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Abstract

The main goal of this bachelor thesis is implementation of a robust screen detector with slide
synchronization using various techniques including neural networks, keypoints extraction
and matching, text extraction using OCR and text matching. These methods are also
analysed and compared to their possible alternatives.

Abstrakt

Hlavnym cielom tejto bakalarskej prace je implementéacia robustného detektoru projekéného
platna, ktory zaroven umoznuje synchronizaciu detekovaného slajdu z platna s obrazkom z
prezentacie pomocou réznych technik, vratane neurénovych sieti, extrakcie a porovnéavania
klicovych bodov, detekcie textu pomocou OCR a porovnavania textov, spoloc¢ne s analyzou
tychto metéd a ich porovnania s alternativnymi rieseniami.
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Chapter 1

Introduction

In our time a lot of learning takes place online. Both for students and professionals who
want to improve their skills. However it is difficult to find quality materials online and
the best sources for education are often talks at conferences, meetups, talks, university
lectures, etc. All of these are often recorded. But it can still be chaotic enough to keep
switching between the video of the speaker and slides in his presentation to get a better
look at the slides. A logical solution is to take advantage of the power of modern computers
to automatically synchronize the video with high-resolution slides next to it using a some
sort of a computer program.

This is the idea behind SuperLectures.com”. It’s an online portal focused on making
the experience of learning from recordings as simple for the user as possible by allowing its
visitors to watch the video recording of the talk alongside synchronized slides. To simplify
the synchronization of the slides without manual editing, this process is done automatically
by a software and is just validated and tweaked manually later.

Even though there are several online” and offline® projects similar to SuperLectures, you,
as a user, would have to do the synchronization manually, which is rather time-consuming.
The uniqueness of this solution and the technical challenge are the main reasons I chose
this topic.

The goal of this paper is to create a similar solution, that will be both functional,
efficient and won’t require too much help of a person. The new program should be able
to detect the projection screen even in non-ideal conditions, such as camera angle changes
during the video, zooming in and out, panning, partially cropped screen and similar defects
in the recorded video and then detect the correct slide from the supplied presentation in
PDF * format.

Since the problem and implementation of the program requires multiple steps, we’ll
first look at the whole problem and its decomposition in chapter 2. The problems of object
detection, its historical development and the implementation are discussed in chapter 3.
Then the chapter 4 will focus on the problem of choosing the best matching slide from the
detected screen and the following chapter (5) will explain integration of all the parts into
single easily-usable project, followed by conclusion in chapter 6.

1

"https://www.superlectures.com/
2http://www.viidea.com/
3https://www.ispringsolutions.com/
‘https://www.iso.org/standard/63534.html
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Chapter 2

Problem overview

To fully understand the problem and later the final solution, we must first look into its
background and explain all the circumstances surrounding it. As mentioned in the intro-
duction, the goal of this paper is to design and implement a program which will be able
to synchronize the slides from a recorded presentation’s projected screen with the PDF
presentation.

First thing to know is that there currently is a working, though limited, implementation
of such a program in use at SuperLectures.com, hence there will be references to it through-
out this document. In is also important to know that there already is a small ecosystem of
tools built around the current solution, which helps working with it, such as a web applica-
tion for manually tuning the matching times and/or slides, therefore this application will
try to remain as backward-compatible as possible.

To implement the replacement system, we first have to design the overall architecture
and improvements. The biggest disadvantage of the current solution is the screen detection.
It only detects a screen if it is a quadrangle, therefore the screen cannot be cropped. Another
flaw is that even though it detects the screen throughout the video, the result is only the
mean average position of all its positions, making the subsequent slide matching inside the
detected screen almost impossible in case the video frame was zoomed in/out, or shifted
during the recording. The continuous detection will therefore be the first improvement.

In the following phase, the current solution looks for changes in the detected frame and
then matches it to one of the slides. This part performs reasonably well, therefore only
minor tweaks and updates will be made in order to get better performance and success
rate. To further enhance the matching of the slides, OCR (Optical Character Recognition)
and text-matching can be used.

The overall architecture of the current solution is also justifiably good, the separate
phases allow for good manual override/tuning if needed, but do not require it otherwise,
therefore the new solution will try to implement similar architecture with regard to the im-
provements to continuous evaluation in the screen detection phase. The following chapters
will sequentially discuss these components, usable algorithms, implementation and their
integration.



Chapter 3

Screen detection

The first problem we need to solve is to detect the projection screen itself as detected area
will be later used to match the currently projected slide with one from the presentation.

3.1 Analysis

3.1.1 Current implementation

In order to improve screen detection, I would first like to take a closer look at the current
implementation of the screen-detecting algorithm. It is would could be called a naive
approach. It uses OpenCV ! graphics library and works by detecting a polygonal shape
in the current video screenshot. It does this in several images across the video and then
computes the median of all these polygons and uses this area as a way for further slide-video
comparisons.

The first thing required to do such an operation is to find all edges, which can later
be checked whether they are polygons. The ideal function for this is already implemented
in OpenCV’s findContours function Z, which is an implementation of a border-following
algorithm implemented by Satoshi Suzuki and Keiichi Abe [26]. This gives us a list of all
shapes in the image 3.1.

3

Figure 3.1: Example result of the findContour function

"https://opencv.org/
“https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#findconto
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To further process these the algorithm skips shapes with small size relative to the
recording and processes the remaining shapes using the OpenCV’s approxPolyDP * function
which implements the Ramer-Douglas—Peucker algorithm °, which is used for reducing the
number of points in a curve that is approximated by a series of points [20], meaning it
simplifies a curve of a non-ideal rectangles to a simpler shape with four points. However,
it is very important to correctly choose the epsilon parameter as can be seen in figure 3.2
to get the best results and while most sources and users, (eg. see 5), suggest using 10% of
arc length, the current implementation uses two-pass implementation with values of 5 and
50, which is most likely to increase flexibility of this implementation.

Figure 3.2: Comparison of chosen epsilon values. 10% in the middle and 1% of arc length
at right 5

After detecting all the screens in all the processed images, the algorithm computes a
median of them all and recognizes this rectangle as the screen area.

As we can see, there are several problems with this algorithm. Even though it is able to
detect a screen with partially-covered side, it cannot detect a screen without one or more
corners and it also cannot correctly detect the screen if it changes position during the video
making zooming or cuts in the video impossible.

3.1.2 HAAR cascade classifiers

Another possible method for object detection, that is often used is a cascade classifier
based on HAAR-like features, named after their similarity to HAAR wavelets (defined by
eq. 3.1) . One of the detectors using these features was created by Paul Viola and Michael
Jones in 2001 [27]. A HAAR-like features are similar to a kernel in CNN. They are usually
rectangular with different squares of black and white, which define theis type/shape (fig.
3.3).

1 0<t<i,
Yt) =< -1 L<t<i, (3.1)

0 otherwise.

“https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html
Shttps://docs.opencv.org/3.1.0/dd/d49/tutorial _py_contour_features.html
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Figure 3.3: Haar-like features used in OpenCV [16]

The black ones have a value of 0 and the white ones have a value of 1. The value of
such a feature is then determined by multiplying the underlying grayscale image’s pixels’
values by the ones or zeros of these squares respectively and the result is a the difference of
sums of values under black and white squares. Since this is a computationally demanding
operations, which needs to be repeated for each feature the summed-area table or integral
image representation was established by Viola and Jones. Each element of the integral
image contains the sum of all pixels located on the up-left region of the original image (in
relation to the element’s position) (fig. 3.4) [29]. Thanks to this representation we can
compute the sum of rectangular areas in the image without processing all pixels in that
area. The resulting sum is then computed using the equation 3.2. Further optimization is
done using AdaBoost, thanks to which only relevant regions are processed.

Original Image Sum area table
3 |8 2 1 3 |11 |13 |14
6 3 9 7 9 20 |31 | 39
s |2 [4 |9 14 [ 27 T42 |59
6 0 1 8 20 (33 |49 |74
D ¢

Figure 3.4: Integral image example

> =C+A-B-D (3.2)

After the sum is acquired, the classification is done using the HAAR function 3.1.



While HAAR cascade classifiers can be trained °, they are best suited for detecting blob-
like feature such as those on human faces. They also cannot take proper advantage of large
datasets as they cannot properly represent edge features and they become the bottleneck in
the detection system. A much more scaleable solution is a CNN, which currently dominates
the object detection world and will be discussed in the following section.

3.1.3 Artificial intelligence

Artificial intelligence (AI) is defined as a system’s ability to correctly interpret external
data, to learn from such data, and to use that knowledge to achieve specific goals and tasks
through flexible adaptation[9]. One of the problems Al tries to solve is machine learning.
Machine Learning is the science of getting computers to learn and act like humans do,
and improve their learning over time in autonomous fashion, by feeding them data and
information in the form of observations and real-world interactions .

Machine learning is a very complex segment of computer science with a lot of different
approaches for various problems. The main objective however is the same for all of them -
to create a learning algorithm, which can generalize from its own experience. This means
it can find common keypoints/lines in the learning dataset and apply this knowledge to
new unseen examples and perform accurately. One of these approaches are nowadays very
popular Artificial neural networks (ANN), which will be further described later in this
section.

Artificial neural networks (ANN) are computational models inspired by biological neural
networks found in the brains of animals.

dendrites

terminals

out

in
n

Figure 3.5: Comparison of biological neuron and artificial neuron [24]

Shttps://memememememememe.me/post/training-haar-cascades/
"https://emerj.com/ai-glossary-terms/what-is-machine-learning/
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Property 1

Property 2

Input Hidden Output
layer layer layer

Figure 3.6: Basic structure of a fully-connected multi-layer perceptron 3.1.3 (ANN) with a
single hidden layer [6]

The animal brain is a complex system composed of neurons. Similarly the ANN is a
graph composed of connected artificial neurons as shown in 3.6. We can look at ANNs as
a very basic NN model. While biological neurons have dendrites to receive signal, body to
process it and axon to send the signal further on, artificial neuron has an input a transfer
function and output 3.5. While there are many first-look similarities, these are also many
differences, mainly because we have very limit knowledge of the inner workings of the brain
and also the fact that our brains are very highly affected by chemistry, hormones, etc. and
while we can simplify some of the mechanics, eg. in brain, some signals are more important
than others, this can be mimicked by weights on the artificial neurons’ inputs, some, such as
the connections between the neurons being created and destructed, had to be left out from
ANN models. Other differences include universality of the NN, training process (ANNs
are trained once, BNNs are trained continuously), processing speed (artificial neurons are
faster), topology (ANNs tend to be a lot simpler) and more ®). This is why ANNs and
BNNs should not be directly compared in applications.

The original idea behind ANNs was to mimic problem solving of the human brain.
However, it is more common to chose a ANN specific for one task, thus allowing for better
optimization and increasing efficiency. There are many ANN architectures (MLP, CNN,
RNN, LSTM, Deep belief networks, ...). Lets have a look at 2 possibilities - MLP and CNN.

Perceptron Invented in 1957 by Frank Rosenblatt in the Cornell Aeronautical Labora-
tory [22], perceptron networks are the oldest form of NN. Perceptron was also originally
intended to be used as a machine and was implemented in a machine called Mark 1 percep-
tron 3.7, which was designed for image recognition . Perceptrons are the artificial neurons
with inputs, output and a threshold function (equation 3.3), which determines the output.
They are usually connected in networks to create multilayer perceptrons (MLP).

fz) = (3-3)

1 ifw-z+b>0
0 otherwise

8https ://www.quora.com/What-is-the-differences-between-artificial-neural-network-
computer-science-and-biological-neural-network
“https://www.youtube.com/watch?v=cNxadbrN_al
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Figure 3.7: Diagram of the organisation of the Mark 1 Perceptron [19]

While useful at time and capable of learning, perceptrons have limitations. These
have been pointed out in a book called Perceptrons by Marvin Lee Minsky and Seymour
Papert [15]. After its publication, the NN research has slowed down. One of the main
drawbacks is the inability of perceptrons to recognize patterns with some deformation, such
as translation. Group Invariance Theorem in the book Perceptrons says that perceptrons
are not able learn this if the transformations form a group, thus the most complicated part
of the pattern recognition must be handled by hand-written feature detectors.

Curse of dimensionality MLPs suffer from Curse of dimensionality ', which makes
processing high-resolutions images very demanding in computational resources.

While perceptron networks are still used today in various applications, there are more
suitable architectures we can use for object detection.

Convolutional neural networks

Convolutional neural networks (CNN) are the most commonly used ANNs for image analy-
sation. They are biologically inspired variants of multilayer perceptrons that are designed
to emulate the behavior of a visual cortex. This is achieved by sparse local connectivity
of the convolutional layers - each neuron is connected only to a small region of the input
data. This is very similar to visual cortex in brain, where cortical neurons only respond to
a small region of the visual field, but overlap as to cover the entire visual field [31]. The
popularity in image analysis is mainly because CNNs require minimal preprocessing and
are capable to recognize patterns with a great variability while staying invariable to scale,
translations, rotations and other transformations ''. CNNs were created by Yann LeCun
and his collaborators in 1998, when they created a robust recognizer for hand-written digits

https://en.wikipedia.org/wiki/Curse_of _dimensionality
"http://yann.lecun.com/exdb/lenet/index.html
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conv2 feature maps
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convolution max-pool Full connection — Eull cc‘)n nection

convolution max-pool
(k=5, F=16, s=1) (k=2, 5=2) (k=5, F=32, s=1) (k=2, 5=2)

Figure 3.8: Example structure of a CNN with convolutional, pooling and FC layers

- LeNet. It was later formalized as convolutional neural network '?. Later, in 2012, in a
competition called Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) SuperVi-
sion (later known as AlexNet created by Alex Krizhevsky) has triumphed all its competitors
by almost 10% in Top-5 error rate '*. After this success, the CNNs became very popular.

Structure

h3

hi dz

w2 dz
wil w3

Input to the Output of the

Convolutional Layer Kemels (filters) Convolutional Layer

Figure 3.9: Convolutional layer

Each CNN is constructed of several layers which serve as building blocks (fig 3.8). These
include:

1. Convolutional layer - the main layer of CNN consists of set of filters, which are
convolved across the image during the learning (fig. 3.9). After learning each kernel
is taught to activate when it detects some specific feature.

2. Pooling layer - serves to down-sample the input data. There are several functions
being used - MazPooling (fig. 3.10) and MeanPooling are the most commonly used.

3. ReLU layer - Applies
f(z) = maz(0,z)

to the data (convolved image), thus removes negative values and increases non-
linearity of the network without having very negative impact on generalization accu-
racy and being faster than other functions

2http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
3http://image-net.org/challenges/LSVRC/2012/results. html
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4. Fully connected layer - In the final stage of CNN the fully-connected layers does
the final categorization of the input data.

5. Loss layer - Contains a loss function, which penalizes an error in prediction. Often
used are SoftMax, Sigmoid cross-entropy or Euclidean loss.

Single depth slice
1 2 3

N = O O

4 6 8
3 1 0 3 4
1 2 4

A

Y

Figure 3.10: Max pooling example with 2x2 filter and stride = 2 [2]

Hyperparameters

Hyperparameters are important for the overall outcome of the training. They are set before
the learning process begins [30]. In terms of MLPs these are number of hidden layers,
activation function, number of epochs, batch size or learning rate.

The CNNs have few special hyperparameters: number of filters, filter size, number of
fully connected layers, max pooling shape and others [14]. All of these may be used to
avoidoverfitting ', optimization problems'®, excessive information loss and more, which
can result in failed learning.

Comparison to MLPs

As stated earlier, convolutional neural networks are MLPs with a special structure. The
convolution kernel in convolution layers can be seen as block of neurons being applied over
the image over and over again. Unlike MLPs with fully connected layers CNNs uses sparse
local connectivity between adjacent layers, thus ensuring strong response to a spatially
local input pattern and allowing to assemble such small patterns by stacking these layers
to create a non-linear filters [31]. This allows CNN to first recognize simple patterns such
as edges and then continually connect these simple patterns to form more complicated ones
(fig. 3.11).

Yhttps://enwikipedia.org/wiki/Overfitting
Bhttps://www.jeremyjordan.me/nn-learning-rate/
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Figure 3.11: Image features detected using kernels in first and 2 deeper layers

Various problems solved using CNN

As stated earlier, CNNs are very good at analysing images thanks to their ability to detect
patterns. Thanks to this, they can be used to solve several computer vision problems. The
first use case is called image classification while the second one is called object detection.
In case we would want to get pixel-precise position of the image, we would want to use an
algorithm for instance segmentation, eg. Mask R-CNN, which gives us the precise mask of
the object, but is a lot slower in result.

To solve object detection, we cannot simply use CNN. However there is a slightly up-
dated version of Convolutional Neural Networks called Region Convolutional Neural Net-
work (R-CNN), which extracts 2000 region proposals from the image and then runs a CNN
on every one of these regions. This method gives us a bounding box around the object
of interest, but is wasteful, because the proposed regions overlap and the network has to
compute the same features over again. This problem can be solved by Fast R-CNN and
newer Faster R-CNN. Here’s a short comparison of them.

Classification Object Detection Instance

Classification

+ Localization

Segmentation

2 m\ SR

CAT, DOG, DUCK CAT, DOG, DUCK

7 J
e

Single object Multiple objects

Figure 3.12: Comparison of various problems of image analysis

Fast R-CNN Fast R-CNN does not compute the features for each proposed region.
Instead, the features are extracted once for the whole image. This makes it a lot faster
both to train and evaluate images [7].

Faster R-CNN Faster R-CNN (fig. 3.13) is another evolution of R-CNNs. In this case
the selective search algorithm for proposing the regions was found to be the bottleneck and
was replaced by Region Proposal Network (RPN), which proposes the regions of interest
[21]. The rest of the processing is similar to Fast R-CNN.

13
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Figure 3.13: Architecture of Faster R-CNN [4]

Faster R-CNN

As we can see, Faster R-CNN is the fastest region-based CNN, making it the perfect can-
didate for our implementation. In figure 3.13, we can see the overall architecture of the
network. However, as explained earlier, ANNs are composed from different layers and in
CNNs, there are multiple convolutional layers. These are illustrated in the figure as con-
volutional backbone. The more layers a network has, the better it can perform. However,
deeper neural networks are more difficult to train [8] because their optimization is too prob-
lematic as backpropagation via too many layers result in . ResNets (Residual networks; fig.
3.14) solve this problem by adding shortcut connections (connecting input with nth layer)
making the ResNet architecture perfect to use as Faster R-CNN backbone. There are also
some newer architectures build on top of ResNet (ResNext, DenseNet, etc.) and also other
architectures further improving the original AlexNet, eg. Inception, but they will not be
used or explained in this project.
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Figure 3.14: Building block of ResNet ANN (8]

3.2 Implementation

The whole program is implemented using the TensorFlow (TF)' framework in python.
TensorFlow was chosen mainly for its high level of API, built-in CUDA support'’ and nice
community support, which is important in case of problems in future development. The
CUDA support is particularly crucial. It is a platform created by NVIDIA'® for parallel
computing allowing faster training of NNs on GPU. Tensorflow also comes with a variety
of pre-trained models in a so called ,model ZOO“'” which will come in handy for transfer
learning as described in 3.2.4.

3.2.1 Data

The most important part of training a new NN model is the training data. Using these the
NN’s model can learn all the values required for successful evaluation and high precision.

The whole dataset should be divided into 2 parts — training and validation. For this
I chose to divide the whole dataset in ratio 70:30, which is often recommended. The reason
to do such a division is to have enough data for training, but save some data as reference.
Sometimes it is also recommended to leave a third part/set of images to use for testing,
but I will be using the images that were formerly removed from the dataset due to some
problems like similarity or small variations.

Training dataset This is the dataset used to train the ANN in the first place. Based on
these data, the NN adjusts its parameters during the training. This is why the NN cannot
be tested using these data - it has already seen them and is prepared for them.

Validation dataset Using the validation dataset the developer can see differences and
is able to tune hyperparameters (see 3.1.3). It is optional but highly recommended.

Yhttps://www.tensorflow.org/

"https://www.tensorflow.org/install/gpu

Bnttps://developer.nvidia.com/cuda-zone

Yhttps://github.com/tensorflows/blob/master/research/object_detection/g3doc/
detection_model_zoo.md
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Testing dataset The final dataset is used to evaluate the NN in terms of its precision.
The NN should not be changed after evaluation using this dataset.

3.2.2 Sources

For a successful training session of a Faster R-CNN model to detect such a variously-
looking object as a screen or even more so - a slide, we need a large number of images
under different conditions and with different presentations, different camera angles, different
venues, lightning conditions, etc. Therefore, we first have to create such a dataset, because
there is not any available online. To get enough images, I first created ,native“ — manually
labeled images from real presentation recordings, which was then enhanced by adding new
generated — synthetic data.

SuperLectures

Thanks to the SuperLectures I already had several hours of video from 1284 recording
session from 52 different events. Unfortunately the event venue and therefore the camera
angle were often the same or similar (eg. the room D105 at FIT BUT). Also many of
the presentations were made using a very similar XTEXbeamer template. However most
of them were used to train the final NN to increase the variability of images displayed
in the projected area. This helped the NN not to focus on the image itself, but rather
circumstances around it like a frame or its brightness. The unused images were used as
testing dataset.

The first step was to create screenshots from the recordings every 5 seconds using
OpenCV. To minimize wasting computational power during the learning process, I removed
visually similar screenshots using perceptual hashing as described in 4.1 using the Image-
Hash library?’ for Python. This process generated 14195 images, but there still was a lot
of ,garbage®, ie. images without screen, images from the beginning of the video, where the
only thing displayed was a logo, some blurred images, or otherwise useless images. These
had to be sorted out manually by hand, which is a rather lengthy process. However, after
successfully sorting through all of them, the SuperLectures dataset had a total number of
6937 images that had to be labelled.

Labelling The labelling process is usually done manually. However thanks to the fact
that the camera was often positioned in a single stable position, I managed to make it
semi-automated. For each presentation, where the screen is stationary I labeled single
image using the Labellmg program?®', which allows simple and fast manual labelling and
outputs the labels in Pascal VOC formatted XML??, and then copied the label annotations
to the rest of images from the same event using a python script.

Automatically generated - synthetic data

To ensure the best possible accuracy for new presentation, I decided to generate more
synthetic data. In this case, it first meant to obtain a large number of slides from real
presentations. The perfect data source for such a task was SlideShare **, where people

2nttps://github.com/JohannesBuchner/imagehash
nttps://github.com/tzutalin/labelImg
*2https://gist.github.com/Prasad9/30900b0ef 1375cc7385£4d85135£dbad
Znttps://www.slideshare.net/
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Figure 3.15: Example of slides scraped from slideshare.net

publicly post their presentations. However, SlideShare does not have any public APT for
downloading the images. This was solved by creating a simple script, which can scrape the
site consequently by following links.

I used a fast scraping framework for python called Scrapy 2?, in which I created a
»spider” for SlideShare. It downloads individual slides and saves them on disk. This way,
I obtained a nice dataset of 2162 images, but it is easy to download more anytime and
re-run the training with new slides if found necessary.

Having the slides prepared, I selected a corpus of templates consisting of 10 different
screenshots from different venues from the SuperLectures dataset and a few different ones.
downloaded from the internet. On these images, I manually marked the 4 corners of the
presentation screen. Then I wrote a python script which mapped the downloaded slides
to these 4 points using the OpenCV’s getPerspectiveTransform and warpPerspective
functions. This way I mapped each one of the 2162 downloaded slides to one random
template. The result of this process was a dataset extension of 4395 images, which were
also automatically labelled and prepared to be used in the dataset.

3.2.3 Training

Training setup To maximize the benefits of using TensorFlow with CUDA support, the
training took place on NVIDIA GPUs with CUDA support. The early experiments set-up
consisting of 1 NVIDIA GTX1050 with 4GB GPU and Intel i7-7700HQ CPU. These were
soon found to be too slow and the training was soon moved to a much more powerful
machine with 2 NVIDIA GTX1080 8GB GPUs and AMD Ryzen 5 1600X CPU. This sped
up the training proces over 2.5 times (0.617 sec/step vs 0.211 sec/step on average).

3.2.4 Preparation of learning data

As described in the previous sections, this way I created a relatively large number of labelled
images with labels in separate .xml files. This was required because of the manual labelling
done with the Labellmg program, which only supports the Pascal VOC XML format.
However, for TensorFlow to be able to work with the dataset, it must first be translated

*https://scrapy.org/
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and saved in TF’s TFRecord *° format, which both serialized image data and annotations.
This can be done by using a pre-made script from the tensorflow /models GitHub repository
— TensorFlow’s Object detection API in case we transform the XML files to CSV, but
in this project, it is integrated as a python script transforming the XML files directly
to the TFRecord format, which is a proprietary file format of TF containing both the
images (encoded in JPG) and their This is done by creating a tf.train.Example object
with features consisting of all aggregated features — image width, height, bounding box
coordinates and its label (both in textual representation and numerical). The Example
object is then serialized into a TFRecord file using TFRecordWriter. This way, the dataset
was divided into 2 files/sets as described before and these were used for the training. After
some experimentation with training the model using different datasets, it could be observed
that the best results and most stable learning process could be achieved by randomly
shuffling the dataset as much as possible, so there were not similar images (screenshots
from the same video) in the same batch. In these cases only minor peaks could be observed
in the LocalizationLoss and TotalLoss and the precision (mAP@0.5) rose more steadily.

Transfer learning

The dataset prepared for learning and evaluation now had around 10 000 images. This
may look as a large number at first sight, but it is not. For comparison, large datasets like
COCO ?° contain hundreds of thousands of images. To improve learning of a new NN, it is
possible to use and existing model as a starting point. This way the weights in it are not
completely random, which makes the whole learning process faster and more stable. This
method is especially useful when training on small datasets like this one.

To start training a model using transfer learning, it is required to have an existing
pre-trained model. These can be found from various sources online. Some of these models
are already in TF’s model repository’s ,model ZOO* [1]. There is also a table of relative
performance of each model. In the table below, we can see a short extract concerning Faster
R-CNN networks.

model name speed | accuracy [mAP]
faster_rcnn__inception_ v2_ coco 58 28
faster renn_ resnetb0 coco 89 30
faster _renn_ resnetl01 coco 106 32
faster rcnn_ inception_resnet_ v2 atrous_ coco 620 37

At first, I chose the Inception v2 architecture since it has a nice speed-to-accuracy
ratio. But later, when compared to ResNetl01, the results were evidently worse. For
better visualization, we can look at fig. 3.16, where we can see comparison of the total
loss of these two networks. We can see that even though ResNet101 performs better, the
difference is not significant. However looking at fig. 3.17, we can see that ResNet is better
at localizing the final bounding boxes, which was later also proved experimentally.

nttps://www.tensorflow.org/guide/datasets
%nttp://cocodataset.org
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Figure 3.16: Total loss comparison. Orange = Inception v2; Blue = ResNet101

Loss/RPNLoss/localization_loss
tag: Losses/Loss/RPNLoss/localization.loss

|
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Figure 3.17: Localization loss comparison. Orange = Inception v2; Blue = ResNet101

The training itself was simplified by the authors of the object detection research model
in TF’s model repository. It contains several useful scripts to get started and the model
configuration is done using pipeline.config, which defined using protobuf messages (in
textual representation). Most of the configuration options were at first left to the ones
set in the pre-trained model and only tweaked later after conducting some experiments,
because they were optimised for both the architecture and the original dataset. Due to the
complexity of the configuration file and number of possible options to set, only some key
options are listed in the overview below.

num__classes - number of classes the detector should know

feature__extractor - type of the NN backbone used for feature extraction (ResNet)
grid__anchor__generator - parameters for generating image anchor points
batch__size - number of images processed in single iteration

learning_ rate

fine_ tune__checkpoint - path to the pre-trained model

data__augmentation__options - configures various pre-processing functions for data
augmentation

train__input__reader - data sources for training

eval__input_ reader - data sources for evaluating the newly trained model

The training itself was performed in several iteration over the time of several weeks, ex-
perimenting with various options and training example combinations. Over these iterations,
several improvements to the model’s configuration were made.
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Data augmentation

Data augmentation is a technique to artificially create new training data from existing
training data. This is done by applying domain-specific techniques to examples from the
training data that create new and different training examples. The intent is to expand the
training dataset with new, plausible examples. [5]. These augmentations include image
transformation and manipulation techniques such as flips, crops, shifts, colour changes, etc.

This technique was configured after few training iterations, after evaluating, when it
could be observed that the new model is focusing only on projection screens that are
clearly visible and in foreground, which is the majority of images in the dataset, but fails
when the screen is further away. To minimize this effect, random_horizontal_flip and
random_crop_image options were added to the data_augmentation_options array and
the NN was retrained. At first, the training process seemed to be too unstable, but after
around 70000 steps, the total loss started converging to zero. Subsequent testing showed
improved detection rate, though the model still fails to detect screens that are too far. This
can however be ignored, since it is not relevant for the entire project, because even if the
screen was detected correctly, it usually is not possible to match the exact slide from such
a distance, especially with the video quality seen in the obtained data.

Another problem that was observed during the experiments was detection of projection
screens where in bright environments, where the contrast of brightness of the projected slide
and the environment is not very big. This was mitigated, though not completely removed
using random_adjust_brightness augmentation step.

Grid anchor generator’s aspect ratios

Another parameter from the configuration file that was changed is the list of aspect ratios
in the grid_anchor_generator option from the config file. The defaults include 0.5, 1.0
and 2.0. These are used to generate the size sliding windows used in the NN. This can be
tuned to performed better for projection screens. Analyzing the downloaded dataset, we
can see, that most of these are in 4:3 (1.33) and 16:9 (1.77) ratios, so these were added to
the list.

Optimizer

Another parameter that was changed during the experiments was the training optimizer
function, which was set to momentum by default. After investigating the qualities various
algorithms [11], this was changed to Adam [12]. However, the convergence speed did not
improve drastically and this change was therefore reverted.

3.3 Results

As described before, the training and evaluation is done using external scripts from TF’s
repository, for usage of the NN however, there is the Detector implemented, which initial-
izes the TF API and handles both detection of objects and their visualization. It is used
in both the final solution and via helper commands ./detektilo utils detect-image
and ./detektilo utils detect-video, which can be used for demonstration and de-
bugging purposes for detecting the screen in eight images or videos respectively. Other
scripts, which were created in this part of the project include extract-screenshots for
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extracting the training data — frames from the video dataset provided, annotate for gen-
erating annotations for all images in one directory, where the screen position is unchanged,
unify-dataset used for extracting training and testing data and putting them to a single
folder, and generate-tfrecords, which generates TFRecords by extracting the data from
all annotations it can find. All of these are available in the main script and have user help
available if needed using the —-help option.

Evaluating the precision and success rate of this model can be rather challenging con-
sidering the variability in visual appearance of a projection screen. Due to this factor, first
the automated model evaluation will be discussed followed by a real-world usage overview.

3.3.1 Model evaluation

The final model training took over 50000 steps and was stopped when the total loss stabilized
under 0.05. Previous experiments were done on models after as much as 228160 steps, but
they showed no extra potential in detection nor localization of the projection screen.

Figure 3.18: Chart of the model’s TotalLoss over number of steps during the training

The evaluation of the model itself, was done using the eval.py script from the TF’s
object detection API repository running simultaneously with the training script, evaluating
the each new checkpoint on the testing dataset. The default set of metrics is based on the
protocol for the PASCAL VOC Challenge ?". This was changed to the metrics set from
COCO challenge %®, which is similar, but adds mAP (mean average precision) at several
IOU (intersection over union) thresholds and recall metrics, which define how good does
the model find all the positives, while the precision only says the percentage of correct
predictions, see fig. 3.19.

2Thttp://host.robots.ox.ac.uk/pascal/V0C/voc2010/devkit_doc_08-May-2010.pdf
Bnttp://cocodataset.org/
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Figure 3.19: Graphical comparison of precision and recall. Source: [28]

The progress after each evaluation step was monitored and visualized using the Tensor-
board application ??. The evaluation script was also configured to plot 100 images, which
are displayed directly in Tensorboard for better understanding of the progress.

https://www.tensorflow.org/guide/summaries_and_tensorboard
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Since the resulting bounding box of the detected screen will be further used for slide
matching, it is important for the bounding box to be as precise as possible. For this reason
mAPQ.75I0U will be used as the main metric for evaluating the model’s precision. This
was finally at 0.9742 at the end of the training. The model’s recall has finally stabilized
at 0.6775. This shows that even though the model selects mostly relevant objects from the
scene, it may struggle to find them in some cases.
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Figure 3.20: Chart of model’s mAP at 75% IOU over the training

3.3.2 Real-world usage

While the model’s precision is considerable to be high, there are some cases when the
detector may not perform as expected. These should be taken into consideration when
working with the program. For the purpose of comparison and results presentation, the
images will be divided into 3 categories, examples of which can be seen in figure 3.21:

e optimal conditions - large clearly visible projection in darker environment

e suboptimal conditions - low contrast between projection screen and the environ-
ment, screen is too far from the

e common conditions - anything between the first 2 categories

Under suboptimal conditions, the detector can fail with either no match or a false
positive. This has to be considered for further development.

Below is a table with percentage of successfully detected images from both categories.
This evaluation was done manually on a sample of 150 images. A successful detection is
such where there is at least one bounding box around the screen covering most of it in a
way that allows further slide matching.

Ideal Normal Suboptimal Total
Total 42 51 57 150
Succes | 39 (92.85%) | 46 (90.2%) | 43 (75.43%) | 117 (78%)
Failure | 3 (7.14%) 5(9.8%) | 14 (24.56%) | 33 (22%)
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(a) Ideal conditions

(b) Suboptimal conditions

Figure 3.21: Examples of ideal and subideal conditions for screen detection

3.3.3 Comparison to previous solution

Since the goal of this paper is to improve the existing solution, we need to compare also the
screen detection part of the project. It is hard to say which one is the absolute winner. We
can however say that this new screen detection solution is much more flexible, since it does
not enforce the form of the projection screen nor does it have any problems in cases where
one part of the projected image fades into the background making it impossible to detect
an edge and therefore the projection screen in the original solution. And since we can see
the problems of detecting the screen, we can know we can expect them and counteract in
the subsequent scripts.
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(b) Cut-off corner of the projection screen

Figure 3.22: Examples of various edge cases with successful screen detection.

3.4 Conclusion

This chapter described various methods available for detecting an object in an image in-
cluding a description of various aspects of these methods and their comparison. It also
described the proposed a solution for detecting a projection screen using Faster R-CNN
with Resnet101 backbone. The results described in section 3.3, show that detecting an
object as complex with as many possible visual representation as projection screen is very
difficult, but this solution is viable and can be used in various scenarios despite its caveats.
These include mostly false positive matches, which can and should be handled in a sepa-
rate script, that will be used to process these outputs. Such a script is proposed and its
implementation is described in the following chapter (4).
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Chapter 4

Slide matching

After finding the appropriate part of video screenshot with one of the possible techniques
discussed in previous chapter (3), we need to find the matching slide in the set of slides from
the presentation corresponding to current video. This chapter will discuss several different
techniques, that could be used for comparing single image to a corpus corresponding of
multiple images, finding the best match or failing gracefully, which is important in order to
avoid false positives.

4.1 Visual similarity

Since the previous screen detection algorithm extracted only the relevant parts of the image,
ie. the screen, we could theoretically be able to simply compare the two images by their
visual appearance. One of the methods that could achieve this is called perceptual hashing.
It is a type of algorithm which hashes images based on their features ??7. Compared to
cryptographic hashing functions like MD5 or SHA-1, which produce a completely different
hash even on slight input change, perceptual hashing functions are analogous if features are
similar.

4.1.1 Usage

This method is used both when preparing the dataset for NN training to only extract frames
from videos that are not too similar and detecting whether the currently projected slide
has changed between video frames. It could be used even for slide matching in case the
slides are completely different, which usually is not the case and it would therefore be very
complicated to distinguish between them. Another problem would be in cases where the
projection screen is skewed and therefore the images wouldn’t appear to be similar.

4.2 Feature detection, description and matching

Feature detection in the context of computer vision is a method, which is able to make
a local decision at every point of an image whether or not the point is an image feature
and describes this feature using a vector called descriptor. This section will further offer
description of some of these methods based on [23].
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4.2.1 Features

While there is no exact definition of what can be a feature, we can vaguely describe them
as points of interest in the image — keypoints. The exact implementation depends on the
used feature detection algorithm, which will be discussed later. There are several common
main types of features:

e Edges - Edges are points in image, where 2 different image regions meet. Various
implementations can have different thresholds on the smoothness of the edge.

e Corners - Corners often describe points, where 2 edges were detected near each other
and have then been merged to a corner.

e Blobs - Blobs are used to desribe regions in an image, where the structure is smooth.
The specific point can be chosen as local maximum value, center of gravity or similar.

e Ridges - Ridges are another type of important features. They can be detected as
2 parallel edges near each other. Ridge detectors are often used in aerial images
processing for road extraction or in medical images for extraction of vessels.

Descriptors

In order to increase the chance of matching the correct pair of keypoints from 2 images,
it is needed to describe them in a more precise fashion. This is done by the process of
feature description, when an vector is assigned to each of these keypoints. This is done by
extracting a small image portion around the keypoint.

4.2.2 Detectors

The main task of a feature detector is to chose and describe features from any given image.
In order to be able to accomplish this task, it needs to satisfy these properties: repeatability
and reliability. Repeatability is the ability to detect the same features in different images of
the same scene even under different conditions like lighting, camera angle, zoom or optical
distortion. Under reliability we mostly understand the detector’s ability to detect strong
features, which will be characteristic for the current image, therefore minimizing the chance
of false positive when matching the images. Another very important aspect of feature
detectors is the size of feature descriptors. This size strongly affects time and memory
requirements for the detection [3]. Following is a non-exhaustive overview of common
feature detectors. All of them are available in the OpenCV library, which will be used in
implementation.

SIFT Scale-Invariant Feature Transform is an algorithm created by D. Lowe in 2004
[13]. It uses scale-space filtering, in which Laplacian of Gaussian (LoG), respectively its
approximation Difference of Gaussians (DoG) is found for image with various o values.
Then the algorithm looks for local extremes over both space and scale to ensure the best
keypoint representation in the scale. This is done by comparing the pixel to its 8 neighbours
in current scale and 9 in previous and next scale, see 4.1. It then filters out low-contrast
keypoints by eliminating keypoints with intensity lower than a defined threshold. The
rest of the candidate keypoints are then assigned orientation to for rotation invariance by
choosing a peak in histogram of the keypoint’s neighbourhood. The keypoint’s descriptor
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is created in similar way adding more measurements for brightness invariance, etc. Thanks
to these measurements it eliminates around 90% of false matches while discards only 5%
correct matches according to the paper. [17]
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Figure 4.1: SIFT searches for local extrema over both scale and space

SURF Speeded-Up Robust Features is a faster version of SIFT created in 2006 [3]. SURF
replaces the LoG approximation using DoG by using box filters. One big advantage of this
approximation is that, convolution with box filter can be easily calculated with the help
of integral images (see. 3.4) [17]. SURF assigns orientation using wavelets’ responses in
both horizontal and vertical direction on the neighborhood. These are also used for the
final descriptor computation, but with larger neighborhood divided into several regions. In
short, SURF adds a lot of features to improve the speed in every step. Analysis shows it
is 3 times faster than SIFT while performance is comparable to SIFT. SURF is good at
handling images with blurring and rotation, but not good at handling viewpoint change
and illumination change [18].

ORB Oriented FAST and Rotated BRIEF is the newest algorithm created in 2011. It
is a free alternative to the patented SIFT and SURF algorithms. As the name suggests,
ORB is a combination of FAST keypoint detector' and BRIEF descriptor’ with some
modifications for speed boost, but also for improving the feature extraction. ORB modifies
FAST to add rotation invariance by computing the intensity weighted centroid of a keypoint
neighbourhood patch with the corner keypoint in the center. The descriptors are computed
using BRIEF, which is however known for worse results with rotation. ORB solves this
problem by rotating the descriptor using the keypoint’s orientation.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3991&rep=repl&type=pdf
’https://infoscience.epfl.ch/record/167678/files/top.pdf
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Selecting keypoint detector

All of the aforementioned algorithms are battlefield proven and capable of extracting quality,
valid and stable keypoints for most use cases. ORB is the fastest algorithm while SIFT
performs the best in the most scenarios. For special case when the angle of rotation is
proportional to 90 degrees, ORB and SURF outperforms SIFT and in the noisy images,
ORB and SIFT show almost similar performances [10]. However it is important to note,
that both SURF and SIFT are patented algorithms and paid licenses, which makes them
less usable for this project. The paper also shows the ORBs superiority, when it comes to
comparing scaled images, which is very important in case of matching high-resolution slides
from presentation to their small counterpart from the video.

4.2.3 Matching

After successfully detecting the keypoints and describing them using one of the detectors,
it is now required to match the keypoints from the query image and candidate image. In
OpenCV, this can be done using 1 of 2 most commonly used matchers.

BFMatcher BFMatcher isa OpenCV’s class implementing a Brute-Force matcher, which
is very simple. It works by finding the best match — the most similar descriptor in the train
image for every descriptor in the query image. This can therefore be computationally more
expensive.

FLANN FLANN stands for Fast Library for Approximate Nearest Neighbors, which is
a library for performing fast approximate nearest neighbour search in high-dimensional
spaces®. It builds an efficient data structure - K-D tree*, which is then used to search for
nearest neighbour.

They both typically work fine in most use-cases and can be tweaked by several pa-
rameters to gain optimal results, but when the brute force method has its advantages in
accuracy, because it will always return the best possible match, while FLANN will find an
approximate nearest neighbour. The speed gain from FLANN is negligible in this project
compared to the time required for other processing, therefore BFMatcher will be used.

4.3 Text matching

Another possible approach to matching screenshots slides is to use the text in them to try
and find the best slide. In order to do this, it is first required to extract the text from
all the images, create some sort of machine-friendly representation of this text, and then
compare these texts in a way, that can return the best match.

4.3.1 Text detection

OCR stands for Optical character recognition. It is a method used for converting picture
representation of text to its editable form. This is most commonly used for converting
scanned paper documents into electronic format, that can be edited in a word-processing

3https://www.cs.ubc.ca/research/flann
‘https://en.wikipedia.org/wiki/K-d_tree
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program. It is important to note, that no OCR program is 100% accurate and the subse-
quent implementation should count on that.

Tesseract

Tesseract is an open-source OCR engine developed at HP between 1984 and 1994 [25].
Tesseract has unicode support and can recognize multiple languages (over 100) even though
it was originally developed to recognize english only, and it can be trained for new lan-
guages’. In the latest version (4), it includes new NN-based recognition engine, which
has higher accuracy. Tesseract also provides libraries for development and there are many
community-owned wrappers for various languages, eg. pytesseract® for Python.

Preprocessing

Tesseract OCR engine is very sensitive to the input data it gets. However, real-world images
are often less then optimal and they often contain noise, distortion or other errors. Even
though Tesseract does some preprocessing by itself, better results can be achieved by doing
some preprocessing tailored for our input data beforehand. Following is a non-exhaustive
list of possible and used preprocessing methods.

e Threshold In computer vision, thresholds are used to easily create 2 separate pixel
groups. The output of this operation is a binary image consisting of ones and zeroes,
often represented using white and black colour. This method works with a user-set
threshold limit. Any pixels under this threshold are assigned a value of zero and the
others are assigned one.

— Global threshold is one of the variants of thresholding. It works with a single
global threshold value used for the entire image.

— Adaptive thresholding is especially useful in cases, when the image has differ-
ent lightning conditions in various sections. With adaptive threshold, the algo-
rithm computes the most accurate threshold value for every region of the image.

As we can see in fig. 4.2, the adaptive threshold with ADAPTIVE_THRESH_GAUSSIAN_C
set as adaptiveMethod perfoms best. This method computes the threshold from
gaussian-weighted sum of the neighbourhood values.

"https://github.com/tesseract-ocr/tesseract
Shttps://github.com/madmaze/pytesseract
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Figure 4.2: Comparison of global and adaptive threshold on an example image

e Noise removal Another method used in image preprocessing is noise removal. This is
very important, because even minor noise can result in nonsensical text. By combining

the two methods described below (also known as opening), we can achieve noise
removal.

— Dilation - is a convolution of some kernel over the image. It computes the
maximum pixel value overlapped by the kernel and replaces the pixel in the
kernel’s center by that value. This results in thickening bright regions.
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Figure 4.3: Dilation example

— Erosion is a sibling method to dilution. It works by replacing the kernel’s center
pixel value by the minimum, resulting into thickening dark regions.

Figure 4.4: Erosion example

e Normalization Normalization is a process of changing pixels intensity across the
whole image. In image processing it is also known as dynamic range expansion 77.
Normalization works by transforming an image consisting of pixels with minimal
and maximum value to a new min-max range supplied by the user. In terms of
preprocessing for OCR this can be very helpful for increasing the contrast by setting
the range to < 0,255 >.

4.3.2 Text processing

After extracting the text from images, it has to be processed for matching. In natural
language processing, it is often considered best practice to first remove words, that have no
semantic value (prepositons, conjuctions, interjections, etc.), because they do not contribute
to the meaning of the text, but are very common and can therefore degrade the processing.
However, in this case, we are only trying to match exact text with possible minor distortions
or misspelled words, therefore even these semantically uninteresting words can help choosing
the correct text.
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Bag of words

Bag of words is one of the most common methods that can help with the text preparation
for machine processing. It represents the input texts as bags/multisets, which can then
be transformed to vectors, where each dimension represents multiplicity of the word from
dictionary. It works in several steps:

e Collecting data

Cleaning data

Tokenize data

Create vocabulary

Generate vectors

A vocabulary is a vector of all unique words from all input texts, eg. vocabulary created
from sentences I like cats and I like dogs would be [I, like, cats, dogs]. After creation of the
vocabulary, we can create vectors representing each input text. This is done by creating a
vector with the same size as the vocabulary, which will be initialized with all zeroes, and
counting the number of words in the text for each word from dictionary. Continuing with
the previous example, we would get 2 vectors representing the input sentences: [1,1,1,0]
and [1,1,0,1].

4.3.3 Cosine similarity

For matching of two texts transformed into vectors, cosine similarity (CS) can be used. It
can estimate similarity between 2 vectors. Given 2 vectors — A and B, CS can be computed
using the following equation 4.1. The resulting value will be in the range of < 0,1 > with
a higher number indicating better similarity.

> AB;

__A-B i=1

IATBI - o, [o
> 4% /3 B
=1 =1

For the practical implementation of solely matching one image to a corpus of many images,
mainly the keypoints matching and text methods described in the previous section were
used in an attempt to get the best match ratio without wasting system resources. Each of
them has different strengths and the user will be able to choose the best combination for a
specific use case.

For the matching a separate class called Matcher was created in the misc package. This
class encapsulates both matching methods and some helper functions. It works with a set of
candidate images and a query image. Following is a quick overview of the most important
methods:

similarity = cos(0)

4.4 Implementation

e set_candidate_images - imports new candidate images, replacing any existing can-
didate images.
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e add_candidate_image - add new candidate image to the set of existing images. This
method also internally recomputes all the data for matching for better precision.

e match - the main matching function it take the query image as an argument, other
possible arguments include the matching methods to use (text and/or keypoints) and
their respective weights. It returns a Match object. The method tries to match the
query image to the candidate images using the methods as described earlier. It then
computes an overall score using a weighted average of the scores.

The constructor takes a set of images and extracts first runs keypoints detection, saving
all of the resulting keypoints and their descriptors in a single array in the object. This helps
the performance of the matcher as the keypoints don’t have to be matched every time the
match method is called.

Another important class is the Match class, which is returned by the match method of
Matcher. It contains a reference to the query image, array of all the candidate images in
time the matching was performed and an array of the scores assigned to each of them.

4.4.1 OCR

The initial implementation of detecting textual characters in an images was done using a
custom-trained fully-connected NN, but this was found to be very inaccurate and prob-
lematic for both development and usage. The second attempt uses Tesseract OCR engine’
with the pytesseract® wrapper for python. Even though this adds the requirement for the
destination computer to have tesseract install along with all the language data needed, it
provides a much more complex solution with multi-language support out of the box.

Preprocessing

In order to get better results with images that could be problematic for the OCR engine.
This is done in the Image class which is parent class for all other image classes (Slide and
VideoFrame). The preprocessing consists of several steps:

1. Rescaling the image - since the images usually come from bad sources like the video
records, they are first upscaled for both better next steps in the preprocessing and
for the OCR engine

2. Grayscaling - this is mostly required for the next steps
3. Sharpening - the image is sharpened using an unsharpen mask filter”

4. Eroding - one eroding operation with 100 iterations and 1z1 kernel is executed to
thicken any lines in the image without too much blurring (as opposed to using bigger
kernel)

5. Normalization

6. Binarization

"https://opensource.google.com/projects/tesseract
8https://github.com/madmaze/pytesseract
“nttps://en.wikipedia.org/wiki/Unsharp_masking
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Figure 4.5: Result of OCR preprocessing pipeline

Postprocessing

In the postprocessing we remove all clutter, which was created by the OCR engine due to
non-ideal conditions such as noise. This is simply done during the vocabulary creation by
only passing words consisting of only lower- and uppercase letters or only digits.

4.4.2 Keypoints matching

As explained earlier, the BFMatcher is used for keypoints matching. This type of matcher
doesn’t have to be trained (as opposed to FLANN matcher) and therefore the whole imple-
mentation of keypoint matcher is straight-forward. The keypoints and their descriptors are
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extracted using the get_keypoints_and_descriptors method on the Image class and then
stored both in the Image object and the Matcher once that image is added to the candidate
set. When a request to match a query image is received, the BFMatcher object tries to
match all the keypoints of the query image to those of the candidate images. This results
in an array of matches for each candidate image. From this, the final score is computed.
Every match has a distance between the 2 keypoints expressed as Hammning distance and
since the ORB descriptors are 32 bytes long (i.e. 256bit), the maximum distance between
them will be 256. This number is then normalized to the range of < 0;1 >. This way
all of the matches are evaluated and the final score for the candidate image is calculated
using equation 4.2, considering there is N matches. This way the candidate images with
more matches and higher average scores are favored. It is also important to note that only
»good“ matches are considered to be matches. These are differentiated by applying ratio
test as proposed by D.Lowe in [13].

n=0

N

score = (0.5 +

tanh (% - 1)) § ZN_l match., (4.2)
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Figure 4.6: An example of successful matching of cropped-out screen to a slide using key-
points

4.4.3 Text matching

The textual matching is implemented using the same Matcher class, which uses the get_bag_of_words
method on Image class. This method retrieves text from the images and then filters them
down to only words containing 2 or more word characters using regular expressions. Un-
fortunately the whole process of vocabulary creation and vectorization has to be done for
every new query image, since it may change the vocabulary. For every new query image,
all the words are first corrected, because query image may contain misspelled words due
to OCR inaccuracies. This process consists of calculating Levenshtein distance between all
word from the query image and dictionary from all training images. All words with distance
lower than 2 are considered misspelled and replaced. This improved the text matching score
by 10% on average. Once the vectors are created a cosine similarity is computed for every
candidate image in reference to the query image. This results in an array of scores, which
is then further processed by the match method.

36



4.5 Results

The methods implemented are useful for matching images. But it is important to note
that either of them has its own limitations and the end user should chose one (or both)
according to the type of images being processed. While the text matching method has
very high success rate for mostly white slides with dark text and good image quality (i.e.
contrast, lightning), it is rendered almost unusable for graphical slides. In this case, the
the keypoint matching is the winner.

To successfully evaluate the methods a sample of 10 different presentation was chosen
from our dataset. These were then divided into 2 groups — textual and graphical and match-
ing was run on both of them by both methods. The matching was done between cropped
images from the video and the slide images, not by directly processing video. The results
shown in table below clearly support the claim from the previous paragraph.

Textual Graphical

Total 182 98
Keypoints matching success | 142 (68.13%) | 85 (86.73%)
Text matching success 165 (90%) | 42 (42.85%)

Another statistic was made to evaluate the overall matching ability using the combina-
tion of the 2 methods. In this case, the weights were left to default (1:1). The evaluation
was performed by processing 3 different presentation in interactive mode and manually
counting the number of frames processed successfully. This gave as the total number of
640 frames, out of which 550 were matched correctly, meaning a precision of 85.94% was
achieved. Out of those that failed to match, many belonged to the same difficult slides and
were not processed again because the slide did not change between detections as will be
explained in the next chapter.

4.6 Conclusion

In this chapter several methods for matching slides were introduced and explained. These
methods were then used in the new implementation of a Matcher, which will be integrated
to the overall solution in the next chapter.
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Chapter 5

Integration

Even though the methods described in previous chapters were implemented as separate
classes or modules and were originally usable using their own scripts, the final goal is to
implement an application combining these 2 approaches to get the best accuracy while
making the process as automatic as possible.

5.1 Detektilo script

The finished project has all of its functionalities accessible through one script called detek-
tilo, which can be found in the project’s root directory. This script uses the Click ' python
library to create an easy to use CLI program. The program’s has structured commands and
there’s user help information and available options for every command using the --help
option passed as argument. The command structure is as follows:

e process-video — the main command for video—slide synchronization.

e utils — command group for utilities

extract-screenshots — extracts separate frames for videos and saves them to
their respective folder

annotate — used to generate xml annotation files from default.xml for all images
in that folder

generate-tfrecords — gathers all xml annotated images and converts them to
TensorFlow’s TFRecord files

detect-image — detects screen in an one or more images, output in CSV, support
interactive mode

detect-video — detects screen in a video, output in CSV, support interactive
mode

convert-pdf — converts a PDF file to separate images

image-to-text — runs OCR processing on an image, plots the processed image
and outputs the unprocessed detected text, i.e. no postprocessing is done on the
text.

match — tries matching of a single image to a set of different images with the
matching method being selectable as argument

http://click.palletsprojects.com
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5.2 Video processing

The main task of processing a video is done by the script’s process-video command. It
can be modified with the following options:

e ——video-file — path to the video file to process

e ——presentation-file — path to the PDF file with presentation to process

e ——presentation-dir — path to the directory with images from the presentation
e ——skip-first — how many seconds to skip from the beginning of the video

e —-every — how often to process

e —-model-dir — path to the directory with TF inference graph of the model to use
e —-labelmap-file — path to the labelmap file

e ——further-crop — a pair of number defining number of pixels to crop further inside
from the detected screen box

e —-screen-box — disables screen detection and uses this foursome as the screen position
throughout the video

e --no-keypoints-matching — disable keypoints matching method

e —-keypoints-weight — weight of the keypoints score in the overall score
e ——no-text-matching — disable text matching method

e ——text-weight — weight of the keypoints score in the overall score

e —-language — language of the slide for more precise OCR translation

e ——output-dir — directory for the script’s output data, where the detected screens
and the final XML file will be saved.

e ——output-compatible — enable compatibility mode

e ——interactive — enable interactive mode, plotting the screen detection and slide
matching process to GUI windows

There are some limitation on usage of these flags. At least one of the matching methods
must be used, only one of —-presentation-dir or --presentation-file can be used for
the processing and others, that the script’s help will state.

The video processing begins by opening the input files — video and presentation and
parsing the presentation. This operation can take a while. After that, TensorFlow initializa-
tion is run (unless this is overriden by providing the screen location). Afterwards the video
is forwarded by --skip-first seconds and the first frame’s screens are detected. These de-
tected areas are then cropped out of the original frame and saved for later processing. After
all screens are detected, we need to match them. To ensure we are not matching screens
that were processed, we first calculate the perceptual hash as described in 4.1. This is then
used to determine whether a similar image was processed in previous frame by calculating

39



the distance between them. If it is less than a set threshold further slide matching in that
screen is skipped. If the image is not similar to the previous one, keypoints, descriptors
and text are exported from the frame and everything is processed using the corresponding
matching method and scores from each candidate image using each method, that didn’t fail
to find a match is counted to the final score for the candidate image and top 3 candidate
images are saved as possible matches for the screen. if the top candidate wins by a margin
threshold, the others are thrown away. If this is the case and the top candidate is a the
same slide as the last matched slide, this whole match is thrown away.

After processing of all frames in a video in this fashion, the results can be exported to
the output file, which will be overwritten if it already exists. The output format is XML
and is described in the following section

5.3 Output

Because this program is supposed to replace the existing solution, it has to integrate well
with the surrounding scripts, so it is preferable to keep the script’s output in the same
format as before. But due to a different internal working mechanisms and more complicated
scoring system a new output system will be used. While one compatible to the old one is
accessible by the ——output-compatible flag.

The main benefit of the new output is that it supports multiple screen and it has alter-
natives for every matched slide if any such alternatives exist together with their respective
scores, so that a new tool can be built around this output which will get both the best
match and its alternatives and user could select the most appropriate one, making error
correction easier. Following is an example of the new output format in XML.

<job name="otitis-test" video_src="video_HD.webm" presentation_src="slides.pdf">
<screen id="0" start="30" end="43">
<original img="cropped/30.jpg" />
<match slide_no="3" img="slides/slide-002.jpg" score="0.5554302" />
<match slide_no="2" img="slides/slide-001.jpg" score="0.5554302" />
</screen>
<screen id="0" start="44" end="60">
<original img="cropped/44.jpg" />
<match slide_no="3" img="slides/slide-003.jpg" score="0.7780" />
</screen>
</job>
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Chapter 6

Conclusion

In this paper a new solution for synchronization of slides with a video recording of their
presentation was proposed and implemented with satisfactory results. The script created
for the task is capable of a 2 different matching methods and has support for multiple
options available to the end user to tune in response to a specific situation, but with sane
values set as default. This solutions allows for simply automated synchronization with
output formats that can be further processed by a machine.

The results for each of the components used are described in the chapters discussing
them. The overall quality of the solution is good, though the user may encounter processing
jobs where either the screen detection or slide matching may fail.

In regards to the future of the development, the biggest improvements could be made in
automation of tuning of the parameters in order to make the work with the script easier and
more automated. This could include automatic slide type recognition in order to change
the weight of scores or disable one of them altogether, and to tune preprocessing for the
optical character recognition to improve its results automatically.
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Robust Superlectures

TECHNOLOGI|

Screen and - FAKULTA
slide detection in video

About project

The main goal of this project is to create a new solution for
slides-to-video synchronization for SuperlLectures project.
This is achieved by combining several techniques and
algorithms.

Projection screen detection

Faster R-CNN with Resnet101

CUDA support

97% precision

<100ms processing time

ability to detect screens in non-ideal conditions
including: cropped, skewed,

unclear edges

can handle multiple screens

overridable if needed

Slide matching

combines matching using feature extraction and

matching, and text matching

uses free ORB algorithm

text extraction using Tesseract OCR engine

uses bag of words and cosine similarity for text » speech 20y |
. dysarthria with the sYS

matching _ » Users will enga8®

period of Time

Figure A.1: Project presentation poster
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