
	

	

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

Department of Information Engineering

Diploma Thesis Abstract

Asynchronous and parallel programming in .NET

framework 4 and 4.5 using C#

Author: Milan Manasievski

Supervisor: Ing. Jiří Brožek, Ph.D

Prague 2015

	

	

1	

Summary

In this diploma thesis the author will elaborate on asynchronous and parallel

programming in the .NET framework version 4 and version 4.5. The aim of this thesis

will be to prove and provide better insight on the task-programming model that Microsoft

introduced and compare different applications in terms of speed and lines of code used to

write then and the differences between them using simple statistics. Using the literature

gathered, the author will explain what would be the best ways to achieve parallelism on

applications, write about design patterns used, and provide code snippets that will help

the reader get better overall understanding of the Task Parallel Library and the benefits it

gives in comparison of older methods and sequential programming.

Keywords
Parallel programming, parallel computing, .NET, C#, multicore processors.

	

	

2	

Thesis objectives and methodology

In this part of the thesis, the author will elaborate on the methodology used and objectives

that the author tries to achieve. A clear intention and aspiration will be presented and also

shown how the author is planning to achieve the aim set forth and the methods that will

be used in order to achieve this aim. Since this project will be about the task parallel

library in .NET framework 4 and 4.5 versions, the focus of the thesis will be on the

benefits of adopting the methods that this library offers and also focus on the differences

between these methods and the way it was done before, more specifically, comparisons

on how parallel programming was done before the release of the task parallel library and

what is the difference after will be presented.

The author will try to prove that the methods that are used in the new task parallel library

are easier to understand and learn and also prove that they are based on higher abstraction

and in programming terms that means that programmers or developers do not need to

worry about any low level details such as memory management, task execution or task

priority.

The task parallel library does all this internally and most of the implementations are even

hidden from the developer. Moreover, the author will try to prove that the task parallel

library help us to efficiently and effectively utilize all the physical cores on a multicores

architecture and do that in a manner that will not affect the execution of the program, but

it will improve its responsiveness and perceived speed. At the end of this project the

author will try to prove that with less code, code easier to understand, read and write will

be able to write high performing application that are using 100% of all the CPU cores.

The author will also try to prove that there are differences in application designs and the

creators of the task parallel library identified this and provided the consumers with

different classes for writing parallel code and also making sure that the threads in the

application are not sitting idle without doing anything.

	

	

3	

A principle called SMART will be used for setting objectives for the thesis and the

SMART abbreviation stands for:

• Specific

In order to reach the first point of SMART, the author needs to know exactly what is need

to do in order to achieve the goal of the thesis and in this case the author will present two

different types of applications, one is done using an older technology for presentation

called Windows Forms however, its computationally very expensive and will make sure

that the thread that is executing it have no idle time. After that the author will present

different versions of the application where he will try to make it run in parallel see the

difference in the result and also compare. The second application is a console based

application that has no user interface, this application will know how to connect to the

internet and download some data about stocks for any company that the user requests.

This application does not require high CPU power, however it makes threads to go to

sleep and be idle for the time of the downloading is done. With the task parallel library

the author will try to prevent this.

• Measurable

The application will have built in mechanisms for timing and also for counting the

number of threads that are executing in parallel, the author will try to present the number

of CPU time to the reader and provide clear and concise differences between the different

versions of the applications and also the benefits from adopting a certain approach over

the other.

• Achievable

The first application that will be presented on this thesis will be based on a Mandelbrot

set and in the most basic sense the Mandelbrot set is a group of numbers that display a

	

	

4	

certain unusual properties and as per definition the Mandelbrot set is the visual

representation of an iterated function on the complex plane. In this application, deeper

levels of the Mandelbrot set will not be explored as it can be quite complex and its

computation can take even several minutes. For the application, for each pixel on the

screen the program will check if that particular pixel is within the Mandelbrot set or not,

as an input the program will give a random number between -2 and 2. The second

application will be slightly simpler and the user who will be running the application will

only need an Internet connection. There are classes in the .NET framework that know

how to connect to the Internet and download some content from a certain website.

• Realistic

The objectives set forth must also be realistic, in this term the author needs to think in

terms of time, resources and skills. Both application to write and the actual thesis to write

will be time consuming and challenging, however if everything starts on time, probably

four or five months before, the author will be able to write the necessary applications and

before doing that the theoretic part should be already done. Since the author is working as

a web developer in a company in Prague, Czech Republic and also covered most of the

material in the Czech University of Life Sciences, safely can be assumed that the

necessary skills are available for utilization.

• Time constrained

The literature has to be gathered well before starting the thesis and that should be around

a year before starting to actually write anything. After the literature is gathered, which

will consist mostly of books, the author will start classifying them and start writing the

theoretical part. The theoretical part will be based on parallel programming in the .NET

framework and while writing and researching additional knowledge can be accumulated

and this will be beneficial for the applications needed for the practical part of this thesis.

Last month before due date, everything should be pretty much finished and finalized.

This time will be scheduled for last consultations with the thesis mentor to make sure that

	

	

5	

the author is on track and doing the things right. Last two weeks, the author will go

throughout the literature once again and make sure the thesis is formatted correctly, its in

presentable form and ready for submission.

	

	

6	

Conclusions

Throughout this diploma thesis the author has explained about the new task parallel

library in .NET framework 4 and 4.5, the author has also compiled a theory based on

newly released material in form of books and articles on the internet. As it was mentioned

and seen the task parallel library or the TPL has been around in the .NET framework

since version 4 and its design to make it easy for us to work with threads and

asynchronous operation so consumers of the TPL can run work in parallel or

asynchronously and not to worry about partitioning work and scheduling threads and

some of the low level details that they had to worry about in the past.

The task parallel library is both good and provides high level abstractions for parallel

programming and also for asynchronous programming and as it was mentioned in the

theoretical part these two notions are related to each other but they are different and the

applications that the author built during the practical part and the theory explained this.

From the task parallel library it was explained how to create a task that represents a unit

of work in the .NET framework, how one can start a task for that unit of work to start

executing, also it was elaborated on how to create and start a task at the same time

without making an explicit call to the Start() method.

On top of that, the author explained how a user can cancel a long-running task in case its

taking too long with the support of the task parallel library and in case a task is cancelled,

the thread that was assigned to that task is return to the thread pool and is ready for some

additional work that will be assigned by the operating system. The author also elaborated

on exception handling and saw that there is not much difference in this area when it

comes to synchronous code, the easiest way is to wrap the un-safe code into a try-catch

block and if something goes wrong the exception will be caught and handled gracefully.

Since, it is not guaranteed for the task to start immediately when the user requests, there

is a way to specify a priority to a task saying that this task has high priority and the task

scheduler will be able to start that particular task first and make all the others wait. In the

part where the theory was presented, we have seen the best design techniques to write

parallel applicants that are responsive and not hanging or crashing the user interface.

	

	

7	

Moreover, the author looked into the most common types of parallelism and also showed

implementation of some of them in the practical part. Some built in data structures as

presented as well that allow concurrent work and are thread safe and when talking about

thread safe operations and data structures, its important to note that there are some

dangers of parallel programming and dangers of concurrent work. A developer must be

very careful in implementing parallel code since quite few subtle bugs can be introduced

in the code and some of the dangers and the bugs were also presented in this thesis.

Moreover, the author explained when its good idea to use the task parallel library and

when its not and also when it can help and when it cannot, in fact in some cases it can

hinder performance.

In the practical part of the diploma thesis, two very different applications were presented

that are making use of the parallel and asynchronous programming model. The first

application that it was mentioned was the Mandelbrot set application that was drawing

the Mandelbrot image on the screen for the user to see. The application is

computationally very expensive and as it was shown before without using the task

parallel library the application was running on a single core and it was finished with

drawing the image in about twenty seconds and after doing small changes and made the

application run in parallel it was noticed significant improvement on performance for just

few lines of extra code written. The application was using 100% of the CPU power and

finished in five seconds whereas in the sequential version it was using only 30% of the

CPU power. The measurements are done directly in the application using some of the

features of the .NET framework. Also with experimenting the author has ascertained that

the best pattern for parallelism in this application was the “Embarrassingly parallel”

where the application is firing off tasks for each of the loops and the operating system is

assigning threads to those tasks accordingly. In the second application, the history stock

application, the same methods for parallelism cannot be employed there and since the

computation that the application is doing is not expensive but for best performance it still

required creation of additional tasks. Note that in case the .NET framework thinks that no

thread is required for particular work it will not assign a new thread, that’s the beauty in

the task parallel library, it takes responsibility of the low level code that consumers do not

need to write. In the history stock application we created separate tasks for the three

	

	

8	

methods that were downloading data from the Internet and the first one to finish was the

winner. The results from the winner task were then displayed to the user to see. In the

previous versions of the application there was not any type of parallelism and the call to

the websites was a blocking call where the user had to wait and the thread had to sleep.

The previous version did not support multiple users and was not making use of all the

cores on the machine that the user might have and even thought the user might have a

single core, the .NET framework will coordinate the work in such as way that no extra

threads are created and no unnecessary work is being done in the background.

Therefore, bottom line is that the task parallel library can be implemented to multicore

but also in single core architectures. In the multicore architectures consumers can take

advantage of the parallel programming and on a single core machines, the asynchronous

programming model can be used where a thread is not sitting idle waiting for an I/O

operation to complete but its listening for new requests and doing some other work.

	

	

9	

Bibliography

Watson,	
 B.	
 (2014).	
 Writing	
 High-­‐Performance	
 .NET	
 code.	
 Norfolk,	
 USA:	
 Ben	
 Watson.	

	

Campbell,	
 C.,	
 Johnson,	
 R.,	
 Miller,	
 A.,	
 &	
 Toub,	
 S.	
 (2010).	
 Parallel	
 Programming	
 with	

Microsoft®	
 .NET:	
 Design	
 Patterns	
 for	
 Decomposition	
 and	
 Coordination	
 on	
 Multicore	

Architectures.	
 Redmond,	
 USA:	
 Microsoft	
 Press.	

	

Cleary,	
 S.	
 (2014).	
 Concurrency	
 in	
 C#	
 Cookbook.	
 Sebastopol,	
 USA:	
 O'Reilly	
 Media.	

	

Esposito,	
 D.,	
 &	
 Saltarello,	
 A.	
 (2014).	
 Microsoft	
 .NET	
 -­‐	
 Architecting	
 Applications	
 for	
 the	

Enterprise.	
 Redmond,	
 USA:	
 Microsoft	
 Press.	

	

Herlihy,	
 M.,	
 &	
 Shavit,	
 N.	
 (2012).	
 The	
 Art	
 of	
 Multiprocessor	
 Programming.	
 Burlington:	

Morgan	
 Kaufmann.	

	

Mattson,	
 T.,	
 Sanders,	
 B.,	
 &	
 Massingill,	
 B.	
 (2013).	
 Patterns	
 for	
 Parallel	
 Programming	

(1st	
 Edition	
 ed.).	
 Boston,	
 USA:	
 Addison-­‐Wesley	
 Professional.	

	

Pacheco,	
 P.	
 (2011).	
 An	
 Introduction	
 to	
 Parallel	
 Programming	
 (1st	
 Edition	
 ed.).	

Burlington,	
 Massachusetts,	
 USA:	
 Morgan	
 Kaufmann.	

	

Sharp,	
 J.	
 (2013).	
 Microsoft	
 Visual	
 C#.	
 Redmond,	
 USA:	
 Microsoft	
 Press.	

	

Skeet,	
 J.	
 (2013).	
 C#	
 in	
 Depth	
 (3rd	
 Edition	
 ed.).	
 Greenwich,	
 USA:	
 Manning	

Publications.	

	

Razdan,	
 S.	
 (2014).	
 Fundamentals	
 of	
 Parallel	
 Computing.	
 Oxford,	
 UK:	
 Alpha	
 Science	

International	
 Ltd.	

	

