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ABSTRACT

This research deployed machine learning to optimize day-ahead production planning in
Waste-to-Energy (WtE) plants, grappling with issues like noisy data, uncontrollable external
consumption, and fluctuating steam production due to waste as a fuel source. The primary aim
was to accurately predict the power transferred to the grid, which was achieved by creating a
comprehensive model consisting of seven sub-models in cascade. Each sub-model was
critically evaluated using standard metrics like R? and Mean Relative Error. Findings revealed
a significant improvement in prediction accuracy, resulting in more balanced production plans
and reduced operational penalties. The approach led to an estimated annual increase of power
delivered by 13% and profit by 2.6 million CZK for a specific plant.

Key words:

Waste-to-Energy, WtE, Machine Learning, ML, Predictive Algorithms, Artificial Neural
Networks, ANN, Light Gradient Boosting Machine, LGBM, Energy Management, Energy
Management, Quantile Models, Combined heat and power, CHP, CHP planning, Steam
production planning, Power planning.

ABSTRAKT

V ramci tohoto vyzkumu bylo pouZito strojové u¢eni k optimalizaci planovani vyroby na
den doptedu zafizeni na energetické zpracovani odpadu (Waste-to-Energy, WtE), které se
potyka s problémy, jako jsou nekvalitni data, nekontrolovatelna externi spotieba a kolisajici
vyroba pary v disledku pouziti odpadu jako zdroje paliva. Hlavnim cilem bylo pfedpovidat s
vysokou ptesnosti vykon piendseny do sité, cehoz bylo dosazeno vytvofenim komplexniho
modelu sestavajiciho ze sedmi dil¢ich kaskadovité usporadanych modeld. Kazdy dil¢i model
byl kriticky vyhodnocen pomoci standardnich ukazateld, jako je R? a primérné absolutni chyba.
Zjisténi odhalila vyznamné zlepSeni piesnosti predpovédi, coz vedlo k vyvazenéj$Sim vyrobnim
planim a sniZeni provoznich penale. Tento pfistup vedl k odhadovanému ro¢nimu zvySeni
dodaného vykonu o 13 % a zisku o 2,6 milionu K¢ pro konkrétni zavod.

Kli¢ova slova:

Waste-to-Energy, WLE, Strojové uceni, ML, Prediktivni algoritmy, Um¢lé¢ neuronové sité,
ANN, Light Gradient Boosting Machine, LGBM, Rizeni planovani energii, Rizeni energie,
Kvantilové modely, Kogeneracni vyroba tepla a elektfiny, CHP, Planovani CHP, Planovani
vyroby pary, Planovani energie.
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ROZSIRENY ABSTRACT

Vzhledem ke znaénym problémim pii planovani vyroby na den dopfedu potiebuji
zafizeni na energetické zpracovani odpadu (dale jen WLE, z anglického Waste-to-Energy)
ucinné strategie k zajisténi piesnych predpovédi vyroby pary. Ta je klicova slozka procesu
vyroby elektfiny a pienosu tepla. Ke slozitosti téchto predpovédi prispivaji rizné komplexni
faktory, jako jsou zkreslena data, neptfedvidatelna nizsi vyhtevnost odpadu (LHV z anglického
Lower Heating Value) a nasledky nekontrolované extrakce z odbérové turbiny Pro feseni téchto
problémt zavadi tento vyzkum strojové uceni (ML), znamé svou schopnosti ucit se z
historickych dat a rozeznavat zakonitosti, které jsou lidskym analytikiim Casto skryté, jako nové
feSeni pro posileni energetického managementu v zafizenich WtE.

Hlavnim cilem této studie bylo vytvoteni planovaciho algoritmu zalozeném na black-box
modelovani pomoci algoritmiit ML. Tato metodika reaguje na zminéné vyzvy a snizuje riziko
pokut z divodu nesplnéni smlouvy, zatimco zlepSuje celkovy vykon zafizeni a udrzuje
ptijatelné riziko pokuty.

V pribéhu této studie byly vybrany tfi rizné ML algoritmy: Linearni regrese (LR), Light
Gradient Boosting Machine (LGBM) a umélé neuronové sit¢ (ANN). Tato riiznoroda sada
modeld umoznila zkoumat kompromisy mezi interpretovatelnosti, slozitosti a vykonnosti
modelu. Kazdy dil¢i model byl vyhodnocen pomoci béznych ukazatelti, jako je R*2 a primérna
relativni chyba, aby se urcila jeho t¢innost pti pfedpovidani sledovanych velicin.

Kli¢ovym zjisténim analyzy rezidui bylo, ze chybna piedpovéd’ celkové produkce pary
predstavovala 80 % pramérné absolutni chyby v pieneseném vykonu. Snaha o plan s vysokou
mirou uspé&snosti — definovanou jako nenadhodnoceni dodané energie o vice nez 0,5 MWh —
vedla k zavedeni kvantilovych modeld s parametrem q = 0,05, jejichz cilem bylo 5 %
nadhodnoceni vyrobené pary.

Dale byla pro zvyseni efektivity predikce sekundarnich tokti vcetné externi spotieby,
odfuku, odvzdusnovaci a spotieby piedehfivaci pary pouzita kaskadovita predikce zaloZzena na
korelacni matici. Tyto pokrocilé techniky posilily schopnost modelti poskytovat presné a
spolehlivé ptfedpovéedi a prokazaly potencial ML pfi feSeni sloZitych a nejistych systému.

K dispozici byl souboru dat z let 2011 az 2017, ktery byl po procesech ¢isténi a zohlednéni
rozloZeni dat v pozd¢jsich letech zredukovan na ptiblizné Ctyfi roky dat. I pfi ne zcela idealni
kvalité dat se ukazalo, ze ML modely jsou schopny se z dostupnych informaci ucit. Zejména
model LGBM vykazoval vyjimecné vysledky pfi predpovidani celkové produkce pary a
zachyceni stochastické povahy externi spotieby.

Pro zohlednéni vétSiho piitoku do turbiny v diisledku minimalizace vyuZiti bypassu byly
navic extrapolovany udaje o vyrobé energie. To modelu poskytlo data vykazujici odliSné
distribuct, protoZe v trénovacich datech bylo pouZivani bypassu €asté. Byl proveden diikladny
ovétovaci proces, aby se zajistilo, ze modely pfi extrapolaci neselZzou, coz je u data-driven
modeld znamy problém. Bylo zjisténo, Ze model LGBM vykazuje pfi extrapolaci znamky
selhani, coz posililo rozhodnuti uptfednostnit model ANN.

Pouziti uvedenych modeld pro tidaje za rok 2016 ptineslo uspésnost 95 %. Z téchto
uspesnych piipada se 43 % nachazelo ve smluvnim toleran¢nim poli, coz znamend podstatné
zlepSeni oproti stavajici strategii, pti niz se do toleran¢niho intervalu veslo pouze 34 % ptipadu.
Vysledkem bylo celkové zvySeni zisku o 2,6 milionu K¢, coz ilustruje ekonomickou
Zivotaschopnost modelu.

Zéaveérem lze fict, ze tento vyzkum vyzdvihuje slibny potencidl ML modeld, zejména
kvantilového LGBM, pfi zlepSovani planovani vyroby den pfedem v elektrarnach WtE. Tyto
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modely mohou s vysokou piesnosti predvidat vyrobu pary a dalsi provozni proménnych, otevira
nové moznosti flexibiln€j$iho planovani a tim zvySovat efektivitu a maximalizovat zisky.

Navzdory omezenim v kvalité dat, vysledky studie podtrhuji hodnotu ML pro provozni
planovani v zatizenich WtE a podobnych kombinovanych zavodech. Dalsi vyzkum by m¢l
vychézet z téchto poznatkt, dale optimalizovat model a zahrnout do néj dalsi proménné, jako
jsou denni trznich ceny energii a kombinace vicero zdroji jako jsou napiiklad obnovitelné
zdroje.
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Chapter 1: Introduction

Combined heat and power (CHP) production has become increasingly important in the
energy industry to increase efficiency and reduce emissions. CHP is the simultaneous
production of electricity and usable heat from a single energy source, which can be a more
efficient use of energy than producing them separately. In the context of Waste-to-Energy
(WLE) plants, specifically incineration, CHP production can be an effective way to recover
energy from waste and generate electricity while also providing heat for district heating systems

[1].

This work aims to improve energy management in the WtE plant by developing a
planning approach based on black-box modelling using machine learning (ML) to algorithms.
The proposed tool addresses the inherent unpredictability of heat generation from
inhomogeneous waste. This, in turn, minimizes the risk of penalties resulting from contract
non-fulfilment, and to enhance the plant's performance with an acceptable risk of penalties.
This study is motivated by the need to address the plant's efficiency and risk of not meeting the
plan at the same time, with the goal of preparing a balanced production plan that maximizes the
plant's performance from an economic point of view.

Building upon the motivation of previous work [2], we explore the potential of machine
learning further enhance CHP production planning in Waste-to-Energy plants. Machine
learning algorithms, with their ability to learn from data and make predictions or decisions
without explicit programming, are particularly well-suited for managing complex and uncertain
systems like CHP production planning in WtE plants.

One of the challenges in CHP production planning is handling the uncertain lower heating
value (LHV) of waste. The LHV of waste refers to the amount of heat that can be obtained from
burning a unit of waste. This value can vary depending on the composition of the waste, which
can be challenging to predict. Machine learning algorithms could be employed to develop
models that accurately predict the LHV of waste based on historical data and other relevant
factors [3].

Another challenge involves addressing the process of live steam extraction, which is also
referred to as bleeding, which occurs in some CHP configurations, a process that can impact
turbine performance and overall plant efficiency. Traditional methods for predicting the
influence of live steam extraction require detailed turbine models. However, machine learning
algorithms can circumvent this requirement by learning from data and making accurate
predictions without such models, offering a more efficient, cost-effective solution suitable for
rapid prototyping [4].

In summary, machine learning holds the potential to significantly improve CHP
production planning in Waste-to-Energy plants by providing accurate predictions and decision
support in the face of uncertainty and complexity. By emphasizing the importance of CHP
production in WtE plants and its role in improving energy efficiency, this study highlights the
potential benefits of employing machine learning in CHP production planning and aims to
develop a balanced production plan that maximizes plant performance from an economic
perspective.

11
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Research objectives and research questions

Accurate day-ahead production planning is critical for avoiding costly fines due to
discrepancies between contracted and actual energy delivery in WtE plants. This involves
predicting the amount of steam that will be produced and subsequently used for electricity
generation and heat delivery. However, predicting steam production can be challenging due to
noisy data, uncertain LHV of waste, and the impact of live steam extraction on turbine
performance and overall plant efficiency.

Machine learning has the potential to improve these predictions by learning from
historical data and identifying patterns that may not be immediately apparent to human analysts.
By developing accurate machine learning models for steam production prediction and
addressing these challenges, it is possible to improve day-ahead production planning and avoid
costly fines.

In light of these challenges and opportunities, the main research objectives of this thesis are to:

1) Develop machine learning models to optimize energy and heat contract planning and
improve efficiency in a Waste-to-Energy plant.

2) Evaluate the performance of these models in terms of their accuracy, reliability, and
confidence levels.

3) Analyse the potential financial benefits that could result from implementing the new
planning strategy, highlighting the economic value of integrating machine learning
techniques into industrial production planning.

To achieve these objectives, we will address the following research questions:

1) What are the key factors affecting the minimization of penalties and maximization of
efficiency in energy and heat contract planning in a Waste-to-Energy plant?

2) How can machine learning algorithms be used to create predictions with specific
confidence levels for steam production and energy and heat?

3) What machine learning algorithms are best suited for predicting steam production, and
energy/heat delivery?

4) What are the potential financial benefits and risks associated with integrating machine
learning techniques into the day-ahead production planning process?

5) How can the financial benefits of the new planning strategy be optimized or maximized
in practice?

12
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Scope and Limitations

The scope of this thesis is limited to day-ahead prediction of production and delivery of
heat and electricity in Waste-to-Energy plant using machine learning. While the WtE serves as
an important context for this research in terms of source of disturbance in data and primary
need for more sophisticated approach it is not the focus of the study, and our results should be
transferable to most CHP plants.

In order to develop and evaluate our models, we will be using historical data from a
specific WLE plant from years 2011 to 2017. It is important to note that quality of the data is
suboptimal.

Furthermore, our goal was aligned with previous work we are expanding upon [2]-
creating a planning tool with inputs defined by the operators at specific WtE plant and not profit
maximization. Future work could include additional models that would tackle economy of the
plant more in-depth.

Overall, while our research has the potential to significantly improve day-ahead
production planning in Waste-to-Energy plants, it is essential to acknowledge these limitations
and their potential impact on our results. Recognizing these limitations allows for a better
understanding of the study's findings and their implications for both the Waste-to-Energy
industry and future research endeavours.

Outline of the thesis:

Chapter 1: Introduction

This chapter delves into the subject of the research, establishing the motivation,
objectives, and delineating the study's scope.

Chapter 2: Machine Learning and Its Applications in Energy Systems

This chapter contextualizes the study, furnishing critical background knowledge. It
expounds on the fundamentals of machine learning and reviews its applications in energy
systems, specifically in combined heat and power production and Waste-to-Energy plants.

Chapter 3: WtE production forecasting Case study

This chapter presents a case study on forecasting in Waste-to-Energy Combined Heat and
Power production, laying out the methodology employed. It details steps such as data pre-
processing and feature engineering, followed by the selection and validation of various machine
learning algorithms. Subsequently, it discloses the results of the model development process
and contemplates their implications.

Chapter 4:Error! Reference source not found. Conclusion

Concludes the thesis by summarizing the main findings and suggesting potential
improvements or directions for future research. This chapter provides an overview of the
contributions of this study and its potential impact on the field.

13
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Chapter 2: Machine Learning and Its Applications in Energy Systems

The energy industry is undergoing a significant transformation, driven by the need for
increased efficiency, sustainability, and reliability. This transformation is facilitated by the
emergence of advanced technologies, particularly machine learning, which has shown great
promise in optimizing energy systems, combined heat and power systems, and WtE plants.

This chapter provides an overview of the fundamentals of machine learning and its
applications in energy systems and specifically in Waste-to-Energy plants. It begins with an
introduction to the basics of machine learning, including its types, key concepts, and common
algorithms. It then delves into the role of machine learning in energy systems, highlighting its
potential in demand forecasting, system optimization, fault detection, and renewable energy.
The chapter further explores the specific applications of machine learning in combined heat and
power production planning and Waste-to-Energy plants.

By providing a comprehensive overview of machine learning and its applications in
energy systems, this chapter sets the stage for the subsequent chapters, which delve into the
development and evaluation of machine learning models for day-ahead production planning in
a Waste-to-Energy plant.

2.1 Fundamentals of Machine Learning

Machine learning is a subfield of artificial intelligence (Al) (Figure 2.1) that enables
computers to learn from data and improve their performance over time [5]. This concept can be
defined by a quote from Tom Mitchell, a renowned computer scientist:

"A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with
experience E." —Tom Mitchell, 1997 [6].

In other words, the essence of machine learning lies in a computer program's ability to
adapt its behaviour based on accumulated experiences to enhance its performance in a specific
task.

L, x;i' Artificial intelligence - software performing tasks that normally require
c f human intelligence, such as visual perception, speech recognition.
4\
/j\f Machine Learning - algorithms that allow computers to learn \
from and make decisions or predictions based on data.
Neural Networks - machine Learning algorithms inspired
by the human brain.
Deep Learning - a type of Machine Learning that
uses multi-layered Neural Networks /

Figure 2.1: Hierarchical Subfields of Artificial Intelligence.

14




. | FACULTY Bc. Marek Kollmann
r OF MECHANICAL

ENGINEERING Combined heat and power production planning in
a Waste-to-Energy plant using machine learning

Machine learning algorithms can be categorized into three main types: supervised
learning, unsupervised learning, and reinforcement learning. Supervised learning involves
learning from labelled data, where the correct output is provided for each input. Unsupervised
learning, on the other hand, does not require labelled data, and the algorithm aims to discover
patterns or structures within the data as illustrated by Figure 2.2.

Original Dataset (No Labels) Clustered Dataset (K-means)
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Figure 2.2: Comparison of unsupervised clustering using K-means algorithm on the Iris
dataset [7, 8].

Reinforcement learning involves an agent learning to make decisions by interacting with
an environment and receiving feedback in the form of rewards or penalties (penalties in the
form of negative rewards, as shown in Figure 2.3) [5].

° Objective: reach apple

- Observe environment.
- Select action.
- Perform action.

- Get reward.
- Update policy.
- lterate.

Figure 2.3: Reinforcement learning, negative feedback example [5].
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1.1.1 Supervised Learning: Regression and Classification

In supervised learning, regression and classification are the two main types of problems.

Regression involves predicting continuous values, such as the price of a house based on its
location, size, and age or size of a tip based on total bill amount as shown in Figure 2.4.

Tip Amount

Total Bill vs Tip Amount
°
° o ¢ °
] ° ¢ ® ¢
e Tip Amount = Ogl 1y Total,Billet0 92 e, °
°
® ® °
. o
e °
e o
°
( { .
Pl S . ° e  Data Points
Regression Line
10 20 30 40 50 60

Total Bill

Figure 2.4: Total Bill vs Tip Amount fitted with Linear Regression[7, 9].

Classification involves predicting categorical values, such as whether an email is spam or
not spam. Both regression and classification involve using labelled data to train a model that
can make predictions on unseen data as illustrated by Figure 2.5.
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Figure 2.5: Scatter plot of sepal widths vs sepal lengths for different iris flowers [7, 8].

1.1.2 Data Splitting: Train, Test, and Validation Sets
To train and evaluate a machine learning model, the dataset is typically split into three
subsets: train, test, and validation sets. The train set (commonly 60% of dataset) is used to fit
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the model, while the test set (commonly 20% of dataset) is used to assess its performance on
unseen data. The validation set (commonly 20% of dataset), often a subset of the train set, is
used to fine-tune model hyperparameters and select the best model before evaluating on the test
set. This splitting process helps prevent overfitting and ensures the model generalizes well to
new data. Example of this split is depicted in Figure 2.6.

Train-Validation-Test Population by Species - Iris Dataset

30 N Setosa

[ Versicolor
Virginica
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0 I I

Train Validation Test
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[V}

Figure 2.6: Train-Validation-Test Population by Species — Iris Dataset [7, 8].

1.1.3 Overfitting

Overfitting occurs when a machine learning model captures noise (as illustrated in Figure
2.7) in the training data, resulting in poor performance on unseen data. This is often caused by
an overly complex model that fits the training data too closely. To address overfitting, it is
essential to use techniques such as cross-validation, regularization, and early stopping.

Overfitting, Underfitting, and Good Fit Example
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Figure 2.7: Overfitting, Underfitting, and Good Fit Example.
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1.1.4 Loss Function

A loss function, or cost function, measures the difference between the predicted values
and the actual values for a given dataset. The objective of a machine learning model is to
minimize this loss function during the training process. Different loss functions are used for
different types of problems, such as Mean Squared Error for regression tasks and cross-entropy
for classification tasks.

1.1.5 Regularization

Regularization is a technique used to prevent overfitting by adding a penalty term to the
model's objective function. Two common regularization methods are Lasso (L1) and Ridge
(L2) regression. These methods differ in the type of penalty they apply. In Ridge Regression,
the penalty is the squared magnitude of the coefficients. Mathematically, the loss function in

Ridge Regression is:
2
L1= E (i = Bo = ZB; - x5)" + A § Bf 1)

Lasso Regression, on the other hand, uses the absolute value of the magnitude of the
coefficients as the penalty. Its loss function is:

L2 = Z(yi —Bo— ZB; 'xij)z +A4- Z|ﬁj| 22)
In these equations:

yi is the observed outcome, Po is the intercept of the model, Bj is the coefficient for the j™
predictor, xi is the value of the j" predictor for the i observation, and A is a tuning parameter
that controls the strength of the penalty.

In both cases, larger values of A lead to greater penalty and thus simpler models. These methods
can greatly help to improve the model's ability to generalize to unseen data.

1.1.6 Cross-Validation

Cross-validation is a technique used to evaluate the performance of machine learning
models, particularly during hyperparameter tuning. The most common method is k-fold cross-
validation, where the train set is divided into k subsets or folds. The model is trained on k-1
folds and validated on the remaining fold, with this process repeated k times. The average
performance across all folds is used as the model's performance metric (as depicted in Figure
2.8). This helps prevent overfitting and ensures a more reliable evaluation.
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Figure 2.8: k-fold Cross-validation with k = 10 [10].
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1.1.7 Hyperparameters and Model Tuning

Hyperparameters are parameters in machine learning models that control their complexity
and are not learned during training. They can significantly impact a model's performance, and
finding the optimal set of hyperparameters is an important part of the model development
process. Techniques such as grid search and random search can be used to explore the
hyperparameter space, with cross-validation used to evaluate performance.

1.1.8 Model Evaluation Metrics

Several evaluation metrics are used to assess the performance of machine learning
models, such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R?)
for regression tasks, and accuracy, precision, recall, and F1 score for classification tasks. Each
metric provides insights into different aspects of the model's performance, such as how well it
generalizes to new data and its ability to predict true positives and negatives (see Table 2.1 and
Table 2.2). These metrics provide various ways to evaluate the performance of a machine
learning model, and the choice of metric depends on the specific problem and objectives of the
analysis.

For regression:

a. Mean Squared Error (MSE): MSE is the average of the squared differences between the
predicted and actual values. It is calculated as follows:

1 A
MSE = EZ(Yi ~9)

(2.3)

b. Mean Absolute Error (MAE): MAE is the average of the absolute differences between
the predicted and actual values. It is calculated as follows:

1 X
MAE = ZZ |Yi — Yi| (2.4)

c. Mean Relative Error (MRE): MRE is the average of the relative differences between the
predicted and actual values. It is calculated as follows:

n

1
MRE =—Z
n

i=1

Y, -7
- ‘| (2.5)

Y

d. Signed Mean Error (SME): SME is the average of the signed differences between the
predicted and actual values taking into account the direction of the differences (positive
or negative). It provides information about the overall bias in the predictions. It is
calculated as follows:

1% o
MSME = EZ(Yi -Y) (2.6)
i=1
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In these equations:
n is the total number of observations or instances, in these equations, Y; is the actual value of an
observation and Y, is the predicted value of an observation.

e. R-squared: It is a statistical measure that represents the proportion of the variance for a
dependent variable that's explained by an independent variable(s) in a regression model.
Typical values for R-squared fall within the interval of (0, 1), where a negative value

indicates a particularly poor fit. It is calculated as follows:

R? 1 S5k 2.7
- SST (2.7)
where,
- SSR is the sum of the squared residuals (predicted - actual values).
- SST is the total sum of squares (actual - mean of actual values).
Table 2.1: Pros and cons of standard metrics in regression tasks.
Metric Pros Cons
. . - May be too sensitive to outliers due to
- Penalizes large errors more due to squaring. squarin
MSE - Provides a smooth, differentiable function, q g . .
. PR - Not easily interpretable as it doesn't
useful for gradient-based optimization. - :
have the same units as the input.
- Easier to interpret as it's in the same units as - Provides less emphasis on large errors
. compared to MSE.
MAE the input. . .
. . - Not as mathematically convenient for
- Less sensitive to outliers compared to MSE. . A
gradient-based optimization.
- Good for comparing errors in datasets with - Undefined or sensitive to zero values in
MRE wide value ranges. the actual data.
- Normalizes the absolute error by the actual - Not always appropriate when actual
values, hence providing a scale-free measure. values are close to zero.
- Provides information about the overall bias in - Doesn't take into account the magnitude
SME the predictions. of the errors.
- Can help identify if the model is consistently - May mislead accuracy if positive and
over or under predicting. negative errors cancel each other out.
- Measures how much of the variance in datais - Value can be artificially inflated by
explained by the model, giving a scale-free adding unnecessary variables to the
R"2  score. model.

- Allows for comparing different regression
models.

- Not suitable for comparing models
across different datasets.

20




OF MECHANICAL
ENGINEERING Combined heat and power production planning in
a Waste-to-Energy plant using machine learning

FACULTY Bc. Marek Kollmann

For classification:

a. 4. Accuracy: This is the proportion of true results among the total number of cases
examined. It is calculated as follows:
TP + TN

A = 2.8
CCuracy = Tp Y TN + FP + FN 28)

b. 5. Precision: This is the proportion of true positive predictions among the total positive
predictions. It is calculated as follows:
TP

isi = — 2.9
Precision TP + FP (2.9)

c. 6. Recall (Sensitivity): This is the proportion of true positive predictions among the total
actual positives. It is calculated as follows:

TP
= — 2.10
Recall TP T FN (2.10)
d. 7. F1 Score: This is the harmonic mean of precision and recall. It is calculated as

follows:

2 - Precision - Recall
= 2.11
F1 Score Precision + Recall ( )

In these equations:

- TP = True Positives

- FP = False Positives
- TN = True Negatives
- FN = False Negatives

Table 2.2: Pros and cons of standard metrics in classification tasks.

Metric Pros Cons
- Easy to understand and interpret. - Can be misleading when the classes are
Accuracy - Gives a good measure when the classes imbalanced.
are balanced. - Doesn't consider the type of error (FP, FN).

- Can be misleading if the cost of False Negatives
is high but not considered.

- Doesn't provide information about the True
Negatives.

- Can be misleading if the cost of False Positives

- Useful when the cost of False Positives is
Precision high.
- Good for imbalanced datasets.

- Useful when the cost of False Negatives

Recall is high is high but not considered.
(Sensitivity) -Good.for imbalanced datasets - Doesn't provide information about the True
' Negatives.
- Might not be the best metric when you care
F1 Score - Balances the trade-off between Precision more about precision or recall over the other.

and Recall. - Still not suitable when the cost of False
Positives and False Negatives are very different.
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1.1.9 Feature Engineering and Selection

Feature engineering involves transforming raw data into meaningful features that can be
used as input for machine learning models. This may include scaling, normalization, encoding
categorical variables, and creating new features based on domain knowledge. For example,
extracting text length feature for sentiment analysis in tweets.

1.1.10 Quantile Regression

Quantile regression is an extension of linear regression that predicts specific quantiles of
the target variable, rather than its mean. This approach provides a more comprehensive view of
the target variable's distribution, allowing for better estimation of conditional quantiles and
understanding of the uncertainty associated with predictions. Quantile regression can be
especially useful in situations where the target variable's distribution is not symmetric or has
extreme values as illustrate in Figure 2.9.

Example of quantile regresion for various q parameters

1.0
0.5
0.0
—0.5 Data
Quantile Regression q = 0.1
-1.0 —— Quantile Regression q = 0.5
Quantile Regression q = 0.9
-1.5

—4 -2 0 2 4 6 8 10

Figure 2.9: Quantile Regression Example.

In most models this can be achieved by using equation 4.3 as a loss function
Qioss = max (q - (%, = ¥),(1 = q) - (T, - ;) (212)
Where:
q represents the desired quantile, indicating the specific percentile of the target variable that is
being predicted. It lies between 0 and 1, where 0.5 represents the median, Y; is the actual value
of an observation and Y, is the predicted value of an observation.
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1.1.11 Common ML Algorithms
In our exploration of machine learning algorithms, we recognize that there are a multitude
of options, each with their own strengths and weaknesses (see Table 2.3).

Table 2.3: Pros and cons for classic regression algorithms with varying complexity.

Algorithm

Pros

Cons

Linear Regression

- Simple and interpretable.

- Fast to train.

- Good for well-defined linear
relationships.

- Assumes linear relationship between
features and target.

- Can be outperformed by complex
models on non-linear data.

Decision Trees (for
Regression)

- Can model non-linear relationships.
- Interpretable (if the tree is not too deep).
- Doesn't require feature scaling.

- Can easily overfit or underfit.
- Not as accurate as other algorithms for
regression.

Random Forest

- Reduces overfitting compared to
decision trees.

- Can model complex, non-linear
relationships.

- Less interpretable than decision trees.
- Training can be computationally
intensive with large datasets.

Support Vector
Regression (SVR)

- Can model non-linear relationships (with
suitable kernel). - Robust to outliers.

- Choice of kernel and parameters can
have a big impact on performance

- Can be slow to train with large
datasets.

Gradient Boosting
(LGBM)

- Often provides very good predictive
accuracy.

- Can model complex, non-linear
relationships.

- Less interpretable.
- Can be slow to train and requires
careful tuning.

Neural Networks (for
Regression)

- Can model complex, non-linear
relationships.

- Can handle large datasets and high
dimensional inputs.

- Requires a lot of data to train.

- Can be difficult to interpret.

- Needs careful pre-processing and
parameter tuning.

The choice of the appropriate algorithm often hinges on the specific problem at hand, and
the nature of the dataset available. Python libraries were employed for their implementation
[11, 12].

For the purposes of our thesis, we have chosen one representative algorithm from each of
the complexity classes:

Low Complexity Algorithms:

These are relatively simpler algorithms, which can be easily interpreted and have fewer
hyperparameters to tune. These are often the first choice for preliminary data analysis.

e MA & ES (Moving Average and Exponential Smoothing)
e MLR (Multiple Linear Regression)

e DT (Decision Trees)

e GLR (Generalized Linear Regression)

Mid Complexity Algorithms:

These algorithms are more sophisticated and often involve tuning more hyperparameters.
They offer more flexibility and can model more complex relationships, but they might be harder
to interpret.

e SVM (Support Vector Machines)
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e RF (Random Forest)
e GB (Gradient Boosting)
e HM (Harmony Search)

High Complexity Algorithms:

These algorithms are typically the most complex, capable of modelling highly complex
and nonlinear relationships. They often involve substantial computational resources and
expertise to implement and tune effectively. ANN (Artificial Neural Networks) and NN (Neural
Networks) are included in this category due to their ability to model complex, non-linear
relationships.

e ANN (Artificial Neural Networks)
e NN (Neural Networks)

e DL (Deep Learning)

e RL (Reinforcement Learning)

Each of these algorithms was selected for its unique attributes, and its ability to address
the specific demands of the supervised regression problems in our study. In choosing one
from each class, we aim to provide a comprehensive and comparative exploration of these
different algorithms, and their applicability to the tasks at hand.
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2.2 Energy Systems overview

Energy systems encompass the processes involved in the production, distribution, and
consumption of energy (see Figure 2.10Error! Reference source not found.). These systems
are complex and multifaceted, comprising several components that work together to ensure a
consistent and reliable supply of energy [13].

At the heart of any energy system are the energy sources. These can be classified into
renewable and non-renewable sources. Renewable energy systems utilize resources that are
naturally replenished, such as solar, wind, and hydro power. Non-renewable energy systems, in
contrast, rely on finite resources such as fossil fuels and nuclear energy. Fossil fuel-based
systems burn coal, oil, or natural gas to generate electricity. These systems have been the
backbone of global energy supply for many years, but they produce greenhouse gases and other
pollutants, contributing to climate change.

The produced energy is then transmitted and distributed through power grids. These grids
are complex networks of power plants, transformers, transmission lines, and distribution lines
that deliver electricity from the point of generation to consumers.

In the energy sector, different actors play crucial roles. These include energy producers,
regulators, utility companies, and consumers. Energy producers generate electricity, regulators
oversee the industry to ensure fair practices and safety standards, utility companies manage the
distribution of electricity, and consumers use the electricity.

However, the energy industry faces numerous challenges. These include managing the
unpredictable nature of renewable energy sources, the environmental impact of non-renewable
energy sources, aging infrastructure, and the increasing demand for energy. Addressing these
challenges requires innovative solutions and advancements in technology, including the use of
machine learning and artificial intelligence [14].

Role and Potential of Machine Learning in Energy Systems

This overview of energy systems draws extensively from a highly comprehensive and up-
to-date review in the field [15]. This review serves as a cornerstone for understanding the
current landscape of energy systems, providing a rich and expansive overview that has been
distilled and summarized in this section, Table 2.4 further summarizes the algorithms used in
reviewed works.

Table 2.4: Count of machine learning models applications, sorted by complexity levels, along
with their respective three most common algorithms as presented by Forootan et al. [15]

Complexity Level Count Most Common Algorithms
Low 25 MA & ES (8), GLR (7), MLR (5)
Mid 45 SVM (15), HM (10), RF (9)
High 55 ANN (25), NN (20), DL (10)

Machine Learning presents a significant opportunity to revolutionize energy systems,
providing tools to analyse large amounts of data, make predictions, and optimize operations.

Optimalisation

One of the main applications of ML in energy systems is energy consumption
optimization. By analysing consumption patterns and other influencing factors, ML algorithms
can provide valuable insights for consumers and utility companies to manage and reduce energy
usage effectively.
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Machine learning aids in managing energy consumption efficiently, as illustrated by
Ilbeigi et al.'s study, which demonstrated a 35% reduction in energy use [16]. ML also enhances
renewable energy equipment performance and longevity, like in the case of Wen et al.'s wind
turbine airfoil optimization [18]. ML-based optimization even indirectly improves energy
efficiency in electric vehicles and fuel cells [20]. Zhou et al.'s study showcased ML's potential
in improving overall energy production efficiency [22].

Overall, ML's role in optimizing energy systems spans from managing consumption to
improving production efficiency and equipment performance. It showcases the versatility and
potential of ML algorithms in addressing complex problems in the energy sector.

Demand forecasting

Another critical role of ML is in energy demand prediction. Accurate forecasts of energy
demand are essential for efficient energy management, allowing energy providers to balance
supply and demand and avoid energy wastage. ML algorithms can analyse historical
consumption data and other relevant factors to predict future energy demand with high
accuracy.

Several studies highlight the advantages of ML and DL in energy consumption
forecasting. For instance, Amasyali et al. emphasized the need for ML-based models in
commercial and educational buildings [24]. A study by Walker et al. demonstrated that ML
algorithms like Random Forests are efficient in predicting electricity demand [26]. Hybrid
Models (HM) have also emerged as powerful tools for predicting energy consumption.
Similarly, Kazemzadeh et al. suggested a hybrid model for long-term prediction of peak
electrical load and total electrical energy demand [28].

Despite some gaps in the literature, especially in areas like long-term and energy
consumption forecasts, ML and DL algorithms have shown promising results in the energy
sector. They not only assist in reducing energy consumption and mitigating the impacts of
climate change [30] but also contribute to improving the efficiency and cost-effectiveness of
energy systems [32]. Future research should continue to focus on optimizing these algorithms
and exploring under-represented areas to further advance energy demand forecasting and
management.

Fault and Defect Detection

Fault and Defect Detection (FDD) in industrial processes is crucial, especially with
human errors causing 70% of accidents [34]. Monitoring tools are essential for the safety and
reliability of equipment in energy systems[36, 38]. Advanced detection technology is required
for complex systems like wind turbines [40].

Al and ML methods are increasingly used in FDD, improving speed and efficiency [42].
Various models from ensemble learning [44, 46] have been explored. Future studies should
continue refining these methodologies for improved system performance.
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Renewable energy

Renewable energy sources, particularly solar and wind, are integral to the future of
sustainable energy systems. Predicting the output power of these systems accurately remains a
critical challenge, but significant strides have been made through Machine Learning (ML)
models.

Solar energy systems' output power is affected by various factors like weather conditions
and cell positioning. Traditional methods for estimating solar radiation have been replaced by
ML models due to their ability to manage complex relationships [48]. Voyant et al. evaluated
different ML methods and suggested that methods like ANN, ARIMA, SVM, and SVR are
effective for predicting solar radiation [50]. Alizamir et al. found that the Gradient Boosting
Tree model outperformed others in predicting solar radiation in the U.S. and Turkey [52].

Wind energy prediction is difficult due to the inherent randomness and nonlinearity of
wind behaviour. ML and Deep Learning (DL) models have been developed to predict wind
energy based on wind speed and direction data. Zendehboud et al. suggested the SVM model
for predicting wind power due to its speed, reliability, and accuracy [53]. Demolli et al. found
that XGBoost, SVR, and RF were effective in predicting long-term wind power, with RF
performing best [54].

Overall, ML models outperform traditional methods in predicting the output power of
renewable energy systems. Continued research and development of these models can lead to
improved prediction accuracy, ultimately enhancing the reliability of energy systems.

Specific ML algorithms relevant to these applications include decision trees, support
vector machines, neural networks, and ensemble methods. Each of these algorithms has its
strengths and weaknesses and is suited to different types of problems.

However, the use of ML in energy systems is not without challenges. One major issue is
the quality of data. ML algorithms rely on large amounts of accurate data for training. If the
data is noisy, incomplete, or biased, this can affect the accuracy of the ML models [15].

Another challenge is interpretability. While ML models can make accurate predictions,
they are often seen as "black boxes" because their decision-making process can be hard to
understand. This can be a problem in situations where it's necessary to understand why a
particular decision was made [5, 15].

In conclusion, while there are challenges to overcome, the potential of ML in transforming
energy systems is immense. With continued research and development, we can expect to see
more advanced and efficient energy systems in the future.
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2.3 Combined Heat and Power

Combined Heat and Power systems, also known as cogeneration systems, are a type of
energy system that simultaneously generates both electricity and useful heat from the same
energy source, common configurations be seen in Figure 2.11. This method of energy
production is highly efficient, as it reduces the waste that typically occurs in traditional energy
production systems, where heat and electricity are produced separately [17].

Water Power transferred to the grid. ¢

%

Generator

Heat delivered to
district heating system.

Figure 2.11: Common CHP configuration: Boiler-turbine-generator & heat exchanger.

At the core of a CHP system are three primary components: an electricity generator, a
heat recovery system, and an exhaust treatment system. The electricity generator is typically
driven by a turbine or an engine, which is powered by a variety of fuel sources such as natural
gas, biomass, or coal. The heat recovery system captures waste heat from the electricity
generator and repurposes it for useful applications, such as space heating or water heating.
Lastly, the exhaust treatment system ensures that emissions from the CHP system are within
acceptable limits [17].

CHP systems play a significant role in the energy landscape due to their high efficiency
and their potential to reduce greenhouse gas emissions. By using waste heat productively, CHP
systems can achieve energy efficiencies of up to 65-80%, compared to the approximately 50%
efficiency of traditional separate heat and power (SHP) systems. Furthermore, by generating
heat and power close to the point of use, CHP systems can reduce energy transmission losses
and improve the reliability of energy supply [17].

Despite these advantages, CHP systems face several challenges. These include the need
for a consistent and relatively high heat demand, the significant upfront capital costs, and the
complexity of integrating CHP systems into existing energy infrastructure. Furthermore, the
operation and management of CHP systems require careful planning and optimization to
maximize their benefits.
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Role of Machine Learning in CHP Production Planning

Machine Learning (ML) has the potential to substantially improve the performance and
efficiency of Combined Heat and Power (CHP) systems. Through complex data analysis,
pattern recognition, and predictive capabilities, ML can play a crucial role in proactive CHP
production forecasting, operation, and servicing. Figure 2.12 is showing the number of papers
considered in survey [19] arranged according to the ML techniques discussed in this section
and the main applications.

Regression based -
DR based —

Bayesian based 4

SVM based

Nature inspired |

Marko based [ e ®

DT based
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Fuzzy based

Figure 2.12: Bubble chart displaying paper count based on ML techniques and applications,
allowing for multiple counts per paper [19].

A primary application of ML in CHP systems is demand forecasting. Accurate predictions
of both electricity and heat demand are essential for efficient CHP operation. ML can utilize
historical consumption data, weather predictions, and other relevant factors to forecast future
energy needs. Consequently, CHP operators can pre-emptively adapt their production schedules
based on ML forecasts with varying time frames (Figure 2.13), minimizing losses and
enhancing efficiency [19, 21, 23].
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Figure 2.13: ML-empowered decision making and control hierarchy for DHC networks [19].
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Waste-to-Energy Plants

Waste-to-Energy plants are facilities that convert municipal solid waste (MSW) into
energy, usually in the form of electricity and/or heat (as illustrated in Figure 2.14). This
conversion process not only helps to manage waste but also contributes to sustainable energy
production, making WtE plants an integral part of the modern energy landscape [25].
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r Flue gas
cleaning

Figure 2.14: A schematic diagram of waste to energy (WtE) plant [27].

condenser(s)

The primary process in a WtE plant involves thermal treatment of waste. The most
common form of this is incineration, where waste is burned at high temperatures. The heat
generated from this process is then used to produce steam, which drives a turbine to generate
electricity. Other methods of Waste-to-Energy conversion include gasification, in which waste
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is converted into a gas that can be burned for power or heat, and anaerobic digestion, which
uses bacteria to decompose organic waste and generate biogas [23, 29].

WIE plants offer numerous benefits. They provide a practical solution for waste
management, particularly in urban areas where landfill space is limited. They generate energy
from a resource—waste—that would otherwise be discarded, thus contributing to resource
efficiency. Furthermore, by reducing the volume of waste that ends up in landfills, WtE plants
can help to reduce greenhouse gas emissions [29].

However, operating WtE plants is complex and challenging. They need to handle a wide
variety of waste types, each with different energy content and combustion characteristics.
Fluctuations in waste input can affect the efficiency and stability of energy production.
Emissions from WE plants, including pollutants such as dioxins and heavy metals, need to be
carefully managed to minimize environmental impact. These challenges necessitate advanced
technologies and strategies for efficient operation and management of WtE plants.

Potential of Machine Learning in Waste-to-Energy Plants

Machine Learning presents a significant opportunity to enhance the operation of WtE
plants. Through its data-driven algorithms, ML can analyse complex datasets, identify patterns,
and make accurate predictions, all of which can be applied to various aspects of WtE operations
[23, 31].

One of the key applications of ML in WtE plants is in predicting the calorific value of
waste. The calorific value, which indicates the amount of energy that can be extracted from
waste, varies widely depending on the type and composition of the waste. ML algorithms can
analyse waste composition data to predict the calorific value accurately, enabling WtE operators
to adjust their operations accordingly [33, 35].

Furthermore, ML can be applied to optimize the combustion process in WtE plants. ML
algorithms can analyse operational data to identify the optimal operating conditions for efficient
combustion, such as the optimal air-to-fuel ratio or the ideal temperature profile. This can help
to maximize energy production, reduce fuel consumption, and minimize emissions [23, 37].

In the realm of fault detection and diagnosis in Waste-to-Energy plants, Machine
Learning presents untapped potential. Through the analysis of operational data, ML can spot
anomalies, signalling potential equipment faults or failures. Such early fault detection can
mitigate expensive downtime and prolong equipment lifespan. However, this field remains
relatively under-researched, with existing models often being complex and demanding [39, 41].
Thus, it represents a substantial opportunity for research and advancement.

Despite these promising applications, the use of ML in WtE plants also poses challenges.
These include the need for high-quality data, the complexity of ML algorithms, and the potential
for overfitting or underfitting. Nevertheless, with continued research and development, ML
holds great promise for improving.
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Chapter 3: Case study: WtE production forecasting

In this study, the application of machine learning in WtE plant will be showcased through
the planning of heat and electricity production. To illustrate this Figure 3.1 presents the
configuration of the WtE facility consisting of 4 boilers and a turbine with unregulated
extraction. Furthermore, the relevant data for this case study can be found in Table 3.1.

M—'“- External steam consumer
Mst
2 Mst, TG
5 iy ms't,bp Air cooling ?‘Q,exp
r : ri
b4 & Mstda £ ﬁ
- ' £
> rd -
1= - = —
= [
. —@’ Wrg
\ Steam Generator
Mstbo 1 turbine Qpus
Boilers .
; | Heat exchanger
For district heating
_— mst,ex,DHS
o £
@m =]
3
0
oo
Deaerator v =
{ o
Condensate collector

Feed-water tank

Figure 3.1: A simplified flowsheet of the steam condensate cycle used in WtE technology (red
lines represent steam, blue lines represent water, flue gas treatment system excluded) [2] .

Table 3.1: Given parameters by operator, their notation, description, and unit.

Variable notation Description Unit
Mt boiler Boiler 1 output [t/h]
Mt poiler2 Boiler 2 output [t/h]
Mt boilers Boiler 3 output [t/h]
Mt boilera Boiler 4 output [t/h]
Mt turb.inflow Flow rate of steam to the steam turbine [t/h]
Mt turb.inflow,cale Flow rate of steam to the steam turbine - balance equations [t/h]
Pst,ex Pressure of extraction steam [MPa]
Mgt ex Flow rate of extraction steam [t/h]
Mt external Flow rate of steam to externa [t/h]
Mgt demi Feed water tank pre-heating [t/h]
Opus Heat delivery to a district heating system [MWh]
Mt blow—of f Flow rate of steam for boilers' blow of [t/h]
Mgt deair Flow rate of steam to deaerator [t/h]
%?rfeqrated Generated power [MW]
Wb ferred Transmitted power [MW]
bpyaive Bypass valve opening [%]
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CHP production is governed by contracts specifying heat and electricity delivery, prices,
penalties, and more. Figure 3.2 and Figure 3.3 illustrate the influence of different months of the
year on these contract values.

Average heat delivered by the WtE plant, years 2011-2017
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Figure 3.2: Average heat delivery of the WtE plant throughout the years 2011 to 2017.

Average power delivered by the WtE plant, years 2011-2017
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Figure 3.3 :Average electricity delivery of the WtE plant throughout the years 2011 to 2017.

These contracts conditions, along with the plant's actual performance, dictate the planning
of heat and electricity delivery on an hourly basis for the next day. The goal is to create a
balanced production plan that maximizes the plant's economic performance while considering
efficiency and the risk of not meeting the plan. Waste-to-Energy heat and electricity planning
is a challenging task due to the inhomogeneous nature of waste, fluctuating external steam
demand, and operational uncertainties such as the lower heating value of waste and live steam
extraction.

Contracts impose a high penalty for electricity delivery deviations beyond +0.5 MWh. In
contrast, there is a low penalty for short-term heat delivery deviations. As a result, the focus in
planning and subsequent operation is on electricity delivery, and the plant opts for a
conservative approach to ensure it can meet the delivery requirements. If steam production is
higher, the steam turbine by-pass is used to decrease it, resulting in higher heat delivery but
with lower penalties compared to electricity deviations. However, this conservative approach
is not beneficial for maximizing CHP production and financial revenue. The use of the steam
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turbine by-pass along with the situations that may occur in relation to a proposed production
plan as illustrated in Figure 3.4, underscore the challenges faced in the current planning
strategy.

Plan: mst,turb.plan = 80 t/h; QHDS,plan = f(mst, extracteds -+ + ); Wtrans,plan = f(mst, turbine’ *++ )

Boiler steam |  _ _______________. sufficient duci
d i H Underestimated plan: ! uticlent powe? production
pro uction : W < el 0'5 1 Werans. = Werass. £ 0.5
. 5 rans rans. — 0- 1
mg = 120 t/h g ‘ . 5
'S ! @ +0.5 MWh
= ! g -0.5 MWh
P ! <
1 can be regulated by | A
: using by-pass. /I
\ 4 Soommmom- ‘ """"

Self-steam W i
consumption .
mst,out = 20 t/h J

Turbine

\ 4

By-pass flow rate:
Thgpp = 20 t/h

mst,ext. = f(mst,turb.r see )

Qups > Qupsplan ]

Figure 3.4: Scheme depicting current planning strategy’s approach when faced with
underestimated plan.

Rationale for Using Machine Learning for CHP Production Planning

To address the challenges faced in CHP production planning, the study employs data-
driven models, including linear regression and artificial neural networks models. Machine
learning techniques like ANN can successfully identify nonlinear relationships between
variables and are generally suitable for regression-type problems. Additionally, linear
regression models offer a lower level of complexity, which can be advantageous in further
applications.

The adoption of machine learning in CHP production planning provides several benefits:

Improved accuracy: Machine learning models can better estimate the plant's actual
performance, leading to more balanced production plans and reduced penalties.

Enhanced efficiency: Accurate planning reduces the need for energy-wasting actions during
operation, such as turbine bypassing or heat releasing into the environment.

Increased revenue: Better net thermal efficiency and CHP production result in higher
financial returns for the plant.

This case study demonstrates the potential of machine learning techniques in enhancing
the efficiency, accuracy, and economic viability of CHP production planning in WtE plants.
Building upon the work of Tous$ and others, our study aims to further explore the potential of
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machine learning in this context. Most notably, Teng [44] proposed a Waste-to-Energy
management tool that offers forecasting and real-time optimization of power generation,
considering anomalies. Their framework, based on Hierarchical Temporal Memory (HTM), a
type of biological neural network, demonstrated promising results in an industrial case study.
However, their approach, while innovative, is complex and focuses on real-time
optimization and doesn’t address the bypass usage minimalization. In contrast, our study
extends Tous et al.'s work by incorporating more accessible and interpretable machine learning
models, such as ANN and LR, to predict steam and power production while maintaining the
original objectives. This focus on simplicity, combined with a risk management approach,
distinguishes our study from previous research and contributes novel insights to the field.

3.1 Methodology

This chapter describes the methodology used in this study to develop and evaluate
machine learning models for predicting various aspects of steam and energy production in
Waste-to-Energy plants. The methodology includes data pre-processing, feature engineering,
and the selection and evaluation of machine learning algorithms within each of the three distinct
model group as illustrated in Figure 3.5.

4

u. 1 QTS : i K 4
— =
. n Model(s)
H —— Model(s) creation Model deployment
Data pre ;:ocessmg (s) evaluation and ploy
Data pre-processing
contracts Total steam il i
extrapolation > : > Quantile metrics
v production evaluation +
* Steam production
forecast
) Auxiliary steam Classic statistical
Outline removal —> e eresest = . *
Auxiliary steam usage
Non-standard + f:/)recast ¢
day removal Extraction steam
¢ ’ calculation ¢
Turbine house steam
Feature engineering * flow calculation
Temporal data Power L~ Extrapolation ¢
generation and assessment

Power and heat
Lag columns

Figure 3.5: Structure of Deployed Methodology - Workflow for Building a Robust ML Model.

36



OF MECHANICAL

ENGINEERING Combined heat and power production planning in
a Waste-to-Energy plant using machine learning

FACULTY Bc. Marek Kollmann

3.1.1 Data Pre-processing

The data used in this study were provided by the plant operators of a Waste-to-Energy
facility. The dataset covers a time period from 2011 to 2017. Out of the extensive dataset, only
variables that directly or indirectly affect energy and heat/power production were chosen, while
variables related to flue gas processing operations were omitted. A comprehensive scheme and
list of variables provided are illustrated in Figure 3.1 and Table 3.1, respectively.

Planned Heat and Power Delivery Data extrapolation

The extraction steam flow rate calculation is not straightforward due to the uncontrolled
extraction. The approach employed in previous work by Tous et al. utilized the heat plan
contracts value QDHS,plan as a variable in the calculation of the extraction steam flow rate (refer
to chapter 3.1.3) Regrettably, the contracts provided to us only cover the period from 2012 to a
portion of 2013. It is worth noting that the actual heat delivered data is available to us; however,
these values are frequently distorted due to the plant's inclination to deviate from the heat plan
in order to adhere to its power plan. The utilization of the steam bypass prior to the turbine, as
indicated in the preceding chapter, serves as an indicator of this practice.

Planned heat extrapolation

Data extrapolation method was utilized, aiming to extend the provided data across the
entire dataset. Essentially, an average annual plan was constructed using approximately a year
and a half's worth of data, which was then scaled down by a factor of 0.75. This reduction was
implemented to ensure the derived plan mirrored the adjusted heat delivered, which served as
a reference point as per equation (3.1).

. . mst,bypass ' hst
QDHS,adjusted = Qpus — 36 (3.1)

In this equation:
Q'DHS,adjusted refers to the adjusted heat delivered, Qpys represents the original heat delivery
plan, Mg pypass IS the bypass steam mass flow, and hg, is the enthalpy of steam.

Mgt pypass Was calculated assuming a linear valve characteristic.
4
mst,bypass = z mst,boiler,i - (mst,external + mst,blow—off + mst,deair) ' (1 - bpvalve)- (32)
i=1
where:
2 Mgt poiter,; 1S the total steam production, g externar 1S €Xternal steam consumption,
Mgt prow—ofs S Steam used for blow-off, g 4eq:r IS Steam used in deaerator and bp,q;y. is the
ratio representing the degree to which the bypass valve is opened, ranging from 0 (completely
closed) to 1 (completely open).

By employing this method, estimations of the heat delivery plan were generated,
demonstrating a distribution comparable to that of the original data (Figure 3.7).
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Figure 3.6: Comparison of Adjusted Heat Delivery, Extrapolated Heat Plan, and Bypass
Heat.

Power extrapolation

In line with the methodology adopted by Tous et al., the electricity delivery corresponding

bp=0 .
to a zero bypassed steam flow rate, denoted as W, .....q fOr power generation and

mz:soferred for power transferred, was utilized. It is important to note that the bypass is
predominantly employed during colder months (Figure 3.7), indicating that the occurrence of

Wtz:fferred is infrequent in the operational data throughout the year.
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Figure 3.7:Average monthly usage of bypass throughout the years 2011-2017.

To compute the W Pp=0 a turbine model must first be established based on the

generated’
available data (impacted by bypass usage). Following this, the turbine inflow and live extraction
need to be recalculated, and these recalculated values should be applied as inputs to the

. - . . bp:() . P
aforementioned model. A similar process is followed for W, c...eq Calculation, as it is
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. . bp>0 . - bp 0
primarily based on W ' oieq- There is no need for further recalculation, as only W, .,.crqreq

and temporal data are needed. The procedure for data extrapolation is represented in Figure 3.8.
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Figure 3.8. Process of extrapolating power generated and transferred from provided data.
Handling of outliners and missing values

The dataset contained several missing values and inconsistencies, such as months without
some features recorded and cases with improper material balances. To handle missing values,
rows with missing key values (eg: power generated, boiler production) were dropped since the
missing data were often due to external causes or issues in the plant. Additionally, the dataset
contained enough data points to allow for the removal of rows with missing values without
significantly impacting the analysis. Methods used were as follows:

a) Z-score outlier removal: The Z-score (given by equation 3.3) measures the number of
standard deviations a data point is from the mean of the dataset. Data points with a Z-score
greater than a specified threshold (e.g., 2 or 3, specific for each variable) were considered
outliers and were removed from the dataset.

(x — W

Z = Y (3.3)

Where:
x is the value of a data point, p is the mean of the dataset and o is the standard deviation of the
dataset

b) Non-standard operation days were filtered out in the dataset, encompassing periods of
repairs, maintenance, or plant shutdowns. These data points, which may not accurately
represent the Waste-to-Energy plant's typical operation, have the potential to negatively impact
the performance of the machine learning models. To mitigate this concern, data from non-
standard operation days were excluded through the utilization of information provided by
identifying anomalous patterns in the data, such as no steam or power production.
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Furthermore, it should be noted that there are instances where the measured steam
entering the turbine does not match the calculated steam using balance equations. This
discrepancy has been acknowledged by the data provider. Using Kernel Density Estimation
(KDE) plots, that smooth out the data distribution by estimating the density at various points
[7]. Instances where this discrepancy was severe (as illustrated in the Figure 3.9) were removed.

100 A) 2011-2015

- VY

. B)2016

msL, calculated [t/h]

Total steam flow rate - calculated:

40 7
20 ,// ,//
0 I’ 1 1 1 1 1 I” 1 1 1 1 1
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Total steam flow rate - measured: Total steam flow rate - measured:
rl:lSL measured [t/h] rﬁst, measured [t/h]

Figure 3.9: Showcase of misalignment between calculated and measured flowrates. A) for the
years 2011 2015 representing out training dataset, B) for the year 2016 representing our test
dataset.

Normalization:

Categorical variables, such as seasons, were encoded using one-hot encoding. For
example, if the season was summer, the summer column would have a value of 1 while the
other season columns would have a value of 0.

Data normalization was performed using Python's sklear StandardScaler. The method
scales the data to have a mean of 0 and a standard deviation of 1. The StandardScaler calculates
the mean and standard deviation from the training data and applies the normalization formula
(equation (3.3) to both the training and testing datasets. It is vital to apply the same scaling
parameters (mean and standard deviation) to both training and testing data to maintain
consistency and prevent bias in the model evaluation process.

Feature Engineering

New features were derived from the existing data, including, temporal data: seasons
(winter, summer, fall, spring), day of the week, month and lag columns (24h to 48h) for all
important steam flows. This practice is a standard approach in time series regression [43]. The
addition of these lag columns is further justified by pronounced seasonality evident in our
dataset, as demonstrated in Figure 3.10.
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Figure 3.10: Seasonal Decomposition Using the statsmodels Python Library's [45].

The total boiler production, represented as g ora) Was chosen for forecasting as an
aggregate due to the absence of distinct characteristics observed in individual boilers. This
observation is supported by the data presented in Table 3.2 and Figure 3.11.

Table 3.2: Boiler 1 to 4 output characteristics.

Boiler name usage mean [t/h] max [t/h] Std [t/h]
Boiler 1 67% 35.46 48.55 17.06
Boiler 2 2% 34.45 47.38 16.19
Boiler 3 71% 35.04 44.93 16.54
Boiler 4 87% 34.26 46.85 15.62

Boiler Values Above Threshold

¢
< 40 ‘
g
‘g 30
g=
20

1 I I 1
Boiler 1 Boiler 2 Boiler 3 Boiler 4

Figure 3.11: Boxplot illustrating the distribution of production values for Boilers 1-4.

It is worth noting that the occurrence of four boilers running simultaneously is an
infrequent event (see Figure 3.12), Consequently, it is expected that these periods, being data-
driven in nature, will experience diminished performance in our models.
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Figure 3.12: Pie charts representing the percentage of boiler activation for each season.

No feature transformations, such as log transformation, were applied as they did not
produce any improvements when tried. Dimensionality reduction techniques were not applied
due to the limited number of columns in the dataset.

3.1.2 Model Grouping Strategy

During the initial stages of the development process, the need for three distinct model
groups to tackle the specific challenges and requirements of the prediction process was
identified.

The first group of models is centred around the prediction of steam production from all
boilers, a critical variable that significantly impacts other variables within the system. It was
revealed that approximately 80%! of the mean absolute error in power transfer predictions
resulted from inaccuracies in the total steam prediction. To achieve a high and well-defined
level of confidence in the predictions, quantile regression models were employed.

This approach to 1 ¢oeq; prediction differs from that of Tous et al. Where the boiler
output was modelled using random walk algorithm and confidence interval was determined
using Monte Carlo simulation [2].

The second group of models deals with auxiliary factors that use total steam produced
but their individual magnitude is a small fraction of g ,o¢q;. These factors include
Mt externat Mstblow—of fr Mst,deair» Mst,aemi- 10 Increase the amount of potentially useful
factors for their prediction, a unique approach was deployed as depicted.

Unlike the first group of models, which operated at a predetermined confidence level, the
prediction of these auxiliary variables was carried out using a cascading framework. The

! This figure was obtained by substituting the real total steam for the predicted one throughout the prediction
pipeline.
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utilization of predetermined confidence levels has been avoided in order to address the issue of
accumulating underestimations. Instead, the framework employed a cascading prediction
system, where variables were arranged based on their correlations and interrelationships,
thereby mitigating potential underestimations and enhancing the accuracy of individual
predictions.

The ordering of the variables was achieved through the computation of sum of their
correlations. The correlation between each pair of variables was calculated using Pearson
correlation coefficient. This coefficient r was computed using the following formula:

L2 —0 - Gi—9) (3.4
(n—1)-sy¢-sy

Where:

r is the Pearson correlation coefficient, x; and y;are individual sample points indexed with i, X

and y are the means of x and y variables respectively, n is the number of data points, s, and s,

are the standard deviations of x and y variables respectively.

After obtaining the correlation matrix from these coefficients, a sum of the correlations
for each variable was calculated by the following equation:

sCorr(k) = ZCorr(k, D (3.5)

where:
XCorr(k) is a sum of correlations between variable k and the rest of the variables in cascade,
Corr(k,l) is the Pearson correlation coefficient between the main variable k and factor |

The resulting sums are ordered in ascending order, as the variable with largest XCorr
benefits the most from being at the end of the cascade.

the third group of models is centred on the generation and transfer of power. In an effort
to maintain simplicity, the factors contributing to energy generation include steam input, live
extraction estimates, and temperature forecasts. As this model is dedicated to the estimation of

wbp=0 it requires low level of complexity. Second model within this group is dedicated to

generated’
the energy transfer to the power grid, primarily based on the energy generated and temporal
variables to account for the plant's self-consumption.

In summary, our approach involves three distinct groups of models, each addressing

specific challenges and requirements of the prediction process with final model order depicted
in Figure 3.13.
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3.1.3 Live steam extraction

As mentioned earlier, the plant's power is generated using a turbine with uncontrolled
extraction referred to as bleeding turbine. The extraction steam flow rate significantly
influences power and electricity production, making it crucial to develop accurate models for
units within the turbine house.

The extraction steam flow rate was calculated based on Tous's work. The model consists
of several components, including the self-consumption steam flow rate (grouped under the
axillaries umbrella), mass and energy balance equations, and an algorithm for calculating
extraction steam flow rates. Additionally, the model addresses the use of a turbine bypass to
maintain higher steam temperatures in the DHS exchanger. An algorithm is presented that
encompasses the entire live steam extraction process, incorporating the calculation of extraction
steam flow rates, bypassed steam flow rates, as well as their corresponding temperatures and
enthalpies (Figure 3.14).

Known mputs: QDHS! mst,demi! mst,external' mst,blowfoff' mst,deair' mst,total

mSt,TG = mst,total - (mst,external + mst.blow—off + mst,deair)

Estimates: mst,ext ri'lst,ex,esti.

es . s
y mst,ex mst,ex,esti. e <
no
A
Mt exesti. = Mst,ex
Pex = f(mst,turb.inflow; mst,ex) —Tous regression
Tex = f(mst,turb.inflow; mst,ex) —Tous regression
Mst,pHS = QDHS/(hSteam - hDHS,HE) — energy balance eq.
Mgt ex = Mst,prs T Mgt demi
no
\ A

minimize Mg p,:
h _ (mst,ex + mst,bp) : hsteam
es st,ex,bp>0 — B B
y mst,ex + mst,bp

Tst,ex > Tmin,DHS

Qpus = (Nstexpp>0 — Ppusue) * (Msepus + Msepp)
while: Tex,bp>0 2 Tminpus

yes

Mt ex; Mt bpmin Y m = Mgpg —M

st,turbine,calc st,bpmm

Figure 3.14: Extraction steam flow rate calculation algorithm.
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Selection and Evaluation of Machine Learning Algorithms

Regression algorithms were the focus of our study, as the objective was to predict
continuous values. Three algorithms were selected, representing varying levels of complexity:
Linear Regression (low complexity), Light Gradient Boosting Machine (medium complexity),
and Artificial Neural Networks (high complexity). This selection encompassed a range of
complexity, enabling an examination of the trade-offs between model interpretability,
complexity, and performance (see Table 3.3).

Table 3.3: Pros ans Cons of selected ML models.

Pros Cons
- Simple and interpretable - Limited model complexity
LR - Fast training and prediction - Assumes a linear relationship between variables
- Minimal parameter tuning - May underperform on complex data
- Handles large datasets efficiently - More complex than LR
- Good performance on various problems - Requires extensive parameter tuning
LGBM | - Supports categorical features without one-hot

encoding - Less interpretable than LR

- Handles missing data and outliers well

- Can model complex, non-linear relationships - Requires extensive parameter tuning
- Good performance on a wide range of

ANN | problems
- Can approximate any continuous function - Slower training and prediction times

- Less interpretable than LR and LGBM

- Can learn hierarchical representations - Prone to overfitting

It should be noted that there are many other machine learning algorithms that could be
applied to this problem (see Table 2.3), such as Long Short-Term Memory (LSTM), Support
Vector Regression (SVR), and Random Forest Regression. However, the selected algorithms
provide a diverse representation of the available techniques and offer a comprehensive
understanding of their strengths and weaknesses when applied to the prediction of steam
production in Waste-to-Energy plants.

Linear Regression

Linear Regression is a fundamental and widely used machine learning algorithm for
regression tasks. It models the relationship between a dependent variable and one or more
independent variables by fitting a linear equation to the observed data. In this study, we used a
multiple linear regression model to predict steam production based on the selected features.
Parameter tuning LR has minimal parameters to tune, making it a simple and interpretable
model. The primary parameter is the regularization term, which helps prevent overfitting [5].

Light Gradient Boosting Machine (LGBM)

LGBM is a gradient boosting framework that employs tree-based learning algorithms. It
is specifically designed for efficiency and scalability, enabling it to handle large datasets with
a smaller memory footprint compared to other gradient boosting algorithms. LGBM has gained
popularity owing to its ability to manage large datasets while delivering high performance.
Gradient boosting algorithms work by combining several weak learners (Simple or low-
complexity models), usually decision trees, to create a strong learner (as illustrated in Figure
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3.15). LGBM improves upon traditional gradient boosting methods by using a leaf-wise growth
strategy rather than a level-wise one. This leaf-wise approach allows the algorithm to focus on
the most significant splits, leading to faster convergence and improved accuracy [5, 12].

Train learner 1 Train learner 2 Train learner 3

Enlarge errors Enlarge errors
Shrink correctly classified points  Shrink correctly classified points

Figure 3.15 An example of weak learners being used to train a strong learner [47].

Artificial Neural Networks (ANN)

Artificial Neural Networks are a class of machine learning models inspired by the
structure and function of the human brain. They consist of interconnected layers of nodes, also
known as neurons (Figure 3.16). Each neuron receives input from previous neurons, processes
it, and sends the output to the next layer. ANNSs are versatile and can be used for various tasks,
including regression problems. In a feedforward neural network, the most common type of
ANN, information moves in one direction, from the input layer through hidden layers (if any)
and to the output layer. The network learns by adjusting the weights and biases of connections
between neurons during training. ANN models have numerous hyperparameters, including the
number of hidden layers, neurons per layer, activation functions, learning rate, and
regularization techniques. We used a systematic approach, such as grid search or random
search, in conjunction with cross-validation to find the optimal set of hyperparameters for our
specific problem [5].
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Figure 3.16: Comparison between biological neuron and artificial neuron [49]
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3.1.4 Group-wise Model Comparison and Selection

The main driving factor for categorizing the models into distinct groups was the differing
requirements of various variables in our predictive framework. Notably high degree of
confidence in total steam production prediction and the demands for managing extrapolation in
power models and a necessitated such a grouping.

Quantile-Based Performance

In the context of total steam production prediction, quantile-based performance metrics
play a crucial role. We evaluate the models based on the following quantile-based criteria:

1) Coverage Probability: The proportion of observed values that fall within the 95%
prediction intervals. The desired value for this metric is 0.95 or higher,

2) Performance metrics: Various performance metrics, including Mean Absolute Error,
Mean Relative Error, and R-squared, were used to evaluate the models, providing
insights into their accuracy and precision.

Auxiliary Performance

Models predicting auxiliary variables where selection was based common metrics, this is
also why the group was originally named auxiliary as this grouping is made out of less essential
streams, these metrics therefore are:

1. Performance metrics: Various performance metrics, including MAE, MRE and R? were
used to evaluate the models, providing insights into their accuracy and precision.

2. Model complexity: The complexity of the models was considered, with a preference for
simpler models that offered similar performance to more complex ones to minimize the
risk of overfitting and improve model interpretability.

Power generation/transfer Performance

__As previously mentioned, the creation of a turbine model capable of calculating
whp=0 using data that may have a different distribution than the data on which it was

generated
trained. Hence both, the extrapolation capability and regression metrics of the models need to

be taken into account.

1. Performance metrics: The models were evaluated using a range of performance metrics,
such as MAE, MRE, and R?. These metrics provided valuable insights into the accuracy
and precision of the models.

2. Extrapolation capability: The models' ability to extrapolate beyond the training data was
examined using the Standardized Mean Error (SME), with Linear Regression (LR)
serving as the benchmark. This analysis allowed for a comparison of the performance
of more complex models in terms of their ability to handle extrapolation.

The model that best balances the criteria across all three groups and demonstrates the
optimal combination of predictive performance, complexity, and generalization ability is
selected as the final model for predicting it’s assigned variable.
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3.2 Model Development and Performance Evaluation

In this chapter, the selected machine learning models are developed and evaluated.
Building upon the outlined methodology. The specifics of model development, validation,
performance evaluation, and final selection are explored. Emphasis is placed on the
implementation details and customization of the models to address the problem at hand, while
validating their performance and evaluating their effectiveness in predicting steam production.

Data is split into three sets: train (80% of data from 2011 to 2015), validation (remaining
20% of data from 2011 to 2015), and test (year 2016), as visualized in Figure 3.17. Year 2017
is excluded due to the large gap in the dataset, aiming to calculate the annual benefit of this
approach.

Train, Validation, and Test Splits

—— Train Test

— 10 Validation —— Removed
=
=
S 8
)
=
L 6
2
s
5 4
z
o
=

2

2011 2012 2013 2014 2015 2016 2017 2018

Figure 3.17: Visualization of Train/Validation/Test split along with unused data.

3.2.1 Data Pre-processing

Following the general process outlined in the methodology sections, data pre-processing
is tailored to the specific dataset and problem. The results and specifics of the data pre-
processing approach applied to this dataset are presented.

Handling Missing Values

Analysis of the dataset revealed 8.1% of the data points with missing key values. As
discussed in the methodology section, the decision was made to remove these rows from the
dataset.

Outlier Detection and Removal

After applying the Z-score outlier removal method and filtering out non-standard
operation days, a total of 35877 datapoints remained, approximately 4 years' worth of data. Half
of the year 2011 and most of the year 2012 were largely removed as they fell outside the
distribution of the test dataset (see Figure 3.18 and Figure 3.19).
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Figure 3.18: Showcase of the total available data of total steam generated along with the
cumulative counts of removed and available values.
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Figure 3.19: Removed values by year and season.

In summary, the data pre-processing approach resulted in a cleaned, encoded, and
normalized dataset containing approximately 4 years' worth of data points and 139 features,
ready for model development and evaluation.
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3.2.2 Model Development: General Process
A general model development process was adhered to for all groups of machine learning
models, comprising of the following steps:

1. Model Development: Depending on the chosen model, the appropriate libraries and
settings were used (e.g., LGBM library for LGBM Quantile models).

2. Parameter Tuning: A range of hyperparameters was explored, and random search in
combination with cross-validation was used to find the optimal set of hyperparameters
for each model.

3. Model Training: Models were trained using the optimal set of hyperparameters and the
pre-processed dataset. Performance was evaluated using cross-validation and the
performance metrics

Group 1 - ANN, LR, and LGBM Quantile Models

For the first group of machine learning models, the general model development process
was followed. Specific steps unique to each model in this group include:

e LGBM: The objective function was set to 'quantile’ and an appropriate quantile value
was specified.
e Linear Regression and Artificial Neural Networks: Custom loss function was created.

Group 2 - AUXILIARY Models

The general model development process was adhered to, with one notable exception: the
top 7 features, as determined by the feature importance function of LGBM (refer to Figure
3.20), were utilized. This strategic selection of key factors was beneficial for both LR and ANN,
as these models encountered difficulties handling an excessive number of unhelpful columns.
In certain instances, the inclusion of these columns resulted in significant underperformance of
the models. However, it is noteworthy to mention that this limitation on the number of factors
did not compromise the efficacy of the models, as evidenced by their satisfactory performance.

LGBM Feature Importance

mst_sf_demi_lag27
mst_sf_demi_lag48
mst_sf_demi_lag28
mst_sf_demi_lag26
mst_sf_demi_lag25
t_avg
boilers_active
de_air

total_steam

mst_sf_demi_lag24

o

50 100 150 200 250 300 350 400
Importance Score

Figure 3.20: LGBM importance score for pre-heating steam LGBM auxiliary model.

Second difference for this group was the incorporation cascade. The resulting correlation
matrix and order the of prediction (from top to bottom) depicted in Figure 3.21.
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Correlation Matrix and Order of Prediction
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Figure 3.21: Correlation matrix for auxiliary steam usage ordering.
Group 3 - Turbine Power Generation and Transfer Models

In the development of these models, we placed a significant focus on simplicity and
interpretability, adhering to the standard model development process. In the context of power
generation, we chose to forgo the use of lag columns and temporal variables. This decision
ensures that the generated power is fundamentally tied to the steam in the turbine and the
prevailing weather conditions, aligning with the specifications detailed in the previous chapter.
For the model of power transfer, our approach was to exclusively use data on power generation
and temporal aspects. This strategy helps capture the dynamics of the plant's internal electricity
consumption more accurately.
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3.2.3

Model Comparison and Selection

For each model group, the performance was evaluated based on the criteria outlined in
the methodology chapter. The model that offered the optimal blend of performance, complexity,

and generalizability within each group was selected. The models selected for each group are as
follows:

Group 1 - Total steam production:

When the performance of the models was compared at the 5% quantile, the results were

clear. The LGBM model was found to be the most viable candidate based on the results shown
in Figure 3.22.
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Figure 3.22: Comparison of algorithms’ capability to predict total steam production flowrate
using quantile loss parameter g = 0.05.

To ensure the results were not caused by the poor model quality, the same models were
compared with the quantile parameter set to 50%. Despite increased competitiveness among
the models in this setting, the LGBM model was found to perform the best Figure 3.23.
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Figure 3.23: Comparison of algorithms’ ability to predict total steam production flowrate

defined quantile loss parameter g = 0.5 (mean).

Group 2 - blow-off, deaerator, external consumption, pre-heating:

Blow off (Figure 3.24) and deaerator air steam (Figure 3.25) models exhibited relatively

simple behaviour, efficiently captured by the linear regression model.
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Figure 3.24: Comparison of algorithms’ ability to predict blow-off flowrate.
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Deaerator Model Comparison
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Figure 3.25: Comparison of algorithms’ ability to predict deaerator flowrate.

The external consumption (Figure 3.26) presented a more complex scenario Since it is
controlled by an external company, there are no internal variables that could provide meaningful
insight. In this case, the LGBM was found to be the most suitable model by a thin margin.

External Consumption Model Comparison
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Figure 3.26. Comparison of algorithms’ ability to predict deaerator flowrate.

For the pre-heating self-consumption in Group 2, the LGBM was found to perform the
best across all metrics (Figure 3.27). However, it is important to note that the R? score across
the models suggests that reassuring results were not yielded by any of the algorithms.
Thankfully, the impact of this stream is minimal, as it is solely used for live extraction.

Furthermore, considering the low overall value of the pre-heating flow rate and the small MRE,
the results are deemed satisfactory.
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Figure 3.27: Comparison of algorithms’ ability to predict pre-heating self-conception

Group 3 - Power generation and transfer:

flowrate.

As stated in chapters 3.1.1, challenge of the third group is not the performance of the
models’ themselves (Figure 3.28 and Figure 3.29), but trustworthiness of theirs outputs when

given data unaffected by bypass.

Power Generation Model Comparison
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Figure 3.28: Comparison of algorithms’ ability to predict generated power.
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Power Transferer Model Comparison
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Figure 3.29: Comparison of algorithms’ ability to predict transferred power to gird.
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Great performance in the modelling of power generation was shown by the LR model but
potential limitations was recognized, particularly concerning the correlation between power
generation and weather. This significant correlation was acknowledged by both plant operators
and Tous et al., and further emphasized by the feature importance function of the LGBM model
(Figure 3.30) and the LR approximation equations (3.6) and (3.7)>.

It was presumed that, with more detailed data about steam quality for power generation -
such as pressure and temperature, or further information about the plant's power self-
consumption - models like ANN or LGBM might exhibit improved potential for future
refinement. Nevertheless, their extrapolative capabilities could be limited.

Wgenerated,LR = 2.548 - 7/7"1'51:,turb.inflow +0.146 - tavg —0.693 - mst,extracted —0.029 (3 6)
Ry +7.23 '
Weransperreair = 2477 - day — 0.005 - to, + 0.037 - hyy, — 0.047 - month
— 0.374 - boilers count + 0.003 - hour + 4.360 (3.7)

Where:

Mgt rurb.inflow 1S total turbine steam inflow, t,,, is average temperature, g exiractea 1S
turbine uncontrolled extraction flowrate, hg,,4 is average relative humidity, day is a day of a week,
month is a month of a year and boilers count is count of boilers active.

A) LGBM Feature Importance B) LGBM Feature Importance
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Figure 3.30: Feature importance — LGBM model. A) Power generated model, B) Power
transferred model.
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A test was conducted, wherein models were trained on original data and extrapolated by
supplying them with steam flow rates unaffected by bypass. The LR model, due to its clear
correlation between inputs and outputs, offered a robust benchmark against which the LGBM
and ANN models were compared. Signed mean error and sum ratios at various quantiles
(gt total < Q33; Q33 < Mgy toral < Q66; Q66 < Mg rora) Were Utilized to detect possible
biases. It was anticipated that any model exhibiting a larger bias or significantly lower total sum
would indicate ineffective extrapolation.

From the results (Figure 3.31 and Table 3.4), it was observed that the LGBM model was
unable to extrapolate effectively - an expected outcome, given that tree-based methods like
LGBM frequently struggle with extrapolation due to their inherent nature of capturing patterns
within the range of the training data, but lacking the capacity to predict beyond that range [5].

2 The equation inputs are to be normalized using their standard deviation and mean from the training set.
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In contrast, the ANN model exhibited a high level of extrapolative competence, leading to its
selection as the algorithm of choice for future implementation.

A) Signed Mean Error for ANN and LGBM in Different Quantiles B) Signed Mean Error for ANN and LGBM in Different Quantiles
Power Generated Power Transferred
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Figure 3.31: Signed Mean Error of LGBM vs LR and ANN vs LR comparisome.
A) Power generated model, B) Power transferred model.

Table 3.4: Sum ration of LGBM and ANN for power generation and transfer comparison.

> model ratio Q33 Q66 Q99
Power Generated >LGBM /3 LR 0.97 0.95 0.85
Y>ANN />LR 0.99 0.98 1.00
> model ratio Q33 Q66 Q99
Power Transferred >LGBM /> LR 0.99 0.99 0.86
>ANN />LR 1.00 1.00 1.00

Upon analysing the results in the context of the three groups, the optimal models for each
variable were identified.

Table 3.5: Selected models with their corresponding metrics.

Variable predicted Best Model R’ MAE MRE
Total Steam Production LGBM 0.75 6.32 0.06
Blow-off LR 0.62 0.13 0.04
Deaerator LR 0.42 0.56 0.13
External Consumption LGBM 0.74 0.77 0.4
Pre-Heating LGBM 0.1 0.36 0.11
Power Generation ANN 0.99 0.43 0.06
Power Transferred ANN 0.99 0.14 0.04
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3.2.4 Predictive Accuracy and Economic Impact

In the pursuit of establishing a model for power transfer with defined risk of
overestimation, it was observed that the system's predictability was associated with the accuracy
of the estimated of total steam generated. The visualization of this correlation in KDE plots,
where residuals of total steam generated were compared against residuals of power produced
(Figure 3.32 — A) revealed that the data points aligned closely to the diagonal, thereby
signifying a robust correlation between these variables. On the other hand, the concentration of
residuals from total steam generation, when compared with those of external consumption,
tended to cluster towards the centre (Figure 3.32 — B) suggested a more stochastic behaviour.
The observation of such stochastic behaviour was not entirely unexpected as the control over
external factors is uncontrolled and the current dataset does not provide any internal variables
that could feasibly enhance the predictive capacity in this regard.

A) B)
30 30

20 20

total steam residua [t/h]
Q
total steam residua [t/h]

—4 -2 0 2 4 —4 —2 0 2 4
Power transferred residua [MWh] External consumpion residua [t/h]

Figure 3.32: Residaul KDE plot comparing total steam prediction residua distributioin with
A) Power transferred residas, B) External consumprion residuas.

The selection of q = 0.05 was made with the expectation that it would result in an
overestimation rate of approximately 5%. Without constructing a tolerance interval similar in
width to that of power transfer (1/16 of the mean), an overestimate rate of 20% would be
observed instead (Figure 3.33). Taking into account the inherent variability of waste and the
absence of factors enabling more robust boiler modelling, this outcome is considered
satisfactory.
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Figure 3.33: Residual KDE plot with overall success rate of total stem forecast

A) without tolerance interval, B) with tolerance interval.

Electricity Delivery Predictive Accuracy

The methodology implemented was demonstrated to have attained an average predictive
accuracy of 95% within the £0.5 MWh interval. The novel approach employed was effective in
pushing power transfer closer to its full potential, a significant improvement when compared
with the current approach (as illustrated in Figure 3.34).

Consequently, a more optimal plan was established relative to the existing strategy. The
average difference between the two plans was noted to be 13%, with an increase to 89% of
maximal potential from the current 79%.
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Figure 3.34: Residual KDE plot with overall successrate of power transferred. A) Novel

aproach, B) current aproach.
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Throughout the year, the model maintained a consistent success rate, except for a notable
drop in accuracy during December. This anomaly might be attributed to increased steam

production, which, in relative terms, reduced the protective effect of the £0.5 MWh buffer zone,
potentially impacting the model's prediction accuracy.

Success Rate by Month

Success Rate (%)

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Winter Spring Summer Fall

Figure 3.35: Success rate of power transferred predictions througjout the year.

Figure 3.36 serves as visual representations of characteristic periods across all four
seasons, highlighting the subtleties of the prediction failures and the differences between the
two approaches. It is worth noting that as the bypass usage was minimal during
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Figure 3.36: Cross-seasonal comparison of novel and current method for representative
time frames with local success rate of a novel approach.
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Financial assessment

In the financial assessment, it was assumed that the contractual price for electricity
transferred to the grid would not significantly deviate from day-ahead market prices. Therefore,
electricity prices provided by OTE, a.s., a key operator in the electricity and natural gas markets
in the Czech Republic [51], were utilized.

In the case of underestimation, the option to utilize the bypass was available, resulting in
a minor penalty due to violation of the heat delivery contract. However, in cases of
overestimation, the contractual obligations could not be met, leading to a more substantial
penalty as illustrated in Figure 3.37.The penalties for the two scenarios were determined using
different coefficients: Cy = 0.15 for underestimation and C, = 3 for overestimation. The penalty
for contract violation in this study was computed using equation (3.8).

pentaly = |Wtransfered - Wcontract' ' POTE -C (3'8)
Where:
Wiransferea 1S power transferred to the grid, W nerace is power to be delivered in day-ahead
contract, Porg IS price of electricity on day-ahead-market, C is a coefficient that varies
depending on whether the production was underestimated or overestimated, with values of 0.15
and 3, respectively.

plan vs production

2>
ezid

Wtrans. = plan

/ Underestimated plan: AOverestimated plan: \
Whrans. < Wiedl, — 0.5 Wirans. > Wiesl +0.5

Power transfer

can be regulated by can’t be regulated
using by-pass. resulting in large fines.

pena]ty - |mm"s' - Vl/r:ﬁglls' . PDTE ‘ Cu _

—_—_—— e — =

profit = Wyrans. - Porg — Z penalty

Figure 3.37. Power delivery profits calculation.
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Comparing the novel approach with the current strategy, the estimated yearly profit
increase was approximately 2.6 million CZK (Figure 3.38).
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Figure 3.38: Fines and profits for both novel and current approach.

Despite the lower success rate in December, the novel model still outperformed the
current strategy. Since bypass usage was most prominent in colder months (Figure 3.7), the
largest profit increase was observed outside Q3 (Figure 3.39).
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Figure 3.39: Quarterly profits for both novel and current approach.
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Chapter 4: Conclusion

The objective of this thesis was to construct a machine learning model that forecasts the
combined heat and power production of Waste-to-Energy plants, employing weather, temporal
data, and production history as inputs. The Main task for this model is total power production
forecast with a high degree of certainty, as if the production value does not fall within +0.5
MWh of plan, plant faces severe fines. The plan should strive to be less risk averse while still
economically viable.

For this purpose, we have chosen three popular machine learning algorithms of varying
complexity — Linear regression (LR), light gradient boosting machine (LGBM) and artificial
neural network (ANN) representing low, mid, and high levels of complexity, respectively. The
model itself is made of 7 sub-models, going in sequence from steam generated in boilers to
power transferred to grid. Excluding turbine live steam extraction (which is grey box
algorithm), all the other variables were predicted using the three aforementioned algorithms.
We used various metrics (R2 score, MAE, interpretability...) to select the best model for each
variable.

The residuals analysis revealed that the prediction errors of total steam production
attributes to 80% of the mean absolute error in power transferred. The goal of constructing a
plan with a high success rate (where success is defined as not overestimating power production
by more than 0.5 MWh) led to the implementation of quantile models with a parameter of q =
0.05, which aimed for a 5% overestimation of steam produced. Additionally, to enhance the
predictive utility of auxiliary streams, including external consumption, blowoff, deaerator, and
preheating steam consumption, we employed a correlation matrix-based cascading of
predictions.

To account for larger turbine inflow resulting from the minimization of bypass usage, the
power generation data was extrapolated. This tested the model on data exhibiting a different
distribution, as frequent bypass usage was observed in the training data. Subsequently, a
verification process was conducted to ensure that the models did not fail when extrapolating, a
known concern for data-driven models. During this process, the LGBM model was found to
exhibit signs of failure during extrapolation, an outcome anticipated for tree-based algorithms.

Applying the model to data from the year 2016, we achieved a success rate of 95%. Of
these successful cases, 43% fell within the tolerance field, with the remainder slightly
underestimating it. In contrast, the current strategy yielded a 100% success rate, but only 34%
of these cases were within the tolerance interval. The results showed an overall increase in profit
for our model by 2.6 million CZK. Notably our model outperformed the current strategy in
every fiscal quarter, generating 13% more power for the grid while operating at 89% of its
potential maximum.

Future work should concentrate on further optimization. Our current approach primarily
targets bypass minimization, not taking into account factors such as heat prices or contract
availability. To advance in this direction, we require higher-quality data and more
comprehensive information about contracts. Additionally, if renewable energy sources like
solar power were to be included, or if a longer timeframe were to be forecasted, the
implementation of market price forecasting algorithms could prove beneficial.
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