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Abstract 

The doctoral thesis focuses on increasing the efficiency of signal data processing and clas­

sification using convolutional neural networks. The topic is divided into three significant 

sub-areas: data processing, data fusion, and model architecture analysis. The thesis covers 

the literature on signal processing and classification that leads to cutting-edge approaches 

and their time consumption gaps. 

The main building blocks of the proposed work are freely available datasets from several 

healthcare sectors, their preprocessing, fusion, and classification. In all of these domains, 

the thesis accomplishes findings, compares them to current methodologies in the literature, 

and explains the differences. With appropriate precision for application, the suggested 

approach for signal classification outperforms the complexity of existing papers. 

Keywords: 

C N N , CAD, data processing, data fusion, EEG, ECG, BCG 
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Anotace 

Disertační práce se zaměřuje na zvýšení efektivity zpracování a klasifikace signálových dat 

pomocí konvolučních neuronových sítí. Téma je rozděleno do tří významných podoblastí: 

zpracování dat, fúze dat a analýza architektury modelu. Práce zahrnuje literaturu o zpracov­

ání a klasifikaci signálů, která vede ke špičkovým přístupům a jejich nedostatkům v rychlosti 

výpočtů. 

Hlavními stavebními bloky navrhované práce jsou volně dostupné datové soubory z 

několika odvětví zdravotnictví, jejich předzpracování, fúze a klasifikace. Ve všech těchto 

oblastech práce naplňuje poznatky, porovnávaje se současnými metodikami v literatuře 

a vysvětluje rozdíly. S náležitou přesností pro aplikaci navrhovaný přístup ke klasifikaci 

signálů překonává složitost stávajících prací. 

Keywords: 

C N N , CAD, zpracování dat, fúze dat, EEG, ECG, BCG 
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Introduction 

Machine learning research has gained significant popularity in recent years due to ad­

vancements in technology and performance. These improvements have enabled solving 

increasingly complex issues that were previously impossible to calculate within a reasonable 

timeframe. This has led to the development of more sophisticated models and systems for 

classifying and detecting problems. One of the most notable areas where machine learning 

has significantly impacted image processing. With the use of two-dimensional equipment, 

three-dimensional objects can now be scanned, and their diversity in terms of position, size, 

color, shape, and other features can be identified and solved. 

Despite the technological advances in machine learning, there are still areas where it 

is appropriate to explore the possibilities of system optimization for lower computational 

demands without compromising performance. One such area is the classification of vital 

healthcare data. Medical health analysis devices typically measure data in vectors or sets 

of vectors, which are then sampled to an appropriate form. Based on this data, machine 

learning algorithms can be used as decision support systems to detect health issues. The key 

benefit of such systems is that they allow for continuous monitoring of patient conditions, 

saving time for medical professionals in hospitals or carers at home. Early signaling is critical 

in the event of therapy, and such systems are referred to as computer aided detection (CAD). 

CAD systems offer several benefits in the field of healthcare. In addition to saving time 

for medical professionals, CAD systems can reduce the likelihood of human error, especially 

when detecting complex patterns. These systems can also detect health issues that might 

not be immediately apparent to medical professionals, allowing for early intervention and 

potentially better patient outcomes. However, CAD systems are not without limitations. 

For example, they may not be able to detect certain health issues, and false positives can 
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sometimes occur. Therefore, CAD systems should be used as decision support tools and 

not as a substitute for medical professionals. 

During the research, it is essential to evaluate not only the quality of the models but 

also their deployment possibilities. This is particularly important in the healthcare industry 

where the availability and application of modern approaches are necessary, even in the 

absence of cutting-edge hardware. The healthcare industry is constantly evolving, with 

the adoption of modern technologies playing a significant role in its progress. However, 

the high cost of modern hardware can pose significant financial constraints, making it 

challenging to provide quality healthcare services. Therefore, exploring alternative methods 

to improve healthcare services and make them more accessible to everyone is necessary. 

Hence, exploring alternative methods to provide quality healthcare services is necessary. 

One of the popular machine learning techniques used in various industries is convolutional 

neural network (CNN). This technique was designed initially for image classification and 

detection but has since been applied in other fields. C N N is a feed-forward neural network 

extended by convolution operations to improve classification performance. To improve the 

efficiency of the C N N architecture, this thesis focuses on a literature review of existing ap­

proaches and identifies potential improvements in computational complexity. Additionally, 

experiments will be conducted to analyze the efficiency increase. 

The thesis presents a methodology based on long-term research focused on various 

health issue databases. The first approach was made using electrocardiogram (ECG) databases 

and was published in articles [32, 33]. The subsequent research involved working with 

balistocardiography (BCG) data and was presented in papers [21-23]. The last part of the 

study was focused on seizure detection from electroencephalogram (EEG) signals and is 

presented in article [24]. Experiments were performed in reverse on datasets from older 

publications to confirm the evaluations from articles. 

The proposed solution's flowchart is illustrated in Figure 1.1. The first step involves 

loading the data from databases that are briefed in subsection 3.3 to conduct experiments on 

health issues described in subsection 3.2. The following part involves preparing the raw data 

into a suitable form, which is discussed in section 3.4, with the results presented in section 4.1. 

In the case of multi-channel data, channel fusion is provided, and the motivation for the 

proposed solution is discussed in section 3.5, with experiments presented in section 4.2. The 

third part of the system deals with frequency analysis, with theory and hypothesis presented 
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Figure 1.1: Flowchart diagram of the system [created by the author] 
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in section 3.6, and evaluation in section 4.3, together with an analysis of the architecture. 

The training and testing tasks were carried out with two C N N architectures using common 

experiment settings from section 3.1. Since the thesis is divided into numerous submodules, 

each portion's discussion is presented with the results in the same section to improve text 

readability and comprehension. 
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2 

The work's objectives 

This dissertation aims to suggest improving the computer processing of signal data for proper 

categorization in informatics. These enhancements will be evaluated and illustrated using 

signal data from a hospital setting. One of the most important things is to thoroughly analyze 

the raw data to extract many crucial components for further target selection. Suitable C N N 

designs for data classification will be explored, which have lately seen a surge in popularity 

and are utilized to reduce several typical procedures before data classification itself [5, 32]. 

The suggested technique will establish an ideal classifier for accuracy and reliability and 

decrease the computing complexity and time necessary to acquire the classification result. 

The dissertation's main goal is to increase the efficiency of the classification system, 

which is solved by the following objectives: 

1. Data processing 

CAD systems are often constructed in standard flowchart ways with preprocessing, 

feature extraction, feature selection, and classification operations. The goal is to 

investigate the sections in conjunction with the C N N classifier for system reduction 

by reducing computing time or deleting some processes entirely. 

2. Data fusion 

Because healthcare involves measuring additional devices or channels, the data fusion 

procedure was explored to reduce complexity and reliance on utilized channels. With 

the correct parameters, network architecture may be simplified by one dimension 

without sacrificing performance to detect health risks. 

3. CNN analysis 

Model input resolution does not have to be of the best quality regarding picture 

categorization. The C N N model must discover the major patterns that distinguish 
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classes. It led to frequency reduction experiments and an architectural evaluation of 

all healthcare problems by selecting a suitable collection of blocks and filters based 

on the input shape. 
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Methodology 

3.1 Experiments setup and CNN architectures 

The work includes several experiments involving various components of the classification 

system. Despite this diversity the training and testing processes follow some of the conven­

tional practices commonly used in literature. Furthermore, the experiments employ two 

design C N N architectures developed in the research. 

3.1.1 Training and testing 

The dataset is first divided using a stratified ten-fold cross-validation strategy [28] to assess 

the model's performance. This strategy aims to ensure that the distribution of classes in each 

fold is representative of the entire dataset. This method divides the data into ten equally 

large groups, each with a similar proportion of samples for each class. 

Nine of the ten groups are used for training and testing to evaluate the model's perfor­

mance, while the remaining group is held out for validation. Specifically, the training and 

testing sets are split into 70% and 30% parts, respectively. The training part of the system 

depends on two main hyperparameters: the number of epochs and the learning rate. 

One epoch passes each training sample, followed by validation on testing samples. A n 

epoch is a single pass through the entire training dataset. During training, the model learns 

to adjust its weights to minimize the difference between its predictions and the true labels of 

the training data. The validation step evaluates the model's performance on the testing data 

to detect overfitting, where the model fits the training data too well and cannot generalize 

to new data. 
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Figure 3.1: Data division process [created by the author] 

The learning rate is a crucial hyperparameter determining the weight changes' size 

during each model update. A low learning rate means the model will take longer to converge 

to the optimal weights, while a high learning rate can result in large weight changes that 

overshoot the optimal values. Therefore, the learning rate value does not have to be constant 

for the entire training process. In this study, we set the learning rate parameter to 1 • 10~3 for 

the first 25 epochs, with a dropping factor that varies depending on the number of epochs. 

This strategy provides balanced learning of the dataset where the main patterns are 

recognized in the first part of epochs, and more detailed differences of patterns are learned 

in the later epochs. The initial learning rate was chosen to be low to ensure that the model's 

weights are initialized close to their optimal values. At the same time, the dropping factor 

allows for gradual increases in the learning rate to promote more efficient learning. This 

approach enables us to assess the model's performance systematically and reliably, which is 

critical for developing accurate and generalizable machine learning models. 

Table 3.1 describes the hyperparameters used in the model training process. One of 

the key strategies used is the step decay approach, which involves decreasing the learning 

rate parameter according to a predetermined schedule. Specifically, the learning rate is 

decreased every 25 epochs by a value of 2 • 10 _ 1 from its initial value of 1 • 10~3, using the 

Adam optimizer. This strategy is based on the appropriate gradient descent techniques 
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Table 3.1: Hyperparameters used for training the model [created by the author] 

Input Size Optimizer 
Learning 

rate 
Learning rate 

schedule 
Learning 
rate drop 

Mini batch 
size Epochs 

499x1 Adam le-3 Step decay 2e-l 32 100 

[75]. During the initial stages of the training process, the model focuses on learning the 

main pattern differences between the different classes. This is followed by fine-tuning the 

weights and biases of the model to improve its accuracy (Acc) and performance. Another 

important parameter is the batch size, which determines the number of inputs the model 

processes before it is updated. In this case, the batch size has been set to 32, considered an 

appropriate value for this model type. This ensures the model can process sufficient data 

without being overwhelmed or experiencing memory issues. 

The evaluation of classification results to assess the performance of a model is made by 

confusion matrix, a useful tool for this purpose that allows tabulating the number of true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN). These metrics 

are shown in Table 3.2. TP and TN correspond to the correct classification of normal and 

abnormal signals, respectively. FP and F N represent the wrong decisions made by the model. 

When dealing with more than two classes, the normal data encompasses all signals 

without health problems, and the abnormal data refers to the rest of the dataset. In binary 

classification, the Acc of the test is a statistical measure of how well it can detect or eliminate 

a condition. In other words, Acc represents the fraction of correct predictions, including 

true positives and negatives, among all instances evaluated. 

The positive predicted value (PPV) is a proportion of cases with positive test results that 

are already patients. This measure provides information about the probability of a true 

positive result when the test is positive, sensitivity (Sen) and specificity (Spec) are two other 

important metrics used to evaluate the Acc of a test that reports the presence or absence of a 

disease. The criteria for a positive result are met when an individual is considered "positive", 

while a "negative" result means that the criteria are not met. Sen, also known as the true 

positive rate, represents the chance of a positive test result when an individual is positive. 

On the other hand, Spec, also known as the true negative rate, refers to the likelihood of a 

negative test result when an individual is negative. 
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Table 3.2: Confusion matrix description [created by the author] 

O/P Normal Abnormal Acc (%) PPV (%) Sen (%) Spec (%) 

Normal 
Ubnormal 

TP 
FP 

FN 
TN 

TP+TN TP TP TN Normal 
Ubnormal 

TP 
FP 

FN 
TN 

TP+TN+FP+FN TP+TN TP+FP TN TP+FN TN TN+FP TP 
Normal 

Ubnormal 
TP 
FP 

FN 
TN 

TP+TN+FP+FN TN+FN TN+FP TP+FN 

3.1.2 Architecture 1 

C N N consists mainly of convolutional layers and max-pooling layers. The network's order 

and number of layers can vary and are characterized by their kernel size, which describes 

the filter's dimensions, the number of filters, and the stride of search. 

In the model, the input layer has a resolution of 499x1, and the first layer after it is a 

convolutional layer with 12 filters and a kernel size of 19. This means the layer performs a 

convolution operation on the input image using 12 filters of size 19x1. The output of this 

layer is a feature map, which is then passed through a max-pooling layer with a kernel size 

of 2. Each pair of values in the feature map is compared in this layer, and the larger value is 

retained for the next layer. This effectively halves the number of neurons in the feature map, 

and the number of filters remains the same as in the previous layer. 

This convolutional and max-pooling layer sequence is repeated twice in the model. In 

the second convolutional layer, the kernel size is set to 19, but only 11 filters are used. In 

the third convolutional layer, 12 filters are used with a kernel size of 11. In both cases, the 

max-pooling layer has the same kernel size and stride as in the first layer. The stride of 

convolutional layers is set to 1, and the stride of max-pooling layers is set to 2. After these 

six layers, the number of output neurons is 550, consisting of 11 vectors with a size of 50. 

The next layer of the architecture is fully connected. In this layer, each neuron is con­

nected to every neuron in the previous. Specifically, there are 11 neurons in this layer. The 

final layer is also fully connected, with four outputs representing the four classes. The 

whole model is summarized in Table 3.3 and Figure 3.2 and has been created by several 

experiments and analyses of architecture properties. 

Moreover, dropout layers and rectifier linear unit (ReLU) layers address the problem 

of over-fitting and optimization [83]. The ReLU is an activation function used in all con­

volutional layers, which introduces non-linearity into the network. The dropout layer is 

implemented after the first fully connected layer, with a value of 0.3, which means that 30% 

of the neurons in that layer are randomly dropped out during training. 
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Figure 3.2: The architecture of the proposed C N N model 1 [created by the author] 

Table 3.3: The details of C N N structure 1 with n classes depending on classification task 
[created by the author] 

Layers Type No. of output neurons Kernel size Stride 

0-1 convolution 481x11 19 1 
1-2 max-pooling 240x11 2 2 
2-3 convolution 220x12 19 1 
3-4 max-pooling 110x12 2 2 
4-5 convolution 101x11 11 1 
5-6 max-pooling 50x11 2 2 
6-7 fully connected 12 - -

7-8 fully connected n - -

Additionally, normalization is necessary to obtain suitable results in the network. Our 

model uses a normalized exponential function called the softmax function as the final layer's 

activation function. The softmax function ensures that the output values of the network lie 

between 0 and 1 and sum up to 1, making it easier to interpret the output as probabilities 

belonging to different classes. 

3.1.3 Architecture 2 

The second C N N architecture underwent modifications due to a different input shape, 

as it was designed in a 2-dimensional form in the last paper about disordered breathing 
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Figure 3.3: The architecture of the proposed C N N model 2 [created by the author] 

from BCG [23]. The model was subsequently modified to the proper form to evaluate vector 

inputs. The architecture presented in this paper is shown in Figure 3.3 and table 3.4. 

o reduce the complexity of the architecture, the input to the network is represented by 

downsampled features from 450 to 200. The first four layers constitute two combinations of 

convolutional and max-pooling layers. All max-pooling layers have a kernel with a resolution 

of 2. Due to the resolution of features, the architecture continues with a convolutional layer 

of kernel size ten without a max-pooling operation. After that, two fully-connected layers, 

which analyze features from previous layers, are implemented with 30 and 25 neurons, 

respectively. 

The last fully-connected layer with n neurons corresponding to classes predicts the result 

by a softmax activation function. This function normalizes the result of the architecture 

to a suitable form on the value between 0 and 1 with a threshold of 0.5 for prediction. 

Moreover, mechanisms for over-fitting prevention, which have an important impact on the 

model training process [83], are applied too. Specifically, there are ReLU layers between 

all convolution and max-pooling layers and a dropout layer with a drop parameter of 0.3 

between the first and second fully-connected layers. 
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Table 3.4: The details of C N N structure 2 with n classes depending on classification task 
[created by the author] 

Layers Type No. of output neurons Kernel size Stride 

0-1 convolution 186x30 15 1 
1-2 max-pooling 93x30 2 2 
2-3 convolution 84x25 10 1 
3-4 max-pooling 42x25 2 2 
4-5 convolution 33x20 10 1 
5-6 fully connected 30 - -

6-7 fully connected 25 - -

7-8 fully connected n - -

3.2 Health problematics 

The research deals with vector data in the health care task and works with various datasets 

reflecting various health conditions. The following subsections describe what and how the 

devices measured data and explain what each aberrant class represents in medicine. 

3.2.1 Electrocardiography 

The ECG operates by measuring the projection of the heart polarization vector [79]. This 

vector is measured by electrodes placed on the human body in the correct position, de­

pending on the number of electrodes used. While it is possible to use only two electrodes, 

using three electrodes provides a better signal-to-noise ratio. More than three are used for 

measuring different projections of the polarization vector [95]. This measurement is vital in 

the diagnosis and monitoring of various heart conditions. 

Exploration of cardiac activity is based on the search for unambiguous patterns that 

describe beat-to-beat processes. These processes are called T wave, P wave, and QRS 

complex [61]. P and T waves represent the depolarization and repolarization of the atria. 

The P wave occurs before the QRS complex, while the T wave occurs after. On the other 

hand, the QRS complex represents the depolarization of the heart chambers. QRS complex 

detection is one of the basic approaches used for detecting abnormal heart behaviour, and 

it is used extensively in ECG analysis [99]. 

Arrhythmias and flutters are common heart diseases characterized by abnormal heart 

rhythms. The prevalence of these conditions is high, and there is a constant increase in the 

number of cases detected in the population. These diseases fall under the category of heart 
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arrhythmias, which affect a higher percentage of males in the population, and the elderly 

population is predominantly affected [20, 25, 86]. 

The most occurring type of arrhythmia is called atrial fibrillation (A f ib) manifested by the 

absence of repeating P waves [48] and uncoordinated atrial activation due to the behaving 

of the atrioventicular node (AVN) [53].The AVN reacts to signals with a precise intensity, but 

in the case of A f i b , this intensity is disrupted, leading to irregular rhythms. Another atrial 

illness is atrial flutter (Afl) which does not influence AVN. A f l occurs in a macro reentrant 

circuit and has a typical underlying electrophysiological mechanism [73]. Although there is 

evidence of interdependence between atrial fibrillation and atrial flutte A f i b and A f l [89, 90], 

but A f l may have an impact on morbidity and mortality despite the non-attendance of A f i b . 

The ventricular fibrillation (Vf ib) is an arrhythmia established in the specialized conduc­

tion system or ventricular muscle. It is characterized by the absence of necessary peaks in 

the sinus process of the measured signal. These peaks represent the correct electromagnetic 

pulse of the heart [66]. 

3.2.2 Balistocardiography 

BCG is a non-invasive method of sensing body micro-movements evoked by heart activity 

and blood flow in large arteries. Since the first research of ballistic displacements of the 

body [37], there has been considerable progress in BCG and ballistocardiography sensors 

despite a lack of interest in the past because of insufficient knowledge of physiology and 

physics behind the method [46]. However, recent technological advances, including the 

development of highly sensitive sensors and fast computers for real-time calculations, have 

renewed interest in this field of science. Nowadays, physicians mostly work with ECG signals 

to disclose heart-related health problems of patients [30]. However, it is possible to detect 

similar and even more information by BCG signals, and unlike the ECG, measurement 

by BCG is unobtrusive. 

Breathing disorders are a prevalent sleep-related issue that affects the entire population 

regardless of age or gender. The most significant group affected by these disorders are those 

who suffer from obesity or are overweight. The primary manifestation of these disorders 

is the collapse of the pharyngeal airway during sleep, which prevents regular breathing. 

As a result, patients suffer from somnolence, poor daytime cognitive performance, and 

cardiovascular morbidity and mortality [41]. 
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There are three types of disordered breathing: sleep apnea, central sleep apnea, and 

nocturnal hypoventilation. Sleep apnea is caused by an obstruction in the upper respiratory 

tract, but the breathing effort is maintained. On the other hand, central sleep apnea is 

caused by a central nervous system issue and has no breathing effort. The difference lies 

in their causation [84]. Nocturnal hypoventilation, the third type of breathing disorder, is 

characterized by shallow and slowed breathing in which the airflow is insufficient for the 

body's requirements [67]. 

3.2.3 Electroencephalography 

EEG is a medical diagnostic technique that enables the detection and recording of the elec­

trical activity in the brain using non-invasive or invasive methods [15]. Non-invasive EEG 

testing is typically performed by attaching electrodes to the scalp to capture the brain's spon­

taneous activity. The recorded signals are then analyzed to diagnose various neurological 

and psychiatric conditions. Invasive EEG testing is performed by placing electrodes directly 

on the brain's surface or within the brain tissue. This method is used when non-invasive 

testing fails to provide sufficient diagnostic information. The information obtained from 

EEG testing can be used to operate various medical devices and equipment, including 

brain-computer interfaces. 

Evoked potentials are the brain's responses to external stimuli detected using EEG. So­

matosensory potentials are elicited by stimulating peripheral nerves in the upper and lower 

limbs. Auditory potentials are generated in response to brief noises, while visual potentials 

are elicited using a reverse checkerboard pattern. The electrical signals recorded from the 

brain in response to these stimuli are analyzed to assess the integrity of the brain's sensory 

and motor pathways. The potential to diagnose several neurological conditions, such as 

multiple sclerosis, optic neuritis, and brainstem lesions. 

Epilepsy is a chronic neurological disorder characterized by epileptic seizures [85]. These 

seizures are sudden episodes of abnormal brain activity that manifest as temporary changes 

in consciousness, perception, behavior, movement, or sensation. Epilepsy is a common 

disorder that affects individuals of all ages, genders, and ethnicities worldwide. The exact 

cause of epilepsy is unknown in most cases, but it may result from brain injuries, infections, 

genetic factors, or developmental disorders. The diagnosis of epilepsy is primarily based on 

clinical history, EEG testing, and imaging studies. The treatment of epilepsy involves the 
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use of antiepileptic drugs, surgery, or a combination of both. The goal of treatment is to 

reduce or eliminate the occurrence of seizures and improve the quality of life of the affected 

individuals [97]. 

3.3 Data description 

As specified in the documentation, the databases chosen for this study were evaluated 

using several parameters, including frequency, number of channels, device type, and data 

labeling. As a result, various source code implementations were developed to convert the 

data into the necessary format for analysis. The subsequent subsections provide a detailed 

description of each of these settings and the data they entail. 

3.3.1 Electrocardiography 

The ECG samples used in this work were collected from the public PhysioBank database [36], 

concretely three different databases to obtain the necessary data for the experiments. The 

first database, known as the MIT-BIH malignant ventricular arrhythmia database (VFDB) 

provided data on V f i b , the MIT-BIH atrial fibrillation database (AFDB) for both A f i b and A f l , 

and the MIT-BIH arrhythmia database (MITDB) contains data on A f i b , A f l , V f i b , and normal 

samples. A detailed summary of the ECG databases and the number of samples obtained 

from each database are provided in Table 3.5. 

It is worth noting that these databases are raw data containing no pre-processing or 

normalization steps. This lack of preprocessing and normalization makes these datasets 

ideal for our research, as it allows us to analyze and compare the performance of different 

models under the same conditions. Additionally, the PhysioBank database is frequently used 

in healthcare research, ensuring that our results are directly comparable to other studies 

using similar data. The AFDB database includes 25 ECG, each lasting 10 hours, of humans 

withA f i b , mostly paroxysmal. The MITDB contains 48 half-hour excerpts of two-channel am­

bulatory ECG recordings, which cover all the categories mentioned earlier. Finally, the VFDB 

includes 22 half-hours ECG recordings of subjects who experienced episodes of sustained 

V f i b . In sum, 25287 inputs to the C N N model with a two-second duration were prepared for 

experiments. These inputs were created without data overlapping so no section was used 

more than once. 
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Figure 3.4: An illustration of ECG segments of normal, A f i b , A f l , and V f i b patterns [32] 

Table 3.5: Number of samples overview used from PhysioBank databases for each class [32] 

Type No. of samples Used databases 

N r 3,567 MITDB 
19,276 AFDB, MITDB 

A / / 1,518 AFDB, MITDB 
923 MITDB, VFDB 

To better understand the different categories of ECG data obtained from the PhysioBank 

database, we have included sample examples of all four categories in Figure 3.4. The fig­

ure shows representative ECG waveforms from each category, demonstrating the unique 

features of each category. 

3.3.2 Balistocardiography 

The BCG samples used in this work were collected from the public Mendeley database 

[82] and measured in the laboratory of the University of Hradec Kralove. The dataset was 

obtained from twenty tested individuals, consisting of 11 men aged 23 to 33 years and 9 

women aged 24 to 65 years. During the measurements, the subjects were lying on a bed with 
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Cartan curvatures 

Figure 3.5: BCG Measured force signals (x: time/[ms], y : A U , standardized raw data) [21] 

sensors placed on the bed legs, as illustrated in Fig 3.5. Table 3.6 provides clear information 

on the preferences of the 20 individuals. The schedule of measuring was conducted in 

two types, VI and V2, as described in Table 3.7. Each breath-holding was performed for 

approximately 30 seconds, and some samples were ignored due to classification ambiguity. 

Measurement of a force plate in the form of a bed is used. The force plate had four 

tensometers embedded in its four corners. Each tensometer could measure the force in 

three orthogonal directions with a precision of up to 0.1 N . Therefore, it is feasible to obtain 

12 force signals. The ECG signal is measured simultaneously with the force measurement. 

Al l the signals are registered using a 24-bit A D converter with a sampling rate of 1 kHz. 

The data are then stored on a computer's hard drive. This yielded 13 time-series, with 12 

force signal time-series representing a coordinate projection of a 12-dimensional curve 

parameterized by time, as shown in Figure 3.6 with an example of three signals. 

Data annotation is made manually based on measuring observation. Every measure 

is represented by a matrix, where rows are individual samples every 1 millisecond and 14 

columns are one value of data loading (0 correct, 1 incorrect), twelve force signals, and 

ECG value. Unlike the other databases, feature extraction is done by the Cartan Curvature 

method shown in Figure 3.7, where at 300 ms, R peak trigger is shown and from 450 ms to 

800 ms is a range of important patterns. 

The most important events in a typical cardiac cycle, as described in [16], occur between 

approximately 150 and 500,ms after the R-peak. The aortic valve opens at approximately 

80 ms, and closes at approximately 300 ms after the R peak. The pulse wave velocity through 

the aorta is approximately 30 m/s. The important reflections of the pulse wave emerge 

at the aortic arch (in the starting part of the aorta, right next to the aortic valve) and at 
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Figure 3.6: BCG experiment measuring [21] 

Figure 3.7: Example of Cartan curvature with important section [22] 

the bifurcation in the abdomen (ending part of the aorta). The distance from the aortic 

valve to the bifurcation is approximately 60 cm. This implies that if the pulse propagates 

immediately after the aortic valve opening, it arrives at the bifurcation in approximately 

20 ms. However, the rapid ejection phase of the cardiac cycle takes approximately 100 ms, 

and thus, the region between 150-500 ms after the R peak is sufficient to record all the 

important reflections of pulse wave related to changes in blood pressure that is relative to 

changes in breathing. 

3.3.3 Electroencephalography 

The first dataset in EEG problematic is the Bonn University EEG database, which was pre­

sented by Andrzejak et al. [ 11 ], a valuable resource for researchers in the field. The dataset 
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Table 3.6: List of individuals with their preferences [22] 

No. of subject Sex Age Schedule No. of subject Sex Age Schedule 
1 male 26 VI 11 female 62 VI 
2 male 26 V2 12 female 35 V2 
3 male 23 VI 13 female 65 VI 
4 male 28 V2 14 female 35 V2 
5 male 28 V2 15 female 35 V2 
6 male 28 VI 16 female 35 V2 
7 female 24 VI 17 female 28 VI 
8 male 30 VI 18 male 30 V2 
9 female 36 VI 19 male 33 V2 
10 male 30 V2 20 male 33 V2 

Table 3.7: Schedules of measuring [22] 

VI schedule V2 schedule 
Time (s) Event Time (s) Event 
0 start of measuring on back 0 start of measuring on back 
60 breath-hold during inhalation 60 breath-hold during inhalation 
120 breath-hold during inhalation 150 breath-hold during exhalation 
180 breath-hold during exhalation 240 breath-hold during inhalation 
240 breath-hold during exhalation 330 breath-hold during exhalation 
300 legs underlay for position change 420 end of measuring 
420 turning on the side 
480 breath-hold during inhalation 
540 breath-hold during inhalation 
600 breath-hold during exhalation 
660 breath-hold during exhalation 
720 end of measuring 

comprises five sub-sets that are divided into three classes based on the type of EEG activity 

recorded. The first two sub-sets, A and B, contain EEG recordings from five healthy subjects, 

with the subjects' eyes open and closed, respectively. These recordings provide a baseline for 

normal EEG activity. The third and fourth sub-sets, C and D, contain EEG recordings from 

patients with pre-ictal activity, i.e., EEG changes preceding a seizure. These recordings are 

useful for identifying early warning signs of seizures. The fifth and final sub-set, E, comprises 

EEG records of a patient's seizure activity (ictal). This sub-set is particularly valuable for 

studying the characteristics of seizures and for developing algorithms to detect and predict 

seizures. Al l the data in the Bonn University EEG database was acquired as 23.6-second 

samples with a sampling rate of 173.61 Hz. Each sample contains 4097 points, providing 

high-resolution data for analysis 
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The CHB-MIT Scalp EEG database, which is the second publicly available dataset, was 

collected at the Children's Hospital Boston [36]. The dataset consists of recordings obtained 

from 22 subjects over an extended period of time, including both seizure and non-seizure 

segments. Unlike the Bonn dataset, which consists of 1-dimensional vectors, the CHB-MIT 

dataset contains records with 18 to 23 channels and a 256 Hz sampling rate. A channel 

example is defined in Figure 3.8, with a marking of the seizure part. The dataset is an 

essential resource for researchers and practitioners who aim to study epilepsy and seizures. 

It provides a comprehensive view of EEG signals recorded from multiple channels, allowing 

for detailed analysis and interpretation of the data. The availability of this dataset has greatly 

facilitated research efforts in the field of epilepsy, and its continued use and development 

are expected to yield further insights into the nature of this condition. 

As a result of prolonged monitoring, the ictal and interictal segments exhibit a marked 

imbalance, with seizures accounting for less than 2% of the total duration. In an effort to 

address this issue, the researchers drew inspiration from the work of Wang et al. [92] and 

proposed a method of balancing the data. To accomplish this, they employed a technique 

that involved the use of 2-second sliding windows with a 1-second overlap for each ictal 

record. However, since not every interictal sample could be used from the records, a random 

selection process was employed to match the number of ictal samples. This allowed for a 

more balanced dataset and improved the Acc of the analysis. 

Expanding on this, it can be said that achieving a balanced dataset is crucial for the 

accurate analysis of data, particularly in the field of epilepsy research. The proposed ap­

proach not only provides a means of balancing the data but also allows for a more efficient 

and effective analysis of the recorded data. By utilizing 2-second sliding windows with 

1-second overlap, the research was able to better capture the relevant information within 

the ictal segments. This, in turn, allowed for a more detailed and accurate analysis of the 

data. Furthermore, the use of random selection in the interictal segments ensures that the 

resulting dataset is representative of the overall data, and minimizes the risk of bias. 

3.4 Data processing 

The first step in all classification systems is data analysis and preparation. This process 

is essential in providing accurate data processing which leads to improved performance 
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Figure 3.8: Example of EEG with seizure annotation [24] 

quality. In this context, the research of data processing was executed on ECG signals to 

classify heart disease and was published in [32,33]. To achieve reliable results, it is necessary 

to understand the characteristics of the input data, including the possible sources of noise 

and how to preprocess it. Therefore, the chapter begins with a description of potential 

health problems related to ECG data. This information will provide a better understanding 

of the importance of accurate data processing in the diagnosis of heart disease. 

The clinical diagnosis of arrhythmias includes short-term or long-term measuring of 

heart operation, which is mainly done by ECG device. The ECG works on the principle of 

measuring the projection of the heart polarization vector [79]. It is measured by electrodes 

placed on the human body in the correct position depending on the number of electrodes. 

It is possible to use only two electrodes but three electrodes have a better signal-to-noise 

ratio. Additionally, more than three electrodes are used for the measurement of different 

projections of that polarization vector [95]. The ECG device is a non-invasive tool that 

measures the electrical activity of the heart, which provides valuable information about the 

heart's condition. However, the raw signal may contain noise and artifacts that affect the 

Acc of the diagnosis. Therefore, signal preprocessing is an essential step in the data analysis 

and preparation phase. 

For visual detection options of these patterns, it needs to have a signal-transforming 

process from electrodes to the output monitor. However, data can be distorted by noise 

during their transmission which can lead to loss of necessary information. Moreover, due to 

the connection between A f i b and A f l , the similarity of some symptoms, unexpected artifacts, 

or just faint manifestation of syndromes, can be difficult to recognize each rhythm type or 

overlook some important sections. An automated CAD is a feasible technique for eliminating 
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human factors or distorted signals. 

To ensure the Acc of the diagnosis, it is crucial to analyze the input data thoroughly. 

A literature review and analysis of possible improvements in data processing tasks are 

necessary. The purpose of a literature review is to identify the strengths and weaknesses 

of previous studies related to ECG signal processing. This information helps to identify 

research gaps and potential areas for improvement. 

CAD systems are commonly implemented using traditional flowchart approaches, which 

involve several tasks such as preprocessing, feature extraction, feature selection, and classifi­

cation [39]. These tasks are performed to analyze ECG signals in order to detect various car­

diac abnormalities. Preprocessing methods like empirical mode decomposition (EMD) [8], 

discrete wavelet transform (DWT) [69], Daubechies-6 [4, 6], Z-score normalization [5, 6], and 

others are commonly used to prepare the ECG signals for feature extraction. For instance, 

EMD and DWT, can be used in combination with continuous wavelet transform (CWT) [50] 

or wavelet packet decomposition [19] to extract features based on time-frequency. Further­

more, nonlinear features like recurrence quantification analysis (RQA) can also be used for 

feature extraction [26]. 

In the feature selection task, statistical methods such as the chi-square test [55], analysis 

of variance (ANOVA) [3], Fisher score [28], and so on are frequently employed. These meth­

ods are used to select relevant features from the extracted features for further analysis. In 

the classification task, different techniques such as decision tree [3, 26], support vector 

machine (SVM) [40, 87], k-nearest neighbor (KNN) [3, 62], neural network (NN) [63, 68] etc., 

are used to predict the ECG signals into different classes. However, completing all of these 

tasks can be time-consuming and complex, requiring extensive expert knowledge of internal 

functionality. 

Acharya et al. [3, 5, 6], developed various CAD systems for detecting heart diseases 

from ECG signals. In their first work [3], the researchers focused on the characterization 

of arrhythmias using nonlinear features. They proposed a system that employs thirteen 

different types of nonlinear features that are ranked by ANOVA and classified with the K N N 

and decision tree (DT) classifiers. The innovation of this paper, compared to previous 

works, is that the new approach includes only simple standardization with classifiers, so 

preprocessing and feature extraction are not necessary to compute before arrhythmia 

recognition. This provides a more practical innovation for CAD. 
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Nevertheless, they employed some techniques that do not require strict adherence to 

standardized procedures. In the following paper [6], the researchers presented an automated 

detection system for arrhythmias using a C N N . Al l ECG signals are preprocessed with 

Daubechies wavelet 6 and classified into two different architectures based on segment 

intervals. This approach achieved an Acc of 98.52%, a Sen of 98.02%, and a Spec of 99.01%. 

Furthermore, Acharya et al. developed a different C N N model for identifying shockable 

and non-shockable life-threatening ventricular arrhythmias [5]. They preprocessed ECG 

segments in the same manner as in the previous article, which yielded Acc, Sen, and Spec 

of 93.18%, 95.32%, and 91.04%, respectively. This paper provides evidence of the effective­

ness of using C N N for detecting life-threatening ventricular arrhythmias, where the C N N 

eliminates feature extraction separately and learns the features directly from the input data, 

making it easier and faster to analyze the input [54]. These articles, on the other hand, em­

ploy Z-score normalization, computed by mean and standard deviation. These parameters 

must be calculated from the dataset, implying that the C N N model depends on the data 

used. 

Prior to classification by C N N , CWT was used in the first research [33] to divide ECG 

signals into wavelets by: 

CWT{t) = mm(0.1,^2
Ts{t)), (3.1) 

where * denotes a Morse wavelet with a time bandwidth of T and symmetry 5 in the 

extracting sample's time t. Following a closer examination of the extraction results, T was 

set to value one and 5 to value 2. The choice of T and 5 values is crucial for obtaining a 

good feature extraction output. These values determine the wavelet's scale and frequency, 

respectively, and they need to be chosen carefully based on the properties of the analyzed 

image. Besides that, every parameter after CWT with a greater value than 0.1 was set on 

itself for optimal extraction of necessary features. The power of two was used to ensure only 

positive numbers and easier conversion to a range of 0-255, representing the image's colour 

components. 

To visually represent our feature extraction process, grayscale versions of the extracted 

features for each class are shown in Figure 3.9. These examples serve to illustrate the effec­

tiveness of the extraction method and demonstrate the distinct features that are captured 

for each class. By carefully selecting and fine-tuning our extraction parameters, the system 

ensured that the extracted features were informative and accurate, which is essential for 
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Figure 3.9: An illustration of CWT of normal, A f i b , A f l , and V f i b patterns [33] 

further analysis or modeling work. 

In contrast with traditional machine learning techniques, this study presented a 6-layer 

deep C N N model to 4 classes (normal, A f i b , A f l and V f i b ) recognition of ECG rhythms. The 

proposed model needs no user interference and R-peak detection is not required. Also, 

three MIT-BIH PhysioBank databases were used to train and test the C N N model. C N N 

model can be implemented in the healthcare industries as an added tool to assist physicians 

in providing a decision support system on the diagnosis. The presented model can also be 

used in the home environment for watching elderly patients by their family members for 

analysis of heart problems. 

In these approaches, where some of the processes from traditional system flowcharts 

are omitted, there is very important to consider some validation threats. From an external 

perspective, it is necessary to normalize inputs into the same form. Typical normalization 

of data is to watch on a different frequency of measuring. If the data are not normalized, it 

can happen that input into the system contains shortage or surplus information, and the 

classification process is not valid. Another problematic part is that our approach works with 

lead II ECG signals from 12 possible leads for measuring. Every single lead could have a 
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different projection on the polarization vector, including different views on heart activity. 

In this way, using more than one lead can cause a malfunction of prediction. Internal 

perspective comprises operation on data before classification itself. Ignorance of input and 

use of preprocessing or feature extraction methods can lead to loss of important information 

on the account right classification. Another important aspect is the design of neural network 

architecture. Often the problem is a too-robust solution where a network includes more 

neurons than is needed for sufficient functionality. At first sight, it may seem like the problem 

of computational complexity only, but actually, it can lead to the dysfunction of the whole 

system. If the network contains too many neurons, many inputs can be classified by a single 

branch regardless of others; in such a context, clarification can provide great Acc, but the 

prediction on the total new dataset could have insufficient results. 

Since two of the databases are sampled at a frequency of 250Hz, and the last one is 

sampled at a frequency of 360Hz, the length of the input vector to CWT was used as 500 

and 720, respectively, representing an ECG signal with a 2-second duration. Output 2-

dimensional matrix was resized to a width and height of 50 and 30 pixels, respectively, 

which guarantees optimal input to C N N without previous up-sampling, down-sampling, or 

normalization of the signal. 

For a summary of the methods used for data processing, some articles are based on 

R-peak detection [3, 26, 40, 63, 71, 101]. However, needs long segments for a finding of 

the R-peak or QRS complex which makes it not possible to real-time classification. Above 

that, denoising methods are used for smoothing the signal [3, 5, 26, 40, 63, 98]. There are 

approaches where noise can have a big impact on the final system result. In the case of 

C N N , raw data can have worse Acc, but still within acceptable limits, and sometimes, if data 

are different, the model's performance can be almost the same. The next problematic issue 

is separate feature extraction, feature ranking, and classification [3, 26, 40, 63, 71, 78,101], 

which require knowledge of all different algorithm for the right use. Acharya et al. [5] and 

Xia et al. [98] is most close to this paper. Nevertheless, Z-score normalization depends on 

knowledge of all datasets to compute the mean and standard deviation. In the second case, 

wavelets are useful, like feature extractors too, so in combination with C N N are redundant, 

network input has higher resolution, and the C N N model must be more complex with more 

neurons. 

For that reason, there is a need for preprocessing that depends on knowledge of data 
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characterization for each class, not on the dataset or several different methods. The ob­

jective is to show the robustness of C N N architecture, which can replace some processes 

of traditional CAD system flowcharts. It could reduce the computational complexity of 

arrhythmia detection and dependency on using the dataset. This could provide a useful 

easy implementation for the practical medical environment for real-time decision support. 

3.5 Data fusion 

The next step in designing the system is fusion in cases where more channels are measured, 

unlike the case of ECG. Fusion can occur in two scenarios, namely during multi-channel 

measurement or unification of time series when the trigger is known (e.g. heartbeat). The 

first type, represented by EEG, involves measuring multiple channels simultaneously. In 

this case, fusion occurs when data from each channel are combined into a single output 

signal. The second type, represented by BCG, involves measuring data over time. In this 

case, fusion occurs by unifying the time series into a single output signal. 

3.5.1 EEG 

In the case of EEG, classification should be performed on one-dimensional vector inputs. 

Anyway, some systems must process more signals to arrive at a result. The first type of system 

deals with a combination of different types of data like ECG and photoplethysmogram (PPG), 

which can be used for blood pressure prediction [35] or heart rate variability [47]. On the 

other hand, some devices provide the multi-dimensional output of the measuring process 

like EEG for epilepsy detection, which experiments were published in [24]. 

Classification models of EEG could take the form of conventional statistical approaches 

like K N N [13,29], random forest (RF) [93], linear discriminant analysis (LDA) [91], or SVM [56, 

104]. Li et al. [57] proposed a method based on channel selection by computing the standard 

deviation for each and nonlinear mode decomposition for three different classifiers: SVM, 

K N N , and LDA. The K N N model achieved the best performance of tested parameters of 

Acc, Sen, and Spec. Another study by Anuragi et al. [12] introduced a novel algorithm that 

obtains features from euclidean distances of sub-bands phase-space representation and 

Fourier-Bessel series expansion from empirical wavelet transform. Seven different classifiers 

have been tested with the optimal number of features selection. Amiri et al. [10] presented 
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a process based on feature extraction from the time-frequency planes of optimal channels. 

Their channel selection strategy does not disregard channel correlation due to a sparse 

common spatial pattern. Compared to Perceptron and Linear SVM, LDA outperforms the 

other two tested classifiers. 

The literature contains several approaches based on one EEG channel with the deep 

learning process from base neural networks to their modifications like recurrent neural 

network (RNN), or C N N . For instance, Qaisar et al. [72] proposed an effective method based 

on one EEG channel and neural network. Zhang et al. [105] employed RNN, while Wei et 

al. [94] used C N N for the same purpose. 

Sadiq et al. [77] exploited ten well-known pre-trained C N N models on CWT images. 

Meanwhile, Mandhouj et al. [60] extracted features by short-time Fourier transform (STFT) 

instead and designed a 2D C N N architecture to recognize ictal, inter-ictal, and health classes. 

Nevertheless, several types of research proved no need for feature extraction. Acharya et 

al. [7] presented the first deep neural network application for EEG-based seizure detection. 

They preprocessed the data by performing Z-score normalization, zero mean, and standard 

deviation, followed by a 13-layer deep one-dimensional convolutional neural network. 

However, EEG classification is not provided only on the one-dimensional vector [14]. 

Some studies have employed a multi-channel dataset and different strategies for dealing with 

one-dimensional C N N . Wang et al. [92] linked all channels in series, rather than in parallel, to 

convert input from two-dimensional to one-dimensional. Gao et al. [34] invented generative 

adversarial network (GAN) and C N N architecture based on each channel classification 

separately. Post-processing channel fusion with the threshold forjudging seizure and non-

seizure records resulted in the final classification. 

The current solutions for CAD have some flaws in their deployment that need to be 

addressed. One major issue is the channel selection in cases of multi-level measuring, which 

has been discussed in a recent study by Amiri [10]. In real-time applications, selecting based 

on knowledge of the entire dataset is impossible. Problem detection has to be performed 

on actual data without any prior knowledge. Assuming all available information is used, it 

may be problematic if the measuring does not follow the same channel strategy. This could 

lead to an unstable input format, resulting in different architectures for every measurable 

difference. 

Another disadvantage of current CAD solutions is the complexity of the solutions them-
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selves. In previous research works, the data was preprocessed for smoothing and extracting 

features. However, in the case of multi-channel measuring, redundant information is in­

cluded, which extends calculation time beyond the system's needs. Therefore, this research 

aims to simplify the input while maintaining information integrity to find the ideal C N N 

architecture. The research draws inspiration from well-known multidimensional transfer 

learning solutions. 

3.5.2 BCG 

Breathing disorders cannot be detected as easily as fibrillations or seizures because their 

detection requires longer-term measurements. Unlike fibrillations or seizures, which can 

be detected in short segments, breathing disorders often require monitoring over a period 

of time to diagnose and treat accurately. In [107], a novel approach is proposed for detecting 

a long-term heartbeat cycle length. They measured both BCG and ECG concurrently to 

assess the correlation between the beat-to-beat cycle of both types of sensors. The results 

showed that the correlation of the cycle length was 0.95 with an absolute difference in the 

cycle length of 4 ± 72 ms. A piezoelectric foil sensor was used, and persons were examined 

in a lying position on the back because it is necessary for achieving good results. 

In [100], they proposed an algorithm for separating the cardiac and respiratory compo­

nents with noise reduction on the heart rate and respiration components of BCG signals. It 

was done by the locally projective noise reduction algorithm for denoising deterministic 

chaotic time series. It can be applied to signals which are not cleanly deterministic, like 

physiological time series like ECG, BCG, and EEG. 

In another article [45], Hwang et al. collected overnight polysomnography and ballis­

tocardiography recording pairs from patients with and without nocturnal hypoxemia. By 

the regression analysis, they achieved an average Acc of 96.5%. Sadek et al. [76] evaluated 

the capacity of the micro-bend fiber optic sensor to monitor heart rate and respiration in 

a non-intrusive manner. In addition, they tested the discrimination between shallow and 

no breathing. Their approach highly correlated the heart and breathing rates, 0.96 and 

0.78. However, the proposed sensor provided a very low Sen of 24.2 ± 12.81% and Spec of 

85.88 ±6.01%. 

Liu et al. [59] studied the detection of obstructive sleep apnea. Their algorithm first 

preprocesses the raw BCG data and locates potential event segments by detecting arousals. 
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Thereafter, the distribution of each potential event into three phases and the selection of 

features to detect respiratory patterns were done. They then used a backpropagation neural 

network to classify these events into apnea and non-apnea classes. The experimental results 

based on a real BCG data sheet revealed that the Acc, recall, and area under curve (AUC) 

were 94.6%, 93.1%, and 95.1%, respectively. 

Zink et al. [107] used the BCG signals to detect variations in the heart rate associated 

with sleep apnea syndrome. The authors applied wavelet decompositions extraction to 

analyze the BCG signal and obtain the heartbeat interval. These features were used as 

input to a support vector machine classification model. Experimental results on 42 subjects 

with 5-fold cross-validation achieved a 90.46% precision rate and 88.89% recall rate. In the 

last relative article [88], the signals of five sensors and their placement combinations for 

measuring a sleeping person were compared from the perspective of their measurement 

sensitivities and waveform quality. In conclusion of this paper, the heartbeat and respiration 

parts are represented the best in the signals measured with the mattress force sensors. 

In our first BCG research [21], we presented a novel approach for recognizing the form of 

breathing independent of the body position by BCG sensors. The signals were processed by 

Cartan curvature and extracted pulse arrival time related to human respiration and blood 

pressure via the Moens-Korteweg relation [70]. Thereafter, the breathing anomalies were 

detected between heartbeats measured by ECG and the pulse arrival times, as shown in 

Figure 3.10. These delays were used as the inputs to CWT for parameters and power analysis 

before training a C N N classifier. 

One of the main differences between the work and other articles is that our approach 

is independent of the position of the sensors on the measuring bed. Using Cartan curva­

tures and the Moens-Korteweg relation, it is possible to determine various physiological 

dependencies with notable signal-to-noise ratios. However, the system required signifi­

cant preprocessing before applying the C N N architecture, unnecessarily increasing the 

computation time for recognizing breathing disorders. The differences in delays between 

individual heartbeats are also in milliseconds, making the model very sensitive. As a result, 

we experienced problems correctly detecting breathing in individuals lying on their sides. 

In the next paper [22], we introduce a novel approach to process and classify ballisto­

cardiography signals for detecting breathing disorders. Our method uses optimal formulas 

of Cartan curvatures to recognize breathing problems, regardless of body position during 
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Figure 3.10: Pulse wave times (x: time/ms, y: pulse arrival time minus constant) [21] 

Figure3.11: Examples of classifier input (Top: regular breathing; Bottom: disorder breathing) 
[22] 

measurement, and with greater clarity than our previous work. We begin the paper by 

presenting the classical method for R peak detection from the electrocardiogram ECG signal. 

Then it continues with a formulation of Cartan curvatures and a description of information, 

which can be found in. The last part of data processing is preparing the input for the C N N 

classifier. Data are converted to a grayscale image and resized to 30 x 150 for optimal input 

in case of algorithm asymptotic complexity. Several examples of network input are shown 

in Figure 3.11, where regular breathing is placed at the top and disorders at the bottom. 

In our recent paper [23], we propose a novel approach to detecting breathing disorders 

using a mechanical trigger based solely on BCG data. Using the BCG data enables the 
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system to be truly unobtrusive. Our trigger is based on detecting the ejection of blood from 

the heart, and we leverage differential geometry invariants to propose a new differential 

invariant, the Euclidean arc length [96]. This invariant can serve as a trigger for categorizing 

Cartan curvatures in C N N . One of the major advantages of our mechanical trigger is its 

complete unobtrusiveness. Additionally, the properties of our trigger are invariant in the 

same way as Cartan curvatures, allowing for its applicability for individuals lying in different 

positions on a bed. Furthermore, the arc length is calculated directly from the measured 

signals, simplifying the process. 

In summary, our previous work [21, 22] was founded on three fundamental pillars: 

identifying triggers for individual heartbeats, calculation of Cartan curvatures, and the 

processing of results using C N N . In this paper, we introduce a new algorithm to calculate 

the first part, the trigger, which must be highly precise to capture subtle variations in pulse 

arrival time that are then processed using Cartan curvatures. The primary novelty of this 

paper is also the implementation of this new trigger and the improvement of the C N N to 

develop a completely unobtrusive mechanical system without the need to connect any 

equipment to the measured person or use any ionizing radiation for measurement, unlike 

similar systems presented in the literature. The typical shape of the monitoring function is 

shown in Figure 3.12. 

Our previous work established the foundation for our current research, where we sought 

to address a critical issue in monitoring the health of individuals. Accurate monitoring 

of pulse and heartbeats is essential for detecting and diagnosing various cardiovascular 

diseases. However, existing methods for monitoring heartbeats require connecting various 

equipment to the individual being monitored, which can be invasive and uncomfortable. 

The QRS complex and the T wave provide valuable information for distinguishing sepa­

rate parts of the signal. With this in mind, we have decided to use the maxima of a monitoring 

function as the trigger for our preprocessing sequence. This maximum corresponds with 

the end of the rapid ejection phase, which then translates into a reduced ejection. 

It is worth noting that the distance between the mechanical trigger and the R wave varies 

over time and depends on various physiological phenomena and thoracic pressure. On 

average, however, the distance is 160 ms ± 40 ms. This variability in the distance emphasizes 

the importance of selecting an appropriate trigger for our preprocessing sequence, as it 

ensures that the signal is properly segmented and analyzed. 
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Figure 3.12: Ilustration of ECG and Euclidean arc length [23] 

As each sub-investigation had its timeline, data fusion for EEG was performed at a later 

stage. As a result, in all related works, the input to the C N N was two-dimensional. However, 

subsequent experiments revealed the effectiveness of data fusion, and a back-analysis was 

also conducted for BCG. 

3.6 CNN 

Once data has been appropriately processed, it becomes crucial to verify the effectiveness 

of the classifier and the complexity of its internal parameters, which together make up the 

resulting architecture. To optimize the performance of C N N models, several options exist 

for reducing computational complexity without sacrificing Acc. 

3.6.1 Model reusability 

Recently, classification in clinical behaviors is performed by deep learning techniques. 

These techniques have proven to be effective in improving the Acc of image [81], text succes­

sion [51], and speech recognition [1]. They consist of several types of layers that are designed 

for pattern searching and classification. Since the input image is represented by 2D or 3D 

matrices of numbers, C N N can be used on any sequence, even on ID signals, as presented 

above. 
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Regarding image data classification, it is common to use pre-trained architectures instead 

of creating the original architecture of the neural network. The internal model parameters 

of pre-trained architectures are already set by previous training, so they are not initialized 

pseudo-randomly according to the selected optimizer [38]. Following that, these pre-trained 

models are then tailored to the specific problem at hand. This is achieved by creating a 

specific dataset divided into classes that must be distinguished and used in a new training 

process. The advantage of pre-trained models is that they have been trained on millions of 

internal parameters and tens to hundreds of class types. This makes the hidden layers of 

these networks well-equipped for specific image recognition problems. However, they may 

not be suitable for vital sign data classification due to two main factors. 

The first factor is that the pre-trained models are designed for image recognition which 

is not one-dimensional. As described above, converting one-dimensional data into a two-

dimensional form through one of the methods of preprocessing or feature extraction did 

not improve classification Acc. This conversion requires additional computation beyond 

what is necessary, and the architecture must contain more internal parameters to perform 

the classification task. 

The pre-trained neural network architecture used for image classification has a signifi­

cant limitation in the dataset used to train its internal parameters. While the neural network 

is specifically designed for image classification, the input data used for its training doesn't 

include critical classes such as vital data. This absence of crucial information may limit the 

network's performance in identifying and addressing critical issues. Therefore, expanding 

the dataset used to train the neural network to include vital data classes is essential. By 

incorporating more diverse and critical information into the training dataset, the neural 

network will be better equipped to identify and address crucial issues accurately and reliably. 

In our previous work [23], a limitation was tackled in identifying breathing disorders by 

employing a specific neural network architecture. The input data was a two-dimensional 

matrix that comprised 30 consecutive slices of the measured data, each of equal length. 

The matrix was processed by the neural network to identify and classify different breathing 

disorders based on the patterns in the data. 

The model's results were compared to those of well-known pre-trained architectures 

that had been fine-tuned for the same research issue with the same hyperparameters set­

tings. These results are shown in Table 3.8. The presented solution achieves comparable 
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Table 3.8: Comparison with well-known implementation of advanced C N N models [22] 

Model No. of parameters Acc (%) Sen (%) Spec(%) 

Current [22] 97,247 96.37 92.46 98.11 
ResNet50 [42] 25,636,712 97.03 94.75 98.05 

DenseNetl21 [44] 8,062,504 96.76 98.69 95.91 
MobileNetV2 [43] 3,538,984 95.01 85.15 100 

Xception[18] 22,910,480 92.85 91.27 93.57 
NASNetMobile [108] 5,326,716 94.88 83.01 95.71 

performance. Furthermore, the well-known classifiers we tested are prepared for many 

image classifications and include millions of trainable parameters. In contrast, our model 

has fewer than 100,000 trainable parameters. The existing architectures have a much higher 

level of complexity than our model, which makes them more computationally demanding 

in subsequent applications. Using an optimized architecture significantly reduces the need 

for computing power when using the classifier. 

Given that existing neural networks for image data classification can be used to classify 

various image issues, a hypothesis is offered about the reusability of the one-dimensional 

convolutional neural network architecture for various vital data classification issues. In 

the case of images, however, the higher complexity is not only in the fact that images have 

a higher dimensional order than vectors. It is necessary to realize that in most cases, it is 

a capture of the real-world three-dimensional objects containing, in addition, a different 

colour component described using different colour channels according to the sensing 

method. There is a need for input data with the object of interest from different points of 

view and colours for correct classification, which includes a large variability of individual 

classes. The second point can be partially replaced by augmentation methods, leading to 

the expansion of the collected data. In the case of vital data, these complications do not 

occur, and the only problem is the diversity of data obtained from different individuals with 

different physiological characteristics. However, this does not change the fact that the given 

differences in the individual classes (generally healthy data versus data with certain health 

complications) can be described. 

In correlation with a described hypothesis about the reusability of the model, the research 

of ECG and EEG were tested with the same C N N architecture both separately and together. 
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3.6.2 Frequency and architecture analysis 

Moreover, in the image classification area, pre-trained model input usually does not resolve 

today's sensing devices. It is due to the need for the low quality of the object in the image. 

C N N models need to recognize the main patterns that distinguish classes from each other. 

On the contrary, excessive object resolution leads to redundant information that increases 

the complexity of the model but does not improve performance. For this knowledge transfer 

from image to vital data classification, frequency reduction experiments were performed 

on the EEG dataset to find the point of reduction, which resulted in a lower number of 

architecture inner parameters without the loss of patterns in signals. 

When considering the appropriate frequency for a given issue, evaluating whether the 

chosen architecture is suitable is crucial. The architectures described in section 3.1 were 

created using brute-force experiments to reach the optimal amount of layers, filters, and 

core size. In the framework of previous scientific publications, analyses of the number of 

filters were made based on individual pieces of training, and adjustments to these numbers 

were made based on the investigation of the training process and results. Firstly, the initial 

number of filters was set. In cases where the classification result was insufficient, the 

number of filters was increased until the classification Acc plateaued. If the classification 

was sufficient after initialization or if the phenomenon of neural network overfitting was 

occurring, the number of filters was reduced until this architecture reduction did not affect 

the classification results. 

In the context of training neural networks, the brute-force technique is not a feasible 

option due to its excessive computational and time requirements. It is impossible to run 

computations on all possibilities, making it necessary to find other ways to optimize the 

neural network. The size of the kernel for convolutional layers is determined through data 

analysis and an understanding of the convolutional operations' purpose. However, this may 

not always yield the best possible outcome for the neural network. 

A fixed number of convolution and max-pooling blocks are used to determine the optimal 

neural network architecture to examine the input to a set depth. This approach enables 

the testing of various combinations of the number of blocks, the number of filters on the 

convolutional layer, and varied input frequencies. Previous experiments evaluated the 

frequency, but the variable number of blocks allows for different frequency sizes to be 

employed in the neural network. 
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Table 3.9: Tested block variations with properties [created by the author] 

No. of blocks blocks kernel size minimal C N N output 

2 19;11 42 
3 19;19;11 104 
4 19;19;11;11 190 
5 19;19;11;11;11 369 

Table 3.10: Tested frequencies variations with properties [created by the author] 

Data Frequencies No. filters 

No. blocks 5 4 3 2 

BCG 
ECG/EEG 

1000;600;400;369 250;225;200 
250;225;200;185 150 

150;104 42 
100;52 21 

{5-Jfc|Jfce[2..12]J 

Although the frequency was evaluated in the previous experiment, the variable number 

of blocks allows for different sizes of frequencies that may be employed in the neural network. 

Smaller frequencies cannot be processed if the number of blocks is too great since the output 

of the max-pooling layer cannot be further split. Combinations of a tested number of blocks 

are specified in table 3.9, with the kernel size of each sequential block and the potential 

size of input that may be processed by the model. Hyper-parameters like learning rate or 

optimizer are not changed from the common setting described in section 3.1. Following 

that, table 3.10 contains information on tested frequencies for distinct blocks. The removal 

of each block caused the frequency to be tested with a higher frequency. Thus frequencies 

were tested with further variants and all instances from the preceding experiment. This 

approach ensured that each frequency range was adequately tested to identify the optimal 

configuration for the neural network. 
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Results and discussion 

4.1 Data processing 

The methodology presented in the following section is based on the knowledge of data 

patterns for each class, without depending on the dataset or pre-processing methods. The 

objective is to demonstrate the robustness of the C N N architecture, which has the potential 

to replace some of the processes of traditional CAD system flowcharts. By doing so, the 

computational complexity of arrhythmia detection could be reduced, and the dependency 

on the dataset could be minimized. A useful and easy-to-implement solution for the practical 

medical environment could be provided through the implementation of this methodology, 

offering real-time decision support to clinicians. The C N N architecture's ability to recognize 

patterns in data could significantly reduce the need for manual intervention in the diagnosis 

process, improving the speed and Acc of arrhythmia detection. 

4.1.1 Normalization 

To normalize the data, we implemented a simple formula that can alter the range of mea­

sured samples without requiring high computational complexity and without compromising 

essential information for future classification. The formula has the form 

m a x ( - l , m i n ( l , o i + 1 - o , ) ) + l 
Pi = g ' ( , ) 

where pt is i-th value of normalized sample computed from raw samples o on the positions 

of i and i + l. Because the QRS complex can have a different form and value ranges for 

each person, all numbers less than -1 are set on it and all numbers greater than 1 are set 
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Figure 4.1: A n illustration of ECG segments of normal, A f i b , A f l , and V f i b patterns after nor­
malization [32] 

on 1. Thanks to the shapes and properties of ECG signals in general, it is possible to use 

this elementary operation. The C N N model requires information about the pattern of the P 

wave and the only positions of the QRS complex, not its power. Due to the main concept of 

C N N functionality, especially convolutional layers, the range of input data is changed from 

(—1,1) to (0,1). In this way, it is not necessary to provide R-peak detection or some types of 

preprocessing methods. Sample examples of all four categories of normalization are shown 

in Figure 4.1. 

4.1.2 Results 

The first experiment focused on evaluating the performance of the proposed C N N model in 

the area of detecting all classes. The results of this experiment are shown in Table 4.1. The 

table reveals that the proposed model was able to classify 99.79% of the samples correctly as 

normal. However, the Sen of A f l was found to be less than 90%, with 13.08% of A f l category 

being wrongly classified as part of the other categories. Among these, 89.59% were bad 
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Table 4.1: ECG confusion matrix [32] 

O/P Normal Afib Afl Vfib Acc(%) PPV (%) Sen (%) Spec(%) 

Normal 3539 11 8 9 99.79 99.27 99.21 99.88 
A f i b 11 19164 76 21 98.61 98.74 99.43 96.07 
Afl 13 198 1469 10 98.80 94.59 86.92 99.64 
Vfib 2 35 0 929 99.69 95.82 96.17 99.83 

Table 4.2: ECG overall classification [32] 

O/P Normal Arrhythmia Acc (%) PPV (%) Sen (%) Spec (%) 

Normal 3539 28 98.45 99.88 99.87 99.27 
Arrhythmia 26 21902 98.45 99.21 99.27 99.87 

predictions like A f i b . A similar pattern was observed in A f i b , where 70.37% of the wrongly 

evaluated inputs were classified as A f l . This indicates a possible relationship between these 

classes. 

To better understand the performance of the proposed model in distinguishing normal 

rhythm from arrhythmia, Table 4.2 was generated. This table shows that the normal category 

has the same value as that in Table 4.1. Normal category predicted as Arrhythmia refers to 

the summarization of normal samples predicted as A f i b , A f l , or V f i b . The Arrhythmia category 

evaluated as Normal is a summary of A f i b , A f l , and V f i b evaluated as normal. The correctly 

detected arrhythmia is the rest of the table. Overall, the proposed model achieved an 

average Acc of 98.45%. Furthermore, Sen and Spec of 99.87% and 99.27% were respectively 

computed for the normal class. PPV was obtained as 99.88% for normal rhythm and 99.21% 

for the remaining classes of the proposed model. 

The second experiment focuses on the computation time required for the normalization 

and classification of input signals in real-time, such as a stream from an ECG device. To 

accomplish this, a simulation of several devices was created using program threads for 

parallel processing [9]. These simulated devices used the same C N N model for evaluation 

on a single processor. The system was then tested on a 10-second sample measured with a 

frequency of 250Hz and 360Hz, with the downsampling of input realized in the latter case. 

The evaluation was performed with a change of 5 values, which guaranteed the feasibility of 

50 predictions per second. Figure 4.2 illustrates the average time required for 10 iterations of 

calculations and classifications. It is evident that, after including the ECG data transmission 

time, using one server to manage multiple devices is acceptable in this scenario. The 
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Figure 4.2: Time needed to signal processing and classification [32] 

implementation of multiple devices as program threads for parallel processing, using the 

same C N N model for evaluation, shows as a promising approach for achieving real-time 

classification of input signals. 

Moreover, the tabulated confusion matrix for recognition of normal, preictal, and seizure 

classes from one-channel Bonn University EEG database is presented in Table 4.3. Preictal 

and seizure classes were summarized as a representation of abnormal data in order to 

calculate Sen and Spec correctly. Small differences and values greater than 90% indicate 

that the classification is balanced and not overfitted. Moreover, the voting method across 

C N N inputs from single segments was made for proper comparison with other research. It 

leads to Acc, Spec, and Sen improvements of 98%, 98.5%, and 98%, described in Table 4.4 

by the confusion matrix and Table 4.5 with an overall classification of normal and abnormal 

cases. It is clear that post-processing is required to eliminate potential false detections that 

could result in a false alarm or overlooking a problem. 
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Table 4.3: Confusion matrix of Bonn dataset [24] 

O/P Normal Preictal Seizure Acc (%) PPV (%) Sen (%) Spec(%) 

Normal 748 34 18 96.37 95.60 92.46 98.11 
Preictal 8 759 33 96.37 96.70 98.11 92.46 
Seizure 23 15 762 96.37 96.70 98.11 92.46 

Table 4.4: Confusion matrix of Bonn dataset after voting method [24] 

O/P Normal Preictal Seizure Acc (%) PPV (%) Sen (%) Spec(%) 

Normal 98 1 1 98.33 97.03 98 98.5 
Preictal 2 97 1 98.67 98.97 97 99.5 
Seizure 1 0 99 99.33 98.02 99 99 

Table 4.5: Overall classification of Bonn dataset [24] 

O/P Normal Seizures Acc (%) PPV (%) Sen (%) Spec (%) 

Normal 197 2 98.33 98.69 98.5 98 
Seizures 3 98 98.33 98.99 98 98.5 

4.1.3 Discussion 

The proposed solution utilized a simple formula for data normalization that is not dependent 

on any specific dataset. It just contains variables for thresholds to eliminate artifacts that 

are dependent on the measuring device. This approach ensures that data preparation 

before using the C N N model has low computational complexity. However, there are some 

limitations that need to be addressed. 

Nevertheless, there are certain limitations which are needed to check. To reduce compu­

tational complexity, a noise reduction algorithm was not implemented. Classification results 

were not devalued on tested datasets, but functionality is not guaranteed in all approach 

applications, and there may be cases where the environment requires deeper preprocessing 

due to 50Hz noise, etc. In the next point, normalization without a global threshold provides 

variability for model setting, but only with manual intervention. Experiments for thresholds 

were done by histograms instead of z-score normalization, where artifacts are only reduced 

rather than suppressed. The last issue corresponding with CAD systems on this basis is the 

performance measuring of the C N N instead of k-fold cross-validation. However, this can be 

replaced by data augmentation into a sufficiently large dataset. 

When it comes to automated detection of health issues, C N N models have several advan­

tages. The most significant advantage is that CNNs do not require the use of traditional tasks 
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in a conventional flowchart, such as pre-processing, feature extraction, and feature ranking. 

These tasks typically require expert knowledge, which is not necessary for designing a C N N . 

Instead, the C N N automatically extracts features by modifying filters within convolutional 

layers and weights for transitioning between layers during model training. This feature 

can save computational time and memory, depending on the batch size. However, it is 

important to note that too many big batches can lead to decreased model performance. 

Additionally, the C N N model is not independent of expertly-known pattern detection, such 

as P waves, T waves, and R peaks in ECG or the cardiac cycle in BCG, as convolutional filters 

search for patterns throughout the entire signal. 

The results of using C N N models for automated detection lead to the conclusion that 

the designed solution is a suitable tool. Furthermore, the reduction in complexity allows for 

deployment options on devices with limited computing power or as a server implementation 

for the parallel detection of multiple patients. This advantage is especially important as 

it can improve the efficiency of healthcare providers in diagnosing and treating patients. 

By reducing the complexity of the model, it can be deployed on a wider range of devices, 

making it accessible to more people. 

The detailed view of the existing work on CAD for different types of arrhythmias is shown 

in Table 4.6. The presented performances were measured on the classification of all four 

classes except [98], where only normal and A f i b classes were used. In the case of used data, 

other approaches analyzed other available databases like European ST-T Database (EDB), 

MIT-BIH Normal Sinus Rhythm Database (NSRDB), and Creighton University Ventricular 

Tachyarrhythmia Database (CUDB) Some articles are based on R-peak detection [3, 26]. 

However, needs long segments for a finding of the R-peak or QRS complex which makes it not 

possible to real-time classification. Above that, denoising methods are used for smoothing 

the signal [3, 5, 26, 63]. There are approaches where noise can have a big impact on the 

final system result. In the case of C N N , raw data can have worse Acc but is still within 

acceptable limits. Moreover, if the data are clearly different, the model's performance can be 

almost the same. The next problematic issue is separate feature extraction, feature ranking, 

and classification [3, 26, 71], which require knowledge of all different algorithms for the 

right use. Acharya et al. [5] and Xia et al. [98] is most close to this approach. Nevertheless, 

Z-score normalization depends on knowledge of all datasets to compute the mean and 

standard deviation. In the second case, wavelets are useful, like feature extractors too, so in 
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Table 4.6: Selected studies of the detection of arrhythmia using ECG data from various 
PhysioNet databases [32] 

Source Approach Classification Performance 
(%) 

Data used 

Current 
[32] 

C N N with 
normalization C N N 

Acc = 98.45 
Sen = 99.87 
Spec = 99.27 

AFDB 
MITDB 
VFDB 

Current 
[33] 

Acc = 97.78% AFDB Current 
[33] C N N with CWT C N N Sen = 99.76% MITDB 
Current 
[33] Spec = 98.82% VFDB 

Acc = 92.50 AFDB 
[5] C N N with Z-score C N N Sen = 98.09 

Spec = 93.13 
MITDB 
VFDB 

[98] 
STFT 
with C N N C N N 

Acc = 98.63 
Sen = 98.79 
Spec = 97.87 

AFDB 

AFDB 

[78] Spectogram 
with C N N 

C N N Acc = 97.23 EDB 
NSRDB 
VFDB 

[26] RQA DT, RF, 
rotation forest Acc = 98.37 

AFDB 
CUDB 
MITDB 

Thirteen nonlinear Acc = 97.78 AFDB 
[3] features with K N N with DT Sen = 99.76 CUDB 

ANOVA Spec = 98.82 MITDB 

combination with C N N are redundant, network input has higher resolution, and the C N N 

model must be more complex with a bigger number of neurons. In summary, the C N N 

model with normalization depends on knowledge of ECG characterization for each class, 

not on the dataset nor on several different methods. The objective show the robustness of 

C N N architecture, which can replace some processes of traditional CAD system flowchart. 

It could reduce the computational complexity of arrhythmia detection and dependency on 

the used dataset. This, in total, could provide a useful easy implementation for the practical 

medical environments for real-time decision support. 

Moreover, a comparison of the EEG CAD system with other journal articles is shown in 

Table 4.7 for the Bonn dataset. The achieved Acc is comparable to the best results obtained 

by other methods. Unlike the presented solution, which divides the sample into smaller 

blocks with the following voting, all presented articles process samples with 4097 values 

as a single input. As a result, the architecture requires fewer inner parameters, implying 
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Table 4.7: Selected studies of seizures detection on Bonn EEG dataset [24] 

Author Approach and Classification Performance (%) 

Current 
[24] 

Acc = 98.33 Current 
[24] normalization + C N N Sen = 98.5 

Spec = 98 
Acc = 99.18 

[58] SSTFT + FKNN Sen = 99.77 
Spec = 99.80 

[12] Entropy based features Acc = 97.7 
Acc = 98.6 

[17] Multiscale spectral features + RF Sen = 98.99 
Spec = 99.12 
Acc = 88.67 

[7] Z-score, C N N Sen = 95 
Spec = 90 

[102] STFT + mConvA Acc = 93.97 
Acc = 99.33 

[60] STFT + C N N Sen = 99.16 
Spec = 100 

less computational time per input with a greater number of classifications. From a research 

standpoint, the solution does not provide the necessary optimization. However, it is crucial 

to consider the application perspective of the point. A system that works with a 23.6 seconds 

length of data without sliding window implementation may provide significant latency of 

patient condition updates. This limitation is eliminated in the presented solution, which 

can update the patient's condition without any delay. 

4.2 Data fusion 

The fusion methodology to reduce the complexity of input and redundant information is 

presented in the following section. The solution presented in this section has been tested in 

both multi-channel and time series datasets with known triggers. Furthermore, it has been 

compared to other approaches from the literature. 

The presented solution offers a novel input complexity reduction approach, essential 

for efficient and accurate data analysis. By removing redundant information, the proposed 

methodology could lead to improved performance in various applications, including signal 

processing and data analysis. 

The testing of the solution in both multi-channel and time series datasets with known 
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triggers demonstrates its versatility and potential applicability to various data types. The 

comparison with other approaches from the literature further highlights the advantages of 

the presented methodology over existing approaches. 

4.2.1 Averaging 

As mentioned, multiple channels need to be processed, unlike the previous experiments 

on ECG databases and the Bonn EEG database. To ensure that the data can be used as 

one-dimensional input, the channels were merged into a single vector. The decision to 

average the values at the same timestamp was made because of the similarity with the 

average pooling layer in neural networks. However, the number of channels per person 

was different, and a static kernel size would not have resulted in a one-dimensional output 

for all inputs. As a result, the classical layer was not used, and averaging was done as a 

preprocessing task. 

Beforehand, a correlation calculation was performed to determine the correlation be­

tween different channels. Based on the results, two channels were omitted. The T7-P7 and 

P7-T7 channels were excluded because they had a perfect negative correlation, and their 

average result was equal to zero, leading to the loss of information in the data. Additionally, 

the T8-P8 channels were excluded because they contained duplicate data. Including this 

channel would have led to an increase in weight compared to other channels, resulting in a 

bias in the analysis. 

After conducting EEG data studies, the next step was to carry out BCG data fusion 

experiments. In these experiments, the samples obtained from the previous two procedures 

were averaged in the time domain. This resulted in vector input, which differs from the 

matrix input presented in Figure 4.3. The vector input was used to modify the model, where 

the first dimension of kernel size remained the same while the second dimension was 

removed. As a result, architecture 2 from 3.1.3 was utilized to achieve equivalent results. 

4.2.2 Results 

Experiments were conducted on the CHB-MIT dataset for each individual, and the average 

Acc, Sen, and Spec were computed across individuals by other researchers. Since the number 

of seizures varies across patients, k-fold cross-validation was performed using different folds 

based on each patient's data. The final results are presented in Table 4.8, which includes the 
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Figure 4.3: BCG fusion processing [created by the author] 

overall performance of the model. Despite the unbalanced length of data and the varying 

number of seizures, the results were above 85%, and there was no overfitting issue. This was 

demonstrated by the worst training scenario, presented in Figure 4.4, which shows balanced 

progress over time. These findings suggest that the model performs well on the CHB-MIT 

dataset, even with its inherent challenges. 

The best classification results of the proposed system on BCG dataset are shown in 

Table 4.9. Upon closer examination of the table, it is apparent that the PPVfor the normal 

class and disorder class are 97.18% and 98.41%, respectively. This means that the probability 

of correctly identifying the disorder class is slightly higher than that of the normal class. It is 

also noticeable that 4.9% of normal samples are inaccurately classified as disorders, while 

0.9% of problematic sequences are incorrectly classified as the normal class. In summary, 

it can be concluded that the proposed system's Acc is 98.11%. To elaborate further, these 

classification results suggest that the proposed system successfully differentiates between 

normal and problematic breathing patterns. 

4.2.3 Discussion 

A comparison of the CAD system with other journal articles is shown in Table 4.10. In 

contrast to the previous comparison, input lengths in each article are mostly unique, and 
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Table 4.8: Classification results of each patient on CHB-MIT EEG dataset [24] 

Patient Sen (%) Spec (%) Acc (%) 

chbOl 99.77 97.83 98.89 
chb02 100 100 100 
chb03 98.76 97.50 98.16 
chb04 99.22 99.65 99.56 
chb05 98.94 99.42 99.12 
chb06 97.10 92.99 94.92 
chb07 99.39 99.66 99.56 
chb08 95.74 96.04 95.89 
chb09 100 100 100 
chblO 99.55 99.35 99.45 
c h b l l 98.79 99.28 99.05 
chbl2 88.43 91.98 90.31 
chbl3 95.46 88.62 91.78 
chbl4 94.97 95.49 95.29 
chbl5 86.32 97.38 91.58 
chbl6 95.59 99.43 98.35 
chbl7 94.95 97.29 96.11 
chbl8 90.82 93.52 92.19 
chbl9 99.16 98.88 99.01 
chb20 96.53 93.85 95.26 
chb21 95.45 98.33 97.18 
chb22 100 98.94 99.39 
chb23 98.35 97.50 97.90 
chb24 85.31 97.01 91.55 
Total 96.19 97.08 96.69 

Table 4.9: EEG overall classification [24] 

O/P Normal Disordered Acc (%) PPV (%) Sen (%) Spec(%) 

Normal 1243 64 98.11 97.18 95.10 99.10 
Disordered 36 3973 98.11 98.41 99.10 95.10 

47 



model accuracy 

0.95 

0.90 

0.35 -

0.30 

0.75 

0.70 

epoch 

Figure 4.4: The testing and validation curves for chb24 [24] 

cross-validations are not set up the same way. Furthermore, unlike the other approaches, 

the validation per seizure in these articles is performed without voting. However, the study 

conducted by Wand et al. [92] confirms the need for post-processing. They demonstrate that 

by transferring Sen from the segment-based level to the event-based level, the performance 

of the CAD system can be improved. This is achieved using a formula: 

Sen-, 
number of corrected detected seizures 

(4.2) 
number of all seizures 

Implementing it into the other presented systems should result in a reduction in the 

results gap. Moreover, channel fusion into vector leads to complexity reduction. As described 

in [31], one-dimensional C N N computational complexity in a single layer can be described 

as: 

O = OutputSize- rif •Muhf.rc;, nk) + rif Ac c(nit nk) (4.3) 

where nit rif, and nk represent the number of features in the input vector, the number of 

filters, and the kernel size. The highest asymptotic complexity in neural network operations 
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is typically represented by matrix multiplication, which has a complexity of 0{n3). When n 

layers are included in a feedforward network, the final complexity is defined as 0{n4) for 

testing and 0{n5) for training with a gradient descent task. 

Although the fusion of channels does not reduce the asymptotic complexity, it can 

significantly decrease the computational complexity in two key ways. First, it reduces the 

number of weights and biases contained in the model. In the presented model, there are 

10,854 inner parameters. Without fusion, the smallest possible two-dimensional C N N 

architecture with a kernel size of (19, c h) could be provided, where the constant is set to 

be the same as in the case of the presented one-dimensional C N N , and c h represents the 

number of channels. However, for c h = 24, the architecture expands by almost half to 

15.667, which includes convolution and fully-connected layer operations. 

The second aspect is about max-pooling layers whose output is unrelated to the number 

of inner parameters. However, the output size from the previous convolution layer in 

combination with the kernel size represents the complexity of the necessary calculations. It 

excludes inner parameters for fully connected layers, which total 6.651, so the number of 

related parameters is more than doubled in two-dimensional C N N , from 4.023 to 10.010. 

Furthermore, several methods are using complex preprocessing methods, such as STFT 

with complexity 0{n-l og{n)), and increasing the dimension, instead of normalization with 

0(n). The results lead to the conviction that the designed solution represents a suitable 

tool. Moreover, complexity reduction allows for deployment options on devices with limited 

computing power or as a server implementation for parallel detection of multiple patients. 

A comparison of BCG system performance with other articles is shown in Table 4.11. 

A significant difference is the type of sensors used for data measuring. A few studies built 

a system on ECG signals for the detection of sleeping apnea. Others used a combination 

of ECG as a complementary device to BCG, or only a BCG measuring approach. Thus, 

BCG sensors are placed related to body position, such as piezoelectric foil under the body 

positioned on the back. In the proposed approach, BCG sensors are positioned into the 

measuring beds; hence, the signals processed by Cartan curvatures are independent of body 

position. Furthermore, fusion processing produced better results than two-dimensional 

inputs. Unlike EEG, BCG does not measure multiple channels at the same time, but rather 

more one-channel samples with time ordering. It results in a higher correlation between 

input rows, and data fusion does not result in as much information loss as the EEG. 
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Table 4.10: Selected studies of seizures detection on CHB-MIT EEG dataset [24] 

Source Approach and Classification Performance (%) 

Current 
[24] normalization + C N N 

Acc = 96.99 
Sen = 97.06 Current 

[24] 
Spec = 96.89 
G-Mean = 96.15 

[34] GAN+1DCNN Sen = 93.53 
Spec = 99.05 
Acc = 99.73 

[92] S-1D-CNN Sen = 90.09 
Spec = 99.81 
Acc = 98.99 

[58] SSTFT + FKNN Sen = 98.53 
Spec = 99.27 
Acc = 98.81 

[10] adaptive STFT+LDA Sen = 98.44 
Spec = 99.19 
Acc = 96.15 

[104] DWT + SVM Sen = 93.53 
Spec = 99.05 
Acc = 85 

[29] Channel selection + K N N Sen = 86.04 
Spec = 83.78 
Acc = 98.9 

[17] Multiscale spectral features + RF Sen = 98.12 
Spec = 99.17 
Acc = 95.06 

[65] GAN Sen = 95.38 
Spec = 94.33 
Acc = 97.49 

[56] Wavelets, EMD + SVM Sen = 97.34 
Spec = 97.50 
Acc = 97.49 

[103] Nullcline Feature + LDA,NN Sen = 97.34 
Spec = 97.50 

50 



Aside from the complete unobtrusiveness of the system, there are two major advantages 

in comparison with recent studies. Cartan curvatures contain information not only about 

pulse arrival time but also about the complex hemodynamics of the person [52]. In the first 

work [21], the focus has been on the pulse arrival time at one specific point, but later it was 

extended in employing C N N at the whole beat-to-beat Cartan curvatures. The approach 

brings both better results and removing of unnecessary feature extraction. These could open 

various topics in the future with a focus on the study of Cartan curvatures without the use 

of ECG thus enabling full automation of the system and studying other aspects of human 

hemodynamics. Secondly, studying the whole Cartan curvatures offers the possibility of 

achieving greater precision in the system, with fewer errors due to falsely detected pulse 

arrival times. The method is also effective with people in different positions, which pro­

vides indirect proof that Cartan curvatures are invariant under rotational and translational 

changes of the human body on the bed. Additionally, since there is no need to precisely 

detect pulse arrival times, the computational power needed for preprocessing has decreased. 

Furthermore, there are additional calculations that can be performed with even greater 

performance without the computation of pulse arrival time, with Cartan curvatures serving 

as input. 

Furthermore, it is evident that the fusion process can lead to complexity reduction and 

performance improvement. This has been demonstrated through a comparison of results 

in [22] and [23] before and after the averaging process. This observation highlights the 

possibility of processing a different number of time-ordered samples without modifying 

the C N N architecture and finding the ideal interval to achieve the best Acc, Sen, and Spec 

results. Moreover, the ability to optimize the number of time-ordered samples processed 

without modifying the C N N architecture offers greater flexibility and adaptability to different 

datasets. 

4.3 CNN 

The last section of the practical part focuses on the possibilities of reducing and utilizing 

C N N . Structurally, it is divided into two areas that describe three issues. The first part of the 

section verifies the hypothesis of reusability, while the second part describes the mutual 

interdependence between the reduction of frequency and architecture. 
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Table 4.11: Selected studies of the detection of breathing disorders [created by the author] 

Source Approach Classification Types of 
sensors 

Performance 
(%) 

Acc = 97.25 
Current Averaging of [23] C N N BCG Sen = 93.41 

Spec = 98.25 
Acc = 98.11 

Current Averaging of [22] C N N BCG Sen = 95.10 
Spec = 99.10 

[23] 
Cartan curvatures with 
Euclidean length trigger C N N BCG 

Acc = 96.37 
Sen = 92.46 
Spec = 98.11 

[22] Cartan curvatures with 
normalization C N N BCG 

Acc = 98.00 
Sen = 94.26 
Spec = 99.22 

[21] 
Cartan curvatures with 
CWT on pulse arrival 

C N N BCG 
Acc = 89.35 
Sen = 86.35 
Spec = 91.22 

[76] Adaptive thresholding Statistically BCG Sen = 24.24 
Spec = 85.88 

[59] Threshold-based division N N BCG Acc = 94.6 
[106] STC-Min SVM BCG Acc = 90.46 

[100] Locally Projective 
Noise Reduction 

Heuristic BCG Acc = 92.7 
Sen = 99.5 

[41] Tunable-Q factor 
wavelet transform Adaptive boosting ECG 

Acc = 87.33 
Sen = 81.99 
Spec = 90.72 

[74] 
Linear and non-linear 
features 

RF ECG 
Acc = 91.77 
Sen = 89.53 
Spec = 93.43 

The hypothesis of reusability has been tested in the first part of the section, highlighting 

the potential of C N N to be reused in different applications. This emphasizes the versatility 

and adaptability of C N N , making it a valuable tool in various fields of research. 

The second area offers a novel approach to complexity reduction, which is essential for 

efficient and accurate data analysis. The reduction of frequency and architecture simul­

taneously allows for greater adaptability and flexibility in different datasets, and without 

performance loss. 
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Table 4.12: ECG and EEG combination confusion matrix [created by the author] 

O/P Normal^ C G Afib Afi Vfib N o r m a l £ £ G Preictal Seizure 

Normal^CG 3529 15 13 4 0 6 0 
Aßt 18 19147 47 21 0 10 29 
Afi 13 83 1403 5 0 6 8 
Vfib o 35 3 886 2 28 12 
N o r m a l £ £ G 0 0 0 1 769 21 9 
Preictal 10 8 4 26 21 719 12 
Seizure 7 23 21 13 8 12 716 

Table 4.13: ECG and EEG combination overall classification [created by the author] 

TP TN FP FN Acc (%) PPV (%) Sen (%) Spec(%) 

4298 23277 69 79 99.46 98.42 98.19 99.7 

4.3.1 Model reusability 

The results of the same C N N model are presented in sections 4.1 and 4.2, which are related 

to the hypothesis about architecture reusability described in section 3.6.1. However, it is 

important to note that well-known pre-trained models are prepared in a wide range of 

classes, and an initial experiment was conducted by combining different health issues 

measured by different devices. Specifically, ECG data in combination with EEG data from 

the Bonn University database were chosen because they had the same length of input data. 

It is worth noting that the CHB-MIT database, which includes other EEG data and is 

commonly used for cross-validation, was not used in this experiment. This decision was 

made because the EEG data from the two databases were not labeled by the same scenario, 

and the Bonn University database contained more classes. 

The findings of this experiment are shown in Tables 4.12 and 4.13. The C N N model 

utilized in the ECG data demonstrated that the user architecture can categorize even this 

combination of ECG and EEG data, implying that the amount of input data and the number 

of identified classes increased without any changes to the internal structure of the C N N . 

4.3.2 Frequency and architecture reduction 

The experiments on frequency analysis were conducted on EEG, ECG, and BCG. The results 

of the EEG data analysis are presented graphically in Figure 4.5. The analysis showed a slight 

improvement in Acc for 225Hz classification compared to 200Hz classification. However, 
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Figure 4.5: EEG Acc of different frequencies [created by the author] 

the Sen was found to be higher for 225Hz, which led to a decrease in Spec. As the frequency 

was reduced further, there was a gradual decline in performance. Surprisingly, there was a 

peak-down in performance for the 75Hz experiment. 

The various resample values were tested to determine the maximum possible resample 

without architectural redesign. The highest possible resample value that could be tested was 

52Hz. With this resample value, the transmission output from the fifth to the sixth layer was 

l x l l instead of 50x11. Furthermore, other down-sampling resulted in nonpositive values. 

Despite these limitations, the proposed methodology maintained a performance level of 

over 91% even in the worst-case scenario, which indicates its practical applicability. 

Downsampling the data to 50Hz reduces the number of inner parameters in the C N N 

by an average of 800 values. However, it's important to note that this operation involves 

other processing steps. Reducing the first frequency (which typically provides the best 

Acc, Sen, and Spec) may not necessarily reduce time complexity, depending on the specific 

device used. Despite this, the results obtained through downsampling do correlate with 

the image classification discussed earlier in this subsection and provide valuable insights 

for measuring device needs. This knowledge can be used to optimize the performance of 

CNNs on different devices. 

The experiments conducted on both ECG and EEG data utilized the same C N N architec-
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Figure 4.6: ECG Acc of different frequencies [created by the author] 

ture, which allowed for the calculation of inner parameters for different frequencies in both 

cases. The results of the ECG experiments are presented in Figure 4.6. Notably the highest 

performance results were achieved at a frequency of 225Hz. There are two possible reasons 

for this outcome. 

The first is frequency suitability which balances redundant resolution in higher frequen­

cies with information loss in lower ones. This means that the 225Hz frequency is optimal 

for capturing the necessary information in the ECG signals without sacrificing too much 

resolution. The second possibility is that there is a correlation between the frequency used 

and the C N N model's architecture, which was ideally designed for this specific input form. 

Due to BCG measurement containing data on l K H z , Figure 4.7 depicts the successive 

downsampling from the highest option until obvious Acc decreases. The findings support a 

frequency suitability theory rather than architectural influence, but the statistical population 

is too small to make a final hypothesis decision. Nonetheless, promising experiments open 

up new avenues for future research. 

The following tables present the results of experiments on model complexity, including 

the number of blocks, filters, frequency, and inner parameters. The best outcomes for 

each architecture are shown in bold. However, evaluating a model solely based on Acc 

and complexity is insufficient. It becomes questionable when an increase in Acc of only a 
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Figure 4.7: BCG Acc of different frequencies [created by the author] 

tenth of a percentage requires hundreds or thousands of additional inner parameters. To 

address this issue, we propose using event-based level Sen as a performance comparator, 

as suggested by Wang et al. [92]. By applying the equation shown in Equation 4.2, we can 

obtain metrics that allow for a clearer comparison of models and aid in decision-making 

regarding adding weights and biases. 

Due to the high-frequency measurement, we initially tested the architectural analysis 

using BCG data. Our findings for individual experiments are presented in tables 4.14 and 4.15 

for CNNs with two to five blocks, respectively. For the two-block architecture, the highest 

Acc was achieved using the maximum set of filters. This model contains over 60k parameters, 

which is fewer than in networks with more blocks, but still achieved high Acc. 

In the three and four-block experiments, we found that similar parameters were needed 

to achieve peak Acc. However, despite having the same model complexity, the four-block 

architecture outperformed the three-block architecture in terms of both Acc and Sen2. In 

fact, the four-block architecture provided the highest Acc among all the models tested. 

For our final BCG experiment, we increased the model complexity by almost twice. Still, 

the resulting Acc increase was only 0.13% compared to a similar number of parameters in 

the best three- and four-block architectures. This suggests that increasing model complexity 

beyond a certain point does not necessarily translate to significant improvements in Acc. 
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Table 4.14: BCG C N N results for 2 and 3 blocks [created by the author] 

blocks 2 3 

filters freq Acc Sen2 params freq Acc Sen2 params 

10 600 92.09 74.01 18148 150 94.13 76.78 4098 
15 225 94.66 77.68 11108 150 96.65 82.14 8378 
20 100 95.75 83.03 8458 150 97.85 81.25 14158 
25 250 96.45 75.00 23338 200 98.56 83.92 23238 
30 100 97.29 80.35 15968 150 98.87 79.46 30218 
35 100 98.04 78.15 20548 150 99.07 79.46 40498 
40 100 98.52 77.67 25678 225 98.83 77.67 56598 
45 100 98.33 81.25 31358 150 98.97 79.46 65538 
50 100 98.5 71.42 37588 150 99.16 79.46 80338 
55 100 98.73 77.67 44368 100 99.04 80.35 92658 
60 100 98.69 80.35 51698 100 99.19 80.35 110078 
65 100 98.85 77.67 59578 150 99.12 79.46 133678 

Table 4.15: BCG C N N results for 4 and 5 blocks [created by the author] 

blocks 4 5 

filters freq Acc Sen2 params freq Acc Sen2 params 

10 225 95.2 77.68 4728 400 95.78 76.78 5718 
15 250 97.09 79.46 10328 400 97.61 81.25 12458 
20 225 98.16 81.25 17618 369 98.48 82.14 21558 
25 200 98.43 78.57 26538 400 98.66 82.14 33738 
30 400 98.54 81.25 42668 369 98.72 80.35 47918 
35 200 98.72 80.35 51488 369 98.83 72.32 64998 
40 225 98.92 78.57 67998 369 99.06 81.25 84678 
45 225 99.3 83.03 85718 400 98.91 77.68 107498 
50 225 99.15 85.71 104288 400 99.01 83.03 132438 
55 200 99.06 75.89 125988 400 99.19 75.89 159978 
60 200 99.24 81.25 149738 400 99.14 80.35 190118 
65 200 99.23 81.25 175538 369 99.16 78.57 222078 

The results of experiments conducted on ECG databases have been tabulated in a manner 

similar to that of the BCG, as presented in tables 4.16 and 4.17. While the Acc peaks of 

the architectures for ECG and BCG are similar in terms of the number of parameters, the 

former exhibits better Acc results. This holds true not only for the best results but also for 

architectures with almost the same number of neurons. Interestingly, the ideal frequency 

for ECG is around 225Hz and 250Hz, which is significantly higher than the frequency that 

resulted in the top Acc for several BCG experiments, i.e., 100 Hz. Given the experimental 

design, in the instance of ECG, Sen across events rather than samples adds no benefit 

because: 
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Table 4.16: ECG C N N results for 2 and 3 blocks [created by the author] 

blocks 2 3 

filters freq Acc params freq Acc params 

10 225 97.99 13614 225 98.79 8564 
15 250 98.33 23554 250 99.05 16144 
20 250 98.58 32484 250 99.14 24504 
25 225 98.5 38064 225 99.25 32564 
30 250 98.51 51994 250 99.26 45724 
35 250 98.66 62574 250 99.19 58584 
40 250 98.58 73704 225 99.28 70064 
45 250 98.52 85384 225 99.33 85564 
50 250 98.53 97614 250 99.32 106164 
55 225 98.64 101814 250 99.28 125024 
60 250 98.45 123724 250 99.26 145384 
65 225 98.63 127464 200 99.25 157884 

Table 4.17: ECG C N N results for 4 and 5 blocks [created by the author] 

blocks 4 5 

filters freq Acc params freq Acc params 

10 250 99.24 6794 250 98.99 6104 
15 250 99.33 13234 250 99.34 13024 
20 250 99.38 21724 250 99.43 22544 
25 250 99.46 32264 250 99.42 34664 
30 250 99.48 44854 250 99.5 49384 
35 250 99.49 59494 250 99.48 66704 
40 250 99.49 76184 250 99.54 86624 
45 250 99.51 94924 250 99.52 109144 
50 250 99.48 115714 250 99.55 134264 
55 250 99.52 138554 250 99.46 161984 
60 250 99.53 163444 250 99.52 192304 
65 250 99.52 190384 250 99.51 225224 

• There is more than one database and the data is measured in several ways. 

• Normal sections and with issues swap often, hence, unlike EEG and BCG, the same 

difficulty as with Acc arises here. 

• The database has more cardiac issues than just two classifications (positive and nega­

tive), where normal data represents a smaller group and emphasizes the preceding 

point. 

The EEG experiments on a selected patient, labeled as chb24, are presented in the same 

manner as in previous articles due to the setup of experiments carried out therein. This 
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Table 4.18: EEG C N N results for 2 and 3 blocks [created by the author] 

blocks 2 3 

filters freq Acc Sen2 params freq Acc Sen2 params 

10 150 83.34 91.67 9148 225 89.61 91.67 8538 
15 150 84.21 100 14528 225 90.99 100 15038 
20 150 84.64 100 20458 200 91.36 100 21598 
25 150 85.14 100 26938 225 92.6 100 32538 
30 150 85.09 100 33968 225 93.23 100 43538 
35 150 85.71 100 41548 225 92.94 100 56038 
40 150 85.98 100 49678 250 93.92 100 72918 
45 150 86.56 100 58358 225 93.27 100 85538 
50 150 86.92 100 67588 250 93.17 100 106138 
55 150 86.97 100 77368 250 93.05 100 124998 
60 150 86.83 100 87698 225 93.05 100 141038 
65 150 86.68 100 98578 250 93.72 100 167218 

Table 4.19: EEG C N N results for 4 and 5 blocks [created by the author] 

blocks 4 5 

filters freq Acc Sen2 params freq Acc Sen2 params 

10 225 91.17 91.67 6408 225 90.43 91.67 5838 
15 225 93.31 100 12668 250 92.94 100 12638 
20 225 94.29 100 20978 225 93.15 100 22038 
25 250 94.28 100 32238 225 94.56 100 34038 
30 225 95.03 100 43748 250 94.23 100 49358 
35 250 95.18 100 59468 250 93.54 100 66678 
40 225 94.91 100 74718 200 91.08 100 84678 
45 250 94.84 100 94898 250 93.2 100 109118 
50 250 94.32 100 115688 250 85.14 100 134238 
55 250 94.48 100 138528 250 87.53 100 161958 
60 250 95.3 100 163418 225 83.88 100 190838 
65 250 94.77 100 190358 225 86.28 100 223638 

decision was made based on the worst individual results observed in the segment-based 

level Sen analysis presented in Table 4.8. The results of the analysis revealed that the block 

number had the biggest impact on the final Acc comparison. 

Furthermore, it was observed that despite the implementation of batch normalization 

and dropout techniques, models with too many parameters tended to overfit. This phe­

nomenon was more prevalent in the design of the deepest architecture. It is important 

to note that overfitting occurs when a model is trained on a limited set of data, or the 

architecture's initial setup and optimizer are not made properly. 

In the Sen2 experiments, the results for all the blocks were found to be the same. As a 
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result, we decided to provide information about the optimized architecture for each patient 

separately to achieve the best Sen2 performance without using redundant parameters. For 

this purpose, Table 4.20 contains a detailed summary of the optimized architecture used 

for each patient in the experiment. It is important to note that these experiments were 

conducted using an architecture with four blocks, which provided the best Acc for all BCG, 

ECG, and EEG data. 

In our study, we observed a strong negative correlation between the Acc of the experiment 

conducted in [24] and the number of niters required to provide maximal Sen2. This finding 

was quite surprising, and it suggested that using fewer niters can result in higher Acc in the 

detection of seizures. 

One particular result that stood out was in the case of chbl2, where the measurement 

Acc was 90.31%. Interestingly, it was found that only one filter was needed to achieve this 

high level of Acc. However, despite the high Acc, we observed that the Sen and Spec values 

(as shown in Table 4.8) were relatively low, which resulted in false alarms in the case of 

normal data and more separate alarms in the case of seizures. 

4.3.3 Discussion 

Future research can explore various directions. In terms of model reusability and the fact 

that patients can suffer from multiple healthcare issues at once, it is essential to use the CAD 

system for decision support in all available cases. Moreover, there are other types of time 

series data that can be integrated into the system, such as galvanic skin response for epilepsy 

detection [64], electromyography signal for robotic interaction [80], and neuromuscular 

disorders [49]. 

However, the main challenge for researchers is to collect a diverse range of datasets 

that cover as many health issues as possible. Another limitation is the need for various 

CAD models for each disease. Despite these challenges, the presented methodology can 

be applied to different topics, and researchers can collect different kinds of data that are 

normalized based on the measuring device and trained for future deployment. 

In conclusion, future research can take several different directions. Researchers can 

overcome the current limitations by collecting diverse datasets, exploring different types of 

time-series data, and using deeper data analysis to enhance the system's performance. 

To take the research to the next level, deeper data analysis for the C N N classification 
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Table 4.20: Architecture optimization of each patient on CHB-MIT EEG dataset [created by 
the author] 

Patient No. seizures Sen2(%) Acc (%) filters 

chbOl 7 100 98.89 2 
chb02 2 100 100 1 
chb03 7 100 98.16 2 
chb04 3 100 99.56 2 
chb05 5 100 99.12 1 
chb06 7 100 94.92 3 
chb07 3 100 99.56 1 
chb08 5 100 95.89 1 
chb09 3 100 100 2 
chblO 7 100 99.45 3 
c h b l l 3 100 99.05 1 
chbl2 13 100 90.31 1 
chbl3 8 100 91.78 7 
chbl4 7 100 95.29 2 
chbl5 14 100 91.58 4 
chbl6 6 100 98.35 3 
chbl7 3 100 96.11 2 
chbl8 6 100 92.19 12 
chbl9 3 100 99.01 1 
chb20 6 100 95.26 3 
chb21 4 100 97.18 3 
chb22 3 100 99.39 6 
chb23 3 100 97.90 3 
chb24 12 100 91.55 9 

can be explored. This approach will reduce the complexity of the system and enable bet­

ter decision support. The possibilities of the architecture of neural networks have been 

analyzed to a certain level, which does not entirely cover all aspects that neural networks 

can contain. The number of neurons employed in the fully-connected layers is one of the 

C N N characteristics that remained constant throughout trials. A relationship between the 

ratio and preceding layers should be examined, where adding neurons to fully connected 

produces a reduction in C N N number of filters to preserve trainable parameter count and 

avoid overfitting. Another static variable is the kernel size for each block. These values were 

examined in ECG testing, but it doesn't mean that other sizes for other data types won't 

result in better performance. ECG variations are mostly defined by the QRS complex, which 

is only a portion of the input. The difference between a normal signal and seizure detection, 

on the other hand, is included in the entire sample. 
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During the course of architectural reduction tests, it was discovered that correlation in 

blocks with trainable parameter count peaks when Acc is not improving. As future work, 

the process partially involves trial-and-error analysis, which calls for the automation of 

an appropriate methodology. One possible solution is to conduct a different analysis of 

signal data between individual classes. This involves analyzing the amplitudes of individual 

samples, for which entropies can be used [2]. The concept is to calculate different entropies 

that describe the vector data from various perspectives. These entropies must be compared 

intra-group within a class and inter-group within all the data to analyze the level of their 

dissimilarity, thereby determining the necessary filter values for successful classification. 

By automating this process, researchers can save time and effort optimizing their models, 

ultimately leading to more efficient and accurate results. 

In addition to this, it is becoming increasingly important to use the appropriate tech­

niques to tackle issues related to "black-box" algorithms. It is essential to test the perfor­

mance of these models through various approaches to ensure that they are interpretable, 

explainable, and robust. Machine learning explainability aims to provide insight into how 

models work from input to output, and it can be categorized into two types: local and global. 

Local interpretability analyzes individual predictions made by a model and is closely 

linked to a set of features that must remain consistent. Amit et al. [27] introduced the 

ProfWeight approach to model explainability. This approach converts the high test Acc of a 

deep neural network into the poor test Acc of a shallow network. 

A deeper approach to local interpretability is local interpretable model-agnostic expla­

nations (LIME), which was developed by researchers at the University of Washington. LIME 

measures the output results of various sub-parts performed around a certain prediction. 

As the number of dimensions increases, it becomes increasingly difficult to maintain local 

authenticity for such models. 

In contrast to local models that examine the behavior of the model for a specific input, 

global models examine the behavior of the model for a wide range of inputs. This includes 

the impact of individual-specific input on the classification results. To measure this impact, 

accumulated local effects (ALE) is a technique that can be used. ALE analyzes how the 

model output changes as a specific feature changes while keeping all other features constant. 

The difference in the model's anticipated output due to the change in the feature value is 

computed using ALE. This is then integrated over the feature's range to visualize the impact 
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of the feature on the model output. By analyzing the ALE charts, one can determine how 

the model makes its predictions and identify the magnitude and direction of a feature's 

influence on model output. 

Another technique for measuring the effect of a feature on model prediction is partial 

dependence (PD). Like ALE, PD assesses the change in model output as a feature's value 

changes while keeping all other characteristics constant. However, unlike ALE, PD computes 

the average effect of the feature over all possible values, instead of integrating over the 

feature's range. PD plots can identify trends and interactions between features, which can 

help explain how the model predicts. 

These approaches can be used in vital data classification to determine whether the 

results are based on exact features, noise, or other aspects. By using ALE and PD techniques, 

we can identify the most influential features and explain how the model predicts. 
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Fulfillment of Objectives 

The goal of this dissertation was to propose improvements to the computer processing 

of signal data in the field of informatics, specifically in a hospital setting. Raw data was 

thoroughly analyzed to extract important components for further target selection. The use 

of C N N designs for data classification, which can reduce the need for multiple procedures 

prior to classification, was explored. This technique resulted in a more accurate and reliable 

classifier, while also reducing the computing complexity and time required for classification. 

The objectives of the study were described in chapter 2, where the primary objective was 

to enhance the efficiency of the classification system. The proposed solution's flowchart is 

illustrated in Figure 1.1, which was achieved through the pursuit of three goals. 

The initial goal involved the preparation of raw data into a suitable format, as outlined 

in section 3.4, with results presented in section 4.1. The aim is to investigate the potential of 

processing tasks in combination with a C N N classifier to reduce computing time or elimi­

nate certain processes, resulting in system reduction. Research findings were published in 

methodology [32], where the combination of proper normalization and C N N architecture 

resulted in the omission of complex preprocessing and feature extraction tasks. The method­

ology was compared with existing literature reviews, including prior research [33], which 

utilized CWT extractor and demonstrated information redundancy with no improvement 

in results and a more complicated C N N architecture. 

The secondary goal contained the use of a data fusion procedure to reduce complexity 

and dependence on specific channels. Section 3.5 provides a discussion of the current solu­

tions, while the presentation of results can be found in section 4.2. The network architecture 

was simplified by one dimension without compromising its ability to detect health risks. Two 

types of input were tested for the fusion process. The first consisted of multi-channel EEG 
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data, for which results were previously published in [24]. The proposed methodology was 

then applied retrospectively in conjunction with previous research approaches, as outlined 

in [22, 23]. The approaches involved the use of ordered time-series data, and the fusion 

process resulted in even better performance while requiring fewer internal parameters. 

The final goal covered an analysis of input frequency, with the theory and hypothesis 

presented in section 3.6 and the evaluation provided in section 4.3. An architecture analysis 

was also conducted. Frequency experiments on an EEG dataset were published in [24] and 

were later performed on both ECG and BCG data. The C N N architecture attempts were 

based on insights gained from the entire study and discussed in subsection 4.3.3, including 

possible future research directions. 
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Conclusion 

The primary objective of the thesis was achieved through three sub-areas of research. The 

first sub-area involved data processing aimed at eliminating counterproductive tasks. This 

enhanced the system's efficiency and improved overall Acc. The second sub-area involved 

data fusion, which aimed to reduce the complexity of C N N by one dimension. Finally, the 

third sub-area involved architecture analysis, which aimed to design a suitable number of 

blocks with reduced filters. This was done through frequency analysis to identify the need 

to measure device quality, thereby ensuring the Acc of the system. A l l experiments were 

conducted using free, publicly available databases with variously labeled health problems. 

These experiments allowed for a comprehensive analysis of the system's performance in 

different scenarios and helped to validate the proposed methodology. 

CAD systems are constructed using traditional flowchart procedures involving four main 

stages: preprocessing, feature extraction, feature selection, and classification. During our 

research, an investigation of these tasks in detail was performed. As a result, we presented a 

C N N architecture that demonstrated robustness in performance. Specifically, we found that 

we could skip the feature extraction step by normalizing the data based on its knowledge 

features. Our experiments showed that this approach led to higher performance than when 

using the CWT technique for feature extraction. Moreover, using normalized data resulted 

in a model with an input displayed as a vector rather than a two-dimensional matrix that 

includes useless weights and biases. This simplifies the model and reduces its computational 

complexity, making it more efficient. 

The initial research focused on ECG data but can also implement the methodology on 

EEG data to demonstrate its reusability. The hypothesis has been proven that the same 

architecture could be used for both data types, not just the preprocessing steps, but the 
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entire C N N model. By doing so, the results confirm the versatility and generalizability of 

the approach. 

Due to healthcare involving the use of various devices and channels to measure health-

related data, there is a need to simplify data processing and reduce dependencies on the 

specific channels used. To address this issue, a data fusion process was tested to reduce 

complexity and improve performance in detecting health issues. 

By properly setting up the network design, it is possible to reduce one dimension without 

sacrificing performance. This method has been experimented with using the EEG database 

and has been found to be effective. In fact, the method has been reused in BCG research 

and has resulted in increased Acc, Sen, and Spec. 

When it comes to image classification, having the highest quality input resolution is not 

always necessary. The C N N model is designed to detect the major patterns that distinguish 

one class from another. To transfer this knowledge from pictures to vital data categorization, 

frequency reduction tests have been conducted. These tests help to determine the most 

relevant features to use in the model, which can reduce the amount of data needed for 

classification. 

Furthermore, an architectural study of healthcare concerns has been conducted, which 

has helped identify a proper collection of blocks and filters that are correlated with the input 

shape. This study is important because healthcare data is complex and can vary in size and 

shape, depending on the source. The model can better handle this variability by identifying 

the appropriate blocks and filters and providing more accurate results. 

All submodules mentioned in the study were compared to papers from the literature. In 

most cases, presented results showed equivalent or improved performance with reduced 

complexity. In situations where Acc, Sen, or Spec decreased, the reduction was not signifi­

cant, and the benefits of the approach were discussed at length. 

Specifically, we found that our approach provided several advantages over existing meth­

ods. First, the submodules were significantly simpler, making them easier to implement, 

reducing the potential for errors, removing unnecessary pattern duplications, and not losing 

classification performance. Additionally, the approach was more computationally efficient, 

allowing for faster processing and reduced resource usage. It makes the methodology more 

flexible, allowing for customization and adaptation to a wide range of applications. 
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