Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta

Genetické markery pro druhovou identifikaci a studium genetické variability forenzně významných druhů masařek (Sarcophagidae).

Bakalářská práce

Nicole Jánová

Školitel: PaedDr. Martina Žurovcová, Ph.D., Entomologický ústav AV ČR Školitel specialista: plk. Ing. Hana Šuláková, Ph.D., Kriminalistický ústav PČR Praha

České Budějovice 2021

Bakalářská práce

Jánová, N., 2021: Genetické markery pro druhovou identifikaci a studium genetické variability forenzně významných druhů masařek (Sarcophagidae). [Genetic markers for species identification and study of genetic variability of forensically important Flesh flies (Sarcophagidae). Bc. Thesis, in czech.] – 93p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.

Anotace

The aim of this thesis was to select and test molecular markers for species identification and detection of genetic variability of forensically important Flesh flies that are most common in the Czech Republic (*Sarcophaga variegata, africa, noverca, carnaria, albiceps, incisilobata, lehmanni, argyrostoma, caerulescens*). Both mitochondrial (*COI*) and nuclear (*ITS,* EPIC) markers were successfully amplified and sequenced for this purpose. Bacteria *Wolbachia* was detected using the *16S* marker.

Prohlášení

Prohlašuji, že jsem autorem této kvalifikační práce a že jsem ji vypracovala pouze s použitím pramenů a literatury uvedených v seznamu použitých zdrojů.

V Českých Budějovicích dne 7. prosince 2021

Nicole Jánová

Poděkování

Mé poděkování patří zejména své školitelce PaedDr. Martině Žurovcové, Ph.D. za velkou dávku trpělivosti, odborné vedení a velké množství cenných rad, které mi pomohly při zpracování této práce. Dále plk. Ing. Haně Šulákové, Ph.D. za dodání analyzovaného materiálu a kpt. Ing. Tereze Olekšákové za užitečné rady. Velké poděkování patří také celé mé rodině a kamarádům. V neposlední řadě také Mgr. Janu Hartmanovi za zaučení v začátcích v laboratoři.

Obsah

1. Úvod	1
1.1 Forenzní entomologie	1
1.1.1 Sukcese hmyzu	2
1.1.2 Čeleď Masařkovití (Sarcophagidae)	3
1.2 DNA markery	5
1.2.1 Mitochondriální DNA markery	5
1.2.2 Jaderné DNA markery	7
1.2.3 Wolbachia	9
2. Cíle práce	11
3. Materiál a metody	12
3.1 Materiál	12
3.2 Metody	13
3.2.1 Extrakce DNA	13
3.2.2 Polymerázová řetězová reakce (PCR)	13
3.2.3 Gelová elektroforéza	16
3.2.4 Přečištění vzorků	17
3.2.5 Sekvenace	18
3.2.6 Klonování	18
3.2.7 Statistické vyhodnocení	19
4. Výsledky	20
4.1. Testované markery	20
4.1.1 Mitochondriální markery – <i>COI</i>	20
4.1.2 Jaderné markery – <i>ITS</i>	27
4.1.3 Porovnání mezidruhové variability COI, ITS1 a ITS2	
4.1.4 EPIC	35
4.1.5 Wolbachia	

5. Diskuse	
5.1 Metody - Extrakce DNA a PCR	
5.2 Mitochondriální marker COI	
5.3 Jaderný marker <i>ITS</i>	
5.3.1 Sekundární struktury ITS	
5.4 EPIC markery	
5.5 Wolbachia	40
6. Závěr	41
7. Literatura	
8. Přílohy	

1. Úvod

Téma mé bakalářské práce spadá do oboru forenzní entomologie a navazuje na diplomovou práci (Klojdová, 2018), která se zabývala testováním molekulárních markerů pro studium genetické variability významných druhů much čeledi bzučivkovití (Calliphoridae). V mé studii byly obdobným způsobem otestovány další forenzně významné druhy, a to z rozmanité čeledi masařkovitých (Sarcophagidae). Stejně jako v předchozí studii byly zpracovány druhy běžně se vyskytující v České republice.

Masařky jsou ve forenzní entomologii důležité zejména pro stanovení doby kolonizace těla hmyzem, která napomáhá k odhadu tzv. post mortem intervalu (PMI), doby mezi smrtí a nálezem těla. Ke správnému určení PMI je třeba přesně stanovit o jaký druh hmyzu, kolonizující mrtvé tělo, se jedná. Druhová identifikace je v tomto případě velmi obtížná, neboť juvenilní stádia dvoukřídlého hmyzu jsou morfologicky velmi těžko rozlišitelná. Z tohoto důvodu stále více roste důležitost molekulárních markerů, které si s tímto problémem poradí. Ve své práci jsem se proto zaměřila na otestování molekulárních markerů pro studium jejich genetické variability.

1.1 Forenzní entomologie

Forenzní entomologie je vědní disciplína, která se zabývá studiem členovců, zejména hmyzu, spojeného se zločiny a dalšími aspekty soudního systému. Tato disciplína obvykle zahrnuje identifikaci hmyzu a jiných členovců, nalezených na lidských ostatcích nebo v jejich blízkosti, jako pomoc při určení tzv. post mortem intervalu (PMI), tedy dobou mezi smrtí a nálezem těla (Durden and Mullen, 2002; Amendt *et al.*, 2011).

PMI se stanovuje na základě druhového složení a stupně vývoje hmyzu, nalezeného na kadavérech. K přesnému stanovení PMI je však třeba také zohlednit různé faktory, ovlivňující vývoj hmyzu. Mezi ty nejdůležitější patří zejména teplota, typ a vlhkost prostředí nebo také vliv dalších organismů. Důležitou roli zde hraje mimo jiné i stav mrtvoly, například hmotnost, věk, pohlaví, zdravotní stav, nebo zda jsou na těle nějaká poranění (Šuláková, 2006). Přesnost určení se u krátkodobých PMI (do 3 - 5 týdnů) pohybuje v rozmezí 1 - 5 dní, u kadavérů starších přesnost klesá na určitý týden, měsíc nebo čtvrtletí (Šuláková and Eliášová, 2012).

Forenzní entomologie také může poskytnout další důležité informace, které kriminalistům pomohou vyřešit daný případ, například zda došlo k přesunu ostatků nebo na

kterém místě byly uchovávány. Toxikologickým a molekulárním rozborem hmyzu se dá odhalit příčina úmrtí. V extrémním případě také totožnost zemřelého, a to, pokud je analýza DNA ze střevního obsahu hmyzu efektivnější než z těla v pokročilém stadiu rozkladu. V neposlední řadě ji lze využít jako velmi účinný nástroj prokázání zanedbání péče u člověka i u zvířat (Amendt *et al.*, 2011; Anderson and Huitson, 2004).

1.1.1 Sukcese hmyzu

Během procesu dekompozice se jak na mrtvole, tak i v jejím okolí vyskytuje velké množství druhů členovců, zejména hmyzu, které lákají při rozkladu uvolňující se těkavé látky, tzv. apeneumony. Ke kolonizaci těla hmyzem dochází během různých stadií rozkladu. Kenneth G.V. Smith (1986) rozdělil hmyz, který lze nalézt na kadavérech, do 4 různých ekologických kategorií. První kategorii tvoří nekrofágní druhy, živící se mrtvou tkání. Patří sem například zástupci čeledí bzučivkovitých (Calliphoridae) nebo masařkovitých (Sarcophagidae). Do druhé kategorie zařazujeme predátory a parazity nekrofágních druhů hmyzu, například zástupce řádu brouků čeledi drabčíkovitých (Staphylinidae). Třetí v pořadí jsou všežravé druhy, mezi které patří například vosy (Vespoidea), mravenci (Formicidae) a někteří brouci (Coleoptera). Tyto druhy nepatří mezi nekrofágy, ale mohou použít mrtvou tkáň jako zdroj potravy, když je k dispozici. Poslední skupinou jsou adventivní druhy, pro něž slouží mrtvé tělo například jako úkryt, jsou to hlavně pavouci (Araneae) nebo zástupci řádů chvostoskoků (Collembola).

V oblastech, které patří do mírného pásu, tedy i Česká republika, rozlišujeme zpravidla 5 stadií rozkladu (sukcesních vln). Pro každou fázi jsou typické různé druhy hmyzu. Počáteční fáze, čerstvé tělo, představuje úplný počátek dekompozice. Probíhá hned po smrti nebo již při umírání. Typickým druhem hmyzu, vyskytující se v této fázi, jsou mouchy z čeledi bzučivkovití (Calliphoridae). Při následující fázi nadmutého těla vznikají v důsledku bakteriálního rozkladu páchnoucí plynné látky, které přitahují další druhy hmyzu, například mouchy z čeledi masařkovitých (Sarcophagidae). S nimi se setkáváme zejména při nálezech mrtvých těl v bytech. Třetí fází je biochemicky aktivní rozklad, při němž dochází jednak k fermentaci proteinů a dále ke zmýdelnění tuků se vznikem mastných kyselin. Tyto kyseliny slouží jako lákadlo pro další specifické druhy hmyzu, například zástupce čeledi mouchovitých (Muscidae). Následuje fáze pokročilého rozkladu, kdy dochází k čpavkové fermentaci zbylých měkkých tkání, objevují se zde drobné mušky z čeledi hrbilkovitých (Phoridae). Další fází je

vysychání měkkých tkání. Po dokončení rozkladu z mrtvého těla zůstanou kosti, ojediněle chrupavky, vazivo, vlasy a tělní ochlupení (Šuláková, 2014).

1.1.2 Čeleď Masařkovití (Sarcophagidae)

Z taxonomického hlediska čeleď masařkovitých spadá do říše živočichové (Animalia), kmene členovci (Arthropoda), třídy hmyz (Insecta), řádu dvoukřídlí (Diptera) a nadčeledi Oestroidea. Mnoho zástupců se v juvenilních stadiích živí měkkou tkání zvířecích těl, což dalo této skupině český název masařkovití. Je to druhově bohatá čeleď, která zahrnuje více než 2 600 popsaných druhů, okupujících téměř celý svět. Dospělé jedince (Obr. 1) lze rozeznat podle šedé nebo černé barvy se třemi černými podélnými pruhy na středohrudi (mesothoraxu). Dalším znakem je kostkovaný nebo skvrnitý zadeček (Povolný and Verves, 1997; Pape, 1996; Shewell, 1987). Rozlišení některých druhů či rodů je velmi obtížné, zejména pak identifikace larev nebo dospělých samiček (De Carvalho and De Mello-Patiu, 2008). Z hlediska životního cyklu jsou masařky obvykle vejcoživorodé, místo vajíček kladou živé larvy prvního instaru přímo na mršinu, trus, rozkládající se materiál nebo do otevřených ran savců (Povolný and Verves, 1997). Jejich velikost se pohybuje od několika milimetrů do skoro dvou centimetrů (Povolný, 2005). Nejčastěji se vyskytují v teplých tropických oblastech (Pohjoismäki *et al.*, 2010).

Obr. 1: *Sarcophaga carnaria*, představitel rodu masařkovitých, jeden z nejběžněji se vyskytujících druhů v ČR (https://www.biolib.cz/).

Sarcophagidae lze rozdělit do 3 podčeledí. První tvoří Miltogramminae, druhy malé až středně velké velikosti s velkýma očima a oválným nebo zužujícím se zadečkem (abdomenem). Velká většina Miltogramminae jsou kleptoparazité solitérních včel a vos. Druhá podčeleď Paramacronychiinae, obecně středně velké druhy, zahrnuje predátory nedospělých čmeláků (*Brachicoma*) a také obecné mrchožrouty a hmyzí predátory (*Sarcophila, Wohlfahrtia*). Zástupci Sarcophaginae, tvořící poslední podčeleď, jsou velké a robustní a také biologicky rozmanité. Do této skupiny se řadí rod *Sarcophaga*. Většina zástupců tohoto rodu jsou mrchožrouti mrtvého hmyzu nebo menších obratlovců a několik druhů se živí většími mršinami obratlovců. Zástupci se také živí exkrementy a rozkládající se rostlinnou hmotou, proto je můžeme nalézt v blízkosti latrín a kompostů (Pape, 1996).

Masařkovití jsou jednou z čeledí hmyzu, které jsou považovány za důležité pro forenzní entomologii. Nejsou převládajícím typem hmyzu, který se vyskytuje ve forenzně významných situacích. Pokud jsou však přítomny, mohou přinést cenný důkaz (Nishida, 1984; Goff, 1991). Samičky kladou živé larvy na zdechlinu, avšak až v druhém sledu po určitém vývoji larev bzučivek v mrtvém těle. Larvy masařek jsou predátoři, kteří se živí mimo jiné také larvami bzučivek. Mohou být kladeny v blízkosti nebo přímo na mrtvé tělo, do kterého následně pronikají sliznicemi (oči, ústa, nos), pomocí tělních otvorů (např. pohlavních) nebo krevním oběhem (krvavé rány).

Masařky jsou důležité také z medicínského hlediska. Řada druhů patří do skupiny dvoukřídlého hmyzu, jehož larvy parazitují v tělech obratlovců, včetně člověka, a způsobují tak onemocnění myiázu (Povolný, 2005). Masařky patří do skupiny fakultativních parazitů. Tento způsob života tak pro ně není nezbytný. Zástupci této skupiny se vyvíjí hlavně na odumřelých tkáních rostlin a živočichů, na živých tkáních parazitují pouze fakultativně (Šuláková, 2014).

Celosvětově nejběžnější druhy, způsobující myiázu, jsou *Wohlfahrtia magnifica*, *S. crassipalpis a S. ruficornis*. V našich zeměpisných šířkách se však nevyskytují. V ČR patří mezi běžné druhy masařek, způsobující tuto nemoc, *S. africa* a *S. argyrostoma* (Shang *et al.*, 2019). U lidí se často toto onemocnění objevuje důsledkem zanedbání péče typicky u starších lidí, dětí nebo nemocných. U zvířat se jedná o případy zanedbání péče a týrání (Anderson and Huitson, 2004).

1.2 DNA markery

Velkou část forenzně významných druhů dvoukřídlého hmyzu lze velice těžko morfologicky rozlišit. Zejména u vajíček a larev prvního instaru je to zcela nemožné. Přitom pro odhad PMI je správné určení druhů nezbytné. Metody založené na DNA markerech mohou tyto problémy vyřešit (Zehner *et al.*, 2004; Harvey, Dadour and Gaudieri, 2003). Za genetický marker se považuje gen nebo sekvence DNA, pomocí kterého lze identifikovat jedince, populace nebo druhy. Sperling, Anderson and Hickey (1994) jako první navrhli test na bázi DNA pro tento účel. Velkou výhodou DNA markerů je bezesporu jejich aplikovatelnost na všechny životní stádia hmyzu a také na staré nebo poškozené vzorky (Wells and Stevens, 2008).

V současné době je pro entomologické výzkumy k dispozici velká škála DNA markerů. K nejstarším patří polymorfismus délky restrikčních fragmentů (RFLP-restriction fragment length polymorphism). Při této metodě dochází prostřednictvím restrikčních endonukleáz, rozeznávající specifická místa na DNA templátu, k rozštěpení molekuly DNA na malé fragmenty. Ty jsou poté detekovány pomocí gelové elektroforézy (Loxdale and Lushai, 1998). V práci (Ratcliffe *et al.*, 2003) bylo RFLP použito k identifikaci larev u masařek a dalších forenzně významných čeledí hmyzu bzučivkovitých (Calliphoridae) a mouchovitých (Muscidae).

V současnosti nejpoužívanější metodou, která se uplatňuje k detekci genetické variability je sekvenace specifických DNA fragmentů, tedy určení variability v nukleotidové sekvenci vybraných lokusů. Markery se zde rozdělují podle původu na mitochondriální a jaderné (Avise, 1994).

1.2.1 Mitochondriální DNA markery

Předpokládá se, že mitochondrie se vyvinuly před více než miliardou let, usídlením volně žijící eubakterie v jiné buňce (Margulis, 1970). Typická hmyzí mitochondriální DNA (mtDNA) je zhruba 16 - 20 kb dlouhá, kruhová dvouvláknová molekula, která postrádá introny (Hoy, 2003). Obsahuje dohromady 37 genů (13 genů kódujících proteiny, 2 geny pro podjednotky ribozomální RNA [rRNA] a 22 genů kódujících transferovou RNA [tRNA]) a také hlavní nekódující oblast bohatou na AT nukleotidy, zvanou kontrolní oblast - CR (Obr. 2). Produkty těchto genů se společně s jadernými proteiny a sRNA podílejí na

mitochondriální replikaci, transkripci, zpracování mRNA a v neposlední řadě na translaci (Clary and Wolstenholme, 1985; Boore, 1999).

Každá buňka může obsahovat až tisíce mitochondrií a v každé z nich se objevuje vysoký počet kruhových molekul DNA. Mitochondrie tak tvoří snadno dostupný zdroj DNA, i u starších a degradovaných vzorků. Malá velikost, relativně vysoká rychlost evolučních změn, hemizigotní konstituce, u které není problém s rozlišením homozygotů a heterozygotů, a také maternální dědičnost, jsou dalšími výhodami, které mtDNA poskytuje (Hoy, 2003; Avise, 1994). Mitochondriální DNA se používá v řadě evolučních studií, jako je například fylogenetika (Moore, 1995; Waugh, 2007), anebo velmi často také k identifikaci druhů i studiu populací (Wells and Sperling, 2001; Waugh, 2007). Všech 13 genů, kódující proteiny, může být použito jako molekulární marker. Stejně tak jako nekódující CR oblast, která se může jevit jako vysoce variabilní. U forenzně významného hmyzu byla CR oblast charakterizována v práci, zabývající se čeledí bzučivkovitých (Calliphoridae) (Duarte, De Azeredo-Espin and Junqueira, 2008).

Obr. 2: Diagram ancestrálního mitochondriálního genomu hmyzu (Cameron, 2014). Jednotlivá velká písmena značí kódující oblasti tRNA, modře jsou vyznačeny geny, kódující proteiny; oranžově podjednotky rRNA a fialově nekódující kontrolní oblast. Šipky udávají směr transkripce.

1.2.1.1 Cytochrom c oxidáza I (COI)

Cytochrom c oxidáza I tvoří hlavní podjednotku enzymatického komplexu IV, který je posledním článkem v elektronovém transportním řetězci v procesu oxidativní fosforylace. U eukaryot se *COI* nachází na vnitřní mitochondriální membráně. Komplex oxiduje cytochrom c a výsledná energie se poté použije pro tvorbu protonového gradientu napříč membránou. (Michel, 2013).

Gen kódující tento komplex je zároveň nejčastěji využívaným "DNA barcode" markerem, který se používá k identifikaci druhů zvířat. K amplifikaci přibližně 650 bp dlouhého fragmentu jsou používány univerzální primery LCO - 1490 a HCO - 2198 (Folmer et al., 1994). Od roku 2003, kdy byl COI gen navržen jako univerzální marker pro druhovou identifikaci, prudce vzrostl počet jednotlivých COI sekvencí dostupných ve veřejných úložištích. V databázi datových BOLD (Barcoding of life database. http://www.boldsystems.org/) se nachází více než 9 milionů COI barcode sekvencí. Z hlediska této informace je COI nejrozšířenější sekvenační genovou oblastí živočišné říše (Hebert et al., 2003; Pentinsaari et al., 2016).

U masařek byl tento marker k identifikaci druhů úspěšně aplikován v řadě prací (např. Jordaens *et al.*, 2013; Fuentes-López *et al.*, 2020). Studiím na úrovni populací se však u masařek doposud nikdo systematicky nevěnoval.

Častým problémem, který u *COI* markeru může nastat, je kontaminace bakteriálním endosymbiontem, jehož gen pro *COI* se koamplifikuje společně s barcode markerem. Může tak dojít ke znesnadnění správného čtení sekvence, a tedy ke zkreslení výsledků. Většinou je tímto endosymbiontem rod *Wolbachia* (Hurst and Jiggins, 2005). Tento problém je u masařek opomíjený, i když u čeledi bzučivkovitých (Calliphoridae) se jím několik studií zabývalo (např. Whitworth *et al.*, 2007).

1.2.2 Jaderné DNA markery

V jádře bývá zpravidla největší zastoupení genetické informace buňky. Nukleární genomy jsou mnohem větší než mitochondriální. Jejich velikost se pohybuje v rozmezí od 10^6 nukleotidových bází (= 1000 kb) u některých bakterií do 10^{11} u některých rostlin (Parker *et al.*, 1998).

Diploidní organismy obsahují v jádře 2 kopie každého genu. Kódující oblasti (exony) jsou zde na rozdíl od mitochondriálních lokusů proloženy nekódujícími oblastmi (introny) (Parker *et al.*, 1998). Nevýhodou jaderné DNA může být menší množství kopií než u mt DNA a rychlejší degradace. Kódující oblasti jsou obvykle méně variabilní vlivem selekce, naopak nekódující mohou být až hypervariabilní. Jako marker lze využít kteroukoliv část nukleárního genomu v závislosti na tom, jakým problémem se výzkum zabývá, a jak vysoká variabilita je tomuto problému odpovídající (Loxdale and Lushai, 1998).

1.2.2.1 EPIC (= Exon - primed intron - crossing)

Tato metoda je založená na variabilitě intronů, a to buď na jejich přítomnosti a nepřítomnosti, jejich délce, anebo nukleotidové variabilitě jejich DNA sekvencí. Pro PCR amplifikaci markerů typu EPIC jsou primery navrhovány v konzervovaných, respektive méně variabilních oblastech exonů, obklopujících sledovaný intron. Odtud tedy pochází zkratka Exon - Prime, Intron - Crossing (EPIC) (Palumbi, 1996).

EPIC markery byly u Dipter úspěšně použity v mnoha populačně-genetických studií, především u komárů (např. Lessa, 1992; Daguin and Borsa, 1999; Villablanca, Roderick and Palumbi, 1998). K využití těchto markerů u hmyzu byl navržen i soubor univerzálních primerů, umožňující amplifikaci 5ti lokusů napříč taxonomickými skupinami (Palumbi, 1996). U masařek pro tento účel prozatím použity nebyly.

1.2.2.2 *ITS* (= internal transcribed spacer)

Marker *ITS* lze považovat za specifický případ EPIC, neboť jde rovněž o fragment, který je vložen mezi kódující oblasti. Nejde však o introny a exony, ale dva transkribované úseky, oddělující okolní ribozomální geny. Ribozomální DNA geny (rDNA) jsou uspořádány do jednotlivých klastrů, které se tandemově opakují (Obr. 3). Každý klastr obsahuje geny pro *18S*, *5.8S*, *28S* a u rodu *Sarcophaga* také *2S* ribozomální RNA (rRNA), což je typické pro dvoukřídlý hmyz. *ITS* se nachází mezi *18S* a *28S* kódujícími oblastmi a dále může být rozdělen na *ITS1*, ležící mezi *18S* a *5.8S* geny a *ITS2*, který se nachází mezi *2S* a *28S* geny. Celá jednotka je transkribována RNA polymerázou I, v postranskripčních úpravách poté dochází k její degradaci (Gerbi, 1985).

Obr. 3: Schéma Ribozomálních DNA genů, včetně ITS (https://genome.cshlp.org/).

ITS2 oblast představuje více konzervativní strukturu, vhodnou pro identifikaci druhů. Naproti tomu *ITS1* fragment se jeví jako více variabilní, mohl by proto být použit pro studium populací (Douglas and Haymer, 2001). Porovnávání *ITS* sekvencí se stává populárním nástrojem pro fylogenetickou analýzu blízce příbuzných skupin, druhů a kmenů, což dokazuje velké množství publikovaných prací na toto téma. K identifikaci dipter pomocí metody RFLP, *ITS* marker poprvé použila ve své studii Susan T. Ratcliffe a kolektiv (Ratcliffe *et al.*, 2003). Druhové identifikaci masařek pomocí *ITS2* fragmentu se věnovalo několik studií. U vzorků z Číny to byla práce Song, Wang and Liang (2008), u korejských jedinců byl lokus *ITS2* otestován v publikaci Park *et al.* (2018). Genetickou variabilitou markeru *ITS* se u masařek z Malajsie zabývala práce Roziah and Tan (2015).

ITS má kromě nukleotidové variability další zajímavou vlastnost, a sice že vytváří typické sekundární struktury, které umožňují zviditelnit konzervativní oblasti (smyčky – domény) a případně tak usnadnit "alignment" sekvencí. Užitečnost sekundárních struktur pro fylogenetiku dvoukřídlých prokázali ve své práci Schlötterer *et al.* (1994) nebo Young and Coleman (2004). U rodu *Sarcophaga* se sekundárními strukturami zatím nikdo nezabýval. Nejbližší čeledí, u které byly predikovány jsou muchničkovití (Simuliidae), v práci LaRue *et al.* (2009).

1.2.3 Wolbachia

Wolbachia je gramnegativní intracelulární bakterie, která se řadí do rodu Rickettsia (De Oliveira *et al.*, 2015). Vyskytuje se především u členovců a v menší míře i u filariálních hlístic. U hmyzu se objevuje v samčích i samičích zárodečných linií, přenos ale probíhá výhradně

vertikálně přes samičí zárodečnou linii (Pietri, DeBruhl and Sullivan, 2016). Průzkumy uvádí, že přibližně 16 % veškerého hmyzu může být infikováno právě tímto mikroorganismem. *Wolbachia* tak patří mezi vůbec nejčastěji se vyskytující popsané endosymbionty (Braig *et al.*, 1998).

Infekce je spojená především s reprodukčními abnormalitami u hostitelského organismu. Nejčastěji se vyskytující abnormalitou je cytoplazmatická inkompatibilita (CI), kde dochází při páření infikovaného samce s neinfikovanou samičkou ke smrti potomstva. Zabíjení a feminizace samců a indukce partenogeneze jsou dalšími abnormalitami, které *Wolbachia* způsobuje (Braig *et al.*, 1998).

Wolbachia má také schopnost poskytovat odolnost proti mnoha parazitárním a bakteriálním patogenům. Tato vlastnost umožňuje hostitelům, infikovanými patogeny, přežít a dále se rozmnožovat v situacích, kdy by neinfikovaní hostitelé nepřežili. Například u komárů poskytuje *Wolbachia* rezistenci proti parazitu *Plasmodium*, způsobující závažné onemocnění malárie (Pietri, DeBruhl and Sullivan, 2016). Podobná výhoda by se dala předpokládat i u forenzních dipter. Zatím však toto nebylo systematicky studováno. V předchozích studiích také bylo zjištěno, že kmen *Wolbachia* (wMelPop), izolovaný z *D. melanogaster*, může mít u komárů i negativní vliv, který se projevuje snižováním délky jejich života (Kambris *et al.*, 2009).

V Práci (Mingchay *et al.*, 2014) se tomuto endosymbiontovi podrobně věnují u thajských jedinců čeledí Muscidae, Calliphoridae a Sarcophagidae. Z celkového počtu 51 jedinců byla *Wolbachia* detekována u 7 individuí, druhů *H. pulchra*, *M. sorbens*, *S. dux*, *C. megacephala*, *S. scopariiformis*, *M. domestica*, *C. megacephala*.

2. Cíle práce

- Na základě publikací vybrat molekulární markery pro detekci genetické variability u forenzně významných druhů hmyzu z čeledi masařkovitých (Sarcophagidae).
- Otestovat vybrané markery u zvolených druhů typických pro Českou republiku.

3. Materiál a metody

3.1 Materiál

Vzorky studované v této práci pochází z 9 různých míst České republiky a jsou součástí experimentů s prasečími kadavéry. Sběr a druhovou identifikaci jedinců provedla plk. Ing. Hana Šuláková, Ph.D. z kriminalistického ústavu PČR Praha. Celkem bylo analyzováno 72 jedinců z čeledi masařkovitých, reprezentujících 9 druhů (*Sarcophaga variegata, africa, noverca, carnaria, albiceps, incisilobata, lehmanni, argyrostoma a caerulescens*), které jsou v ČR nejběžnější. Pro statistickou analýzu pomocí markeru *COI* byly přidány veřejně dostupné sekvence z databází GenBank a BOLD s dohledatelným určením místa sběru, které obsahovaly alespoň 550 bp (přílohy 1 - 9). Materiál byl skladován v etanolu nebo jako usušený při teplotě -18°C. Tabulka I zachycuje přehled vzorků a jejich lokalit.

Druh	Lokalita	Počet	Souřadnice
Sarcophaga variegata (Svar)	Čeperka (Čep)	5 ind	50.133 S, 15.773 V
	Praha - Petřín (Pet)	2 ind	50.085 S, 14.386 V
Sarcophaga africa (Safr)	Praha - Petřín (Pet)	1 ind	50.085 S, 14.386 V
	Praha - Troja (PT)	5 ind	50.121 S, 14.398 V
Sarcophaga noverca (Snov)	Praha - Petřín (Pet)	1 ind	50.085 S, 14.386 V
	Praha - Troja (PT)	3 ind	50.121 S, 14.398 V
Sarcophaga carnaria (Scar)	Čeperka (Čep)	2 ind	50.133 S, 15.773 V
	Praha - Petřín (Pet)	2 ind	50.085 S, 14.386 V
	Praha - Troja (PT)	3 ind	50.121 S, 14.398 V
Sarcophaga albiceps (Salb)	Praha - Petřín (Pet)	1 ind	50.085 S, 14.386 V
	Praha - Troja (PT)	6 ind	50.121 S, 14.398 V
Sarcophaga incisilobata (Sinc)	Čeperka (Čep)	2 ind	50.133 S, 15.773 V
	Praha - Petřín (Pet)	2 ind	50.085 S, 14.386 V
Sarcophaga lehmanni (Sleh)	Čeperka (Čep)	15 ind	50.133 S, 15.773 V
	Praha - Petřín (Pet)	2 ind	50.085 S, 14.386 V
Sarcophaga argyrostoma (Sarg)	Praha - Veleslavín (Vel)	2 ind	50.087 S, 14.347 V
	Praha - Újezd n. Lesy (Únl)	1 ind	50.076 S, 14.659 V
	Mělník (M)	2 ind	50.346 S, 14.489 V
	Praha - Střižkov (PS)	3 ind	50.125 S, 14.498 V
	Mladá Boleslav (MB)	2 ind	50,425 S, 14.909 V
	Praha - Letňany (PL)	1 ind	50.134 S, 14.514 V
	Čeperka (Čep)	9 ind	50.133 S, 15.773 V

Tab. I: Přehled vzorků a jejich lokalit.

Lokality analyzovaných vzorků byly pomocí souřadnic vyneseny do mapy, která je zobrazena na následujícím obrázku.

Obr. 4: Lokality analyzovaných vzorků, 1 – Praha - Troja, 2 - Mělník, 3 – Praha - Střižkov, 4 - Mladá Boleslav, 5 - Praha - Letňany, 6 - Čeperka, 7 - Praha - Petřín, 8 – Praha - Veleslavín, 9 - Praha - Újezd nad Lesy.

3.2 Metody

3.2.1 Extrakce DNA

Izolace DNA byla prováděna z nohou masařek. Pro zjišťování přítomnosti bakterie *Wolbachia* bylo zapotřebí provést extrakci také ze zadečků. U vzorků skladovaných v etanolu bylo nutné ho nejdříve odpařit, a to inkubací tkáně vložené do 1,5 ml zkumavky na termobloku (Thermomixer comfort, Eppendorf), zahřátém na 40°C. K extrakci DNA u obou typů tkání byly využívány 2 komerční kity, DNeasy Blood &Tissue kit (QIAGEN) a DEP - 25 Extraction Kit (Top - Bio). Bylo postupováno přesně podle přiložených protokolů. Po izolaci byla DNA skladována při -18 °C.

3.2.2 Polymerázová řetězová reakce (PCR)

Míchání reakční směsi probíhalo v 0,2 ml zkumavkách na ledu. K PCR bylo standardně využíváno pěti komponent: ultračistá voda ddH₂0, 10x zředěný reakční pufr, mix deoxyribonukleotidů dNTPs, dále "forward" a "revers" primery a DNA polymeráza. Většina reakcí byla míchána s Unis Taq (Top - Bio) polymerázou. V případě, kdy se daný lokus nedařilo amplifikovat, byla využita TaKaRa ExTaq polymeráza (TaKaRa Bio). Nakonec bylo

do zkumavky přidáno 1,5 µl templátové DNA. Reakční směsi obou používaných polymeráz jsou zobrazeny v tabulce II.

	Unis Taq	TaKaRa ExTaq
ddH ₂ 0	7,25 µl	7,75 μl
10x Unis Taq pufr/10x Ex Taq pufr	1,25 µl	1,25 µl
dNTPs (2,5 mM)	1 µl	1 µl
Primer - forward (5µM)	0,75 µl	0,75 μl
Primer-revers (5µM)	0,75 µl	0,75 μl
Unis Taq polymeráza (5U/µl) nebo TaKaRa ExTaq polymeráza (5U/µl)	0,1 μl	0,05 µl
Templátová DNA	1,5 µl	1,5 µl

Tab. II: Reakční směsi.

Následující tabulka III zahrnuje přehled markerů a zároveň všech k nim použitých primerů. Z mitochondriálních markerů byly otestovány lokusy *COI* - Cytochrom c oxidáza I a *CR* - kontrolní oblast, z jaderných lokusů *ITS* - internal transcribed spacer i EPIC markery (fragmenty ribozomálních proteinů - *RPS12, RPS13, RPL*, oblast beta 2 podjednotky proteazomu (*P* β 2), *EF1* α - elongační faktor 1 α a Wg - Wingless). Pro detekci bakterie rodu *Wolbachia* byly vybrány lokusy *16S* rRNA a *Wsp* - *Wolbachia* Surface Protein. Jako pozitivní kontrola byl použit chvostoskok *Folsomia candida* z laboratorního chovu, u kterého máme ověřeno, že je touto bakterií infikován.

Primery pro PCR amplifikaci byly přejaty z literatury. U všech byla předem ověřena kvalita nasedání (tzv. "annealingu") pomocí adekvátních sekvencí z jediných dostupných genomů rodu *Sarcophaga*, tedy *S. bullata* a *S. peregrina*.

Marker	Lokus	Primery	Směr	Sekvence 5′→3′	Autor
mtDNA	COI	LCO-1490	F	GGTCAACAAATCATAAAGATATTGG	Folmer et al., 1994
		HCO-2198	R	TAAACTTCAGGGTGACCAAAAAATCA	Folmer et al., 1994
	CR	SR-J- 14612	F	AGGGTATCTAATCCTAGTTT	Simon et al., 1994
		TM-N-193	R	GCTACTGGGTTCATACCCCA	Simon et al., 1994
nDNA	ITS	ITSf1	F	TACACACCGCCCGTCGCTACTA	Ji, Zhang and He, 2003
		ITSr1	R	CTTTTCCTCCSCTTAYTRATATGC	Ji, Zhang and He, 2003
		1975F	F	TAACAAGGTTTCCGTAGGTG	Ratcliffe et al., 2003
		52R	R	GTTACTTTCTTTTCCTCCCCT	Ratcliffe et al., 2003
	ITS18S	18Sa3.5F	F	TGGTGCATGGCCGYTCTTAGT	Whiting, 2002
		18S9R	R	GATCCTTCCGCAGGTTCACCTAC	Whiting, 2002
	ITS28S	28SRd 1.2a	F	CCCSSGTAATTTAAGCATATTA	Whiting, 2002
		28SRd3.2b	R	TGAACGGTTTCACGTACTMTTGA	Whiting, 2002
		28SRd4.2b	R	CCTTGGTCCGTGTTTCAAGACGG	Whiting, 2002
	Wg	Wg5F	F	ATGCGTCAAGAATGTAAATG	Federico et al., 2018
		Wg8R	R	TTACAGACACGTGTGTAT	Federico et al., 2018
EPIC	RP S12	RPS12F	F	AATCTTTAATTGCCGATGGTC	Klojdová, 2018
		RPS12R	R	GCTCCTTGACGACATCCAA	Klojdová, 2018
	RP S13	RPS13F	F	TACAGAAGAACCGTTCCCT	Klojdová, 2018
		RPS13R	R	ATCCTTGCGGTTACGTTCC	Klojdová, 2018
	RP L7	RPL7F	F	AAGGTGATCAGCAAGCGTG	Klojdová, 2018
		RPL7R	R	TTCAACTTGATGAAGACACC	Klojdová, 2018
	RP L12	RPL12F	F	GTGATGACATTGCCAAGGC	Klojdová, 2018
		RPL12R	R	TACACTTTGGGCAGTACCC	Klojdová, 2018
	Ρβ2	Pβ2F	F	CTTTTGAGGAATGGATTCCAA	Klojdová, 2018
		Pβ2R	R	TTTGTCTGTCGAGCCATG	Klojdová, 2018
	EF1α	EFO-5′	F	TCCGGATGGCAYGGCGAGAAYATG	Villablanca, Roderick and Palumbi, 1998
		EF2-3′b	R	ATGTGAGCAGTGTGGCAATCCAA	Villablanca, Roderick and Palumbi, 1998
Wolbachia	16S	16Sf	F	TTGTAGCCTGCTATGGTATAACT	O'Neill et al., 1992
		16Sr	R	GAATAGGTATGATTTTCATGT	O'Neill et al., 1992
	Wsp	Wspf1	F	GTCCAATARSTGATGARGAAAC	Zhou, Rousset and O'Neil, 1998
		Wspr1	R	CYGCACCAAYAGYRCTRTAAA	Zhou, Rousset and O'Neil, 1998

Tab. III: Přehled markerů a použitých primerů. Žlutě označeny úspěšně použité markery k amplifikaci daného lokusu.

3.2.2.1 PCR profily

PCR byla prováděna primárně v termocykleru TProfessional TRIO Thermocycler (Biometra) a v menší míře v gradientovém termocykleru Mastercycler ep gradientS (Eppendorf). Profily byly buď přímo navrženy dle složení primerů a odhadované délky amplikonu, anebo převzaty z publikací. V obou případech musely být dále optimalizovány. Tabulka IV zobrazuje všechny úspěšné PCR profily.

	COI	ITS	ITS 18S	ITS 28S	RPS12
1. Predenaturace	94 °C/2 min	95 °C/3 min	94 °C/2 min	94 °C/2 min	94 °C/1 min
2. Denaturace	94 °C/30 s	95 °C/30 s	94 °C/30 s	94 °C/30 s	94 °C/30 s
3. Annealing	45 °C/45 s	64 °C/30 s	55 °C/40 s	50 °C/40 s	50 °C/40 s
4. Elongace	72 °C/1 min	68 °C/3 min	72 °C/1 min	72 °C/1 min	72 °C/45 s
5. Postelongace	72 °C/2 min	68 °C/10 min	72 °C/2 min	72 °C/2 min	72 °C/2 min
6. Uchování	4 °C/∞	4 °C/∞	4 °C/∞	4 °C/∞	4 °C/∞
Počet cyklů 2 - 4	35	35	35	35	
	RPS13	RPL12	EF1a	<i>16S</i>	
1. Predenaturace	94 °C/1 min	94 °C/1 min	94 °C/2 min	94 °C/2 min	
2. Denaturace	94 °C/30 s	94 °C/30 s	94 °C/30 s	94 °C/30 s	
3. Annealing	50 °C/40 s	52 °C/40 s	55 °C/45 s	52 °C/40 s	
4. Elongace	72 °C/45 s	72 °C/45 s	72 °C/1 min	72°C/1.5 min	
5. Postelongace	72 °C/2 min	72 °C/2 min	72 °C/2 min	72 °C/10 min	
6. Uchování	4 °C/∞	4 °C/∞	4 °C/∞	4 °C/∞	
Počet cyklů 2 - 4	40	40	35	35	

Tab. IV: Seznam úspěšně použitých PCR profilů.

3.2.3 Gelová elektroforéza

Gelovou elektroforézou byla ověřena úspěšnost PCR reakce a také byla přibližně zjištěna velikost a koncentrace DNA fragmentů. Pro přípravu 2 % agarózového gelu byly nejprve 4 g agarózy rozpuštěny ve 200 ml 1x TAE pufru (50x TAE pufr: 2M TRIS, 1M kyseliny octové, 0,05M EDTA). Rozpouštění probíhalo v mikrovlnné troubě do doby, než byl roztok zcela čirý (bez krystalků agarózy). Následně byl gel zchlazen na teplotu přibližně 50°C, a to za stálého míchání pod proudem tekoucí vody. Poté bylo přidáno 15 µl interkalačního barviva - ethidium bromidu. Zchlazený roztok byl nalit do formy. Nakonec byly přidány

hřebínky pro tvorbu jamek a pomocí pipetovací špičky odstraněny bubliny. Gel se nechal po dobu 30 - 40 minut ve tmě tuhnout, následně byl skladován v 1x TAE pufru při teplotě 4 °C.

Na hotový gel byly nanášeny 3 µl PCR produktu, které byly pipetováním smíchány s 1 µl nanášecího pufru (700 µl ddH₂0, 300 µl glycerolu, 0,5 mg bromfenolové modři). Vedle jednotlivých produktů byl na gel nanesen také velikostní marker (ladder), který sloužil k určení velikosti daného fragmentu. Pro 2 % gel byl využit marker Lambda DNA/EcoRI+Hind III (Thermo Fischer Scientific). Samotná elektroforéza probíhala 30 - 40 minut při napětí 120 V. Separované fragmenty byly vyobrazeny pod UV světlem. Nakonec byla pořízena pomocí CCD kamery fotografie, jejíž příklad se nachází na obrázku 5.

Obr. 5: Nalevo velikostní marker Lambda DNA/EcoRI+Hind III, napravo skutečná fotografie agarózového gelu se separovanými fragmenty DNA (*COI* marker), 1. jamka - velikostní marker (ladder), 2. - 8. jamka – amplifikované fragmenty *COI* u druhu *S. caerulescens*, 9. jamka - negativní kontrola.

3.2.4 Přečištění vzorků

Aby mohly být vzorky poslány k sekvenaci, musely být nejdříve přečištěny od zbytků primerů a dNTPs. K tomuto účelu byl využit kit ExoFastAP, který se skládá ze dvou druhů hydroláz, Exonukleázy I (20 U/ μl, ThermoFisher Scientific) a Termosenzitivní alkalické fosfatázy (FastAP, 1 U/ μl, ThermoFisher Scientific). Do zkumavky s PCR produktem bylo

přidáno vždy 0,5 µl Exonukleázy I a 1 µl FastAP. Jelikož bylo pracováno s enzymy, míchání probíhalo na ledu. Následně byl vzorek inkubován v termobloku po dobu 30 minut při 37 °C a 15 minut při 80 °C.

3.2.5 Sekvenace

Sekvenační směs byla připravena smícháním 5 μl přečištěného PCR produktu s 5 μl příslušného PCR primeru. Sekvenování probíhalo v laboratořích ve firmě Eurofins Genomics. Vzorky byly do této firmy poslány v 1,5 ml zkumavkách.

3.2.6 Klonování

Chromatogramy z přímého sekvenování PCR produktů markeru *ITS* měly velmi nízkou kvalitu, a proto bylo nutné pro získání čitelných sekvencí z jednotlivých druhů PCR produkt zaklonovat následujícím postupem.

a) Příprava agarových misek pro kultivaci bakterií:

Agarová směs byla připravena smícháním 15 g agaru, 10 g tryptonu, 5 g kvasinkového extraktu, 10 g NaCl a 1 l destilované vody. Následně byla 60 minut klávována. Po zchladnutí byl přidán ampicilin (1 µl amp/1 ml média). Poté byl agar nalit do Petriho misek. Po ztuhnutí bylo dále na každou misku přidáno, a pomocí sterilní kličky rozetřeno, 64 µl X - galu (12,5mg/ml) a 3,5 µl IPTG (240mg/ml).

b) Ligace PCR produktu do vektoru a transformace do bakteriálních buněk:

Obě tyto fáze byly provedeny přesně podle protokolu od výrobce pGEM - T Easy Vector SystemsTM (PromegaTM). Jedinou výjimkou bylo přidání LB media (10g tryptonu, 5g kvasinkového extraktu, 10g NaCl a 11 destilované vody), namísto uvedeného SOC media.

c) Inkubace bakterií - tzv. modro - bílá selekce:

Selekce klonů bílé barvy obsahovaly klonovací vektor s insertem, zatímco klony modré barvy nikoliv. Klony bílé barvy byly sterilní špičkou přeneseny do 50 µl ddH₂0 a v termobloku, zahřátém na 95°C, byly 10 minut povařeny. Výsledný DNA templát mohl být použit pro novou PCR.

3.2.7 Statistické vyhodnocení

U všech získaných sekvencí byla nejprve pomocí databáze NCBI BlastSearch (https://blast.ncbi.nlm.nih.gov) zkontrolovaná jejich příslušnost k danému lokusu či druhu. Následovala manuální úprava v programu Chromas 2.6.6, kde byly od sekvencí odstřiženy primery a úvodní nečitelné píky (zhruba 30nt na 5'konci). V programu Mega 6 (Kumar *et al.*, 2018) byly sekvence uspořádány a u markerů kódujících proteiny byl zkontrolován čtecí rámec (ORF – open reading frame). Následně bylo metodou "Muscle" vytvořeno seřazení – "alignment". Tento program byl dále použit k základnímu vyhodnocení nukleotidového složení a stanovení počtu konzervovaných, variabilních a parsimoniálně informativních míst.

Dále byly sestrojeny předběžné fylogenetické stromy metodou standardní pro DNA barcoding, tedy pomocí genetické vzdálenosti Kimura2 - parametru (K2P) (Kimura, 1980) a Neighbour - Joining (NJ) algoritmu. Statistická významnost byla stanovena metodou bootstrap (1000x). Přesnější fylogramy byly sestrojeny metodou Maximum Likelihood pomocí programu IQ tree (Nguyen *et al.*, 2015) v on - line režimu (http://iqtree.cibiv.univie.ac.at/). Na tomto serveru byl nejdříve vybrán nejvhodnější model genetické vzdálenosti v modulu ModelFinder (Kalyaanamoorthy *et al.*, 2017), a poté vytvořeny fylogramy s bootstrapem "ultrafast" (1000x) (Hoang *et al.*, 2017). Vizuální úprava a zakořenění dendrogramů bylo provedeno v programu FigTree (Rambaut, 2009). Dendrogramy u všech druhů *Sarcophaga* byly zakořeněny pomocí modelové *S. bullata*, jejíž sekvence byla získána z databáze GenBank (kód: KFO30488.1).

Program DnaSP 6 (Rozas *et al.*, 2017) byl použit pro analýzu haplotypů - jejich identifikaci a stanovení haplotypové (Hd) a nukleotidové (π) diverzity, a dále jejich naformátování pro zpracování v programu Arlequin 3.5 (Excoffier and Lischer, 2010). V tomto programu byly provedeny testy neutrality - Fuův a Tajimův test.

Program PopArt 1.7 (Leigh and Bryant, 2015) byl uplatněn pro sestrojení haplotypových sítí metodou Median - Joining (Bandelt, Forster and Röhl, 1999) a jejich následné vizualizaci.

Izolace vzdáleností, tedy možná korelace mezi geografickou a genetickou vzdáleností populací, byla vyhodnocena Mantelovým testem v programu GenAlEx 6.5 (Peakall and Smouse, 2012), stejně jako v něm byla provedena klastrová analýza PCoA (Principal Coordinate Analysis). Geografické vzdálenosti byly vypočteny z geografických souřadnic jednotlivých lokalit v programu GeoDist (Geographic Distance Matrix Generator) (Ersts, 2006).

Pro vyhodnocení variability u *ITS* markeru byly nejprve sekvence forward a revers sestaveny do kontinuální sekvence (tzv. "contig") v programu SeqMan z programového balíčku DNASTAR Lasergene (DNASTAR, Inc.). Metodou klouzavého okénka ("sliding window") v programu DNAsp bylo stanoveno rozložení variabilních míst po celé délce fragmentů. V tomto programu byla taktéž vyhodnocena nukleotidová variabilita.

Sekundární struktura ITS fragmentů byla predikována v modulu RNAfold (Lorenz *et al.*, 2011) na webovém serveru TheViennaRNA Web Services (http://rna.tbi.univie.ac.at/cgibin/RNAWebSuite/RNAfold.cgi).Vizualizace byla provedena v modulu Forna (Kerpedjiev, Hammer and Hofacker, 2015) na stejném serveru.

4. Výsledky

4.1. Testované markery

V rámci této práce bylo vybráno a otestováno celkem 12 molekulárních markerů. Mitochondriální oblast *COI* se podařilo amplifikovat i osekvenovat u většiny jedinců Sarcophagidae. Problém nastal u kontrolní oblasti, kde se i přes opakovanou optimalizaci PCR profilu amplifikace nepovedla u žádného vzorku.

U jaderného markeru *ITS* byla amplifikace úspěšná, avšak z důvodu nekvalitních chromatogramů z přímého sekvenování bylo nutné klonování. To se podařilo u všech 9 druhů.

Z EPIC markerů se úspěšně podařilo namnožit oblasti *RP S12*, *RP S13* a *RP L12*. Další vybrané oblasti, *RP L7* a *P* β *2*, se naopak přečíst nezdařilo. Lokus *EF1* α se sice amplifikovat podařilo, ale nebyl zde nalezen žádný intron. Druhý vytipovaný jaderný marker wingless se nepodařilo získat u žádného z druhů masařek.

Markery *16S* a *wsp* byly použity k detekci bakterie *Wolbachia*. Přítomnost této bakterie se podařilo prokázat pouze u jednoho jedince z druhu *S. caerulescens*, a to pomocí markeru *16S*.

4.1.1 Mitochondriální markery – COI

Ze 72 analyzovaných vzorků bylo 63 úspěšně amplifikováno a osekvenováno. Amplifikace se nepodařila u jednoho jedince druhu *S. variegata* a *S. noverca*, u 2 jedinců druhu *S. albiceps*, *S. lehmanni* a u 3 jedinců *S. argyrostoma*. K úspěšně získaným sekvencím z českých druhů a populací byly pro statistické analýzy přidány sekvence z GenBank/BOLD databáze z různých států světa, a to s dohledatelným určením místa sběru, které obsahovaly alespoň 550 bp (přílohy 1 - 9).

Sekvence byly u každého druhu upraveny na stejnou délku. V tabulce V je přehled základních charakteristik nukleotidové variability.

Tab. V: Druhová genetická variabilita mitochondriálního *COI* markeru, N = délka sekvence, C = počet konzervativních míst, V = počet variabilních míst, Pi = počet parsimoniálně informativních míst.

Druh	Počet jedinců	N (bp)	С	V	Pi
S. africa	55	648	595	53	30
S. albiceps	83	648	583	65	41
S. argyrostoma	51	642	584	58	25
S. caerulescens	112	648	625	24	19
S. carnaria	124	653	629	25	10
S. incisilobata	31	644	624	20	7
S. lehmanni	33	644	627	17	11
S. noverca	10	644	641	3	1
S. variegata	157	644	604	40	17

Nejvíce variabilních míst bylo objeveno u *S. albiceps*, konkrétně 65, což činilo 10 % z celkové délky sekvence. Parsimoniálně informativních míst bylo nejvíce taktéž u *S. albiceps*, a to 41. U *S. noverca* byla nalezena naopak pouze 3 variabilní místa (0,5 %) a 1 parsimoniálně informativní místo, tedy nejméně ze všech studovaných druhů.

Dále byla u každého druhu vypočítána průměrná frekvence nukleotidů, která je zaznamenána v přílohách (Příloha 10). Z tabulky je patrné, že převažuje zastoupení A-T nukleotidů u všech studovaných druhů masařek.

V programu DnaSP byla provedena analýza haplotypů, přehled vyhodnocených charakteristik je uveden v tabulce č. VI.

Druh	h	Hd	π
S. africa	13	0,621	0,009
S. albiceps	28	0,868	0,007
S. argyrostoma	22	0,816	0,008
S. caerulescens	10	0,575	0,013
S. carnaria	14	0,404	0,002
S. incisilobata	10	0,714	0,004
S. lehmanni	12	0,811	0,005
S. noverca	4	0,533	0,002
S. variegata	23	0,824	0,007

Tab. VI: Nukleotidová (π) a haplotypová variabilita (h, Hd).

Nejvíce haplotypů (28) bylo identifikováno u *S. albiceps*. U tohoto druhu byla zároveň zjištěna nejvyšší hodnota haplotypové diverzity, a to 0,868. Naopak nejnižší hodnota Hd (0,404) byla zaznamenána u *S. carnaria* a nejmenší počet haplotypů (4) u *S. noverca*. Hodnoty nukleotidové variability se pohybovaly v rozmezí od 0,002 (u *S. noverca*) do 0,013 (u *S. caerulescens*).

Pro vizualizaci výskytu haplotypů v jednotlivých státech byly v programu Popart vytvořeny haplotypové sítě, zobrazené v přílohách (Příloha 11). Z haplotypových sítích je patrné, že nedošlo k oddělení populací, jelikož populace sdílejí společné haplotypy.

V dalším programu Arlequin byly spočítány testy neutrality, Tajimův a Fuův test, které pomáhají identifikovat možné demografické procesy. Záporná hodnota testů neutrality signalizuje populační expanzi, kladná zase poukazuje na působení nedávného "bottlenecku", tedy náhlého snížení počtu jedinců. Výsledné hodnoty testů neutrality byly doplněny do tabulky č. VII.

Tab. VII: Testy neutrality pro jednotlivé lokality u všech studovaných druhů, N - počet jedinců, S - počet segregujících míst, p - hodnota signifikance, žlutě vyznačeny signifikantní hodnoty. Zkratky lokalit byly vytvořeny podle mezinárodních kódů ISO.

Dauch	Labalita	N	S	Tajimovo	Tajimovo D	Počet	Enovo ES	Fuovo FS
Diun Safrica		6	0	0.000	1 000	1		p nounota
5. <i>ajrica</i>		12	0	0.000	1.000	1	0.000	N.A.
	ED A	5	0	0.000	1.000	1	0.000	N.A.
	FKA VEN	2	2	0.000	1.000	2	1.000	N.A.
	CUN	12	10	1.500	0.061	<u> </u>	2.220	0.409
		12	10	0.000	0.961	4	0.000	0.935
		5	11	1.100	0.045	2	0.000	N.A.
		2	5	-1.199	1.000	2	2.033	0.827
	DEU	3	3	0.000	1.000	3	-0.077	0.215
		1	0	0.000	1.000	1	0.000	N.A.
		1	0	0.000	1.000	1	0.000	N.A.
S. albiaana	CZE	1	2	0.000	0.424	2	0.000	N.A.
S. aibiceps		5	1	-0.030	0.424	2	-0.427	0.180
	KOD	5	1	-0.017	1.000	1	0.090	0.303
	KOR	5	0	0.000	1.000	1	0.000	N.A.
	CHN	48	21	-2.040	0.003	20	-17.141	0.000
	POL	1	0	0.000	1.000	1	0.000	N.A.
	THA	2	2	0.000	1.000	2	0.693	0.376
	BGD	9	1	-1.088	0.200	2	-0.263	0.186
	SAU	1	0	0.000	1.000	1	0.000	N.A.
	IND	1	0	0.000	1.000	1	0.000	N.A.
	PAK	2	15	0.000	1.000	2	2.708	0.585
	DEU	2	1	0.000	1.000	2	0.000	0.232
	ESP	1	0	0.000	1.000	1	0.000	N.A.
S. argyrostoma	CZE	8	0	0.000	1.000	1	0.000	N.A.
	BEL	2	1	0.000	1.000	2	0.000	0.245
	FRA	2	0	0.000	1.000	1	0.000	N.A.
	ITA	7	2	-1.237	0.124	2	0.856	0.599
	ESP	32	46	-1.546	0.038	20	-6.332	0.013
S. caerulescens	CZE	9	0	0.000	1.000	1	0.000	N.A.
	FRA	5	3	0.699	0.751	3	0.276	0.510
	RUS	2	2	0.000	1.000	2	0.693	0.343
	BEL	4	2	1.893	0.965	2	1.530	0.701
	ESP	4	1	-0.612	0.376	2	0.172	0.345
	FIN	1	0	0.000	1.000	1	0.000	N.A.
	DEU	3	0	0.000	1.000	1	0.000	N.A.
	CAN	83	13	0.003	0.574	4	5.691	0.961
	USA	1	0	0.000	1.000	1	0.000	N.A.
S. carnaria	CZE	8	1	-1.055	0.222	2	-0.182	0.211
	DEU	100	9	-2.020	0.001	10	-11.268	0.000

	DNK	1	0	0.000	1.000	1	0.000	N.A.
	BEL	2	0	0.000	1.000	1	0.000	N.A.
	FRA	5	4	0.273	0.691	4	-1.012	0.127
	GBR	4	0	0.000	1.000	1	0.000	N.A.
	ITA	4	0	0.000	1.000	1	0.000	N.A.
S. incisilobata	CZE	4	9	-0.492	0.412	4	-0.615	0.212
	FRA	1	0	0.000	1.000	1	0.000	N.A.
	BGR	2	2	0.000	1.000	2	0.693	0.393
	DEU	24	7	-0.914	0.200	6	-1.133	0.223
S. lehmanni	CZE	16	11	-1.860	0.021	4	0.965	0.734
	FRA	6	7	1.014	0.847	3	2.202	0.857
	USA	1	0	0.000	1.000	1	0.000	N.A.
	ESP	3	0	0.000	1.000	1	0.000	N.A.
	ITA	6	3	-1.233	0.119	4	-1.813	0.022
	GRC	1	0	0.000	1.000	1	0.000	N.A.
S. noverca	CZE	3	2	0.000	1.000	3	-1.216	0.091
	FRA	2	0	0.000	1.000	1	0.000	N.A.
	ITA	1	0	0.000	1.000	1	0.000	N.A.
	BGR	1	0	0.000	1.000	1	0.000	N.A.
	DEU	3	0	0.000	1.000	1	0.000	N.A.
S. variegata	CZE	10	2	-1.401	0.030	2	0.586	0.440
	BEL	7	2	0.206	0.605	3	-0.237	0.240
	FRA	4	2	-0.710	0.276	2	1.099	0.633
	ITA	9	6	-1.728	0.015	4	-0.450	0.253
	GBR	3	1	0.000	1.000	2	0.201	0.405
	ESP	2	0	0.000	1.000	1	0.000	N.A.
	EGY	35	7	-1.532	0.044	5	-1.102	0.231
	NOR	2	1	0.000	1.000	2	0.000	0.245
	BLR	16	7	1.237	0.913	5	1.277	0.776
	DEU	59	8	-0.850	0.209	9	-3.095	0.050
	HRV	6	3	-1.233	0.101	2	1.609	0.739
	BGR	1	0	0.000	1.000	1	0.000	N.A.
	ROU	3	0	0.000	1.000	1	0.000	N.A.

N.A. = not applicable, nelze stanovit.

Testy neutrality byly signifikantní u čínských populací druhu *S. albiceps*, u španělských populací druhu *S. argyrostoma* a také u německých populací druhu *S. carnaria*. Všechny populace měly záporné hodnoty Tajimova D i Fuova FS a relativně velký počet alel, mohlo zde tedy dojít k nedávné expanzi populací.

Izolace populací na základě geografické vzdálenosti byly analyzovány pomocí korelace geografické a genetické (K2P) vzdálenosti, jejíž signifikance určil Mantelův test. Výsledky jsou sumarizovány v tabulce VIII a vizualizovány pomocí grafů (Obr. 6 a Příloha 12).

Druh	Rxy	р
S. africa	0,288	0,04
S. albiceps	0,172	0,05
S. argyrostoma	0,579	0,07
S. caerulescens	0,788	0,022
S. carnaria	0,022	0,41
S. incisilobata	-0,713	0,096
S. lehmanni	0,343	0,052
S. noverca	0,646	0,11
S. variegata	0,429	0,037

Tab. VIII: Mantelův test, Rxy = korelační koeficient, p - hodnota signifikance.

Hodnoty korelačního koeficientu se pohybovaly od -0,713 do 0,788. Nejmenší hodnota (Rxy = -0,713) byla zjištěna u druhu *S. incisilobata*, hodnota nejvyšší (Rxy = 0,788) byla pozorována u *S. caerulescens*. Pouze u druhů *S. africa*, *S. caerulescens a S. variegata* byla hodnota p signifikantní (p <0,05), byla zde zjištěna určitá korelace mezi genetickými a geografickými vzdálenostmi (Obr. 6). Naopak u všech ostatních druhů byla hodnota p >0,05, výsledky byly tedy neprůkazné (Příloha 12).

Obr. 6: Grafické znázornění korelace mezi geografickou a genetickou (K2P) vzdáleností, a) *S. africa*, b) *S. caerulescens*, c) *S. variegata*.

Možné shlukování jedinců podle lokalit bylo analyzováno klastrovací metodou hlavních souřadnic - Principal Coordinates Analysis (PCoA) na základě genetických vzdáleností. Výsledné grafy jsou zobrazeny v přílohách (Příloha 13) a je z nich patrné, že nedošlo k rozdělení podle geografického původu.

U každého druhu byly také v programu IQ Tree vytvořeny dendrogramy metodou Maximum Likelihood (Ultrafast bootstrap). Dendrogramy u všech druhů *Sarcophaga* byly zakořeněny pomocí modelové *S. bullata* (přílohy 14 - 22). Stejně jako v předchozích analýzách (haplotypové sítě, PCoA), u dendrogramů také nedošlo k rozdělení vzorků do klastrů podle jejich geografické lokality, jednotlivé populace (lokality) se mezi sebou mísily.

4.1.2 Jaderné markery – ITS

PCR amplifikace celého *ITS* fragmentu byla u většiny druhů úspěšná, ale přímé sekvenování tohoto produktu ne. U všech chromatogramů (ve směru forward i revers) byly čitelné jen části sekvence, většinou však měly silné pozadí, ať už v důsledku smíchání s další sekvencí nebo s možnou sekundární strukturou. Proto bylo nutné tyto PCR produkty zaklonovat. Sekvenování klonů poté vedlo k úspěšnému získání DNA sekvencí u všech druhů.

Pozice jednotlivých fragmentů *ITS1*, 5.8*S*, 2*S* a *ITS2* byly stanoveny na základě porovnání s fylogeneticky vzdálenější *D. melanogaster* (Dmel) a fylogeneticky bližší forenzní mouchou *Lucilia caesar* (Lcae). Fragment 2*S* byl identický u všech druhů, včetně Dmel a Lcae, proto nebyl použit do dalších analýz.

4.1.2.1 Nukleotidová variabilita ITS

Nejprve byly určeny délky *ITS* sekvencí u jednotlivých druhů a nukleotidové frekvence. *ITS* Sekvence byly porovnány s Dmel a Lcae. Hodnoty jsou zaznamenány v tabulce IX.

	ITS		ITS1		5.85			ITS2		
		A-U	G-C		A-U	G-C		A-U	G-C	
Druh	N [bp]	[%]	[%]	N [bp]	[%]	[%]	N [bp]	[%]	[%]	N [bp]
Dmel	1264	73.1	27	728	48.7	51.2	121	80.2	19.8	415
Lcae	985	78.5	21.5	521	49.5	50.4	121	81.1	19	343
Safr	1575	77	23	1107	49.5	50.4	121	79.8	20.2	347
Salb	1435	77.7	22.4	954	48.7	51.2	121	80.6	19.4	360
Sarg	1564	75.3	24.7	1069	49.5	50.4	121	80.2	19.8	374
Sbul	1450	76.6	23.4	966	49.5	50.4	121	80.4	19.6	363
Scae	1430	76.7	23.3	953	49.5	50.4	121	79.7	20.3	356
Scar	1437	78	12	957	49.5	50.4	121	80.3	19.8	359
Sinc	1436	77.2	22.8	956	49.5	50.4	121	79.9	20.1	359
Sleh	1473	76.9	23.2	996	49.5	50.4	121	80	20	356
Snov	1568	77	23	1074	49.5	50.4	121	79.9	20.1	373
Svar	1438	78	22	958	49.5	50.4	121	80.3	19.7	359

Tab. IX: Frekvence A-T a G-C nukleotidů a délka (= N) *ITS* sekvencí u jednotlivých druhů.

Z tabulky je patrné, že u *ITS1* a *ITS2*, na rozdíl od 5.8*S*, převažuje zastoupení A-U nukleotidů před G-C nukleotidy. Průměrná frekvence A-U nukleotidů u *ITS1* u rodu *Sarcophaga* činila 77 %, což je zhruba o 4 % více než u Dmel a o 1,5 % méně než u Lcae. U

ITS2 byla průměrná hodnota frekvence A-U nukleotidů 80 %, přibližně stejné frekvence byly i u Dmel a Lcae.

ITS1 byl ze 3 porovnávaných fragmentů nejdelší. U tohoto fragmentu lze pozorovat délkovou variabilitu mezi druhy, která je způsobena indely. Průměrná délka *ITS1* fragmentu u *Sarcophaga* byla 999 bp, nejkratší fragment obsahovala *S. caerulescens* (953 bp), nejdelší *S. africa* (1107). V porovnání s Lcae a Dmel byla průměrná délka *ITS* u *Sarcophaga* o více než 400 bp větší než Lcae a o více než 200 bp větší než Dmel.

Fragment 5.8S měl u všech druhů stejnou délku, 121 bp. *ITS2* byl svou délkou mezi druhy, podobně jako *ITS1*, variabilní. Průměrná délka *ITS2* u masařek byla 361 bp. Nejdelší fragment měla *S. argyrostoma* (374 bp), nejkratší naopak *S. africa* (347 bp). Délka *ITS2* fragmentu u Lcae a Dmel se nepatrně odlišovala, u Dmel byla 415 bp dlouhá, u Lcae měřila 343 bp.

Dále byla v programu DNAsp vyhodnocena genetická variabilita *ITS* markeru, která je zaznamenána v následující tabulce X.

Tab. X: Genetická variabilita jaderného *ITS* markeru, P = počet polymorfismů, k = Pi
= vnitrodruhová variabilita v rámci *Sarcophaga*, K Lcae = divergence mezi *Sarcophaga*a *L. caesar*, K Dmel = divergence mezi *Sarcophaga* a *D. melanogaster*.

	Р	k	K Lcae	K Dmel
ITS1	163	0,121	0,341	0,498
5.8 S	1	0,002	0,001	0,009
ITS2	69	0,055	0,208	0,393

Nejméně variabilní byl 5.8S fragment, který obsahoval pouze 1 polymorfismus a hodnota variability v rámci rodu *Sarcophaga* byla k = 0,002. Naproti tomu největší variabilitu vykazoval *ITS1*, s hodnotou k = 0,121 a se 163 polymorfismy. U *ITS2* byla vyhodnocena variabilita k = 0,055 a 69 polymorfismů. Divergence mezi *Sarcophaga* a *Lucilie caesar* byla nejmenší taktéž u 5.8S fragmentu a největší u *ITS1*, stejně tak tomu bylo i u porovnání variability *Sarcophaga* s *D. melanogaster*.

V programu DNAsp byly pomocí metody klouzavého okénka ("sliding window") vytvořeny grafy (Obr. 7), znázorňující rozložení variabilních míst po celé délce sekvence.

Obr. 7: Rozložení variabilních míst po celé délce ITS sekvence, vlevo variabilita mezi *Sarcophaga* a *D. melanogaster*, vpravo variabilita mezi *Sarcophaga* a *L. caesar*.

U obou grafů je patrné, že nejvíce variabilní je *ITS1* fragment, méně variabilní je *ITS2* a u 5.8S není téměř žádná variabilita. Z grafů lze také vyčíst, že mezi *Sarcophaga* a *D. melanogaster* hodnoty variability dosahují největších čísel kolem 900. bp a mezi *Sarcophaga* a *L. caesar* se nejvyšší hodnoty variability pohybují kolem 800. bp, větší variabilita je tedy mezi *Sarcophaga* a *D. melanogaster*.

4.1.2.2 Sekundární struktury *ITS*

Sekundární struktura *ITS1* a *ITS2* byla zkonstruována pro každý druh zvlášť, pro porovnání s *D. melanogaster* a *L. caesar* poté byla vytvořena i z konsensuální sekvence ze všech druhů *Sarcophaga*. U všech fragmentů byly detekovány 4 základní prvky (Obr. 8, 9 a Příloha 23, 24), mezi které patří kmínek ("stem") – dvojřetězec komplementárních bazí, smyčka větvená ("multibranched loop") – kruhová struktura s několika kmínky, nespárované báze ("bulge") – nespárované báze v kmínku a vlásenka ("hairpin") - koncová smyčka na kmínku. Počet a typ strukturních prvků u jednotlivých druhů je vyhodnocen v tabulce č. XI a XII.

Druh	Kmínek	Smyčka větvená	Nespárované báze	Vlásenka
	stem	loop	bulge	hairpin
Dmel	10	2	15	8
Lcae	10	2	15	8
SarcoCons	25	5	22	20
Safr	26	4	25	23
Salb	25	6	24	19
Sarg	22	6	29	19
Sbul	27	7	22	19
Scae	22	3	23	19
Scar	25	5	19	20
Sinc	28	6	20	22
Sleh	22	3	25	19
Snov	23	5	31	20
Svar	22	4	23	18

Tab. XI: Sekundární struktury u ITS1 fragmentu.

U sekundárních struktur *ITS1*, kmínek a nespárované báze tvořily nejpočetnější prvky u *Sarcophaga*, Dmel i Lcae. Nejméně početné byly velké větvené smyčky. Lcae a Dmel měly téměř totožné sekundární struktury, od *Sarcophaga* se výrazně lišily menším počtem všech 4 prvků. To bylo dané kratším fragmentem *ITS1* u Lcae i Dmel. Další odlišností byla rozdílná velikost, zejména větvených smyček. Zatímco Dmel a Lcae obsahovaly jednu velkou centrální smyčku a dvě menší, konsensuální *Sarcophaga* obsahovala zhruba 5 menších smyček (Obr.8). Mezi druhy u *Sarcophaga* se velikost i počet struktur u všech druhů lišily (Příloha 23).

c)

•••

Obr. 8: Predikovaná sekundární struktura fragmentu ITS1.

a) *D. melanogaster*, b) *L. caesar*, c) konsensuální *Sarcophaga*. Čísla označují pořadí nukleotidů, barvy odlišují strukturální prvky: oranžová – základní smyčka (obsahuje 5'a 3'konec), červeně – větvená smyčka, zeleně – kmínek, modře – vlásenka.
Druh	Kmínek	Smyčka větvená	Nespárované báze	Vlásenka
	stem	loop	bulge	hairpin
Dmel	9	3	12	6
Lcae	6	1	12	5
SarcoCons	8	2	12	6
Safr	5	1	12	4
Salb	7	2	12	5
Sarg	8	1	11	7
Sbul	8	2	11	7
Scae	7	1	12	6
Scar	7	2	12	5
Sinc	7	2	12	5
Sleh	6	1	12	5
Snov	7	1	15	6
Svar	7	2	12	5

Tab. XII: Sekundární struktury u ITS2.

U sekundárních struktur *ITS2* byly nejvíce zastoupeny, stejně jako u *ITS1*, nespárované báze, větvené smyčky byly nejméně zastoupeny. Na rozdíl od *ITS1* se prvky mezi druhy *Sarcophaga* velikostně příliš nelišily, byly více konzervované. Početní rozdílnost prvků zde byla, avšak ne tak velká jako u *ITS1* (Příloha 24). Dmel a Lcae prvky také neprokazovaly výraznou velikostní odlišnost, počet prvků se ale od konsensuální *Sarcophaga* lišil (Obr. 9).

Obr. 9: Predikovaná sekundární struktura fragmentu ITS2.

a) *D. melanogaster*, b) *L. caesar*, c) konsensuální *Sarcophaga*. Čísla označují pořadí nukleotidů, barvy odlišují strukturální prvky: oranžová – základní smyčka (obsahuje 5'a 3'konec), červeně – větvená smyčka, zeleně – kmínek, modře – vlásenka.

4.1.3 Porovnání mezidruhové variability COI, ITS1 a ITS2

K porovnání variability mezi lokusy *COI*, *ITS1* a *ITS2* byly v programu MEGA, pomocí modelu p-distance, vypočteny genetické vzdálenosti mezi druhy (viz Tab. XIII, XIV, XV).

	Safr	Salb	Sarg	Scae	Scar	Sinc	Sleh	Snov	Svar
Safr		0,009	0,010	0,009	0,010	0,011	0,010	0,010	0,010
Salb	0,077		0,011	0,009	0,009	0,010	0,010	0,010	0,009
Sarg	0,088	0,084		0,012	0,011	0,011	0,011	0,011	0,011
Scae	0,069	0,066	0,096		0,010	0,010	0,010	0,010	0,010
Scar	0,078	0,061	0,079	0,075		0,009	0,006	0,010	0,006
Sinc	0,082	0,074	0,087	0,072	0,062		0,010	0,011	0,010
Sleh	0,082	0,071	0,087	0,078	0,024	0,072		0,010	0,002
Snov	0,077	0,070	0,088	0,067	0,062	0,080	0,070		0,010
Svar	0,079	0,066	0,081	0,079	0,025	0,070	0,008	0,067	

Tab. XIII: Genetické vzdálenosti mezi druhy u COI, modře znázorněny odchylky.

Tab. XIV: Genetické vzdálenosti mezi druhy u ITS1, modře znázorněny odchylky.

	Safr	Salb	Sarg	Scae	Scar	Sinc	Sleh	Snov	Svar
Safr		0,012	0,013	0,012	0,012	0,012	0,013	0,013	0,012
Salb	0,174		0,013	0,012	0,003	0,004	0,007	0,013	0,004
Sarg	0,210	0,198		0,010	0,013	0,013	0,014	0,012	0,013
Scae	0,165	0,144	0,113		0,012	0,013	0,013	0,012	0,012
Scar	0,172	0,011	0,195	0,143		0,003	0,006	0,013	0,003
Sinc	0,177	0,017	0,202	0,149	0,009		0,007	0,013	0,004
Sleh	0,203	0,046	0,234	0,152	0,043	0,051		0,013	0,007
Snov	0,202	0,179	0,182	0,151	0,175	0,183	0,211		0,013
Svar	0,172	0,013	0,196	0,142	0,009	0,019	0,045	0,178	

Tab. XV: Genetické vzdálenosti mezi druhy u ITS2, modře znázorněny odchylky.

	Safr	Salb	Sarg	Scae	Scar	Sinc	Sleh	Snov	Svar
Safr		0,012	0,014	0,013	0,012	0,013	0,012	0,016	0,012
Salb	0,050		0,010	0,009	0,002	0,005	0,009	0,013	0,003
Sarg	0,081	0,042		0,012	0,011	0,011	0,012	0,015	0,011
Scae	0,058	0,031	0,059		0,009	0,010	0,003	0,013	0,009
Scar	0,053	0,003	0,045	0,031		0,004	0,009	0,013	0,004
Sinc	0,058	0,008	0,050	0,037	0,006		0,009	0,013	0,005
Sleh	0,055	0,028	0,056	0,003	0,028	0,034		0,013	0,008
Snov	0,096	0,064	0,093	0,062	0,064	0,070	0,059		0,013
Svar	0,053	0,003	0,045	0,031	0,006	0,011	0,028	0,064	

Nejméně variabilní mezi druhy byl *ITS2* lokus, hodnoty se pohybovaly v rozmezí od 0,003 do 0,096; marker *COI* byl mezi druhy podobně variabilní, hodnoty byly v rozmezí od 0,008 do 0,088. Největší variabilitu mezi druhy prokazoval *ITS1* fragment s hodnotami, pohybujícími se od 0,010 do 0,234.

4.1.4 EPIC

Z EPIC markerů se podařilo amplifikovat lokusy *RP S12* u *S. africa, S. incisilobata, S. albiceps.* U druhů *S. argyrostoma, S. carnaria* a S. variegata se nepovedl namnožit celý fragment, část intronu chyběla. *RP S13* fragment se povedl amplifikovat u *S. africa, S. argyrostoma, S. variegata* a *S. carnaria.* Lokus *RP L12* se povedlo namnožit u *S. africa, S. incisilobata, S. variegata* a *S. carnaria.* Délky úspěšně získaných sekvencí celkových amplikonů a intronů byly v Tab. XVI porovnány se *S. bullata.*

U elongačního faktoru 1α (*EF1* α) se pomocí primerů EFO - 5' a EF2 - 3'b u druhu *S. argyrostoma* povedl namnožit úsek dlouhý zhruba 500 bp. Při zpracování sekvence se zjistilo, že zde není přítomen intron, a proto se s tímto markerem dále nepracovalo.

	Ribozomální protein S12	
Druh	Délka celkového amplikonu (bp)	Délka intronu (bp)
S. africa	321	57
S. albiceps	306	57
S. bullata	370	54
S. incisilobata	316	57
	Ribozomální protein S13	
Druh	Délka celkového amplikonu (bp)	Délka intronu (bp)
S. africa	313	73
S. argyrostoma	317	73
S. bullata	353	73
S. carnaria	268	66
S. variegata	317	73
	Ribozomální protein L12	
Druh	Délka celkového amplikonu (bp)	Délka intronu (bp)
S. africa	238	68
S. bullata	367	70
S. carnaria	249	68
S. incisilobata	247	68
S. variegata	247	68

Tab. XVI: Délka celkových amplikonů a intronů u ribozomálních proteinů.

Při porovnání mezi druhy bylo nejvíce variabilních míst v celkovém amplikonu detekováno u lokusu *RPS 13* (52), v intronu bylo 31 variabilních míst. Jako nejvíce konzervovaný se jevil fragment *RPL 12*, kde bylo detekováno celkově 6 variabilních míst, z toho 3 v intronu. U *RPS 12* bylo v intronu nalezeno 9 variabilních míst a v celém amplikonu 17.

4.1.5 Wolbachia

Pomocí markeru *16S* se u jednoho jedince druhu *S. caerulescens* povedl amplifikovat a poté osekvenovat fragment o velikosti zhruba 820 bp. V BLASTU byl tento fragment přiřazen k *Wolbachii* izolované z *D. melanogaster* (Query cover 99 %, Identity 99.87 %). U dalších druhů se přítomnost *Wolbachia* prokázat nepodařilo.

5. Diskuse

5.1 Metody - Extrakce DNA a PCR

Extrakce DNA byla prováděna primárně z nohou masařek, protože jsme chtěli předejít možné koamplifikaci bakterií *Wolbachia*. Naopak pro detekci tohoto endosymbionta musela být extrakce provedena také ze zadečků, protože *Wolbachia* se nachází především v reprodukčních orgánech (Werren, Baldo and Clark, 2008).

K izolaci DNA byly vybrány 2 komerční kity. Primárně byl používán DNeasy Blood & Tissue kit (QIAGEN). Pomocí tohoto kitu byla extrakce DNA úspěšná u 63 dodaných jedinců. U 9 sušených vzorků se izolace nepodařila, proto byl u těchto vzorků vyzkoušen druhý kit, DEP - 25 Extraction Kit (Top - Bio). Ani pomocí něho se však DNA z 9 sušených vzorků izolovat nepodařilo. Příčinou mohla být degradace tkání. U vzorků skladovaných v etanolu se izolace DNA podařila ve všech případech.

Při výběru polymerázy je třeba zohlednit i finanční náročnost. Proto byly reakční směsi pro amplifikaci DNA míchány s Unis Taq (Top - Bio) polymerázou, která je standardně používaná v obdobném výzkumu. Byla tedy ověřena její vhodnost. Pokud se daný fragment nedařilo amplifikovat, byla využita účinnější, ale také dražší, TaKaRa ExTaq polymeráza (TaKaRa Bio). Tato polymeráza má na rozdíl od první zmiňované větší citlivost, bylo s ní tak dosaženo lepších výsledků.

U amplifikace fragmentu *16S* pro detekci *Wolbachia* nepomohla ani TaKaRa ExTaq polymeráza, do reakce bylo proto přidáno BSA (Bovine Serum Albumin), pomocí kterého se již fragment namnožit podařilo.

Lokusy *AT*, *Wg*, *RPL7*, *Pβ2* a *wsp* se nepodařilo amplifikovat ani po přidání účinnější polymerázy, BSA nebo změně PCR profilu, proto s nimi dále nebylo pracováno. Neúspěch mohl být způsoben i špatným nasedáním primerů. I když toto nasedání bylo předem ověřováno, šlo o sekvence příbuzných druhů, a proto je variabilita v primerových oblastech možná.

5.2 Mitochondriální marker COI

Pomocí univerzálních markerů LCO - 1490 a HCO - 2198 (Folmer *et al.*, 1994) se podařilo namnožit DNA u většiny jedinců bez větších problémů. Marker *COI*, tzv. barcode marker, se hojně využívá k identifikaci druhů. V této práci byl však analyzován i z hlediska

vnitrodruhové variability. Případné oddělení jednotlivých geografických populací by bylo velmi důležité pro forenzní entomologii. Mohlo by sloužit k odhalení posmrtného přesouvání ostatků mezi jednotlivými lokalitami. Z tohoto důvodu byly k sekvencím z České republiky přidány také sekvence, pocházející z různých států světa, vybrané z GenBank a BOLD databází.

Jako druhový identifikační marker se *COI* jeví velmi dobře. K oddělení geografických populací ale nedošlo, což potvrzují dendrogramy, PCoA analýza i haplotypové sítě. Většina populací se mísí mezi sebou a lokality sdílí společné haplotypy. Určitá korelace mezi genetickými a geografickými vzdálenostmi byla zjištěna pouze u druhů *S. africa, S. albiceps* a *S. variegata*. Stejné výsledky byly objeveny i v práci (Jordaens *et al.*, 2013), kde byl *COI* testován u 56 druhů masařek ze západní Evropy.

Tyto výsledky je však nutno považovat za velmi předběžné. Poukazují hlavně na systémový problém s nerovnoměrným počtem vzorků z různých geografických oblastí i lokalit. Zatímco u *S. albiceps* mohlo být do analýz zahrnuto 83 sekvencí, u *S. noverca* pouze 10. Menší počet vzorkovaných jedinců převážně z jedné nebo několika velmi blízkých lokalit nutně vede k detekci jen omezené variability, ať už na úrovni polymorfismů, tak i následně počtu haplotypů. Při dalších studiích by tak bylo dobré zaměřit se na systematické vzorkování po celém areálu rozšíření.

5.3 Jaderný marker ITS

Další marker *ITS* byl vybrán na základě publikací, které popisují jeho značnou variabilitu (Zaidi *et al.*, 2011; Douglas and Haymer, 2001). Zaidi *et al.* (2011) také uvádí, že z důvodu vysoké variability, zejména *ITS1*, je získání kvalitních sekvencí velmi obtížné. V této práci se však pomocí univerzálních primerů 1975F a 52R (Ratcliffe *et al.*, 2003) povedlo získat sekvence *ITS1* i *ITS2* od všech 9 druhů.

Genetická variabilita byla vyhodnocena zvlášť u fragmentů *ITS1*, *5.8S* a *ITS2*, k porovnání s jinými druhy hmyzu byly přidány sekvence *D. melanogaster* a *L.* caesar. Zajímavé je, že *ITS1* u *L. caesar* byl téměř o 400 bp kratší, u Dmel o 200 bp kratší. Mezi masařkami byla také přítomna určitá délková variabilita, způsobena indely. U tohoto markeru by tak k odlišení některých druhů stačila pouze PCR amplifikace, délková variabilita by měla být vidět na gelu. Stejně jako u *ITS1*, u *ITS2* byla délková variabilita také přítomna jak mezi druhy *Sarcophaga*, tak i mezi *Sarcophaga*, *L. caesar* a *D. melanogaster*. Avšak ne tak velká

jako u *ITS1*, rozlišitelnost druhů by tak na gelu viditelná nebyla. Délková variabilita *ITS* fragmentu u masařek, mezi druhy *Boettcherisca javanica*, *Boettcherisca peregrina*, *Boettcherisca karnyi Boettcherisca highlandica* byla zjištěna i ve studii Roziah and Tan, (2015). Dále bylo zjištěno, že divergence mezi *Sarcophaga* a *D. melanogaster* dosahuje vyšších hodnot než divergence mezi *Sarcophaga* a *L.* caesar. Tento výsledek však byl očekávaný, neboť *D. melanogaster* je fylogeneticky vzdálenější než *L. caesar*.

Z výsledků se dá usuzovat, že vzhledem k větší variabilitě, potenciálním populačním markerem by mohl být *ITS1*. Zatímco *ITS2* je více konzervovaný, mohl by proto být používán k identifikaci druhů. Tuto hypotézu potvrzují i publikace Song, Wang and Liang (2008) a Park *et al.* (2018), kde se pomocí *ITS2* markeru druhy masařek povedlo úspěšně identifikovat.

5.3.1 Sekundární struktury ITS

Pro *ITS1* a *ITS2* lokusy byly predikované sekundární struktury, které mohou být také důležité pro identifikaci druhů a fylogenetické vztahy. U obou lokusů byly detekovány 4 základní prvky (kmínek, smyčka větvená, nespárované báze, vlásenka). Sekundární struktura *ITS1*, vzhledem k vyšší variabilitě, není moc prozkoumaná. Odlišnost *ITS1* struktur mezi *Sarcophaga, D. melanogaster* a *L. caesar* byla především v počtu a velikosti jednotlivých prvků. *D. melanogaster* a *L. caesar* měly výrazně menší počet všech prvků, to bylo ale dané délkovou variabilitou *ITS1* mezi těmito druhy. Mezi druhy u *Sarcophaga* byla odlišnost především ve velikosti jednotlivých prvků, zejména větvených smyček. Početní rozdíl prvků se zde také vyskytoval, ale rozdíly byly daleko menší než mezi *Sarcophaga, L. caesar* a *D. melanogaster*. Sekundární struktury *ITS2* se mírně odlišovaly od Young and Coleman (2004) vzhledem k použitému software (mají jiné algoritmy pro predikci). V zásadě byly však stejné. Na rozdíl od *ITS1* byly prvky více velikostně konzervované u všech druhů, včetně *D. melanogaster* a *L. Caesar*. Počet prvků se odlišoval.

Bylo zjištěno, že masařky mají svoji typickou sekundární strukturu, která se od *D*. *melanogaster* i *L. caesar* odlišuje. Potenciál pro fylogenetické analýzy byl zde tedy potvrzen.

5.4 EPIC markery

EPIC markery byly do mé studie vybrány zejména na základě práce Villablanca, Roderick and Palumbi (1998), kde byl u vrtule velkohlavé (*Ceratitis capitata*) zjištěn jejich populačně - genetický potenciál. V mé práci se povedlo namnožit lokusy *RP S12, RP S13, RP L12* a také *EF1a*, ne však u všech studovaných druhů. Lokus *EF1a* nakonec neměl intron, proto byl z EPIC vyřazen. Z ostatních lokusů se na základě nejvyšší variability jako slibný jeví RP S13. U masařek by mohl mít potenciál pro oddělení populací. Pro další studie by však bylo dobré získat více sekvencí od více druhů.

5.5 Wolbachia

V mé práci byla *Wolbachia* testována zejména kvůli jejímu možného vlivu na zkreslení výsledků DNA barcodingu, což u forenzních dipter ve své práci popisuje zejména Whitworth *et al.* (2007) a také protože může poskytovat odolnost vůči některým parazitárním a bakteriálním patogenům. Tuto bakterii se podařilo prokázat pouze u jednoho jedince druhu *S. argyrostoma.* Je otázkou, do jaké míry *Wolbachia* rod *Sarcophaga* infikuje, neboť i ve studii na forenzním hmyzu z Thajska (Mingchay *et al.*, 2014) byla bakterie nalezena jen u jednoho druhu (*S. dux*) z pěti studovaných masařek. Tyto výsledky jsou také ovlivněny množstvím analyzovaných vzorků, pokud je *Wolbachia* u druhu spíše výjimečná, pak by její nalezení vyžadovalo skrínink většího množství jedinců.

6. Závěr

V této pilotní studii byly na základě literatury vybrány a otestovány markery pro druhovou identifikaci a studium genetické variability u forenzně významné čeledi masařkovití. Základním testovacím souborem bylo 72 jedinců, představujících 9 druhů typických pro Českou republiku. Sekvence mitochondriálního markeru *COI* byly získány ze všech analyzovaných jedinců. U všech druhů byl charakterizován marker *ITS*, a také několik jaderných markerů EPIC. U jednoho jedince druhu *S. caerulescens* se podařilo prokázat přítomnost jednoho z nejčastěji se vyskytujících endosymbiontů hmyzu, bakterii *Wolbachia*.

Na základě genetické variability bylo dle předpokladu zjištěno, že *COI* je výborným markerem pro identifikaci druhů, avšak pro geografické oddělení populací se nejeví příliš vhodný. Ačkoliv zejména údaje o výskytu stejných haplotypů v různých i geograficky vzdálených lokalitách jsou dost přesvědčivé, celkové výsledky byly nepochybně ovlivněny množstvím dostupných DNA sekvencí (tedy počtem jedinců z jednotlivých lokalit). Pro konečné závěry by proto bylo žádoucí provést rozsáhlejší studii založenou na rovnoměrném systematickém vzorkování po celém areálu rozšíření.

Marker *ITS* se pro další používání jeví jako slibný. Zatímco *ITS2* by mohl být doplňkovým markerem pro druhovou identifikaci, více variabilní *ITS1* by mohl být vhodným kandidátem pro studium populací. Nevýhodou však může být obtížné získávání sekvencí. V dalším výzkumu by mělo být otestováno, zda amplifikace obou fragmentů jednotlivě nepřinese lepší výsledky. U *ITS* byly také predikovány druhově specifické sekundární struktury, které by mohly být užitečné pro studium fylogenetických vztahů.

Z otestovaných EPIC markerů se pro oddělení populací zdá být nejvíce vhodný lokus *RPS13*, u něhož by měl následovat skrínink vnitrodruhové variability.

7. Literatura

Amendt, J. et al. (2011) 'Forensic entomology: Applications and limitations', *Forensic Science, Medicine, and Pathology*, 7(4), pp. 379–392. doi: 10.1007/s12024-010-9209-2.

Anderson, G. S. and Huitson, N. R. (2004) 'Myiasis in pet animals in British Columbia: the potential of forensic entomology for determining duration of possible neglect', *The Canadian veterinary journal = La revue veterinaire canadienne*, 45(12), pp. 993–998. Available at: https://pubmed.ncbi.nlm.nih.gov/15646845.

Avise, J. C. (1994) 'Molecular tools', in *Molecular Markers, Natural History and Evolution*. Springer, Boston, MA, pp. 44–91.

Bandelt, H. J., Forster, P. and Röhl, A. (1999) 'Median-joining networks for inferring intraspecific phylogenies', *Molecular biology and evolution*, 16(1), pp. 37–48. doi: 10.1093/oxfordjournals.molbev.a026036.

Boore, J. L. (1999) 'Animal mitochondrial genomes.', *Nucleic acids research*, 27(8), pp. 1767–1780. doi: 10.1093/nar/27.8.1767.

Braig, H. R. *et al.* (1998) 'Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis', *Journal of Bacteriology*, 180(9), pp. 2373–2378. doi: 10.1128/jb.180.9.2373-2378.1998.

Cameron, S. L. (2014) 'Insect mitochondrial genomics: Implications for evolution and phylogeny', *Annual Review of Entomology*, 59, pp. 95–117. doi: 10.1146/annurev-ento-011613-162007.

De Carvalho, C. J. B. and De Mello-Patiu, C. A. (2008) 'Key to the adults of the most common forensic species of Diptera in South America', *Revista Brasileira de Entomologia*, 52(3), pp. 390–406. doi: 10.1590/S0085-56262008000300012.

Clary, D. O. and Wolstenholme, D. R. (1985) 'The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code', *Journal of molecular evolution*, 22(3), pp. 252–271. doi: 10.1007/BF02099755.

Daguin, C. and Borsa, P. (1999) 'Genetic characterisation of Mytilus galloprovincialis Lmk. in North West Africa DNA markers', *Journal of Experimental Marine Biology and Ecology*, 235, pp. 55–65. doi: 10.1016/S0022-0981(98)00163-4.

Douglas, L. J. and Haymer, D. S. (2001) 'Ribosomal ITS1 Polymorphisms in Ceratitis capitata and Ceratitis rosa (Diptera: Tephritidae)', *Annals of the Entomological Society of America*, 94(5), pp. 726–731. doi: 10.1603/0013-8746(2001)094[0726:RIPICC]2.0.CO;2.

Duarte, G. T., De Azeredo-Espin, A. M. L. and Junqueira, A. C. M. (2008) 'The mitochondrial control region of blowflies (Diptera: Calliphoridae): A hot spot for mitochondrial genome rearrangements', *Journal of Medical Entomology*, 45(4), pp. 667–676. doi: 10.1603/0022-2585(2008)45[667:TMCROB]2.0.CO;2.

Durden, A. L. and Mullen, R. G. (2002) 'Medical entomology'. doi: 10.1016/B978-0-12-510451-7.50003-7.

Ersts, P. J. (2006) *Geographic Distance Matrix Generator (version 1.2.3).* Available at: https://biodiversityinformatics.amnh.org/open_source/gdmg/ (Accessed: 15 November 2021).

Excoffier, L. and Lischer, H. E. L. (2010) 'Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows', *Molecular Ecology Resources*, 10(3), pp. 564–567. doi: https://doi.org/10.1111/j.1755-0998.2010.02847.x.

Federico, C. *et al.* (2018) 'Rapid molecular identification of necrophagous diptera by means of variable-length intron sequences in the wingless gene', *Journal of Forensic and Legal Medicine*, 56(March), pp. 66–72. doi: 10.1016/j.jflm.2018.03.003.

Folmer, O. *et al.* (**1994**) 'DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates', *Molecular marine biology and biotechnology*, 3, pp. 294–299.

Fuentes-López, A. *et al.* (2020) 'Molecular identification of forensically important fly species in Spain using COI barcodes', *Science & Justice*, 60(3), pp. 293–302. doi: https://doi.org/10.1016/j.scijus.2019.12.003.

Gerbi, S. A. (1985) 'Evolution of ribosomal DNA', in MacIntyre, R. J. (ed.) *Molecular* evolutionary genetics. Springer US, pp. 419–517.

Goff, M. L. (1991) 'Comparison of insect species associated with decomposing remains recovered inside dwellings and outdoors on the island of Oahu, Hawaii.', *Journal of forensic sciences*, 36(3), pp. 748–753.

Harvey, M. L., Dadour, I. R. and Gaudieri, S. (2003) 'Mitochondrial DNA cytochrome oxidase I gene: potential for distinction between immature stages of some forensically important fly species (Diptera) in western Australia.', *Forensic science international*, 131(2–3), pp. 134–139. doi: 10.1016/s0379-0738(02)00431-0.

Hebert, P. D. N. *et al.* (2003) 'Biological identifications through DNA barcodes.', *Proceedings. Biological sciences*, 270(1512), pp. 313–321. doi: 10.1098/rspb.2002.2218.

Hoang, D. et al. (2017) 'UFBoot2: Improving the Ultrafast Bootstrap Approximation', *Molecular Biology and Evolution*, 35. doi: 10.1093/molbev/msx281.

Hoy, M. (2003) 'Mitochondria', in *Insect Molecular Genetics- An Introduction to Principles* and *Applications*. Academic Press, pp. 363–365.

Hurst, G. D. D. and Jiggins, F. M. (2005) 'Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts', *Proceedings of the Royal Society B: Biological Sciences*, 272(1572), pp. 1525–1534. doi: 10.1098/rspb.2005.3056.

Ji, Y.-J., Zhang, D.-X. and He, L.-J. (2003) 'Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates', *Molecular Ecology Notes*, 3(4), pp. 581–585. doi: https://doi.org/10.1046/j.1471-8286.2003.00519.x.

Jordaens, K. *et al.* (2013) 'Identification of forensically important Sarcophaga species (Diptera: Sarcophagidae) using the mitochondrial COI gene', *International Journal of Legal Medicine*, 127(2), pp. 491–504. doi: 10.1007/s00414-012-0767-6.

Kalyaanamoorthy, S. *et al.* (2017) 'ModelFinder: fast model selection for accurate phylogenetic estimates', *Nature methods*, 14(6), pp. 587–589. doi: 10.1038/nmeth.4285.

Kambris, Z. et al. (2009) 'Immune activation by life-shortening Wolbachia and reduced

filarial competence in mosquitoes.', *Science (New York, N.Y.)*, 326(5949), pp. 134–136. doi: 10.1126/science.1177531.

Kerpedjiev, P., Hammer, S. and Hofacker, I. L. (2015) 'Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams', *Bioinformatics (Oxford, England)*. 2015/06/22, 31(20), pp. 3377–3379. doi: 10.1093/bioinformatics/btv372.

Kimura, M. (1980) 'A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.', *Journal of molecular evolution*, 16(2), pp. 111–120. doi: 10.1007/BF01731581.

Klojdová, M. (2018) 'Molekulární markery pro detekci genetické variability přírodních populací forenzně významných druhů bzučivkovitých (Calliphoridae, Diptera)'.

Kumar, S. et al. (2018) 'MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.', *Molecular biology and evolution*, 35(6), pp. 1547–1549. doi: 10.1093/molbev/msy096.

LaRue, B. *et al.* (2009) 'Generalized structure and evolution of ITS1 and ITS2 rDNA in black flies (Diptera: Simuliidae)', *Molecular Phylogenetics and Evolution*, 53(3), pp. 749–757. doi: 10.1016/j.ympev.2009.07.032.

Leigh, J. and Bryant, D. (2015) 'PopART: Full-Feature Software for Haplotype Network Construction', *Methods in Ecology and Evolution*, 6. doi: 10.1111/2041-210X.12410.

Lessa, E. P. (1992) 'Rapid surveying of DNA sequence variation in natural populations.', *Molecular biology and evolution*, 9(2), pp. 323–330. doi: 10.1093/oxfordjournals.molbev.a040723.

Lorenz, R. et al. (2011) 'ViennaRNA Package 2.0', Algorithms for Molecular Biology, 6(1). doi: 10.1186/1748-7188-6-26.

Loxdale, H. D. and Lushai, G. (1998) 'Molecular markers in entomology', *Bulletin of Entomological Research*, 88(6), pp. 577–600. doi: 10.1017/s0007485300054250.

Margulis, L. (1970) Origin of Eukaryotic Cells. Yale University Press.

Michel, H. (2013) 'Respiratory Chain Complex IV', in Lennarz, W. J. and Lane, M. D. (eds) *Encyclopedia of Biological Chemistry*.

Mingchay, P. *et al.* (2014) 'Wolbachia supergroups A and B in natural populations of medically important filth flies (diptera: muscidae, calliphoridae, and sarcophagidae) in Thailand', *The Southeast Asian journal of tropical medicine and public health*, 45(2), pp. 309–318.

Moore, W. S. (1995) 'Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees.', *Evolution; international journal of organic evolution*, 49(4), pp. 718–726. doi: 10.1111/j.1558-5646.1995.tb02308.x.

Nguyen, L.-T. *et al.* (2015) 'IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies', *Molecular Biology and Evolution*, 32(1), pp. 268–274. doi: 10.1093/molbev/msu300.

Nishida, K. (1984) 'Experimental studies on the estimation of postmortem intervals by means of fly larvae infesting human cadavers.', *Nihon hoigaku zasshi = The Japanese journal of legal medicine*, 38(1), pp. 24–41.

O'Neill, S. L. *et al.* (1992) '16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects', *Proceedings of the National Academy of Sciences of the United States of America*, 89(7), pp. 2699–2702. doi: 10.1073/pnas.89.7.2699.

De Oliveira, C. D. *et al.* (2015) 'Broader prevalence of Wolbachia in insects including potential human disease vectors', *Bulletin of Entomological Research*, 105(3), pp. 305–315. doi: 10.1017/S0007485315000085.

Palumbi, S. R. (1996) 'Nucleic acids II: the polymerase chain reaction', in *Molecular Systematics Second Edition*. Sinauer, Sunderland, MA, pp. 205–247.

Pape, T. (1996) 'Catalogue of the Sarcophagidae of the world', *Memoires of Entomology International*, 8(2), pp. 1–558.

Park, J. H. *et al.* (2018) 'Molecular identification of forensically important calliphoridae and sarcophagidae species using ITS2 nucleotide sequences', *Forensic Science International*, 284(January), pp. 1–4. doi: 10.1016/j.forsciint.2017.12.017.

Parker, P. et al. (1998) 'What Molecules Can Tell Us about Populations: Choosing and Using a Molecular Marker', *Aspen Bibliography*, 79. doi: 10.2307/176939.

Peakall, R. and Smouse, P. E. (2012) 'GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update', *Bioinformatics (Oxford, England)*. 2012/07/20, 28(19), pp. 2537–2539. doi: 10.1093/bioinformatics/bts460.

Pentinsaari, M. *et al.* (2016) 'Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life', *Scientific Reports*, 6(1), p. 35275. doi: 10.1038/srep35275.

Pietri, J. E., DeBruhl, H. and Sullivan, W. (2016) 'The rich somatic life of Wolbachia', *MicrobiologyOpen*. 2016/07/26, 5(6), pp. 923–936. doi: 10.1002/mbo3.390.

Pohjoismäki, J. L. O. *et al.* (2010) 'Indoors forensic entomology: colonization of human remains in closed environments by specific species of sarcosaprophagous flies.', *Forensic science international*, 199(1–3), pp. 38–42. doi: 10.1016/j.forsciint.2010.02.033.

Povolný, D. (2005) 'Masařky dokládají geologickou minulost Sicílie', *Vesmír*, 84(2), pp. 85–88.

Povolný, D. and Verves, Y. (1997) *The Flesh-Flies of Central Europe (Insecta, Diptera, Sarcophagidae), SPIXIANA.*

Rambaut, A. (2009) 'FigTree v1.4.4', *Molecular evolution, phylogenet ics and epidemiology.*

Ratcliffe, S. T. *et al.* (2003) 'PCR-RFLP identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae)--a generally applicable method.', *Journal of forensic sciences*, 48(4), pp. 783–785.

Rozas, J. *et al.* (2017) 'DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets.', *Molecular biology and evolution*, 34(12), pp. 3299–3302. doi: 10.1093/molbev/msx248.

Roziah, A. and Tan, S. H. (2015) 'Mitochondrial and Nuclear DNA for Identification of Forensically Important Flesh Flies (Sarcophagidae: Boettcherisca Spp)', *Entomology*,

Ornithology & Herpetology: Current Research, 04(04), pp. 10–13. doi: 10.4172/2161-0983.1000163.

Schlötterer, C. *et al.* (1994) 'Comparative evolutionary analysis of rDNA ITS regions in Drosophila', *Molecular Biology and Evolution*, 11(3), pp. 513–522. doi: 10.1093/oxfordjournals.molbev.a040131.

Shang, Y. *et al.* (2019) 'Comparative Mitogenomic Analysis of Forensically Important Sarcophagid Flies (Diptera: Sarcophagidae) and Implications of Species Identification', *Journal of Medical Entomology*, 56(2), pp. 392–407. doi: 10.1093/jme/tjy162.

Shewell, G. . (1987) 'Sarcophagidae', Manual of Nearctic Diptera, 2(28), pp. 1159–1186.

Simon, C. *et al.* (1994) 'Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers', *Annals of the Entomological Society of America*, 87(6), pp. 651–701. doi: 10.1093/aesa/87.6.651.

Smith, K. G. V. (1986) A manual of forensic entomology. London: British Museum.

Song, Z. K., Wang, X. Z. and Liang, G. Q. (2008) 'Species identification of some common necrophagous flies in Guangdong province, southern China based on the rDNA internal transcribed spacer 2 (ITS2)', *Forensic Science International*, 175(1), pp. 17–22. doi: 10.1016/j.forsciint.2007.04.227.

Sperling, F. A., Anderson, G. S. and Hickey, D. A. (1994) 'A DNA-based approach to the identification of insect species used for postmortem interval estimation.', *Journal of forensic sciences*, 39(2), pp. 418–427.

Šuláková, H. (2006) 'Speciální biologie: využití hmyzu při stanovení post mortem intervalu', *Kriminalistický sborník*, (3), pp. 36–37.

Šuláková, H. (2014) 'Forenzní entomologie – když smrt je začátek', *Živa*, 5, pp. 250–256. Available at: https://ziva.avcr.cz/files/ziva/pdf/forenzni-entomologie-kdyz-smrt-jezacatek.pdf.

Šuláková, H. and Eliášová, H. (2012) 'Forenzní entomologie', in *Soudní lékařství a jeho moderní trendy*. Praha: Grada Publishing, pp. 281–325.

Villablanca, F. X., Roderick, G. K. and Palumbi, S. R. (1998) 'Invasion genetics of the mediterranean fruit fly: Variation in multiple nuclear introns', *Molecular Ecology*, 7(5), pp. 547–560. doi: 10.1046/j.1365-294x.1998.00351.x.

Waugh, J. (2007) 'DNA barcoding in animal species: progress, potential and pitfalls.', *BioEssays : news and reviews in molecular, cellular and developmental biology*, 29(2), pp. 188–197. doi: 10.1002/bies.20529.

Wells, J. D. and Sperling, F. A. (2001) 'DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae).', *Forensic science international*, 120(1–2), pp. 110–115. doi: 10.1016/s0379-0738(01)00414-5.

Wells, J. D. and Stevens, J. R. (2008) 'Application of DNA-based methods in forensic entomology', *Annual Review of Entomology*, 53, pp. 103–120. doi: 10.1146/annurev.ento.52.110405.091423.

Werren, J. H., Baldo, L. and Clark, M. E. (2008) 'Wolbachia: master manipulators of

invertebrate biology', *Nature Reviews Microbiology*, 6(10), pp. 741–751. doi: 10.1038/nrmicro1969.

Whiting, M. F. (2002) 'Phylogeny of the holometabolous insect orders: molecular evidence', *Zoologica Scripta*, 31(1), pp. 3–15. doi: https://doi.org/10.1046/j.0300-3256.2001.00093.x.

Whitworth, T. L. *et al.* (2007) 'DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae)', *Proceedings of the Royal Society B: Biological Sciences*, 274(1619), pp. 1731–1739. doi: 10.1098/rspb.2007.0062.

Young, I. and Coleman, A. W. (2004) 'The advantages of the ITS2 region of the nuclear rDNA cistron for analysis of phylogenetic relationships of insects: A Drosophila example', *Molecular Phylogenetics and Evolution*, 30(1), pp. 236–242. doi: 10.1016/S1055-7903(03)00178-7.

Zaidi, F. et al. (2011) 'Utility of multi-gene loci for forensic species diagnosis of blowflies', *Journal of Insect Science*, 11(59), pp. 1–12. doi: 10.1673/031.011.5901.

Zehner, R. *et al.* (2004) 'Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae).', *International journal of legal medicine*, 118(4), pp. 245–247. doi: 10.1007/s00414-004-0445-4.

Zhou, W., Rousset, F. and O'Neil, S. (1998) 'Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences', *Proceedings. Biological sciences*, 265(1395), pp. 509–515. doi: 10.1098/rspb.1998.0324.

Internetové zdroje:

https://www.biolib.cz/

http://www.boldsystems.org/

https://genome.cshlp.org/

https://blast.ncbi.nlm.nih.gov/

http://iqtree.cibiv.univie.ac.at/

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi/

8. Přílohy

BOLD kód	GenBank kód	Země	Lokalita	Souřadnice	Zkratka
					Safr-AUS-
AUSFF011-08	JW200	Austrálie	New South Wales	-34,8358S; 148,916E	NSW1
					Safr-AUS-
AUSFF136-11	KM336	Austrálie	Rockingham, WA	32,266N; 115,716E	ROC
					Safr-AUS-
AUSFF137-11	KM461	Austrálie	Armadale, WA	32,116N; 116,016E	ARM1
					Safr-AUS-
AUSFF139-11	KM468	Austrálie	Armadale, WA	32,116N; 116,016E	ARM2
	123 6 4 7 1	A (/1*		22 11()1 11(01()	Safr-AUS-
AUSFF140-11	KM4/1	Australie	Armadale, WA	32,116N; 116,016E	ARM3
AUSEE141 11	WM199	Austrália	W/A	21.016N: 116.216E	Sair-AUS-
Αυδηγι41-11	N IV1400	Australie	WA	51,910N; 110,510E	
AUSEE142 11	KM510	Austrália	Dalby Old	27 183N: 151 25E	DAI
A0511142-11	KWIJIO	Australic	Dalby, Qiu	27,10511, 151,2512	Safr_AUS_
AUSFE143-11	KM618	Austrálie	Venoon Old	23 15N: 150 75F	YFP
110511145 11	IGNIOTO	Mustralle	Kensington Gardens	23,1511, 150,751	Safr-AUS-
AUSFF144-11	KM974	Austrálie	SA SA	34.916N: 138.65E	KEN1
			Kensington Gardens.		Safr-AUS-
AUSFF145-11	KM977	Austrálie	SA	34,916N; 138,65E	KEN2
			Kensington Gardens,		Safr-AUS-
AUSFF146-11	KM981	Austrálie	SA	34,916N; 138,65E	KEN3
			Kensington Gardens,		Safr-AUS-
AUSFF147-11	KM982	Austrálie	SA	34,916N; 138,65E	KEN4
					Safr-KEN-
GBDP12447-12	JQ413455	Keňa	Subukia	0,0133N; 36,248E	SUB1
CDDD12440-12	10410456	. .	V G 1		Safr-FRA-
GBDP12448-12	JQ413456	Francie	Le Soler	42,677N; 2,771E	LSI
CDDD12456 12	10592014	Eronaia	Saint-Guilnem-le-	12 721NL 2 549E	Sair-FKA-
GBDF12430-12	JQ382014	Flancie	Desett	45,754N, 5,546E	SOLD Sofe EDA
GBDP12457-12	10582015	Francie	Roquebrun	43 5N· 3 031F	ROO
00011213712	32302015	Tranete	Roqueorun	13,511, 5,0511	Safr-FRA-
GBDP12560-12	JO582118	Francie	Le Soler	42.677N: 2.771E	LS2
					Safr-FRA-
GBDP12561-12	JQ582119	Francie	Le Soler	42,677N; 2,771E	LS3
					Safr-KEN-
GBDP12562-12	JQ582120	Keňa	Subukia	0,013N; 36,248E	SUB2
			San Jose, Santa Clara	37,371874N;	
GBDP14152-13	KF030486	USA	County	-122,0097W	Safr-USA-SJ
		¥.,			Safr-CHN-
GBDP14397-13	KF038001	Cína	Luoyang, Henan	34,691N; 112,458E	LUO1
CDDD14200_12	KE020000	č	71	24 7705NL 112 (10E	Safr-CHN-
GBDP14398-13	KF038000	Cina	Znangznou, Henan	34,7705N; 113,619E	ZHAN Safa CUN
GPDP1//200_12	KE037000	Čína	Ordos Innor mongoolio	20 702N: 110 008E	Salf-CHN-
ODDF 14377-13	KI-037999	Cilla	Ordos, miler mengaona	59,795N, 110,008E	Safr-CHN-
GBDP14400-13	KF037998	Čína	Urumai, Xinijang	43.841N: 87 531E	URU
	11 001770	Cillu			Safr-CHN-
GBDP15802-14	KC249715	Čína	Changsha, Hunan	28,158N; 112,854E	CHAN1
			<u> </u>	, , , ,	Safr-CHN-
GBDP15803-14	KC249716	Čína	Xining	36,619N; 101,702E	XIN

Příloha 1: Seznam stažených COI sekvencí S. africa z databáze BOLD/GenBank.

					Safr-CHN-
GBDP15804-14	KC249717	Čína	Changsha, Hunan	28,158N; 112,854E	CHAN2
					Safr-CHN-
GBDP15930-15	KM279651	Čína	Chengdu, Sichuan	30,624N; 103,985E	CHEN
					Safr-ESP-
GBDP24366-19	KX161466	Španělsko	Ponferrada, León	42,549N; -6,595W	PON
			Rincón de la Victoria,		Safr-ESP-
GBDP24367-19	KX161467	Španělsko	Málaga	36,716N; -4,283W	MAL1
			Rincón de la Victoria,		Safr-ESP-
GBDP24368-19	KX161468	Španělsko	Málaga	36,716N; -4,28W	MAL2
		<u> </u>		41.824989N;	Safr-ESP-
GBDP24369-19	KX161469	Španělsko	Llagostera, Gerona	2.884597E	LLAG
				37,507913N;	Safr-ITA-
GBDP28550-19	MG434767	Itálie	Sicily, Catania	15,076888E	SIC1
				37,507913N;	Safr-ITA-
GBDP28551-19	MG434762	Itálie	Sicily, Catania	15,076888E	SIC2
				37,507913N;	Safr-ITA-
GBDP28552-19	MG434763	Itálie	Sicily, Catania	15,076888E	SIC3
				37,507913N;	Safr-ITA-
GBDP28553-19	MG434764	Itálie	Sicily, Catania	15,076888E	SIC4
				37,507913N;	Safr-ITA-
GBDP28554-19	MG434765	Itálie	Sicily, Catania	15,076888E	SIC5
				43,307510N; -	Safr-USA-
GBDP9232-10	GQ223343	USA	Coos Co., Oregon	124,166W	OR
GBMIN20225-			California, Los Angeles		~ ~ ~ ~ ~
13	JX402731	USA	Co., CA	34,9N; -118,22W	Safr-USA-LA
GBMIN60144-		ž,		20 150X 112 05 1 5	Safr-CHN-
	KY001836	Cina	Changsha, Hunan	28,158N; 112,854E	CHAN3
GBMIN60145-		č,		26,567739N;	Safr-CHN-
	KY001835	Cina	Guizhou, Guiyang	106,640841E	GUI
GBMNA27776-	NUZ 5 47 61 6	A (/1*	New South Wales,	33,259N;	Safr-AUS-
19	MK54/616	Australie	Orange	149,053514E	NSW2
GBMNA3/003-	NUL107001	č	T TT	34,643004N;	Safr-CHN-
19	MH18/881	Cina	Luoyang, Henan	112,283314E	LUO2
GBMNA3/004-	NUL107002	č	I I I I I I I I I I I I I I I I I I I	34,643004N;	Safr-CHN-
19 CDM015090	MH18/882	Cina	Luoyang, Henan	112,283314E	
GBMINB15080-	MRC7001C	Č	Alassi (Alissinta)	38,697633N; -0,482E	Salf-ESP-
20 CDMND15091	MIK0/9910	Spanelsko	Alcoy (Alicante)		ALI Cofe ECD
GBMINB15081-	MR (70017	Č	(Λ^{1})	29 (07(22NL 0 49E	Sair-ESP-
20	MK0/991/	Spanelsko	Alcoy (Alicante)	38,09/0331N; -0,48E	AL2
CMECT012 14	DIUUG14/94-	Earnet	A loven drie	20 0256NI 20 7755E	Sair-EGY-
CMCMU202		Egypt	Alexandria	30,92301N; 29,7733E	ALE
GWGWH293-	DIOUG10895-	Nămaalea	Dhinaland Dalatinat-	50 552NI 7 17E	Sofe DELL DD
	HIIX				I NUT LINI KP
14	DIOLICI 4722	Liboof.: -1-/	Kimiciand-I alatinate	50,55211, 7,17L	Salf-DEU-KI
	BIOUG14723-	Jihoafrická	Gautana	26.0268. 27.5455	Safr-ZAF-

BOLD kód	GenBank kód	Země	Lokalita	Souřadnice	Zkratka
		Česká	Olomouc, Litovel-	49,689N;	
BCFOR466-15	BCFORENSIK_0072	republika	Brezove	17,126E	Salb-CZE-LIT
			Dompierre-sur-	46,521N;	
GBDP12504-12	JQ582062	Francie	Besbre	3,682E	Salb-FRA-DSB1
			Dompierre-sur-	46,521N;	
GBDP12505-12	JQ582063	Francie	Besbre	3,682E	Salb-FRA-DSB2
				42,641N;	Salb-FRA-
GBDP12538-12	JQ582096	Francie	Camélas	2,697E	CAM1
				42,641N;	Salb-FRA-
GBDP12539-12	JQ582097	Francie	Camélas	2,697E	CAM2
				42,641N;	Salb-FRA-
GBDP12556-12	JQ582114	Francie	Camélas	2,697E	CAM3
		¥.,		36,626N;	
GBDP14417-13	KF037981	Cína	Xining, Qinghai	101,734E	Salb-CHN-XIN
	WE005000	ž,		36,619N;	Salb-CHN-
GBDP14418-13	KF037980	Cina	Changsha, Hunan	101,72E	CHANI
	11000000	ă,		34,7705N;	Salb-CHN-
GBDP14419-13	KF037979	Cina	Zhangzhou, Henan	113,619E	ZHAN
CDDD14400-12	KE027070	č	т тт	34,691N;	
GBDP14420-13	KF037978	Cina	Luoyang, Henan	112,458E	Salb-CHN-LUO
CDDD15007 14	A D007176	T. 1'	T	11,892N;	
GBDP15227-14	AB90/1/6	Indie	Tamil Nadu	/8,/0/E	Salb-IND-IN
CDDD15250 14	W061460	T'Y / TZ	C 1	37,558N;	
GBDP15358-14	JX801409	Jizni Korea	Seoul	126,991E	Salb-KOK-SEOI
CDDD15250 14	W061470	T'Y / TZ	C 1	37,558N;	G IL KOD CEO2
GBDP15559-14	JX801470	Jizni Korea	Seoul	120,991E	Salo-KOK-SEO2
CDDD15260 14	IV961471	Ližní Vanas	Secul	57,558N; 126.001E	Salk KOD SEO2
OBDF15500-14	JA0014/1	JIZIII Korea	Seoul	120,991E	Salo-KOK-SEUS
GPDP15361 14	IX861472	ližní Koron	Socul	57,556N; 126.001E	Salb KOP SEO4
OBDF 15501-14	JA001472	Jizili Kolea	Scoul	27 559N	Salo-KOK-SLO4
GBDP15362-14	IX861473	ližní Korea	Seoul	126 991F	Salb-KOR-SEO5
000113302-14	JA001475	Jizin Korea	Scoul	28 158N·	Salb-CHN-
GBDP15805-14	KC249711	Čína	Changsha Hunan	112 854E	CHAN2
GDD115005 11	110217711	Cind	Changsha, Huhan	28 158N	Salb-CHN-
GBDP15806-14	KC249712	Čína	Changsha, Hunan	112.854E	CHAN3
				28.158N:	Salb-CHN-
GBDP15934-15	KM279643	Čína	Chengdu, Sichuan	112.854E	CHEN
				28,158N;	Salb-CHN-
GBDP15942-15	KM279642	Čína	Chongqing	112,854E	CHON
				28,158N;	Salb-CHN-
GBDP22635-19	KJ129147	Čína	Changsha, Hunan	112,854E	CHAN4
				28,158N;	Salb-CHN-
GBDP22636-19	KJ129148	Čína	Changsha, Hunan	112,854E	CHAN5
				28,158N;	Salb-CHN-
GBDP22637-19	KJ129149	Čína	Changsha, Hunan	112,854E	CHAN6
				28,158N;	Salb-CHN-
GBDP22638-19	KJ129150	Čína	Changsha, Hunan	112,854E	CHAN7
		,		28,158N;	Salb-CHN-
GBDP22639-19	KJ129151	Ċína	Changsha, Hunan	112,854E	CHAN8
		v .		28,158N;	Salb-CHN-
GBDP22640-19	KJ129152	Cína	Changsha, Hunan	112,854E	CHAN9
		×.	~	28,158N;	Salb-CHN-
GBDP22641-19	KJ129153	Cína	Changsha, Hunan	112,854E	CHAN10

Příloha 2: Seznam stažených COI sekvencí S. albiceps z databáze BOLD/GenBank.

1		1		28,158N;	Salb-CHN-
GBDP22642-19	KJ129154	Čína	Changsha, Hunan	112,854E	CHAN11
				28,158N;	Salb-CHN-
GBDP22643-19	KJ129155	Čína	Changsha, Hunan	112,854E	CHAN12
				28,158N;	Salb-CHN-
GBDP22644-19	KJ129156	Čína	Changsha, Hunan	112,854E	CHAN13
				28,158N;	Salb-CHN-
GBDP22645-19	KJ129157	Čína	Changsha, Hunan	112,854E	CHAN14
				28.158N:	Salb-CHN-
GBDP22646-19	KJ129158	Čína	Changsha, Hunan	112,854E	CHAN15
				28,158N;	Salb-CHN-
GBDP22647-19	KJ129159	Čína	Changsha, Hunan	112,854E	CHAN16
				28,158N;	Salb-CHN-
GBDP22648-19	KJ129160	Čína	Changsha, Hunan	112,854E	CHAN17
				28,158N;	Salb-CHN-
GBDP22649-19	KJ129161	Čína	Changsha, Hunan	112,854E	CHAN18
				28,158N;	Salb-CHN-
GBDP22650-19	KJ129162	Čína	Changsha, Hunan	112,854E	CHAN19
				28,158N;	Salb-CHN-
GBDP22651-19	KJ129163	Čína	Changsha, Hunan	112,854E	CHAN20
				28.158N:	Salb-CHN-
GBDP22652-19	KJ129164	Čína	Changsha, Hunan	112.854E	CHAN21
				28.158N:	Salb-CHN-
GBDP22653-19	KJ129165	Čína	Changsha, Hunan	112.854E	CHAN22
				28.158N:	Salb-CHN-
GBDP22654-19	KJ129166	Čína	Changsha, Hunan	112.854E	CHAN23
				28.158N:	Salb-CHN-
GBDP22655-19	KJ129167	Čína	Changsha, Hunan	112.854E	CHAN24
				28.158N:	Salb-CHN-
GBDP22656-19	KJ129168	Čína	Changsha, Hunan	112.854E	CHAN25
				28.158N:	Salb-CHN-
GBDP22657-19	KJ129169	Čína	Changsha, Hunan	112.854E	CHAN26
				28.158N:	Salb-CHN-
GBDP22658-19	KJ129170	Čína	Changsha, Hunan	112.854E	CHAN27
				28.158N:	Salb-CHN-
GBDP22659-19	KJ129171	Čína	Changsha, Hunan	112,854E	CHAN28
				28,158N;	Salb-CHN-
GBDP22660-19	KJ129172	Čína	Changsha, Hunan	112,854E	CHAN29
				28,158N;	Salb-CHN-
GBDP22661-19	KJ129173	Čína	Changsha, Hunan	112,854E	CHAN30
				28,158N;	Salb-CHN-
GBDP22662-19	KJ129174	Čína	Changsha, Hunan	112,854E	CHAN31
				28,158N;	Salb-CHN-
GBDP22663-19	KJ129175	Čína	Changsha, Hunan	112,854E	CHAN32
				28,158N;	Salb-CHN-
GBDP22664-19	KJ129176	Čína	Changsha, Hunan	112,854E	CHAN33
				28,158N;	Salb-CHN-
GBDP22665-19	KJ129177	Čína	Changsha, Hunan	112,854E	CHAN34
				28,158N;	Salb-CHN-
GBDP22666-19	KJ129178	Čína	Changsha, Hunan	112,854E	CHAN35
				28,158N;	Salb-CHN-
GBDP22667-19	KJ129179	Čína	Changsha, Hunan	112,854E	CHAN36
		ſ		31,6475N;	Salb-CHN-
GBDP23973-19	KR150135	Čína	Chaohu	117,878E	CHAO1
		T	Dedators D 1	41,439N;	
GBDP24353-19	KX161498	Španělsko	Badalona, Barcelona	2,223E	Salb-ESP-BAD
		1		52,9575N;	
GBDP25504-19	KY749778	Polsko	Toruń	18,5714E	Salb-POL-TOR

GBMIN60148-				23,1838N;	Salb-CHN-
17	KR150123	Čína	Ruhu	114,516E	RUH1
GBMIN60149-				23,1838N;	Salb-CHN-
17	KR150124	Čína	Ruhu	114,516E	RUH2
GBMIN60150-				31,6475N;	Salb-CHN-
17	KR150136	Čína	Chaohu	117.878E	CHAO2
GBMIN60151-				31,6475N;	Salb-CHN-
17	KR150134	Čína	Chaohu	117.878E	CHAO3
GBMIN60152-				33.578N:	
17	GO912668	Pákistán	Rawalpindi	72.9787E	Salb-PAK-RAW
GBMNA27959-				15.13N:	
19	MH765515	Thaisko	Baan Bua	104.91E	Salb-THA-BB
GBMNA27960-			Thake Ban National	- ,-	
19	MH765516	Thaisko	Park	6.71N: 100.17E	Salb-THA-TB
GBMNA9829-		<u>J</u>	~ ~ ~ ~	28.158N:	Salb-CHN-
19	KT44443	Čína	Changsha, Hunan	112.854E	CHAN37
GBMTG5861-				28.158N:	Salb-CHN-
16	NC 028413	Čína	Changsha, Hunan	112.854E	CHAN38
GMBCB1782-			<u> </u>	22.4685N:	Salb-BGD-
15	BIOUG21563-D03	Bangladéš	Chittagong	91.7808E	CHIT1
GMBCC1692-				22.4685N:	Salb-BGD-
15	BIOUG21670-E04	Bangladéš	Chittagong	91,7808E	CHIT2
GMBCC2255-				22,4685N;	Salb-BGD-
15	BIOUG22945-D02	Bangladéš	Chittagong	91,7808E	CHIT3
GMBCD3114-				22,4685N;	Salb-BGD-
15	BIOUG23285-A01	Bangladéš	Chittagong	91,7808E	CHIT4
GMBCD3168-				22,4685N;	Salb-BGD-
15	BIOUG23285-E07	Bangladéš	Chittagong	91,7808E	CHIT5
GMBCE2154-				22,4685N;	Salb-BGD-
15	BIOUG23287-D04	Bangladéš	Chittagong	91,7808E	CHIT6
GMBCI4779-				22,4685N;	Salb-BGD-
15	BIOUG24887-B01	Bangladéš	Chittagong	91,7808E	CHIT7
GMBCI4813-				22,4685N;	Salb-BGD-
15	BIOUG24887-D11	Bangladéš	Chittagong	91,7808E	CHIT8
GMBCM2536-				22,4685N;	Salb-BGD-
15	BIOUG25201-D08	Bangladéš	Chittagong	91,7808E	CHIT9
GMGMB066-					
14	BIOUG16267-G09	Německo	Rhineland-Palatinate	50,552N; 7,17E	Salb-DEU-RP1
GMGMB067-					
14	BIOUG16267-G10	Německo	Rhineland-Palatinate	50,552N; 7,17E	Salb-DEU-RP2
		Saúdská		21,795N;	
GMSUB400-14	BIOUG17671-A07	Arábie	Makkah, Jeddah	39,711E	Salb-SAU-MAK
MADIP629-12	NIBGE DIP- 00629	Pákistán	Punjab, Bahawalpur	34,02N; 71,37E	Salb-PAK-PUN

	GenBank	7	T - 1 - 124-		71
	KOU	Zeme	Lokanta	Souraumce	
GBDP12440-12	JQ413448	Belgie	Gent	51,042N; 3,7014E	Sarg-BEL-GEN
GBDP12441-12	JQ413449	Francie	Jaligny/Besbre	46,379N; 3,591E	Sarg-FRA-BES
GBDP12442-12	JQ413450	Francie	Le Soler	42,677N; 2,771E	Sarg-FRA-LS
GBDP12443-12	JQ413451	Belgie	Laeken	50,889N; 4,374E	Sarg-BEL-LAE
GBDP23730-19	KY316532	Itálie	Janov	44,455225N; 8,829023E	Sarg-ITA-JAN1
GBDP24328-19	KX161470	Španělsko	Llagostera (Girona)	41,818081N; 2,888974E	Sarg-ESP-LLAG
GBDP24329-19	KX161471	Španělsko	Zaragoza (Zaragoza)	41,643204N; -0,889147W	Sarg-ESP-ZAR
GBDP24330-19	KX161472	Španělsko	Coca (Segovia)	41,212426N; -4,517807W	Sarg-ESP-COC
GBDP24331-19	KX161473	Španělsko	Almazán (Soria)	41,487195N; -2,504447W	Sarg-ESP-ALM
GBMIN60164- 17	KY316519	Itálie	Janov	44,455225N; 8,829023E	Sarg-ITA-JAN2
GBDP28559-19	MG434766	Itálie	Catania (Sicily)	37,497841N; 15,057259E	Sarg-ITA-CAT1
GBMIN60166- 17	KY316536	Itálie	Janov	44,455225N; 8,829023E	Sarg-ITA-JAN3
GBMIN60167- 17	KY316522	Itálie	Janov	44,455225N; 8,829023E	Sarg-ITA-JAN4
GBMNB14983- 20	MK679819	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC1
GBMNB14984- 20	MK679820	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC2
GBMNB14985- 20	MK679821	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC3
GBMNB14986- 20	MK679822	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC4
GBMNB14987- 20	MK679823	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC5
GBMNB14988- 20	MK679824	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC6
GBMNB14989- 20	MK679825	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC7
GBMNB14990- 20	MK679826	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC8
GBMNB14991- 20	MK679827	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC9
GBMNB14992- 20	MK679828	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC10
GBMNB14993- 20	MK679829	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC11
GBMNB14994- 20	MK679830	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC12
GBMNB14995- 20	MK679831	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC13
GBMNB14996- 20	MK679832	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC14
GBMNB14997- 20	MK679833	Španělsko	Alicante	38,354320N; -0,497933W	Sarg-ESP-ALIC15

Příloha 3: Seznam stažených COI sekvencí S. argyrostoma z databáze BOLD/GenBank.

GBMNB14998-				38,354320N;	
20	MK679834	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC16
GBMNB14999-				38,354320N;	
20	MK679835	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC17
GBMNB15000-				38,354320N;	
20	MK679836	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC18
GBMNB15001-				38,354320N;	
20	MK679837	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC19
GBMNB15002-				38,354320N;	
20	MK679838	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC20
GBMNB15003-				38,354320N;	
20	MK679839	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC21
GBMNB15004-				38,354320N;	
20	MK679840	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC22
GBMNB15005-				38,354320N;	
20	MK679841	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC23
GBMNB15006-				38,354320N;	
20	MK679842	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC24
GBMNB15007-				38,354320N;	
20	MK679843	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC25
GBMNB15008-				38,354320N;	
20	MK679844	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC26
GBMNB15009-				38,354320N;	
20	MK679845	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC27
GBMNB15010-				38,354320N;	
20	MK679846	Španělsko	Alicante	-0,497933W	Sarg-ESP-ALIC28
GBMND93778-				44,154107N;	
21	MZ189703	Itálie	Cesena	12,231218E	Sarg-ITA-CES
SASI001 15				37,497841N;	
SAS1001-15		Itálie	Catania (Sicily)	15,057259E	Sarg-ITA-CAT2

BOLD kód	GenBank kód	Země	Lokalita	Souřadnice	Zkratka
				51,443N;	Scae-CAN-
BBDCP242-10	10BBCDIP-1957	Kanada	British Columbia	-116,542W	BC1
				51,443N;	Scae-CAN-
BBDCP243-10	10BBCDIP-1958	Kanada	British Columbia	-116,542W	BC2
				53,687N;	Scae-CAN-
BBDCP245-10	10BBCDIP-1960	Kanada	Alberta	-112,813W	ALB1
				46,812N;	Scae-CAN-
BBDEC073-09	09BBEDI-0073	Kanada	Nova Scotia	-60,768W	NS1
				46,655N;	Scae-CAN-
BBDEC074-09	09BBEDI-0074	Kanada	Nova Scotia	-60,372W	NS2
				46,812N;	Scae-CAN-
BBDEC076-09	09BBEDI-0076	Kanada	Nova Scotia	-60,768W	NS3
BBDED301-				44,383N;	Scae-CAN-
10	09BBEDI-1283	Kanada	Nova Scotia	-65,202W	NS4
				46,713N;	Scae-CAN-
BBDEE788-10	09BBEDI-2751	Kanada	Nova Scotia	-60,383W	NS5
	BCFORENSIK071			50,5306N;	Scae-FRA-
BCFOR701-15	0	Francie	Nord-Pas-de-Calais	3,47639E	NPDC1
	BCFORENSIK073			50,5132N;	Scae-FRA-
BCFOR727-15	6	Francie	Nord-Pas-de-Calais	3,03043E	NPDC2
	BCFORENSIK074			50,5306N;	Scae-FRA-
BCFOR733-15	2	Francie	Nord-Pas-de-Calais	3,47639E	NPDC3
CNEID3042-				53,685N;	Scae-CAN-
12	BIOUG03647-H10	Kanada	Alberta	-112,86W	ALB2
CNEID3171-				53,685N;	Scae-CAN-
12	BIOUG03718-D11	Kanada	Alberta	-112,86W	ALB3
CNLMS127-				46,6507N;	Scae-CAN-
14	BIOUG14404-D12	Kanada	Quebec	-72,9698W	QB1
				50,2135N;	Scae-CAN-
CNMIF780-14	BIOUG12409-D10	Kanada	Quebec	-63,7979W	QB2
DRYAS11081					Scae-RUS-
-15	24538-F01	Rusko	Khibiny	67,594N; 33,699E	KHIB1
DRYAS13530					Scae-RUS-
-15	24468-D08	Rusko	Khibiny	67,594N; 33,699E	KHIB2
GBDP12506-					Scae-FRA-
12	JQ582064	Francie	Etaples	50,514N; 1,637E	ETAP
GBDP12507-			Saint-Privat-la-		Scae-FRA-
12	JQ582065	Francie	Montagne	40,189N; 6,035E	SPLM
GBDP12548-					Scae-BEL-
12	JQ582106	Belgie	Arlon	49,65N; 5,752E	AR
GBDP12550-					Scae-BEL-
12	JQ582108	Belgie	Steendorp	51,124N; 4,247E	STE1
GBDP12552-					Scae-BEL-
12	JQ582110	Belgie	Steendorp	51,124N; 4,247E	STE2
GBDP12553-					Scae-BEL-
12	JQ582111	Belgie	Steendorp	51,124N; 4,247E	STE3
GBDP12554-					Scae-BEL-
12	JQ582112	Belgie	Steendorp	51,124N; 4,247E	STE4
GBDP24304-		U U	San Sebastian,	43 31 N· -1 988W	
19	KX161501	Španělsko	Guipuzcoa	+3,311 1, - 1,900W	Scae-ESP-SS
GBDP24305-		,	Betanzos, La	43 277N· -8 217₩	Scae-ESP-
19	KX161502	Španělsko	Corunna	+ <i>3</i> , <i>211</i> 11, - 0, <i>2</i> 17 W	BET1
GBDP24306-		,	Arrigorriaga,	43 211N· -2 804W	Scae-ESP-
19	KX161503	Španělsko	Vizcaya	-J,21111, -2,074W	ARRI

Příloha 4: Seznam stažených COI sekvencí S. caerulescens z databáze BOLD/GenBank.

GBDP24307-			Betanzos, La		Scae-ESP-
19	KX161504	Španělsko	Corunna	43,277N; -8,217W	BET2
				61,4678N;	Scae-FIN-
GBDP7835-09	FJ715747	Finsko	Nokia	23,5097E	NOK
GMGMJ220-			Rhineland-		Scae-DEU-
14	BIOUG17070-A09	Německo	Palatinate	50,552N; 7,17E	RP1
GMGMJ455-			Rhineland-		Scae-DEU-
14	BIOUG17026-F03	Německo	Palatinate	50,552N; 7,17E	RP2
GMGML1399-			Rhineland-		Scae-DEU-
14	BIOUG17271-B12	Německo	Palatinate	50,552N; 7,17E	RP3
GMOLH005-			Northwest	68,3261N;	Scae-CAN-
15	BIOUG22954-G11	Kanada	Territories	-133,634W	NOR
				44,621N;	Scae-CAN-
JSDIQ840-10	10JSROW-1840	Kanada	Ontario	-75,773W	ONT1
				44,621N;	Scae-CAN-
JSDIR767-11	BIOUG00867-C04	Kanada	Ontario	-75,773W	ONT2
MOBIL10185-	BOLD-			64,8595N;	Scae-USA-
19	3O02UFPH6	USA	Alaska	-147,845W	AL
RBINA5373-				43,8444N;	Scae-CAN-
13	BIOUG08060-A03	Kanada	Ontario	-79,197W	ONT3
SMTPD5148-				43,528N;	Scae-CAN-
13	BIOUG08664-D11	Kanada	Ontario	-80,229W	ONT4
SMTPI9241-				43,341N;	Scae-CAN-
14	BIOUG16072-C04	Kanada	Ontario	-80,297W	ONT5
SMTPI9242-				43,341N;	Scae-CAN-
14	BIOUG16072-C05	Kanada	Ontario	-80,297W	ONT6
				53,567N;	Scae-CAN-
SSEIA461-13	BIOUG04821-H09	Kanada	Alberta	-112,841W	ALB4
				53,567N;	Scae-CAN-
SSEIA462-13	BIOUG04821-H10	Kanada	Alberta	-112,841W	ALB5
				53,567N;	Scae-CAN-
SSEIA463-13	BIOUG04821-H11	Kanada	Alberta	-112,841W	ALB6
				53,567N;	Scae-CAN-
SSEIA7987-13	BIOUG05439-A08	Kanada	Alberta	-112841W	ALB7
				53,567N;	Scae-CAN-
SSEIA995-13	BIOUG04829-A01	Kanada	Alberta	-112,841W	ALB8
				53,567N;	Scae-CAN-
SSEID1969-13	BIOUG08182-C05	Kanada	Alberta	-112,841W	ALB9
				53,567N;	Scae-CAN-
SSEID2295-13	BIOUG08186-A06	Kanada	Alberta	-112,841W	ALB10
				53,567N;	Scae-CAN-
SSEID2315-13	BIOUG08186-C02	Kanada	Alberta	-112,841W	ALB11
				53,567N;	Scae-CAN-
SSEID2334-13	BIOUG08186-D09	Kanada	Alberta	-112,841W	ALB12
				53,567N;	Scae-CAN-
SSEID2335-13	BIOUG08186-D10	Kanada	Alberta	-112,841W	ALB13
				53,567N;	Scae-CAN-
SSEID2357-13	BIOUG08186-F08	Kanada	Alberta	-112,841W	ALB14
				53,567N;	Scae-CAN-
SSEID2359-13	BIOUG08186-F10	Kanada	Alberta	-112,841W	ALB15
				53,567N;	Scae-CAN-
SSEID2646-13	BIOUG08222-E10	Kanada	Alberta	-112,841W	ALB16
SSGBB7050-	DIOLIGA CON DI		Newfoundland and	49,429N;	Scae-CAN-
14	BIOUG14531-F11	Kanada	Labrador	-57,741W	NL
SSGLA1651-	DIOLIGINE	* 7 -		51,361N;	Scae-CAN-
15	BIOUG22777-G12	Kanada	British Columbia	-117,429W	BC3
SSJAE10647-	DIOLICASSE	** -		53,193N; -	Scae-CAN-
13	BIOUG08954-A12	Kanada	Alberta	117,954W	ALB17

				53,193N;	Scae-CAN-
SSJAE5989-13	BIOUG08704-D12	Kanada	Alberta	-117,954W	ALB18
				53,193N;	Scae-CAN-
SSJAE6191-13	BIOUG08706-E12	Kanada	Alberta	-117,954W	ALB19
				53.193N:	Scae-CAN-
SSJAE6293-13	BIOUG08707-F07	Kanada	Alberta	-117.954W	ALB20
				53 193N·	Scae-CAN-
SSIAE6294-13	BIOUG08707-F08	Kanada	Alberta	-117 954W	ALB21
SSKUA1281/-	D100000707100	Ttulluou	Thoortu	60 714N·	Scae-CAN-
15	BIOLIG27387-F08	Kanada	Vukon Territory	-137 / 3/W	VT1
SSKUA12815	D100027307 L00	Kulludu	Tukon Terntory	60 714N:	Scae CAN
15	BIOLIG27387-F09	Kanada	Vukon Territory	-137 / 3/W	VT2
SCK11A12818	DI00027307-L07	Kanada		-137,434W	Scene CAN
15	BIOLIG27387 E12	Kanada	Vukon Territory	137 434W	VT3
1J	DI00027587-E12	Kallaua		-137,434 W	Same CAN
SSKUA12019-	DIOLICO7297 E01	Vanada	Valar Tamitan	00,714N; 127.424W	Scae-CAN-
	ЫООО2/38/-ГОІ	Kanada	Tukon Territory	-15/,454W	
SSKUA12820-	DIOLIC 27297 E02	Vanada	Valor Tomitom	60,714N;	Scae-CAN-
15	BIOUG2/38/-F02	Kanada	Y UKON Territory	-13/,434W	
SSKUA12821-	DIOLICOZZOZ DOZ	17 1		60,714N;	Scae-CAN-
15	BIOUG27387-F03	Kanada	Yukon Territory	-137,434W	Y16
SSKUA9034-				60,714N;	Scae-CAN-
15	BIOUG27155-A03	Kanada	Yukon Territory	-137,434W	Y17
SSKUA9040-				60,714N;	Scae-CAN-
15	BIOUG27155-A09	Kanada	Yukon Territory	-137,434W	YT8
SSKUB11754-				60,748N;	Scae-CAN-
15	BIOUG27466-B02	Kanada	Yukon Territory	-137,513W	YT9
SSKUB12505-				60,748N;	Scae-CAN-
15	BIOUG27506-C10	Kanada	Yukon Territory	-137,513W	YT10
SSPAA5681-				53,9055N;	Scae-CAN-
13	BIOUG06143-E04	Kanada	Saskatchewan	-106,025W	SAS1
SSPAA5684-				53,9055N;	Scae-CAN-
13	BIOUG06143-E07	Kanada	Saskatchewan	-106,025W	SAS2
SSPAA6245-				53,9055N;	Scae-CAN-
13	BIOUG06203-A10	Kanada	Saskatchewan	-106,025W	SAS3
SSPAA6246-				53.9055N;	Scae-CAN-
13	BIOUG06203-A11	Kanada	Saskatchewan	-106,025W	SAS4
SSPAA6247-				53.9055N:	Scae-CAN-
13	BIOUG06203-A12	Kanada	Saskatchewan	-106.025W	SAS5
SSPAA6248-				53.9055N:	Scae-CAN-
13	BIOUG06203-B01	Kanada	Saskatchewan	-106.025W	SAS6
SSPAA6249-	2100000200 201			53 9055N	Scae-CAN-
13	BIOUG06203-B02	Kanada	Saskatchewan	-106 025W	SAS7
SSPAA6250-	21000000200 202	11411404		53 9055N	Scae-CAN-
13	BIOUG06203-B03	Kanada	Saskatchewan	-106 025W	SAS8
SSPA 46251-	D100000203 D03	Ranada	Baskatenewan	53 9055N·	Scae-CAN-
12	BIOUG06203_B04	Kanada	Saskatchewan	-106.025W	SAS0
SSDA 46252	DIOUG00203-D04	Kanada	Saskatenewan	53 0055N:	Scoo CAN
12	BIOLIC06203 B05	Kanada	Sackatchowan	106.025W	Scae-CAN-
15 SSDA 46252	ЫОООО203-Б03	Kallaua	Saskatchewan	-100,023 W	SASIU Sasa CAN
33FAA0233- 12	BIOLICOGOO2 DOC	Kanada	Sackatahaman	33,9033IN;	Scae-CAIN-
13	DIOOO0203-B00	Nanada	Saskatchewan	-100,023W	SASII
55FAA0254-	DIOLICOCOO2 DOZ	Van 1	Castant 1	55,9055N;	Scae-CAN-
13	BIOUG06203-B07	Kanada	Saskatchewan	-106,025W	SAS12
SSPAA6255-	DIOLICO COCO DO		G 1	53,9055N;	Scae-CAN-
13	BIOUG06203-B08	Kanada	Saskatchewan	-106,025W	SAS13
SSPAA6256-			~	53,9055N;	Scae-CAN-
13	BIOUG06203-B09	Kanada	Saskatchewan	-106,025W	SAS14
SSPAA6257-				53,9055N;	Scae-CAN-
13	BIOUG06203-B10	Kanada	Saskatchewan	-106,025W	SAS15

SSPAA6258-				53.9055N:	Scae-CAN-
13	BIOUG06203-B11	Kanada	Saskatchewan	-106,025W	SAS16
SSPAA6259-				53,9055N;	Scae-CAN-
13	BIOUG06203-B12	Kanada	Saskatchewan	-106,025W	SAS17
SSPAA6260-				53,9055N;	Scae-CAN-
13	BIOUG06203-C01	Kanada	Saskatchewan	-106,025W	SAS18
SSPAA6261-				53,9055N;	Scae-CAN-
13	BIOUG06203-C02	Kanada	Saskatchewan	-106,025W	SAS19
SSPAA6262-				53,9055N;	Scae-CAN-
13	BIOUG06203-C03	Kanada	Saskatchewan	-106,025W	SAS20
SSPAA6263-				53,9055N;	Scae-CAN-
13	BIOUG06203-C04	Kanada	Saskatchewan	-106,025W	SAS21
SSPAA6264-				53,9055N;	Scae-CAN-
13	BIOUG06203-C05	Kanada	Saskatchewan	-106,025W	SAS22
SSPAA6265-				53,9055N;	Scae-CAN-
13	BIOUG06203-C06	Kanada	Saskatchewan	-106,025W	SAS23
SSPAA6266-				53,9055N;	Scae-CAN-
13	BIOUG06203-C07	Kanada	Saskatchewan	-106,025W	SAS24
SSPAA6267-				53,9055N;	Scae-CAN-
13	BIOUG06203-C08	Kanada	Saskatchewan	-106,025W	SAS25
SSPAA6268-				53,9055N;	Scae-CAN-
13	BIOUG06203-C09	Kanada	Saskatchewan	-106,025W	SAS26
SSPAA6269-				53,9055N;	Scae-CAN-
13	BIOUG06203-C10	Kanada	Saskatchewan	-106,025W	SAS27
SSPAA6270-				53,9055N;	Scae-CAN-
13	BIOUG06203-C11	Kanada	Saskatchewan	-106,025W	SAS28
SSPAA6271-				53,9055N;	Scae-CAN-
13	BIOUG06203-C12	Kanada	Saskatchewan	-106,025W	SAS29
SSPAA6272-				53,9055N;	Scae-CAN-
13	BIOUG06203-D01	Kanada	Saskatchewan	-106,025W	SAS30
SSPAA6273-				53,9055N;	Scae-CAN-
13	BIOUG06203-D02	Kanada	Saskatchewan	-106,025W	SAS31
SSPAA6274-				53,9055N;	Scae-CAN-
13	BIOUG06203-D03	Kanada	Saskatchewan	-106,025W	SAS32
SSWLD3934-				49,065N;	Scae-CAN-
13	BIOUG06464-A06	Kanada	Alberta	-113,778W	ALB22
SSWLE7641-				49,088N;	Scae-CAN-
13	BIOUG08962-B05	Kanada	Alberta	-113.883W	ALB23

BOLD kód	GenBank kód	Země	Lokalita	Souřadnice	Zkratka
			Nord-Pas-de-	50,5306N;	Scar-FRA-
BCFOR736-15	BCFORENSIK0745	Francie	Calais	3,47639E	NPDC
				50,813N;	Scar-BEL-
GBDP12444-12	JQ413452	Belgie	Oud-Heverlee	4,686E	OH
				42,677N;	Scar-FRA-
GBDP12536-12	JQ582094	Francie	Le Soler	2,771E	LS
				50,565N;	Scar-BEL-
GBDP12555-12	JQ582113	Belgie	Gembloux	4,247E	GEM
				50,593N;	Scar-DNK-
GBDP9233-10	GQ223342	Dánsko	Lejre	11,955E	LEJ
GBMNA27541-		Velká		51,2779N; -	Scar-GBR-
19	MH118259	Británie	Salisbury	1,957W	SAL1
GBMNA27542-		Velká		51,2779N; -	Scar-GBR-
19	MH118258	Británie	Salisbury	1,957W	SAL2
GBMNA27543-		Velká		51,3475N; -	Scar-GBR-
19	MH118257	Británie	Tadley	1,121W	TAD1
GBMNA27544-		Velká		51,3475N; -	Scar-GBR-
19	MH118260	Británie	Tadley	1,121W	TAD2
GBMNA27545-		Česká	Í	50,8549N;	Scar-CZE-
19	MH118256	republika	Jetřichovice	14,4054E	JET
GBMNA27568-		•		46,5199N;	Scar-ITA-
19	MH118252	Itálie	Bolzano-Bozen	11,5228E	BOL1
GBMNA27569-				46.5199N:	Scar-ITA-
19	MH118253	Itálie	Bolzano-Bozen	11.5228E	BOL2
GBMNA27570-				46.5199N:	Scar-ITA-
19	MH118254	Itálie	Bolzano-Bozen	11.5228E	BOL3
GBMNA27571-				46.5199N:	Scar-ITA-
19	MH118255	Itálie	Bolzano-Bozen	11,5228E	BOL4
GBMNA29109-				44,8998N;	Scar-FRA-
19	MH118176	Francie	Briancon	6,64201E	BRIA1
GBMNA29110-			3	44,8998N;	Scar-FRA-
19	MH118177	Francie	Briançon	6,64201E	BRIA2
GBMNA29115-			Chaudeney-sur-	48,6345N;	Scar-FRA-
19	MH118182	Francie	Moselle	5,902E	CHSM
			Rhineland-	50,552N;	Scar-DEU-
GMGMA318-14	BIOUG15980-C02	Německo	Palatinate	7,17E	RP1
			Rhineland-	50,552N;	Scar-DEU-
GMGMA327-14	BIOUG15980-C11	Německo	Palatinate	7,17E	RP2
			Rhineland-	50,552N;	Scar-DEU-
GMGMA629-14	BIOUG16211-E04	Německo	Palatinate	7,17E	RP3
			Rhineland-	50,552N;	Scar-DEU-
GMGMB020-14	BIOUG16267-C11	Německo	Palatinate	7,17E	RP4
			Rhineland-	50,552N;	Scar-DEU-
GMGMB031-14	BIOUG16267-D10	Německo	Palatinate	7,17E	RP5
			Rhineland-	50,552N;	Scar-DEU-
GMGMB043-14	BIOUG16267-E10	Německo	Palatinate	7,17E	RP6
			Rhineland-	50,552N;	Scar-DEU-
GMGMB051-14	BIOUG16267-F06	Německo	Palatinate	7,17E	RP7
			Rhineland-	50,552N;	Scar-DEU-
GMGMB058-14	BIOUG16267-G01	Německo	Palatinate	7,17E	RP8
			Rhineland-	50,552N;	Scar-DEU-
GMGMB065-14	BIOUG16267-G08	Německo	Palatinate	7,17E	RP9
			Rhineland-	50,552N;	Scar-DEU-
GMGMB576-14	BIOUG16273-G04	Německo	Palatinate	7,17E	RP10

Příloha 5: Seznam stažených COI sekvencí S. carnaria z databáze BOLD/GenBank.

			Rhineland-	50,552N;	Scar-DEU-
GMGMB582-14	BIOUG16273-G10	Německo	Palatinate	7,17E	RP11
			Rhineland-	50,552N;	Scar-DEU-
GMGMB583-14	BIOUG16273-G11	Německo	Palatinate	7,17E	RP12
			Rhineland-	50,552N;	Scar-DEU-
GMGMB585-14	BIOUG16273-H01	Německo	Palatinate	7,17E	RP13
			Rhineland-	50,552N;	Scar-DEU-
GMGMB586-14	BIOUG16273-H02	Německo	Palatinate	7,17E	RP14
			Rhineland-	50,552N;	Scar-DEU-
GMGMB588-14	BIOUG16273-H04	Německo	Palatinate	7,17E	RP15
			Rhineland-	50,552N;	Scar-DEU-
GMGMB590-14	BIOUG16273-H06	Německo	Palatinate	7,17E	RP16
			Rhineland-	50,552N;	Scar-DEU-
GMGMB591-14	BIOUG16273-H07	Německo	Palatinate	7,17E	RP17
			Rhineland-	50,552N;	Scar-DEU-
GMGMB752-14	BIOUG16275-F02	Německo	Palatinate	7,17E	RP18
			Rhineland-	50,552N;	Scar-DEU-
GMGMC047-14	BIOUG16353-F08	Německo	Palatinate	7,17E	RP19
			Rhineland-	50,552N;	Scar-DEU-
GMGMC054-14	BIOUG16353-G03	Německo	Palatinate	7,17E	RP20
			Rhineland-	50,552N;	Scar-DEU-
GMGMC058-14	BIOUG16353-G07	Německo	Palatinate	7,17E	RP21
			Rhineland-	50,552N;	Scar-DEU-
GMGMC069-14	BIOUG16353-H06	Německo	Palatinate	7,17E	RP22
			Rhineland-	50,552N;	Scar-DEU-
GMGMD213-14	BIOUG16607-E09	Německo	Palatinate	7,17E	RP23
			Rhineland-	50,552N;	Scar-DEU-
GMGMD215-14	BIOUG16607-E11	Německo	Palatinate	7,17E	RP24
			Rhineland-	50,552N;	Scar-DEU-
GMGMD250-14	BIOUG16607-H10	Německo	Palatinate	7,17E	RP25
			Rhineland-	50,552N;	Scar-DEU-
GMGME139-14	BIOUG16648-E10	Německo	Palatinate	7,17E	RP26
GMGMH1259-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17000-A02	Německo	Palatinate	7,17E	RP27
GMGMH1354-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17017-A02	Německo	Palatinate	7,17E	RP28
			Rhineland-	50,552N;	Scar-DEU-
GMGMI110-14	BIOUG17085-A10	Německo	Palatinate	7,17E	RP29
			Rhineland-	50,552N;	Scar-DEU-
GMGMI115-14	BIOUG17085-B03	Německo	Palatinate	7,17E	RP30
			Rhineland-	50,552N;	Scar-DEU-
GMGMI126-14	BIOUG17085-C02	Německo	Palatinate	7,17E	RP31
			Rhineland-	50,552N;	Scar-DEU-
GMGMI139-14	BIOUG17085-D03	Německo	Palatinate	7,17E	RP32
			Rhineland-	50,552N;	Scar-DEU-
GMGMI148-14	BIOUG17085-D12	Německo	Palatinate	7,17E	RP33
			Rhineland-	50,552N;	Scar-DEU-
GMGMI177-14	BIOUG17085-G05	Německo	Palatinate	7,17E	RP34
			Rhineland-	50,552N;	Scar-DEU-
GMGMJ241-14	BIOUG17070-C06	Německo	Palatinate	7,17E	RP35
			Rhineland-	50,552N;	Scar-DEU-
GMGMJ326-14	BIOUG17071-B08	Německo	Palatinate	7,17E	RP36
			Rhineland-	50,552N;	Scar-DEU-
GMGMK043-14	BIOUG17071-E11	Německo	Palatinate	7,17E	RP37
			Rhineland-	50,552N;	Scar-DEU-
GMGMK047-14	BIOUG17071-F03	Německo	Palatinate	7,17E	RP38
			Rhineland-	50,552N;	Scar-DEU-
GMGMK048-14	BIOUG17071-F04	Německo	Palatinate	7,17E	RP39

			Rhineland-	50,552N;	Scar-DEU-
GMGMK064-14	BIOUG17071-G08	Německo	Palatinate	7,17E	RP40
			Rhineland-	50,552N;	Scar-DEU-
GMGMK068-14	BIOUG17071-G12	Německo	Palatinate	7,17E	RP41
			Rhineland-	50,552N;	Scar-DEU-
GMGMK074-14	BIOUG17071-H06	Německo	Palatinate	7,17E	RP42
			Rhineland-	50,552N;	Scar-DEU-
GMGMK274-14	BIOUG17175-A05	Německo	Palatinate	7,17E	RP43
			Rhineland-	50,552N;	Scar-DEU-
GMGMK306-14	BIOUG17175-D01	Německo	Palatinate	7,17E	RP44
			Rhineland-	50,552N;	Scar-DEU-
GMGML074-14	BIOUG17228-F10	Německo	Palatinate	7,17E	RP45
			Rhineland-	50,552N;	Scar-DEU-
GMGML076-14	BIOUG17228-F12	Německo	Palatinate	7,17E	RP46
			Rhineland-	50,552N;	Scar-DEU-
GMGML080-14	BIOUG17228-G04	Německo	Palatinate	7,17E	RP47
			Rhineland-	50,552N;	Scar-DEU-
GMGML084-14	BIOUG17228-G08	Německo	Palatinate	7,17E	RP48
			Rhineland-	50,552N;	Scar-DEU-
GMGML086-14	BIOUG17228-G10	Německo	Palatinate	7,17E	RP49
			Rhineland-	50,552N;	Scar-DEU-
GMGML087-14	BIOUG17228-G11	Německo	Palatinate	7,17E	RP50
			Rhineland-	50,552N;	Scar-DEU-
GMGML088-14	BIOUG17228-G12	Německo	Palatinate	7,17E	RP51
			Rhineland-	50,552N;	Scar-DEU-
GMGML089-14	BIOUG17228-H01	Německo	Palatinate	7,17E	RP52
			Rhineland-	50,552N;	Scar-DEU-
GMGML090-14	BIOUG17228-H02	Německo	Palatinate	7,17E	RP53
			Rhineland-	50,552N;	Scar-DEU-
GMGML093-14	BIOUG17228-H05	Německo	Palatinate	7,17E	RP54
			Rhineland-	50,552N;	Scar-DEU-
GMGML094-14	BIOUG17228-H06	Německo	Palatinate	7,17E	RP55
			Rhineland-	50,552N;	Scar-DEU-
GMGML096-14	BIOUG17228-H08	Německo	Palatinate	7,17E	RP56
			Rhineland-	50,552N;	Scar-DEU-
GMGML098-14	BIOUG17228-H10	Německo	Palatinate	7,17E	RP57
		NTV 1	Rhineland-	50,552N;	Scar-DEU-
GMGML205-14	BIOUG17230-A11	Německo	Palatinate	7,17E	RP58
	DIOLICITZAD DOA		Rhineland-	50,552N;	Scar-DEU-
GMGML208-14	BIOUG17230-B02	Némecko	Palatinate	7,17E	RP59
C) (C) (I 212 14	DIOLIC17220 D07	NTY 1	Rhineland-	50,552N;	Scar-DEU-
GMGML213-14	BIOUG1/230-B0/	Nemecko	Palatinate	/,1/E	RP60
CMCMI 214 14	DIOLIC17220 D00	NTY 1-	Rhineland-	50,552N;	Scar-DEU-
GMGML214-14	BIOUG1/230-B08	Петеско	Palatinate	/,1/E	KP01
CMCMI 217-14	DIOUC17220 D11	Nămaalta	Rnineland-	50,552N; 7.17E	Scar-DEU-
GWIGWIL217-14	ЫООО1/250-Ы1	Nemecko	Dhinaland	7,17E	KF02
GMGMI 221-14	PIOUC17220 C02	Nămaaka	Deletinete	50,552N, 7 17E	DD62
OWOWIL221-14	BI00017230-C03	Nemecko	Phinaland	7,17E	Scor DEU
GMGMI 222-14	BIOLIG17230 C04	Německo	Palatinate	50,552N, 7 17F	PP64
510101012222-14	D100017230-004	THEFT	Rhineland	50 552N·	Scar-DEU
GMGMI 232-14	BIOUG17230-D02	Německo	Palatinate	7 17F	RP65
500001L232-14	D100017230-D02	TOTHECKU	Rhineland	50 552N·	Scar-DEU
GMGMI 233-14	BIOLIG17230-D03	Německo	Palatinate	7.17F	RP66
5000012255-14	5100017230-003	TUTILOKU	Rhineland_	50 552N·	Scar-DELL
GMGMI 238-14	BIOLIG17230-D08	Německo	Palatinate	7.17F	RP67
51010101230-14	5100017230-000	TUTILOKU	Rhineland_	50 552N·	Scar-DELL
GMGML 249-14	BIOUG17230-E07	Německo	Palatinate	7 17E	RP68
		enneento	- anathing	.,	

			Rhineland-	50,552N;	Scar-DEU-
GMGML256-14	BIOUG17230-F02	Německo	Palatinate	7,17E	RP69
			Rhineland-	50,552N;	Scar-DEU-
GMGML278-14	BIOUG17230-G12	Německo	Palatinate	7,17E	RP70
			Rhineland-	50,552N;	Scar-DEU-
GMGML279-14	BIOUG17230-H01	Německo	Palatinate	7,17E	RP71
GMGMM206-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-B02	Německo	Palatinate	7,17E	RP72
GMGMM215-			Rhineland-	50.552N:	Scar-DEU-
14	BIOUG17298-B11	Německo	Palatinate	7.17E	RP73
GMGMM235-	21000011 2 /0211	1.000000	Rhineland-	50 552N	Scar-DEU-
14	BIOUG17298-D07	Německo	Palatinate	7 17E	RP74
GMGMM239-	D10001/200 D0/	1 (emeene	Rhineland-	50 552N·	Scar-DEU-
14	BIOUG17298-D11	Německo	Palatinate	7 17E	RP75
GMGMM249	DI00017270 D11	Тетеско	Rhineland-	50 552N·	Scar-DEU-
1/	BIOLIC17208 E00	Německo	Palatinate	7.17E	RP76
CMCMM252	DIOUU17290-E09	NUMEERO	Dhinaland	50 552N	Scor DEU
14	DIOUC17208 E12	Nămaaka	Rillielallu-	50,552IN, 7 17E	DD77
	DIOUG1/290-E12	Nemecko	Palatiliate	7,17E	
1 4	DIOUC17209 E02	NT¥	Rinneland-	30,332N;	Scal-DEU-
14	BIOUG1/298-F02	Петеско	Palatinate	/,1/E	RP/8
GMGMM257-	DIOLICI7200 E05	NTY 1	Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-F05	Némecko	Palatinate	7,17E	RP/9
GMGMM262-		NTV 1	Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-F10	Německo	Palatinate	7,17E	RP80
GMGMM265-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-G01	Německo	Palatinate	7,17E	RP81
GMGMM267-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-G03	Německo	Palatinate	7,17E	RP82
GMGMM268-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-G04	Německo	Palatinate	7,17E	RP83
GMGMM270-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-G06	Německo	Palatinate	7,17E	RP84
GMGMM275-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-G11	Německo	Palatinate	7,17E	RP85
GMGMM278-			Rhineland-	50,552N;	Scar-DEU-
14	BIOUG17298-H02	Německo	Palatinate	7,17E	RP86
			Rhineland-	50,552N;	Scar-DEU-
GMGMN202-14	BIOUG17382-E08	Německo	Palatinate	7,17E	RP87
			Rhineland-	50,552N;	Scar-DEU-
GMGMN221-14	BIOUG17382-G03	Německo	Palatinate	7,17E	RP88
GMGRB1541-			Bavaria,	48,9509N;	Scar-DEU-
13	BIOUG05265-F12	Německo	Niederbayern	13,422E	BAV-1
GMGRB2087-			Bavaria.	48,9509N:	Scar-DEU-
13	BIOUG06405-C08	Německo	Niederbavern	13,422E	BAV-2
GMGRC3027-			Bavaria	48.9509N:	Scar-DEU-
13	BIOUG06405-F04	Německo	Niederbavern	13.422E	BAV-3
GMGRC3032-			Bayaria	48.9509N	Scar-DEU-
13	BIOUG06405-F09	Německo	Niederbayern	13 422F	BAV-4
GMGRF6347		TUINCERO	Bavaria	48 9509N·	Scar-DEU-
13	BIOUG07948-408	Německo	Niederhavern	13 422F	BAV-5
GMGRE6340	D1000077+0-A00		Ravaria	13,722D	Scar_DEU
12	BIOLICO7048 A 10	Němeako	Niederbauern	13 ADDE	BAV 6
IJ CMCDE(252	DIOUUU/948-AIU	INCHIECKO	Dovoria	13,422E	
12	DIOUC07049 D02	NIX	Davaria,	40,9509IN;	Scar-DEU-
	Б10060/948-В02	петеско	niederbayern	13,422E	BAV-/
GMGRF6360-	DIOLICOZO 40 DOC	NTY 1	Bavaria,	48,9509N;	Scar-DEU-
13	BIOUG0/948-B09	Nemecko	Niederbayern	13,422E	BAV-8
GMGRF6364-	DIOLICOTO (O. CO.)		Bavaria,	48,9509N;	Scar-DEU-
13	BIOUG07948-C01	Némecko	Niederbayern	13,422E	BAV-9

GMGRG4861-			Bavaria,	48,9509N;	Scar-DEU-
13	BIOUG08215-A01	Německo	Niederbayern	13,422E	BAV-10
GMGRG4862-			Bavaria,	48,9509N;	Scar-DEU-
13	BIOUG08215-A02	Německo	Niederbayern	13,422E	BAV-11
GMGRH2097-			Bavaria,	48,9509N;	Scar-DEU-
13	BIOUG08215-C03	Německo	Niederbayern	13,422E	BAV-12

Příloha 6: Seznam stažených COI sekvencí S. incisilobata z databáze BOLD/GenBank.

BOLD kód	GenBank kód	Země	Lokalita	Souřadnice	Zkratka
GBDP12534-12	JQ582092	Francie	Le Soler	42,677N; 2,771E	Sinc-FRA-LS
GMBUC147-14		Bulharsko	Sofiya, Godech	43,009N; 23,058E	Sinc-BGR-SOF1
GMBUD162-14		Bulharsko	Sofiya, Godech	43,009N; 23,058E	Sinc-BGR-SOF2
			Rhineland-		
GMGMA363-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP1
			Rhineland-		
GMGMA649-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP2
			Rhineland-		
GMGMA853-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP3
			Rhineland-		
GMGMB047-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP4
			Rhineland-		
GMGMB060-14		Némecko	Palatinate	50,552N; 7,17E	Sinc-DEU-RP5
			Rhineland-	50 550N 7 17E	
GMGMB/44-14		Némecko	Palatinate	50,552N; 7,17E	Sinc-DEU-RP6
CMCMD754 14		NTY 1	Rhineland-	50 550NL 7 17E	C. DELLDD7
GMGMB/54-14		Nemecko	Palatinate	50,552N; /,1/E	Sinc-DEU-RP/
CMCMU070 14		NIX	Rhineland-	50 552NL 7 17E	
GMGMH070-14		Петеско	Palatinate	50,552N; 7,17E	SINC-DEU-RP8
GMGMH1280-		Nămaalta	Rnineland-	50 552NI 7 17E	Sine DELL DD0
14		Петеско	Palatinate	50,552N; 7,17E	SIIIC-DEU-RP9
GMGMI1137-14		Nămacko	Polotinoto	50 552N 7 17E	Sinc DELL PD10
010101011137-14		INCHIECKO	Phineland	50,552N, 7,17E	SIIC-DEU-KF10
GMGMI323-14		Německo	Palatinate	50 552N· 7 17E	Sinc-DEU-RP11
0100011323 14		Тетнеско	Rhineland-	50,55211, 7,1712	
GMGMK039-14		Německo	Palatinate	50 552N· 7 17E	Sinc-DEU-RP12
		Ttemeente	Rhineland-	50,55210, 7,172	
GMGMK057-14		Německo	Palatinate	50.552N: 7.17E	Sinc-DEU-RP13
GMGMK1133-			Rhineland-		
14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP14
GMGMK1146-			Rhineland-		
14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP15
			Rhineland-		
GMGMK320-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP16
			Rhineland-		
GMGMK523-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP17
			Rhineland-		
GMGML432-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP18
			Rhineland-		
GMGML488-14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP19
GMGMM1020-			Rhineland-		
14		Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP20
GMGMM1036-			Rhineland-		
14	1	Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP21

GMGMM509-		Rhineland-		
14	Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP22
GMGMN1238-		Rhineland-		
14	Německo	Palatinate	50,552N; 7,17E	Sinc-DEU-RP23
GMGMN1500-		Bavaria,	48,1333N;	
14	Německo	Oberbayern	11,5667E	Sinc-DEU-BAV

Příloha 7: Seznam stažených COI sekvencí S. lehmanni z databáze BOLD/GenBank.

	GenBank	77 V	T 1 1 1		
BOLD kód	kód	Země	Lokalita	Souřadnice	Zkratka
CDDD10450 10	10412459	. .	T C 1	40 (77) 0 7715	Sleh-FRA-
GBDP12450-12	JQ413458	Francie	Le Soler	42,6//N; 2,//IE	
CDDD10507 10	10502005	. .	T C 1	40 (77) 0 7715	Sleh-FRA-
GBDP12537-12	JQ582095	Francie	Le Soler	42,6//N; 2,//IE	LS2
CDDD10540_10	10592100	F actor in	L . C . L .	40 (77NL 0 771E	Sleh-FRA-
GBDP12542-12	JQ582100	Francie	Le Soler	42,6//N; 2,//IE	LS3
CDDD12557 12	10592115	Eronaia	Comálas	42 641N. 2 606E	Sien-FRA-
GBDP12557-12	JQ582115	Francie	Camelas	42,0411N; 2,090E	CAM Slab ED A
CDDD12559 12	10592116	Eronaia	L a Calar	40 677NL 0 771E	Sien-FRA-
GBDP12558-12	JQ582110	Francie	Le Soler	42,0//IN; 2,//IE	LS4 Slab ED A
CPDD12550 12	10592117	Francia	La Color	42 677N, 2 771E	Sien-FRA-
GBDP12559-12	JQ382117	Francie	Le Soler	42,0//IN; 2,//IE	LSJ Slah USA
CDDD12067 12	10006022	USA	Findley, OU 45840	41.041N; -83.643W	SIEII-USA-
GBDP13907-13	JQ800823		Fillulay, OH 43840		FIIN Slab ESD
CPDD24285 10	VV161490	Španělsko	La Pada (Albaata)	39.188N; -2.173W	J D 1
GBDP24285-19	KA101460	_	La Roda (Albacele)		LKI Slob ESD
CPDD24286 10	VV161491	Španělsko	Parannain (Navarra)	42.803N; -1.686W	DAD
GBDP24280-19	KA101401		Darannann (Navarra)		DAK Slah ESD
CBDD24287 10	KV161482	Španělsko	La Poda (Albacata)	39.189N; -2.172W	J D2
GBDF24287-19	KA101402		Paraeta Provincia		LKZ Slob ITA
10	MU118213	Itálie	Derceto, Flovincie	44.502N; 9.976E	BED
17 CDMNA 27505	WIII110213		Failla Sarayazza Provincia		Slob ITA
10	MU118215	Itálie	Jucco	44.0063N; 10.233E	SICII-ITA-
17 GRMNA 27506	WIII110213		Str. Compagnolo		SLK Slob ITA
19	MH118216	Itálie	Marmirolo	45.2059N; 10.742E	CAM
GBMNA27507	WIII10210		Rosello Provincie		Sleh ITA
19	MH118217	Itálie	Chieti	41.8888N; 14.351E	ROS
GBMNA27508-	1011110217		Cilicu		Sleh_ITA_
19	MH118214	Itálie	Monte Sant'Angelo	41.806N; 15.982E	MSA
GBMNA27500	WIII110214				Sleh ITA
19	MH118218	Itálie	Chiaromonte PZ	40.059N; 16.152E	CHIA
GBMNA27565-		Česká			Sleh-CZE-
19	MH118212	republika	Jetřichovice	50.854N; 14.405E	JET
GBMNA29111-		Topuoliku			Sleh-GRC-
19	MH118178	Řecko	Tsotili	40.217N; 21.200E	TSO

	GenBank				
BOLD kód	kód	Země	Lokality	Souřadnice	Zkratka
GBDP12466-12	JQ582024	Francie	Metz	49,116N; 6,173E	Snov-FRA-MZ
GBDP12467-12	JQ582025	Francie	Moutiers	45,485N; 6,527E	Snov-FRA-MO
GBMIN60345-		Itália		41 040N: 12 410E	Snov-ITA-
17	KU746545	Italle	Roma	41.940N; 12.410E	ROM
					Snov-BGR-
GMBUG357-14		Bulharsko	Sofiya, Godech	43.009N; 23.058E	SOF
			Rhineland-		Snov-DEU-
GMGMK301-14		Německo	Palatinate	50.552N; 7,17E	RP1
			Rhineland-		Snov-DEU-
GMGMK322-14		Německo	Palatinate	50.552N; 7,17E	RP2
			Rhineland-		Snov-DEU-
GMGMM250-14		Německo	Palatinate	50.552N; 7,17E	RP3

Příloha 8: Seznam stažených COI sekvencí S. noverca z databáze BOLD/GenBank.

Příloha 9: Seznam stažených COI sekvencí S. variegata z databáze BOLD/GenBank.

BOLD kód	GenBank kód	Země	Lokalita	Souřadnice	Zkratka
			Saint-Etienne		Svar-FRA-
GBDP12518-12	JQ582076	Francie	d'Issensac	43,845N; 3,704E	SED
				50,813N;	Svar-BEL-
GBDP12532-12	JQ582090	Belgie	Oud-Heverlee	40,686E	OH1
				50,813N;	Svar-BEL-
GBDP12533-12	JQ582091	Belgie	Oud-Heverlee	40,686E	OH2
					Svar-FRA-
GBDP12540-12	JQ582098	Francie	Le Soler	42,677N; 2,771E	LS1
					Svar-FRA-
GBDP12543-12	JQ582101	Francie	Le Soler	42,677N; 2,771E	LS2
					Svar-BEL-
GBDP12544-12	JQ582102	Belgie	Watervliet	50,285N; 3,607E	WAT1
					Svar-BEL-
GBDP12545-12	JQ582103	Belgie	Watervliet	50,285N; 3,607E	WAT2
					Svar-BEL-
GBDP12547-12	JQ582105	Belgie	Watervliet	50,285N; 3,607E	WAT3
					Svar-BEL-
GBDP12549-12	JQ582107	Belgie	Watervliet	50,285N; 3,607E	WAT4
					Svar-BEL-
GBDP12551-12	JQ582109	Belgie	Watervliet	50,285N; 3,607E	WAT5
		×	Betanzos, La	43,277N; -	Svar-ESP-
GBDP24356-19	KX161478	Spanělsko	Corunna	8,213W	BET
		×	San Sebastian,	43,308N; -	
GBDP24357-19	KX161479	Spanělsko	Guipuzcoa	1,984W	Svar-ESP-SS
GBMNA27510-		- /11			Svar-ITA-
19	MH118219	Itálie	Berceto	44,502N; 9,976E	BER
GBMNA27511-		T. /11		45,206N;	Svar-ITA-
19	MH118220	Italie	Mantova	10,7422E	MANI
GBMNA27512-	NUL10001	T. /1*		45,206N;	Svar-ITA-
19	MH118221	Italie	Mantova	10,7422E	MAN2
GBMNA27513-	NUL10011	T. /1*		45,206N;	Svar-ITA-
19	MH118211	Italie	Mantova	10,7422E	MAN3
GBMNA2/514-	NUL110222	T. /1*		45,206N;	Svar-ITA-
19	MH118222	Itálie	Mantova	10,7422E	MAN4

GBMNA27539-					Svar-GBR-
19	MH118209	Velká Británie	England, Laysters	52,259N; -2,64W	LAY1
GBMNA27540-					Svar-GBR-
19	MH118210	Velká Británie	England, Laysters	52,259N; -2,64W	LAY2
GBMNA27546-		Česká		50,8549N;	Svar-CZE-
19	MH118204	republika	Děčín, Jetřichovice	14,4054E	JET1
GBMNA27547-		Česká		50,8549N;	Svar-CZE-
19	MH118205	republika	Děčín, Jetřichovice	14,4054E	JET2
GBMNA27549-			Bacău County,	46,4274N;	Svar-ROU-
19	MH118206	Rumunsko	Comănești	26,4343E	BAC1
GBMNA27558-			Isles of Scilly,	49,9179N; -	Svar-GBR-
19	MH118200	Velká Británie	Hugh Town	6,288W	IOS
GBMNA27559-			Bacău County,	46,4274N;	Svar-ROU-
19	MH118201	Rumunsko	Comănești	26,4343E	BAC2
GBMNA27560-		Česká		50,8549N;	Svar-CZE-
19	MH118202	republika	Děčín, Jetřichovice	14,4054E	JET3
GBMNA27561-			Bacău County,	46,4274N;	Svar-ROU-
19	MH118203	Rumunsko	Comănești	26,4343E	BAC3
GBMNA27566-		Česká	,	50,8549N;	Svar-CZE-
19	MH118208	republika	Děčín, Jetřichovice	14,4054E	JET4
GBMNA27572-			,	46.5199N:	Svar-ITA-
19	MH118207	Itálie	Bolzano-Bozen	11.5228E	BOL
GBMNA29107-			Province of	46.2498N:	Svar-ITA-
19	MH118172	Itálie	Belluno	12.197E	POB
GBMNA29112-				7	Svar-ITA-
19	MH118179	Itálie	Trentino	46.18N: 11.83E	TRE
GBMNA29113-				45.2193N:	Svar-ITA-
19	MH118180	Itálie	Province of Mantua	10.7561E	POM
GBMNA29114-				44.8998N:	Svar-FRA-
19	MH118181	France	Briancon	6.642E	BRI
GBMNA29116-		Tunee	Dituliyon	45 7308N	Svar-ITA-
19	MH118185	Itálie	Treviso	12.2605E	TREV
GBMNA31297-				44.8971N:	Svar-HRV-
19	MH118261	Chorvatsko	Plitvica	15.6254E	PLIT1
GBMNA31298-		Chief (usine	1 110 100	44 8971N	Svar-HRV-
19	MH118262	Chorvatsko	Plitvica	15.6254E	PLIT2
GBMNA31299-				44.5309N:	Svar-HRV-
19	MH118263	Chorvatsko	Baške Oštarije	15.1271E	BO1
GBMNA31300-	1.11110200	Chief (usine	Dublie obialije	44 5309N·	Svar-HRV-
19	MH118264	Chorvatsko	Baške Oštarije	15.1271E	BO2
GBMNA31301-		Chief (usine	Dublie obialije	44 5086N	Svar-HRV-
19	MH118265	Chorvatsko	Baške Oštarije	15.2186E	BO3
GBMNA31302-				44,5302N	Svar-HRV-
19	MH118266	Chorvatsko	Gospić	15 3266E	GOS
GMBMA015-	BIOUG36068-	ener (mono	200010	53.9156N·	Svar-BLR-
17	F09	Bělorusko	Minsk	27.6062E	MIN1
	BIOUG36068-	2010100110		53 9156N·	Svar-BLR-
GMBMI008-17	G08	Bělorusko	Minsk	27 6062E	MIN2
GMBMM016-	BIOLIG36611-	Delotusito	TTHISK	53 9156N·	Svar-BLR-
17	G05	Bělorusko	Minsk	27.6062E	MIN3
GMBMN116-	BIOUG36732-			53,9156N·	Svar-BLR-
17	C06	Bělorusko	Minsk	27 6062E	MIN4
GMBMN117-	BIOUG36732-	Deletwone	1.11101	53.9156N·	Svar-BLR-
17	C07	Bělorusko	Minsk	27.6062E	MIN5
1,	BIOUG36769-	2 - TOT WORD		53,9156N·	Svar-BLR-
GMBMP043-17	C06	Bělorusko	Minsk	27 6062F	MIN6
	BIOUG36769-	Delotubito	THINK	53 9156N·	Svar-RI R-
GMBMP046-17	C09	Bělorusko	Minsk	27.6062E	MIN7
2	207	201010010		_,,;;;	

	BIOUG36769-			53,9156N;	Svar-BLR-
GMBMP051-17	D02	Bělorusko	Minsk	27,6062E	MIN8
	BIOUG36769-			53,9156N;	Svar-BLR-
GMBMP057-17	D08	Bělorusko	Minsk	27,6062E	MIN9
	BIOUG36755-			53,9156N;	Svar-BLR-
GMBMP080-18	B12	Bělorusko	Minsk	27,6062E	MIN10
GMBM0013-	BIOUG36758-			53.9156N:	Svar-BLR-
17	G01	Bělorusko	Minsk	27.6062E	MIN11
GMBM0015-	BIOUG36758-	201010010		53 9156N [.]	Svar-BLR-
17	G03	Bělorusko	Minsk	27 6062E	MIN12
GMBM0017-	BIOLIG36758-	Deferuisite	TTIIISK	53 9156N·	Svar-BLR-
17	G05	Bělorusko	Minsk	27 6062E	MIN13
GMBMR095-	BIOUG36759-	201010010		53 9156N	Svar-BLR-
17	E07	Bělorusko	Minsk	27.6062E	MIN14
GMBMR139-	BIOLIG36784-	Deferuisite	TTIIISK	53 9156N·	Svar-BLR-
17	A08	Bělorusko	Minsk	27.6062F	MIN15
17	BIOLIG36769-	Deforusiko	WIIIBK	53 9156N·	Svar-BLR-
GMBMS070-18	F12	Bělorusko	Minsk	27 6062F	MIN16
GMBM5070-10	BIOLIG36760	Delorusko	IVIIIISK	53 9156N·	Svar BLP
CMRMS071 18	G01	Pălorusko	Minek	27.6062E	MIN17
CMPMT022	DIOLIC27051	Delolusko	IVIIIISK	52 0156N	Suor DI D
10 10	DIOUG5/051-	Dălomatro	Minal	33,9130N;	SVal-DLK-
18	DU0	Belorusko	IVIIIISK	27,0002E	
CMD11D149 14	BIOUGI5150-	Dulhandro	Codoob	43,009IN;	Svar-BGK-
GMBUD146-14	C02	Dumarsko	Godech	25,038E	GOD Swar ECV
CMEC 4 021 14	BIOUG12252-		A1	30,9230IN;	Svar-EGI-
GMEGA031-14		Egypt	Alexandria	29,7755E	ALEI
	BIOUG12232-	D		30,9256N;	Svar-EGY-
GMEGA032-14	C08	Egypt	Alexandria	29,7755E	ALE2
	BIOUG12232-	_		30,9256N;	Svar-EGY-
GMEGA034-14	C10	Egypt	Alexandria	29,7755E	ALE3
	BIOUG12232-	_		30,9256N;	Svar-EGY-
GMEGA036-14	C12	Egypt	Alexandria	29,7755E	ALE4
	BIOUG12232-	_		30,9256N;	Svar-EGY-
GMEGA052-14	E04	Egypt	Alexandria	29,7755E	ALE5
	BIOUG12232-			30,9256N;	Svar-EGY-
GMEGA055-14	E07	Egypt	Alexandria	29,7755E	ALE6
	BIOUG12232-			30,9256N;	Svar-EGY-
GMEGA061-14	F01	Egypt	Alexandria	29,7755E	ALE7
	BIOUG14330-			30,9256N;	Svar-EGY-
GMEGB101-14	E01	Egypt	Alexandria	29,7755E	ALE8
	BIOUG14331-			30,9256N;	Svar-EGY-
GMEGB157-14	A10	Egypt	Alexandria	29,7755E	ALE9
	BIOUG14331-			30,9256N;	Svar-EGY-
GMEGB159-14	A12	Egypt	Alexandria	29,7755E	ALE10
	BIOUG14331-			30,9256N;	Svar-EGY-
GMEGB175-14	C04	Egypt	Alexandria	29,7755E	ALE11
	BIOUG14331-			30,9256N;	Svar-EGY-
GMEGC016-14	E11	Egypt	Alexandria	29,7755E	ALE12
	BIOUG14331-			30,9256N;	Svar-EGY-
GMEGD008-14	G08	Egypt	Alexandria	29,7755E	ALE13
	BIOUG14331-			30,9256N;	Svar-EGY-
GMEGD009-14	G09	Egypt	Alexandria	29,7755E	ALE14
	BIOUG14432-	071		30,9256N;	Svar-EGY-
GMEGJ033-14	B03	Egypt	Alexandria	29,7755E	ALE15
	BIOUG14630-	<i>01</i> 1		30.9256N:	Svar-EGY-
GMEGK116-14	A05	Egynt	Alexandria	29.7755E	ALE16
	BIOUG14630-	-014*		30.9256N	Svar-EGY-
GMEGK128-14	B05	Egypt	Alexandria	29.7755E	ALE17
		-015		,. ,	
	BIOUG14630-			30,9256N;	Svar-EGY-
-----------------	--------------	-------------	--------------	-----------------------	-----------
GMEGK140-14	C05	Egypt	Alexandria	29,7755E	ALE18
	BIOUG14630-			30,9256N;	Svar-EGY-
GMEGK146-14	C11	Egypt	Alexandria	29,7755E	ALE19
	BIOUG14630-	071		30.9256N:	Svar-EGY-
GMEGK150-14	D03	Egypt	Alexandria	29.7755E	ALE20
	BIOUG14630-	-871-		30.9256N·	Svar-EGY-
GMEGK198-14	H03	Egynt	Alexandria	29 7755E	ALE21
	BIOLIG1//32	LSJP	THEXAIIdifia	30.9256N·	Svar-EGV-
GMEGI 012-14	F09	Faynt	Alexandria	29 7755F	
GMEGM006	BIOLIG14432	Lgypt	Alexandria	30.9256N·	Svar EGV
14	H06	Faynt	Alexandria	20,7755F	
14	PIOLIC14704	Lgypt	Alexaliulta	29,7755E	Suor ECV
CMECS014 14	DIOU014/94-	Egypt	Alexandria	30,9230N, 20,7755E	SVAI-EUT-
GME05014-14		Едурі	Alexandria	29,7755E	ALE24
	BIOUG14/94-	F (.1 1.	30,9256N;	Svar-EGY-
GMEGS015-14	B08	Egypt	Alexandria	29,7755E	ALE25
C) (EC + 155 14	BIOUG14443-			30,9256N;	Svar-EGY-
GMESA177-14	F05	Egypt	Alexandria	29,7755E	ALE26
	BIOUG14518-	-		30,9256N;	Svar-EGY-
GMESB730-14	B04	Egypt	Alexandria	29,7755E	ALE27
	BIOUG14518-			30,9256N;	Svar-EGY-
GMESC093-14	E10	Egypt	Alexandria	29,7755E	ALE28
	BIOUG14518-			30,9256N;	Svar-EGY-
GMESD023-14	G05	Egypt	Alexandria	29,7755E	ALE29
	BIOUG14834-			30,9256N;	Svar-EGY-
GMESJ1090-14	D10	Egypt	Alexandria	29,7755E	ALE30
	BIOUG14834-			30,9256N;	Svar-EGY-
GMESJ1094-14	E02	Egypt	Alexandria	29,7755E	ALE31
	BIOUG14834-			30,9256N;	Svar-EGY-
GMESJ1106-14	F02	Egypt	Alexandria	29,7755E	ALE32
	BIOUG14839-	~ ~ ~		30,9256N;	Svar-EGY-
GMESK580-14	B02	Egypt	Alexandria	29,7755E	ALE33
	BIOUG14839-	071		30,9256N;	Svar-EGY-
GMESK581-14	B03	Egypt	Alexandria	29,7755E	ALE34
	BIOUG14839-	0.71		30.9256N:	Svar-EGY-
GMESK583-14	B05	Egypt	Alexandria	29,7755E	ALE35
GMGMA303-	BIOUG15980-	271	Rhineland-	,	Svar-DEU-
14	A11	Německo	Palatinate	50.552N: 7.17E	RP1
GMGMA380-	BIOUG15980-		Rhineland-		Svar-DEU-
14	H04	Německo	Palatinate	50.552N: 7.17E	RP2
GMGMB022-	BIOLIG16267-	1 (enreence	Rhineland-	50,55210, 7,1712	Svar-DEU-
14	D01	Německo	Palatinate	50 552N· 7 17F	RP3
GMGMB025_	BIOLIG16267-		Rhineland-	50,5521, 7,1712	Svar-DFU-
14	D04	Německo	Palatinate	50 552N· 7 17F	RP4
GMGMB028	BIOLIC16267	Nemeero	Phineland	50,552N, 7,17L	Svar DEU
1/	D07	Německo	Palatinata	50 552N· 7 17F	
CMCMP020	PIOLIC16267	NULLECKO	Dhinaland	50,552N, 7,17E	
14 01000029-	D00010207-	Nămaalta	Deletinete	50 552NI 7 17E	Sval-DEU-
		Nemecko	Palatinate	30,332N; 7,17E	Crear DEU
GIVIGI/IB040-	DIUUG1020/-	Nămanla	Rnineland-	50 550NL 7 17E	SVar-DEU-
	EU/	INEMECKO	Palatinate	30,332IN; /,1/E	
GMGMB044-	BIOUGI626/-		Rhineland-	50 550N 7 17D	Svar-DEU-
14	Ell	Némecko	Palatinate	50,552N; 7,17E	KP8
GMGMB045-	BIOUG16267-		Khineland-		Svar-DEU-
14	E12	Německo	Palatinate	50,552N; 7,17E	RP9
GMGMB059-	BIOUG16267-		Rhineland-		Svar-DEU-
14	G02	Německo	Palatinate	50,552N; 7,17E	RP10
GMGMB589-	BIOUG16273-		Rhineland-		Svar-DEU-
14	H05	Německo	Palatinate	50,552N; 7,17E	RP11

GMGMC057-	BIOUG16353-		Rhineland-		Svar-DEU-
14	G06	Německo	Německo Palatinate 5		RP12
GMGMD207-	BIOUG16607-		Rhineland-		Svar-DEU-
14	E03	Německo	Palatinate	50,552N; 7,17E	RP13
GMGMD217-	BIOUG16607-		Rhineland-		Svar-DEU-
14	F01	Německo	Palatinate	50,552N; 7,17E	RP14
GMGMD228-	BIOUG16607-		Rhineland-		Svar-DEU-
14	F12	Německo	Palatinate	50,552N; 7,17E	RP15
GMGMH1280-	BIOUG17000-		Rhineland-		Svar-DEU-
14	B11	Německo	Palatinate	50,552N; 7,17E	RP16
GMGMH1315-	BIOUG17000-		Rhineland-		Svar-DEU-
14	E10	Německo	Palatinate	50,552N; 7,17E	RP17
GMGMH1324-	BIOUG17000-		Rhineland-		Svar-DEU-
14	F07	Německo	Palatinate	50.552N: 7.17E	RP18
	BIOUG17085-		Rhineland-		Svar-DEU-
GMGMI106-14	A06	Německo	Palatinate	50.552N: 7.17E	RP19
	BIOUG17069-		Rhineland-		Svar-DEU-
GMGMJ198-14	G10	Německo	Palatinate	50.552N: 7.17E	RP20
	BIOUG17070-		Rhineland-		Svar-DEU-
GMGMI233-14	B10	Německo	Palatinate	50 552N· 7 17E	RP21
GMGMK044-	BIOUG17071-	Temeerko	Rhineland-	50,55210,7,171	Svar-DEU-
14	F12	Německo	Palatinate	50 552N· 7 17F	RP22
GMGMK050-	BIOUG17071-	Temeeko	Rhineland-	50,55211,7,1712	Svar-DEU-
14	F06	Německo	Palatinate	50 552N· 7 17F	RP23
GMGMK051-	BIOLIG17071-	Temeeko	Rhineland-	50,55211,7,1712	Svar-DEU-
14	E07	Německo	Palatinata	50 552N: 7 17E	
GMGMK053	BIOUG17071	Nelliceko	Phineland	50,552N, 7,17E	Svar DEU
14	E00	Nămacko	Palatinata	50 552NI 7 17E	
CMCMK061	PIOUC17071	Nelliecko	Phinaland	JU,JJZIN, 7,17E	Suor DEU
14	G05	Nămacko	Palatinata	50 552NI 7 17E	
CMCMK062	DIOLIC17071	Nelliecko	Phinaland	JU,JJZIN, 7,17E	Suor DEU
1/	G06	Německo	Palatinate	50 552N: 7 17E	SVal-DEU- RP27
CMCMK063	BIOUG17071	INCHICCKO	Phinolond	50,552N, 7,17E	Svor DEU
14	G07	Nămacko	Palatinata	50 552NI 7 17E	
CMCMK271	DIOLIC17175	Nelliecko	Phinaland	JU,JJZIN, 7,17E	Suor DEU
14	A02	Nămacko	Deletineto	50 552NI 7 17E	DD20
CMCMK280	AU2	Nelliecko	Phinaland	JU,JJZIN, 7,17E	Suor DEU
1 <i>4</i>	BIOUUT/1/J-	Nămacko	Palatinata	50 552N: 7 17E	
CMCMK201	DUO DIOLICI7175	Nelliecko	Phinaland	JU,JJZIN, 7,17E	
14	DIOUGI/1/3-	Nămaaka	Rinnelanu-	50 552NI 7 17E	DD21
14 CMCMV205	DIU DIOUC17175	Nemecko	Phinaland	JU,JJZIN, 7,17E	
14 010001505-	C12	Nămaalta	Rinneland-	50 552NI 7 17E	SVaI-DEU-
14 CMCMV214	UI2 PIOUC17175	INCHIECKO	Phinclord	JU,JJZIN; /,I/E	Suor DEU
14- 14	D00	Nămaalta	Rinneland-	50 552NI 7 17E	SVaI-DEU-
14 CMCML 005		INCHIECKO	Phinalage 1	JU,JJZIN; /,I/E	
1 / UNICIVILU85-	БЮОЦТ/228- СОО	Nămaalta	Rinneland-	50 550NI 7 17E	Svar-DEU-
		Nemecko	Palatiliate	30,332N; /,1/E	KP 34
GMGML092-	BIOUG1/228-	NI¥	Rnineland-	50 550N. 7 17E	Svar-DEU-
14 CMCMI 1200	H04	Петеско	Palatinate	50,552N; /,1/E	KP35
GMGML1389-	BIOUG1/2/1-	NI¥	Rnineland-	50 550N. 7 17E	Svar-DEU-
14 CMCMI 207	BU2	тетеско	Palatinate	30,332IN; /,1/E	KP30
GMGML207-	BIOUGI /230-	NTY 1	Rhineland-	50 55 0NL 7 17 E	Svar-DEU-
14	BOI	Inemecko	Palatinate	30,352N; 7,17E	KP3/
GMGML218-	BIOUGT/230-	NTY 1	Knineland-	50 550N 7 175	Svar-DEU-
14	B12	Nemecko	Palatinate	50,552N; 7,17E	KP38
GMGML237-	BIOUGT/230-	NTY 1	Rhineland-		Svar-DEU-
14	D07	Némecko	Palatinate	50,552N; 7,17E	KP39
GMGML241-	BIOUG17230-		Rhineland-	50 550) 7 55	Svar-DEU-
14	D11	Némecko	Palatinate	50,552N; 7,17E	RP40

GMGML257-	BIOUG17230-		Rhineland-		Svar-DEU-
14	F03	Německo	Palatinate	50,552N; 7,17E	RP41
GMGML273-	BIOUG17230-		Rhineland-		Svar-DEU-
14	G07	Německo	Palatinate	50,552N; 7,17E	RP42
GMGML276-	BIOUG17230-		Rhineland-		Svar-DEU-
14	G10	Německo	Palatinate	50,552N; 7,17E	RP43
GMGML277-	BIOUG17230-		Rhineland-		Svar-DEU-
14	G11	Německo	Palatinate	50,552N; 7,17E	RP44
GMGML500-	BIOUG17232-		Rhineland-		Svar-DEU-
14	G03	Německo	Palatinate	50,552N; 7,17E	RP45
GMGMM217-	BIOUG17298-		Rhineland-		Svar-DEU-
14	C01	Německo	Palatinate	50,552N; 7,17E	RP46
GMGMM242-	BIOUG17298-		Rhineland-		Svar-DEU-
14	E02	Německo	Palatinate	50,552N; 7,17E	RP47
GMGMM251-	BIOUG17298-		Rhineland-		Svar-DEU-
14	E11	Německo	Palatinate	50,552N; 7,17E	RP48
GMGMM274-	BIOUG17298-		Rhineland-		Svar-DEU-
14	G10	Německo	Palatinate	50,552N; 7,17E	RP49
GMGMN205-	BIOUG17382-		Rhineland-		Svar-DEU-
14	E11	Německo	Palatinate	50,552N; 7,17E	RP50
GMGMN213-	BIOUG17382-		Rhineland-		Svar-DEU-
14	F07	Německo	Palatinate	50,552N; 7,17E	RP51
GMGMN302-	BIOUG17383-		Rhineland-		Svar-DEU-
14	F01	Německo	Palatinate	50,552N; 7,17E	RP52
GMGRB1542-	BIOUG05265-			48,9509N;	Svar-DEU-
13	G01	Německo	Bavaria	13,422E	BAV1
GMGRE2800-	BIOUG06444-			48,9509N;	Svar-DEU-
13	A12	Německo	Bavaria	13,422E	BAV2
GMGRF6346-	BIOUG07948-			48,9509N;	Svar-DEU-
13	A07	Německo	Bavaria	13,422E	BAV3
GMGRF6351-	BIOUG07948-			48,9509N;	Svar-DEU-
13	A12	Německo	Bavaria	13,422E	BAV4
GMGRG4863-	BIOUG08215-			48,9509N;	Svar-DEU-
13	A03	Německo	Bavaria	13,422E	BAV5
GMGRG4866-	BIOUG08215-			48,9509N;	Svar-DEU-
13	A06	Německo	Bavaria	13,422E	BAV6
GMNWJ3532-	BIOUG16254-			63,405N;	Svar-NOR-
14	F07	Norsko	Sor-Trondelag	10,383E	ST1
GMNWK4259-	BIOUG16429-			63,405N;	Svar-NOR-
14	A02	Norsko	Sor-Trondelag	10,383E	ST2

Druh	Průměrná frekvence nukleotidů (%)			
	Т	С	Α	G
S. africa	38.0	16,6	28.9	16.4
S. albiceps	38.1	15.6	30.0	16.3
S. argyrostoma	36.7	17.5	30.2	15.6
S. caerulescens	37.4	16.5	29.8	16.2
S. carnaria	37.4	17.1	29.1	16.4
S. incisilobata	37.8	17.4	28.4	16.4
S. lehmanni	37.5	17.1	28.6	16.8
S. noverca	37.1	16.5	30.1	16.2
S. variegata	37.8	16.7	28.7	16.8

Příloha 10: Průměrná frekvence nukleotidů u COI markeru.

Příloha 11: Haplotypové sítě pro oblast *COI* (a - *S. africa*, b - *S. albiceps*, c - *S. argyrostoma*, d - *S. caerulescens*, e- *S. carnaria*, f - *S. incisilobata*, g- *S. lehmanni*, h - *S. noverca*, ch) *S. variegata*). Velikost kruhu závisí na počtu jedinců, u kterých se daný haplotyp vyskytuje. Počet mutací je značen příčnými čárkami. Jednotlivé země jsou barevně značeny, zkratky jsou vytvořeny podle mezinárodních kódů ISO.

a)

He,5 He,5 He,5

c)

b)

CZE CZE FRA ITA ESP

e)

g)

f)

ch)

Příloha 12: Grafické znázornění Mantelova testu. Genetické vzdálenosti byly spočítány pomocí Kimura 2 - parametru (K2P), a) *S. albiceps*, b) *S. argyrostoma*, c) *S. carnaria*, d) *S. incisilobata*, e) *S. lehmanni*, f) *S. noverca*.

76

Příloha 13: Klastrová analýza-PCoA, a) *S. africa*, b) *S. albiceps*, c) *S. argyrostoma*, d) *S. caerulescens*, e) *S. carnaria*, f) *S. incisilobata*, g) *S. lehmanni*, h) *S. noverca*, ch) *S. variegata*.

f)

h)

Příloha 14: Dendrogram pro druh *S. africa* (Maximum Likelihood, TN+F+G4 model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v příloze 1-9 a Tab. I.

Příloha 15: Dendrogram pro druh *S. albiceps* (Maximum Likelihood, TPM3+F+G4 model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v v příloze 1-9 a Tab. I.

Příloha 16: Dendrogram pro druh *S. argyrostoma* (Maximum Likelihood, TN+F+G4 model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v v příloze 1-9 a Tab. I.

Příloha 17: Dendrogram pro druh S. caerulescens (Maximum Likelihood, HKY+F+I model, 1000x Bootstrap). Zakořeněno pomocí S. bullata. Zkratky lokalit jsou zaznamenány v v příloze 1-9 a Tab. I.

Příloha 18: Dendrogram pro druh *S. carnaria* (Maximum Likelihood, HKY+F+I model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v v příloze 1-9 a Tab. I.

Příloha 19: Dendrogram pro druh *S. incisilobata* (Maximum Likelihood, TN+F+G4 model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v v příloze 1-9 a Tab. I.

Příloha 20: Dendrogram pro druh *S. lehmanni* (Maximum Likelihood, HKY+F+I model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v v příloze 1-9 a Tab. I.

Příloha 21: Dendrogram pro druh *S. noverca* (Maximum Likelihood, TN+F model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v v příloze 1-9 a Tab. I.

0.007

Příloha 22: Dendrogram pro druh *S. variegata* (Maximum Likelihood, HKY+F+I model, 1000x Bootstrap). Zakořeněno pomocí *S. bullata*. Zkratky lokalit jsou zaznamenány v příloze 1-9 a Tab. I.

Příloha 23: Predikované sekundární struktury u *ITS1* fragmentu, a) *S. africa*, b) *S. albiceps*,
c) *S. argyrostoma*, d) *S. bullata*, e) *S. caerulescens*, f) *S. carnaria*, g) *S. incisilobata*, h) *S. lehmanni*, ch) *S. noverca*, i) *S. variegata*.

i)

Příloha 24: Sekundární struktury u *ITS2* fragmentu, a) *S. africa*, b) *S. albiceps*, c) *S. argyrostoma*, d) *S. bullata*, e) *S. caerulescens*, f) *S. carnaria*, g) *S. incisilobata*, h) *S. lehmanni*, ch) *S. noverca*, i) *S. variegata*.

i)

