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ABSTRACT 

Human milk oligosaccharides (HMOs) have specific biological functions. Such 

functions may include prebiotic activity, anti-adhesive activity, anti-inflammatory properties, 

and a role in brain development. HMOs serve as prebiotic compounds that can selectively 

stimulate the growth and activity of intestinal bacteria especially bifidobacteria that contribute 

health and well-being. Bifidobacterium longum can be found as a component of the 

gastrointestinal micro flora of breast-fed infants and adults that play an important role in the 

maintaining and promoting of human health by eliciting a number of beneficial properties. 

Bifidobacterium longum subspecies longum and infantis can utilize a diverse range of dietary 

carbohydrates and are able to grow on human milk oligosaccharides. 

Our aims were to isolate oligosaccharides from human human, sheep and goat milk. 

Additional aims were to test the ability of B. longum ssp. longum and B. longum ssp. Infantis 

to grow in human milk and to utilize human milk oligosaccharides.  

HMOs were isolated by using by gel-filtration chromatography (GLC) and screened the 

fractions by Thin-layer chromatography (TLC). Five strains of bifidobacteria of human origin 

and 2 strains of bifidobacteria of animal origin were tested for growth in milk samples by 

using microtiter plate technique.  

Human milk selectively stimulated the growth of specific bifidobacterial strains. 

Bifidobacteria of human origin utilized HMOs in contrast with Bifidobacteria from animal 

origin. Growth of Bifidobacteria strains were accompanied by a decrease of pH. There were 

significant differences (P < 0.05) between bacterial counts of B. bifidum and B. animalis in 

milk samples tested. 

 

 

Keywords: Probiotics, Prebiotics, Human milk oligosaccharides, Bifidobacteria. 
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1. INTRODUCTION 

Probiotics and prebiotics play an important role in human nutrition. In recent years there 

has been a significant increase in research on the characterization and verification potential 

health benefits associated with the use of probiotic and prebiotic. The concept probiotic is 

defined by a United Nations and World Health Organization Expert Panel as “live micro-

organisms which when administered in adequate amounts confer a health benefit on the host. 

Lilly and Stillwell (1965) defined probiotics as substances produced by one microorganism 

that promoted the growth of another microorganism. To improve and help the health of 

infant’s which can not get mother’s milk at born prebiotics has been an alternative. In the term 

prebiotic the preposition “pro” was exchanged for “pre” which means “before” and has been 

defined as a non-digestible food ingredient that beneficially affects the host by selectively 

stimulating the growth and/ or activity of one or a limited number of bacteria in the colon 

(Gibson and Roberfroid., 1995). A more recent definition of the term is ‘‘a selectively 

fermented ingredient that allows specific changes, both in the composition and/or activity in 

the gastrointestinal microbiota that confers benefits upon host wellbeing and health’’ (Gibson, 

et al., 2004). Main prebiotic oligosaccharides are: Galacto-oligosaccharides (GOS), Fructo-

oligosaccharides (FOS), Isomalto-oligosaccharides (IMOS), Xylo-oligosaccharides (XOS) 

and human milk oligosaccharides (HMOs).  

Human milk contains a high concentration of diverse soluble oligosaccharides that are 

carbohydrate polymers formed from a relatively small number of different monosaccharides. 

Human milk, which nourishes the early infants, is a source of bioactive components for 

the infant growth, development and commensal formulation as well. Beefits of mother’s milk 

is given by specific compounds known as human milk oligosaccharides. Feeding infants' 

breast milk of healthy mothers is associated with a lower incidence of infectious and allergic 

diseases. The amount of oligosaccharides in milk of most animal species is low compared 

with human milk. Although most mammalian milk contains oligosaccharides, 

oligosaccharides in human milk exhibit unique features in terms of their types, amounts, sizes, 

and functionalities. In addition to the prevention of infectious bacteria and the development of 

early immune system, human milk oligosaccharides are able to facilitate the healthy intestinal 

microbiota.  

Bifidobacteria as a probiotic bacteria have been emerged on the food market for more 

than 10 years, and considered as important probiotics and used in the food industry to relieve 
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and treat many intestinal disorders. Bifidobacteria is gram-positive, non-motile, non-spore 

forming, anaerobic bacteria with irregular cell morphology. They are naturally found in the 

human gastrointestinal tract (GIT). They colonize the intestine of newborn children within the 

first few days after birth and in breast-fed infants represent up to 95% of the intestinal 

microflora. The most frequently detected species in the faeces of breastfed infants are 

Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium bifidum. The amount as 

well as species distribution of bifidobacteria changes depending on age. 

 Bifidobacteria exert a range of beneficial health effects, including the regulation of 

intestinal microbial homeostasis, the inhibition of pathogens and harmful bacteria that 

colonize and infect the gut mucosa, the modulation of local and systemic immune responses 

and absorption of minerals and vitamins. 
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2. REVIEW OF LITERATURE  

Probiotics, synbiotics and prebiotics 

2.1. Probiotics 

The concept of probiotics emerged from observations early in the 19
th

 century by 

Russian immunologist Elie Metchnikoff, who hypothesized that the long and healthy lives of 

Bulgarian peasants were rooted in their consumption of fermented milks containing beneficial 

Lactobacillus, and the positive effect of these microbes on colonic health (Dixon, 2002). The 

word ‘‘probiotics’’ was initially used as an antonym of the word ‘‘antibiotic’’. It is derived 

from Greek words pro and biotic and translated as ‘‘for life’’ as mintioned by Hamilton, et 

al., (2003). Lilly and Stillwell (1965) defined probiotics as substances produced by one 

microorganism that promoted the growth of another microorganism. 

 Parker (1974) was the first to use the term probiotic in the sense that it is used today, he 

defined probiotics as “organisms and substances which contribute to intestinal microbial 

balance’’. Fuller (1997) attempted to improve Parker's definition of probiotic as “a live 

microbial feed supplement which beneficially affects the host animal by improving its 

intestinal microbial balance". Salminen, et al., (1998) defined probiotics as “foods which 

contain live bacteria which are beneficial to health", whereas Marteau, et al., (2002) defined 

them as “microbial cell preparations or components of microbial cells that have a beneficial 

effect on the health and well being".  

Some modern definitions include more acurately a preventive or therapeutic action of 

probiotics. Charteris, et al., (1997) defined probiotics as “microorganisms, which, when 

ingested, may have a positive effect in the prevention and treatment of a specific pathologic 

condition".  

Currently probiotic is defined by a United Nations and World Health Organization 

Expert Panel as “live micro-organisms which when administered in adequate amounts confer 

a health benefit on the host” indeed FAO/WHO (2002).  
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2.2. Synbiotics 

  Synbiotics are mixtures of probiotics and prebiotics were firstly defined in 1995 by 

Gibson and Roberfroid. That mix would benefit the host by improving implantation and 

survival of the selected microbial supplements. The potential benefit of synbiotics is that they 

may increase both the gut delivery efficacy and the activity of the beneficial organism within the 

gut, although the evidence that they can actually achieve this is still not clear (Worthley et al., 

2009). Because of the nutritional benefits associated with microbiota management 

approaches, foods are the main vehicle for probiotics, prebiotics and synbiotics. However, 

there may also be potential pharmaceutical applications, but till now most evidence for that is 

hypothetical. 

2.3. Prebiotics 

The term prebiotics was introduced by Gibson and Roberfoid (1995) as an alternative 

approach to the modulation of the gut microbiota, prebiotics have been used and these are 

defined as nondigestible food ingredients that beneficially affect the host by selectively 

stimulating the growth and/or activity of one or a limited number of bacterial species already 

resident in the colon. A more recent definition of the term is ‘‘a selectively fermented 

ingredient that allows specific changes, both in the composition and/or activity in the 

gastrointestinal microbiota that confers benefits upon host wellbeing and health’’ (Gibson, et 

al., 2004). Any dietary ingredients that can reach the colon have the potential of being a 

prebiotic. However, according to fulfil the criteria, it should be able to resist the digestion 

process, which involves gastric acids, intestinal brush border and pancreatic enzymes, and 

gastrointestinal absorption, and be selectively fermented by especific genera of colon bacteria 

(Lomax and Calder, 2009). Gibson, et al., (2004) observed that not all dietary carbohydrates 

are prebiotics, and obvious criteria need to be established for classifying a food ingredient as a 

prebiotic. These criteria are 1- Resistance to gastric acidity, to hydrolysis by mammalian 

enzymes, and to gastrointestinal absorption. 2- Fermentation by intestinal microflora. 3- 

Selective stimulation of the growth and/or activity of those intestinal bacteria that contribute 

to health and well-being.  

Resistance, in the first criterion, does not necessarily mean that the prebiotic is 

completely indigestible, but it should guarantee that a significant amount of the substance is 

available in the intestine (especially the large bowel) to serve as a fermentation substrate. 

Although each of these criteria is important, the third one is the most difficult to fulfill. 
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2.3.1. Prebiotics oligosaccharides  

Prebiotics oligosaccharides (see table 1) have been defined as carbohydrates with a 

degree of polymerization (DP) from 2 to 10. However, oligosaccharides have recently been 

variously defined as a DP ranging from 2 to 20 or more. Recently, the International Union of 

Biochemistry and International Union of Pure and Applied Chemistry (IUB-IUPAC) Joint 

Commission on Biochemical Nomenclature stated that the borderline between oligo- and 

polysaccharides can not be drawn so strictly. However, the term oligosaccharide is commonly 

used to refer to defined structures as opposed to a polymer of unspecified length. The same 

approach is used for oligosaccharides of non human-milk origin as long as they have defined 

structures (Chapman and Hall, 1990).  

Free oligosaccharides are natural constituents of all mammal milks. In comparison to 

human milk, the concentrations of oligosaccharides in these milks are much lower, and their 

structure is less complex as mentioned by Boehm and Stahl (2004, 2007).  

Main oligosaccharides are: 

Galacto-oligosaccharides 

Fructo-oligosaccharides 

Isomalto-oligosaccharides 

Xylo-oligosaccharides 

Human milk –oligosaccharides 

Table 1 Some candidate prebiotic compounds. 
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2.3.1.1. Galacto-oligosaccharides  

Galacto-oligosaccharides (GOS) are principally formed by enzymic treatment of lactose 

by β-galactosidase to produce several oligomers of different chain lengths (Prenosil, et al., 

1987). Galacto-oligosaccharides can be produced from lactose in cow’s milk, but the main 

raw material for its production for commercial products is usually whey-derived lactose 

(Yanahira, et al., 1995). Further more GOS are stable at high temperatures in acidic 

conditions and the calorific value of these oligosaccharides is only 1.7 kcal/g. Which makes 

them of particular interest to the food and drink industry, for both their prebiotic properties, 

and their use as sweeteners, especially in confectionary, acidic beverages and fermented milks 

(Watanuki, et al., 1996)? Galacto-oligosaccharides are nondigestible, carbohydrate-based 

food ingredients that can enhance health related physiological activities (production of short 

chain fatty acids (SCFA), energy transduction in colonocytes, growth, and cellular 

differentiation of colonic epithelial cells, lipid, and carbohydrate metabolism), which can 

expand protection from infection; decrease the number of potentially pathogenic bacteria; 

facilitate the normal functions of the gut; stimulate the absorption of some minerals and 

decrease blood lipids content (Broek, et al., 2008). Prebiotic selectively increase the 

beneficial microbiota of the intestine, leading to health benefits that are extensively 

recognized by Macfarlane, et al., (2008). Because of their stability, GOS can be integrated 

into a wide variety of foods, where they have a pleasant taste, and can increase the texture and 

mouthfeel of foods, as well as acting as bulking agents. Because of this, GOS and fructo-

oligosaccharides (FOS) are presently used in a wide range of commercial goods, including 

infant formulas, dairy products, soups, sauces, breakfast cereals, beverages, snack bars, ice 

creams, bakery products, animal feeds, and as sugar replacements (Yang and Silva, 1995).  

2.3.1.2. Fructo-oligosaccharides 

Fructo-oligosaccharides (FOS) are non-traditional sugars that can not be hydrolyzed by 

gastrointestinal enzymes. They have a low caloric value and can raise beneficial effects to the 

host via the selective stimulation of indigenous bacteria like bifidobacteria and lactobacilli 

(Mussatto and Mancilha, 2007; Teitelbaum and Walker, 2002). 

A. Description and structure  

Fructo-oligosaccharides among the group of oligosaccharides and are isolated from 

plants. They consist of three to ten monosaccharide units joined by α-glycosidic bonds (1-2) 

between terminal fructose and glucose (Tamine, et al., 1995). Perrin, et al., (2002) reported 

that the term FOS indicates to the inulin-type fructans. In the natural sources of FOS, the 
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molecule size is widespread (DP ranging from 2 to 60). Because the biological activity of 

prebiotics depends on the molecular size, it is mostly important to consider the molecular size 

allocation for reviewing clinical data on fructans. Long chain FOS are prepared from inulin 

from which the short chain FOS (DP 2–6) have been largely removed and then contain 

predominantly large molecules with a DP between 7 and 60. Roberfroid (2007) reported that 

FOS is produced by a totally different method. Using the fungal enzyme beta-fructosidase, 

derived from Aspergillus niger, FOS is enzymatically synthesized using a process called 

transfructosylation. Flamm, et al., (2001) have estimated the caloric value of FOS and found 

that the energy yield for the host would be in the range of 1.5 kcal/g to 2.0 kcal/g. Roberfroid, 

(1993) reborted that, by using method founded on lipogenesis balance stated that the caloric 

value of FOS from 1.0 to 1.5 kcal/g. 

Fructo-oligosaccharides are ready in some foods such as chicory, yacon, artichoke, 

garlic onion, tomato, wheat, asparagus, leek, honey, rye, brown sugar, barley, triticale, beer, 

lettuce, burdock, beet root, apples, bulbs like red lilies, and oats (Table 2).  

 

Table 2 Natural occurrence of fructooligosaccharides was described by Mitsuoka, et al., (1987); Roberfroid, et al., 

(1993) and Modler (1994). 

 

B. The effects   

Gibson and Wang, (1994); Roberfroid, et al., ( 1998) reported that FOS and inulin have 

bifidogenic impact on host when consumed at a dose of 5g/day for oligofructose and ≤ 8 



2. REVIEW OF LITERATURE 

                                                      8 

 

g/day for inulin, they importantly modify the composition of the intestinal (faecal) flora, 

selectively increasing the numbers of Bifidobacteria and reducing the deleterious bacteria.  

2.3.1.3. Isomalto-oligosaccharides  

Isomalto-oligosaccharides (IMO) are produced from glucose by enzymatic 

transgalactosylation (Hayashi, et al., 1994; Vetere, et al., 2000). It is a sugar replaces with 

40% of the sweetness of sucrose and has been used widely in different foods and drinks 

(Kaneko, et al., 1995). Isomalto-oligosaccharides have been used as a sweetener in Japan for 

years. It is made from starch and consists mainly of oligomers with two to four degrees of 

polymerization, such as isomaltose, panose and isomaltotriose; these oligomers contain α 1 

→6 glucosidic linkage (Kohmoto, et al., 1991). They resist endogenous digestion was record 

by Kohmoto, et al., (1992).  

A. Description and structure    

Isomalto-oligosaccharides are found naturally in different fermented foods such as sake, 

miso, or soy sauce but also in honey (Playne and Crittenden, 2004). The IMO means glucosyl 

saccharides with only α-(1→6) linkages; commercial IMO syrup is generally accepted as a 

mixture of glucosyl saccharides with both α-(1→6) linkages and α-(1→4) linkages (Yun, et 

al., 1994). Moreover, branched IMOs produced with dextransucrase, known as 

glucooligosaccharides (GOSs) (Paul, et al., 1992; Remaud-Simeon, et al., 1994), oligodextran 

created by controlled-hydrolysis of dextran (Mountzouris, et al., 2002), and non-reducing 

IMO-alditols produced through dextransucrasecatalyzed glucosylation of alditols such as 

mannitol, glucitol, maltitol, (Demuth, et al., 2002) are also assumed as IMOs. Branched IMOs 

(GOS) produced from saccharose and maltose by Leuconostoc mesenteroide enzymes were 

tested in vitro by substrate utilization tests with sundry human gut bacteria (Djouzi, et al., 

1995; Wichienchot, et al., 2003) and in vivo in gnotobiotic rats inoculated with human fecal 

flora (Djouzi and Andrieux, 1997). 

B. The effects   

Isomalto-oligosaccharides have obtained interest as food additives because they can 

replace partially or totally, liquid sugar syrups, giving new functionalities to the product. 

Indeed, IMO are about half as sweet as saccharose and therefore can be used to produce 

different sweetness profiles. They can also be added to beer as non-fermentable sugar syrups 

to adjust sweetness and mouthfeel. They have been identified as good humectants with low 

viscosity and water activity but highmoisture retaining capacity (Takaku, et al., 1988). Thus 

are, they, able to maintain texture, prohibit microbial damage, and retard degradation in food 
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(Yoo, et al., 1995). A recent study on the quality characteristics of sponge cake formulated 

using, in various proportions, IMOs as a sweetener to replace saccharose, which gave positive 

microbiological, physicochemical, and sensory evaluations (Ching-Ching, et al., 2008). 

2.3.1.4. Xylo-oligosaccharides 

Xylo-oligosaccharides (XOS) are naturally available in bamboo shoots, which are also 

produced from xylan, a major component of hemicelluloses (Vazquez, et al., 2000). Xylo-

oligosaccharides are made up of xylose units and can be produced by enzymatic hydrolysis 

from xylan, which is the major component of plant hemicelluloses and therefore readily 

available in nature (Domínguez, et al., 2003). Xylo-oligosaccharides are recorded to be 

preferentially fermented by bifidobacteria in vitro. Pure culture studies have indicated that 

XOS are metabolised by many bifidobacteria B. bifidum, B. longum, B. catenulatum, B. lactis 

and B. adolescentis (Crittenden, et al., 2002). 

A. Description and structure  

The structures of XOS differ in degree of polymerization (DP), monomeric units, and 

types of linkages. Generally, XOS are mixtures of oligosaccharides formed by xylose residues 

linked through β-(1→4)-linkages (Aachary and Prapulla, 2008). The number of xylose 

residues implicated in their formation can vary from 2 to 10 and they are known as xylotriose, 

xylobiose, and etc. For food applications, xylobiose (DP = 2) is considered to be a 

xylooligosaccharide (Vazquez, et al., 2000). 

Production of XOS can be achived by chemical methods, direct enzymatic hydrolysis of 

a susceptible substrate (Katapodis, et al., 2002), (Katapodis and Christakopoulos, 2005) or 

combination of enzymatic and chemical treatments (Kokubo and Ikemizu, 2004); (Yang, et 

al., 2005). 

B. The effects   

Xylo-oligosaccharides get better food quality, providing a change in physico-chemical 

characteristics, flavor and stimulating the activity of Bifidobacterium in the intestinal tract 

(Nakano, et al., 1998). The use of XOS as an ingredient in food products is due to their 

stability towards a wide range of pH (2.5 to 8.0) and temperature, the selective metabolism by 

bifidobacteria, the increased production of volatile fatty acids, the reduction of stomach ulcer 

lesions (Parajo, et al., 2004) and the acceptable odor (Hsu, et al ., 2004). Fooks and Gibson, 

(2002) reported that, mixtures of inulin: FOS and FOS: XOS were effective in preventing 

growth of E. coli and Salmonella enteritidis.  
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The antimicrobial potential displayed by each of the probiotics used appeared to be 

based on the carbohydrate source. In poultry, XOS decreased ileal lactic acid concentration, 

and increased cecal butyric acid and total volatile fatty acid concentrations. Xylo-

oligosaccharides were quickly fermented in the cecum, but had little influence on the overall 

bacterial community profile (Graham, et al., 2004). Xylo-oligosaccharides (alone or as active 

components of pharmaceutical preparations) display a range of biological activities vary from 

the prebiotic effects related to gut modulation. The other effects for XOS include antioxidant 

activity (conferred by phenolic substituents), blood- and skin-related effects, antiallergy, anti-

infection and anti inflammatory properties, immunomodulatory action, anti-hyperlipidemic 

effects. 

2.3.2. Health benefits of prebiotics  

The plurality of the effects demanded by the prebiotics are related with optimized 

colonic metabolism and function, such as an increase in the expression or change in the 

composition of short chain fatty acids, increased fecal weight, a reduction in luminal colon 

pH, a decrease in nitrogenous end products and reductive enzymes, an increased expression of 

the binding proteins or on definite biomarkers in the field of lipid and mineral metabolism and 

immune system modulation (Bournet, et al., 2002; Forchielli  and Walker, 2005).  

a) Effects on combinations of microbiota  

Prebiotics like FOS, trans-galactooligosaccharides (TGOS) and Inulin as well as their 

synbiotic combination with probiotic bacteria (strains of L. plantarum, L. paracasei, or B. 

bifidum) increased bifidobacteria and lactobacilli or inhibited different human- and animal 

pathogenic bacterial strains (Clostridium sp., E. coli, Campylobacter jejuni, Enterobacterium 

sp., Salmonella enteritidis, or S. typhimurium) in vitro in mice (Asahara, et al., 2001), piglets 

(Bomba, et al., 2002), or humans (Langlands, et al., 2004). Furthermore, a combination of 

prebiotics like polydextrose and lactitol influences the microbial ecosystem of the 

gastrointestinal tract of rat and promote the immune response by increasing the secretion of 

immunoglobulin.  

b) Immuno-modulatory effects   

The functional foods are recorded to promote the immunity of the consumers. In fact, 

the dietary ingredients and their fermentation metabolites are in close contact with the 

gutassociated lymphoid tissue (GALT) which is the part of the huge intestinal immune 

system. The presence of food in the small intestine may be important for adequate function 

and development of GALT (Scheppach, et al., 1992). Truly, Palma, et al., (2006) have 
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described that β-glucuse stimulate innate immune reactions by binding to selective receptors 

(such as dectin-1) mainly expressed on M2 macrophages.  

c) Effects on prevention of cancer 

Fermentation of prebiotics led to the production of short-chain fatty acids (SCFA) 

which expand many effects on colonic mucosa. Butyric acid is used by the epithelial cells of 

the colon mucosa as energy source, being in addition a growth factor (Bugaut and Bentéjac, 

1993).  

Recent preclinical studies have recorded that butyrate would be chemopreventive in 

carcinogenesis (Scheppach and Weiler, 2004) or protector agent against colon cancer by 

enhancing cell differentiation (Kim, et al., 1982). In vitro study on human colonic lines L97 

and HT29 (representing early and late stages of colon cancer), fermentation supernatant 

fractions of inulin showed a significant growth-inhibiting and apoptosis inducing effects in 

the human colon tumour cells.  

d) Effects on lipid metabolism 

Prebiotic has also been demonstrated to exert an effect on hepatic lipid metabolism. 

Inulin and oligofructan have shown a physiological effect on cholesterol and triglyceride 

levels in rats by decreasing postprandial cholesterolemia and triglyceridemia by 15% and 50% 

respectively (Delzenne, et al., 2002 and Fiordaliso, et al., 1995). 

 Recently, combination of high protein diet (HP) with a high fibre diet (HF) resulted in 

an increased anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1), and 

an progress on glucose tolerance or lipid profiles in HF diet and the diets containing inulin 

delayed the lowest plasma triglyceride and total cholesterol levels (Reimer and Russell, 2008) 

e) Effects on minerals absorption 

Effects of dietary factors on calcium absorption may be modulated by genetic factors, 

including specific vitamin D receptor gene polymorphisms (Abrams, et al., 2005). 

Furthermore, studies in animal models have shown increased calcium availability with inulin 

and oligofructose in the diet (Scholz-Ahrens and Schrezenmeir, 2007).  

Additionally, Lactobacillus and Bifidobacterium of populations were significantly 

increased in the caecal content microflora (Tako, et al., 2008). In rat model, both native Inulin 

and reformulated Inulin exerted similar effects as to caecal fermentation by production of 
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short-chain fatty acids, especially butyric acid and stimulation of Ca and P digestive 

absorption and affects the bone mineral density (Demigné, et al., 2008). 

2.4. Human milk oligosaccharides  

2.4.1. Description and structure 

Human milk oligosaccharides (HMOs) are complex glycans that are present at very high 

concentrations in human milk but not in infant formula (Bode, 2009). The amount of HMOs 

are differ depending on individuals and the lactation periods, while, it can reach up to 15 g/l 

which is equal to, or more than, the amount of proteins in human milk (Coppa, et al., 1993; 

Kuntz, et al., 2008). Human milk is a complex biological fluid consisting proteins, lipids, 

vitamins, carbohydrates, and minerals. Breast-fed infants mostly have promoted resistance to 

infectious diseases and better cognitive functions (Lawrence and Pane, 2007; Smith et al., 

2003). Erney et al., (2000) recorded that oligosaccharides are the third largest solid 

constituent of human milk after lactose and lipid.  

Monomers of human milk oligosaccharides 

Kunz and Rudloff, (2006); Bode, (2009) mentioned that HMOs are comprised by the 

five monosaccharides (Fig. 1.): D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine 

(GlcNAc), L-fucose (Fuc), and sialic acid (Sia; N-acetyl neuraminic acid [Neu5Ac]). 

 

 

Fig. 1 Components of oligosaccharides of human milk, drawing by Kunz and Rudloff, (2006). 
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The structures of HMOs (Fig. 2.) are very diverse and complicated. Having different 

compositions and glycosyl linkages, more than 200 isomers were found with various degrees 

of polymerization (DP 3 to 20). Regardless of their structural complexity, HMOs share some 

popular backbones. Most of HMOs have the lactose (Galβ1-4Glc) residue at the reducing end. 

 

Fig. 2 Structural composition of milk oligosaccharides. (Bode, 2009). 

 

Bode, (2009) reported that Gal in lactose can be sialylated in α-(2, 3) and/or α-(2, 6) 

linkages to form 3′-sialyllactose and 6′-sialyllactose, respectively. Lactose can also be 

fucosylated in α-(1, 2) and α-(1, 3) linkages to form 2′-fucosyllactose and 3′-fucosyllactose, 

respectively. These trisaccharides are called the short-chain milk oligosaccharides. To form 

the complex milk oligosaccharides, N-acetyllactosamine (Galβ1-3/4GlcNAc), lactose or 

polylactosamine backbone can be sialylated in α-(2, 3) and/or α-(2, 6) linkages and/or 

fucosylated in α-(1, 2), α-(1, 3), and/or α-(1, 4) linkages. Approximately 200 different 

complex oligosaccharides have been identified in human milk. 

2.4.2. Functions of human milk oligosaccharides  

A hundred years ago advantage of milk oligosaccharides started after observing that 

the carbohydrate fraction is most likely responsible for the development of a bifidogenic flora 

in breastfed children (Kunz et al., 2000). Nowadays, milk oligosaccharides are supposed to be 

useful for the human milk fed infant with consider to their prebiotic and anti-infective 

properties.  

Human milk oligosaccharides have certain biological functions. Like functions may 

include prebiotic activity, anti-adhesive activity, anti-inflammatory properties, modification of 

the entire complement of cell surface sugars, a role in brain development, influencing growth- 
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associated with characteristics of intestinal cells and absorption of minerals (Bode, 2006; 

Hickey, 2009; Kunz and Rudloff, 2006 and Newburg, et al., 2005). But, there are very few 

commercial products on the market that capitalise on these functions. This is fundamentally in 

order to the truth that the large quantities of human milk oligosaccharides needed for clinical 

trials are unavailable. In compare, commercial oligosaccharides such as galacto-

oligosaccharides and fructooligosaccharides are present in specific products such as infant 

formula, which are actually marketed based on prebiotic health claims (Fanaro, et al., 2005). 

Anyway, the structure and composition of commercial oligosaccharides are very different 

from the structure and composition of human milk oligosaccharides.  

For example specific biological properties, such as prohibition of pathogen adhesion, 

seem ascribed mostly to human milk oligosaccharides given that a single group of 

oligosaccharides (galacto-oligosaccharides or other) invariably can not match the anti-

adhesive properties of the highly diverse human milk oligosaccharides structures. Indeed, 

human milk oligosaccharides structurally mimic epithelial cell surface carbohydrates and thus 

function as decoys to which pathogens can bind instead of the host, thereby prohibiting 

infection (Kunz, et al., 2000). 

2.4.2.1. Prebiotic function 

The prebiotic effect of human milk has been studied from the middle of the 20
th
 century. 

György et al. (1954) mentioned that the components of human milk have been known to 

enhance the growth of Bifidobacterium bifidum by their prebiotic effect. Recent studies 

showed that this prebiotic effect (also known as Bifidogenic effect) is connected to the 

oligosaccharide in human milk. It was recorded that the infant-borne bifidobacteria 

preferentially consume small mass HMOs initially then consume completely in a late stage of 

cell growth (LoCascio et al., 2007). 

Functional oligosaccharides are substrates that can only be consumed by a limited 

number of bacteria, stimulating thus their growth. Within the group of bacteria present in the 

gastrointestinal tract, the bifidobacteria and lactobacilli are those that most utilize 

oligosaccharides being considered as the only microorganisms able to beneficially affect the 

host’s health (Mikkelsen and Jensen, 2004; Vernazza, et al., 2005). Human milk acts as an 

effective prebiotic (ie, a food that selectively stimulates the growth of beneficial bacteria in 

the colon). The high concentrations of lactose and nondigestible oligosaccharides found in 

human milk enhance the colony formation of Bifidobacteria spp. and Lactobacillus spp. 

(Yoshioka, et al., 1983). 
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Prebiotic effects of HMOs, this highly simplified scheme shows that desired (light) and 

undesired (dark) bacteria have various capabilities of metabolizing HMOs. In the presence of 

HMOs (right), the desired bacteria metabolize HMOs and thrive while undesired bacteria 

cannot metabolize HMOs (Fig. 3.). Metabolites from bacterial HMOs degradation, e.g., short-

chain fatty acids, create an environment that also benefits the growth of desired bacteria. In 

the absence of HMOs (left), both desired and undesired bacteria can grow.  

 

Fig. 3 Some pathogens need to attach to the intestinal epithelial cell surface prior to invading the 

host, Modefied from (Bode, 2009).  

 

Breast fed infants are clearly different from those of formula-fed infants and are 

characterized by high lactate, low pH, and high acetate (Ogawa, et al., 1992). Intestinal 

colonization with Bifidobacterium spp. and Lactobacillus spp. prevents the growth of 

Clostridium spp. and other pathogenic organisms (Ogawa, et al., 1992; Lundequist, et al., 

1985) and has been associated with a decrease in severity of gastroenteritis. Intestinal 

colonization with Bifidobacterium spp. and Lactobacillus spp. is suspected to have gut-barrier 

functions, to give maturation signals for the gut-associated lymphoid tissues, and to balance 

the generation of pro- and anti-inflammatory cytokines, thereby creating healthy interactions 

between the host and microbes that are required to help regulate inflammatory responses in 

the developing infant gut (Schiffrin and Blum, 2002).  

2.4.2.2. Function against pathogens (prevence of adhesion) 

A critical pathogens factor for many infectious diseases such as diarrhea for example is 

the ability of microbial pathogens to adhere to the mucosal surface and their subsequent 

spreading, colonization and invasion (e.g., for Escherichia coli, Helicobacter jejuni, Shigella 

strains, Vibrio cholerae and Salmonella species) in the gut (Beachey, 1981; Ofek and Sharon, 

1990). Bacterial adhesion is oftentimes a receptor-mediated interaction between structures on 
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the bacterial surface and complementary ligands on the mucosal surface of the host (Karlsson, 

1995). Intestinal colonization with Bifidobacterium spp. and Lactobacillus spp prevents the 

growth of Clostridium spp. and other pathogenic organisms (Ogawa, et al., 1992; Lundequist 

et al., 1985) and has been associated with a decrease in severity of gastroenteritis.  

Human milk oligosaccharides components actively protect the infant from pathogenic 

infection and facilitate the basing of the microbiota, the latter of which is needed to activate 

the mucosal immune system. Such as, human milk (HM) constitutes a “communication 

vehicle” between the mother and the infant that minimizes the infant’s disease risk, (Forchielli 

and Walker, 2005, Brandtzaeg 2003 and Walker, 2004). Additionally, there is compelling 

evidence that breastfeeding confers longer-term risk reduction for autoimmune diseases such 

as celiac disease (Greco, et al., 1998). In the short term, epidemiological and clinical data 

supply strong evidence that HM feeding reduces the incidence, severity, or both of infectious 

diseases (Heinig, 2001). 

There are two possibilities supposed for potential inhibitors of pathogen adhesion (Fig. 4.)  

(1) HMOs are soluble receptor analogues of epithelial cell-surface carbohydrates, and vie with 

epithelial ligands for pathogens by binding to proteins on the pathogens (lectins or 

haemmaglutinnins);  

(2) HMOs may also adjust gene expression associated with enzymes change the cell-surface 

glycome which could interfere to adhesion, colonization and proliferation of pathogens (Kunz 

and Rudloff, 1993; Bode, 2009) 

 

Fig. 4 Most bacteria (commensals and pathogens) express glycan-binding proteins (lectins), that 

bind to glycans on the host’s epithelial cell surface (A), which is essential for bacteria to attach 

(a), and to proliferate and colonize the intestine (b). Some pathogens need to attach to the 
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intestinal epithelial cell surface prior to invading the host (c). HMOs are structurally similar to 

the intestinal epithelial cell surface glycans. They can serve as bacterial lectin ligand analogs and 

block bacterial attachment (B). Human milk oligosaccharides (HMOs) may also alter the 

intestinal epithelial glycosylation machinery and modify the cell-surface glycome (“glycocalyx”), 

which could impact bacterial attachment, proliferation, and colonization (C) (Bode, 2009). 

2.4.2.3. Development of centeral nervous system  

Sialic acid (Fig. 5.) is a part of human milk mligosaccharides (Kunz and Rudloff, 2006). 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Sialic acid structure. 

Early human milk is a rich source of sialic acid, N-acetylneuraminic (Carlson, 1985). 

More studies showed that children who were breast-fed as babies reach higher scores on 

intelligence tests than those who were bottle-fed (Rodgers, 1978; Fergusson et al, 1982; 

Lucas et al, 1992, 1998). On rate, scores are 2–9 points higher, a difference that is considered 

biologically significant. The difference becomes more pronounced as the period of 

breastfeeding increases (Dewey et al, 1995). Morgan and Winick (1980) reported that 

exogenous sialic acid administered by intraperitoneal injection increased the production of 

ganglioside sialic acid in the brain and improved learning ability in well-nourished and 

malnourished rat pups. 

In a retrospective study, Menkes (1977) obtained a significantly greater incidence of 

bottle feeding within learning-disabled children than among controls being followed for other 

neurological symptoms. Rodgers (1978) showed a large, stratified sample of British children 

covariates included social class, parental interest in education, material home conditions, 
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parental education, family size and birth rank, and age at weaning. After control of 

confounding variables, there was a significant advantage to breast-fed children on a picture 

vocabulary test at 8 years of age and on mathematics, nonverbal ability, and sentence 

completion at 15 years. Recently, Mortensen et al., (2002) also reported that period of 

breastfeeding was associated with significantly higher scores on all components of the 

Wechsler adult intelligence scale. Rodgers (1978) suggested possible mediating factors might 

be differences between breast and bottle milk osmotic load or protein and lipid concentrations 

or differences in the feeding situation such as infection risk and psychological effects. 

2.4.2.4. Absorption of minerals 

Milk of many species contains high concentrations of phosphorus and calcium (Holt et 

al., 1981). Caseins and minerals in milk are in dynamic equilibrium between the soluble and 

micellar phases, and the partitioning depends upon minerals, temperature, and the pH value. 

When milk pH reduces from 6.7 to 6.0, soluble calcium raises by 20% and soluble 

phosphorus by 15% (Ezeh and Lewis, 2011). 

Phosphate and calcium can form many various types of complexes, like dicalcium 

phosphate, micellar calcium phosphate, dicalcium phosphate dihydrate, octacalcium 

phosphate, β-tricalcium phosphate, hydroxyapatite, amorphous calcium phosphate, tricalcium 

citrate dihydrate and dimagnesium phosphate (Gaucheron, 2005). Adequite calcium supply is 

an important prerequisite for normal bone mineralization and subsequently for normal growth 

and development of preterm infants. It is commonly accepted that the efficiency of calcium 

absorption from human milk is significantly higher than that from a preterm formula.  

There are many factors in human milk that might influence the calcium absorption. 

Among others, like peptides or lipids, oligosaccharides could also contribute to the high 

efficiency of calcium absorption from human milk (Lönnerdal, 1997).  

Boehm et al., (2002) reported that in adults, it can be shown that dietary 

oligosaccharides enhance calcium absorption, the mechanism by which oligosaccharides 

promote calcium absorption is not well understood but probably this effect has been related to 

the bifidobacteria-stimulating capacity of the prebiotic substrate. 

2.4.3. Utilization of HMOs by biffidobacteria  

Human milk oligosaccharides (HMOs) are minimally digested by the infant and persist 

to positive and negative gut microbiota. The dominant component of the intestinal microflora 

for healthy infants, which were born normally and fully breastfed, are bifidobacteria.   
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Bifidobacteria belong to the phylum Actinobacteria which encompass Gram-positive 

bacteria characterized by chromosomes enriched for cytosine and guanine content (Ventura, 

et al., 2007). Bifidobacteria show remarkable adaptations to use and metabolize complex 

oligosaccharides as a carbon and energy source (Lee and O’Sullivan, 2010). In breast-fed 

infants, the basic carbon sources available for the developing intestinal microbiota are human 

milk oligosaccharides (HMOs; (Kunz, et al., 2000)) and specific bifidobacteria can gain 

access to N- and O-glycans in mucins or milk proteins (Garrido, et al., 2012b; Ruas-Madiedo, 

et al., 2008). Only a few bacterial species have been shown to use these substrates (Marcobal, 

et al., 2010), and the molecular mechanisms involved in HMOs utilization in bifidobacteria 

are beginning to be understood (Garrido, et al., 2012a). In adults, diet delivers the intestinal 

microbiota a huge variety of oligo- and polysaccharides, which are resistant to enzymatic 

degradation in the intestinal lumen and also reaches distal portions of the intestine. Different 

bifidobacterial species are capable of metabolizing complex oligosaccharides usually from 

plant origin such as amyloses and cellodextrins (Pokusaeva, et al., 2011), raffinose (Dinoto, et 

al., 2006), arabinooligosaccharides (Lagaert, et al., 2010; Van Laere, et al.,1997), 

xylooligosaccharides (Gilad, et al., 2010), fructooligosaccharides and inulin (Omori, et al., 

2010; Perrin, et al., 2001; Rossi, et al., 2005), galactans and galactooligosaccharides (GOS; 

(Barboza, et al., 2009; Goulas, et al., 2009; Hinz, et al., 2005; O’Connell Motherway, et al., 

2011)) among several others. 

Bifidobacteria grew on caw milk (CM), lactose, HM and on HMOs. Bifidobacterial 

strains were resistant to lysozyme (Rocková, et al., 2011). Bioinformatic analysis revealed 

several physiological traits that could partially explain the successful adaptation of this 

bacterium to the colon, also have been isolated from infant and adult human faeces, from 

faeces of suckling calf, from human vagina and from sewage (Reuter, 1963).  

Genomes of B. longum subsp. infantis encode a suite of expected intracellular 

glycosidases lacking identifiable transmembrane domains, secretion signals or Gram-positive 

cell wall anchors in addition to a multitude of transporters, encouraged the hypothesis that this 

bacterium imports intact oligosaccharides as the rate determining step in HMOs metabolism 

(Sela and Mills, 2010). This is in agreement with the B. longum subsp. infantis HMOs 

utilization glycoprofile that indicates higher molecular weight HMOs are not metabolized, 

evocative of a translocation barrier. Extracellular hydrolysis would not display this 

glycoprofile due to structural redundancy in serially integrated HMOs subunits (LoCascio, et 

al., 2009). Genomic analysis suggests that B. longum subsp. infantis evolved from a plant 

derived glycan utilization genotype, to be competitive in the infant colon. Interestingly, all 
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available carbon sources in this environment are oligosaccharides from human origin, 

including a significant concentration of HMOs arriving undigested to the distal colon, like 

intestinal secretions and glycoconjugates from epithelial cells. The B. longum subsp. infantis 

genome encodes several gene clusters active on HMOs or derivatives including sialidases and 

fucosidases. These glycoside hydrolases cleave substituted termini to expose HMOs core 

structures such as lacto-N-tetraose (LNT; Galß1–3GlcNAc ß1–3 Galß1–4Glc). HMOs-related 

gene clusters are distributed throughout the B. longum subsp. infantis chromosome and are 

clearly absent from genomes of the phylogentically-near subspecies longum (Sela, et al., 

2008). 

2.5. Composition of mammalian milk 

Milk production is a necessary part of the national economy in several countries, 

especially in the Mediterranean and Middle East regions (FAO, 2003). Milk composition 

differs according to several factors, such as animal, feed and environment. Milk from all 

mammals studied so far contains an oligosaccharide fraction. Human and elephant milks 

contain the greatest concentrations of oligosaccharides and these oligosaccharides have the 

greatest structural complexity (Kunz et al., 1999). The physico-chemical characteristics of 

milk are related to its composition for a particular animal species. Compositions of goat, 

sheep, cow and human milks are different (see table 3.). Sheep milk contains higher levels of 

total solids and major nutrient than cow and goat milk. Lipids in sheep and goat milk have 

higher physical characteristics than in cow milk, but physico-chemical indices (i.e., 

saponification, Reichert Meissl and Polenske values) vary between different records. Micelle 

structures in sheepare smaller than it in cow and goat. In the ruminants 75% of protiens are 

casine type milk, but in human, pigs and horses there is more albumine than casine. Caprine 

casein micelles contain more calcium and inorganic phosphorus, are less solvated, less heat 

stable, and lose β- casein more readily than bovine casein micelles. 
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Human Cow Sheep
a

 Goat Composition 

 

4.0 3.6 7.9 3.8 Fat (%) 

8.9 9.0 12.0 8.9 Solids-not-fat (%) 

6.9 4.7 4.9 4.1 Lactose (%) 

1.2 3.2 6.2 3.4 Protein (%) 

0.4 2.6 4.2 2.4 Casein (%) 

0.7 0.6 1.0 0.6 Albumin, globulin (%) 

0.5 0.2 0.8 0.4 Non-protein N (%) 

0.3 0.7 0.9 0.8 Ash (%) 

68 69 105 70 Calories/100 ml 

1 0.005 0.005 0.005 Oligosaccharides  

  Table 3 Composition of mammalian milk.  

 

Renneting parameters in cheese making of sheep milk are influenced by physico-

chemical properties, including pH, larger casein micelle, more calcium per casein weight, and 

other mineral contents in milk, which cause differences in coagulation rate, coagulation time, 

curd firmness and amount of rennet required. Renneting time for goat milk is shorter than for 

cow milk, and the weak consistency of the gel is beneficial for human digestion but raises its 

cheese yield (Park et al., 2007). Cow milk contains a low concentration of oligosaccharides 

with a smaller number of structures (Gopal and Gill, 2000; Urashima et al., 2001).  Bioactive 

peptides may be obtained from goat or sheep milk proteins since their primary structures are 

close to those observed for bovine proteins. For instance, caprine α-lactorphin was obtained 

after pepsin hydrolysis of α- lactalbumin (Bordenave, 2000). Data summrized in table 4 

concerning the main minerals are available for goat, sheep, and cow and human milks.  
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Human
a
 Cow

a
              Sheep

b
 Goat

a
  

 

320 1200 1950-2000 1260 Calcium (mg) 

150 920 1240-1580 970 Phosphorus (mg) 

550 1500 1360-1400 1900 Potassium (mg) 

200 450 440-580 380 Sodium (mg) 

450 1100 1100-1120 1600 Chloride (mg) 

40 110 180-210 130 Magnesium (mg) 

2.1 1.3 1.3-1.6 1.3 Ca/P (mg) 

3000 3800 5200-7470 3400 Zinc (µg) 

600 460 720-1222 550 Iron (µg) 

360 220 400-680 300 Copper (µg) 

30 60 53-90 80 Manganese (µg) 

80 70 104 80 Iodine (µg) 

20 30 31 20 Selenium (µg)  

Table 4 Mineral composition of goat, sheep, cow and human milk (Raynal-Ljutovac et al., 

2008). 

a
 Data compilation from Guéguen (1997) (per l). 

b
 Data compilation from Guéguen (1997), Haenlein and Wendorff (2006) (per kg) and 

Paccard and Lagriffoul (2006a,b) (per kg). 

Sheep milk presents the highest dry matter. Goat milk is distinguished by its high 

chloride and potassium content. Repartition of phosphorus, calcium and magnesium between 

the soluble and colloidal phases of milk are similar for cow and goat milks; sheep milk, 

however, has far lower solubility (Holt and Jenness, 1984).  

For milk vitamins content, the goat and sheep milk demonstrated the high content in B 

vitamins especially niacin for both milks (table 5.). Nevertheless, goat milk is poor in folic 

acid and vitamin E. Both goat and sheep milk are lacking β- carotene, which is entirely 

converted into retinol. 
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Human
a
 Cow

a
 Sheep

b
 Goat

a
   

 

0.06 0.04 0.08 0.04 Retinol (mg) Fat soluble vitamins A 

0.02 0.02  0.00 Beta carotene (mg) 

0.06 0.08 0.18 0.06  D (µg) 

0.23 0.11 0.11 0.04 Tocopherol (mg) E 

0.02 0.04 0.08 0.05 Thiamin (mg) Water soluble vitamins B1 

0.03 0.17 0.35 0.14 Riboflavin (mg) B2 

0.16 0.09 0.42 0.20 Niacin (PP) (mg) B3 

0.18 0.34 0.41 0.31 Pantothenic acid (mg) B5 

0.01 0.04 0.08 0.05 Pyridoxin (mg) B6 

0.70 2.00 nd 2.00 Biotin (µg) B8 

5.20 5.30 5.00 1.00 Folic acid(µg) B9 

0.04 0.35 0.71 0.06 Cobalamin (µg) B12 

4.00 1.00 5.00 1.30 Ascorbic acid (mg) 

 

Table 5 Vitamin content of goat, sheep and cow raw whole milks (per 100 g) (Raynal-Ljutovac et 

al., 2008). 

nd: not determined 

a
 Data compilation according to Jaubert (1997) 

b
 Data compilation according to Paccard and Lagriffoul (2006a, b) 
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3. THESIS OBJECTIVES 

Hypothesis of this work is that human milk oligosaccharides will support the growth of 

bifidobacteria in (in vitro) conditions.  

 

The experimental and scientific works have been devoted to achieve the following 

aims: 

 

1) To isolate oligosaccharides; the samples were isolated from human, sheep and goat milk 

by using by gel-filtration chromatography (GLC) and screened the fractions by Thin-layer 

chromatography (TLC). 

 

2) To test the ability of B. longum subsp. longum and B. longum subsp. Infantis to grow in 

human milk and to utilize human milk oligosaccharides. For this aim, five strains of 

bifidobacteria of human origin and 2 strains of bifidobacteria of animal origin were tested 

for growth in milk samples by using microtiter plate technique.
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4. MATERIALS AND METHODS 

4.1. Isolation of oligosaccharides from human milk 

Oligosaccharides were isolated and purified according to the method by Ročková et al., 

(2011). At first, human milk was defatted by centrifugation at 4000 g for 30 minutes at 4 °C. 

After fat removal, pure ethanol (96%) was added then (in the ratio 2:1 v/v) and the mixture 

was kept 24 h at 4 °C. The centrifugation process was repeated again, and then the sample 

evaporated by vacuum evaporator (see Appendix, Fig. 1.) at 20 g at 40 °C. The residuum was 

dissolved in pure water (10 ml) and the precipitation process was repeated. For further 

removal of residual, protein was performed by precipitation with mixture of pure ethanol, 

dichlormethane (CH2Cl2) and pure water in the ratio 7:14:10 (v/v). After the removal of 

residual protein and dichlormethane, the extract was evaporated under vacuum (Fig. 6.).  
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Fig. 6 Isolation steps of oligosaccharides from human milk.  

 

The crude oligosaccharide extract was dissolved in water, and further purified by gel-

filtration chromatography on a 1,6 cm x 180 cm column filled with Toyopearl HW- 40F 

(Tosoh Bioscience, GmbH) in 1% acetic acid as the mobile phase.  

The principal of gel-filtration chromatography is the separation of sample compounds 

based on their different molecular weight. Separation is achieved by using a porous matrix to 

which the molecules, for steric reasons, have different degrees of access - i.e., smaller 

molecules have greater access and larger molecules are excluded from the matrix (Hagel, 

2001). The process of gel filtration chromatography is shown on the picture below (Fig. 7.). 
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Fig. 7 Process of the Gel-filtration chromatography. 

Fractions were collected by 50 drops into the tubes by Gilson FC 204 Fraction Collector 

(Gilson, Inc.). Each fraction has been screened by Thin-layer chromatography (TLC) before 

use with isopropanol-water- 25% ammonia solution (5:1:2, by vol.) as a mobile phase 

(visualisation by spraying with 10% sulphuric acid in ethanol and heating). Selected fractions 

containing oligosaccharides only mixed and lyophilized. 

4.2. Growth of bacteria on human milk oligosaccharides 

Bifidobacterial strains (Table 6.) were isolated and identified to the species level as 

described in Rada et al., (2010). 

Bifidobacterial strains Origin 

Bifidobacterium animalis subsp. lactis 1 Fermented milk product 

Bifidobacterium animalis subsp. lactis 2 Fermented milk product 

Bifidobacterium bifidum 1 Probiotic capsule 

Bifidobacterium bifidum  2 Infant faeces 

Bifidobacterium bifidum  3 Infant faeces 

Bifidobacterium longum  1 Infant faeces 

Bifidobacterium longum 2 Probiotic capsule 

 

Table 6  Bacterial strains tested for utilization of oligosaccharides, Ročková et al. (2011). 
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HMOs were added (1% w/w) to the complex medium (contained per 1: tryptone, 10 g; 

peptone, 10 g; yeast extract, 5 g; sodium pyruvate, 1 g; tween 80, 1 ml; cysteine, 0.5 g) as the 

sole carbon source.  

4.3. Microtiter plate technique 

Microtiter plate (see Appendix Fig. 2.) is a flat plate with multiple "wells" used as small 

test tubes. A microplate typically has 6, 24, 96, 384 or even 1536 sample wells arranged in 

2:3 rectangular matrixes. Each well of a microplate typically holds somewhere between tens 

of nanolitres to several millilitres of liquid. Wells can be either circular or square. To prepare 

the microtiter plate, microscope, micro tubes, petri dishes, incubator, micropipettes, anaerobic 

jar, syringes, centrifuge, agar plates, bifipufer, reflectoquant (Merck, Darmstadt, Germany), 

growth medium, dilution liquids and flame were used. 

A suspension was prepared from a pure, 24 hours culture in the suspension medium. 

One and half ml of suspension medium (concentration 10
8
/ml) were added to micro tubes then 

centrifuged for 4 minutes (16 000 g). The medium was discarded and the cells were washed 

by phosphate buffer (1.8 ml of phosphate buffer was taken by syringe; 0.3 ml for washing the 

wall of micro tubes and 1.5 ml mix with the cells). One ml of cells and phosphate buffer was 

added to dilution tubes and diluted to 10
-5

. Ten μl of cells and phosphate buffer were 

transferred to the microtiter plate wells contained 90μl of human milk sample by using 

micropipettes. Then, microtiter plate was inserted into an anaerobic jar which provides 

anaerobic conditions for growth of bifidobacteria. Bifidobacteria were incubated with 

oligosaccharides dissolved in the complex medium for 24 hours in 37 °C in anaerobic jar 

(Anaerobic plus system, Oxoid). Numbers of colonies has been counted and lactic acid and 

pH were determined using Reflektoquant RQflex10 equipment (Merck, Darmstadt, Germany) 

with a Lactic Acid Test (Merck), (see Appendix Fig. 3.). 

After that, 10μl of human milk which contain bifidobacterial cells was transferred from 

microtiter plate well to dilution tubes using micropipettes. Then diluted from 10
-2

 to 10
-5

. Half 

ml of each dilute was transferred to petri dishes and then agar added. Petri dishes were 

inserted into an anerobic jar, and then anaerobic jar was kept in incubator at 37 °C for 48 

hours. Colonies of bifidobaceria were counted after 48 hours. 
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5. RESULTS  

5.1. Isolation of human milk oligosaccharides  

Results of thin layer chromatography are showen in Fig. (8.), it’s evident that fractions 

from 79 to 97 contain exclusively HMOs. These fractions are free of monosaccharides 

(lactose and glucose). 

 

Fig. 8 TLC of human milk sample after GPC. Fractions highlighted are supposed to contain 

oligosaccharides, because of the different sorbent affinity than lactose and glucose (shown as 

standards) and previous fractions that are supposed to contain residual protein. Fractions were 

collected and freeze dried to obtain free oligosaccharides. In our study we detected that human milk 

contain higher oligosacchrides than goat and sheep milk.  

5.2. Cultivation of bifidobacteria 

pH values  

Table (7.) and Fig. (9.) show pH values of biffidobacteria strains cultured on different 

carbon sources under anaerobic conditions at 37°C for 24 h. There was no growth on basal 

medium because pH after cultivation was from 6.5 to 6.6. Also, fucose did not support growth 

of bifidobacteria (pH from 5.2 to 5.9). 
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Table 7 pH values of biffidobacteria strains cultured on different carbon sources. 

a 
Values are means ± standard deviation (SD) of three measurements. Values in columns with 

different superscript letters differ (P< 0.05). The differences among pH values were evaluated 

by the multiple range comparison with multiple range tests. 

 

Values of pH were approximately similar for all carbon sources except basal medium 

and fucose. HMOs supported the growth of bifidobacteria and pH values were almost the 

same after cultivation (pH average was 5). The statistical differences among cultured media 

were significant (P<0.05). 

 

 

 

 

 

 

 Basal 

medium
c

 

W+SP1
a

 W+SP2
a

 Fucose
b

 HMOs1
a

 HMOs2
a

 

B. animalis subsp. 

lactis 1 

6.6 4.8 4.7 5.9 5.5 5.8 

B. animalis subsp. 

lactis 2 

6.6 4.7 4.7 5.9 5.5 5.6 

B. bifidum   1 6.6 5.3 5.7 5.9 4.7 4.5 

B. bifidum  2 6.5 4.8 4.7 5.6 4.6 4.6 

B. bifidum  3 6.5 5.1 4.9 5.5 4.6 4.6 

B. longum  1 6.5 4.7 4.5 5.5 5.1 5.4 

B. longum 2 6.5 5.4 4.7 5.2 4.8 4.5 

Average  6.542857143
c

 4.971429
a

 4.842857
a

 5.64286
b

 4.971429
a

 5
a
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Fig. 9 Average of pH values of biffidobacteria strains cultured on different carbon sources. 
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Lactic acid values  

Table (8.) and Fig. (10.) show production of lactate (mg l
-1

) in biffidobacteria strains 

cultured on different carbon sources under anaerobic conditions at 37°C for 24 h. 

Production of lactic acid is in line with results of pH after cultivation. 

 

  W+SP2
d
 Fucose

a
 HMOs 1

bc
 HMOs2

cd
 

B. animalis subsp. lactis 1 400 163 137 525.5 

B. animalis subsp. lactis 2 1650 253 163.3 1035 

B. bifidum   1 1340 203 1000 1655 

B. bifidum  2 1605 133 985 2150 

B. bifidum  3 1800 185 1805 1150 

B.longum  1 750 177.5 300 345.48 

B. longum 2 1170 205 370 1050 

Average  1245
d
 188.5

a
 680.0429

bc
 1130.14

cd
 

 

Table 8 Production of lactic acid by bifidobacteria strains. 

a 
Values are means ± standard deviation (SD) of three measurements. Values in columns with 

different superscript letters differ (P< 0.05). The differences among concentration of lactic 

acid were evaluated by the multiple range comparison with multiple range tests. 

 

Bifidobacteria from animal origin (B. animalis) produced less amount of lactic acid than 

bifidobacteria from human origin (B. bifidum, B. longum). The highest production 2150 (mg l
-

1
) on HMOs2 and the lowest production was 133 (mg l

-1
) on fucose. 
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Fig. 10 Growth of bifidobacteria was in line with pH values and lactic acid production. 
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Growth of bifidobacteria  

Table (9.) show the growth of bifidobacteria (log cfu ml
-1

) cultivated on different 

sources of carbon under anaerobic conditions at 37°C for 24 h.
 

The best growth was seen on HMOs especially in human origin strains. 

 

Strains  Carbone sources     

     

  W+SP HMOs 1 fucose HMOs 2 

B. animalis subsp. lactis 1 9.77±0.02
c
 8.53±0.07

b
 7.91±0.05

a
 7.94±0.12

a
 

B. animalis subsp. lactis 2 9.96±0.05
c
 8.60±0.03

b
 8.00±0,18

a
 7.96±0.05

a
 

B. bifidum   1 9.40±0.05
d
 8.77±0.05

b
 7.76±0,10

a
 9.13±0.07

c
 

B. bifidum  2 9.46±0.03
d
 8.10±0.02

b
 7.75±0.13

a
 8.36±0.03

c
 

B. bifidum  3 9.80±0.01
d
 8.18±0,08

b
 7.92±0.16

a
 8.91±0.03

c
 

B. longum  1 9.41±0.07
d
 8.13±0.02

b
 7.70±0.01

a
 8.52±0.11

c
 

B. longum 2 8.76±0.28
c
 8.01±0.02

b
 7.53±0.35

a
 8.79±0.11

c
 

 

Table 9 The growth of bifidobacteria (log cfu ml
-1

) cultivated on different sources of carbon. 

a
 Data are means ± standard deviation (SD) of three measurements. Values in columns with 

different superscript letters differ (P< 0.05). The differences among bifidobacterial counts 

were evaluated by the multiple range comparison with multiple range tests. 

The highest number of viable cells was 9.13±0.07
c 

in HMOs2 and the lowest number 

was 8.01±0.02
b
 in HMOs1.  Fucose does not support growth of bifidobacteria. 
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Table (10.) shows the significance interstrains differences. The growth of bifidobacteria 

was different between HMOs1 and HMOs 2 in the same strain. 

 

 

Strains 

 

 

Carbone 

sources 

 

 

    

  W+SP HMOs 1 fucose HMOS 2 

B. animalis subsp. lactis 1 9.77±0.02
c
 8.53±0.07

c
 7.91±0.05

bc
 7.94±0.12

a
 

B. animalis subsp. lactis 2 9.96±0.05
c
 8.60±0.03

c
 8.00±0.18

d
 7.96±0.05

a
 

B. bifidum   1 9.40±0.05
b
 8.77±0.05

d
 7.76±0.10

abc
 9.13±0.07

e
 

B. bifidum  2 9.46±0.03
b
 8.10±0.02

b
 7.75±0.13

abc
 8.36±0.03

b
 

B. bifidum  3 9.80±0.01
c
 8.18±0.08

c
 7.92±0.16

bc
 8.91±0.03

d
 

B. longum  1 9.41±0.07
b
 8.13±0.02

b
 7.70±0.01

ab
 8.52±0.11

c
 

B. longum 2 8.76±0.28
a
 8.01±0.02

a
 7.53±0.35

a
 8.79±0.11

d
 

 

Table 10 The significance interstrains differences.  

a
 Data are means ± standard deviation (SD) of three measurements. Values in rows with 

different superscript letters differ (P< 0.05). The differences among bifidobacterial counts 

were evaluated by the multiple range comparison with multiple range tests. 
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6. DISCUSSION 

Bifidobacteria of human (B. longum and B. bifidum) origin grow on human milk 

oligosaccharides producing high quantity of lactic acid, in contrast with bifidobacteria from 

animal origin (B. animalis subsp. lactis 1, 2) they did not grow on human milk 

oligosaccharides and produced minimum amount of lactic acid. Ročková et al., (2012) tested 

the factors affecting the growth of bifidobacteria in human milk, five strains of bifidobacteria 

of human origin and 2 strains of bifidobacteria of animal origin were tested for growth in 10 

samples of human milk. Growth of B. bifidum in human milk was accompanied by a decrease 

in pH and production of acids. In contrast the number of viable cells of B. animalis was 

decreased from 6 log cfu ml
-1

 to 3 log cfu ml
-1

 after incubation in human milk. There were 

significant differences (P < 0.05) between bacterial counts of B. bifidum and B. animalis in 

milk samples tested. Resistance to lysozyme and the ability to utilise human milk 

oligosaccharides (HMOs) were identified as the most important factors affecting the growth 

of bifidobacteria in human milk. Four out of 5 strains of human origin were resistant to 

lysozyme and utilised HMOs. In contrast, B. animalis was susceptible to lysozyme and did 

not utilise HMOs. Also we found that there are differences between ability of bifidobacteria 

from animal origin and human origin to utilize HMOs, bifidobacteria from animal origin not 

allowed to utilize human milk oligosaccharides. Direct fermentation of HMOs by 

bifidobacteria has been poorly investigated. Ward et al. (2006) observsd that B. longum 

subsp. infants fermented HMOs, while Lactobacillus gasseri did not ferment HMOs. B. 

longum subsp. infantis preferentially consumed small mass of oligosaccharides, representing 

63.9% of the total HMOs available (LoCascio et al., 2007).  

The same, in our experiment, B. longum fermented HMOs to some extent, but the most 

complex fermentation of HMOs was observed in B. bifidum, the species often found in infant 

gut. Bifidobacteria of human origin (B. bifidum, B. longum) utilized HMOs effectively, 

compared with bifidobacteria of animal origin (B. animalis). 

In addition, Ročková et al., (2012) reported that there are inter-species differences in the 

growth of bifidobacteria cultured on human milk oligosaccharides. In this study, only 

bifidobacteria of human origin were tested, bifidobacteria were isolated from two groups of 

infants. The first one (eight strains) were isolated from infants who had bifidobacteria in their 

faeces but, after a short period of time (4 to 24 days), bifidobacteria were no longer detected 

in their faeces (disappeared bifidobacteria [DB]). The second group of bifidobacteria (eight 
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strains) originated from infants with continual presence of bifidobacteria in their faeces 

(persistent bifidobacteria (PB)). There were significant differences (p < 0.05) between DB and 

PB groups in the ability of the strains to grow in HM. PB grew in HM, reaching counts higher 

than 7 log cfu/ml. In contrast, counts of DB decreased from 5 to 4.3 log cfu/ml after 

cultivation in HM. The final pH after cultivation of bifidobacteria on HMOs was 6.2 and 4.9 

in DP and PB groups, respectively. In general, Bifidobacterium bifidum and B. breve species 

were able to utilize HMOs, while B. adolescentis and B. longum subsp. longum species did 

not. The ability to grow in HM and to utilize HMOs seems to be important properties 

of bifidobacteria which are able to colonize infant intestinal tract. 

In our study, the differences among strains B. longum subsp. longum, B. longum subsp. 

infantis and B. animalis were tested by one-way ANOVA (Analysis of Variance) with Tukey 

HSD (Honestly Significant Difference) multiple comparison test (P < 0.05) in both tests, 

notably from (Table 9.) there are significant differences among the strain growth on HMOs1, 

values in columns with different superscript letters 
(a,b,c)

 refers to significant difference. B. 

bifidum 1 has the highest average growth 9.13±0.07 and B. animalis subsp. lactis 1 has the 

lowest average growth 7.94±0.12. 

There are also interstrains differences in the ability of bifidobacteria to utilize HMOs, 

table (10.). We found differences in bifidobacteria from animal origin the highest value is 

8.53±0.07
c 
in HMOs1 and the lowest value is 7.94±0.12

a
 in HMOs2. Also, there are interstrain 

differences in bifidobacteria from human origin in B. bifidum 1 the highest value is 

9.13±0.07
e 
in HMOs2 and the lowest value is 8.77±0.05

d
 in HMOs 1. 

Growth of bifidobacteria on human milk was accompanied by a decrease in pH (Table 

7. and Fig. 9.) in some strains (pH < 5 indicates more growth), while other strains have grown 

well in the high pH, and pH of human milk decreases when there is high growth of 

bifidobacteria and pH increases when there is no growth. There are significance differences 

among the carbone sources, values in columns with different superscript letters 
(a,b,c)

 refers to 

significant difference in pH average  between different carbon sources. For both HMOs 

samples there were no significant differences in pH values and it is the same between Wilkins 

agar and HMOs samples. There was no growth on basal medium because pH after cultivation 

was from 6.5 to 6.6. Also, fucose did not support growth of bifidobacteria (pH from 5.2 to 

5.9). 

Production of lactic acid is in line with results of pH after cultivation. Values of lactate 

concentration in human milk (Table 8. and Fig. 10.) are in line with data on the growth of 
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bifidobacteria in human milk. While B. bifidum is the best lactate-producing species, minimal 

lactate concentration was observed in B. animalis. 

HMOs are still the best prebiotic being better than comercial available products. 

Bunešová et al., (2012) tested the growth of infant fecal bacteria on comercial prebiotics; they 

tested fecal bacteria from 33 infants (aged 1 to 6 months) for growth on commercial 

prebiotics. The children were born vaginally or by caesarean section. Bifidobacteria, 

lactobacilli, gram-negative bacteria, Escherichia coli, and total anaerobes in fecal samples 

were enumerated by selective agars and fluorescence in situ hybridization. The total fecal 

bacteria were inoculated into cultivation media containing 2 % galacto-oligosaccharides 

(GOS) or fructo-oligosaccharides (FOS) as a single carbon source and bacteria were 

enumerated again after 24 h of anaerobic cultivation. Bifidobacteria dominated, reaching 

counts of 9-10 log colony-forming units (cfu)/g in 17 children born vaginally and in seven 

children delivered by caesarean section. In these infants, lactobacilli were more frequently 

detected and a lower number of E. coli and gram-negative bacteria were determined compared 

to bifidobacteria-negative infants. Clostridia dominated in children without bifidobacteria, 

reaching counts from 7 to 9 log CFU/g. Both prebiotics supported all groups of bacteria 

tested. In children with naturally high counts of bifidobacteria, bifidobacteria dominated also 

after cultivation on prebiotics, reaching counts from 8.23 to 8.77 log CFU/ml. In 

bifidobacteria-negative samples, clostridia were supported by prebiotics, reaching counts from 

7.17 to 7.69 log CFU/ml. There were no significant differences between bacterial growth on 

GOS and FOS and counts determined by cultivation. Prebiotics should selectively stimulate 

the growth of desirable bacteria such as bifidobacteria and lactobacilli. However, their results 

showed that commercially available FOS and GOS may stimulate also other fecal bacteria. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bune%C5%A1ov%C3%A1%20V%5BAuthor%5D&cauthor=true&cauthor_uid=22528302
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7. CONCLUSION 

 

Human milk oligosaccharides were isolated by GLC, fraction were screened by TLC. 

Fractions were collected and freeze dried to obtain free oligosaccharides. Human milk 

selectively stimulated the growth of specific bifidobacterial strains, bifidobacteria of human 

origin utilized HMOs in contrast with bifidobacteria from animal origin. Growth of 

bifidobacterial strains were accompanied by a decrease of pH. There were significant 

differences (P < 0.05) between bacterial counts of B. bifidum and B. animalis in milk samples 

tested. 
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APPENDIX  

 

Fig. 1 Vacuum evaporator. 

Fig. 2 Microtiter plate. 

Fig. 3 Reflektoquant RQflex10 equipment. 
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