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Abstract
This thesis focuses on the topic of computer vision, more specifically, on classifying people’s
presence in image data. The goal is to create a reduced neural network utilizing knowledge
distillation. Object classification and detection is a computationally an expensive operation.
A student model created utilizing knowledge distillation shows equivalent accuracy while
being smaller and having better inferencing speed compared to the teacher model. Such
model can be interdisciplinarily utilized on end devices having relatively low computational
capabilities.

Abstrakt
Táto práca sa zameriava na tému počítačového videnia, presnejšie, na binárnu klasifiká-
ciu prítomnosti ľudí v obrazových dátach. Cieľom tejto práce je vytvoriť redukovanú
neurónovú sieť s využitím metódy knowledge distillation. Klasifikácia a detekcia objektov
je výpočtovo náročná operácia. Študentský model vytvorený pomocou knowledge distil-
lation vykazuje ekvivalentnú presnosť, pričom je menší a má vyššiu inferenčnú rýchlosť v
porovnaní s učiteľským modelom. Takýto model môže byť interdisciplinárne všestranný a to
predovšetkým na koncových zariadeniach, ktoré majú relatívne slabé výpočtové schopnosti.
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Rozšírený abstrakt
Moderná doba sa stala takmer synonymná s pojmom umelá inteligencia. Umelá inteligencia
zastrešuje nespočetné množstvo odvetví, medzi ktoré patrí počítačové videnie. Prirodzene,
počítačové videnie zastrešuje množstvo ďalších odvetví, v neposlednej rade detekciu a klasi-
fikáciu objektov v obrazových dátach.

Posledné desaťročia zažili revolúciu vo vývoji nových lepších hardvérových prostriedkov
čo umožnilo vytvárať väčšie a presnejšie trénovateľné modely tvorené neurónovými sieťami.
V disciplíne počítačového videnia sú prevalentné konvolučné neurónové siete, schopné spra-
covať obrazové dáta, ktoré obsahujú veľa informácií. Cez proces konvolúcie sú tieto siete
schopné extrahovať základné črty objektov, ktoré sú následne hierarchicky poskladané a tak
dokáže sieť identifikovať objekt, v prípade objektových detektorov aj daný objekt lokalizo-
vať.

Proces trénovania sa dá stručne zhrnúť ako schopnosť siete učiť sa z vlastných chýb. Toto
je dosiahnuteľné vďaka stratovým funkciám, ktoré sú schopné vyčísliť odchýlku predpovedí
modelu od skutočnej pravdivostnej hodnoty.

Človek sa každodenne priamo či nepriamo stretáva s modelmi, ktoré dokážu vykonávať
úlohu klasifikácie a detekcie. Takéto modely môžu byť nasadené v rôznych zariadeniach,
ako napríklad v mobilných telefónoch alebo kamerách. Toto však prináša výzvu v tom, že
takéto zariadenia nemajú takú vysokú výpočetnú silu v porovnaní s výkonnými počítačmi.
V takom prípade je potrebné modely zmenšiť a zefektívniť, aby boli schopné fungovať na
slabších zariadeniach. Toto je možné dosiahnuť využitím rôznych prístupov známych ako
Kompresia Modelov, medzi ktoré patrí proces Knowledge Distillation, voľne preložiteľný
ako destilácia vedomostí, na ktorý je táto práca zameraná.

Tento proces pozostáva z využitia predpovedí predtrénovaného modelu, ktorý figuruje
ako učiteľ počas procesu trénovania, aby slúžili ako zdroj informácii pre trénovaný model,
ktorý figuruje ako študent. Týmto spôsobom je študent schopný napodobniť chovanie
učiteľa, no dokonca v niektorých prípadoch aj vylepšiť chovanie učiteľa. Tento proces je
spravidla efektívny pri trénovaní študentského modelu, ktorý by pri zvyčajných trénovacích
podmienkach nebol schopný dosiahnuť použiteľnú presnosť. Trpezlivý učiteľ je dobrý učiteľ,
čo sa prenieslo do paradigmy trénovania modelov za využitia knowledge distillation. Takéto
trénovacie procesy trvajú rádovo tisíce epoch, v porovnaní s bežnými procesmi, ktoré sa
pohybujú v desiatkach. V rámci knowledge distillation procesu sa využíva hyper parame-
ter zvaný temperature, a síce, teplota, ktorý pomáha so zjemnením pravdepodobnostných
distribúcií z predikcií modelov, čo vo výsledku umožnuje študentovy lepšie extrahovať ve-
domosti a naučiť sa z nich.

Ako učiteľský model bol zvolený populárny model RetinaNet, trénovaný na dátovej sade
PascalVOC, ktorého klasifikovateľné triedy zahŕňajú triedu typu osoba. Ako študentský
model bol zvolený model patriaci do rodiny modelov EfficientNetV2. Tieto modely sú
vylepšením prvej generácie a poskytujú vyššiu efektivitu počas trénovania a následne aj
počas používania. Trénovanie prebehlo na dátovej sade Human Detection Dataset, ktorá
pozostávala z obrázkov dvoch tried, a síce, tých ktoré obsahovali, alebo neobsahovali osobu.
Keďže študent bude schopný klasifikovať len 2 triedy oproti učiteľovi, ktorý ich dokáže
klasifikovať 20, bolo potrebné učiteľov výstup rozumne vymaskovať a upraviť tak, aby
nenastala strata vo vedomostiach alebo k ich poškvrneniu.

Trénovací proces študenta bol testovaný v rôznych konfiguráciách. Prvotne bol štu-
dent trénovaný bez pomoci učiteľa, no tento prístup zlyhal, nakoľko študent nebol schopný
dostatočne generalizovať problém a miesto zvýšenia presnosti pri dlhšom trénovaciom pláne
sa nadmerne prispôsobil dátovej sade, čo spôsobilo značnú nepresnosť na dátach, ktoré



nepatrili do dátovej sady. Ďalší pokus spočíval v trénovaní študenta len pomocou predik-
cií učiteľa počas veľmi dlhého trénovacieho plánu. Tento proces tiež zlyhal, pričom štu-
dent nebol schopný získať dostatočnú presnosť. Tento fakt môže byť atribuovaný k re-
latívne nízkej presnosti učiteľského modelu. Prístup ktorý bol eventuálne implementovaný
a úspešný spojil tieto 2 prístupy. Toto spôsobilo, že študent konvergoval k určitému výsledku
rýchlejšie a dokonca pomohol študentovi zistiť nepresnosti v pravdivostných hodnotách dá-
tovej sady, ktoré boli následne opravené.

Výstup tejto práce poskytuje redukovaný model, ktorý je schopný binárne klasifikovať
prítomnosť, alebo neprítomnosť osoby v obrazových dátach.



A Reduced Neural Network for Classifying the
Presence of People in an Image

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Tomáš Goldmann. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Rastislav Samuel Stanček

May 16, 2024

Acknowledgements
Firstly, I would like to express my sincerest gratitude to my supervisor, Ing. Tomáš Gold-
mann. His patience, understanding as well as his feedback and guidance proved to be an
invaluable resource throughout this thesis. My utmost gratitude also extends towards my
family and close friends. I find it hard to imagine that I would be where I currently am
without their never-ending and loving support.
Computational resources were provided by the e-INFRA CZ project (ID:90254), supported
by the Ministry of Education, Youth and Sports of the Czech Republic.



Contents

1 Introduction 2

2 Neural Networks and Person Detection 3
2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Object Detection and Classification . . . . . . . . . . . . . . . . . . . . . . . 8

3 People Detection Algorithms 11
3.1 Algorithms not reliant on Neural Networks . . . . . . . . . . . . . . . . . . 11
3.2 Algorithms Based on Neural Networks . . . . . . . . . . . . . . . . . . . . . 12

4 Knowledge Distillation 16
4.1 Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Distillation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Teacher-Student Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Solution proposition and Implementation 19
5.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Teacher model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Student model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5 Distilling strategy and loss calculation . . . . . . . . . . . . . . . . . . . . . 22

6 Experiments and Metrics 25
6.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusion 29

Bibliography 30

A Contents of the included storage media 33

1



Chapter 1

Introduction

In the ever evolving world of Artificial Intelligence (AI), we have grown accustom to having
AI included in various ways into our daily workflows, whether it utilizes a model capable of
processing human language and generating a coherent text response in Natural Language
Processing, or classifying objects within images in Computer Vision (CV). Naturally, most
models in these fields are some sort a deep neural network, trained using Deep Learning.
These models constantly improve in accuracy, speed and features, but also proportionally
increase in size, complexity and computational power requirements. Subsequently, they can
be difficult and computationally expensive to deploy.

There are many models based on various techniques in CV for classifying objects. This
thesis will focus on analyzing and comparing models capable of classifying and detecting
objects such as You Only Look Once (YOLO), Region-based Convolutional Neural Networks
(R-CNN) or Single-Shot Detector (SDD) or RetinaNet and produce a reduced and simpler
model retaining the accuracy of the teacher model, in some cases possibly even surpassing
the teacher.

Empirically speaking, after inventing or creating something new and complete, the
natural way to improve it, is to optimize, make it faster, more efficient and in many cases,
smaller. In machine learning terms, to make a model smaller is to utilize a technique
called Model Compression. This thesis will delve deeper into a particular concept of Model
Compression called Knowledge Distillation. Making models smaller can help in deployment,
particularly on end devices that are easier to distribute.

Knowledge Distillation (KD) generally consists of taking a large, accurate teacher model
and using it to train a student model. The student model, retains comparable performance
while being quite simpler in structure, having less layers and parameters that is. It can
also be trained to mimic a specific subset of behaviors of the teacher model. In terms of
CV models, to only classify a particular class or classes of objects, in case of this thesis a
single class, a person.

In the beginning, basic principles behind Deep Neural Networks, their types and training
process will be discussed. Furthermore, the chapter will include the discipline of Object
Detection and Classifications and discuss the various challenges and approaches within
it. The following chapter will focus on particular algorithms and approaches existing in
Computer Vision used to classify and detect objects in images. The subsequent chapter
will delve deeper into the concept of Knowledge Distillation, explain the process and various
possible configurations. The last two chapters will describe the practical implementation
of this thesis in great detail and eventually compare and present the obtained results.
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Chapter 2

Neural Networks and Person
Detection

This chapter will discuss the basis of what an Artificial Neural Network is and how it works,
what does it consist of and how can it be utilized in Computer Vision (CV). Finally, it will
discuss the topic of Person Detection in CV, problems in CV, historical approaches to
solving these problems and state of the art models and algorithms tackling complex tasks.

2.1 Neural Networks
Pattern recognition in general is a natural component of human intellect. Humans are able
to traverse new and unknown environments thanks to years of evolution and learning. As
problems and tasks grew in complexity, people devised various ways to aid them in solving
these problems. Among many approaches to solutions to these problems lied the Artificial
Intelligence. Although AI on its own is a powerful tool, it is not the ”one-size-fits-all“
solution, since not every problem can be described with a finite set of rules and constraints.
In comparison, humans are not bound by some rule set to create a decision, thanks to
their empirical knowledge gained by learning. Consequently, it had to be made possible for
computers to learn and teach them selves through means of Machine Learning (ML).

Nowadays, one of the most popular branches of ML are Artificial Neural Networks
(ANN). Similarly to a human brain, ANNs consist of interconnected neurons and are able
to learn and adapt to solve a generalized problem effectively. The reason why ANNs are so
effective at solving problems is the vast parallelism of all the neurons throughout ANN’s
layers.

Building blocks

As human brains consist of neurons, ANNs [8] consist of Artificial Neurons (AN). The
simplest representation of an AN is a Perceptron. Comparably to a natural neuron, that
has a set of dendrites as inputs and a single output as axon a perceptron has a set of inputs
with one output.

3



Figure 2.1: The McCulloch-Pitts model of a perceptron

The perceptron forms a weighted sum (2.1) of the inputs 𝑥1, ..., 𝑥d and then transforms
this sum using an activation function (2.2) g() to give a final output of z = g(a)

𝑎 =
𝑑∑︁

𝑖=0

𝑤𝑖𝑥𝑖 (2.1)

The activation function [26] decides whether the perceptron, or node should be activated
or not. If there were no activation function, the ANN would essentially be just a linear
regression model. The activation function introduces the non-linearity making the ANN
capable to learn and solve more complex problems.

Figure 2.2: A selection of typical activation functions

4



Neuron Connection

When multiple biological neurons join, they form a synapse. Analogically, the joining of
artificial neurons form a layer.

Figure 2.3: Interconnected neurons forming layers of the neural network. Image available
at [26]

Artificial Neural Networks typically have an Input layer, 0 to N Hidden layers and an
Output layer. For an ANN to be considered a deep neural network, it needs to have at least
2 hidden layers.

Input Layer

The input layer [25] is used to communicate with the outer environment. Once an input is
introduced to the input layer of the network, it proceeds to transfer it to the hidden layers
to be processed. It also defines the conditions on which the network training depends.

Hidden layer

Hidden layer(s) is an intermediate layer between the input and the output layer of the
network. Number of hidden layers within the network changes from problem to problem.
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Selection of hidden layers is a complex task as in some cases due to the number of hidden
layers a condition known as overfitting and underfitting occurs (2.2), which negatively
impacts the efficiency, accuracy and time complexity of the network.

Output layer

The output layer is connected with the outer environment and represents the output of
the input given to the network. This last layer attempts to produce a class score based on
activations from previous layers.

Types of Neural Networks

After the discovery of a simplest form of a neural network, the Multi Layer Perceptron,
many other types were created to better suit particular problems. Most prevalent type of
neural network in computer vision is a Convolutional Neural Network [2, 19] (CNN)

When it comes to image data, an ordinary ANN starts to struggle due to the compu-
tational intensity of image processing. It would take 784 weights per neuron in the first
hidden layer to process a 28 × 28 black and white image. In comparison, Convolutional
Neural Networks bring a significant reduction in required weights an parameters thanks to
so called max-pooling layers. In practice, the input (color) image with a dimensionality of
28× 28× 3 would lead into a final output layer with a dimensionality of 1× 1×𝑁 , where
N represents the number of classes.

CNNs consist of three types of layers. The Convolutional layers, Pooling layers and
Fully-connected layers (2.4).

Figure 2.4: This image depicts the separate layers of a simple Convolutional Neural Net-
work. Image available at [20]

Convolutional Layer

The layer’s parameters focus around the use of learnable kernels. As the kernel glides
through the input, the scalar product is calculated for each value in that kernel. From
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this the network will learn the kernels that activate when they see a specific feature at
a given spatial position of the input. Every kernel will have a corresponding activation
map. Convolutional layers are also able to significantly reduce complexity of the model
through the optimisation of their output through so called hyperparameters: depth, stride
and zero-padding.

Pooling Layer

Pooling layers aim to gradually reduce the dimensionality of the representation, and thus
further reduce the number parameters and the computational complexity of the model. The
pooling layer operates over each activation map in the input. In most CNNs these come
in the form of max-pooling layers with kernels of a dimensionality of 2 × 2 applied with a
stride of 2 along the spatial dimensions of the input. This scales the activation map down
to 25% of the original size while maintaining the depth volume to its standard size. Due to
the destructive nature of this layer, having a kernel size greater than 3 will usually greatly
decrease the performance of the model.

Fully-connected Layer

The fully-connected layer contains neurons which are directly connected to the neurons
in the two adjacent layers, without being connected to any layers within them. This is
analogous to way that neurons are arranged in traditional forms of ANN.

2.2 Deep Learning
The greatest strength of neural networks lies in their adaptability. The same architecture
can be used and adapted to suit multiple use cases. For example, in context of this thesis,
the same model of a convolutional neural network can be used to classify hand written digits,
or detect a person in an image. The desired result can be achieved through a process called
learning (in the case of deep neural networks deep learning), more specifically Supervised
Learning.

In simplified terms [9], the supervised learning process consists of feeding input data1

to a model with initialized weights with random values through forward propagation. Af-
terwards, the model’s predicted value has to be compared to actual target value for the
given input, using so called loss function. Through the use of backward error propagation,
individual node weights are adjusted according to the cost function value.

This process can be iteratively repeated until the desired accuracy is reached or a
terminating condition is met. Each iteration is called an epoch.

1Input data consist of 2 sets of labeled dataset, the training set and the validation set
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Underfitting and Overfitting

During the model’s learning process, two major accuracy decreasing issues can occur [5]:
Underfitting occurs when the model is not able to obtain a sufficiently low error value

on both the training and validating set. It usually means, that either the model is too
simple or not trained for enough epochs.

Overfitting occurs when the gap between the training error and test error is to large.
It performs well on the training set, but fails to perform with the validation set. It usually
means that the model is too complex or that the training dataset is too small or noisy. It
may also happen when the training goes on for too many epochs and is not stopped early.

2.3 Object Detection and Classification
Before we delve deeper into the challenges of Person Detection (2.3), the discipline of Object
Detection (OD) needs to be discussed first.

Object detection is in the subset of domains of Computer Vision. This technique involves
processing, analysing and extraction information from digital images. This subset also
includes topics like scene reconstruction, activity recognition, image restoration and others,
though this thesis will only focus on OD. While non machine learning approaches can solve
OD tasks, neural networks, predominantly convolutional neural networks have shown to be
extremely useful due to their ability to effectively extract features.

Feature Extraction

Feature extraction plays a crucial role in helping various OD algorithms to understand
image data. As previously stated, convolutional neural networks excel at this task. Each
convolutional layer condenses the input by extracting features of interest and produces
feature maps in response to different feature detectors [18]. The first convolutional layer
begins with simple features, such as edges or points. As data pass through, each layer
combines shapes from the previous layer into higher-order shape2. The composition of these
convolutional layers is called a feature extraction backbone. Finally the fully connected layer
activates a particular neuron in the output layer. The number of neurons in the output
layer correspond with the number of classes that a particular model has been trained to
classify.

2i.e. multiple edges can form a circle
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Figure 2.5: This image depicts the feature stacking, from the simplest ones (bottom) to
complete higher-order shapes (top). Image available at [35]

Person Detection

As with any other class of object detection, person detection poses various challenges [15]:

• Variability in appearance — it is safe to assume that the chance of multiple
similarly looking people appearing on one image is quite low. Each person can differ
in their clothing or poses

• Scale and resolution — varying scales3 and small resolutions with poor image
quality prove to have distorting properties

• Occlusion — only a part of a person can be visible in a particular image due to the
person being obscured by an object

• Background complexity — detecting a person can be made difficult by a busy and
complex environments, thus detecting a false positive

• Pose variation — including all possible poses and positions that a person in the
training dataset can be near impossible

• Deformable clothing — not all pieces of clothing follow the standard human sil-
houette

3i.e. person’s distance from the camera
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To combat these challenges, various approaches exist:

• Bottom-Up Feature-Based Approaches — these algorithms aim to find struc-
tural features that exist even when the pose, viewpoint, or lighting conditions vary,
and then use them in the detection procedure

• Top-Down Knowledge-Based Methods — these rule-based methods encode knowl-
edge of what constitutes a typical human body. These methods are designed mainly
for human body localization

• Template Matching Methods — several standard patterns of humans or human
body parts are used to describe either the human body globally or as distinct human
body parts (limbs, face, head etc). The correlations between the input image and
the patterns are computed for detection. These methods have been used for both
localization and detection with considerable accuracy

• Appearance-Based Methods — in contrast to template matching, the models
(or templates) are learned from a set of training images, which should capture the
representative variability of human appearance. These learned models are then used
for detection

• Integration of Parts detectors — in contrast to all the techniques described above,
this last category fuses the detection results derived by robust part detectors. They
are commonly deployed in order to perform reliable approximation of the bodies’
shape and extent

An ideal person detecting algorithm should be invariant to the previously stated issues.
Though these various approaches exist, not all have the same performance and accuracy as
approaches based on neural networks.

Performance Evaluation Metrics

There are two popular metrics to determine the predictive performance and accuracy of
different object detection models, Intersection over Union and Average Precision [27]

Intersection over Union (IOU) serves to assert the localization accuracy of model’s
prediction compared to ground truth bounding boxes according to this formula

𝐼𝑂𝑈 =
𝐴𝑜𝐼

𝐴𝑜𝑈
(2.2)

where AoI is the area of intersection4 and AoU is the area of union5. The resulting ratio
provides a good estimate of how close the prediction bounding box is to the ground truth.

Average Precision (AP) is calculated as the area under a precision-recall curve6 for
a set of predictions. Recall is calculated as the ratio of the total predictions made by the
model under a class with a total of existing labels for the class. Precision refers to the
ratio of true positives with respect to the total predictions made by the model. Recall
and precision offer a trade-off that is graphically represented into a curve by varying the
classification threshold. The area under this precision vs. recall curve gives us the AP per
class for the model. The average of this value, taken over all classes, is called mean Average
Precision (mAP).

4intersection denotes the region where predicted bounding box and ground truth bounding box overlap
5union denotes the total region covered by both predicted and ground truth bounding boxes
6the curve is created by connecting points representing a particular confidence threshold
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Chapter 3

People Detection Algorithms

Many algorithms began their development in the last century. The greatest breakthrough
for computer vision has been the Deep Learning Revolution in the late 2000s bringing mas-
sive performance improvements. This chapter will discuss both algorithms used before this
time and after. These algorithms can divided into ones not reliant on neural networks
and algorithms based on neural networks. The latter can be further divided into two
categories by the required times the same input image has to pass through the network into
One-Stage/Proposal-Free algorithms and Two-Stage/Proposal algorithms.

3.1 Algorithms not reliant on Neural Networks
Viola-Jones

As discussed in the previous chapter, it can be challenging do determine which feature of
the human body can be chosen to be the defining one, although, the human face can be
considered as one. This algorithm [29] performs the best on full view, frontal, upright, well
lit, full sized faces in fixed-resolution images and is computationally quite inexpensive. For
an image to be successfully processed, it has to be correctly rescaled, grayscaled with an
increase to contrast and individual pixels normalized into the range of <0;1>.

This algorithm relies on extracting certain features from an image, passing them into a
cascading decision making algorithm that determines in a binary way, whether the image
contains a face or not.

Features utilized by this algorithm can be described as Haar-like scalable rectangles1

divided into 3 categories:

• two-rectangle features consisting of 2 rectangles, one black, one white. Useful for
detecting edges.

• three-rectangle features consisting of 3 rectangles, two are of the opposite color of
the remaining one. Useful for detecting straight lines.

• four-rectangle features consisting of 4 rectangles in a diagonal configuration, two
black and two white. Use for detecting diagonal lines.

While these features are simple in nature and inherently not very accurate, they have a
great computational advantage compared to their counterparts2

1that have the same dimensions and are adjacent
2i.e. steerable filters
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Figure 3.1: Example of Haar-like features matching a preprocessed image. As can be seen,
transitions from the forehead to the brow or the eyes to the cheeks have been classified
as Edge-features. Additionally, the nose follows a black-white-black pattern, thus being
classified as Line-feature. Image available at [6]

The Attentional Cascade, in other words, the cascade of classifiers is the backbone
of this algorithm. Each layer consists of weak classifiers utilizing aforementioned features to
mark a particular region of an image for further potential processing. Additionally, each of
the layers is trained by a boosting algorithm called AdaBoost. Each consecutive layer has
increasing requirements for detection rate and false positive rate. This particular trait is
responsible for the performance of this algorithm, the reason being, the layer that is higher
in the cascade takes the previous layer of weaker classifiers and rejects and ”throws out“
the regions falsely marked as positives3, thus decreasing the number of classifiers that will
be processed by the next layer.

3.2 Algorithms Based on Neural Networks
Two-stage or Two-shot [27] algorithms will be discussed first. These algorithms require
two passes of the input image to make predictions about the presence and location of objects.
The first pass is used to generate a set of proposals or potential object locations, and the
second pass is used to refine these proposals and make final predictions. This approach is
more accurate than single-shot4 algorithms at the cost of computational requirements.

3positive as in containing a relevant feature
4or single-stage

12



Region-based Convolutional Neural Network

Region-based Convolutional Network (RCNN) [12] introduced the concept of using deep
learning for object detection. It was followed and improved upon by many algorithms
(Fast R-CNN, Faster R-CNN, RFCN, Mask RCNN ), though for the sake of simplicity, only
the concept of RCNN will be discussed further. RCNN can be divided into 3 modules.
First generates category-independent region proposals. The second is a CNN that extracts
a fixed-length feature vector from each region. The third is a set of class-specific linear
support vector machines.

The modular design allows for combining and interchanging different implementations.
For regional proposal methods like selective search, category-independent object proposals,
constrained parametric min-cuts and others can be used, though RCNN is agnostic to the
particular region proposal method. Similarly, different CNN architectures can be used in
the second module, though these can impact the performance and accuracy of the whole
system (3.2).

Figure 3.2: This figure depicts how different architectures influence the accuracy of RCNN.
Image available at [12]

Finally, the Single-stage or Single-shot [27] algorithms will be discussed. These algo-
rithms require just a single pass of the input image to make predictions about the presence
and location of objects in the image. Although, these algorithms are computationally less
intensive, they struggle with detecting small objects and are generally less accurate.

Single Shot Detector

Compared to RCNN, Single Shot Detector (SSD) [17, 4] proved to be both fast and accurate,
averaging at around 59 frames per second and mAP of 74.3%5. SSD builds upon a predefined
network (3.3) called the backbone and adds auxiliary structures called the SSD head. The
backbone is used as a feature extractor since the final fully connected classification layer has
been removed. The head is just one or more convolutional layers added to this backbone
and the outputs are interpreted as the bounding boxes and classes of objects in the spatial
location of the final layers activations. Instead of using a sliding window, SSD divides the
image using a grid and have each grid cell be responsible for detecting object in that region
of the image.

5on the VOC2007 test
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Figure 3.3: The figure depicts SSD architecture including the VGG-16 model. Image avail-
able at [17]

You Only Look Once

Despite having many versions increasing in accuracy and efficiency, this thesis will discuss
the first iteration of You Only Look Once (YOLO) algorithm for the sake of simplicity
[27, 21]. The first 20 convolution layers of the model are pre-trained using ImageNet by
plugging in a temporary average pooling and fully connected layer. Then, this pre-trained
model is converted to perform detection since previous research showcased that adding
convolution and connected layers to a pre-trained network improves performance. YOLO’s
final fully connected layer predicts both class probabilities and bounding box coordinates
by using the features extracted from the convolutional layers. Similarly to SSD, YOLO
divides an input image into a grid. If the center of an object falls into a grid cell, that grid
cell is responsible for detecting that object. One key technique used in the YOLO models is
non-maximum suppression (NMS). NMS is a post-processing step that is used to improve
the accuracy and efficiency of object detection by identifying and removing redundant or
incorrect bounding boxes.

Figure 3.4: This figure depicts the architecture of YOLO model. Image available at [21]
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RetinaNet

RetinaNet [16] is a single, unified network analogical to SSD comprising of a backbone net-
work but having two task-specific subnetworks. To further augment the backbone network
a Feature Pyramid Network (FPN) is used with top-down pathway and lateral connections
so the network efficiently constructs a rich, multi-scale feature pyramid from a single reso-
lution input image. Each level of the FPN can be used for detecting objects at a different
scale. RetinaNet uses Anchor Boxes (AB), which are fixed sized boxes to predict the bound-
ing boxes for objects. To achieve that, the model regresses the offset between the location
of the object’s center and the center of an anchor box, and then uses the width and height
of the anchor box to predict a relative scale of the object. Each location on a given feature
map has nine anchor boxes. The two aforementioned subnetworks are for classification and
bounding box regression on each of the AB.

The classification subnetwork is particularly important in this thesis as it serves as
the basis for distilling knowledge to the student. It is a small fully convolutional network
attached to each FPN level. Taking an input feature map from a given pyramid level,
the subnetwork applies four 3× 3 convolutional layers each followed by ReLU activations,
followed by a 3× 3 convolutional layer with sigmoid activations.

In parallel with the object classification subnetwork, a second fully convolutional net-
work is attached to each pyramid level for the purpose of regressing the offset from each AB
to a nearby ground-truth object, if one exists. The design is identical to the classification
subnetwork, except it terminates with 4 outputs, as in 4 spacial locations.

Figure 3.5: This figure depicts the architecture of RetinaNet model. This particular diagram
uses ResNet network as the backbone. Image available at [16]

Generally, single-shot object detectors are better suited for real-time applications, while
two-shot object detectors are better for applications where accuracy is more important
[27, 4].
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Chapter 4

Knowledge Distillation

This chapter will focus on the principle and process of Knowledge Distillation (KD) [14].
As discussed in previous chapters, deep learning has made an immense impact in the disci-
pline of computer vision, spawning many various implementations of Deep Neural Networks
(DNN). In addition to their versatility and performance, they often consist of millions of
parameters, thus requiring high computational power. KD can help to alleviate some of
these issues. The generic premise of KD is that a Teacher model mediates Knowledge to
a Student model from which the student model trains. One important metric that neces-
sitates mentioning is Knowledge or Distillation loss. This metric measures the difference
between the predictions of the student model and the soft targets (4.1) provided by the
teacher model.

Figure 4.1: This figure shows a generic teacher-student framework for knowledge distillation.
Image available at [14]
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4.1 Knowledge
There are multiple kinds of knowledge to differentiate from in the process of KD.

Response-Based Knowledge

Response-based knowledge usually refers to the neural response of the last output layer of
the teacher model. The main idea is to directly mimic the final prediction of the teacher
model. The response-based knowledge distillation is simple yet effective for model compres-
sion. The response-based knowledge can be used for different types of model predictions.
For example, the response in object detection task may contain the logits1 together with
the offset of a bounding box. The most popular response-based knowledge for object clas-
sification in images is known as soft targets. Soft targets are the probabilities that the
teacher model outputs for a given input and can be estimated by a softmax function as

𝑝(𝑧𝑖, 𝑇 ) =
𝑒𝑥𝑝(𝑧𝑖/𝑇 )∑︀
𝑗 𝑒𝑥𝑝(𝑧𝑗/𝑇 )

(4.1)

where 𝑧i is the logit for the i-th class, and a temperature2 factor T is introduced to control
the importance of each soft target. However, the response-based knowledge usually relies
on the output of the last layer, thus fails to address the intermediate-level supervision from
the teacher model, which turns out to be very important for representation learning using
very deep neural networks.

Feature-Based Knowledge

Deep neural networks are good at learning multiple levels of feature representation with
increasing abstraction. Therefore, both the output of the last layer and the output of inter-
mediate layers can be used as the knowledge to supervise the training of the student model.
Specifically, feature-based knowledge from the intermediate layers is a good extension of
response-based knowledge, especially for the training of thinner and deeper networks.

4.2 Distillation Schemes
There also are various configurations of teacher to student model while distilling. Moreover,
these configurations can be combined to complement each other.

Offline Distillation

In the generic sense of KD, the knowledge is transferred from a pre-trained teacher model
into a student model. Therefore, the whole training process has two stages:

• The large teacher model is first trained on a set of training samples before distillation.

• The student model is used to extract the knowledge in the forms of logits or the
intermediate features.

1particular raw output of the model
2an important hyperparameter
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though, usually, the first stage in not discussed, since it is assumed that the teacher model
is pre-defined.

Little attention is paid to the teacher model structure and its relationship with the
student model. Therefore, the offline methods mainly focus on improving different parts
of the knowledge transfer, including the design of knowledge and the loss functions for
matching features. The main advantage of offline methods is that they are simple and easy
to be implemented. The offline distillation methods usually employ one-way knowledge
transfer and two-phase training procedure.

Online Distillation

To overcome the limitation of offline distillation, online distillation is proposed to further
improve the performance of the student model, especially when a large-capacity high per-
formance teacher model is not available. In online distillation, both the teacher model
and the student model are updated simultaneously, and the whole knowledge distillation
framework is end-to-end trainable. Co-distillation in parallel trains multiple models with
the same architectures and any one model is trained by transferring the knowledge from
the other models, thus improving mutual learning.

Self-Distillation

In self-distillation, the same network is used for the teacher and the student model. This can
be regarded as a special case of online distillation. Distilling knowledge from deeper sections
into shallower section is also a possibility proposed by researchers. Snapshot distillation is
a special variant of self-distillation, in which knowledge in the earlier epochs of training is
transferred into network’s later epochs to support the supervised training process.

4.3 Teacher-Student Architecture
The quality of knowledge acquisition and distillation from teacher to student is determined
by the design of the teacher and student networks. Analogically, when we think of humans
learning, we hope that a student can find a right teacher. In an incorrect configuration
or designs of the student model architecture, a phenomenon called model capacity gap can
occur, which can degrade knowledge transfer during the distillation process. Another thing
mentioning is working with models that do not share the same output specification, as in
this thesis. Outputs must be very carefully masked and transformed as not to pollute the
knowledge passed from the teacher.
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Chapter 5

Solution proposition and
Implementation

This chapter focuses on a practical realization of distilling knowledge from the teacher
model to a student model. First and foremost, a suitable TM and SM architecture had to
be selected. Focusing on object classification, multiple candidates were eligible. A basic
object classifier would serve quite well, nevertheless, I opted to use an object detector as it
would provide richer knowledge to distill from. The choice was distilled down to two single-
stage detectors for their inference speed and relative accuracy. The detectors in question
are YOLO and RetinaNet, from which the latter was selected. Since the focus of this
thesis lies in training a reduced neural network, a pre-trained TM was selected. For that
the Keras_CV library, further discussed in later section, came in very useful. Secondly, a
fitting dataset had to be chosen and adapted. Lastly, a scheme for distillation had to be
devised and implemented.

5.1 Technologies
This section briefly discusses the major technologies and libraries used to implement the
practical aspect of this thesis.

Python

Python [28] is a high-level scripting language with many usecase due to large amount of
open source libraries. Although, Python on its own is relatively slow, many of the libraries
utilize acceleration on GPUs, thus making it very powerful in the field of machine learning
compounded by its readability and relative simplicity. The 3.10.12 version was selected to
implement the practical part of this thesis.
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TensorFlow / Keras

TensorFlow [1] is a popular open-source machine learning library used mainly to design,
train and evaluate neural networks of all kinds. This library can utilize even multi-GPU
architectures to provide high performance and acceleration during operations with neural
networks. Since version 2.0, TensorFlow integrates the Keras API [10] making it very
versatile, since Keras provides very comprehensive tools to create and train models and
providing the possibility to interchangeably use features from both libraries within one
project. This thesis utilizes TensorFlow and Keras versions 2.15.0.

Keras CV

Keras CV [32] is a horizontal extension of the Keras API that works with TensorFlow, JAX,
or PyTorch. This library is focused on computer vision task containing many pre-trained
models and meta-architectures with comprehensive tutorials and documentation. Finding
a pre-trained teacher model for this thesis would prove to be a challenge were it not for this
library. For the implementation, version 0.9.0 was used.

5.2 Teacher model
As previously mentioned, the Keras CV library provides various pre-trained models to
choose from, and each of the models have various presets to choose from. I opted to select
the RetinaNet 3.2 with the retinanet_resnet50_pascalvoc preset 1. This preset is built upon
a Resnet50 v1 backbone trained on the PascalVOC 2012 dataset 2 since other presets were
trained on datasets that did not contain a ”person“ class. This model achieves a final MaP
of 0.33 on the evaluation dataset. Since the PascalVOC 2012 dataset consists of 20 classes
a method to mask the model’s output to contain the ”person“ class probability had to be
devised, which will be discussed in a later section.

5.3 Student model
As for the student model the EfficientNetV2B2 [23] network was chosen. In comparison
to the ResNet50 backbone used in the teacher model which has top-1 accuracy of 74.9%,
top-5 accuracy of 92.1% and 25.6M parameters, EfficientNetV2B2 has top-1 accuracy of
80.1%, top-5 accuracy of 94.9% and 9.2M parameters3. For this thesis, the original model’s
architecture was left unchanged and initialized with two classes, 0 meaning not containing
a person and 1 meaning containing a person and final layer activated by the softmax
function.

The key idea behind EfficientNet [23] family of convolutional neural networks is to
simultaneously scale the network’s depth, width, and resolution. Traditionally, neural net-
work architectures have been scaled by increasing just one of these dimensions, which can
lead to sub-optimal performance or computational inefficiency. EfficientNet introduces a
compound scaling method that uniformly scales all dimensions of the network, resulting in
better performance.

1https://keras.io/api/keras_cv/models/tasks/retinanet/#frompreset-method
2http://host.robots.ox.ac.uk/pascal/VOC/
3Values found at https://keras.io/api/applications/
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Figure 5.1: This figure depicts a concise representation of the EfficientNet-B0 model with
its building blocks. Image available at [22]

EfficientNetv2 [24] family aims to improve upon original models by optimizing building
blocks in exchange for better training and computational efficiency, for example by gradually
replacing the original MBConv structures with Fused-MBConv.

5.4 Dataset
Naturally, the only eligible datasets were the ones containing people. Multiple were consid-
ered, such as WiderPerson [34]. Although being large and quite diverse dataset, it proved
to have too many features and fine details for the student model to accurately extract
and classify during testing. A smaller, concise dataset was chosen, the Human Detection
Dataset [30]. This contains two classes of images, ones containing a person (557), and those
without people (364).

Figure 5.2: This figure depicts an entry from the WiderPerson dataset available at [34]
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5.5 Distilling strategy and loss calculation
This section will discuss the most important part of this thesis, the knowledge distilla-
tion process. The implementation utilizes the response-based, offline distillation method,
meaning during a training step an image is first fed through the pre-trained teacher model
to compute so called soft labels. After which, the same image is fed through the student
model to compute student’s output. Finally, teacher’s soft labels and student’s output are
compared in a loss function, from which the final loss is computed and eventually back
propagated to the student model. This process can be further separated into, so called
inconsistent and consistent teaching.

Figure 5.3: This figure depicts various designs of knowledge distillation with inconsistent
teaching designs on the left and consistent teaching designs on the right. Image available
at [7]

• Fixed teacher — this approach first computes logits or soft labels from the teacher
network independently from the training process and stores them, for example in a
database for further processing.

• Independent noise — this approach feeds an image to the teacher and student
network with independent stochastic augmentations respectively.

• Consistent teaching — this approach feeds an image to the teacher and student
network with consistent stochastic augmentation.

• Function matching — this approach utilizes so called mixup [33] augmentation,
which in essence is convex combination of pairs of images and their labels.

Statistically consistent teaching designs outperform inconsistent in accuracy over long
training periods which generally range in thousands of epochs. Both the consistent teaching
and function matching designs were tested during training of the student model within this
thesis but they ended up being detrimental since any image augmentation would skew the
teachers output making it quite inaccurate, thus making the student ”confused“ for the
lack of a better word. Eventually the consistent teaching approach was selected without
any image augmentation.
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Distiller implementation

TensorFlow / Keras allow for fully customizing the training process and even making it
possible to implement a custom training loop. This thesis’ implementation consisted of
subclassing the keras.Model() and overriding the train_step() method. This allowed for fine
control over each step of the training process. Following the selected distillation strategy,
first the batch of input images is fed to the teacher. The RetinaNet teacher produces a
dictionary of tensors consisting of bounding_box and classification raw outputs, from
which only the latter is relevant within this implementation.

The classification tensor has the shape of BATCH_SIZE × NUM_DETECTIONS ×
TNUM_CLASSES where NUM_DETECTIONS is in order of thousands belonging to each
of the BATCH_SIZE × 𝑖𝑚𝑎𝑔𝑒𝑠 consisting of tensors of shape TNUM_CLASSES which is
20. This output has to be trimmed, because the student’s raw output is the shape of
BATCH_SIZE × SNUM_CLASSES where there are BATCH_SIZE × 𝑖𝑚𝑎𝑔𝑒𝑠 tensors of
shape SNUM_CLASSES which for the student model is 2. This is done by taking the
teacher’s output, slicing out the values containing the raw prediction of a person being
present in the image which is on the 14th index4. As per the RetinaNet’s implementation
on getting the real probability value from raw output, the sigmoid function is applied on
these values. At this point, there are 2 problems that need solving, that is to A) — reduce
the NUM_DETECTIONS from the order of thousands to just one per image, and B) —
reduce the TNUM_CLASSES tensor from 20 to just 2.

One of possible solutions to the first problem was to average all the values out into
one tensor. This approach though, would greatly pollute and provide untruthful knowl-
edge. A better alternative that was implemented was to select a single tensor value with
the highest probability of the image containing a person (the 14th index), calling it the
person_probability.

Similarly, the second problem had various possible solutions, one of which was to average
out all the other 19 class probabilities and use that value as the probability of the image
not containing a person. This approach was also scrapped as it would greatly soften all the
probabilities. Approach that ended up being implemented is to use a value denoting that
the image does not contain an person calculated as 1 − person_probability, essentially
softmaxing the probabilities, which is useful since the student’s output is also softmaxed.

Naturally, neither of these approaches are 100% accurate and transparent relative to
clarity of the knowledge, though beneficially, in a way, they put a greater weight on the
probability of the image containing a person.

After masking the teacher’s output, the same image is passed through the student
network and both outputs are ready to be compared to calculate the loss. This thesis
utilizes combined loss computed by two different loss functions, for distillation loss and
ground truth loss.

4https://github.com/NVIDIA/DIGITS/blob/master/examples/semantic-segmentation/pascal-voc-
classes.txt, naturally, the index is off by 2 because of 0 indexing and model ignoring the background
class
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KL Divergence loss

Kullback-Leibler divergence [31, 10]5 measures how one probability distribution diverges
from a second, refference probability distribution. The KL divergence is non-negative and
equals 0 when the two probabilities are identical. This kind of loss is particularly utilized
in knowledge distillation training scenarios. It can be expressed as

𝐷𝐾𝐿(𝑃𝑇 || 𝑃𝑆) =
𝑃𝑇

𝑇
log

𝑃𝑇
𝑇
𝑃𝑆
𝑇

(5.1)

where 𝑃𝑇 is the softmax output of the teacher network, 𝑃𝑆 is the softmax output of the
student network and T is the temperature hyperparameter. This loss will be noted as the
distillation loss (𝐿𝑜𝑠𝑠𝐾𝐿).

Binary cross-entropy

Binary cross-entropy[13, 10]6 is a type of cross-entropy used in binary classification tasks
with mutually exclusive classes. It computes loss between true, ground truth labels and
predicted labels. This kind of loss penalizes the model more heavily for predicting the
incorrect label. It can be expressed as

𝐵𝐶𝐸(𝑦, 𝑃𝑆) =
1

𝑁

𝑁∑︁
𝑖=1

−(𝑦𝑖 · log(𝑃𝑆𝑖) + (1− 𝑦𝑖) · log(1− 𝑃𝑆𝑖)) (5.2)

where y are the ground truth labels, 𝑃𝑆 are predictions of the student network and N
represents number of samples. This loss will be noted as the hard loss (𝐿𝑜𝑠𝑠ℎ𝑎𝑟𝑑).

Total Loss

Finally, the total combined loss for the student model can be expressed as follows

𝐿𝑜𝑠𝑠(𝑦, 𝑃𝑇 , 𝑃𝑆) = 𝛼𝐿𝑜𝑠𝑠𝐾𝐿(𝑃𝑇 , 𝑃𝑆) + 𝛽𝐿𝑜𝑠𝑠ℎ𝑎𝑟𝑑(𝑦, 𝑃𝑆) (5.3)

where 𝛼 and 𝛽 are hyperparameters assigning weight to each of the losses. This approach
proved to be very beneficial for the long training schedule. During testing, when only
ground truth labels were used (without the teacher model) during training, the student
model started to overfit the dataset very quickly without gaining any significant accuracy.
On the other hand, using only the distillation loss gained from comparing teacher’s and
student’s outputs did not converge at all, even during much longer training periods. The
loss combination helped to achieve higher accuracy within reasonable number of epochs,
given the usual training schedules in knowledge distillation scenarios.

5https://github.com/keras-team/keras/blob/v3.3.3/keras/src/losses/losses.py#L335
6https://github.com/keras-team/keras/blob/v3.3.3/keras/src/losses/losses.py#L387
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Chapter 6

Experiments and Metrics

This chapter summarizes results of the implementation. First, it summarizes the training
process. Finally, the student model (SM) training results will be evaluated and compared
obtained by custom metrics and compared to the teacher model (TM).

6.1 Training
This section discusses the training pipeline and parameters used during the process. The
dataset was split into a training and testing dataset, where the testing dataset contained
5% of images from each class, 27 and 18 images respectively to each class. Labels are
obtained from the first number of the image filename where 0 is denoting that the picture
does not contain a person and 1 is denoting that the image contains a person. Thanks
to Metacentrum1 the training was conducted on various hardware configurations varying
in available GPU computational power and VRAM capacities. Parameters were selected
through the vast testing process and were as follows. The number of epochs was set to
2000. Any lower than that, the student model would not provide significant accuracy,
any higher than that and the student’s accuracy would not change in any meaningful way.
The batch size was set to 64 providing a good balance between training speed and SM’s
ability to learn. The image size was set to 224×224, again striking good balance between
computational cost and extractable information, also conforming with the SM’s input layer
shape. As for the optimizer, the SGD optimizer was selected with learning rate of 0.01
and momentum of 0.9. The parameter that was the most experimented with was the
temperature. Eventually the value of 2 was selected. Naturally, value of 1 would not
change the probability distribution in any way and higher values proved to be detrimental
in SM’s eventual accuracy. Parameters 𝛼 and 𝛽 in respect to overall loss calculation 5.3
were lightly experimented with but the best result was yielded with both values set to 1.
During the training process, various checkpoints were saved, based on the lowest overall
loss value, though the final model trained over the entirety of epochs was selected, as it
displayed the highest accuracy.

1https://metavo.metacentrum.cz/en/
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Figure 6.1: This figure depicts the loss reduction over the training process

6.2 Evaluation
This presents custom evaluation metrics. Firstly, model sizes are compared, after which the
accuracy metric will be discussed. Finally, the distillation score metric will be presented.

Model sizes

When it comes to RetinaNet models, various backbones can be utilized to build the model.
Since the SM is from the EfficientNetV2 family, it too can be used as the backbone for the
RetinaNet model. Consequently, the SM is relatively more simple when it comes to the
architecture. The TM consists of multiple subnetworks, where the SM can be thought of as
just one network. The SM contains 8 772 192 (33.46 MB) parameters in total, compared
to the TM’s 35 596 952 (135.79 MB), which results in approximately 4 times reduction in
parameters.
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Inference speed

With reduction in parameters and simpler architecture comes the benefit of improved in-
ference speed. The benchmark was conducted on a system with Ryzen 5 2600 CPU clocked
at 3.9GHz and a NVIDIA GeForce GTX 980 Ti. Naturally, trying to time model’s predic-
tion time with inserting for example Python’s time module before and after the prediction
execution would not provide accurate result [11]. Luckily, Keras’ Model.predict() provides
concise information to the standard output during the execution of the program. It mea-
sures the time it took to pass a batch of images through the network. In this case, each step
consisted of just 1 image and the benchmark went through the entire dataset of 921 images.
This output was captured both for the TM and SM, the times were extracted and averaged
out over 5 independent runs. On average the TM took 123.91ms to process a single image
while the SM only took 32.87ms. This translates into approximately 3.77 times reduction
of inference time.

Accuracy

Since the TM and SM outputs are not the same, a custom accuracy metric had to be
devised. The proposition is as follows. Images and labels from a particular dataset split
will be passed to a model. The model’s output will be processed and compared to the
ground truth labels. This will be done in a thresholded manner, meaning, if a probability of
a particular class corresponding to a label will be higher than the threshold, the prediction
will be evaluated as a correct one. For example, let the threshold be 0.8 and an image with
ground truth label of 1 will be passed to a model. If the model predicts the image to be
classified as a class 1 (i.e. containing a person in context of this thesis) with the probability
of 0.81, it will be counted as a correct prediction, whereas if the prediction probability were
to be 0.7, it would count as an incorrect prediction. The number of correct predictions
will be compared to the total amount of images within a particular dataset split and the
final percentage will be regarded as the final accuracy. Multiple threshold values will be
evaluated.

Similarly to previous operations with the TM, it’s output had to be masked out to
contain only relevant information. This was made easier by RetinaNet’s prediction decoder
implementation utilizing non maximum suppression. This filtered out much of the model’s
predictions with low probabilities and overlapping predictions. With RetinaNet being an
object detection model, it can predict multiple occurrences of a particular class within one
image. For the intensive purposes of computing the accuracy, classes other than person
were filtered out from model’s output and the highest probability was compared against
the threshold while predicting an image containing a person. Firstly, both the TM and SM
were evaluated on the entire dataset with threshold values 0.70, 0.80, 0.90, 0.95.

Threshold 0.70 0.80 0.90 0.95
Teacher 76.87% 68.51% 52.88% 43.87%
Student 98.15% 91.53% 81.43% 65.91%

Here we can see that TM’s accuracy drops off quite significantly, which is to be expected
from object detection models with relatively large amount of differentiable classes. On the
contrary, we can see that the SM retains quite high accuracy even with higher threshold
values and that most of the confidence values lie between 90% and 95% which greatly
surpass the TM.
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Furthermore, the SM was evaluated on the test dataset with the same threshold values.
Threshold 0.70 0.80 0.90 0.95

Student 100% 93.33% 88.89% 68.89%
Yet again, the SM yields good accuracy values, thus proving it usable.

Distillation score

The last metric that will be introduced is the distillation score [3]. This metric can mate-
rialize the efficiency of a particular knowledge distillation method. It can be described as
follows

𝐷𝑆 = 𝛼 · (𝑠𝑖𝑧𝑒𝑠
𝑠𝑖𝑧𝑒𝑡

) + (1− 𝛼) · (1− 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡

) (6.1)

where size_s and size_t represents the size in parameters of the SM and TM respectively,
similarly, accuracy_s and accuracy_t denotes the accuracy of both models. The closer the
score is to 0, the more effective the distillation method was. Additionally, values lower than
0 are valid. This happens when the SM’s accuracy is higher than the TM’s, which is not
common. For this thesis, the 𝛼 value of 0.5 and the accuracy values thresholded by 0.9 will
be selected. The final distillation score evaluated to -0.15. In contrast, the method utilized
in the Keras documentation2 achieves the score of 0.12

Additional notes

During the development and evaluation process, a couple of interesting events happened,
which are worth mentioning. When implementing the masking function for TM’s output, I
noticed that in some cases, the TM predicted an incorrect label. Particularly, in this image

Figure 6.2: This figure depicts incorrectly labeled class

the TM predicted the label as a dog with the probability of 71.33%. Despite this, the
SM correctly predicted that this image contains a person with the probability of 86.70%.
Furthermore, during the testing evaluation, the trained SM found various mislabeled images
with an incorrect class, which were corrected and the SM was re-trained. Both these accom-
plishments can be attributed to the composite loss calculation and mutual complementation
between TM’s soft labels and hard labels.

2https://keras.io/examples/keras_recipes/better_knowledge_distillation/
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Chapter 7

Conclusion

The main goal of this thesis was to implement a reduced neural network model capable of
classifying the presence of people in an image utilizing the knowledge distillation process,
in which it succeeded. It presented various approaches applicable to this discipline, ranging
from algorithmical solutions to solutions based on neural networks. The latter approach
is highly adaptable, offering the potential to detect or classify multiple classes within an
image.

This thesis’ implementation utilized a pre-trained RetinaNet model, a single-shot object
detector as the teacher model from which knowledge was distilled upon the student model
which was a EfficientNetV2 object classifier, yet to be trained. Multiple training and
distilling designs were tested with varying results. Finally, a training process utilizing both
the teacher’s predictions and ground truth labels was implemented yielding good results.
The student model ended up being approximately 4 times smaller, in terms of parameters,
approximately 3.77 times faster, in terms of inference speeds and had an accuracy with 90%
confidence of 81.43% while the teacher only had 52.88% accuracy with the same confidence.
Therefore, it can be concluded that the student model exhibited improved performance
compared to the teacher model.

Lastly, a simple application was implemented to showcase the capabilities of the trained
student model.

The experiments proved, that knowledge distillation is a viable form of model compres-
sion capable of training smaller neural networks with the help of a teacher network, that
would otherwise be unable to accurately fit the dataset and thus, the usecase.
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Appendix A

Contents of the included storage
media

• data/ Folder containing the dataset

• img/ Folder containing images meant to to demonstrate the application’s functionality

• models/ Folder containing the trained model with training history

• src/ Folder containing the source files

• latex/ Folder containing LATEXsource files

• thesis.pdf This thesis

• requirements.txt List of library dependencies with their versions

• detect.py Application demonstrating the trained model

• README.md Manual file
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