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ABSTRACT

Successful epilepsy surgery relies on precise localization of the epileptogenic zone (EZ),
yet only about 60% of patients become seizure-free post-surgery, often due to inaccu-
rate EZ identification. This thesis presents a novel method for EZ localization using
Graph Neural Networks (GNNs) to analyze interictal biomarkers, specifically interictal
spikes and relative entropy. The GNN models were used to localize resected seizure-
onset zone electrode contacts based on interictal stereoelectroencephalography data,
validated on a clinical dataset of 37 patients from two institutions. The best-performing
GNN model - Graph Attention Network - scored a median Area Under the Receiver Op-
erating Characteristic (AUROC) of 0.971 and a median Area Under the Precision-Recall
Curve (AUPRC) of 0.525 across a cohort of 19 patients with a good surgical outcome,
significantly outperforming a benchmark model based on spike rates (Wilcoxon Signed
Rank test, p < 0.05) in both metrics. This is the first application of GNNs in interic-
tal EZ localization, and the overall superior results of the GNN models compared to a
Support Vector Machine and Spike Rate model references show the potential of GNNs
in enhancing the precision of epilepsy surgery planning.

KEYWORDS

graph neural networks, deep learning, signal processing, intracranial EEG, epilepsy, epilep-
togenic zone, seizure-onset zone, postsurgical outcome prediction

ABSTRAKT

Uspéch epileptochirurgického zakroku zavisi na presné lokalizaci epileptogenni zény (EZ),
avsak pouze 60% pacienti je po operaci bez zachvati, coz je asto zplisobeno nepresnou
identifikaci EZ. Tato prace predstavuje novou metodu lokalizace EZ vyuzivajici grafové
neuronové sité (GNN) k analyze interiktalnich biomarkerd - konkrétné interiktalnich spiki
a relativni entropie. Modely GNN byly vyuzity pro lokalizaci kontakti elektrod v rese-
kované zéné vzniku zachvatu na zakladé dat z interiktalni stereoelektroencefalografie
a validovany na souboru klinickych dat 37 pacientd ze dvou instituci. Nejlépe hodno-
ceny model GNN - Graph Attention Network - dosdhl medianu Area Under the Receiver
Operating Characteristic (AUROC) 0,971 a medianu Area Under the Precision-Recall
Curve (AUPRC) 0,525 v souboru 19 pacientii s dobrym pooperaénim vysledkem, pficemz
v obou metrikach statisticky vyznamné prekonal referenéni model zalozeny na Cetnosti
spikd (Wilcoxon Signed Rank test, p < 0,05). Jedna se o prvni pouziti GNN v interiktaln{
lokalizaci EZ a celkové lepsi vysledky modeli GNN ve srovnani s referenénimi modely
Support Vector Machine a modelu zaloZzeného na Cetnosti spiki ukazuji na potencil
GNN pfi zvySovani presnosti planovani epileptochirurgickych zakrokd.

KLICOVA SLOVA

grafové neuronové sité, deep learning, zpracovani signald, intrakraniadlni EEG, epilepsie,
epileptogenni zéna, zéna pocatku zachvatu, predikce pooperacniho vysledku
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ROZSIRENY ABSTRAKT

Diplomové prace je vénovana lokalizace epileptogenni zény (EZ) pomoci grafovych
neuronovych siti (GNN). Cile zahrnuji zpracovani prehledu o GNN a jejich aplikacich
v analyze elektroencefalografickych (EEG) signali, a nasledny vyvoj a implemen-
tace modelt hlubokého uceni pro lokalizaci EZ na zdkladé GNN. Soucasti prace je
také testovani a validace navrzené metody na klinickém datasetu, spolu s podrobnou
diskusi o prinosech k soucasnym metodam lokalizace EZ.

Teoreticka ¢ast prace zac¢ind prehledem farmakorezistentni epilepsie, chirurgické
lécby epilepsie a vyznamu lokalizace EZ v predoperacnim vysetfeni. Nasledné
je poskytnut tvod do lokalizace EZ z stereo-EEG (SEEG) nahravek, zahrnujici
predstaveni klicovych interiktalnich biomarkerti spojenych s EZ a zkoumani metod
analyzy graf pouzivanych pro lokalizaci EZ. Predstaveni GNN rozsituje teoret-
icky tvod o reprezentaci dat jako grafu, rtizné typy grafl, typy predikénich tkola
a klicové komponenty modelit GNN. T¥i konkrétni modely - Graph Sample and Ag-
gregate (GraphSAGE), Graph Convolutional Network (GCN) a Graph Attention
Network (GAT) - jsou prezentovany jako priklady GNN. Na zdvér teoretické ¢asti
jsou probirany aplikace GNN v analyze EEG.

V praktické casti prace je popsan pouzity soubor klinickych dat, nastinén pro-
ces vybéru pacientti a podrobné popsany udaje o pacientech. V c¢asti vénované
metodam jsou vysvétleny kroky predzpracovani dat, véetné definice lokaliza¢nich
cilti a reprezentace EEG signali ve formé grafti. Prace podrobné popisuje imple-
mentaci ti{ modeli GNN - GraphSAGE, GCN a GAT - spolu se dvéma referenénimi
modely, Spike Rate a Support Vector Machine (SVM), vcetné procesu trénovani
a nastaveni jejich hyperparametri. Jsou popsany metody testovani a vyhodnocovani
lokalizace EZ a predikce tispésnosti epileptochirurgické operace. Nasleduje prezen-
tace a diskuze vysledkt, véetné porovnani vysledkti modeli GNN s referen¢nimi
modely a porovnani s nejmodernéjsimi metodami v oblasti interiktalni lokalizace
EZ ze stereo-EEG dat. Praktickou ¢ast uzavira rozbor limitaci studie a navrhy pro
budouci vyzkum.

Hodnoceni modelit GNN na souboru 19 pacienttt s dobrymi vysledky chirurgického
zékroku odhalilo vyrazné zlepseni v lokalizaci epileptogennich zén oproti tradi¢nim
metodam. Modely prokéazaly vynikajici vysledky ve vice metrikach, zejména Area
Under the Receiver Operating Characteristic (AUROC) a Area Under the Precision-
Recall Curve (AUPRC), kde modely GraphSAGE a GAT dosahly medianu skére
0,971 AUROC a 0,563 AUPRC pro model GraphSAGE a 0,971 AUROC a 0,525
AUPRC pro model GAT, ¢imz statisticky vyrazné prekonaly tradicni modely, jako
jsou SVM a Spike Rate. Tyto vysledky poukazuji na robustni schopnost GNN
rozlisSovat mezi epileptogennimi a neepileptogennimi kontakty s vysokou presnosti

a spolehlivosti. Zejména model GAT vykazoval vynikajici vysledky v preciznosti



pro identifikaci resekovanych kontakty, coz zdtraznuje jeho klinickou vyuzitelnost
pri presné identifikaci chirurgickych cilti.

Dalsi srovnani mezi pacienty s dobrymi a Spatnymi postoperacnimy vysledky zvyra-
znilo tc¢innost téchto modelu v riznych klinickych aplikacich. Modely GAT a Graph-
SAGE vykazovaly vyznamné rozdily ve vSech testovanych metrikdch mezi obéma
skupinami. Predevsim model GAT prokazal vyrazny rozdil v presnosti identi-
fikace resekovanych kontaktti mezi skupinamy dobrych a Spatnych postoperacnich
vysledkii.

V oblasti predikce vysledki ukazala tako prace, ze vSechny modely GNN piekonaly
v presnosti tradi¢ni referenc¢ni modely, pricemz model GAT dosahl presnosti predikce
0,757. To naznacuje ztetelnou vyhodu siti GNN pfi rozpoznavani komplexnich vzort
v datech SEEG, které koreluji s vysledky epileptochirurgickych zédkrokti. Model
GAT zejména prokazal schopnost opravit chybné klasifikace referenéniho modelu
Spike Rate, coz zduraznuje jeho potencial pro zlepseni predikéni spolehlivosti v klin-
ickych podminkach. Statistické testy, konkrétné McNemartv test, vSsak neukazaly
zadné vyznamné rozdily mezi modely GNN a modelem Spike Rate, coz naznacuje,
ze ackoli GNN nabizeji lepsi prediktivni poznatky, jejich statisticka nadrazenost
v predikci vysledku zakroku nad tradi¢nimi modely v této studii nebyla jednoz-
nacné prokazana.

Diskuse v této diplomové praci zduraznuje nékolik kritickych aspektii pouziti GNN
pro planovani epileptochirurgickych zakrokt. Zaprvé, napti¢ kohortou pacienti je
patrnd znacna variabilita ve vysledcich modell, coz je projevem prirozené kom-
plexnosti a heterogenity klinickych dat SEEG. Navzdory vysokym celkovym vysled-
kum v metrikach, jako jsou AUROC a AUPRC, se vykonnost u jednotlivych pa-
cientl vyrazneé lisila, coz poukazuje na obtiznost obecného pouziti téchto modeli v
klinické praxi u riznych pacient. Studie dale porovnava dosazené vysledky s jiz
publikovanymi studiemi a ukazuje, ze pouzité modely GNN (zejména GraphSAGE
a GAT) obecné prekonavaji tradiéni metody a predchozi studie, coz svédéi o vyz-
namném pokroku v této oblasti. Nicméné studie upozornuje na nékolik omezeni,
véetné moznosti nadmérného prizptisobeni modelt na pouzita data v disledku malé
velikosti datasetu, pottfeby Sirsi validace napfi¢ riznymi institucemi a hodnoceni
pouze jediného experimentalniho béhu, ktery nemusi plné zachytit variabilitu ve
vykonnosti modelu. Tyto body naznacuji oblasti pro dalsi vyzkum a zdokonaleni s
cilem zvysit spolehlivost a pouzitelnost GNN v klinickych podminkach.

Zavérem lze Tici, ze prezentované vysledky zdlraznuji potencidl modelit GNN -
konkrétné GraphSAGE a GAT - pro navadéni epileptochirurickych operaci po-
moci interiktalnich dat SEEG. Tato studie prokazala, ze modely GNN dosakuji
signifikantné lepsich vysledk pri lokalizaci EZ ve srovnani s tradi¢nimi metodami.

Reprezentace SEEG dat ve formé grafii, kterda umoznuje GNN zachytit topolog-



ické a funkéni vztahy mezi signaly, ma mimoradny piinos pii studiu komplexnich
epileptickych siti. Tyto modely vynikaji v fadé vykonnostnich metrik, coz svédéi o
jejich vyssi presnosti a spolehlivosti v klinickych aplikacich. Vyuziti GNN rovnéz
prokazalo znatelné vyssi presnot pri predikci pooperacnich vysledki, coz déle zduraz-
nuje jejich potencial pti napoméhani presnéjsimu a efektivnéjsimu planovani epilep-
tochirurgickych zédkroku. Prostfednictvim analyzy predpoveédi a vizualizace vystupt
modelt GNN lze potencidlné ziskat nové poznatky o epileptickych sitich, které by
mohly byt podnétem pro dalsi vyzkum lécebnych moznosti v oblasti farmakorezis-
tentni epilepsie.

Tento vyzkum predstavuje vyznamny pokrok v 1écbé epilepsie prostfednictvim im-
plementace GNN pro interiktalni analyzu SEEG, pricemz navrhovana metodika
otevira cestu ke zvysSeni presnosti interiktalni lokalizace EZ a tim zkraceni doby

trvani invazivoiho SEEG monitorovani.
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Introduction

Epilepsy, one of the most prevalent and challenging brain disorders, affects around
70 million people worldwide [1]. This disorder is characterized by chronic recurrent
seizures resulting from excessive neuronal cluster discharge [2]. Although numer-
ous antiseizure medications are available, they fail to control seizures effectively in
about 30-40% of epilepsy patients [3, 4]. For these individuals with drug-resistant
epilepsy, epilepsy surgery is frequently the treatment of choice when other options
are insufficient [5]. The goal of epilepsy surgery is to completely remove or discon-
nect the epileptogenic zone (EZ) defined as "the area of cortex indispensable for the
generation of clinical seizures" while preserving the eloquent cortex ! [7]. While the
EZ is a theoretical concept that cannot be directly measured by any of the currently
available methods, a variety of diagnostic tools, including seizure semiology, elec-
troencephalography recordings, functional testing, and neuroimaging techniques, are
currently used to localize the potential EZ and construct an individualized resection
plan for each patient [7, 8]. The seizure-onset zone (SOZ), identified based on elec-
troencephalography recordings, is currently used by clinicians to approximate the
EZ [5].

Among the used diagnostic tools, stereo-electroencephalography (SEEG) has
emerged as a valuable and relatively well-tolerated invasive method for correctly
identifying the SOZ for patients with unclear noninvasive data [5]. Through the
implantation of depth electrodes, SEEG provides a unique opportunity to capture
electrical patterns directly from within the brain and to visually identify the SOZ
from the recordings of seizures. This option, while effective, comes with inherent
challenges. Patients undergoing SEEG must tolerate the invasive nature of the pro-
cedure, face associated risks, and endure the process of reducing antiseizure medi-
cation (ASM) to minimize seizures. This reduction process is intricate and can take
1-2 weeks, sometimes extending to 4 weeks. Moreover, traditional methods rely-
ing on visual inspection of recordings by medical professionals are time-consuming
and subjective. The fact that only approximately 60% of carefully selected patients
achieve seizure freedom after epilepsy surgery, often due to the challenges in accu-
rately identifying the EZ, underscores the urgent need for advanced diagnostic tools
capable of localizing the EZ quickly and precisely using SEEG data [5].

Automatic methods, particularly those analyzing interictal data 2

, pbresent a
promising avenue to address these challenges and simplify the entire presurgical

workup process. By leveraging automated approaches, the need for prolonged inva-

'Eloquent cerebral structures are defined as areas of the brain with readily identifiable neuro-
logical function, in which injury results in disability. [6]
2Interictal data refers to the data collected away from seizures.
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sive monitoring in the Epilepsy Monitoring Unit (EMU) can be minimized, along
with the associated risks and costs. Consequently, there is an opportunity to enhance
the efficiency of epilepsy surgery, providing a more timely and effective intervention
for patients facing drug-resistant epilepsy.

Several promising automatic methods analyzing interictal data have been de-
veloped, including those studying high-frequency oscillations [9], interictal spikes
[10], and connectivity measures [11, 12, 13]. While these methods have shown effec-
tiveness, they often overlook crucial aspects, such as the specifics of each patient’s
electrode implantation, and fail to consider the topology of brain networks, which
are essential for accurate seizure source localization. This limitation highlights the
need for more sophisticated tools that can integrate this information to enhance the
understanding of epileptic activity and improve clinical outcomes.

Graph Neural Networks (GNNs) have emerged as robust deep learning tools for
electroencephalography (EEG) signal analysis, demonstrating state-of-the-art per-
formance in diverse applications such as automating sleep staging [14] and emotion
recognition [15]. The distinctive strength of GNNs lies in their ability to represent
EEG data as a graph, enabling them to capture implicit topological and functional
relationships between signals. This unique capability is particularly relevant in
examining epileptic networks, as GNNs can potentially uncover the patterns and
relationships that traditional methods struggle to discern. By leveraging the graph-
based nature of GNNs, it becomes possible to incorporate the patient-specific elec-
trode implantation and brain network topology into the analysis, offering a more
tailored and accurate approach to localizing the EZ.

This thesis aims to leverage GNNs to localize the EZ in drug-resistant epilepsy
patients using interictal SEEG recordings. The objective is to streamline the presur-
gical workup process and enhance clinical insights in epilepsy diagnostics by pro-
viding a more efficient and effective approach to EZ localization for patients facing
drug-resistant epilepsy. This approach not only addresses the shortcomings of ex-
isting diagnostic methods but also paves the way for advancements in personalized

epilepsy treatment.
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1 Theory

This Chapter begins with an overview of drug-resistant epilepsy and the role of
epilepsy surgery, discussed in detail in Section 1.1. It then summarizes the meth-
ods of localizing the EZ from intracranial EEG recordings, covered in Section 1.2.

Following this, Section 1.3 introduces and explains the concept of GNNs.

1.1 Drug-Resistant Epilepsy and Epilepsy Surgery

This Section provides a comprehensive overview of DRE and the surgical interven-
tions used to treat it. Subsection 1.1.1 covers the nature of epilepsy and defines what
constitutes DRE, Subsection 1.1.2 explores the concept of the EZ, Subsection 1.1.3
discusses methods for presurgical evaluation and the criteria for surgical treatment,

and Subsection 1.1.4 examines surgical outcomes.

1.1.1 Epilepsy

Epilepsy is defined as a brain disorder characterized by the occurrence of repetitive
and unprovoked seizures. The term 'seizure' refers to a sudden and temporary
change in neurological function resulting from an abnormal excessive or synchronized
activity of neurons in the brain, and epileptic seizures, caused by abnormal neuronal
firing, can be distinguished from non-epileptic events, such as psychogenic seizures,
by epileptic discharges in the EEG. [16, 17] Epilepsy can arise from numerous causes,
which can be categorized as genetic, structural, metabolic, infectious, immune, or
unknown [18]. The developing brain is particularly prone to seizures, reflected by
the fact that approximately 75% of epilepsy cases begin during childhood [16].
ASMs, which help 60-70% patients with any epilepsy achieve seizure control, are
the mainstay of symptomatic epilepsy treatment [16]. The ASMs suppress seizures
by interactions with various cellular targets, modifying the bursting properties of
neurons and reducing synchronization in the neuronal system [17]. Despite the avail-
ability of more than 30 ASMs with diverse anti-seizure mechanisms, seizures may be
resistant to treatment in 30-40% of all patients with epilepsy [3, 4, 19]. For patients
with drug-resistant epilepsy who have failed to respond to two appropriate ASMs
[4], treatment options include resective epilepsy surgery, neuromodulation with neu-
rostimulation devices, and ketogenic diet therapy [17]. Studies have shown that
4.5% of all patients with epilepsy could potentially benefit from resective epilepsy
surgery [7] whose primary goal is the complete resection or disconnection of the

"epileptogenic zone".
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1.1.2 The Concept of the "Epileptogenic Zone"

The theoretical concept of the "epileptogenic zone" was defined as “the area of cor-
tex that is necessary and sufficient for initiating seizures and whose removal (or
disconnection) is necessary for the complete abolition of seizures” in 1993 by Luders
et al. [20]. No currently available method can be used to measure the EZ directly.
However, its location can be inferred by defining the following cortical zones [7]
illustrated in Figure 1.1:

o The irritative zone is the area of the cortex that generates interictal epilepti-
form discharges (IEDs), which can be captured by EEG, magnetoencephalog-
raphy (MEG), or functional magnetic resonance imaging (fMRI). To give rise
to clinical symptoms, IEDs must be repetitive, have sufficient strength, and
invade the symptomatogenic zone.

« The symptomatogenic zone is the cortical area that produces the ictal
symptoms when activated by an epileptiform discharge. This zone can be
delineated by analyzing the patient’s ictal symptoms through the analysis
of seizure history and ictal video recordings or invasively by direct cortical
electrical stimulation, which creates conditions similar to the activation of the
cortex by an epileptiform discharge.

o The seizure-onset zone is the area of cortical tissue from which clinical
seizures are generated, and it is usually the area of the irritative zone producing
[EDs capable of inducing clinical symptoms. The SOZ is localized by visual
inspection of the scalp or intracranial EEG or by ictal single photon emission
computed tomography (SPECT). Although in current practice, the SOZ is
often used as a proxy for the EZ [5], the extent of these areas often does not
correspond, meaning that the EZ is either smaller or larger than the clinically
determined SOZ.

» The epileptogenic lesion is the radiographic lesion that causes epileptic
seizures. Brain lesions are localized by high-resolution magnetic resonance
imaging (MRI), and their epileptogenicity is determined by video-EEG mon-
itoring and seizure semiology. The resection of the MRI-visible epileptogenic
lesion is often not sufficient to achieve seizure freedom, as the EZ can extend
beyond lesion borders. Conversely, if the EZ covers only a part of the epilep-
togenic lesion, a partial resection of the lesion may result in complete seizure
freedom.

o The functional deficit zone is the cortical area, which is functionally abnor-
mal in the interictal period. Although the functional deficit zone’s relationship
to the EZ and the value of its presurgical definition is limited compared to the

other zones, the correlation of the functional deficit zone with the other areas
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may provide supporting information.

Symptomatogenic

Zone Seizure-onset
/ o

Functional
«— deficit
/ zone
Irritative \
zZone Epileptogenic

lesion

Fig. 1.1: Illustration of the cortical zones in the epileptic brain. Adapted from [21].

Apart from the above-mentioned cortical zones, the localization of the eloquent
cortex adjacent to the seizure onset zone is necessary to construct a surgical plan.
The resection of the eloquent cortex, which is the cortex related to a given neurolog-
ical function, may result in the loss of that function, and the possible deficits should

be discussed with the patient before the procedure. [7]

1.1.3 Presurgical Evaluation and Surgical Treatment

An extensive presurgical work-up is conducted to determine the patient’s eligibility
for surgery, starting with noninvasive testing including detailed medical history,
neuropsychological evaluation, brain MRI with an epilepsy-dedicated protocol, and
long-term video EEG [22]. Additional investigations, including positron emission
tomography (PET), SPECT (both interictal and ictal), MEG, and fMRI, may be
employed to investigate the EZ further [17, 22].
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Curative surgery may be directly considered if the noninvasive phase is conclusive
and the delineation of the epileptogenic focus from the eloquent areas is achieved.
This might include cases of epilepsy derived from a well-defined focal brain lesion or
cases of mesial temporal lobe epilepsy caused by mesial temporal sclerosis, which are
associated with good surgical outcomes (60-90%) and do not always require invasive
testing. [17, 4, 22] However, when noninvasive evaluation yields inconclusive results
(25-50% of cases), long-term invasive intracranial EEG monitoring is indispensable
for precise localization of the epileptogenic focus [8].

Following an exhaustive presurgical evaluation focusing on the definition of the
cortical zones and postoperative deficit risk assessment, various surgical strategies
are considered based on seizure type and location. Resective surgery, the conven-
tional approach involving open-skull removal of epileptogenic tissue, is an option
with broad applicability but necessitates careful consideration of potential functional
deficits and recovery. Alternatively, less invasive options include SEEG-guided ra-
diofrequency thermocoagulation, which disrupts the EZ with heat-induced lesions,
and laser interstitial thermal therapy, utilizing laser-induced heat for ablation. [3, 23]

Additionally, even in cases where the multimodal evaluation provides discordant
results or when the resection of the epileptogenic region is not possible, palliative
surgery, which aims to reduce the frequency and severity of seizures, may be a viable
option [17, 4].

1.1.4 Surgical Outcome

The success of both curative and palliative epilepsy surgery relies on accurate presur-
gical localization of the EZ. It is crucial to note that currently, the presurgical de-
lineation of the EZ is not feasible, even in cases where information gained from
defining the main cortical zones is concordant. This is due to the possibility that a
potential SOZ exists apart from the actual SOZ where the patient’s seizures are gen-
erated, which would only become clinically apparent postoperatively [7]. Examples
of seizure-free and seizure-persistent outcomes are illustrated in Figure 1.2.

It is only after the surgery successfully eliminates seizures that we can be sure the
EZ was either resected or disconnected. This complicates the use of the definition
as a guide when developing a surgical plan and necessitates the use of postoperative

outcomes in confirming diagnostic accuracy.
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A. Seizure-free after surgery
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B. Seizures persist after surgery| C. Seizures persist after surgery
Actual SOZ Potential SOZ AC‘““'< Potential SOZ
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Fig. 1.2: Examples of surgical resection of the actual and potential seizure-onset
zone (SOZ) with seizure-free or seizure-persistent surgical outcomes. Adapted from
[24].

1.2 Epileptogenic Zone Localization in Intracranial

Electrophysiology

Invasive EEG monitoring, conducted with depth electrodes (SEEG) or subdural
strip or grid electrodes (electrocorticography, ECoG), directly captures the onset
and propagation of seizures from the cortex. ECoG, which enables dense sampling
of the subdural cortex, can be particularly helpful in localizing the irritative and
EZs and identifying the eloquent cortex regions. Additionally, ECoG can be em-
ployed intraoperatively to assist the neurosurgeon during the surgical procedure.
Meanwhile, SEEG, utilizing depth electrodes, enables the recording of seizure onset
and spread even from deep brain structures beyond the reach of scalp, strip, or grid
EEG electrodes. [22]

This Section delves into the methods for localizing the EZ using intracranial
electrophysiological techniques, with a focus on the use of SEEG in monitoring in-
terictal brain activity described in Subsection 1.2.1. It examines the key biomarkers
of the EZ detectable in interictal periods in Subsection 1.2.2 and evaluates how
graph analysis techniques can be applied to SEEG data to improve the accuracy of
EZ localization in Subsection 1.2.3.
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1.2.1 Stereo-Electroencephalography

The SEEG method was developed by Jean Talairach and Jean Bancaud in the
1950s with the aim of implementing a methodology for comprehensive analysis of
the morphological and functional brain space [25]. While scalp EEG and ECoG
primarily capture the electrical activity from the outer layers of the cortex, SEEG
directly records the Local Field Potential (LFP), also referred to as 'micro-EEG”.
The recorded signal contains action potentials and other fluctuations in membrane
potential within a small group of neurons, providing a highly detailed and infor-
mative signal for studying the mechanism of cortical electrogenesis. [26] SEEG are
characterized by their high amplitude, typically ranging from 50 to 1,500 pV, and
high spatial resolution, generally about 3.5 mm. To capture the high-frequency
changes in the signal, the recordings are typically sampled with sampling rates from
500 to 2,000 Hz. [§]

Implantation and Monitoring

Multicontact SEEG electrodes, varying in length and number of contacts, are em-
ployed to target specific brain regions. Typically, commercially available SEEG
electrodes are characterized by flexibility and semi-rigidity, featuring a rounded tip
as a recording contact. Each electrode typically consists of 518 contacts, regularly
spaced at intervals of 2-5 mm or 10 mm along the electrode. [27]

Various implantation techniques, including frame-based, frameless, and robotic
systems, are currently employed to insert the depth electrodes through 2.5 mm
diameter drill holes under general anesthesia [25]. While frameless techniques are
more time-efficient than frame-based methods, they generally exhibit lower overall
accuracy. On the other hand, robotic-assisted methods, such as Neuromate and
ROSA, provide exceptional accuracy with shorter implantation times compared to
non-robotic techniques but require expensive robotic equipment. [8] An illustrative
case of SEEG implantation, and recording is shown in Figure 1.3.

Following the surgical procedure, the patient is transferred to the EMU, where
clinical and electrographic monitoring through SEEG electrode recordings is con-
ducted. The stay in the EMU is approximately seven days but varies based on
factors such as the quantity, quality, and patterns of ictal and interictal recordings.
Throughout the SEEG monitoring period, the patient is not administered any AMS
to increase the probability of seizures. Once a sufficient amount of ictal data has
been recorded, the patient returns to the operating room for the removal of the
SEEG electrodes. [28]
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Fig. 1.3: Illustrative case of SEEG implantation with X-ray imaging (A) and SEEG
recording (B). Adapted from [25].

Advantages and Limitations

SEEG presents several significant advantages in epilepsy monitoring. It allows for
the recording of deep brain structures, enables bihemispheric recordings, serves as
an alternative if subdural grids fail, and facilitates three-dimensional mapping of
epileptic networks without the need for a large craniotomy [28, 22].

However, SEEG also has major limitations. The placement of depth electrodes
requires an invasive neurosurgical procedure, introducing inherent risks and increas-
ing the complexity of the monitoring process. Additionally, the spatial coverage of
SEEG may be limited compared to scalp EEG and ECoG, which can capture more
widespread brain activity. Moreover, prolonged stays in the EMU pose significant

risks, while they may not ensure seizure occurrence. [29, 5]

1.2.2 Interictal Biomarkers of the Epileptogenic Zone

Identifying the EZ from interictal data can significantly reduce the length of EMU
stays and facilitate diagnosis even for patients who do not experience seizures dur-
ing the monitoring period. Several promising automatic methods of analyzing in-
terictal data have been developed, including those studying interictal epileptiform

discharges, high-frequency oscillations, and connectivity measures.

Interictal Epileptiform Discharges

Interictal epileptiform discharges (IEDs), often called ’spikes’, are characterized by
brief and abnormal electrical discharges resulting from the synchronous firing of hy-

perexcitable neurons. Traditionally, a spike is clinically defined as a sharp transient
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with a duration between 20 and 70 ms, which can be clearly distinguished from
background activity [30]. Figure 1.4 shows spike examples.

Spikes can be observed between seizures in patients with epilepsy, and the vari-
ability in spike rate and spatial extent with sleep state and seizure activity suggest
fluctuations in spike activity over time [31]. Moreover, the relationship between
spikes and seizures is complex and remains unclear, with some studies proposing
that spikes may promote seizure generation while others suggest a protective bene-

fit against seizures. [32, 33]

A B

Fig. 1.4: Interictal epileptiform discharge (A) and a group of interictal epileptiform
discharges from neocortical dysplasia (B) recorded in human partial epilepsies with
intracranial EEG. Adapted from [33].

The resection of areas with a high frequency of spikes was associated with seizure-
free outcome [34, 35], with spikes preceded by gamma activity proving to be espe-
cially discriminative of the EZ [36, 10]. Nevertheless, research has demonstrated
that while interictal spike activity serves as a valuable tool for localizing the seizure
generator, achieving seizure freedom does not always necessitate the removal of all

areas generating spikes [37].

High-Frequency Oscillations

High-frequency oscillations (HFOs) are transient oscillatory events observed in high
frequency ranges between 80 Hz and 500 Hz, consisting of at least four oscillations
that clearly stand out from background activity [38]. HFOs can further be divided
into ripples (80-250 Hz), fast ripples (250-500 Hz), and very-fast ripples with fre-
quencies exceeding 500 Hz (17-20) [39, 40]. Ripples and fast ripples in intracranial
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EEG are shown in Figure 1.5.
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Fig. 1.5: High-frequency oscillations in the intracranial EEG recording. Data was

filtered between 80-200 Hz (ripples) and 200-500 Hz (fast ripples). Adapted from
41].

Retrospective studies have demonstrated that the resection of areas characterized
by high HFO rates is correlated with a more favorable seizure outcome compared to
the resection of regions with low HFO rates [38, 42, 43]. However, since HFOs are
also associated with normal brain function [44], distinguishing between physiologi-
cal and pathological HFOs is imperative for their utility as biomarkers of the EZ.
Despite this challenge, several methods based on HFOs have shown promise for the
localization of the EZ with the frequency, amplitude, and duration of HFOs as main
measures [9, 45, 46]. Furthermore, the combination of interictal spikes and oscilla-
tions in the ripple band improved the localization of epileptogenic tissue compared
to spikes, spikes-gamma, wideband HFOs, ripples, and fast ripples [47].
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Connectivity Measures

Researchers explore three types of brain connectivity: structural (anatomical), func-
tional, and effective connectivity. Structural connectivity involves the physical inter-
connection of axons, detectable through noninvasive MRI. Functional connectivity
assesses statistical dependencies between brain regions, typically through the corre-
lation of time-series signals, while effective connectivity reveals directional data flow
during cognitive tasks, uncovering causal brain networks. To measure functional and
effective connectivity, intracranial EEG, functional MRI, and MEG are commonly
used [48, 49].

Widely used functional connectivity measures include Pearson’s correlation co-
efficient, coherence, phase-locking value, and relative entropy (discussed in detail
in Subsection 3.1.2). Pearson’s correlation coefficient, measuring the linear cor-
relation between two signals, has been presented as a potential predictor of seizure
outcome in temporal lobe epilepsy patients [50]. Additionally, epileptogenic tissue
was associated with increased phase synchronization, as measured by mean phase
coherence, during interictal periods, with changes in synchronization preceding
seizures [51]. The phase-locking value, also measuring phase synchronization of
two signals, has successfully been used to identify the area of seizure onset [52].

The main effective connectivity measures used for EZ localization are the Granger
causality measures and directed information. Granger causality measures enable
the exploration of causal relationships between brain regions by examining the di-
rected flow of information within the brain [53], showing potential in localizing
seizure networks from interictal data [54, 55]. Effective connectivity can also be in-
ferred based on directed information, measuring the directed flow of information
between two signals. Directed information has proven helpful for inferring the SOZ
as the sole connectivity measure [56], and in combination with Granger causality
[57].

1.2.3 Graph Analysis in Epileptogenic Zone Localization

As epilepsy is increasingly viewed as a network disorder, there is a growing empha-
sis on proposing network-based measures to characterize the connectivity patterns
within the epileptic brain network [58]. Graph theory is a promising approach
for analyzing networks, offering valuable measures to characterize brain networks’
topological properties and functional organization in both normal functioning and
diseases. In this approach, the brain is conceptualized as a graph composed of
nodes (such as SEEG contacts) and edges, representing interactions between pairs
of nodes. The graph representation of data will be further discussed in Subsection
1.3.1.
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In an analysis of ictal effective connectivity, the electrode contact exhibiting the
highest total out-degree consistently corresponded to the clinically marked SOZ and
was located within the resected brain region in postoperatively seizure-free patients
[59]. In another study, high degree and betweenness centrality values at ictal-onset
were correlated to the EZ, with in-degree being the most effective measure [60].

Importantly, studies indicate that abnormalities in the epileptic network are not
only evident during seizures but also during rest and even independent of spike oc-
currence [61]. The analyzed time-varying effective connectivity networks in various
non-seizure and seizure periods and found that high values of graph measures like
out-degree, closeness centrality, betweenness centrality, and clustering coefficient lo-
calized the SOZ and the EZ [62]. Furthermore, greater overlap between resected
and highly synchronous electrodes was associated with good surgical outcomes, sug-
gesting that spatially-informed interictal graph measures can effectively distinguish

between good and poor surgical outcomes [63].

1.3 Graph Neural Networks

Graph Neural Networks, first proposed in 2009 [64], now represent the state-of-the-
art deep learning methods for analyzing graph-structured data. GNNs transform an
input graph structure to generate embeddings for nodes, edges, and entire graphs.
The key idea is to propagate information across the graph, allowing each node to
gather and update its representation based on the information from its neighbor-
hood. This process is typically conducted through iterative message-passing steps
performed by GNN layers, where each node aggregates information from its neigh-
bors and updates its representation. The resulting embeddings can then be used for
various prediction tasks. The GNN framework is illustrated in Figure 1.6.

Essentially, GNNs can be viewed as an extension of conventional Convolutional
Neural Networks (CNNs) tailored for processing data organized in graph structures
instead of the processing of images. While CNNs can only operate on Fuclidean data
such as images (2D matrices) and texts (1D sequences), these data structures can
be regarded as instances of graphs. The generalization of CNNs to graph structures
extends the applicability of deep neural models beyond Euclidean domains and into
non-Euclidean graph-based domains, which enables modeling relationships and de-
pendencies in complex data. Figure 1.7 illustrates the difference between FKuclidean
and non-Euclidean data.

The design of a GNN model consists of four main parts described in this Section:
1) the representation of the data as a graph (Subsection 1.3.1), 2) the specification
of graph type and structure (Subsection 1.3.2), 3) the design of the learning task

Subsection 1.3.3), and 4) the construction the GNN model using computational
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Fig. 1.6: In the general framework of GNNs, the input computational graph (A)
is transformed by a series of GNN layers (B), and the resulting node, edge, and
graph embeddings (C) can be used for various prediction tasks (D). The training
loss function is defined based on the prediction task and training setting.
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Fig. 1.7: Illustration of data representation in the Euclidean (A) and non-Euclidean
space (B). CNNs operate in Euclidean space, while GNNs also extend to non-
Euclidean space.
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modules (Subsection 1.3.4). [65] In Subsection 1.3.5, three established architectures
of GNNs are described, and the applications of GNNs in EEG analysis are outlined

in Subsection 1.3.6.

1.3.1 Graph Representation of Data

The graph structure must be identified in the data based on the application of the
model. The structure is either explicitly given by the structural nature of the data,
such as the molecular structure of analyzed proteins [66], or it must be constructed,
exemplified by the design of word graphs in natural language processing [67]. The
resulting graph representation then serves as an input for the GNN.

A graph G = (V, £) consists of a set of nodes V, also called vertices, and a set
of edges &£ connecting these nodes. |V| = N or NV is the number of nodes in the
graph and |€] = N€ the number of edges. [65]

Adjacency Matrix

The adjacency matrix A € R V¥ is commonly used to represent the connectivity
patterns in the graph, stored as edge weights. Each edge (i,j) € £ represents a
relationship between nodes ¢ and j. For a weighted graph, A;; equals the weight of
the edge (7, j), whereas for an unweighted graph, A;; is defined as follows [68]:

1, if there is an edge between nodes ¢ and j,
A= (1.1)
0, otherwise.

Moreover, edges in the graph structure can be directed or undirected. In the case
of directed edges, a clear distinction exists between a source node, where information
originates, and a destination node, representing the endpoint of the directed flow
of information. Conversely, in an undirected edge, information flows bidirectionally,

and its adjacency matrix is therefore symmetric (A;; = Aj;).

Node Features Matrix

In addition to the structural information provided by the adjacency matrix, each
node v € V in the graph may have associated features. The features of all nodes are
typically represented in a feature matrix X € R ¥Vl where each row corresponds

to a node and each column corresponds to a feature dimension. [68] For example:
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Where N is the number of nodes and d is the number of node features.

1.3.2 Graph Types

Graph type and scale are key concepts for the construction and processing of graphs.
Some of the usual categories, which are mutually orthogonal, are:
« Directed/Undirected: Described in Subsection 1.3.1.
« Homogeneous/Heterogeneous: In homogeneous graphs, nodes and edges
are of the same type, while heterogeneous graphs incorporate nodes and edges
of multiple types.
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« Static/Dynamic: Dynamic graphs exhibit varying input features or graph
topology, while static graphs remain unchanged.
There is no clear classification in terms of graph scale, and small and large graphs

are usually distinguished based on a device’s capacity to store and process them.

1.3.3 Prediction Tasks and Training

To design a suitable loss function that will allow the optimal training of the model,
the general task type and training setting must be defined. There are three main
prediction tasks conducted on graphs:

e Node-Level Tasks: Property of each node within the graph is predicted
in node-level tasks, with node embedding as the main model outputs. This
category includes tasks such as node classification, where each node is assigned
a label; node regression, where a numerical property for each node is predicted;
and node clustering, which involves grouping nodes based on their features or
connections.

o Edge-Level Tasks: Edge-level tasks involve predicting properties associated
with the edges of a graph. Common examples include edge classification,
where edges are categorized into different types, and link prediction, where
the existence of an edge between two nodes is forecasted. In these tasks, the
primary output is the embeddings of the graph edges.

o Graph-Level Tasks: GNNs are also applied to tasks that involve predicting
a single property for the entire graph. This could be a classification task,
where the goal is to categorize the graph as the whole, or a regression task,
where a numerical property of the entire graph is predicted. The key output
here is the learned embeddings of the whole graph.

Examples of the prediction tasks are illustrated in Figure 1.9.

Based on the supervision setting of the task, we differentiate:

o Supervised models: Labels are provided to the model for training.

e Semi-supervised models: Only a small amount of labeled data is provided.

« Unsupervised models: No labels are provided to the model, and clustering

is commonly applied to find patterns in the data.

1.3.4 Computational Modules

The three commonly used computational modules to construct the GNN model are
sampling, propagation, and pooling. A GNN model is typically built by combining

and layering these modules.
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A. Node Classification B. Link Prediction C. Graph Classification

Fig. 1.9: Exaples of prediction tasks performed with GNNs. Node classification (A)
is an example of a node-level task, link prediction (B) of an edge-level task, and

graph classification (C) of a graph-level task.

Sampling Modules

To propagate information, GNN models aggregate information for each node’s neigh-
borhood in the preceding layer into the node in the current layer. Therefore, the
node’s neighborhood grows exponentially with the depth of the network, necessi-
tating sampling of the neighborhood. In large graphs, sampling is also needed for
storing and processing information. Different strategies for sampling based on node
sampling, layer sampling, or subgraph sampling can be employed.

Node sampling involves selecting a subset of neighboring nodes for aggregation,
as demonstrated by Graph Sample and Aggregate (GraphSAGE) in Subsection 1.3.5.
Layer sampling used in models like FastGCN [69] preserves only a limited set of
nodes for aggregation within each layer, thereby regulating the expansion of the
node’s neighborhood. Subgraph sampling samples multiple subgraphs from the
computational graph and confines the neighborhood search within these subgraphs

instead of directly sampling nodes and edges from the entire graph.

Propagation Modules

Propagation modules transmit information between nodes through edges, aggregat-
ing information about node features and the graph topology. Convolution or re-
current operators are typically used to gather information from neighboring nodes,
and skip connections can be included to incorporate information from past node
representations and prevent over-smoothing.

From the propagation modules, convolution operators are the most popu-
lar. Convolution operators work directly with the graph topology (i.e., spatial ap-

proaches) or with the spectral representations of graphs (i.e., spectral approaches).
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The choice between spatial and spectral approaches depends on the specific re-
quirements and characteristics of the graph data. The GraphSAGE propagation
framework [70] is a popular spatial convolutional module for induction and semi-
supervised tasks. Attention-based spatial approaches, such as the Graph Attention
Network (GAT) [71], can assign different weights to neighbors for information prop-
agation, enabling noise reduction and improved results.

Reccurent operators, unlike convolution operators, share the same weights
across layers, and they contain mainly convergence-based and gate-based methods.
Convergence-based methods aim to learn state embeddings for each node, with the
limitation of lower efficiency. Gate-based methods, which do not guarantee conver-
gence, aim to enhance computational efficiency and long-term information propaga-
tion with the Gated GNN (GGNN) [72] as an example.

Pooling Modules

Propagation modules are typically followed by pooling layers, which help collect
more general features from the graph. Direct and hierarchical pooling layers promote
information propagation even in complex and large-scale graphs.

Direct pooling modules, also known as readout functions, directly learn
graph-level representations from nodes using different node selection strategies. Sim-
ple node pooling methods include node-wise max, mean, sum, or attention opera-
tions applied to node features to obtain a global graph representation. More ad-
vanced SortPooling mechanism [73] first sorts the node embeddings according to
their structural roles and then obtains their representation by passing them through
CNNs. On the other hand, hierarchical pooling modules consider hierarchy in

the graph structure and learn graph representations layer by layer.

1.3.5 Architectures
GraphSAGE

The GraphSAGE inductive framework, introduced by Hamilton et al. [70], is an
example of node sampling with spatial convolution. It enables the generalization of
node embeddings across graphs for node classification by training a set of sampling
and aggregator functions that aggregate information from the node’s neighborhood
instead of training the embedding vector for each node. The main components of
the GraphSAGE framework are illustrated in Figure 1.10.

For the generation of embeddings, a fixed-size neighborhood N¥ in the distance
of k-hops from each node 7 is first sampled. The parameter k defines the depth of the

search, and each layer k£ has a corresponding aggregation function with a distinct
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Fig. 1.10: Illustration of the GraphSAGE framework steps: (1) sampling a fixed-size
neighborhood, (2) aggregating feature information from neighbors, and (3) predict-

ing graph context and node labels using the aggregated features. Adapted from [70].

trainable matrix of weights W*. Node features serve as initial node embeddings.
Next, an aggregation function is used to combine information from the neighborhood

into a single vector for each node as

h¥ = AGGREGATE,({h}~,Vj € Nf'}), (1.3)

where h¥ is the aggregated representation for node i at the k-th layer, and hf_l
are the embeddings from the previous layer for each neighboring node 5 within the
k-hop neighborhood NF. Finally, the node representation is updated by the com-
bination of the aggregated representation h¥ with the existing node representation
hE1.

h¥ = o(W* . CONCAT(RY , b 1)), (1.4)

[

where A is the new embedding of node 4, W* is a matrix of weights for the k-th
layer, and o is a non-linear activation function.

The model parameters are trained through standard stochastic gradient descent
and backpropagation techniques, and the trained model is applied to the unseen

nodes during testing.

Graph Convolutional Network

Graph Convolutional Networks, first introduced by Kipf and Welling [74], represent
a significant advance in graph neural networks by simplifying the graph convolution
process.

GCNs are designed to utilize a spectral approach involving the eigendecomposi-

tion of graph Laplacians to define graph convolutions. The key innovation of GCNs,
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which simplifies the traditional spectral graph convolution for propagation, can be
expressed as:
HYY = o(D 2 AD "2 HOW®) (1.5)

where H® is the matrix of activations in the I-th layer (with H® = X), A= A+ 1
is the adjacency matrix of the graph A with added self-connections (identity matrix
I), D is the diagonal degree matrix of A, W® is the trainable weight matrix for
the [-th layer, and o denotes the activation function such as Rectified Linear Unit
(ReLU).

This approach takes advantage of the localized first-order approximation of spec-
tral graph convolutions, effectively capturing information about immediate neigh-
bors without excessive computational cost. By operating directly on graphs, GCNs
are particularly effective for tasks such as node classification, where labels are avail-
able for at least a subset of nodes.

Graph Attention Network

Graph Attention Networks, developed by Velickovié et al. [71], introduce the atten-
tion mechanism to the architecture of graph neural networks. The main contribution
of GATs is the use of the attention mechanism in the propagation step, which allows
the model to learn the relative weights in information aggregation from the node
neighborhood.

The attention coefficients are calculated as follows:

a;j = softmax; (a (Wk A Wk hf_l)) , (1.6)

where «;; is the attention coefficient that signifies the importance of node j’s
features to node i, W* is a shared linear transformation applied to every node at
layer k, and a is a shared attentional mechanism. The softmax function is used
across all neighbours 7 to make the coefficients comparable.

The GAT layer specifically computes the hidden representations of each node by

attending over its neighbors, following the formula:

hf =0 (Z Q5 - Wk . h§_1> N (17)

JENI
where hY is the updated node representation, a;; is the attention coefficient
that signifies the importance of node j’s features to node i, W* is a shared linear
transformation for nodes at layer k, and o denotes the nonlinear activation function.
To stabilize the learning process, GATs often employ multi-head attention mech-

anism defined as:
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where K is the number of independent attention heads, afj are the attention
coefficients computed by the k-th attention mechanism, and W* denotes the corre-
sponding weight matrices.
Attention mechanisms allow GATS to focus on the most critical parts of the in-
put graph, improving model interpretability and performance. GATs are particularly
useful in node classification, graph classification, and other tasks where understand-

ing the relational importance of nodes significantly improves performance.

1.3.6 Applications in EEG Analysis

GNNs have emerged as powerful tools for EEG signal analysis by treating EEG
signals as vertices within a graph. This approach enables them to capture the im-
plicit topological and functional relationships between signals, proving particularly
valuable in the examination of epileptic networks.

GNNs have been used for the detection of spikes in scalp EEG [75] and for
the prediction of seizures from intracranial EEG [76]. Several studies have also
applied GNNs for the task of seizure detection [77, 78].

To note a few examples of the seizure detection models, a self-supervised Recur-
rent Graph Neural Network proposed for seizure detection and classification intro-
duced two EEG graph structures capturing electrode geometry and dynamic brain
connectivity [79]. Moreover, the use of Focal loss for GNNs was proposed as an
effective tool to tackle data class imbalance in seizure detection [80] and a Graph
Attention Network leveraging electrode and functional connectivity features was
used to explore graph representations of intracranial EEG data [81].

Notably, Grattarola et al. [78] designed a Graph Attention Network for seizure
detection and localization of the SOZ from intracranial data. Their approach, il-
lustrated in Figure 1.11, involved generating undirected functional networks during
interictal and ictal phases, employing two connectivity metrics — Pearson’s correla-
tion coefficient and the phase-locking value. Subsequently, they applied a message-
passing GNN equipped with an attention mechanism for seizure localization. The
attention scores generated by the GNN were then analyzed to predict the SOZ,
identifying nodes with the highest attention scores as points of high interest in the
functional networks.

GNNs also found applications in other areas of EEG analysis, including:
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Fig. 1.11: Schematic of the GNN-based pipeline for seizure detection and localization
proposed by Grattarola et al. A functional network is computed from raw intracra-
nial EEG data and used as input for the GNN model, composed of an edge-aware
message passing operation followed by an attention-based readout. The Graph-level
embeddings are classified to detect seizures and attention scores are analyzed to

localize the seizures. Adapted from [78].

» Sleep Staging: Sleep staging involves categorizing sleep into distinct stages.
An Adaptive Spatial-Temporal Graph Convolutional Network framework out-
performed eight other baseline methods for sleep stage classification [14]. The
model used an adaptive sleep graph learning mechanism to dynamically learn
the graph structure from EEG data and spatial-temporal graph convolution
with spatial-temporal attention to extract features in the spatial domain.

e Brain Motor Imagery: Brain motor imagery is used in brain-computer in-
terface technology for patients with motor disorders. A Graph Convolutional
Neural Network managed to precisely decode relevant features from EEG in
various motor imagery tasks by leveraging the functional topological relation-
ships of the electrodes [82]. Additionally, an Adaptive Spatiotemporal Graph
Convolutional Network outperformed existing models by simultaneously con-
sidering EEG signal characteristics in the time domain and channel correla-
tions in the spatial domain [83].

« Emotion Recognition: For emotion classification, a Dynamic Graph Con-
volutional Neural Network achieved state-of-the-art performance by dynami-
cally learning intrinsic relationships between EEG channels [15]. Furthermore,
a Graph Convolutional Broad Network, using stacked regular convolutional
layers, extracted deep-level information from EEG for superior emotion recog-
nition [84].
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2 Clinical Dataset

For the practical part of the master’s thesis, a clinical dataset consisting of adult
patient data from St. Anne’s University Hospital in Brno (SAUH) and the Mon-
treal Neurological Institute & Hospital (MNI) was used. In Section 2.1, the patient
eligibility criteria and the final patient cohort are described, and in Section 2.2, the

available patient data is characterized.

2.1 Patients

All consecutive adult patients with drug-resistant focal epilepsy who underwent
SEEG and subsequent resective surgery at SAUH between 3/2012 and 3/2022 and
the MNI between 1/2010 and 12/2015 were analyzed for the study. The inclu-
sion criteria for the patient cohort were: (i) availability of high-resolution 3D MRI
datasets; (ii) availability of 24 hours of continuous SEEG recording for sleep staging;
(iii) availability of scalp EEG, electro-oculography, and electromyography or video
for sleep staging; and (iv) the availability of a postsurgical outcome after a mini-
mum follow-up period of 1 year. The final patient cohort consisted of 37 patients,
16 patients from SAUH, and 21 patients from the MNI.

The study was approved by Brno Epilepsy Center - St. Anne’s University Hospi-
tal Research Ethics Committee and the Montreal Neurological Institute & Hospital

Ethics Review Board. All patients granted written informed consent.

2.2 Patient Data

The clinical dataset consisted of raw SEEG recordings (Subsection 2.2.1), sleep
staging annotations (Subsection 2.2.2), electrode contact annotations (Subsection

2.2.3), and patient surgical outcomes (Subsection 2.2.4).

2.2.1 SEEG Recordings

Patients participating in the study underwent stereotactic depth electrode implan-
tation as part of their presurgical assessment for drug-resistant focal epilepsy treat-
ment.

At SAUH, platinum depth electrodes from either DIXI (DIXI Medical; Chaude-
fontaine, France) or ALCIS (ALCIS, Besangon, France) were utilized. The DIXI
electrodes had a diameter of 2 mm, contact spacing of 3.5 mm, and 15-18 contacts
per electrode. The ALCIS electrodes featured a 0.8 mm diameter, contact spacing of

1.5 mm, a contact surface area of 5 mm?, and contact length of 2 mm. Each patient
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received 3—-14 intracerebral electrodes, with varying numbers of individual contacts
(5, 8, 10, or 15), targeting the temporal lobe and optionally other brain lobes using
the Talairach stereotaxic system. A 192-channel research EEG acquisition system
(M&I; Brainscope, Czech Republic) recorded the signals, with the average of all in-
tracranial signals used as a recording reference. The sampling rate was 25 kHz, and
the dynamic range was + 25 mV with 10 nV (24 bits). Acquired EEGs underwent
low-pass filtering and downsampling to 5 kHz for subsequent storage and analysis.

At the MNI, the SEEG was recorded with standard stereotactically inserted
clinical SEEG depth electrodes compatible with MRI. Either commercially avail-
able DIXI electrodes, or depth electrodes manufactured onsite (diameter 0.5-1 mm,
contact spacing 5 mm, 9 contacts, and contact surface 0.8 mm?) at the MNI were
implanted using an image-guidance system (SSN Neuronavigation System, Missis-
sauga, Ontario, Canada). The SEEG was recorded using the Harmonie monitoring
system (Stellate, Montreal, Quebec, Canada), low-pass filtered at 500 Hz and sam-
pled at 2 kHz.

2.2.2 Sleep Staging

Sleep staging involves categorizing sleep into five stages, as established by the Amer-
ican Academy of Sleep Medicine, which serves as the standardized classification sys-
tem developed by sleep researchers. These stages include wakefulness (W), three
phases of non-rapid eye movement (NREM) sleep—N1, N2, and N3—and rapid eye
movement sleep (REM).

At both institutions, visual sleep staging was conducted in 30-second epochs, as
outlined in the AASM guidelines [85]. At SAUH, the process involved using three
scalp electrodes covering the frontal, central, and parietal regions, in addition to
electrodes for electrooculography and electromyography of the chin. Meanwhile, at
the MNI, scalp EEG for sleep staging utilized subdermal thin wire electrodes placed
at F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 [86].

The data provided for each patient included annotations marking 5-minute seg-
ments of artifact-free recordings at least 1 hour away from seizures across various
sleep stages based on the sleep staging. The annotations were used to select 30

minutes of artifact-free NREM sleep recordings for analysis.

2.2.3 Electrode Contact Annotations

The seizure-onset electrode contacts were determined based on the earliest
changes at seizure onset irrespective of the fast activity content by board-certified
epileptologists [87]. Pre- and post-resection MRI was used to identify areas of the

brain and marking of resected electrode contacts. The localization of electrode
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contacts was done using the SEEGAtlas plugin of the open-source software IBIS
88].

2.2.4 Surgical Outcomes

The classification of postsurgical outcomes is necessary to confirm that the EZ was
successfully removed or disconnected during epilepsy surgery, as outlined in Subsec-
tion 1.1.4. In this study, surgical outcomes with respect to epileptic seizures were
classified according to Engel’s classification [89] described in Table 2.1. For this
study, patients with an Engel IA to ID outcome were considered as good surgical
outcome patients (N = 19), and the remaining patients with Engel outcome II to

IV as poor surgical outcome patients (N = 17).

Table 2.1: Engel’s classification of postoperative outcomes.

Class Description

A. Completely seizure-free since surgery

B. Nondisabling simple partial seizures only since surgery

Class I | C. Some disabling seizures after surgery, but free of disabling
seizures for at least 2 years

D. Generalized convulsions with AED discontinuation only

A. Initially free of disabling seizures but has rare seizures now

B. Rare disabling seizures since surgery

Class ITI | C. More than rare disabling seizures since surgery, but rare seizures
for the last 2 years

D. Nocturnal seizures only

A. Worthwhile seizure reduction
Class III | B. Prolonged seizure-free intervals amounting to greater than half

the followed-up period, but not < 2 years

A. Significant seizure reduction
Class IV | B. No appreciable change
C. Seizures worse

39



3 Methods

In the practical part of the master’s thesis, three GNN models - GraphSAGE, GCN,
and GAT - for the localization of the EZ from interictal SEEG data were imple-
mented and tested along with two reference models - a Support Vector Machine
(SVM) and a single-feature Spike Rate model. Models were then also used to pre-
dict postsurgical outcomes. The pipeline, illustrated in Figure 3.1, was implemented
in Python, utilizing the PyTorch Geometric (PyG) library for model development,
training, and testing. The data was first pre-processed as described in Section 3.1
and then used as inputs for the GNN models described in Section 3.2 and reference
models described in Section 3.3. Section 3.4 details the tuning of model hyperpa-
rameters, Section 3.5 the testing and evaluation of EZ localization, and Section 3.6
the methodology and evaluation of outcome prediction.

The localization methodology builds on the multi-feature SVM approach for EZ
localization. Previous research [13] demonstrated the potential of combining event-
based features, such as spike rate, with connectivity features like relative entropy
for distinguishing the EZ in interictal SEEG. What sets this study apart is the
integration of GNNs, which have the potential to enhance the multi-feature approach
by effectively leveraging topological information within the data. The capability of
GNNSs to process SEEG data as graphs introduces a novel perspective, potentially
uncovering patterns that traditional methods might struggle to discern.

Additionally, the inspiration for representing SEEG data as graphs comes from a
study by Grattarola et al. [78], which analyzed ictal recordings based on functional
connectivity measures. To the best of our knowledge, there exists no prior research

published on EZ localization using GNNs exclusively from interictal data.

3.1 Data Pre-Processing

The localization target was defined as described in 3.1.1. The raw EEG was first
pre-processed, and features were extracted from the pre-processed signals according
to Subsection 3.1.2. The data was then represented in a graph structure suitable for
processing by the GNN model, described in Subsection 3.1.3.

3.1.1 Localization Target Definition

The localization target for training and testing of the model was defined, based
on one of the most common approximations of the EZ, as SOZ contacts removed
during surgery ("SOZ&Resected’) [90, 91]. The definition of the target is illustrated

in Figure 3.2. For the training of the model, only patients with a good postsurgical

40



1. SIGNAL PRE-PROCESSING 2. FEATURE EXTRACTION _ - 3. GRAPH REPRESENTATION
A. Electrode Contacts B. SEEG Recordings A. Relative Entropy (REN) Reduction of REN functional connectivity matrix
~ '
Calculate
Bandpass relative ) |l Relative Entropy
Q filter  |~» entropy :;r:‘:::; —| N\ Thf‘;':;?'"g (edge feature)
O O \— 20-45 Hz between all
OO }-’V AAN channel pairs | ey
30 min of ! oz . 50)
artifact-free NREM sleep B. Spike Rate Q
interictal N o @ Reseciedasaz
Caloulate © non-Resectedasaz
C. Channel Selection Detect | | spike rate/ | | l Spike Rate
) ) spikes min per per patient (node feature)
Exclude contacts outside the brain and poor channel
quality channels J
4. MODEL TRAINING AND TESTING 5. MODEL EVALUATION
A. Epileptogenic Zone Localization
H Tuning H
AUROC, AUPRC, F1-score, PPV j
N Model predictions for
—_— Train & Test (LOPO C — — K
( V) good outcome cohort Wilcoxon Signed Rank Test
Eng:lgl H (good outcome cohort)
— g Train Mann-Whitney U-Test
(good vs poor outcome cohort)
- Test < Mol oedctons or "6, Outcame Preion
Er:\‘g il 1||é|v T ‘ Classification Acurracy ]
{ McNemar's Test
" Spike Rate predictions H
Complete Cohort Spike Rate > for complete cohort \¥ i (complete cohort)
-~/

Fig. 3.1: Schematics of the implemented pipeline. The SEEG recordings were first
pre-processed (1) and features (relative entropy and spike rate) were extracted (2).
Next, the data of each patient was represented in a separate graph structure (3). The
training and testing scheme is visualized in (4). First, the good outcome cohort was
used to tune the model hyperparameters of the trained models (GraphSAGE, GCN,
GAT, and SVM). Next, the good outcome cohort was tested in a leave-one-patient-
out cross-validation (LOPO CV) scheme. The poor-outcome patients were tested
on models trained on all good-outcome patients. The entire patient cohort was then
used to produce results for the Spike Rate model. Lastly, model predictions were
used to evaluate the localization of the epileptogenic zone (EZ) and the prediction

of a postsurgical outcome (5).

outcome were used to ensure that the approximation of the EZ was as accurate as
possible. Subsequently, the model was tested on patients with all outcomes, and the
results for good and poor outcome patients were compared to evaluate the clinical
utility of the model.

For the group of good outcome patients, a median of 4 electrode contacts out of
93 belonged to the ’SOZ&Resected’ localization target, indicating a class imbalance
in the dataset. For poor outcome patients a median of 3 electrode contacts out of 80
contacts belong to the localization target, indicating a smaller overlap between the
SOZ and resected contacts compared to the good outcome patients. The complete

statistics are presented in Table 3.1.
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Fig. 3.2: The 'SOZ&Resected’ localization target is defined as an intersection of
seizure-onset zone (SOZ) electrode contacts and electrode contacts removed during

surgery out of all electrode contacts.

Table 3.1:  Median (IQR) counts of seizure-onset zone (SOZ), resected and
'SOZ&Resected’ electrode contacts for good and poor outcome patient groups.
SOZ Resected | SOZ&Resected All
contacts | contacts contacts contacts
Good Outcome | 4.0 (6.0) | 11.0 (13.0) 4.0 (2.5) 93.0 (60.0)
Poor Outcome | 5.0 (5.3) | 11.0 (10.8) 3.0 (1.8) 80.0 (84.3)

3.1.2 EEG Signal Pre-Processing

As a first step of the EEG signal preprocessing, segments corresponding to 30 min-
utes of NREM sleep were selected from the complete recording based on annotations.
Nonoverlapping recordings of 15 minutes of N2 sleep, 10 minutes of N3 sleep, and
5 minutes of random NREM sleep were analyzed for each patient. NREM sleep
and especially N3 sleep have been identified as the states that best identify the EZ
91, 92]. The selection of channels for analysis was performed with the exclusion of
the following: (i) non-SEEG channels, (ii) SEEG channels from contacts with loca-
tions outside of the brain, and (iii) channels of poor recording quality based on visual
inspection and automated detection [93]. White matter contacts were included in
the analysis. An average from all SEEG contacts with a confirmed location inside
the brain was used as an SEEG reference and subtracted from each SEEG signal to
suppress far-field potentials caused predominantly by volume conduction.
Subsequently, the spikes in the signals were detected, and the measure of rel-

ative entropy in the low gamma band (20 — 45 Hz) was calculated between all
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channel pairs for each patient. The biomarkers were selected based on the results
of previous research, where they have proven effective for EZ localization [12, 13].
ElectroPhYsiology COmputational Module (EPYCOM) [94], an open-source Python
library developed by the Biomedical Engineering Department of International Clin-
ical Research Center at St. Anne’s University Hospital in Brno, was used for the

extraction of features from SEEG signals.

Spike Detection

The Janca detector implemented in the EPYCOM library, was used for the detection
of spikes. The detection scheme is summarized in Figure 3.3. The detector, which
distinguishes the spikes from the background activity according to signal envelope
modeling, achieved similar results to human reviewers in terms of spike rate. The
Janca detector allows precise spike time indexing thanks to operating in the time
domain, it is robust to the non-stationarity of the brain signals, and it minimizes the
number of false positive detections arising from long-term interference. A limitation
of the algorithm is that it is not resistant to technical artifacts, which can, however,

be addressed in postprocessing. [95]
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Fig. 3.3: Schematics of the Jance detector’s algorithm. Adapted from [95].
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First, the signal is zero-phase filtered in the 10 — 60 Hz band by high-pass and
low-pass 8th-order type II Chebyshev digital filters, and the instant envelope of the
signal is calculated using the Hilbert transform. Spikes manifest in the 10 — 60 Hz
band as peaks in the envelope. Next, the signal envelope is analyzed with a sliding
window, statistical distribution of the envelope is calculated for each segment and
approximated using the maximal likelihood algorithm (MLE). The log-normal model
was the best-fitting statistical model, and the mode and median of the log-normal
model were empirically chosen to discriminate spikes from the background activity.
The distribution of these two parameters was used to define a threshold based on
which segments with and without spikes were distinguished. A threshold curve is
created by interpolating between threshold values of all segments using a cubic spline
algorithm. Finally, the spikes are detected as the local maxima at the intersections
of the threshold curve with the envelope, and events closer than 120 ms are merged.
[95]

Spikes were detected in the 30-minute recordings, and the number of spikes per
minute was calculated. The spike rates were normalized to fall between 0 and 1 for

each patient.

Calculation of Relative Entropy

Relative entropy (REN), also called the Kullback-Leibler divergence, was used as a
measure of functional connectivity. As a measure of how the entropy of one signal
diverges from a second, REN evaluates the randomness and spectral richness between
two time-series signals. The value of REN varies between 0 and oo, with REN = 0
indicating identical statistical distributions of the analyzed signals, while REN > 0
indicates that the two signals carry different information. REN is calculated between

signals X and Y as

REN = i p(X;) - log <Z; g;) , (3.1)

where p(X) and p(Y') are the probability distribution functions of X and Y. Due
to REN’s asymmetrical properties, REN(X,Y) is not equal to REN(Y, X). REN
was therefore calculated in two steps for both directions, and the maximum value
of REN was considered the final result.

To calculate REN in the low gamma band (20 — 45 Hz), the signals were filtered
using a 3rd-order Butterworth bandpass filter. REN was calculated in 1-second win-
dows with no overlap, and the median REN value for each segment was considered.
A mean REN value across segments (total of 30 minutes) was used as the final result.
REN values were normalized to fall between 0 and 1, and a functional connectivity

matrix was constructed for each patient.
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For further computations, the functional network was sparsified. REN values
below the empirically set threshold of 0.2 were set to zero, meaning that the weakest
connections for each patient were discarded. Threshold values between 0.1 and 0.5
were iteratively tested, and the graph representations with connectivity matrices
thresholded at 0.2 of REN were used for analysis since they maximized model results.
As an example, the reduction of the functional connectivity network is visualized in
Figure 3.4, and the thresholded functional connectivity matrix for patient 723 with
a good surgical outcome (Engel TA) is shown in Figure 3.5. Using a sparse graph
as an input for the GNN helps to prevent over-smoothing, which occurs in densely
connected graphs and leads to all nodes having similar embeddings. A previous
study adopted a similar approach, where the non-normalized connectivity values
were thresholded at 0.1 [78].

A. Connectivity before thresholding B. Connectivity after thresholding
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Fig. 3.4: Connectivity matrix for patient 723 with good surgical outcome (Engel
IA) before (A) and after (B) thresholding. Electrode contacts are projected onto
a standard brain model. Target contacts ('SOZ&Resected’) are visualized in red
and non-target contacts in white color. The color of the edges corresponds to the

normalized relative entropy value.

3.1.3 Graph Representation of Data

The graph data was represented as 'Data’ objects implemented within PyG to de-
scribe homogenous graphs. The Data object mimics the behavior of a Python dic-
tionary and can contain node-level, edge-level, and graph-level attributes. A 'Data’
object was constructed for each patient with spike rate as the node feature, REN as
the edge feature, and patient ID as a graph attribute. According to the classification

described in Subsection 1.3.2, the graphs are undirected, homogenous, and static.
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Fig. 3.5: Connectivity matrix constructed from the thresholded normalized relative
entropy values of patient 723. On the x and y-axis, SEEG channels are listed with
the target ('SOZ&Resected’) channels highlighted on the x-axis. The color of each
field corresponds to the normalized relative entropy value between the two channels

according to the color bar.

Attribute Encoding

First, unique channel names were mapped to integer indices. The spike rate was
encoded into a node feature tensor X of shape [V, 1], where N is the number
of nodes (i.e., channels), and X; corresponds to the spike rate for the i-th channel.
Next, the functional connectivity matrix was encoded into an edge index tensor
Fi4. and an edge attribute tensor FE,;.. The edge index tensor FEj;4. of shape
2, N¢|, where N€ is the number of edges in the graph, contains the indices of all node
pairs that are connected with an edge. The source and destination channel names
were mapped to indices using the previously generated node mappings. The edge

attribute tensor Fqu, of shape [N€, 1] contains the functional connectivity values for
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each of the existing edges, with F,;,; corresponding to the weight of the i-th edge.

Ground truth labels for nodes were encoded in a label tensor Y of shape [N, 1],
where N is the number of nodes (i.e., channels), and Y; corresponds to the ground
truth for the i-th channel. According to the definition of the localization target in
Subsection 3.1.1, binary labels were assigned to each channel, corresponding to 1 for
channels marked as 'SOZ&Resected’ and 0 for channels outside the ’SOZ&Resected’.

Subsequently, the positions of nodes were encoded into a node position tensor
of shape [N, 3]. The position tensor used for visualization contained the coordinates
of all nodes on the z, y, and z axis in the MNI template coordinate space. As a
graph attribute, the postsurgical outcome was encoded into the graph with the
value of 0 corresponding to a poor outcome and a value of 1 to a good outcome.

Finally, the patient ID was encoded as a graph-level attribute.

Dataset Construction

For each patient in the dataset, a 'Data’ structure is created to represent the graph,
summarized in Table 3.2. Node features, edge indices, edge attributes, ground truth
labels, contact positions, and patient ID are incorporated into the 'Data’ object.
The data structures are stored in a list and later loaded into a 'Datal.oader’ object

for training and evaluation.

Table 3.2: Data structure shapes for patients in the dataset. X refers to the node
feature tensor, E;4, to the edge index tensor, F,4, to the edge attribute tensor, Y to
the label tensor, and 'Pos’ to the node position tensor. ’'Outcome’ value of 0 refers

to a poor postsurgical outcome and 1 to a good postsurgical outcome.

Patient ID X FEiq. FEoir Y Pos Outcome
59 (121, 1) | (2, 7260) | (7260, 1) | (121) | (121, 3) 0
61 (149, 1) | (2, 11026) | (11026, 1) | (149) | (149, 3) 1
63 (120, 1) | (2, 7140) | (7140, 1) | (120) | (120, 3) 1
66 (170, 1) | (2, 14365) | (14365, 1) | (170) | (170, 3) 0
67 (153, 1) | (2, 11628) | (11628, 1) | (153) | (153, 3) 0
69 (169, 1) | (2, 14196) | (14196, 1) | (169) | (169, 3) 0
71 (155, 1) | (2, 11935) | (11935, 1) | (155) | (155, 3) 1
73 (152, 1) | (2, 11476) | (11476, 1) | (152) | (152, 3) 0
74 (174, 1) | (2, 15051) | (15051, 1) | (174) | (174, 3) 1
7 (162, 1) | (2, 13041) | (13041, 1) | (162) | (162, 3) 1
80 (142, 1) | (2, 10011) | (10011, 1) | (142) | (142, 3) 0
82 (83, 1) | (2,3403) | (3403, 1) | (83) | (83, 3) 1

Continued on the next page
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Continued from the previous page

Patient ID E;4. E Y Outcome
81 (2, 13366) | (13366, 1) | (164) 0
84 (2, 4465) | (4465, 1) | (95) 1
88 (2, 741) (741, 1) (39) 0
90 (2, 3160) | (3160, 1) | (80) 0
92 (2, 15051) | (15051, 1) | (174) 0
93 (2, 12090) | (12090, 1) | (156) 1
583 (79, 1) | (2,3081) | (3081, 1) | (79) 1
657 (44, 1) (2, 946) (946, 1) (44) 1
705 (76, 1) | (2,2850) | (2850, 1) | (76) 0
v (61, 1) | (2,1830) | (1830, 1) | (61) 1
723 (79, 1) | (2,3081) | (3081, 1) | (79) 1
T (28, 1) (2, 378) (378, 1) (28) 0
909 (63, 1) | (2,1953) | (1953, 1) | (63) 0
953 (69, 1) | (2,2346) | (2346, 1) | (69) 1
965 (83, 1) | (2,3403) | (3403, 1) | (83) 1
1029 (91, 1) | (2,4095) | (4095, 1) | (91) 0
1041 (101, 1) | (2, 5050) | (5050, 1) | (101) 1
1043 (70, 1) | (2, 2415) | (2415,1) | (70) 1
1149 (48, 1) | (2,1128) | (1128,1) | (48) 0
1153 (93, 1) | (2,4278) | (4278, 1) | (93) 1
1159 (72, 1) | (2, 2556) | (2556, 1) | (72) 0
1162 (33, 1) (2, 528) (528, 1) (33) 0
1233 (45, 1) (2, 990) (990, 1) (45) 1
1246 (103, 1) | (2, 5253) | (5253, 1) | (103) 1
1247 79,1) | (2,3081) | (3081,1) | (79) 0
1299 (72, 1) | (2, 2556) | (2556, 1) | (72) 0
1446 (50, 1) | (2, 1225) | (1225,1) | (50) 0

3.2 GNN Models

function for binary classification.
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The architecture of all GNN models was designed for a node classification task. Each
of the models consisted of a sequence of GNN layers (either GraphSAGE, GCN, or
GAT) followed by a linear classifier. The GNN layers take node features, edge
indices, and edge weights as input and produce node embeddings. The transformed
node embeddings are then fed into a linear classifier with a sigmoid activation

The output of the linear classifier is a score




between 0 and 1, indicating the likelihood of each node belonging to a particular
class.

The implementation of GraphSAGE, GCN and GAT architectures is decribed in
Subsections 3.2.1, 3.2.2, and 3.2.3, respectively. The linear classifier is described in
Subsection 3.2.4. Subsection 3.2.5 then describes the training of the GNN models.

The architecture is illustrated in Figure 3.6.

/
A. Input B. GNN Model C. Output \
Model Prediction
o0 1 0
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Fig. 3.6: Implementation of the GNN models. Input graph structure (A) is trans-
formed by the GNN model (B), which contains a series of N GNN layers (Graph-
SAGE, GCN, or GAT) and a linear classifier with a sigmoid activation. The outputs
of the model (C) are scores between 0 and 1 for each node of the graph, indicating
the probability that the node is an SOZ&Resected electrode contact.

3.2.1 GraphSAGE Network

The GraphSAGE layer uses the SAGEConv operator for message passing with

the sampling, aggregation, and concatenation steps performed as follows:

B =0 (Wyx hE 4+ Wy x MEAN ({5} U {RE1 V5 e NE1Y)), (3.2)

where h¥ are the new embeddings for node i, A~ are the embeddings for node
¢ from a previous layer, and {h;?_l,‘v’j € Nf‘l} are the node embeddings for the
neighborhood N, f‘l of node i. The weights W; and W5 are learned during training,

and o is a non-linear activation function.
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The mean operator was used to aggregate each node h¥. For every node hF, it
computes the mean of vectors {hf_l, VjeN J’?_l}. The mean operator was chosen as
the aggregator function since it performed better than other aggregation functions
like max pooling and long short-term memory aggregators. The output was then
transformed with a ReLU activation function, which introduces non-linearity by
setting negative values to zero and keeping positive values unchanged. The output
of the GraphSAGE layer was passed to the next GraphSAGE layer or directly to
the linear classifier described in Subsection 3.2.4.

The number of GraphSAGE number message-passing layers and of hidden channels
in each GraphSAGE layer, which controls the dimensionality of the node embeddings

during the message-passing process, were tuned as described in Section 3.4.

3.2.2 Graph Convolutional Network

The GCN model employs a series of GCN layers that utilize the GCNConv op-
erator for message passing. In the GCN layers, information is aggregated from
neighboring nodes to the target node using graph convolution, mathematically rep-

resented as follows:

Wt =0 Sy gkt (3.3)
(jGZNi \/didj ! )

where h represents the updated embedding of node i at layer k and N; represents
the neighborhood of node 7 consisting of nodes j. Edge weight between nodes ¢ and
J is denoted as e;;, and d; and d; are the degrees (number of connections) of nodes
1 and 7, respectively. The weight matrix W is learned during training, and o is a
non-linear activation function.

The Leaky ReLU activation function used in the GCN model allows a small
non-zero gradient for negative values, helping to avoid the "dying ReLU" problem
and promoting gradient flow through the graph structure. A dropout layer before
the GCNConv operator is used to prevent overfitting by randomly setting some node
embeddings to 0, and each GCN layer includes a skip connection that projects the
input features directly to the output embedding using a separate linear projection
and adds them to the activated GCNConv outputs.

The number of GCN layers, the number of output channels of each GCNConv op-

erator, and the dropout probability were tuned as described in Section 3.4.
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3.2.3 Graph Attention Network

The GAT model comprises multiple attention-based convolutional layers that uti-
lize the GATConv operator for graph attention. The multi-head attention mech-
anism, described in Subsection 1.3.5, assigns different importance scores to each
neighboring node and aggregates information based on these scores according to
Equation 1.8.

The Leaky ReLU activation function was used as in the GCN, and dropout
was used to prevent overfitting. Skip connections, same as those in the GCN
layers, were used in the GAT layers, projecting linearly transformed input features
to the output embedding directly.

The number of GAT layers, the number of attention heads of each GATConv oper-

ator, and the dropout probability were tuned as described in Section 3.4.

3.2.4 Linear Classifier

The linear layer with sigmoid activation serves as a binary classifier, making pre-
dictions for the node classification task based on node embeddings generated by the
GNN layers. In mathematical terms, the operation performed by the linear layer

with sigmoid activation can be expressed as follows:

?j = U(I/Vlinear X h+ blinear)> (34)

where ¢ are the predicted probability scores, ¢ is the sigmoid activation function,
Wiinear represents the weight matrix for the linear layer, h denotes the node embed-
dings generated by the GNN layers, and bjnear is the bias for the linear layer. The

sigmoid activation function is defined as:

B 1
Cl4e
where o () is the sigmoid function, and e is the base of the natural logarithm.

o(x) (3.5)

The linear layer applies a linear transformation to the input data, and the sigmoid
activation function maps the linear layer output to a range between 0 and 1, produc-
ing a probability score. This score indicates the likelihood of each node belonging
to a specific class. To obtain a class assignment for each node, we can predict class
1 if the probability is greater than or equal to 0.5, and class 0 otherwise.

During model training, the sigmoid activation is applied as part of the Binary Cross-

Entropy with Logits loss function, and during testing, it is added as the final layer.
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3.2.5 Training

Each model was trained separately for good and poor outcome patient cohorts.
First, it was trained and tested on the good outcome patient cohort with leave-
one-patient-out cross-validation, meaning that it was trained on the data from all
patients except one and then tested on the withheld patient’s data.

For each cross-validation fold, a new model was trained for a given number of training
epochs. A suitable number of epochs for a given model architecture and optimizer
learning rate was first estimated using hyperparameter optimization described in
Section 3.4. Next, each of the GNN models was trained for 200 training epochs while
metrics were monitored, and the number of epochs that yielded the best balance of
AUROC and AUPRC across cross-validation folds for each model was used for final
model training. Training of GraphSAGE, GCN, and GAT models is visualized in
Figures 3.7, 3.8, and 3.9, respectively.

Training and Validation Metrics over Epochs (GraphSAGE)

1.2
1.0
0.8+
5
= 0.61
g
0.4 1 —— Training Loss
Median Validation Loss
—.= Median AUROC
02—+ e Median AUPRC
——- Median Mean AUROC and AUPRC
X Max Median Mean AUROC and AUPRC (Epoch 105)
0.0 T T T T T T T : T
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Epoch

Fig. 3.7: Evolution of training loss, validation loss, and performance metrics (Median
AUROC, Median AUPRC, and Median Mean AUROC and AUPRC) for the Graph
Sample and Aggregate (GraphSAGE) model across 200 training epochs. The median
mean AUROC and AUPRC is highlighted at the maximum value during Epoch 105.

In each training epoch, the data of all patients in the training loader were fed
into the model for training by mini-batches of size 4 (4 patients at a time), and the
model predicted the output based on the input graphs. Next, the loss was calculated
using the Binary Entropy with Logits loss function and backpropagated through the
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Training and Validation Metrics over Epochs (GCN)
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Fig. 3.8: Evolution of training loss, validation loss, and performance metrics (Median
AUROC, Median AUPRC, and Median Mean AUROC and AUPRC) for the Graph
Convolutional Network (GCN) model across 200 training epochs. The median mean
AUROC and AUPRC is highlighted at the maximum value during Epoch 80.

model. Then, the optimizer, in this case, the Adam optimizer, updated the model’s
parameters to minimize the loss.
Subsequently, the model was retrained with the same hyperparameters on all good-

outcome patients and tested on all poor-outcome patients.

Binary Cross Entropy with Logits

The Binary Cross Entropy with Logits (BCE with Logits) loss combines the Binary
Cross Entropy (BCE) loss and the Sigmoid activation function into a single compu-
tation. The loss function measures the dissimilarity between predicted values and

ground truth labels while ensuring numerical stability. The formula of BCE with

Logits is:
| N
BCE with Logits Loss = -~ > lyilog(o(z)) + (1 —yi) log(l —o(z))],  (3.6)
i=1

where NN is the number of samples, y; is the ground truth label, z; is the predicted
value (also called "logit"), and ¢ is the Sigmoid activation function.
Custom class weights for the loss were defined to address imbalances in the distribu-

tion of positive and negative samples within the dataset during the training process.
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Training and Validation Metrics over Epochs (GAT)
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Fig. 3.9: Evolution of training loss, validation loss, and performance metrics (Median
AUROC, Median AUPRC, and Median Mean AUROC and AUPRC) for the Graph
Attention Network (GAT) model across 200 training epochs. The median mean
AUROC and AUPRC is highlighted at the maximum value during Epoch 60.

The weights were calculated based on the numbers of positive and negative samples

in the entire dataset:

N

3.7
Nelasses X bzncount(y)’ ( )

Welasses =

where weqsses are the class weights, N is the number of all samples, ngsses 1S 2 in
binary classification, and bincount(y) contains the counts of negative and positive
samples in the ground truth label vector .

The BCE with Logits loss was tested alongside the original BCE loss and the Focal
loss, which is specifically designed for imbalanced datasets, and it produced the most
favorable results. In practice, the BCE with Logits loss is more computationally
efficient and numerically stable than the BCE loss due to its ability to pass the
logits directly into the loss function. Compared to the Focal loss, the BCE with
Logits loss also demonstrated superior performance, and significant improvement
in results after the application of class weights confirms that BCE with Logits can

effectively be applied to imbalanced datasets.
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Adam Optimizer

The Adam optimizer [96] was employed to update the model’s trainable parame-
ters during training. It combines adaptive learning rates for each parameter and
incorporates momentum to achieve efficient optimization. The key parameters of
the Adam optimizer are the learning rate () and the exponential decay rates (;
and (5. The learning rate controls the size of the steps taken during optimization,
and its value was optimized with other hyperparameters as described in Section 3.4.
Values of the exponential decay rates were fixed at 5; = 0.9 and [, = 0.999. Addi-
tionally, weight decay penalizing large weights was applied with the value of 0.0005

for regularization.

3.3 Reference Models

To evaluate the validity and utility of the proposed GNN models, two reference
models were implemented and tested using the same clinical dataset. First, the
raw normalized spike rate values were used (termed as the ’Spike Rate’ model) as
described in Subsection 3.3.1, and second, an SVM was trained and tested using the
same features as the GNNs as described in Subsection 3.3.2; i.e. normalized spike

rate and normalized REN.

3.3.1 Spike Rate

In the Spike Rate model, the normalized spike rate values were used the same way
as scores output by the GNN models. Therefore, there was no training, and the
normalized spike rate values were directly evaluated according to Subsection 3.5 for

each patient in the clinical dataset.

3.3.2 Support Vector Machine

The SVM model was trained and tested using an identical scheme to the GNN
models. Specifically, the SVM utilized two features: the normalized spike rate and
the normalized REN. The REN values were computed between each SEEG channel
and its nearest neighboring channel. They were then normalized for each patient
individually to lie within the range of 0 to 1.

The hyperparameters of the SVM model, i.e. the value of a regularization parameter
C' and kernel type, were optimized according to Section 3.4 to match the optimiza-
tion of GNN hyperparameters. The kernel coefficient v was automatically scaled by
the algorithm, and class weights were automatically balanced and set as inversely

proportional to class frequencies in the data.
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3.4 Hyperparameter Tuning

Hyperparameters of the GNN models and the reference SVM model were tuned us-
ing the Python library "Tune’ of an open-source framework 'Ray’. Ray Tune enables
the execution of experiments and the tuning of hyperparameters, and the Popula-
tion Based Training (PBT) algorithm [97] implemented in Ray Tune was used in this
pipeline. Inspired by genetic algorithms, PBT combines the strengths of random
search and hand-tuning while reducing computational demands. Initially, multi-
ple neural networks are trained in parallel with random hyperparameters. Unlike
conventional random search, PBT allows these networks to periodically exchange
information, leveraging successful configurations discovered by other models in the
population. By balancing the exploration and exploitation of hyperparameters,
PBT focuses computational resources on promising models and dynamically adapts
hyperparameters during training.

For all models, the hyperparameters were tuned in a leave-one-patient-out cross-
validation scheme on the cohort of good-outcome patients. For each hyperparam-
eter setting, 19 separate models (corresponding to 19 good-outcome patients) were
trained and tested on the left-out patients. The median mean of AUROC and
AUPRC was calculated across the cross-validation folds and reported back to Ray
Tune. Ray Tune was configured to find the parameters that yielded the highest score
of mean between AUROC and AUPRC to balance these two performance metrics.
For each model, 50 different sets of hyperparameters were evaluated using all avail-
able computational resources (28 CPU cores and 2 GPU cores). Searched and best
parameter values are reported in Table 3.4 for the GNN models, and in Table 3.5
for the SVM model.

Table 3.4: Searched parameter values and best configurations for the Graph Sample
and Aggregate (GraphSAGE), Graph Convolutional Network (GCN), and Graph
Attention Network (GAT). The parameter '"Hidden Channels’ refers to the number
of attention heads for the Graph Attention Model.

Hidden Learning

Parameter Layers Dropout Epochs
Channels Rate

Searched 4,8,16,32 |2,3,4,5 0.0, 0.1,0.2, | 0.01, 0.005, | 50, 75, 100,

Values 0.4 0.001, 0.0005 | 150
Hidden Learning

Best Config. Layers Dropout Epochs
Channels Rate

GraphSAGE 32 3 0.4 0.01 75

GCN 32 5 0.4 0.001 150

GAT 32 5 0.0 0.001 50
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Table 3.5: Searched parameter values and the best configuration for the Support
Vector Machine (SVM) model. The value of regularization parameter C' and kernel

type was optimized.

Parameter C Kernel
Searched Values log-uniform [le~3, 1¢3] linear, poly, rbf, sigmoid
Best Configuration 0.1767 linear

3.5 Testing and Evaluation

Model testing was performed separately for the good outcome and poor outcome
patient cohorts. First, the models were trained and tested for the good outcome
patient cohort using a leave-one-patient-out cross-validation scheme, yielding the
output data for the good outcome patients. Next, the model was trained on all
good-outcome patients and tested on all poor-outcome patients to yield the output
data for poor-outcome patients. The outputs were then evaluated separately for
each patient and aggregated for each patient cohort, i.e., good and poor-outcome

patients.

Evaluation Metrics

The true positives (TP) were defined as correctly classified SOZ&Resected con-
tacts, true negatives (TN) as correctly classified non-SOZ&Resected contacts, false
positives (FP) as non-SOZ&Resected contacts misclassified as SOZ&Resected, and
false negatives (FN) as SOZ&Resected contacts misclassified as non-SOZ&Resected
contacts. The following metrics can be calculated from the TP, TN, FP, and FN

values:

TP
Sensitivity (Recall) = ———— 3.8
ensitivity (Recall) TP L TN (3.8)
TN
ificity = ———— .
Specificity TN £ TP’ (3.9)
TP
PreCiSion = m (310)

For a comprehensive evaluation of model performance across a range of classifica-
tion thresholds, the trade-off between these metrics was evaluated using the Receiver
Operating Characteristic (ROC) and the Precision-Recall (PR) curve and their re-
spective quantifications, Area Under ROC (AUROC) and Area Under PR Curve
(AUPRC).
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The AUROC evaluates the trade-off between specificity and sensitivity, providing a
model-wide assessment of the model’s ability to discriminate between the positive
and negative class samples (i.e. SOZ&Resected and non-SOZ&Resected contacts).
The AUROC was calculated using the trapezoidal rule [98] from the ROC curve,
which plots the sensitivity against the false positive rate (calculated as 1 - specificity)
across all classification thresholds. The chance level for AUROC is 0.5 in a binary
classification task.

The AUPRC evaluates the trade-off of precision and recall for all possible thresh-
olds. AUPRC focuses on the positive class, which makes it suitable for imbalanced
datasets. The average precision method was used to estimate the AUPRC [99],
constructed by plotting the precision against recall across all classification thresh-
olds. Average precision AP is calculated as the mean precision P achieved for n

thresholds, weighed by the increase in recall R from the previous threshold:

AP =Y (R, — R,_y)- P, (3.11)

where R, and P, denote the recall and precision at the n-th threshold, respectively.
The always positive classifier defines the chance level for AUPRC. The AUPRC
of such a classifier equals the precision that would be achieved if all samples were
classified as positive (chance level precision), corresponding to the proportion of
positive samples in the dataset.

To evaluate the models’ ability to find a suitable classification threshold and assign
correct class labels to SEEG contacts, the F1-score was used. Fl-score is the har-
monic mean of precision and recall at a specific threshold, reflecting the model’s
capability to identify an optimal threshold that achieves a balanced trade-off be-

tween recall and precision, and it is calculated as:

2 TP

Fi-score = —
siec + e TP+ 3(FP+FN)

(3.12)

When calculating the chance level for the Fl-score, recall is set to 1, indicating
perfect recall, and the precision is set to the chance level precision (p). The chance

level Fl-score is then calculated using the Fl-score formula as (2xp)/(p+1).

Statistical Analysis

The Wilcoxon Signed Rank test [100] was employed to compare the localization
results between models. Specifically, the test assessed the distributions of metric
values across the good outcome patient cohort, comparing each GNN model against
the main reference Spike Rate model. The Wilcoxon Signed Rank test is a non-

parametric statistical test for paired data that evaluates whether two related samples
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originate from the same distribution, which allows direct comparisons between the
performance of the GNN models and the reference model across the identical patient
cohort.

To evaluate the statistical differences between the good and poor outcome patient
groups, the Mann-Whitney U-test [101] was performed. Similar to the Wilcoxon
Signed Rank test, the Mann-Whitney U-test is a non-parametric method, but it
compares two independent groups to determine whether their distributions differ
significantly, suitable for two non-overlapping patient cohorts.

In both statistical tests, results with a p-value below 0.05 were considered significant.

3.6 Qutcome Prediction

The prediction of postsurgical outcome was done as in a published study by
Nevalainen et al. [102]. For each patient, model outputs were used to calculate
precision in identifying resected electrode contacts. Precision was calculated for
each patient according to Equation 3.10, where TP was defined as correctly identi-
fied resected contacts, TN as correctly classified non-resected contacts, FP as non-
resected contacts misclassified as resected, and FN as resected contacts misclassified
as non-resected. The value of precision for each patient reflects how many from all
contacts predictive as positive (i.e. epileptogenic) were resected during surgery. Sub-
sequently, a good postsurgical outcome was predicted for patients with a precision
value higher than 0.5 (meaning that more than 50% of predicted positive contacts

were resected).

Evaluation Metrics

Outcome prediction was evaluated for each model using classification accuracy as:

TP + TN

TP + TN+ FP + FN’
where TP corresponds to patients correctly classified as good-outcome patients,

Accuracy = (3.13)

TN to patients correctly classified as poor-outcome patients, FP to poor-outcome
patients misclassified as good-outcome patients, and FN to good-outcome patients
misclassified as poor-outcome patients. Accuracy is suitable in this case since the
dataset is balanced in terms of patient outcomes, with 19 good-outcome patients
and 18 poor-outcome patients.

Statistical Analysis

The outcome prediction results were also evaluated statistically, using the McNemar

test [103]. The McNemar test is a non-parametric test for paired data that can be
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used to compare the performance of classification models. It is applied to a 2x2
contingency table which contains the counts of samples (i.e. patients): (i) whose
outcomes were correctly predicted by both models, (ii) whose outcomes were cor-
rectly predicted only by model A, (iii) whose outcomes were correctly predicted only
by model B, and (iv) whose outcomes were incorrectly predicted by both models.

The McNemar test was performed between the three GNN models and the main
reference model (Spike Rate model) to compare the clinical utility of the proposed
GNN models. Differences in the McNemar test with a p-value below 0.05 were

considered significant.

60



4 Results

This chapter presents the findings from the practical application of the GNNs in

localizing the EZ in Section 4.1 and predicting surgical outcomes in Section 4.2.

4.1 Epileptogenic Zone Localization

This section details the results from the application of GNNs in localizing the EZ,
with a specific focus on performance for good-outcome patients in Subsection 4.1.1

and comparison of performance for good and poor-outcome patients in Subsection
4.1.2.d

4.1.1 Performance for Good Outcome Patients

The GNN models for localization of the EZ were first evaluated on the cohort of
19 good-outcome patients. Evaluation metrics described in Subsection 3.5, namely
AUROC, AUPRC, and F1-score, were calculated to evaluate the model’s ability to
localize EZ contacts defined as SOZ&Resected electrode contacts. Next, the models’
ability to localize resected contacts was evaluated using precision as an indicator of
clinical utility. The distribution of results across the patient cohort is visualized in
Figure 4.1, and median and interquartile range (IQR) values are presented in Table

4.1. The Wilcoxon Signed Rank test was used to compare results between models.

Table 4.1: Performance of models across the cohort of 19 good outcome patients
(median and IQR). Values in bold indicate that the model outperformed both ref-

erence models in terms of a given evaluation metric.

Model AUROC AUPRC F1-score PPV (Res)
GraphSAGE | 0.971 (0.184) | 0.563 (0.582) | 0.364 (0.411) | 0.500 (0.441)
GCN 0.939 (0.205) | 0.500 (0.476) | 0.400 (0.415) | 0.429 (0.541)
GAT 0.971 (0.184) | 0.525 (0.557) | 0.471 (0.392) | 0.714 (0.626)
SVM 0.954 (0.236) | 0.355 (0.456) | 0.316 (0.289) | 0.429 (0.476)
Spike Rate 0.921 (0.237) | 0.407 (0.476) | 0.400 (0.470) | 0.615 (0.646)
Chance 0.500 0.049 0.047 0.119

A) Area Under Receiver Operating Characteristic (AUROC)

The GAT and GraphSAGE models achieved the highest median AUROC scores,
both at 0.971 (IQR 0.184), outperforming both reference models regarding AUROC
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Epileptogenic Zone Localization Results
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Fig. 4.1: Performance of models across the cohort of 19 good outcome patients
for A) Area Under Receiver Operating Characteristic (AUROC), B) Area Under
Precision-Recall Curve (AUPRC), C) Fl-score, and D) precision (PPV) for resected
contacts. For each distribution, the box represents the interquartile range with the
horizontal line corresponding to the median and the notch to the 95% confidence
interval. Whiskers extend from the box to the minimum and maximum values within
a range specified by 1.5 times the interquartile range. The median value is reported

below the median line, and diamond markers represent outliers.

performance. The GCN model had a median AUROC of 0.939 (IQR 0.205), sur-
passing only the Spike Rate reference model. The reference models, SVM and Spike
Rate showed slightly lower median AUROC scores of 0.954 (IQR 0.236) and 0.921
(IQR 0.237), respectively.

In a statistical comparison of the AUROC performance of GNN models to the main
reference model, Spike Rate, the GAT model showed significantly better performance
(p = 0.016). The GraphSAGE and GCN were not significantly better (p > 0.05).
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B) Area Under Precision-Recall Curve (AUPRC)

The GraphSAGE model achieved the highest median AUPRC score of 0.563, with
an IQR of 0.582. The GAT and GCN models followed, with medians of 0.525 (IQR
0.557) and 0.500 (IQR 0.476), respectively. The Spike Rate model scored 0.407 (IQR
0.476), while the SVM model demonstrated the lowest median AUPRC of 0.355 (IQR
0.456). These results indicate that GraphSAGE consistently outperformed other
models in identifying the SOZ&Resected regions with precision and recall. Moreover,
all GNN models showed superior performance in terms of AUPRC compared to
references. Notably, all models exhibited high IQR values across the patient cohort,
indicating high variability in patient results.

In terms of AUPRC, both the GAT and the GraphSAGE significantly outperformed
Spike Rate (p = 0.017 for both), while the comparison between GCN and Spike
Rate was not significant (p > 0.05).

C) F1-Score

The GAT model had the highest median Fl-score of 0.4706, with an IQR of 0.392.
The GCN and Spike Rate models achieved a median F1-score of 0.400, with IQRs
of 0.415 and 0.470, respectively. The GraphSAGE model attained a median of 0.364
(IQR 0.411), while the SVM model had the lowest median Fl-score of 0.316 (IQR
0.289). The wider IQRs and presence of outliers in the Fl-scores indicate varying
model performance.

For the Fl-score, none of the GNN models had a significantly higher median than
Spike Rate (p > 0.05). The GAT model demonstrated a borderline significant
difference in the F1l-score compared to the Spike Rate (p = 0.084).

D) Precision for Resected Contacts (PPV)

In the analysis focusing on precision for the localization of resected contacts, the
GAT model had the highest median precision of 0.714 (IQR 0.626). The Spike
Rate model demonstrated a median precision of 0.615 (IQR 0.646). The Graph-
SAGE model had a median precision of 0.500 (IQR 0.441), while both GCN and
SVM models scored the lowest with medians of 0.429 and IQRs of 0.541 and 0.476,
respectively.

None of the GNN models had a significantly higher median precision in the local-
ization of resected contacts compared to Spike Rate (p > 0.05).
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4.1.2 Performance for Good vs Poor Outcome Patients

Comparative results of EZ localization for good versus poor outcome patients across
models are shown in Figure 4.2. Mann-Whitney U-test was employed to assess

statistical differences between patient groups.

A) AUROC

The GraphSAGE (p = 0.028) and GAT (p = 0.014) models observed significant dif-
ferences between good and poor outcome groups. The difference for the GCN model
was borderline significant (p = 0.098). The GAT model showed the strongest differ-
entiation, achieving a median AUROC of 0.971 in the good outcome group versus
0.764 in the poor outcome group. Similarly, the GraphSAGE model demonstrated
a significant decline from 0.971 to 0.812. These results indicate that the GAT and
GraphSAGE models effectively distinguish between good and poor outcomes.

B) AUPRC

The GraphSAGE (p = 0.002), GAT (p = 0.002), and GCN (p = 0.007) models
displayed significant differences in AUPRC between the two patient groups, sug-
gesting these models are particularly effective at correctly identifying true positives
while minimizing false positives in the good outcome group. The SVM model also
demonstrated significant differences (p = 0.028), and the results for Spike Rate
were borderline significant (p = 0.061). All models showed a considerable decline in

performance for poor outcome patients.

C) F1-Score

All models indicated significant differences in Fl-score between the two groups,
highlighting the reduction in balanced precision and recall in poor-outcome patients.
The GAT model exhibited the strongest differentiation (p = 0.001), dropping from
0.471 in the good-outcome group to 0.087 in the poor-outcome group.

D) Precision for Resected Contacts (PPV)

All models achieved significant differences in precision for resected contacts between
good and poor outcome groups. The GAT model maintained high performance in
the good outcome group, with a PPV of 0.714, significantly dropping to 0.116 in
the poor outcome group (p < 0.001). Other models followed similar patterns.
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4.2 Qutcome Prediction

The outcome prediction accuracy of all GNN models was superior to the reference
models. The GAT model showed the highest outcome prediction accuracy at 0.757,
followed by GraphSAGE at 0.730 and GCN at 0.703. The reference Spike Rate
model achieved an accuracy of 0.649, while the SVM model attained an accuracy of
0.568. Figure 4.3 presents contingency tables comparing the GNN models (Graph-
SAGE, GCN, and GAT) to the Spike Rate model in terms of correct and incorrect
classifications of patient outcomes.

The McNemar test was conducted to determine the statistical significance of model
performance differences. None of the GNN models displayed statistically significant
improvements when compared to the Spike Rate model based on the p-values from
the McNemar test: GraphSAGE (p = 0.450), GCN (p = 0.617), and GAT (p =
0.221).

The GraphSAGE model correctly predicted outcomes for five patients that the Spike
Rate model misclassified but misclassified two patients that the Spike Rate model
had predicted correctly. The GCN model was correct for three patients compared
to Spike Rate but wrong for one patient that Spike Rate classified correctly. The
best-performing model, GAT, correctly classified five patients that the Spike Rate
model misclassified but predicted the wrong outcome for one patient the Spike Rate

model classified correctly.
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Epileptogenic Zone Localization Results (Good vs. Poor Outcome Patients)
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Fig. 4.2: Performance of models across the cohort of 19 good outcome patients vs
cohort of 18 poor outcome patients for A) Area Under Receiver Operating Charac-
teristic (AUROC), B) Area Under Precision-Recall Curve (AUPRC), C) Fl-score,
and D) precision (PPV) for resected contacts. Mann-Whitney U-test p-values are
reported with significant results in bold.
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Qutcome Prediction Results
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Fig. 4.3: Comparison of outcome prediction results between the reference Spike Rate
model and three GNN models: GraphSAGE (A), GCN (B), and GAT (C). Each
sub-figure displays a contingency table showing the number of correct and incorrect
predictions for each model compared to the Spike Rate model. McNemar’s test p-

values are provided for each comparison to assess statistical differences between the
models.

67



5 Discussion

In the practical part of the master’s thesis, three GNN models — GraphSAGE,
GCN, and GAT — were used to localize the EZ based on interictal SEEG data. The
analysis was performed on a clinical dataset from 37 patients across two institutions.
From the SEEG recordings, 30 minutes of artifact-free NREM sleep, recorded at least
1 hour away from seizures, were used for the analysis. The models processed two
features - spike rate and relative entropy- represented in the graph structure as node
and edge features, respectively.

In a supervised learning framework, these models classified electrode contacts as
either SOZ&Resected or non-SOZ&Resected. The models were evaluated in three
phases: initially assessing performance using data from patients with good post-
surgical outcomes, then comparing performance across cohorts with both good and
poor postsurgical outcomes, and finally using the models to predict postsurgical
outcomes for all patients in the dataset. Throughout these stages, the GNN models’
effectiveness was benchmarked against a reference SVM model, which utilized the
same features as GNNs - spike rate and relative entropy - as features and a main
reference Spike Rate that employed a single feature for localizing the EZ. The results
from the practical application of GNN models show the potential of these models in
epilepsy treatment planning.

This Chapter interprets the results of EZ localization in Section 5.1 and outcome
prediction in Section 5.2, discussing their implications for the field of epilepsy treat-
ment, comparing GNN model architectures in Section 5.3, and comparing the results
to existing studies in Section 5.4. It also addresses the limitations of the study and

suggests directions for future research in Section 5.5.

5.1 Epileptogenic Zone Localization

This Section discusses the results from the GNN models used for EZ localization,
with a focus on how GNN models compared to traditional models in terms of per-
formance metrics in Subsection 5.1.1, an exploration of the variability in model
performance across different patients in Subsection 5.1.2, and discussion on why

models perform better for good-outcome patients in Subsection 5.1.3.

5.1.1 Graph Neural Networks Outperform Reference Models

The results of the practical application of GNN models in localizing the EZ in 19

patients with good post-surgical outcomes indicate a promising enhancement over
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traditional methods. Specifically, the GAT and GraphSAGE models demonstrated
superior ability in differentiating between epileptic and non-epileptic contacts.

The GAT and GraphSAGE models demonstrated superior performance in terms
of AUROC, achieving the highest scores of 0.971, clearly distinguishing themselves
from the chance level of 0.5 for AUROC. This indicates a robust ability to identify
true epileptic (SOZ&Resected) versus non-epileptic contacts, with low false positive
rates. Both models outperformed the SVM and Spike Rate reference models, with
the GAT model showing statistically significantly better performance than Spike
Rate (p = 0.016).

In terms of the AUPRC, which considers both the precision and recall of the model,
the GraphSAGE model excelled with a score of 0.563, surpassing the SVM and Spike
Rate models, which scored substantially lower at 0.355 and 0.407, respectively. This
superior performance indicates a better balance in the trade-off between precision
and recall, which is crucial for clinical applicability, where both identifying true
positives and minimizing false positives are important. Both GraphSAGE and GAT
models significantly surpassed the Spike Rate model (p = 0.017 for both), further
validating the efficacy of GNNs in this application.

The potential clinical utility of models such as GAT is highlighted by the Fl-score
and precision for resected contacts results, where the GAT model scored highest
with a median score of 0.4706 and 0.714, respectively. The GAT surpassed both
established localization methods, SVM and Spike Rate, and showed potential in
predicting the surgical target with higher precision. Such performance is essential
for optimizing surgical outcomes and minimizing unnecessary resections.

GNN models outperformed the chance levels in all cases, indicating a robust capabil-
ity in accurately identifying the surgical targets. Furthermore, traditional models,
such as SVM and the single-feature Spike Rate model, showed lower median scores
across all evaluation metrics, highlighting the advanced capability of GNN models to
handle complex patterns in SEEG data. The GAT model, in particular, showed ex-
ceptional results across various metrics, including F1-score and precision for resected
contacts, which are both critical for clinical decision-making.

While GNN models like GAT and GraphSAGE have demonstrated their superiority
over traditional models in terms of performance, it is important to note that their
computational demands are significantly higher. This aspect was not evaluated in
this study, and future research should consider the computational efficiency and the

practical deployment challenges of using GNNs in clinical settings.
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Case Study: Patient 723

The GAT model’s performance for Patient 723, who underwent epilepsy surgery
with a good postsurgical outcome classified as Engel TA, is illustrated in Figure
5.1. This case exemplifies the effectiveness of the GAT model, demonstrating its
superior capability in discerning critical patterns in SEEG data. The GAT model
outperformed the SVM model in all of the measured metrics, underscoring its higher

accuracy and reliability.

Patient 723 (good outcome Engel 1A)

/" A) Ground Truth B) Model Results N

PPV Pred.
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Fig. 5.1: Classification results for patient 723. In (A), the ground truth labels
are visualized on a standard brain model, where green circles represent resected
electrode contacts, green circles with black edges SOZ&Resected contacts, and white
circles remaining contacts. In (B), results for the Graph Attention Network (GAT)
and Support Vector Machine (SVM) models are presented. A predicted outcome
value of 1 corresponds to a predicted good outcome and a value of 0 to a predicted
poor outcome. In (C) and (D), the predictions of GAT and SVM, respectively, are
visualized on a standard brain model. Contacts with black edges were classified as
positive by the model, while contacts with gray edges were classified as negative.
The color gradient symbolizes the scores assigned to each contact by the classifier

normalized to a range between 0 and 1.

Importantly, the GAT model achieved a perfect precision score for resected con-
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tacts, meaning that every contact identified as epileptogenic was indeed resected
during successful epilepsy surgery. This outcome highlights the practical benefits of
employing advanced graph-based neural networks for surgical planning. By repre-
senting SEEG data as graphs, the GAT model leverages complex interconnections

between data points, leading to enhanced precision and clinical outcomes.

5.1.2 Models Show Variability in Patient Results

The variability in patient results, as demonstrated by the graphs for the GAT model
in Figure 5.2, underscores an important aspect of using GNN models in a clinical
setting. The ROC and PR curves show significant variability in results across the
patient cohort, which reflects the underlying complexity and heterogeneity in clinical
data used for localizing the EZ.

A. Receiver Operating Characteristic Curves B. Precision-Recall Curves

1.0

1.0

—— Mean AUPRC * std: 0.458 = 0.30

--- Chance level (AUPRC = 0.049)

0.9 0.9

0.8 0.8
0.7 0.7

0.6 0.6

0.5 77 0.5

Precision

0.4 0.4

True Positive Rate

d g
0.3 0.3

0.2 //' 0.2

e [ —— Mean AUROC = std: 0.859 = 0.18 01 |
1 -- Chance level (AUROC = 0.5) -

0.0 ¥
00 01 02 03 04 05 06 07 08 09 10 %o o1 02 03 04 05 o6 07 08 09 10
False Positive Rate Recall

Fig. 5.2: Receiver Operating Characteristic (ROC) (A) and Precision-Recall (PR)
curves (B) for the Graph Attention Network (GAT) model. Curves for testing on
each patient are visualized in gray, along with the average curve in purple. The
chance level in the ROC space lies on the minor diagonal, while in the PR space,

the chance level is defined by the class imbalance in the data.

While the mean AUROC score is relatively high at 0.859 £ 0.18 standard deviation
(std), the individual patient curves range considerably. Some approach the upper
left corner, indicating excellent model performance with high true positive rates
and low false positive rates, while others are closer to the diagonal line, representing

performance near chance level (AUROC = 0.5). Similar variability is observed
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in the Precision-Recall curves, with the mean AUPRC at 0.458 4+ 0.30 std. Some
curves demonstrate high precision across various recall levels, whereas others decline
rapidly, showing significant challenges in maintaining precision as recall increases.
This variability, however, is not unique to GNN models. Similar patterns are evident
in results from the SVM and Spike Rate model, suggesting that the issue may not
be inherent to GNN models specifically but rather to the size of the dataset and the
heterogeneity between patients.

To address these challenges, further studies involving larger datasets are essential to
better understand the influence of patient-specific factors that lead to suboptimal
performance. Furthermore, future studies could explore different interictal features
and their combinations, alternative data representations, and advanced GNN archi-
tectures, which could lead to more robust models performing better across different
patients and more effective processing of diverse SEEG data.

For further refinement of the graph structure in GNNs for epilepsy surgery, it may be
beneficial to incorporate the Euclidean distances between electrode contacts. This
would allow the model to better account for patient-specific variability in electrode
implantation, reflecting true anatomical spacing and potentially increasing sensitiv-
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