprises

EEG records of a patient’s seizure activity (ictal). This sub-set is particularly valuable for

studying the characteristics of seizures and for developing algorithms to detect and predict

seizures. All the data in the Bonn University EEG database was acquired as 23.6-second

samples with a sampling rate of 173.61 Hz. Each sample contains 4097 points, providing

high-resolution data for analysis
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The CHB-MIT Scalp EEG database, which is the second publicly available dataset, was

collected at the Children’s Hospital Boston [36]. The dataset consists of recordings obtained

from 22 subjects over an extended period of time, including both seizure and non-seizure

segments. Unlike the Bonn dataset, which consists of 1-dimensional vectors, the CHB-MIT

dataset contains records with 18 to 23 channels and a 256 Hz sampling rate. A channel

example is defined in Figure 3.8, with a marking of the seizure part. The dataset is an

essential resource for researchers and practitioners who aim to study epilepsy and seizures.

It provides a comprehensive view of EEG signals recorded from multiple channels, allowing

for detailed analysis and interpretation of the data. The availability of this dataset has greatly

facilitated research efforts in the field of epilepsy, and its continued use and development

are expected to yield further insights into the nature of this condition.

As a result of prolonged monitoring, the ictal and interictal segments exhibit a marked

imbalance, with seizures accounting for less than 2% of the total duration. In an effort to

address this issue, the researchers drew inspiration from the work of Wang et al. [92] and

proposed a method of balancing the data. To accomplish this, they employed a technique

that involved the use of 2-second sliding windows with a 1-second overlap for each ictal

record. However, since not every interictal sample could be used from the records, a random

selection process was employed to match the number of ictal samples. This allowed for a

more balanced dataset and improved the Acc of the analysis.

Expanding on this, it can be said that achieving a balanced dataset is crucial for the

accurate analysis of data, particularly in the field of epilepsy research. The proposed ap-

proach not only provides a means of balancing the data but also allows for a more efficient

and effective analysis of the recorded data. By utilizing 2-second sliding windows with

1-second overlap, the research was able to better capture the relevant information within

the ictal segments. This, in turn, allowed for a more detailed and accurate analysis of the

data. Furthermore, the use of random selection in the interictal segments ensures that the

resulting dataset is representative of the overall data, and minimizes the risk of bias.

3.4 Data processing

The first step in all classification systems is data analysis and preparation. This process

is essential in providing accurate data processing which leads to improved performance
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Figure 3.8: Example of EEG with seizure annotation [24]

quality. In this context, the research of data processing was executed on ECG signals to

classify heart disease and was published in [32, 33]. To achieve reliable results, it is necessary

to understand the characteristics of the input data, including the possible sources of noise

and how to preprocess it. Therefore, the chapter begins with a description of potential

health problems related to ECG data. This information will provide a better understanding

of the importance of accurate data processing in the diagnosis of heart disease.

The clinical diagnosis of arrhythmias includes short-term or long-term measuring of

heart operation, which is mainly done by ECG device. The ECG works on the principle of

measuring the projection of the heart polarization vector [79]. It is measured by electrodes

placed on the human body in the correct position depending on the number of electrodes.

It is possible to use only two electrodes but three electrodes have a better signal-to-noise

ratio. Additionally, more than three electrodes are used for the measurement of different

projections of that polarization vector [95]. The ECG device is a non-invasive tool that

measures the electrical activity of the heart, which provides valuable information about the

heart’s condition. However, the raw signal may contain noise and artifacts that affect the

Acc of the diagnosis. Therefore, signal preprocessing is an essential step in the data analysis

and preparation phase.

For visual detection options of these patterns, it needs to have a signal-transforming

process from electrodes to the output monitor. However, data can be distorted by noise

during their transmission which can lead to loss of necessary information. Moreover, due to

the connection between Afib and Afl, the similarity of some symptoms, unexpected artifacts,

or just faint manifestation of syndromes, can be difficult to recognize each rhythm type or

overlook some important sections. An automated CAD is a feasible technique for eliminating
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human factors or distorted signals.

To ensure the Acc of the diagnosis, it is crucial to analyze the input data thoroughly.

A literature review and analysis of possible improvements in data processing tasks are

necessary. The purpose of a literature review is to identify the strengths and weaknesses

of previous studies related to ECG signal processing. This information helps to identify

research gaps and potential areas for improvement.

CAD systems are commonly implemented using traditional flowchart approaches, which

involve several tasks such as preprocessing, feature extraction, feature selection, and classifi-

cation [39]. These tasks are performed to analyze ECG signals in order to detect various car-

diac abnormalities. Preprocessing methods like empirical mode decomposition (EMD) [8],

discrete wavelet transform (DWT) [69], Daubechies-6 [4, 6], Z-score normalization [5, 6], and

others are commonly used to prepare the ECG signals for feature extraction. For instance,

EMD and DWT, can be used in combination with continuous wavelet transform (CWT) [50]

or wavelet packet decomposition [19] to extract features based on time-frequency. Further-

more, nonlinear features like recurrence quantification analysis (RQA) can also be used for

feature extraction [26].

In the feature selection task, statistical methods such as the chi-square test [55], analysis

of variance (ANOVA) [3], Fisher score [28], and so on are frequently employed. These meth-

ods are used to select relevant features from the extracted features for further analysis. In

the classification task, different techniques such as decision tree [3, 26], support vector

machine (SVM) [40, 87], k-nearest neighbor (KNN) [3, 62], neural network (NN) [63, 68] etc.,

are used to predict the ECG signals into different classes. However, completing all of these

tasks can be time-consuming and complex, requiring extensive expert knowledge of internal

functionality.

Acharya et al. [3, 5, 6], developed various CAD systems for detecting heart diseases

from ECG signals. In their first work [3], the researchers focused on the characterization

of arrhythmias using nonlinear features. They proposed a system that employs thirteen

different types of nonlinear features that are ranked by ANOVA and classified with the KNN

and decision tree (DT) classifiers. The innovation of this paper, compared to previous

works, is that the new approach includes only simple standardization with classifiers, so

preprocessing and feature extraction are not necessary to compute before arrhythmia

recognition. This provides a more practical innovation for CAD.
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Nevertheless, they employed some techniques that do not require strict adherence to

standardized procedures. In the following paper [6], the researchers presented an automated

detection system for arrhythmias using a CNN. All ECG signals are preprocessed with

Daubechies wavelet 6 and classified into two different architectures based on segment

intervals. This approach achieved an Acc of 98.52%, a Sen of 98.02%, and a Spec of 99.01%.

Furthermore, Acharya et al. developed a different CNN model for identifying shockable

and non-shockable life-threatening ventricular arrhythmias [5]. They preprocessed ECG

segments in the same manner as in the previous article, which yielded Acc, Sen, and Spec

of 93.18%, 95.32%, and 91.04%, respectively. This paper provides evidence of the effective-

ness of using CNN for detecting life-threatening ventricular arrhythmias, where the CNN

eliminates feature extraction separately and learns the features directly from the input data,

making it easier and faster to analyze the input [54]. These articles, on the other hand, em-

ploy Z-score normalization, computed by mean and standard deviation. These parameters

must be calculated from the dataset, implying that the CNN model depends on the data

used.

Prior to classification by CNN, CWT was used in the first research [33] to divide ECG

signals into wavelets by:

C W T (t ) =min
�

0.1,Ψ2
T ,s (t )
�

, (3.1)

where Ψ denotes a Morse wavelet with a time bandwidth of T and symmetry s in the

extracting sample’s time t . Following a closer examination of the extraction results, T was

set to value one and s to value 2. The choice of T and s values is crucial for obtaining a

good feature extraction output. These values determine the wavelet’s scale and frequency,

respectively, and they need to be chosen carefully based on the properties of the analyzed

image. Besides that, every parameter after CWT with a greater value than 0.1 was set on

itself for optimal extraction of necessary features. The power of two was used to ensure only

positive numbers and easier conversion to a range of 0-255, representing the image’s colour

components.

To visually represent our feature extraction process, grayscale versions of the extracted

features for each class are shown in Figure 3.9. These examples serve to illustrate the effec-

tiveness of the extraction method and demonstrate the distinct features that are captured

for each class. By carefully selecting and fine-tuning our extraction parameters, the system

ensured that the extracted features were informative and accurate, which is essential for
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Figure 3.9: An illustration of CWT of normal, Afib, Afl, and Vfib patterns [33]

further analysis or modeling work.

In contrast with traditional machine learning techniques, this study presented a 6-layer

deep CNN model to 4 classes (normal, Afib, Afl and Vfib) recognition of ECG rhythms. The

proposed model needs no user interference and R-peak detection is not required. Also,

three MIT-BIH PhysioBank databases were used to train and test the CNN model. CNN

model can be implemented in the healthcare industries as an added tool to assist physicians

in providing a decision support system on the diagnosis. The presented model can also be

used in the home environment for watching elderly patients by their family members for

analysis of heart problems.

In these approaches, where some of the processes from traditional system flowcharts

are omitted, there is very important to consider some validation threats. From an external

perspective, it is necessary to normalize inputs into the same form. Typical normalization

of data is to watch on a different frequency of measuring. If the data are not normalized, it

can happen that input into the system contains shortage or surplus information, and the

classification process is not valid. Another problematic part is that our approach works with

lead II ECG signals from 12 possible leads for measuring. Every single lead could have a

24



different projection on the polarization vector, including different views on heart activity.

In this way, using more than one lead can cause a malfunction of prediction. Internal

perspective comprises operation on data before classification itself. Ignorance of input and

use of preprocessing or feature extraction methods can lead to loss of important information

on the account right classification. Another important aspect is the design of neural network

architecture. Often the problem is a too-robust solution where a network includes more

neurons than is needed for sufficient functionality. At first sight, it may seem like the problem

of computational complexity only, but actually, it can lead to the dysfunction of the whole

system. If the network contains too many neurons, many inputs can be classified by a single

branch regardless of others; in such a context, clarification can provide great Acc, but the

prediction on the total new dataset could have insufficient results.

Since two of the databases are sampled at a frequency of 250Hz, and the last one is

sampled at a frequency of 360Hz, the length of the input vector to CWT was used as 500

and 720, respectively, representing an ECG signal with a 2-second duration. Output 2-

dimensional matrix was resized to a width and height of 50 and 30 pixels, respectively,

which guarantees optimal input to CNN without previous up-sampling, down-sampling, or

normalization of the signal.

For a summary of the methods used for data processing, some articles are based on

R-peak detection [3, 26, 40, 63, 71, 101]. However, needs long segments for a finding of

the R-peak or QRS complex which makes it not possible to real-time classification. Above

that, denoising methods are used for smoothing the signal [3, 5, 26, 40, 63, 98]. There are

approaches where noise can have a big impact on the final system result. In the case of

CNN, raw data can have worse Acc, but still within acceptable limits, and sometimes, if data

are different, the model’s performance can be almost the same. The next problematic issue

is separate feature extraction, feature ranking, and classification [3, 26, 40, 63, 71, 78, 101],

which require knowledge of all different algorithm for the right use. Acharya et al. [5] and

Xia et al. [98] is most close to this paper. Nevertheless, Z-score normalization depends on

knowledge of all datasets to compute the mean and standard deviation. In the second case,

wavelets are useful, like feature extractors too, so in combination with CNN are redundant,

network input has higher resolution, and the CNN model must be more complex with more

neurons.

For that reason, there is a need for preprocessing that depends on knowledge of data
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characterization for each class, not on the dataset or several different methods. The ob-

jective is to show the robustness of CNN architecture, which can replace some processes

of traditional CAD system flowcharts. It could reduce the computational complexity of

arrhythmia detection and dependency on using the dataset. This could provide a useful

easy implementation for the practical medical environment for real-time decision support.

3.5 Data fusion

The next step in designing the system is fusion in cases where more channels are measured,

unlike the case of ECG. Fusion can occur in two scenarios, namely during multi-channel

measurement or unification of time series when the trigger is known (e.g. heartbeat). The

first type, represented by EEG, involves measuring multiple channels simultaneously. In

this case, fusion occurs when data from each channel are combined into a single output

signal. The second type, represented by BCG, involves measuring data over time. In this

case, fusion occurs by unifying the time series into a single output signal.

3.5.1 EEG

In the case of EEG, classification should be performed on one-dimensional vector inputs.

Anyway, some systems must process more signals to arrive at a result. The first type of system

deals with a combination of different types of data like ECG and photoplethysmogram (PPG),

which can be used for blood pressure prediction [35] or heart rate variability [47]. On the

other hand, some devices provide the multi-dimensional output of the measuring process

like EEG for epilepsy detection, which experiments were published in [24].

Classification models of EEG could take the form of conventional statistical approaches

like KNN [13, 29], random forest (RF) [93], linear discriminant analysis (LDA) [91], or SVM [56,

104]. Li et al. [57] proposed a method based on channel selection by computing the standard

deviation for each and nonlinear mode decomposition for three different classifiers: SVM,

KNN, and LDA. The KNN model achieved the best performance of tested parameters of

Acc, Sen, and Spec. Another study by Anuragi et al. [12] introduced a novel algorithm that

obtains features from euclidean distances of sub-bands phase-space representation and

Fourier–Bessel series expansion from empirical wavelet transform. Seven different classifiers

have been tested with the optimal number of features selection. Amiri et al. [10] presented
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a process based on feature extraction from the time-frequency planes of optimal channels.

Their channel selection strategy does not disregard channel correlation due to a sparse

common spatial pattern. Compared to Perceptron and Linear SVM, LDA outperforms the

other two tested classifiers.

The literature contains several approaches based on one EEG channel with the deep

learning process from base neural networks to their modifications like recurrent neural

network (RNN), or CNN. For instance, Qaisar et al. [72] proposed an effective method based

on one EEG channel and neural network. Zhang et al. [105] employed RNN, while Wei et

al. [94] used CNN for the same purpose.

Sadiq et al. [77] exploited ten well-known pre-trained CNN models on CWT images.

Meanwhile, Mandhouj et al. [60] extracted features by short-time Fourier transform (STFT)

instead and designed a 2D CNN architecture to recognize ictal, inter-ictal, and health classes.

Nevertheless, several types of research proved no need for feature extraction. Acharya et

al. [7] presented the first deep neural network application for EEG-based seizure detection.

They preprocessed the data by performing Z-score normalization, zero mean, and standard

deviation, followed by a 13-layer deep one-dimensional convolutional neural network.

However, EEG classification is not provided only on the one-dimensional vector [14].

Some studies have employed a multi-channel dataset and different strategies for dealing with

one-dimensional CNN. Wang et al. [92] linked all channels in series, rather than in parallel, to

convert input from two-dimensional to one-dimensional. Gao et al. [34] invented generative

adversarial network (GAN) and CNN architecture based on each channel classification

separately. Post-processing channel fusion with the threshold for judging seizure and non-

seizure records resulted in the final classification.

The current solutions for CAD have some flaws in their deployment that need to be

addressed. One major issue is the channel selection in cases of multi-level measuring, which

has been discussed in a recent study by Amiri [10]. In real-time applications, selecting based

on knowledge of the entire dataset is impossible. Problem detection has to be performed

on actual data without any prior knowledge. Assuming all available information is used, it

may be problematic if the measuring does not follow the same channel strategy. This could

lead to an unstable input format, resulting in different architectures for every measurable

difference.

Another disadvantage of current CAD solutions is the complexity of the solutions them-
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selves. In previous research works, the data was preprocessed for smoothing and extracting

features. However, in the case of multi-channel measuring, redundant information is in-

cluded, which extends calculation time beyond the system’s needs. Therefore, this research

aims to simplify the input while maintaining information integrity to find the ideal CNN

architecture. The research draws inspiration from well-known multidimensional transfer

learning solutions.

3.5.2 BCG

Breathing disorders cannot be detected as easily as fibrillations or seizures because their

detection requires longer-term measurements. Unlike fibrillations or seizures, which can

be detected in short segments, breathing disorders often require monitoring over a period

of time to diagnose and treat accurately. In [107], a novel approach is proposed for detecting

a long-term heartbeat cycle length. They measured both BCG and ECG concurrently to

assess the correlation between the beat-to-beat cycle of both types of sensors. The results

showed that the correlation of the cycle length was 0.95 with an absolute difference in the

cycle length of 4±72 ms. A piezoelectric foil sensor was used, and persons were examined

in a lying position on the back because it is necessary for achieving good results.

In [100], they proposed an algorithm for separating the cardiac and respiratory compo-

nents with noise reduction on the heart rate and respiration components of BCG signals. It

was done by the locally projective noise reduction algorithm for denoising deterministic

chaotic time series. It can be applied to signals which are not cleanly deterministic, like

physiological time series like ECG, BCG, and EEG.

In another article [45], Hwang et al. collected overnight polysomnography and ballis-

tocardiography recording pairs from patients with and without nocturnal hypoxemia. By

the regression analysis, they achieved an average Acc of 96.5%. Sadek et al. [76] evaluated

the capacity of the micro-bend fiber optic sensor to monitor heart rate and respiration in

a non-intrusive manner. In addition, they tested the discrimination between shallow and

no breathing. Their approach highly correlated the heart and breathing rates, 0.96 and

0.78. However, the proposed sensor provided a very low Sen of 24.2±12.81% and Spec of

85.88±6.01%.

Liu et al. [59] studied the detection of obstructive sleep apnea. Their algorithm first

preprocesses the raw BCG data and locates potential event segments by detecting arousals.
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Thereafter, the distribution of each potential event into three phases and the selection of

features to detect respiratory patterns were done. They then used a backpropagation neural

network to classify these events into apnea and non-apnea classes. The experimental results

based on a real BCG data sheet revealed that the Acc, recall, and area under curve (AUC)

were 94.6%, 93.1%, and 95.1%, respectively.

Zink et al. [107] used the BCG signals to detect variations in the heart rate associated

with sleep apnea syndrome. The authors applied wavelet decompositions extraction to

analyze the BCG signal and obtain the heartbeat interval. These features were used as

input to a support vector machine classification model. Experimental results on 42 subjects

with 5-fold cross-validation achieved a 90.46% precision rate and 88.89% recall rate. In the

last relative article [88], the signals of five sensors and their placement combinations for

measuring a sleeping person were compared from the perspective of their measurement

sensitivities and waveform quality. In conclusion of this paper, the heartbeat and respiration

parts are represented the best in the signals measured with the mattress force sensors.

In our first BCG research [21], we presented a novel approach for recognizing the form of

breathing independent of the body position by BCG sensors. The signals were processed by

Cartan curvature and extracted pulse arrival time related to human respiration and blood

pressure via the Moens-Korteweg relation [70]. Thereafter, the breathing anomalies were

detected between heartbeats measured by ECG and the pulse arrival times, as shown in

Figure 3.10. These delays were used as the inputs to CWT for parameters and power analysis

before training a CNN classifier.

One of the main differences between the work and other articles is that our approach

is independent of the position of the sensors on the measuring bed. Using Cartan curva-

tures and the Moens-Korteweg relation, it is possible to determine various physiological

dependencies with notable signal-to-noise ratios. However, the system required signifi-

cant preprocessing before applying the CNN architecture, unnecessarily increasing the

computation time for recognizing breathing disorders. The differences in delays between

individual heartbeats are also in milliseconds, making the model very sensitive. As a result,

we experienced problems correctly detecting breathing in individuals lying on their sides.

In the next paper [22], we introduce a novel approach to process and classify ballisto-

cardiography signals for detecting breathing disorders. Our method uses optimal formulas

of Cartan curvatures to recognize breathing problems, regardless of body position during
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Figure 3.10: Pulse wave times (x: time/ms, y: pulse arrival time minus constant) [21]

Figure 3.11: Examples of classifier input (Top: regular breathing; Bottom: disorder breathing)
[22]

measurement, and with greater clarity than our previous work. We begin the paper by

presenting the classical method for R peak detection from the electrocardiogram ECG signal.

Then it continues with a formulation of Cartan curvatures and a description of information,

which can be found in. The last part of data processing is preparing the input for the CNN

classifier. Data are converted to a grayscale image and resized to 30 x 150 for optimal input

in case of algorithm asymptotic complexity. Several examples of network input are shown

in Figure 3.11, where regular breathing is placed at the top and disorders at the bottom.

In our recent paper [23], we propose a novel approach to detecting breathing disorders

using a mechanical trigger based solely on BCG data. Using the BCG data enables the
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system to be truly unobtrusive. Our trigger is based on detecting the ejection of blood from

the heart, and we leverage differential geometry invariants to propose a new differential

invariant, the Euclidean arc length [96]. This invariant can serve as a trigger for categorizing

Cartan curvatures in CNN. One of the major advantages of our mechanical trigger is its

complete unobtrusiveness. Additionally, the properties of our trigger are invariant in the

same way as Cartan curvatures, allowing for its applicability for individuals lying in different

positions on a bed. Furthermore, the arc length is calculated directly from the measured

signals, simplifying the process.

In summary, our previous work [21, 22] was founded on three fundamental pillars:

identifying triggers for individual heartbeats, calculation of Cartan curvatures, and the

processing of results using CNN. In this paper, we introduce a new algorithm to calculate

the first part, the trigger, which must be highly precise to capture subtle variations in pulse

arrival time that are then processed using Cartan curvatures. The primary novelty of this

paper is also the implementation of this new trigger and the improvement of the CNN to

develop a completely unobtrusive mechanical system without the need to connect any

equipment to the measured person or use any ionizing radiation for measurement, unlike

similar systems presented in the literature. The typical shape of the monitoring function is

shown in Figure 3.12.

Our previous work established the foundation for our current research, where we sought

to address a critical issue in monitoring the health of individuals. Accurate monitoring

of pulse and heartbeats is essential for detecting and diagnosing various cardiovascular

diseases. However, existing methods for monitoring heartbeats require connecting various

equipment to the individual being monitored, which can be invasive and uncomfortable.

The QRS complex and the T wave provide valuable information for distinguishing sepa-

rate parts of the signal. With this in mind, we have decided to use the maxima of a monitoring

function as the trigger for our preprocessing sequence. This maximum corresponds with

the end of the rapid ejection phase, which then translates into a reduced ejection.

It is worth noting that the distance between the mechanical trigger and the R wave varies

over time and depends on various physiological phenomena and thoracic pressure. On

average, however, the distance is 160 ms± 40 ms. This variability in the distance emphasizes

the importance of selecting an appropriate trigger for our preprocessing sequence, as it

ensures that the signal is properly segmented and analyzed.
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Figure 3.12: Ilustration of ECG and Euclidean arc length [23]

As each sub-investigation had its timeline, data fusion for EEG was performed at a later

stage. As a result, in all related works, the input to the CNN was two-dimensional. However,

subsequent experiments revealed the effectiveness of data fusion, and a back-analysis was

also conducted for BCG.

3.6 CNN

Once data has been appropriately processed, it becomes crucial to verify the effectiveness

of the classifier and the complexity of its internal parameters, which together make up the

resulting architecture. To optimize the performance of CNN models, several options exist

for reducing computational complexity without sacrificing Acc.

3.6.1 Model reusability

Recently, classification in clinical behaviors is performed by deep learning techniques.

These techniques have proven to be effective in improving the Acc of image [81], text succes-

sion [51], and speech recognition [1]. They consist of several types of layers that are designed

for pattern searching and classification. Since the input image is represented by 2D or 3D

matrices of numbers, CNN can be used on any sequence, even on 1D signals, as presented

above.
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Regarding image data classification, it is common to use pre-trained architectures instead

of creating the original architecture of the neural network. The internal model parameters

of pre-trained architectures are already set by previous training, so they are not initialized

pseudo-randomly according to the selected optimizer [38]. Following that, these pre-trained

models are then tailored to the specific problem at hand. This is achieved by creating a

specific dataset divided into classes that must be distinguished and used in a new training

process. The advantage of pre-trained models is that they have been trained on millions of

internal parameters and tens to hundreds of class types. This makes the hidden layers of

these networks well-equipped for specific image recognition problems. However, they may

not be suitable for vital sign data classification due to two main factors.

The first factor is that the pre-trained models are designed for image recognition which

is not one-dimensional. As described above, converting one-dimensional data into a two-

dimensional form through one of the methods of preprocessing or feature extraction did

not improve classification Acc. This conversion requires additional computation beyond

what is necessary, and the architecture must contain more internal parameters to perform

the classification task.

The pre-trained neural network architecture used for image classification has a signifi-

cant limitation in the dataset used to train its internal parameters. While the neural network

is specifically designed for image classification, the input data used for its training doesn’t

include critical classes such as vital data. This absence of crucial information may limit the

network’s performance in identifying and addressing critical issues. Therefore, expanding

the dataset used to train the neural network to include vital data classes is essential. By

incorporating more diverse and critical information into the training dataset, the neural

network will be better equipped to identify and address crucial issues accurately and reliably.

In our previous work [23], a limitation was tackled in identifying breathing disorders by

employing a specific neural network architecture. The input data was a two-dimensional

matrix that comprised 30 consecutive slices of the measured data, each of equal length.

The matrix was processed by the neural network to identify and classify different breathing

disorders based on the patterns in the data.

The model’s results were compared to those of well-known pre-trained architectures

that had been fine-tuned for the same research issue with the same hyperparameters set-

tings. These results are shown in Table 3.8. The presented solution achieves comparable

33



Table 3.8: Comparison with well-known implementation of advanced CNN models [22]

Model No. of parameters Acc (%) Sen (%) Spec (%)

Current [22] 97,247 96.37 92.46 98.11
ResNet50 [42] 25,636,712 97.03 94.75 98.05

DenseNet121 [44] 8,062,504 96.76 98.69 95.91
MobileNetV2 [43] 3,538,984 95.01 85.15 100

Xception [18] 22,910,480 92.85 91.27 93.57
NASNetMobile [108] 5,326,716 94.88 83.01 95.71

performance. Furthermore, the well-known classifiers we tested are prepared for many

image classifications and include millions of trainable parameters. In contrast, our model

has fewer than 100,000 trainable parameters. The existing architectures have a much higher

level of complexity than our model, which makes them more computationally demanding

in subsequent applications. Using an optimized architecture significantly reduces the need

for computing power when using the classifier.

Given that existing neural networks for image data classification can be used to classify

various image issues, a hypothesis is offered about the reusability of the one-dimensional

convolutional neural network architecture for various vital data classification issues. In

the case of images, however, the higher complexity is not only in the fact that images have

a higher dimensional order than vectors. It is necessary to realize that in most cases, it is

a capture of the real-world three-dimensional objects containing, in addition, a different

colour component described using different colour channels according to the sensing

method. There is a need for input data with the object of interest from different points of

view and colours for correct classification, which includes a large variability of individual

classes. The second point can be partially replaced by augmentation methods, leading to

the expansion of the collected data. In the case of vital data, these complications do not

occur, and the only problem is the diversity of data obtained from different individuals with

different physiological characteristics. However, this does not change the fact that the given

differences in the individual classes (generally healthy data versus data with certain health

complications) can be described.

In correlation with a described hypothesis about the reusability of the model, the research

of ECG and EEG were tested with the same CNN architecture both separately and together.
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3.6.2 Frequency and architecture analysis

Moreover, in the image classification area, pre-trained model input usually does not resolve

today’s sensing devices. It is due to the need for the low quality of the object in the image.

CNN models need to recognize the main patterns that distinguish classes from each other.

On the contrary, excessive object resolution leads to redundant information that increases

the complexity of the model but does not improve performance. For this knowledge transfer

from image to vital data classification, frequency reduction experiments were performed

on the EEG dataset to find the point of reduction, which resulted in a lower number of

architecture inner parameters without the loss of patterns in signals.

When considering the appropriate frequency for a given issue, evaluating whether the

chosen architecture is suitable is crucial. The architectures described in section 3.1 were

created using brute-force experiments to reach the optimal amount of layers, filters, and

core size. In the framework of previous scientific publications, analyses of the number of

filters were made based on individual pieces of training, and adjustments to these numbers

were made based on the investigation of the training process and results. Firstly, the initial

number of filters was set. In cases where the classification result was insufficient, the

number of filters was increased until the classification Acc plateaued. If the classification

was sufficient after initialization or if the phenomenon of neural network overfitting was

occurring, the number of filters was reduced until this architecture reduction did not affect

the classification results.

In the context of training neural networks, the brute-force technique is not a feasible

option due to its excessive computational and time requirements. It is impossible to run

computations on all possibilities, making it necessary to find other ways to optimize the

neural network. The size of the kernel for convolutional layers is determined through data

analysis and an understanding of the convolutional operations’ purpose. However, this may

not always yield the best possible outcome for the neural network.

A fixed number of convolution and max-pooling blocks are used to determine the optimal

neural network architecture to examine the input to a set depth. This approach enables

the testing of various combinations of the number of blocks, the number of filters on the

convolutional layer, and varied input frequencies. Previous experiments evaluated the

frequency, but the variable number of blocks allows for different frequency sizes to be

employed in the neural network.
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Table 3.9: Tested block variations with properties [created by the author]

No. of blocks blocks kernel size minimal CNN output

2 19;11 42
3 19;19;11 104
4 19;19;11;11 190
5 19;19;11;11;11 369

Table 3.10: Tested frequencies variations with properties [created by the author]

Data Frequencies No. filters

No. blocks 5 4 3 2

BCG 1000;600;400;369 250;225;200 150;104 42 {5 ·k |k ∈ [2..12]}
ECG/EEG 250;225;200;185 150 100;52 21

Although the frequency was evaluated in the previous experiment, the variable number

of blocks allows for different sizes of frequencies that may be employed in the neural network.

Smaller frequencies cannot be processed if the number of blocks is too great since the output

of the max-pooling layer cannot be further split. Combinations of a tested number of blocks

are specified in table 3.9, with the kernel size of each sequential block and the potential

size of input that may be processed by the model. Hyper-parameters like learning rate or

optimizer are not changed from the common setting described in section 3.1. Following

that, table 3.10 contains information on tested frequencies for distinct blocks. The removal

of each block caused the frequency to be tested with a higher frequency. Thus frequencies

were tested with further variants and all instances from the preceding experiment. This

approach ensured that each frequency range was adequately tested to identify the optimal

configuration for the neural network.
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4

Results and discussion

4.1 Data processing

The methodology presented in the following section is based on the knowledge of data

patterns for each class, without depending on the dataset or pre-processing methods. The

objective is to demonstrate the robustness of the CNN architecture, which has the potential

to replace some of the processes of traditional CAD system flowcharts. By doing so, the

computational complexity of arrhythmia detection could be reduced, and the dependency

on the dataset could be minimized. A useful and easy-to-implement solution for the practical

medical environment could be provided through the implementation of this methodology,

offering real-time decision support to clinicians. The CNN architecture’s ability to recognize

patterns in data could significantly reduce the need for manual intervention in the diagnosis

process, improving the speed and Acc of arrhythmia detection.

4.1.1 Normalization

To normalize the data, we implemented a simple formula that can alter the range of mea-

sured samples without requiring high computational complexity and without compromising

essential information for future classification. The formula has the form

pi =
max (−1, min(1, oi+1−oi ))+1

2
, (4.1)

where pi is i-th value of normalized sample computed from raw samples o on the positions

of i and i + 1. Because the QRS complex can have a different form and value ranges for

each person, all numbers less than -1 are set on it and all numbers greater than 1 are set
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Figure 4.1: An illustration of ECG segments of normal, Afib, Afl, and Vfib patterns after nor-
malization [32]

on 1. Thanks to the shapes and properties of ECG signals in general, it is possible to use

this elementary operation. The CNN model requires information about the pattern of the P

wave and the only positions of the QRS complex, not its power. Due to the main concept of

CNN functionality, especially convolutional layers, the range of input data is changed from

(−1, 1) to (0, 1). In this way, it is not necessary to provide R-peak detection or some types of

preprocessing methods. Sample examples of all four categories of normalization are shown

in Figure 4.1.

4.1.2 Results

The first experiment focused on evaluating the performance of the proposed CNN model in

the area of detecting all classes. The results of this experiment are shown in Table 4.1. The

table reveals that the proposed model was able to classify 99.79% of the samples correctly as

normal. However, the Sen of Afl was found to be less than 90%, with 13.08% of Afl category

being wrongly classified as part of the other categories. Among these, 89.59% were bad
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Table 4.1: ECG confusion matrix [32]

O/P Normal Afib Afl Vfib Acc (%) PPV (%) Sen (%) Spec (%)

Normal 3539 11 8 9 99.79 99.27 99.21 99.88
Afib 11 19164 76 21 98.61 98.74 99.43 96.07
Afl 13 198 1469 10 98.80 94.59 86.92 99.64
Vfib 2 35 0 929 99.69 95.82 96.17 99.83

Table 4.2: ECG overall classification [32]

O/P Normal Arrhythmia Acc (%) PPV (%) Sen (%) Spec (%)

Normal 3539 28 98.45 99.88 99.87 99.27
Arrhythmia 26 21902 98.45 99.21 99.27 99.87

predictions like Afib. A similar pattern was observed in Afib, where 70.37% of the wrongly

evaluated inputs were classified as Afl. This indicates a possible relationship between these

classes.

To better understand the performance of the proposed model in distinguishing normal

rhythm from arrhythmia, Table 4.2 was generated. This table shows that the normal category

has the same value as that in Table 4.1. Normal category predicted as Arrhythmia refers to

the summarization of normal samples predicted as Afib, Afl, or Vfib. The Arrhythmia category

evaluated as Normal is a summary of Afib, Afl, and Vfib evaluated as normal. The correctly

detected arrhythmia is the rest of the table. Overall, the proposed model achieved an

average Acc of 98.45%. Furthermore, Sen and Spec of 99.87% and 99.27% were respectively

computed for the normal class. PPV was obtained as 99.88% for normal rhythm and 99.21%

for the remaining classes of the proposed model.

The second experiment focuses on the computation time required for the normalization

and classification of input signals in real-time, such as a stream from an ECG device. To

accomplish this, a simulation of several devices was created using program threads for

parallel processing [9]. These simulated devices used the same CNN model for evaluation

on a single processor. The system was then tested on a 10-second sample measured with a

frequency of 250Hz and 360Hz, with the downsampling of input realized in the latter case.

The evaluation was performed with a change of 5 values, which guaranteed the feasibility of

50 predictions per second. Figure 4.2 illustrates the average time required for 10 iterations of

calculations and classifications. It is evident that, after including the ECG data transmission

time, using one server to manage multiple devices is acceptable in this scenario. The
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Figure 4.2: Time needed to signal processing and classification [32]

implementation of multiple devices as program threads for parallel processing, using the

same CNN model for evaluation, shows as a promising approach for achieving real-time

classification of input signals.

Moreover, the tabulated confusion matrix for recognition of normal, preictal, and seizure

classes from one-channel Bonn University EEG database is presented in Table 4.3. Preictal

and seizure classes were summarized as a representation of abnormal data in order to

calculate Sen and Spec correctly. Small differences and values greater than 90% indicate

that the classification is balanced and not overfitted. Moreover, the voting method across

CNN inputs from single segments was made for proper comparison with other research. It

leads to Acc, Spec, and Sen improvements of 98%, 98.5%, and 98%, described in Table 4.4

by the confusion matrix and Table 4.5 with an overall classification of normal and abnormal

cases. It is clear that post-processing is required to eliminate potential false detections that

could result in a false alarm or overlooking a problem.
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Table 4.3: Confusion matrix of Bonn dataset [24]

O/P Normal Preictal Seizure Acc (%) PPV (%) Sen (%) Spec (%)

Normal 748 34 18 96.37 95.60 92.46 98.11
Preictal 8 759 33 96.37 96.70 98.11 92.46
Seizure 23 15 762 96.37 96.70 98.11 92.46

Table 4.4: Confusion matrix of Bonn dataset after voting method [24]

O/P Normal Preictal Seizure Acc (%) PPV (%) Sen (%) Spec (%)

Normal 98 1 1 98.33 97.03 98 98.5
Preictal 2 97 1 98.67 98.97 97 99.5
Seizure 1 0 99 99.33 98.02 99 99

Table 4.5: Overall classification of Bonn dataset [24]

O/P Normal Seizures Acc (%) PPV (%) Sen (%) Spec (%)

Normal 197 2 98.33 98.69 98.5 98
Seizures 3 98 98.33 98.99 98 98.5

4.1.3 Discussion

The proposed solution utilized a simple formula for data normalization that is not dependent

on any specific dataset. It just contains variables for thresholds to eliminate artifacts that

are dependent on the measuring device. This approach ensures that data preparation

before using the CNN model has low computational complexity. However, there are some

limitations that need to be addressed.

Nevertheless, there are certain limitations which are needed to check. To reduce compu-

tational complexity, a noise reduction algorithm was not implemented. Classification results

were not devalued on tested datasets, but functionality is not guaranteed in all approach

applications. and there may be cases where the environment requires deeper preprocessing

due to 50Hz noise, etc. In the next point, normalization without a global threshold provides

variability for model setting, but only with manual intervention. Experiments for thresholds

were done by histograms instead of z-score normalization, where artifacts are only reduced

rather than suppressed. The last issue corresponding with CAD systems on this basis is the

performance measuring of the CNN instead of k-fold cross-validation. However, this can be

replaced by data augmentation into a sufficiently large dataset.

When it comes to automated detection of health issues, CNN models have several advan-

tages. The most significant advantage is that CNNs do not require the use of traditional tasks
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in a conventional flowchart, such as pre-processing, feature extraction, and feature ranking.

These tasks typically require expert knowledge, which is not necessary for designing a CNN.

Instead, the CNN automatically extracts features by modifying filters within convolutional

layers and weights for transitioning between layers during model training. This feature

can save computational time and memory, depending on the batch size. However, it is

important to note that too many big batches can lead to decreased model performance.

Additionally, the CNN model is not independent of expertly-known pattern detection, such

as P waves, T waves, and R peaks in ECG or the cardiac cycle in BCG, as convolutional filters

search for patterns throughout the entire signal.

The results of using CNN models for automated detection lead to the conclusion that

the designed solution is a suitable tool. Furthermore, the reduction in complexity allows for

deployment options on devices with limited computing power or as a server implementation

for the parallel detection of multiple patients. This advantage is especially important as

it can improve the efficiency of healthcare providers in diagnosing and treating patients.

By reducing the complexity of the model, it can be deployed on a wider range of devices,

making it accessible to more people.

The detailed view of the existing work on CAD for different types of arrhythmias is shown

in Table 4.6. The presented performances were measured on the classification of all four

classes except [98], where only normal and Afib classes were used. In the case of used data,

other approaches analyzed other available databases like European ST-T Database (EDB),

MIT-BIH Normal Sinus Rhythm Database (NSRDB), and Creighton University Ventricular

Tachyarrhythmia Database (CUDB) Some articles are based on R-peak detection [3, 26].

However, needs long segments for a finding of the R-peak or QRS complex which makes it not

possible to real-time classification. Above that, denoising methods are used for smoothing

the signal [3, 5, 26, 63]. There are approaches where noise can have a big impact on the

final system result. In the case of CNN, raw data can have worse Acc but is still within

acceptable limits. Moreover, if the data are clearly different, the model’s performance can be

almost the same. The next problematic issue is separate feature extraction, feature ranking,

and classification [3, 26, 71], which require knowledge of all different algorithms for the

right use. Acharya et al. [5] and Xia et al. [98] is most close to this approach. Nevertheless,

Z-score normalization depends on knowledge of all datasets to compute the mean and

standard deviation. In the second case, wavelets are useful, like feature extractors too, so in
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Table 4.6: Selected studies of the detection of arrhythmia using ECG data from various
PhysioNet databases [32]

Source Approach Classification
Performance
(%)

Data used

Current
[32]

CNN with
normalization

CNN
Acc = 98.45
Sen = 99.87
Spec = 99.27

AFDB
MITDB
VFDB

Current
[33]

CNN with CWT CNN
Acc = 97.78%
Sen = 99.76%
Spec = 98.82%

AFDB
MITDB
VFDB

[5] CNN with Z-score CNN
Acc = 92.50
Sen = 98.09
Spec = 93.13

AFDB
MITDB
VFDB

[98]
STFT
with CNN

CNN
Acc = 98.63
Sen = 98.79
Spec = 97.87

AFDB

[78]
Spectogram
with CNN

CNN Acc = 97.23

AFDB
EDB
NSRDB
VFDB

[26] RQA
DT, RF,
rotation forest

Acc = 98.37
AFDB
CUDB
MITDB

[3]
Thirteen nonlinear
features with
ANOVA

KNN with DT
Acc = 97.78
Sen = 99.76
Spec = 98.82

AFDB
CUDB
MITDB

combination with CNN are redundant, network input has higher resolution, and the CNN

model must be more complex with a bigger number of neurons. In summary, the CNN

model with normalization depends on knowledge of ECG characterization for each class,

not on the dataset nor on several different methods. The objective show the robustness of

CNN architecture, which can replace some processes of traditional CAD system flowchart.

It could reduce the computational complexity of arrhythmia detection and dependency on

the used dataset. This, in total, could provide a useful easy implementation for the practical

medical environments for real-time decision support.

Moreover, a comparison of the EEG CAD system with other journal articles is shown in

Table 4.7 for the Bonn dataset. The achieved Acc is comparable to the best results obtained

by other methods. Unlike the presented solution, which divides the sample into smaller

blocks with the following voting, all presented articles process samples with 4097 values

as a single input. As a result, the architecture requires fewer inner parameters, implying
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Table 4.7: Selected studies of seizures detection on Bonn EEG dataset [24]

Author Approach and Classification Performance (%)

Current
[24] normalization + CNN

Acc = 98.33
Sen = 98.5
Spec = 98

[58] SSTFT + FKNN
Acc = 99.18
Sen = 99.77
Spec = 99.80

[12] Entropy based features Acc = 97.7

[17] Multiscale spectral features + RF
Acc = 98.6
Sen = 98.99
Spec = 99.12

[7] Z-score, CNN
Acc = 88.67
Sen = 95
Spec = 90

[102] STFT +mConvA Acc = 93.97

[60] STFT + CNN
Acc = 99.33
Sen = 99.16
Spec = 100

less computational time per input with a greater number of classifications. From a research

standpoint, the solution does not provide the necessary optimization. However, it is crucial

to consider the application perspective of the point. A system that works with a 23.6 seconds

length of data without sliding window implementation may provide significant latency of

patient condition updates. This limitation is eliminated in the presented solution, which

can update the patient’s condition without any delay.

4.2 Data fusion

The fusion methodology to reduce the complexity of input and redundant information is

presented in the following section. The solution presented in this section has been tested in

both multi-channel and time series datasets with known triggers. Furthermore, it has been

compared to other approaches from the literature.

The presented solution offers a novel input complexity reduction approach, essential

for efficient and accurate data analysis. By removing redundant information, the proposed

methodology could lead to improved performance in various applications, including signal

processing and data analysis.

The testing of the solution in both multi-channel and time series datasets with known
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triggers demonstrates its versatility and potential applicability to various data types. The

comparison with other approaches from the literature further highlights the advantages of

the presented methodology over existing approaches.

4.2.1 Averaging

As mentioned, multiple channels need to be processed, unlike the previous experiments

on ECG databases and the Bonn EEG database. To ensure that the data can be used as

one-dimensional input, the channels were merged into a single vector. The decision to

average the values at the same timestamp was made because of the similarity with the

average pooling layer in neural networks. However, the number of channels per person

was different, and a static kernel size would not have resulted in a one-dimensional output

for all inputs. As a result, the classical layer was not used, and averaging was done as a

preprocessing task.

Beforehand, a correlation calculation was performed to determine the correlation be-

tween different channels. Based on the results, two channels were omitted. The T7-P7 and

P7-T7 channels were excluded because they had a perfect negative correlation, and their

average result was equal to zero, leading to the loss of information in the data. Additionally,

the T8-P8 channels were excluded because they contained duplicate data. Including this

channel would have led to an increase in weight compared to other channels, resulting in a

bias in the analysis.

After conducting EEG data studies, the next step was to carry out BCG data fusion

experiments. In these experiments, the samples obtained from the previous two procedures

were averaged in the time domain. This resulted in vector input, which differs from the

matrix input presented in Figure 4.3. The vector input was used to modify the model, where

the first dimension of kernel size remained the same while the second dimension was

removed. As a result, architecture 2 from 3.1.3 was utilized to achieve equivalent results.

4.2.2 Results

Experiments were conducted on the CHB-MIT dataset for each individual, and the average

Acc, Sen, and Spec were computed across individuals by other researchers. Since the number

of seizures varies across patients, k-fold cross-validation was performed using different folds

based on each patient’s data. The final results are presented in Table 4.8, which includes the
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Figure 4.3: BCG fusion processing [created by the author]

overall performance of the model. Despite the unbalanced length of data and the varying

number of seizures, the results were above 85%, and there was no overfitting issue. This was

demonstrated by the worst training scenario, presented in Figure 4.4, which shows balanced

progress over time. These findings suggest that the model performs well on the CHB-MIT

dataset, even with its inherent challenges.

The best classification results of the proposed system on BCG dataset are shown in

Table 4.9. Upon closer examination of the table, it is apparent that the PPV for the normal

class and disorder class are 97.18% and 98.41%, respectively. This means that the probability

of correctly identifying the disorder class is slightly higher than that of the normal class. It is

also noticeable that 4.9% of normal samples are inaccurately classified as disorders, while

0.9% of problematic sequences are incorrectly classified as the normal class. In summary,

it can be concluded that the proposed system’s Acc is 98.11%. To elaborate further, these

classification results suggest that the proposed system successfully differentiates between

normal and problematic breathing patterns.

4.2.3 Discussion

A comparison of the CAD system with other journal articles is shown in Table 4.10. In

contrast to the previous comparison, input lengths in each article are mostly unique, and
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Table 4.8: Classification results of each patient on CHB-MIT EEG dataset [24]

Patient Sen (%) Spec (%) Acc (%)

chb01 99.77 97.83 98.89
chb02 100 100 100
chb03 98.76 97.50 98.16
chb04 99.22 99.65 99.56
chb05 98.94 99.42 99.12
chb06 97.10 92.99 94.92
chb07 99.39 99.66 99.56
chb08 95.74 96.04 95.89
chb09 100 100 100
chb10 99.55 99.35 99.45
chb11 98.79 99.28 99.05
chb12 88.43 91.98 90.31
chb13 95.46 88.62 91.78
chb14 94.97 95.49 95.29
chb15 86.32 97.38 91.58
chb16 95.59 99.43 98.35
chb17 94.95 97.29 96.11
chb18 90.82 93.52 92.19
chb19 99.16 98.88 99.01
chb20 96.53 93.85 95.26
chb21 95.45 98.33 97.18
chb22 100 98.94 99.39
chb23 98.35 97.50 97.90
chb24 85.31 97.01 91.55
Total 96.19 97.08 96.69

Table 4.9: EEG overall classification [24]

O/P Normal Disordered Acc (%) PPV (%) Sen (%) Spec (%)

Normal 1243 64 98.11 97.18 95.10 99.10
Disordered 36 3973 98.11 98.41 99.10 95.10
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Figure 4.4: The testing and validation curves for chb24 [24]

cross-validations are not set up the same way. Furthermore, unlike the other approaches,

the validation per seizure in these articles is performed without voting. However, the study

conducted by Wand et al. [92] confirms the need for post-processing. They demonstrate that

by transferring Sen from the segment-based level to the event-based level, the performance

of the CAD system can be improved. This is achieved using a formula:

Sen2 =
number of corrected detected seizures

number of all seizures
. (4.2)

Implementing it into the other presented systems should result in a reduction in the

results gap. Moreover, channel fusion into vector leads to complexity reduction. As described

in [31], one-dimensional CNN computational complexity in a single layer can be described

as:

O =OutputSize ·n f ·Mult(ni , nk ) +n f ·Ac c (ni , nk ) (4.3)

where ni , n f , and nk represent the number of features in the input vector, the number of

filters, and the kernel size. The highest asymptotic complexity in neural network operations
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is typically represented by matrix multiplication, which has a complexity of O (n 3). When n

layers are included in a feedforward network, the final complexity is defined as O (n 4) for

testing and O (n 5) for training with a gradient descent task.

Although the fusion of channels does not reduce the asymptotic complexity, it can

significantly decrease the computational complexity in two key ways. First, it reduces the

number of weights and biases contained in the model. In the presented model, there are

10,854 inner parameters. Without fusion, the smallest possible two-dimensional CNN

architecture with a kernel size of (19, c h ) could be provided, where the constant is set to

be the same as in the case of the presented one-dimensional CNN, and c h represents the

number of channels. However, for c h = 24, the architecture expands by almost half to

15.667, which includes convolution and fully-connected layer operations.

The second aspect is about max-pooling layers whose output is unrelated to the number

of inner parameters. However, the output size from the previous convolution layer in

combination with the kernel size represents the complexity of the necessary calculations. It

excludes inner parameters for fully connected layers, which total 6.651, so the number of

related parameters is more than doubled in two-dimensional CNN, from 4.023 to 10.010.

Furthermore, several methods are using complex preprocessing methods, such as STFT

with complexity O (n · l o g (n )), and increasing the dimension, instead of normalization with

O (n ). The results lead to the conviction that the designed solution represents a suitable

tool. Moreover, complexity reduction allows for deployment options on devices with limited

computing power or as a server implementation for parallel detection of multiple patients.

A comparison of BCG system performance with other articles is shown in Table 4.11.

A significant difference is the type of sensors used for data measuring. A few studies built

a system on ECG signals for the detection of sleeping apnea. Others used a combination

of ECG as a complementary device to BCG, or only a BCG measuring approach. Thus,

BCG sensors are placed related to body position, such as piezoelectric foil under the body

positioned on the back. In the proposed approach, BCG sensors are positioned into the

measuring beds; hence, the signals processed by Cartan curvatures are independent of body

position. Furthermore, fusion processing produced better results than two-dimensional

inputs. Unlike EEG, BCG does not measure multiple channels at the same time, but rather

more one-channel samples with time ordering. It results in a higher correlation between

input rows, and data fusion does not result in as much information loss as the EEG.
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Table 4.10: Selected studies of seizures detection on CHB-MIT EEG dataset [24]

Source Approach and Classification Performance (%)

Current
[24] normalization + CNN

Acc = 96.99
Sen = 97.06
Spec = 96.89

[34] GAN+1DCNN
G-Mean = 96.15
Sen = 93.53
Spec = 99.05

[92] S-1D-CNN
Acc = 99.73
Sen = 90.09
Spec = 99.81

[58] SSTFT + FKNN
Acc = 98.99
Sen = 98.53
Spec = 99.27

[10] adaptive STFT+LDA
Acc = 98.81
Sen = 98.44
Spec = 99.19

[104] DWT + SVM
Acc = 96.15
Sen = 93.53
Spec = 99.05

[29] Channel selection + KNN
Acc = 85
Sen = 86.04
Spec = 83.78

[17] Multiscale spectral features + RF
Acc = 98.9
Sen = 98.12
Spec = 99.17

[65] GAN
Acc = 95.06
Sen = 95.38
Spec = 94.33

[56] Wavelets, EMD + SVM
Acc = 97.49
Sen = 97.34
Spec = 97.50

[103] Nullcline Feature + LDA,NN
Acc = 97.49
Sen = 97.34
Spec = 97.50
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Aside from the complete unobtrusiveness of the system, there are two major advantages

in comparison with recent studies. Cartan curvatures contain information not only about

pulse arrival time but also about the complex hemodynamics of the person [52]. In the first

work [21], the focus has been on the pulse arrival time at one specific point, but later it was

extended in employing CNN at the whole beat-to-beat Cartan curvatures. The approach

brings both better results and removing of unnecessary feature extraction. These could open

various topics in the future with a focus on the study of Cartan curvatures without the use

of ECG thus enabling full automation of the system and studying other aspects of human

hemodynamics. Secondly, studying the whole Cartan curvatures offers the possibility of

achieving greater precision in the system, with fewer errors due to falsely detected pulse

arrival times. The method is also effective with people in different positions, which pro-

vides indirect proof that Cartan curvatures are invariant under rotational and translational

changes of the human body on the bed. Additionally, since there is no need to precisely

detect pulse arrival times, the computational power needed for preprocessing has decreased.

Furthermore, there are additional calculations that can be performed with even greater

performance without the computation of pulse arrival time, with Cartan curvatures serving

as input.

Furthermore, it is evident that the fusion process can lead to complexity reduction and

performance improvement. This has been demonstrated through a comparison of results

in [22] and [23] before and after the averaging process. This observation highlights the

possibility of processing a different number of time-ordered samples without modifying

the CNN architecture and finding the ideal interval to achieve the best Acc, Sen, and Spec

results. Moreover, the ability to optimize the number of time-ordered samples processed

without modifying the CNN architecture offers greater flexibility and adaptability to different

datasets.

4.3 CNN

The last section of the practical part focuses on the possibilities of reducing and utilizing

CNN. Structurally, it is divided into two areas that describe three issues. The first part of the

section verifies the hypothesis of reusability, while the second part describes the mutual

interdependence between the reduction of frequency and architecture.
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Table 4.11: Selected studies of the detection of breathing disorders [created by the author]

Source Approach Classification
Types of
sensors

Performance
(%)

Current Averaging of [23] CNN BCG
Acc = 97.25
Sen = 93.41
Spec = 98.25

Current Averaging of [22] CNN BCG
Acc = 98.11
Sen = 95.10
Spec = 99.10

[23]
Cartan curvatures with
Euclidean length trigger

CNN BCG
Acc = 96.37
Sen = 92.46
Spec = 98.11

[22]
Cartan curvatures with
normalization

CNN BCG
Acc = 98.00
Sen = 94.26
Spec = 99.22

[21]
Cartan curvatures with
CWT on pulse arrival

CNN BCG
Acc = 89.35
Sen = 86.35
Spec = 91.22

[76] Adaptive thresholding Statistically BCG
Sen = 24.24
Spec = 85.88

[59] Threshold-based division NN BCG Acc = 94.6
[106] STC-Min SVM BCG Acc = 90.46

[100]
Locally Projective
Noise Reduction

Heuristic BCG
Acc = 92.7
Sen = 99.5

[41]
Tunable-Q factor
wavelet transform

Adaptive boosting ECG
Acc = 87.33
Sen = 81.99
Spec = 90.72

[74]
Linear and non-linear
features

RF ECG
Acc = 91.77
Sen = 89.53
Spec = 93.43

The hypothesis of reusability has been tested in the first part of the section, highlighting

the potential of CNN to be reused in different applications. This emphasizes the versatility

and adaptability of CNN, making it a valuable tool in various fields of research.

The second area offers a novel approach to complexity reduction, which is essential for

efficient and accurate data analysis. The reduction of frequency and architecture simul-

taneously allows for greater adaptability and flexibility in different datasets, and without

performance loss.
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Table 4.12: ECG and EEG combination confusion matrix [created by the author]

O/P NormalE C G Afib Afl Vfib NormalE E G Preictal Seizure

NormalE C G 3529 15 13 4 0 6 0
Afib 18 19147 47 21 0 10 29
Afl 13 83 1403 5 0 6 8
Vfib 0 35 3 886 2 28 12
NormalE E G 0 0 0 1 769 21 9
Preictal 10 8 4 26 21 719 12
Seizure 7 23 21 13 8 12 716

Table 4.13: ECG and EEG combination overall classification [created by the author]

TP TN FP FN Acc (%) PPV (%) Sen (%) Spec (%)

4298 23277 69 79 99.46 98.42 98.19 99.7

4.3.1 Model reusability

The results of the same CNN model are presented in sections 4.1 and 4.2, which are related

to the hypothesis about architecture reusability described in section 3.6.1. However, it is

important to note that well-known pre-trained models are prepared in a wide range of

classes, and an initial experiment was conducted by combining different health issues

measured by different devices. Specifically, ECG data in combination with EEG data from

the Bonn University database were chosen because they had the same length of input data.

It is worth noting that the CHB-MIT database, which includes other EEG data and is

commonly used for cross-validation, was not used in this experiment. This decision was

made because the EEG data from the two databases were not labeled by the same scenario,

and the Bonn University database contained more classes.

The findings of this experiment are shown in Tables 4.12 and 4.13. The CNN model

utilized in the ECG data demonstrated that the user architecture can categorize even this

combination of ECG and EEG data, implying that the amount of input data and the number

of identified classes increased without any changes to the internal structure of the CNN.

4.3.2 Frequency and architecture reduction

The experiments on frequency analysis were conducted on EEG, ECG, and BCG. The results

of the EEG data analysis are presented graphically in Figure 4.5. The analysis showed a slight

improvement in Acc for 225Hz classification compared to 200Hz classification. However,
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Figure 4.5: EEG Acc of different frequencies [created by the author]

the Sen was found to be higher for 225Hz, which led to a decrease in Spec. As the frequency

was reduced further, there was a gradual decline in performance. Surprisingly, there was a

peak-down in performance for the 75Hz experiment.

The various resample values were tested to determine the maximum possible resample

without architectural redesign. The highest possible resample value that could be tested was

52Hz. With this resample value, the transmission output from the fifth to the sixth layer was

1x11 instead of 50x11. Furthermore, other down-sampling resulted in nonpositive values.

Despite these limitations, the proposed methodology maintained a performance level of

over 91% even in the worst-case scenario, which indicates its practical applicability.

Downsampling the data to 50Hz reduces the number of inner parameters in the CNN

by an average of 800 values. However, it’s important to note that this operation involves

other processing steps. Reducing the first frequency (which typically provides the best

Acc, Sen, and Spec) may not necessarily reduce time complexity, depending on the specific

device used. Despite this, the results obtained through downsampling do correlate with

the image classification discussed earlier in this subsection and provide valuable insights

for measuring device needs. This knowledge can be used to optimize the performance of

CNNs on different devices.

The experiments conducted on both ECG and EEG data utilized the same CNN architec-
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Figure 4.6: ECG Acc of different frequencies [created by the author]

ture, which allowed for the calculation of inner parameters for different frequencies in both

cases. The results of the ECG experiments are presented in Figure 4.6. Notably, the highest

performance results were achieved at a frequency of 225Hz. There are two possible reasons

for this outcome.

The first is frequency suitability, which balances redundant resolution in higher frequen-

cies with information loss in lower ones. This means that the 225Hz frequency is optimal

for capturing the necessary information in the ECG signals without sacrificing too much

resolution. The second possibility is that there is a correlation between the frequency used

and the CNN model’s architecture, which was ideally designed for this specific input form.

Due to BCG measurement containing data on 1KHz, Figure 4.7 depicts the successive

downsampling from the highest option until obvious Acc decreases. The findings support a

frequency suitability theory rather than architectural influence, but the statistical population

is too small to make a final hypothesis decision. Nonetheless, promising experiments open

up new avenues for future research.

The following tables present the results of experiments on model complexity, including

the number of blocks, filters, frequency, and inner parameters. The best outcomes for

each architecture are shown in bold. However, evaluating a model solely based on Acc

and complexity is insufficient. It becomes questionable when an increase in Acc of only a
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Figure 4.7: BCG Acc of different frequencies [created by the author]

tenth of a percentage requires hundreds or thousands of additional inner parameters. To

address this issue, we propose using event-based level Sen as a performance comparator,

as suggested by Wang et al. [92]. By applying the equation shown in Equation 4.2, we can

obtain metrics that allow for a clearer comparison of models and aid in decision-making

regarding adding weights and biases.

Due to the high-frequency measurement, we initially tested the architectural analysis

using BCG data. Our findings for individual experiments are presented in tables 4.14 and 4.15

for CNNs with two to five blocks, respectively. For the two-block architecture, the highest

Acc was achieved using the maximum set of filters. This model contains over 60k parameters,

which is fewer than in networks with more blocks, but still achieved high Acc.

In the three and four-block experiments, we found that similar parameters were needed

to achieve peak Acc. However, despite having the same model complexity, the four-block

architecture outperformed the three-block architecture in terms of both Acc and Sen2. In

fact, the four-block architecture provided the highest Acc among all the models tested.

For our final BCG experiment, we increased the model complexity by almost twice. Still,

the resulting Acc increase was only 0.13% compared to a similar number of parameters in

the best three- and four-block architectures. This suggests that increasing model complexity

beyond a certain point does not necessarily translate to significant improvements in Acc.

56



Table 4.14: BCG CNN results for 2 and 3 blocks [created by the author]

blocks 2 3

filters freq Acc Sen2 params freq Acc Sen2 params

10 600 92.09 74.01 18148 150 94.13 76.78 4098
15 225 94.66 77.68 11108 150 96.65 82.14 8378
20 100 95.75 83.03 8458 150 97.85 81.25 14158
25 250 96.45 75.00 23338 200 98.56 83.92 23238
30 100 97.29 80.35 15968 150 98.87 79.46 30218
35 100 98.04 78.15 20548 150 99.07 79.46 40498
40 100 98.52 77.67 25678 225 98.83 77.67 56598
45 100 98.33 81.25 31358 150 98.97 79.46 65538
50 100 98.5 71.42 37588 150 99.16 79.46 80338
55 100 98.73 77.67 44368 100 99.04 80.35 92658
60 100 98.69 80.35 51698 100 99.19 80.35 110078
65 100 98.85 77.67 59578 150 99.12 79.46 133678

Table 4.15: BCG CNN results for 4 and 5 blocks [created by the author]

blocks 4 5

filters freq Acc Sen2 params freq Acc Sen2 params

10 225 95.2 77.68 4728 400 95.78 76.78 5718
15 250 97.09 79.46 10328 400 97.61 81.25 12458
20 225 98.16 81.25 17618 369 98.48 82.14 21558
25 200 98.43 78.57 26538 400 98.66 82.14 33738
30 400 98.54 81.25 42668 369 98.72 80.35 47918
35 200 98.72 80.35 51488 369 98.83 72.32 64998
40 225 98.92 78.57 67998 369 99.06 81.25 84678
45 225 99.3 83.03 85718 400 98.91 77.68 107498
50 225 99.15 85.71 104288 400 99.01 83.03 132438
55 200 99.06 75.89 125988 400 99.19 75.89 159978
60 200 99.24 81.25 149738 400 99.14 80.35 190118
65 200 99.23 81.25 175538 369 99.16 78.57 222078

The results of experiments conducted on ECG databases have been tabulated in a manner

similar to that of the BCG, as presented in tables 4.16 and 4.17. While the Acc peaks of

the architectures for ECG and BCG are similar in terms of the number of parameters, the

former exhibits better Acc results. This holds true not only for the best results but also for

architectures with almost the same number of neurons. Interestingly, the ideal frequency

for ECG is around 225Hz and 250Hz, which is significantly higher than the frequency that

resulted in the top Acc for several BCG experiments, i.e., 100 Hz. Given the experimental

design, in the instance of ECG, Sen across events rather than samples adds no benefit

because:
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Table 4.16: ECG CNN results for 2 and 3 blocks [created by the author]

blocks 2 3

filters freq Acc params freq Acc params

10 225 97.99 13614 225 98.79 8564
15 250 98.33 23554 250 99.05 16144
20 250 98.58 32484 250 99.14 24504
25 225 98.5 38064 225 99.25 32564
30 250 98.51 51994 250 99.26 45724
35 250 98.66 62574 250 99.19 58584
40 250 98.58 73704 225 99.28 70064
45 250 98.52 85384 225 99.33 85564
50 250 98.53 97614 250 99.32 106164
55 225 98.64 101814 250 99.28 125024
60 250 98.45 123724 250 99.26 145384
65 225 98.63 127464 200 99.25 157884

Table 4.17: ECG CNN results for 4 and 5 blocks [created by the author]

blocks 4 5

filters freq Acc params freq Acc params

10 250 99.24 6794 250 98.99 6104
15 250 99.33 13234 250 99.34 13024
20 250 99.38 21724 250 99.43 22544
25 250 99.46 32264 250 99.42 34664
30 250 99.48 44854 250 99.5 49384
35 250 99.49 59494 250 99.48 66704
40 250 99.49 76184 250 99.54 86624
45 250 99.51 94924 250 99.52 109144
50 250 99.48 115714 250 99.55 134264
55 250 99.52 138554 250 99.46 161984
60 250 99.53 163444 250 99.52 192304
65 250 99.52 190384 250 99.51 225224

• There is more than one database and the data is measured in several ways.

• Normal sections and with issues swap often, hence, unlike EEG and BCG, the same

difficulty as with Acc arises here.

• The database has more cardiac issues than just two classifications (positive and nega-

tive), where normal data represents a smaller group and emphasizes the preceding

point.

The EEG experiments on a selected patient, labeled as chb24, are presented in the same

manner as in previous articles due to the setup of experiments carried out therein. This
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Table 4.18: EEG CNN results for 2 and 3 blocks [created by the author]

blocks 2 3

filters freq Acc Sen2 params freq Acc Sen2 params

10 150 83.34 91.67 9148 225 89.61 91.67 8538
15 150 84.21 100 14528 225 90.99 100 15038
20 150 84.64 100 20458 200 91.36 100 21598
25 150 85.14 100 26938 225 92.6 100 32538
30 150 85.09 100 33968 225 93.23 100 43538
35 150 85.71 100 41548 225 92.94 100 56038
40 150 85.98 100 49678 250 93.92 100 72918
45 150 86.56 100 58358 225 93.27 100 85538
50 150 86.92 100 67588 250 93.17 100 106138
55 150 86.97 100 77368 250 93.05 100 124998
60 150 86.83 100 87698 225 93.05 100 141038
65 150 86.68 100 98578 250 93.72 100 167218

Table 4.19: EEG CNN results for 4 and 5 blocks [created by the author]

blocks 4 5

filters freq Acc Sen2 params freq Acc Sen2 params

10 225 91.17 91.67 6408 225 90.43 91.67 5838
15 225 93.31 100 12668 250 92.94 100 12638
20 225 94.29 100 20978 225 93.15 100 22038
25 250 94.28 100 32238 225 94.56 100 34038
30 225 95.03 100 43748 250 94.23 100 49358
35 250 95.18 100 59468 250 93.54 100 66678
40 225 94.91 100 74718 200 91.08 100 84678
45 250 94.84 100 94898 250 93.2 100 109118
50 250 94.32 100 115688 250 85.14 100 134238
55 250 94.48 100 138528 250 87.53 100 161958
60 250 95.3 100 163418 225 83.88 100 190838
65 250 94.77 100 190358 225 86.28 100 223638

decision was made based on the worst individual results observed in the segment-based

level Sen analysis presented in Table 4.8. The results of the analysis revealed that the block

number had the biggest impact on the final Acc comparison.

Furthermore, it was observed that despite the implementation of batch normalization

and dropout techniques, models with too many parameters tended to overfit. This phe-

nomenon was more prevalent in the design of the deepest architecture. It is important

to note that overfitting occurs when a model is trained on a limited set of data, or the

architecture’s initial setup and optimizer are not made properly.

In the Sen2 experiments, the results for all the blocks were found to be the same. As a
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result, we decided to provide information about the optimized architecture for each patient

separately to achieve the best Sen2 performance without using redundant parameters. For

this purpose, Table 4.20 contains a detailed summary of the optimized architecture used

for each patient in the experiment. It is important to note that these experiments were

conducted using an architecture with four blocks, which provided the best Acc for all BCG,

ECG, and EEG data.

In our study, we observed a strong negative correlation between the Acc of the experiment

conducted in [24] and the number of filters required to provide maximal Sen2. This finding

was quite surprising, and it suggested that using fewer filters can result in higher Acc in the

detection of seizures.

One particular result that stood out was in the case of chb12, where the measurement

Acc was 90.31%. Interestingly, it was found that only one filter was needed to achieve this

high level of Acc. However, despite the high Acc, we observed that the Sen and Spec values

(as shown in Table 4.8) were relatively low, which resulted in false alarms in the case of

normal data and more separate alarms in the case of seizures.

4.3.3 Discussion

Future research can explore various directions. In terms of model reusability and the fact

that patients can suffer from multiple healthcare issues at once, it is essential to use the CAD

system for decision support in all available cases. Moreover, there are other types of time

series data that can be integrated into the system, such as galvanic skin response for epilepsy

detection [64], electromyography signal for robotic interaction [80], and neuromuscular

disorders [49].

However, the main challenge for researchers is to collect a diverse range of datasets

that cover as many health issues as possible. Another limitation is the need for various

CAD models for each disease. Despite these challenges, the presented methodology can

be applied to different topics, and researchers can collect different kinds of data that are

normalized based on the measuring device and trained for future deployment.

In conclusion, future research can take several different directions. Researchers can

overcome the current limitations by collecting diverse datasets, exploring different types of

time-series data, and using deeper data analysis to enhance the system’s performance.

To take the research to the next level, deeper data analysis for the CNN classification
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Table 4.20: Architecture optimization of each patient on CHB-MIT EEG dataset [created by
the author]

Patient No. seizures Sen2 (%) Acc (%) filters

chb01 7 100 98.89 2
chb02 2 100 100 1
chb03 7 100 98.16 2
chb04 3 100 99.56 2
chb05 5 100 99.12 1
chb06 7 100 94.92 3
chb07 3 100 99.56 1
chb08 5 100 95.89 1
chb09 3 100 100 2
chb10 7 100 99.45 3
chb11 3 100 99.05 1
chb12 13 100 90.31 1
chb13 8 100 91.78 7
chb14 7 100 95.29 2
chb15 14 100 91.58 4
chb16 6 100 98.35 3
chb17 3 100 96.11 2
chb18 6 100 92.19 12
chb19 3 100 99.01 1
chb20 6 100 95.26 3
chb21 4 100 97.18 3
chb22 3 100 99.39 6
chb23 3 100 97.90 3
chb24 12 100 91.55 9

can be explored. This approach will reduce the complexity of the system and enable bet-

ter decision support. The possibilities of the architecture of neural networks have been

analyzed to a certain level, which does not entirely cover all aspects that neural networks

can contain. The number of neurons employed in the fully-connected layers is one of the

CNN characteristics that remained constant throughout trials. A relationship between the

ratio and preceding layers should be examined, where adding neurons to fully connected

produces a reduction in CNN number of filters to preserve trainable parameter count and

avoid overfitting. Another static variable is the kernel size for each block. These values were

examined in ECG testing, but it doesn’t mean that other sizes for other data types won’t

result in better performance. ECG variations are mostly defined by the QRS complex, which

is only a portion of the input. The difference between a normal signal and seizure detection,

on the other hand, is included in the entire sample.
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During the course of architectural reduction tests, it was discovered that correlation in

blocks with trainable parameter count peaks when Acc is not improving. As future work,

the process partially involves trial-and-error analysis, which calls for the automation of

an appropriate methodology. One possible solution is to conduct a different analysis of

signal data between individual classes. This involves analyzing the amplitudes of individual

samples, for which entropies can be used [2]. The concept is to calculate different entropies

that describe the vector data from various perspectives. These entropies must be compared

intra-group within a class and inter-group within all the data to analyze the level of their

dissimilarity, thereby determining the necessary filter values for successful classification.

By automating this process, researchers can save time and effort optimizing their models,

ultimately leading to more efficient and accurate results.

In addition to this, it is becoming increasingly important to use the appropriate tech-

niques to tackle issues related to "black-box" algorithms. It is essential to test the perfor-

mance of these models through various approaches to ensure that they are interpretable,

explainable, and robust. Machine learning explainability aims to provide insight into how

models work from input to output, and it can be categorized into two types: local and global.

Local interpretability analyzes individual predictions made by a model and is closely

linked to a set of features that must remain consistent. Amit et al. [27] introduced the

ProfWeight approach to model explainability. This approach converts the high test Acc of a

deep neural network into the poor test Acc of a shallow network.

A deeper approach to local interpretability is local interpretable model-agnostic expla-

nations (LIME), which was developed by researchers at the University of Washington. LIME

measures the output results of various sub-parts performed around a certain prediction.

As the number of dimensions increases, it becomes increasingly difficult to maintain local

authenticity for such models.

In contrast to local models that examine the behavior of the model for a specific input,

global models examine the behavior of the model for a wide range of inputs. This includes

the impact of individual-specific input on the classification results. To measure this impact,

accumulated local effects (ALE) is a technique that can be used. ALE analyzes how the

model output changes as a specific feature changes while keeping all other features constant.

The difference in the model’s anticipated output due to the change in the feature value is

computed using ALE. This is then integrated over the feature’s range to visualize the impact
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of the feature on the model output. By analyzing the ALE charts, one can determine how

the model makes its predictions and identify the magnitude and direction of a feature’s

influence on model output.

Another technique for measuring the effect of a feature on model prediction is partial

dependence (PD). Like ALE, PD assesses the change in model output as a feature’s value

changes while keeping all other characteristics constant. However, unlike ALE, PD computes

the average effect of the feature over all possible values, instead of integrating over the

feature’s range. PD plots can identify trends and interactions between features, which can

help explain how the model predicts.

These approaches can be used in vital data classification to determine whether the

results are based on exact features, noise, or other aspects. By using ALE and PD techniques,

we can identify the most influential features and explain how the model predicts.
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5

Fulfillment of Objectives

The goal of this dissertation was to propose improvements to the computer processing

of signal data in the field of informatics, specifically in a hospital setting. Raw data was

thoroughly analyzed to extract important components for further target selection. The use

of CNN designs for data classification, which can reduce the need for multiple procedures

prior to classification, was explored. This technique resulted in a more accurate and reliable

classifier, while also reducing the computing complexity and time required for classification.

The objectives of the study were described in chapter 2, where the primary objective was

to enhance the efficiency of the classification system. The proposed solution’s flowchart is

illustrated in Figure 1.1, which was achieved through the pursuit of three goals.

The initial goal involved the preparation of raw data into a suitable format, as outlined

in section 3.4, with results presented in section 4.1. The aim is to investigate the potential of

processing tasks in combination with a CNN classifier to reduce computing time or elimi-

nate certain processes, resulting in system reduction. Research findings were published in

methodology [32], where the combination of proper normalization and CNN architecture

resulted in the omission of complex preprocessing and feature extraction tasks. The method-

ology was compared with existing literature reviews, including prior research [33], which

utilized CWT extractor and demonstrated information redundancy with no improvement

in results and a more complicated CNN architecture.

The secondary goal contained the use of a data fusion procedure to reduce complexity

and dependence on specific channels. Section 3.5 provides a discussion of the current solu-

tions, while the presentation of results can be found in section 4.2. The network architecture

was simplified by one dimension without compromising its ability to detect health risks. Two

types of input were tested for the fusion process. The first consisted of multi-channel EEG
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data, for which results were previously published in [24]. The proposed methodology was

then applied retrospectively in conjunction with previous research approaches, as outlined

in [22, 23]. The approaches involved the use of ordered time-series data, and the fusion

process resulted in even better performance while requiring fewer internal parameters.

The final goal covered an analysis of input frequency, with the theory and hypothesis

presented in section 3.6 and the evaluation provided in section 4.3. An architecture analysis

was also conducted. Frequency experiments on an EEG dataset were published in [24] and

were later performed on both ECG and BCG data. The CNN architecture attempts were

based on insights gained from the entire study and discussed in subsection 4.3.3, including

possible future research directions.
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6

Conclusion

The primary objective of the thesis was achieved through three sub-areas of research. The

first sub-area involved data processing aimed at eliminating counterproductive tasks. This

enhanced the system’s efficiency and improved overall Acc. The second sub-area involved

data fusion, which aimed to reduce the complexity of CNN by one dimension. Finally, the

third sub-area involved architecture analysis, which aimed to design a suitable number of

blocks with reduced filters. This was done through frequency analysis to identify the need

to measure device quality, thereby ensuring the Acc of the system. All experiments were

conducted using free, publicly available databases with variously labeled health problems.

These experiments allowed for a comprehensive analysis of the system’s performance in

different scenarios and helped to validate the proposed methodology.

CAD systems are constructed using traditional flowchart procedures involving four main

stages: preprocessing, feature extraction, feature selection, and classification. During our

research, an investigation of these tasks in detail was performed. As a result, we presented a

CNN architecture that demonstrated robustness in performance. Specifically, we found that

we could skip the feature extraction step by normalizing the data based on its knowledge

features. Our experiments showed that this approach led to higher performance than when

using the CWT technique for feature extraction. Moreover, using normalized data resulted

in a model with an input displayed as a vector rather than a two-dimensional matrix that

includes useless weights and biases. This simplifies the model and reduces its computational

complexity, making it more efficient.

The initial research focused on ECG data but can also implement the methodology on

EEG data to demonstrate its reusability. The hypothesis has been proven that the same

architecture could be used for both data types, not just the preprocessing steps, but the
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entire CNN model. By doing so, the results confirm the versatility and generalizability of

the approach.

Due to healthcare involving the use of various devices and channels to measure health-

related data, there is a need to simplify data processing and reduce dependencies on the

specific channels used. To address this issue, a data fusion process was tested to reduce

complexity and improve performance in detecting health issues.

By properly setting up the network design, it is possible to reduce one dimension without

sacrificing performance. This method has been experimented with using the EEG database

and has been found to be effective. In fact, the method has been reused in BCG research

and has resulted in increased Acc, Sen, and Spec.

When it comes to image classification, having the highest quality input resolution is not

always necessary. The CNN model is designed to detect the major patterns that distinguish

one class from another. To transfer this knowledge from pictures to vital data categorization,

frequency reduction tests have been conducted. These tests help to determine the most

relevant features to use in the model, which can reduce the amount of data needed for

classification.

Furthermore, an architectural study of healthcare concerns has been conducted, which

has helped identify a proper collection of blocks and filters that are correlated with the input

shape. This study is important because healthcare data is complex and can vary in size and

shape, depending on the source. The model can better handle this variability by identifying

the appropriate blocks and filters and providing more accurate results.

All submodules mentioned in the study were compared to papers from the literature. In

most cases, presented results showed equivalent or improved performance with reduced

complexity. In situations where Acc, Sen, or Spec decreased, the reduction was not signifi-

cant, and the benefits of the approach were discussed at length.

Specifically, we found that our approach provided several advantages over existing meth-

ods. First, the submodules were significantly simpler, making them easier to implement,

reducing the potential for errors, removing unnecessary pattern duplications, and not losing

classification performance. Additionally, the approach was more computationally efficient,

allowing for faster processing and reduced resource usage. It makes the methodology more

flexible, allowing for customization and adaptation to a wide range of applications.
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