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Abstract 
This thesis focuses on the topic of computer vision, more specifically, on classifying people's 
presence in image data. The goal is to create a reduced neural network utilizing knowledge 
distillation. Object classification and detection is a computationally an expensive operation. 
A student model created utilizing knowledge distillation shows equivalent accuracy while 
being smaller and having better inferencing speed compared to the teacher model. Such 
model can be interdisciplinarily utilized on end devices having relatively low computational 
capabilities. 

Abstrakt 
Táto práca sa zameriava na tému počítačového videnia, presnejšie, na binárnu klasifiká­
ciu prítomnosti ľudí v obrazových dátach. Cieľom tejto práce je vytvoriť redukovanú 
neurónovú sieť s využitím metódy knowledge distillation. Klasifikácia a detekcia objektov 
je výpočtovo náročná operácia. Študentský model vytvorený pomocou knowledge distil­
lation vykazuje ekvivalentnú presnosť, pričom je menší a má vyššiu inferenčnú rýchlosť v 
porovnaní s učiteľským modelom. Takýto model môže byť interdisciplinárne všestranný a to 
predovšetkým na koncových zariadeniach, ktoré majú relatívne slabé výpočtové schopnosti. 

Keywords 
knowledge distillation, model compression, object classification, people detection, deep 
learning, convolutional neural network, reduced neural network, image processing, student 
model, teacher model, python, tensorflow, keras 

Kľúčové slová 
knowledge distillation, kompresia modelu, klasifikácia objektov, detekcia ľudí, hlboké uče­
nie, konvolučná neurónová sieť, redukovaná neurónová sieť, spracovanie obrazu, študentský 
model, učiteľský model, python, tensorflow, keras 

Reference 
S T A N C E K , Rastislav Samuel. A Reduced Neural Network for Classifying the Presence of 
People in an Image. Brno, 2024. Bachelor's thesis. Brno University of Technology, Faculty 
of Information Technology. Supervisor Ing. Tomáš Goldmann 



Rozšírený abstrakt 
Moderná doba sa stala takmer synonymná s pojmom umelá inteligencia. Umelá inteligencia 
zastrešuje nespočetné množstvo odvetví, medzi ktoré patrí počítačové videnie. Prirodzene, 
počítačové videnie zastrešuje množstvo dalších odvetví, v neposlednej rade detekciu a klasi­
fikáciu objektov v obrazových dátach. 

Posledné desaťročia zažili revolúciu vo vývoji nových lepších hardvérových prostriedkov 
čo umožnilo vytvárať väčšie a presnejšie trénovateľné modely tvorené neurónovými sieťami. 
V disciplíne počítačového videnia sú prevalentné konvolučné neurónové siete, schopné spra­
covať obrazové dáta, ktoré obsahujú veľa informácií. Cez proces konvolúcie sú tieto siete 
schopné extrahovať základné črty objektov, ktoré sú následne hierarchicky poskladané a tak 
dokáže sieť identifikovať objekt, v prípade objektových detektorov aj daný objekt lokalizo­
vať. 

Proces trénovania sa dá stručne zhrnúť ako schopnosť siete učiť sa z vlastných chýb. Toto 
je dosiahnuteľné vďaka stratovým funkciám, ktoré sú schopné vyčísliť odchýlku predpovedí 
modelu od skutočnej pravdivostnej hodnoty. 

Človek sa každodenne priamo či nepriamo stretáva s modelmi, ktoré dokážu vykonávať 
úlohu klasifikácie a detekcie. Takéto modely môžu byť nasadené v rôznych zariadeniach, 
ako napríklad v mobilných telefónoch alebo kamerách. Toto však prináša výzvu v tom, že 
takéto zariadenia nemajú takú vysokú výpočetnú silu v porovnaní s výkonnými počítačmi. 
V takom prípade je potrebné modely zmenšiť a zefektívniť, aby boli schopné fungovať na 
slabších zariadeniach. Toto je možné dosiahnuť využitím rôznych prístupov známych ako 
Kompresia Modelov, medzi ktoré patrí proces Knowledge Distillation, voľne přeložitelný 
ako destilácia vedomostí, na ktorý je tá to práca zameraná. 

Tento proces pozostáva z využitia predpovedí predtrénovaného modelu, ktorý figuruje 
ako učiteľ počas procesu trénovania, aby slúžili ako zdroj informácii pre trénovaný model, 
ktorý figuruje ako študent. Týmto spôsobom je študent schopný napodobniť chovanie 
učiteľa, no dokonca v niektorých prípadoch aj vylepšiť chovanie učiteľa. Tento proces je 
spravidla efektívny pri trénovaní študentského modelu, ktorý by pri zvyčajných trénovacích 
podmienkach nebol schopný dosiahnuť použiteľnú presnosť. Trpezlivý učiteľ je dobrý učiteľ, 
čo sa prenieslo do paradigmy trénovania modelov za využitia knowledge distillation. Takéto 
trénovacie procesy trvajú rádovo tisíce epoch, v porovnaní s bežnými procesmi, ktoré sa 
pohybujú v desiatkach. V rámci knowledge distillation procesu sa využíva hyper parame­
ter zvaný temperature, a síce, teplota, ktorý pomáha so zjemnením pravdepodobnostných 
distribúcií z predikcií modelov, čo vo výsledku umožňuje študentovy lepšie extrahovať ve­
domosti a naučiť sa z nich. 

Ako učiteľský model bol zvolený populárny model RetinaNet, trénovaný na dátovej sade 
PascalVOC, ktorého klasifikovateľné triedy zahŕňajú triedu typu osoba. Ako študentský 
model bol zvolený model patriaci do rodiny modelov EmcientNetV2. Tieto modely sú 
vylepšením prvej generácie a poskytujú vyššiu efektivitu počas trénovania a následne aj 
počas používania. Trénovanie prebehlo na dátovej sade Human Detection Dataset, ktorá 
pozostávala z obrázkov dvoch tried, a síce, tých ktoré obsahovali, alebo neobsahovali osobu. 
Keďže študent bude schopný klasifikovať len 2 triedy oproti učiteľovi, ktorý ich dokáže 
klasifikovať 20, bolo potrebné učiteľov výstup rozumne vymaskovať a upraviť tak, aby 
nenastala strata vo vedomostiach alebo k ich poškvrneniu. 

Trénovací proces študenta bol testovaný v rôznych konfiguráciách. Prvotne bol štu­
dent trénovaný bez pomoci učiteľa, no tento prístup zlyhal, nakoľko študent nebol schopný 
dostatočne generalizovať problém a miesto zvýšenia presnosti pri dlhšom trénovaciom pláne 
sa nadmerne prispôsobil dátovej sade, čo spôsobilo značnú nepresnosť na dátach, ktoré 



nepatrili do dátovej sady. Ďalší pokus spočíval v trénovaní študenta len pomocou predik­
cií učiteľa počas veľmi dlhého trénovacieho plánu. Tento proces tiež zlyhal, pričom štu­
dent nebol schopný získať dostatočnú presnosť. Tento fakt môže byť atribuovaný k re­
latívne nízkej presnosti učiteľského modelu. Prís tup ktorý bol eventuálne implementovaný 
a úspešný spojil tieto 2 prístupy. Toto spôsobilo, že študent konvergoval k určitému výsledku 
rýchlejšie a dokonca pomohol študentovi zistiť nepresnosti v pravdivostných hodnotách dá­
tovej sady, ktoré boli následne opravené. 

Výstup tejto práce poskytuje redukovaný model, ktorý je schopný binárne klasifikovať 
prítomnosť, alebo neprítomnosť osoby v obrazových dátach. 
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Chapter 1 

Introduction 

In the ever evolving world of Artificial Intelligence (AI), we have grown accustom to having 
AI included in various ways into our daily workflows, whether it utilizes a model capable of 
processing human language and generating a coherent text response in Natural Language 
Processing, or classifying objects within images in Computer Vision (CV) . Naturally, most 
models in these fields are some sort a deep neural network, trained using Deep Learning. 
These models constantly improve in accuracy, speed and features, but also proportionally 
increase in size, complexity and computational power requirements. Subsequently, they can 
be difficult and computationally expensive to deploy. 

There are many models based on various techniques in C V for classifying objects. This 
thesis will focus on analyzing and comparing models capable of classifying and detecting 
objects such as You Only Look Once (YOLO) , Region-based Convolutional Neural Networks 
(R-CNN) or Single-Shot Detector (SDD) or RetinaNet and produce a reduced and simpler 
model retaining the accuracy of the teacher model, in some cases possibly even surpassing 
the teacher. 

Empirically speaking, after inventing or creating something new and complete, the 
natural way to improve it, is to optimize, make it faster, more efficient and in many cases, 
smaller. In machine learning terms, to make a model smaller is to utilize a technique 
called Model Compression. This thesis will delve deeper into a particular concept of Model 
Compression called Knowledge Distillation. Making models smaller can help in deployment, 
particularly on end devices that are easier to distribute. 

Knowledge Distillation (KD) generally consists of taking a large, accurate teacher model 
and using it to train a student model. The student model, retains comparable performance 
while being quite simpler in structure, having less layers and parameters that is. It can 
also be trained to mimic a specific subset of behaviors of the teacher model. In terms of 
C V models, to only classify a particular class or classes of objects, in case of this thesis a 
single class, a person. 

In the beginning, basic principles behind Deep Neural Networks, their types and training 
process will be discussed. Furthermore, the chapter will include the discipline of Object 
Detection and Classifications and discuss the various challenges and approaches within 
it. The following chapter will focus on particular algorithms and approaches existing in 
Computer Vision used to classify and detect objects in images. The subsequent chapter 
will delve deeper into the concept of Knowledge Distillation, explain the process and various 
possible configurations. The last two chapters will describe the practical implementation 
of this thesis in great detail and eventually compare and present the obtained results. 
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Chapter 2 

Neural Networks and Person 
Detection 

This chapter will discuss the basis of what an Artificial Neural Network is and how it works, 
what does it consist of and how can it be utilized in Computer Vision (CV). Finally, it will 
discuss the topic of Person Detection in C V , problems in C V , historical approaches to 
solving these problems and state of the art models and algorithms tackling complex tasks. 

2.1 Neural Networks 

Pattern recognition in general is a natural component of human intellect. Humans are able 
to traverse new and unknown environments thanks to years of evolution and learning. As 
problems and tasks grew in complexity, people devised various ways to aid them in solving 
these problems. Among many approaches to solutions to these problems lied the Artificial 
Intelligence. Although AI on its own is a powerful tool, it is not the „one-size-fits-aH" 
solution, since not every problem can be described with a finite set of rules and constraints. 
In comparison, humans are not bound by some rule set to create a decision, thanks to 
their empirical knowledge gained by learning. Consequently, it had to be made possible for 
computers to learn and teach them selves through means of Machine Learning (ML) . 

Nowadays, one of the most popular branches of M L are Artificial Neural Networks 
(ANN). Similarly to a human brain, ANNs consist of interconnected neurons and are able 
to learn and adapt to solve a generalized problem effectively. The reason why ANNs are so 
effective at solving problems is the vast parallelism of all the neurons throughout A N N ' s 
layers. 

Building blocks 

As human brains consist of neurons, ANNs [8] consist of Artificial Neurons (AN). The 
simplest representation of an A N is a Perceptron. Comparably to a natural neuron, that 
has a set of dendrites as inputs and a single output as axon a perceptron has a set of inputs 
with one output. 

3 



Figure 2.1: The McCulloch-Pitts model of a perceptron 

The perceptron forms a weighted sum (2.1) of the inputs xi, and then transforms 
this sum using an activation function (2.2) g() to give a final output of z = g(a) 

d 
a = ^WiXi (2.1) 

i=0 

The activation function [26] decides whether the perceptron, or node should be activated 
or not. If there were no activation function, the A N N would essentially be just a linear 
regression model. The activation function introduces the non-linearity making the A N N 
capable to learn and solve more complex problems. 

Linear Function Threshold Function 

Figure 2.2: A selection of typical activation functions 
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Neuron Connection 

When multiple biological neurons join, they form a synapse. Analogically, the joining of 
artificial neurons form a layer. 

Hidden layer 1 Hidden layer 2 Hidden layer 3 

V7 Labs 

Figure 2.3: Interconnected neurons forming layers of the neural network. Image available 
at [26] 

Artificial Neural Networks typically have an Input layer, 0 to N Hidden layers and an 
Output layer. For an A N N to be considered a deep neural network, it needs to have at least 
2 hidden layers. 

Input Layer 

The input layer [25] is used to communicate with the outer environment. Once an input is 
introduced to the input layer of the network, it proceeds to transfer it to the hidden layers 
to be processed. It also defines the conditions on which the network training depends. 

Hidden layer 

Hidden layer(s) is an intermediate layer between the input and the output layer of the 
network. Number of hidden layers within the network changes from problem to problem. 
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Selection of hidden layers is a complex task as in some cases due to the number of hidden 
layers a condition known as overfitting and underfitting occurs (2.2), which negatively 
impacts the efficiency, accuracy and time complexity of the network. 

Output layer 

The output layer is connected with the outer environment and represents the output of 
the input given to the network. This last layer attempts to produce a class score based on 
activations from previous layers. 

Types of Neural Networks 

After the discovery of a simplest form of a neural network, the Mult i Layer Perceptron, 
many other types were created to better suit particular problems. Most prevalent type of 
neural network in computer vision is a Convolutional Neural Network [2, 19] (CNN) 

When it comes to image data, an ordinary A N N starts to struggle due to the compu­
tational intensity of image processing. It would take 784 weights per neuron in the first 
hidden layer to process a 28 x 28 black and white image. In comparison, Convolutional 
Neural Networks bring a significant reduction in required weights an parameters thanks to 
so called max-pooling layers. In practice, the input (color) image with a dimensionality of 
28 x 28 x 3 would lead into a final output layer with a dimensionality of 1 x 1 x N, where 
N represents the number of classes. 

CNNs consist of three types of layers. The Convolutional layers, Pooling layers and 
Fully-connected layers (2.4). 

Convolution 

Input 

Y 

Pooling 

• 5 

Feature Extract ion 

A 

Fully 
Connected 

Output 

Y 
Classification 

Figure 2.4: This image depicts the separate layers of a simple Convolutional Neural Net­
work. Image available at [20] 

Convolutional Layer 

The layer's parameters focus around the use of learnable kernels. As the kernel glides 
through the input, the scalar product is calculated for each value in that kernel. From 

(i 



this the network will learn the kernels that activate when they see a specific feature at 
a given spatial position of the input. Every kernel will have a corresponding activation 
map. Convolutional layers are also able to significantly reduce complexity of the model 
through the optimisation of their output through so called hyperparameters: depth, stride 
and zero-padding. 

Pooling Layer 

Pooling layers aim to gradually reduce the dimensionality of the representation, and thus 
further reduce the number parameters and the computational complexity of the model. The 
pooling layer operates over each activation map in the input. In most CNNs these come 
in the form of max-pooling layers with kernels of a dimensionality of 2 x 2 applied with a 
stride of 2 along the spatial dimensions of the input. This scales the activation map down 
to 25% of the original size while maintaining the depth volume to its standard size. Due to 
the destructive nature of this layer, having a kernel size greater than 3 will usually greatly 
decrease the performance of the model. 

Fully-connected Layer 

The fully-connected layer contains neurons which are directly connected to the neurons 
in the two adjacent layers, without being connected to any layers within them. This is 
analogous to way that neurons are arranged in traditional forms of A N N . 

2.2 Deep Learning 

The greatest strength of neural networks lies in their adaptability. The same architecture 
can be used and adapted to suit multiple use cases. For example, in context of this thesis, 
the same model of a convolutional neural network can be used to classify hand written digits, 
or detect a person in an image. The desired result can be achieved through a process called 
learning (in the case of deep neural networks deep learning), more specifically Supervised 
Learning. 

In simplified terms [9], the supervised learning process consists of feeding input data 1 

to a model with initialized weights with random values through forward propagation. Af­
terwards, the model's predicted value has to be compared to actual target value for the 
given input, using so called loss function. Through the use of backward error propagation, 
individual node weights are adjusted according to the cost function value. 

This process can be iteratively repeated until the desired accuracy is reached or a 
terminating condition is met. Each iteration is called an epoch. 

1 Input data consist of 2 sets of labeled dataset, the training set and the validation set 
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Underfitting and Overfitting 

During the model's learning process, two major accuracy decreasing issues can occur [5]: 
Underfitting occurs when the model is not able to obtain a sufficiently low error value 

on both the training and validating set. It usually means, that either the model is too 
simple or not trained for enough epochs. 

Overfitting occurs when the gap between the training error and test error is to large. 
It performs well on the training set, but fails to perform with the validation set. It usually 
means that the model is too complex or that the training dataset is too small or noisy. It 
may also happen when the training goes on for too many epochs and is not stopped early. 

2.3 Object Detection and Classification 

Before we delve deeper into the challenges of Person Detection (2.3), the discipline of Object 
Detection (OD) needs to be discussed first. 

Object detection is in the subset of domains of Computer Vision. This technique involves 
processing, analysing and extraction information from digital images. This subset also 
includes topics like scene reconstruction, activity recognition, image restoration and others, 
though this thesis will only focus on OD. While non machine learning approaches can solve 
OD tasks, neural networks, predominantly convolutional neural networks have shown to be 
extremely useful due to their ability to effectively extract features. 

Feature Extraction 

Feature extraction plays a crucial role in helping various OD algorithms to understand 
image data. As previously stated, convolutional neural networks excel at this task. Each 
convolutional layer condenses the input by extracting features of interest and produces 
feature maps in response to different feature detectors [18]. The first convolutional layer 
begins with simple features, such as edges or points. As data pass through, each layer 
combines shapes from the previous layer into higher-order shape2. The composition of these 
convolutional layers is called a feature extraction backbone. Finally the fully connected layer 
activates a particular neuron in the output layer. The number of neurons in the output 
layer correspond with the number of classes that a particular model has been trained to 
classify. 

2i.e. multiple edges can form a circle 
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Figure 2.5: This image depicts the feature stacking, from the simplest ones (bottom) to 
complete higher-order shapes (top). Image available at [35] 

Person Detection 

As with any other class of object detection, person detection poses various challenges [15]: 

• Variability in appearance — it is safe to assume that the chance of multiple 
similarly looking people appearing on one image is quite low. Each person can differ 
in their clothing or poses 

• Scale and resolution — varying scales3 and small resolutions with poor image 
quality prove to have distorting properties 

• Occlusion — only a part of a person can be visible in a particular image due to the 
person being obscured by an object 

• Background complexity — detecting a person can be made difficult by a busy and 
complex environments, thus detecting a false positive 

• Pose variation — including all possible poses and positions that a person in the 
training dataset can be near impossible 

• Deformable clothing — not all pieces of clothing follow the standard human sil­
houette 

3i.e. person's distance from the camera 

9 



To combat these challenges, various approaches exist: 

• Bottom-Up Feature-Based Approaches — these algorithms aim to find struc­
tural features that exist even when the pose, viewpoint, or lighting conditions vary, 
and then use them in the detection procedure 

• Top-Down Knowledge-Based Methods — these rule-based methods encode knowl­
edge of what constitutes a typical human body. These methods are designed mainly 
for human body localization 

• Template Matching Methods — several standard patterns of humans or human 
body parts are used to describe either the human body globally or as distinct human 
body parts (limbs, face, head etc). The correlations between the input image and 
the patterns are computed for detection. These methods have been used for both 
localization and detection with considerable accuracy 

• Appearance-Based Methods — in contrast to template matching, the models 
(or templates) are learned from a set of training images, which should capture the 
representative variability of human appearance. These learned models are then used 
for detection 

• Integration of Parts detectors — in contrast to all the techniques described above, 
this last category fuses the detection results derived by robust part detectors. They 
are commonly deployed in order to perform reliable approximation of the bodies' 
shape and extent 

A n ideal person detecting algorithm should be invariant to the previously stated issues. 
Though these various approaches exist, not all have the same performance and accuracy as 
approaches based on neural networks. 

Performance Evaluation Metrics 

There are two popular metrics to determine the predictive performance and accuracy of 
different object detection models, Intersection over Union and Average Precision [27] 

Intersection over Union (IOU) serves to assert the localization accuracy of model's 
prediction compared to ground truth bounding boxes according to this formula 

where A o l is the area of intersection and A o U is the area of union 5 . The resulting ratio 
provides a good estimate of how close the prediction bounding box is to the ground truth. 

Average Precision (AP) is calculated as the area under a precision-recall curve for 
a set of predictions. Recall is calculated as the ratio of the total predictions made by the 
model under a class with a total of existing labels for the class. Precision refers to the 
ratio of true positives with respect to the total predictions made by the model. Recall 
and precision offer a trade-off that is graphically represented into a curve by varying the 
classification threshold. The area under this precision vs. recall curve gives us the A P per 
class for the model. The average of this value, taken over all classes, is called mean Average 
Precision (mAP). 

intersection denotes the region where predicted bounding box and ground truth bounding box overlap 
5union denotes the total region covered by both predicted and ground truth bounding boxes 
6the curve is created by connecting points representing a particular confidence threshold 

IOU 
Aol 
AoU 
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Chapter 3 

People Detection Algorithms 

Many algorithms began their development in the last century. The greatest breakthrough 
for computer vision has been the Deep Learning Revolution in the late 2000s bringing mas­
sive performance improvements. This chapter will discuss both algorithms used before this 
time and after. These algorithms can divided into ones not reliant on neural networks 
and algorithms based on neural networks. The latter can be further divided into two 
categories by the required times the same input image has to pass through the network into 
One-Stage/Proposal-Free algorithms and Two-Stage/Proposal algorithms. 

3.1 Algorithms not reliant on Neural Networks 

Viola-Jones 

As discussed in the previous chapter, it can be challenging do determine which feature of 
the human body can be chosen to be the defining one, although, the human face can be 
considered as one. This algorithm [29] performs the best on full view, frontal, upright, well 
lit, full sized faces in fixed-resolution images and is computationally quite inexpensive. For 
an image to be successfully processed, it has to be correctly rescaled, grayscaled with an 
increase to contrast and individual pixels normalized into the range of <0;1>. 

This algorithm relies on extracting certain features from an image, passing them into a 
cascading decision making algorithm that determines in a binary way, whether the image 
contains a face or not. 

Features utilized by this algorithm can be described as Haar-like scalable rectangles1 

divided into 3 categories: 

• two-rectangle features consisting of 2 rectangles, one black, one white. Useful for 
detecting edges. 

• three-rectangle features consisting of 3 rectangles, two are of the opposite color of 
the remaining one. Useful for detecting straight lines. 

• four-rectangle features consisting of 4 rectangles in a diagonal configuration, two 
black and two white. Use for detecting diagonal lines. 

While these features are simple in nature and inherently not very accurate, they have a 
great computational advantage compared to their counterparts2 

xthat have the same dimensions and are adjacent 
2i.e. steerable filters 
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Figure 3.1: Example of Haar-like features matching a preprocessed image. As can be seen, 
transitions from the forehead to the brow or the eyes to the cheeks have been classified 
as Edge-features. Additionally, the nose follows a black-white-black pattern, thus being 
classified as Line-feature. Image available at [6] 

The Attentional Cascade, in other words, the cascade of classifiers is the backbone 
of this algorithm. Each layer consists of weak classifiers utilizing aforementioned features to 
mark a particular region of an image for further potential processing. Additionally, each of 
the layers is trained by a boosting algorithm called AdaBoost. Each consecutive layer has 
increasing requirements for detection rate and false positive rate. This particular trait is 
responsible for the performance of this algorithm, the reason being, the layer that is higher 
in the cascade takes the previous layer of weaker classifiers and rejects and „throws out" 
the regions falsely marked as positives3, thus decreasing the number of classifiers that will 
be processed by the next layer. 

3.2 Algorithms Based on Neural Networks 

Two-stage or Two-shot [27] algorithms will be discussed first. These algorithms require 
two passes of the input image to make predictions about the presence and location of objects. 
The first pass is used to generate a set of proposals or potential object locations, and the 
second pass is used to refine these proposals and make final predictions. This approach is 
more accurate than single-shot1 algorithms at the cost of computational requirements. 

3positive as in containing a relevant feature 
4or single-stage 
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Region-based Convolutional Neural Network 

Region-based Convolutional Network (RCNN) [12] introduced the concept of using deep 
learning for object detection. It was followed and improved upon by many algorithms 
(Fast R-CNN, Faster R-CNN, RFCN, Mask RCNN), though for the sake of simplicity, only 
the concept of R C N N will be discussed further. R C N N can be divided into 3 modules. 
First generates category-independent region proposals. The second is a C N N that extracts 
a fixed-length feature vector from each region. The third is a set of class-specific linear 
support vector machines. 

The modular design allows for combining and interchanging different implementations. 
For regional proposal methods like selective search, category-independent object proposals, 
constrained parametric min-cuts and others can be used, though R C N N is agnostic to the 
particular region proposal method. Similarly, different C N N architectures can be used in 
the second module, though these can impact the performance and accuracy of the whole 
system (3.2). 

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP 

R-CNN T-Net 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2 
R-CNN T-Net BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5 
R-CNN O-Net 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2 62.2 
R-CNN O-Net BB 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0 

Figure 3.2: This figure depicts how different architectures influence the accuracy of R C N N . 
Image available at [12] 

Finally, the Single-stage or Single-shot [27] algorithms will be discussed. These algo­
rithms require just a single pass of the input image to make predictions about the presence 
and location of objects in the image. Although, these algorithms are computationally less 
intensive, they struggle with detecting small objects and are generally less accurate. 

Single Shot Detector 

Compared to R C N N , Single Shot Detector (SSD) [17, 4] proved to be both fast and accurate, 
averaging at around 59 frames per second and m A P of 74.3% ; ). SSD builds upon a predefined 
network (3.3) called the backbone and adds auxiliary structures called the SSD head. The 
backbone is used as a feature extractor since the final fully connected classification layer has 
been removed. The head is just one or more convolutional layers added to this backbone 
and the outputs are interpreted as the bounding boxes and classes of objects in the spatial 
location of the final layers activations. Instead of using a sliding window, SSD divides the 
image using a grid and have each grid cell be responsible for detecting object in that region 
of the image. 

5on the VOC2007 test 
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Extra Feature Layers 

Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128 
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1 

Figure 3.3: The figure depicts SSD architecture including the VGG-16 model. Image avail­
able at [17] 

You Only Look Once 

Despite having many versions increasing in accuracy and efficiency, this thesis will discuss 
the first iteration of You Only Look Once (YOLO) algorithm for the sake of simplicity 
[27, 21]. The first 20 convolution layers of the model are pre-trained using ImageNet by 
plugging in a temporary average pooling and fully connected layer. Then, this pre-trained 
model is converted to perform detection since previous research showcased that adding 
convolution and connected layers to a pre-trained network improves performance. Y O L O ' s 
final fully connected layer predicts both class probabilities and bounding box coordinates 
by using the features extracted from the convolutional layers. Similarly to SSD, Y O L O 
divides an input image into a grid. If the center of an object falls into a grid cell, that grid 
cell is responsible for detecting that object. One key technique used in the Y O L O models is 
non-maximum suppression (NMS). N M S is a post-processing step that is used to improve 
the accuracy and efficiency of object detection by identifying and removing redundant or 
incorrect bounding boxes. 

X X 7 

Conv. Layer 
7x7x64-s-2 

M a x p o o l Layer 
2x2-s-2 

Conv. Layer 
3 x 3 x 1 9 2 

M a x p o o l Layer 
2x2-5-2 

Conv. Layers 
1x1x128 
3 x 3 x 2 5 6 
1 x 1 x 2 5 6 
3 x 3 x 5 1 2 

M a x p o o l Layer 
2x2-s-2 

Conv. Layers 

3 x 3 x 5 1 2 J 
1x1x512 

3 x 3 x 1 0 2 4 
M a x p o o l Layer 

2x2-5-2 

Conv. Layers 
1x1x512 1 

3 x 3 x 1 0 2 4 1 
3 x 3 x 1 0 2 4 

3x3x1024 -5 -2 

Conv. Layers 
, 3 x 3 x 1 0 2 4 
' 3 x 3 x 1 0 2 4 

Cann. Layer Conn . Layer 

Figure 3.4: This figure depicts the architecture of Y O L O model. Image available at [21] 
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RetinaNet 

RetinaNet [16] is a single, unified network analogical to SSD comprising of a backbone net­
work but having two task-specific subnetworks. To further augment the backbone network 
a Feature Pyramid Network (FPN) is used with top-down pathway and lateral connections 
so the network efficiently constructs a rich, multi-scale feature pyramid from a single reso­
lution input image. Each level of the F P N can be used for detecting objects at a different 
scale. RetinaNet uses Anchor Boxes (AB), which are fixed sized boxes to predict the bound­
ing boxes for objects. To achieve that, the model regresses the offset between the location 
of the object's center and the center of an anchor box, and then uses the width and height 
of the anchor box to predict a relative scale of the object. Each location on a given feature 
map has nine anchor boxes. The two aforementioned subnetworks are for classification and 
bounding box regression on each of the A B . 

The classification subnetwork is particularly important in this thesis as it serves as 
the basis for distilling knowledge to the student. It is a small fully convolutional network 
attached to each F P N level. Taking an input feature map from a given pyramid level, 
the subnetwork applies four 3 x 3 convolutional layers each followed by R e L U activations, 
followed by a 3 x 3 convolutional layer with sigmoid activations. 

In parallel with the object classification subnetwork, a second fully convolutional net­
work is attached to each pyramid level for the purpose of regressing the offset from each A B 
to a nearby ground-truth object, if one exists. The design is identical to the classification 
subnetwork, except it terminates with 4 outputs, as in 4 spacial locations. 

M ResNct (b) feu lure pyramid net 1c) class subnet (top) (d) b<M subnet (boliom) 

Figure 3.5: This figure depicts the architecture of RetinaNet model. This particular diagram 
uses ResNet network as the backbone. Image available at [16] 

Generally, single-shot object detectors are better suited for real-time applications, while 
two-shot object detectors are better for applications where accuracy is more important 
[27, 4]. 
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Chapter 4 

Knowledge Distillation 

This chapter will focus on the principle and process of Knowledge Distillation (KD) [14]. 
As discussed in previous chapters, deep learning has made an immense impact in the disci­
pline of computer vision, spawning many various implementations of Deep Neural Networks 
(DNN). In addition to their versatility and performance, they often consist of millions of 
parameters, thus requiring high computational power. K D can help to alleviate some of 
these issues. The generic premise of K D is that a Teacher model mediates Knowledge to 
a Student model from which the student model trains. One important metric that neces­
sitates mentioning is Knowledge or Distillation loss. This metric measures the difference 
between the predictions of the student model and the soft targets (4.1) provided by the 
teacher model. 

Teacher Model 

Figure 4.1: This figure shows a generic teacher-student framework for knowledge distillation. 
Image available at [14] 
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4.1 Knowledge 

There are multiple kinds of knowledge to differentiate from in the process of K D . 

Response-Based Knowledge 

Response-based knowledge usually refers to the neural response of the last output layer of 
the teacher model. The main idea is to directly mimic the final prediction of the teacher 
model. The response-based knowledge distillation is simple yet effective for model compres­
sion. The response-based knowledge can be used for different types of model predictions. 
For example, the response in object detection task may contain the logits 1 together with 
the offset of a bounding box. The most popular response-based knowledge for object clas­
sification in images is known as soft targets. Soft targets are the probabilities that the 
teacher model outputs for a given input and can be estimated by a softmax function as 

_ exp{zt/T) 

where Zi is the logit for the i-ih. class, and a temperature2 factor T is introduced to control 
the importance of each soft target. However, the response-based knowledge usually relies 
on the output of the last layer, thus fails to address the intermediate-level supervision from 
the teacher model, which turns out to be very important for representation learning using 
very deep neural networks. 

Feature-Based Knowledge 

Deep neural networks are good at learning multiple levels of feature representation with 
increasing abstraction. Therefore, both the output of the last layer and the output of inter­
mediate layers can be used as the knowledge to supervise the training of the student model. 
Specifically, feature-based knowledge from the intermediate layers is a good extension of 
response-based knowledge, especially for the training of thinner and deeper networks. 

4.2 Distil lation Schemes 

There also are various configurations of teacher to student model while distilling. Moreover, 
these configurations can be combined to complement each other. 

Offline Distillation 

In the generic sense of K D , the knowledge is transferred from a pre-trained teacher model 
into a student model. Therefore, the whole training process has two stages: 

• The large teacher model is first trained on a set of training samples before distillation. 

• The student model is used to extract the knowledge in the forms of logits or the 
intermediate features. 

1 particular raw output of the model 
2an important hyperparameter 
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though, usually, the first stage in not discussed, since it is assumed that the teacher model 
is pre-defined. 

Little attention is paid to the teacher model structure and its relationship with the 
student model. Therefore, the offline methods mainly focus on improving different parts 
of the knowledge transfer, including the design of knowledge and the loss functions for 
matching features. The main advantage of offline methods is that they are simple and easy 
to be implemented. The offline distillation methods usually employ one-way knowledge 
transfer and two-phase training procedure. 

Online Distillation 

To overcome the limitation of offline distillation, online distillation is proposed to further 
improve the performance of the student model, especially when a large-capacity high per­
formance teacher model is not available. In online distillation, both the teacher model 
and the student model are updated simultaneously, and the whole knowledge distillation 
framework is end-to-end trainable. Co-distillation in parallel trains multiple models with 
the same architectures and any one model is trained by transferring the knowledge from 
the other models, thus improving mutual learning. 

Self-Distillation 

In self-distillation, the same network is used for the teacher and the student model. This can 
be regarded as a special case of online distillation. Distilling knowledge from deeper sections 
into shallower section is also a possibility proposed by researchers. Snapshot distillation is 
a special variant of self-distillation, in which knowledge in the earlier epochs of training is 
transferred into network's later epochs to support the supervised training process. 

4.3 Teacher-Student Architecture 

The quality of knowledge acquisition and distillation from teacher to student is determined 
by the design of the teacher and student networks. Analogically, when we think of humans 
learning, we hope that a student can find a right teacher. In an incorrect configuration 
or designs of the student model architecture, a phenomenon called model capacity gap can 
occur, which can degrade knowledge transfer during the distillation process. Another thing 
mentioning is working with models that do not share the same output specification, as in 
this thesis. Outputs must be very carefully masked and transformed as not to pollute the 
knowledge passed from the teacher. 
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Chapter 5 

Solution proposition and 
Implementation 

This chapter focuses on a practical realization of distilling knowledge from the teacher 
model to a student model. First and foremost, a suitable T M and S M architecture had to 
be selected. Focusing on object classification, multiple candidates were eligible. A basic 
object classifier would serve quite well, nevertheless, I opted to use an object detector as it 
would provide richer knowledge to distill from. The choice was distilled down to two single-
stage detectors for their inference speed and relative accuracy. The detectors in question 
are Y O L O and RetinaNet, from which the latter was selected. Since the focus of this 
thesis lies in training a reduced neural network, a pre-trained T M was selected. For that 
the Kera s_CV library, further discussed in later section, came in very useful. Secondly, a 
fitting dataset had to be chosen and adapted. Lastly, a scheme for distillation had to be 
devised and implemented. 

5.1 Technologies 

This section briefly discusses the major technologies and libraries used to implement the 
practical aspect of this thesis. 

Python 

Python [28] is a high-level scripting language with many usecase due to large amount of 
open source libraries. Although, Python on its own is relatively slow, many of the libraries 
utilize acceleration on GPUs, thus making it very powerful in the field of machine learning 
compounded by its readability and relative simplicity. The 3.10.12 version was selected to 
implement the practical part of this thesis. 
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TensorFlow / Keras 

TensorFlow [1] is a popular open-source machine learning library used mainly to design, 
train and evaluate neural networks of all kinds. This library can utilize even mult i -GPU 
architectures to provide high performance and acceleration during operations with neural 
networks. Since version 2.0, TensorFlow integrates the Keras A P I [10] making it very 
versatile, since Keras provides very comprehensive tools to create and train models and 
providing the possibility to interchangeably use features from both libraries within one 
project. This thesis utilizes TensorFlow and Keras versions 2.15.0. 

Keras C V 

Keras C V [32] is a horizontal extension of the Keras A P I that works with TensorFlow, J A X , 
or PyTorch. This library is focused on computer vision task containing many pre-trained 
models and meta-architectures with comprehensive tutorials and documentation. Finding 
a pre-trained teacher model for this thesis would prove to be a challenge were it not for this 
library. For the implementation, version 0.9.0 was used. 

5.2 Teacher model 

As previously mentioned, the Keras C V library provides various pre-trained models to 
choose from, and each of the models have various presets to choose from. I opted to select 
the RetinaNet 3.2 with the retinanet_resnet50_pascalvoc preset 1 . This preset is built upon 
a Resnet50 v l backbone trained on the PascalVOC 2012 dataset 2 since other presets were 
trained on datasets that did not contain a „person" class. This model achieves a final MaP 
of 0.33 on the evaluation dataset. Since the PascalVOC 2012 dataset consists of 20 classes 
a method to mask the model's output to contain the „person" class probability had to be 
devised, which will be discussed in a later section. 

5.3 Student model 

As for the student model the EfficientNetV2B2 [23] network was chosen. In comparison 
to the ResNet50 backbone used in the teacher model which has top-1 accuracy of 74.9%, 
top-5 accuracy of 92.1% and 25.6M parameters, EfncientNet V2B2 has top-1 accuracy of 
80.1%, top-5 accuracy of 94.9% and 9.2M parameters3. For this thesis, the original model's 
architecture was left unchanged and initialized with two classes, 0 meaning not containing 
a person and 1 meaning containing a person and final layer activated by the softmax 
function. 

The key idea behind EfncientNet [23] family of convolutional neural networks is to 
simultaneously scale the network's depth, width, and resolution. Traditionally, neural net­
work architectures have been scaled by increasing just one of these dimensions, which can 
lead to sub-optimal performance or computational inefficiency EfncientNet introduces a 
compound scaling method that uniformly scales all dimensions of the network, resulting in 
better performance. 

1https: //keras. io/api/keras cv/models/tasks / retinanet / #frompreset-method 
2http://host.robots.ox.ac.uk/pascal/VOC/ 
3Values found at https://keras.io/api/applications/ 
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Figure 5.1: This figure depicts a concise representation of the EfficientNet-BO model with 
its building blocks. Image available at [22] 

EmcientNetv2 [24] family aims to improve upon original models by optimizing building 
blocks in exchange for better training and computational efficiency, for example by gradually 
replacing the original MBConv structures with Fused-MBConv. 

5.4 Dataset 

Naturally, the only eligible datasets were the ones containing people. Multiple were consid­
ered, such as WiderPerson [34]. Although being large and quite diverse dataset, it proved 
to have too many features and fine details for the student model to accurately extract 
and classify during testing. A smaller, concise dataset was chosen, the Human Detection 
Dataset [30]. This contains two classes of images, ones containing a person (557), and those 
without people (364). 

Figure 5.2: This figure depicts an entry from the WiderPerson dataset available at [34] 
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5.5 Dist i l l ing strategy and loss calculation 

This section will discuss the most important part of this thesis, the knowledge distilla­
tion process. The implementation utilizes the response-based, offline distillation method, 
meaning during a training step an image is first fed through the pre-trained teacher model 
to compute so called soft labels. After which, the same image is fed through the student 
model to compute student's output. Finally, teacher's soft labels and student's output are 
compared in a loss function, from which the final loss is computed and eventually back 
propagated to the student model. This process can be further separated into, so called 
inconsistent and consistent teaching. 

• Fixed teacher — this approach first computes logits or soft labels from the teacher 
network independently from the training process and stores them, for example in a 
database for further processing. 

• Independent noise — this approach feeds an image to the teacher and student 
network with independent stochastic augmentations respectively. 

• Consistent teaching — this approach feeds an image to the teacher and student 
network with consistent stochastic augmentation. 

• Function matching — this approach utilizes so called mixup [33] augmentation, 
which in essence is convex combination of pairs of images and their labels. 

Statistically consistent teaching designs outperform inconsistent in accuracy over long 
training periods which generally range in thousands of epochs. Both the consistent teaching 
and function matching designs were tested during training of the student model within this 
thesis but they ended up being detrimental since any image augmentation would skew the 
teachers output making it quite inaccurate, thus making the student „confused" for the 
lack of a better word. Eventually the consistent teaching approach was selected without 
any image augmentation. 
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Distiller implementation 

TensorFlow / Keras allow for fully customizing the training process and even making it 
possible to implement a custom training loop. This thesis' implementation consisted of 
subclassing the keras.ModelQ and overriding the train_step() method. This allowed for fine 
control over each step of the training process. Following the selected distillation strategy, 
first the batch of input images is fed to the teacher. The RetinaNet teacher produces a 
dictionary of tensors consisting of bounding box and classification raw outputs, from 
which only the latter is relevant within this implementation. 

The classification tensor has the shape of BATCH_SIZE x NUMDETECTIONS x 
TNUM_CLASSES where NUM_DETECTIONS is in order of thousands belonging to each 
of the BATCH_SIZE x images consisting of tensors of shape TNUM_CLASSES which is 
20. This output has to be trimmed, because the student's raw output is the shape of 
BATCH_SIZE x SNUM_CLASSES where there are BATCH_SIZE x images tensors of 
shape SNUM_CLASSES which for the student model is 2. This is done by taking the 
teacher's output, slicing out the values containing the raw prediction of a person being 
present in the image which is on the 14th index'1. As per the RetinaNet's implementation 
on getting the real probability value from raw output, the sigmoid function is applied on 
these values. At this point, there are 2 problems that need solving, that is to A) — reduce 
the NUM_DETECTIONS from the order of thousands to just one per image, and B) -
reduce the TNUM_CLASSES tensor from 20 to just 2. 

One of possible solutions to the first problem was to average all the values out into 
one tensor. This approach though, would greatly pollute and provide untruthful knowl­
edge. A better alternative that was implemented was to select a single tensor value with 
the highest probability of the image containing a person (the 14th index), calling it the 
person probability. 

Similarly, the second problem had various possible solutions, one of which was to average 
out all the other 19 class probabilities and use that value as the probability of the image 
not containing a person. This approach was also scrapped as it would greatly soften all the 
probabilities. Approach that ended up being implemented is to use a value denoting that 
the image does not contain an person calculated as 1 — person probability, essentially 
softmaxing the probabilities, which is useful since the student's output is also softmaxed. 

Naturally, neither of these approaches are 100% accurate and transparent relative to 
clarity of the knowledge, though beneficially, in a way, they put a greater weight on the 
probability of the image containing a person. 

After masking the teacher's output, the same image is passed through the student 
network and both outputs are ready to be compared to calculate the loss. This thesis 
utilizes combined loss computed by two different loss functions, for distillation loss and 
ground truth loss. 

4https: / / github.com/NVIDIA/DIGITS/blob / master / examples / semantic-segmentation/pascal-voc-
classes.txt, naturally, the index is off by 2 because of 0 indexing and model ignoring the background 
class 
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K L Divergence loss 

Kullback-Leibler divergence [31, 10]5 measures how one probability distribution diverges 
from a second, refference probability distribution. The K L divergence is non-negative and 
equals 0 when the two probabilities are identical. This kind of loss is particularly utilized 
in knowledge distillation training scenarios. It can be expressed as 

Prj, EH 
DKL(PT\\Ps) = jrlogJ£ (5.1) 

T 

where PT is the softmax output of the teacher network, P$ is the softmax output of the 
student network and T is the temperature hyperparameter. This loss will be noted as the 
distillation loss (LOSSKL)-

Binary cross-entropy 

Binary cross-entropy[13, 10]6 is a type of cross-entropy used in binary classification tasks 
with mutually exclusive classes. It computes loss between true, ground truth labels and 
predicted labels. This kind of loss penalizes the model more heavily for predicting the 
incorrect label. It can be expressed as 

1 N 

BCE(y, Ps) = ^ Y , ~(Vi • l°g(psi) + (1 " Vi) • log(l - Psi)) (5-2) 
i=i 

where y are the ground truth labels, Ps are predictions of the student network and N 
represents number of samples. This loss will be noted as the hard loss {Losshard)-

Total Loss 

Finally, the total combined loss for the student model can be expressed as follows 

Loss(y, PT, PS) = O:LOSSKL(PT, PS) + j3Losshard(y, Ps) (5.3) 

where a and (3 are hyperparameters assigning weight to each of the losses. This approach 
proved to be very beneficial for the long training schedule. During testing, when only 
ground truth labels were used (without the teacher model) during training, the student 
model started to overfit the dataset very quickly without gaining any significant accuracy. 
On the other hand, using only the distillation loss gained from comparing teacher's and 
student's outputs did not converge at all, even during much longer training periods. The 
loss combination helped to achieve higher accuracy within reasonable number of epochs, 
given the usual training schedules in knowledge distillation scenarios. 

5https: / / github.com/keras-team/keras/blob /v3.3.3/keras / src/losses/losses.py#L335 
6https: / / github.com/keras-team/keras/blob /v3.3.3/keras / src/losses/losses.py#L387 
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Chapter 6 

Experiments and Metrics 

This chapter summarizes results of the implementation. First, it summarizes the training 
process. Finally, the student model (SM) training results will be evaluated and compared 
obtained by custom metrics and compared to the teacher model (TM). 

6.1 Training 

This section discusses the training pipeline and parameters used during the process. The 
dataset was split into a training and testing dataset, where the testing dataset contained 
5% of images from each class, 27 and 18 images respectively to each class. Labels are 
obtained from the first number of the image filename where 0 is denoting that the picture 
does not contain a person and 1 is denoting that the image contains a person. Thanks 
to Metacentrum 1 the training was conducted on various hardware configurations varying 
in available G P U computational power and V R A M capacities. Parameters were selected 
through the vast testing process and were as follows. The number of epochs was set to 
2000. Any lower than that, the student model would not provide significant accuracy, 
any higher than that and the student's accuracy would not change in any meaningful way. 
The batch size was set to 64 providing a good balance between training speed and SM's 
ability to learn. The image size was set to 224 x 224, again striking good balance between 
computational cost and extractable information, also conforming with the SM's input layer 
shape. As for the optimizer, the SGD optimizer was selected with learning rate of 0.01 
and momentum of 0.9. The parameter that was the most experimented with was the 
temperature. Eventually the value of 2 was selected. Naturally, value of 1 would not 
change the probability distribution in any way and higher values proved to be detrimental 
in SM's eventual accuracy. Parameters a and (5 in respect to overall loss calculation 5.3 
were lightly experimented with but the best result was yielded with both values set to 1. 
During the training process, various checkpoints were saved, based on the lowest overall 
loss value, though the final model trained over the entirety of epochs was selected, as it 
displayed the highest accuracy. 

xhttps: / / metavo.metacentrum.cz/en/ 
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Figure 6.1: This figure depicts the loss reduction over the training process 

6.2 Evaluation 

This presents custom evaluation metrics. Firstly, model sizes are compared, after which the 
accuracy metric will be discussed. Finally, the distillation score metric will be presented. 

Model sizes 

When it comes to RetinaNet models, various backbones can be utilized to build the model. 
Since the S M is from the EfficientNetV2 family, it too can be used as the backbone for the 
RetinaNet model. Consequently, the S M is relatively more simple when it comes to the 
architecture. The T M consists of multiple subnetworks, where the S M can be thought of as 
just one network. The S M contains 8 772 192 (33.46 MB) parameters in total, compared 
to the TM's 35 596 952 (135.79 MB), which results in approximately 4 times reduction in 
parameters. 
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Inference speed 

With reduction in parameters and simpler architecture comes the benefit of improved in­
ference speed. The benchmark was conducted on a system with Ryzen 5 2600 C P U clocked 
at 3.9GHz and a N V I D I A GeForce G T X 980 T i . Naturally, trying to time model's predic­
tion time with inserting for example Python's time module before and after the prediction 
execution would not provide accurate result [11]. Luckily, Keras' Model.predictQ provides 
concise information to the standard output during the execution of the program. It mea­
sures the time it took to pass a batch of images through the network. In this case, each step 
consisted of just 1 image and the benchmark went through the entire dataset of 921 images. 
This output was captured both for the T M and S M , the times were extracted and averaged 
out over 5 independent runs. On average the T M took 123.91ms to process a single image 
while the S M only took 32.87ms. This translates into approximately 3.77 times reduction 
of inference time. 

Accuracy 

Since the T M and S M outputs are not the same, a custom accuracy metric had to be 
devised. The proposition is as follows. Images and labels from a particular dataset split 
will be passed to a model. The model's output will be processed and compared to the 
ground truth labels. This will be done in a thresholded manner, meaning, if a probability of 
a particular class corresponding to a label will be higher than the threshold, the prediction 
will be evaluated as a correct one. For example, let the threshold be 0.8 and an image with 
ground truth label of 1 will be passed to a model. If the model predicts the image to be 
classified as a class 1 (i.e. containing a person in context of this thesis) with the probability 
of 0.81, it will be counted as a correct prediction, whereas if the prediction probability were 
to be 0.7, it would count as an incorrect prediction. The number of correct predictions 
will be compared to the total amount of images within a particular dataset split and the 
final percentage will be regarded as the final accuracy. Multiple threshold values will be 
evaluated. 

Similarly to previous operations with the T M , it's output had to be masked out to 
contain only relevant information. This was made easier by RetinaNet's prediction decoder 
implementation utilizing non maximum suppression. This filtered out much of the model's 
predictions with low probabilities and overlapping predictions. Wi th RetinaNet being an 
object detection model, it can predict multiple occurrences of a particular class within one 
image. For the intensive purposes of computing the accuracy, classes other than person 
were filtered out from model's output and the highest probability was compared against 
the threshold while predicting an image containing a person. Firstly, both the T M and S M 
were evaluated on the entire dataset with threshold values 0.70, 0.80, 0.90, 0.95. 

Threshold 0.70 0.80 0.90 0.95 
Teacher 76.87% 68.51% 52.88% 43.87% 
Student 98.15% 91.53% 81.43% 65.91% 

Here we can see that TM's accuracy drops off quite significantly, which is to be expected 
from object detection models with relatively large amount of differentiable classes. On the 
contrary, we can see that the S M retains quite high accuracy even with higher threshold 
values and that most of the confidence values lie between 90% and 95% which greatly 
surpass the T M . 
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Furthermore, the S M was evaluated on the test dataset with the same threshold values. 

Threshold 0.70 0.80 0.90 0.95 
Student 100% 93.33% 88.89% 68.89% 

Yet a; .gain, the S M yields good accuracy values, thus proving it usable. 

Distillation score 

The last metric that will be introduced is the distillation score [3]. This metric can mate­
rialize the efficiency of a particular knowledge distillation method. It can be described as 
follows 

,sizcs^ /.1 \ accuracys, DS = a-(- + (1 -a) • (1 (6.1) 
sizct accuracyt 

where size_s and size_t represents the size in parameters of the S M and T M respectively, 
similarly, accuracy_s and accuracy_t denotes the accuracy of both models. The closer the 
score is to 0, the more effective the distillation method was. Additionally, values lower than 
0 are valid. This happens when the SM's accuracy is higher than the TM's , which is not 
common. For this thesis, the a value of 0.5 and the accuracy values thresholded by 0.9 will 
be selected. The final distillation score evaluated to -0.15. In contrast, the method utilized 
in the Keras documentation2 achieves the score of 0.12 

Additional notes 

During the development and evaluation process, a couple of interesting events happened, 
which are worth mentioning. When implementing the masking function for TM's output, I 
noticed that in some cases, the T M predicted an incorrect label. Particularly, in this image 

Figure 6.2: This figure depicts incorrectly labeled class 

the T M predicted the label as a dog with the probability of 71.33%. Despite this, the 
S M correctly predicted that this image contains a person with the probability of 86.70%. 
Furthermore, during the testing evaluation, the trained S M found various mislabeled images 
with an incorrect class, which were corrected and the S M was re-trained. Both these accom­
plishments can be attributed to the composite loss calculation and mutual complementation 
between T M ' s soft labels and hard labels. 

2 https: / /keras. io / examples/keras_recipes/better_knowledge_distillation / 
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Chapter 7 

Conclusion 

The main goal of this thesis was to implement a reduced neural network model capable of 
classifying the presence of people in an image utilizing the knowledge distillation process, 
in which it succeeded. It presented various approaches applicable to this discipline, ranging 
from algorithmical solutions to solutions based on neural networks. The latter approach 
is highly adaptable, offering the potential to detect or classify multiple classes within an 
image. 

This thesis' implementation utilized a pre-trained RetinaNet model, a single-shot object 
detector as the teacher model from which knowledge was distilled upon the student model 
which was a EfncientNetV2 object classifier, yet to be trained. Multiple training and 
distilling designs were tested with varying results. Finally, a training process utilizing both 
the teacher's predictions and ground truth labels was implemented yielding good results. 
The student model ended up being approximately 4 times smaller, in terms of parameters, 
approximately 3.77 times faster, in terms of inference speeds and had an accuracy with 90% 
confidence of 81.43% while the teacher only had 52.88% accuracy with the same confidence. 
Therefore, it can be concluded that the student model exhibited improved performance 
compared to the teacher model. 

Lastly, a simple application was implemented to showcase the capabilities of the trained 
student model. 

The experiments proved, that knowledge distillation is a viable form of model compres­
sion capable of training smaller neural networks with the help of a teacher network, that 
would otherwise be unable to accurately fit the dataset and thus, the usecase. 
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Appendix A 

Contents of the included storage 
media 

• data/ Folder containing the dataset 

• img/ Folder containing images meant to to demonstrate the application's functionality 

• models/ Folder containing the trained model with training history 

• src/ Folder containing the source files 

• latex/ Folder containing DT£]Xsource files 

• thesis.pdf This thesis 

• requirements.txt List of library dependencies with their versions 

• detect .py Application demonstrating the trained model 

. README.md Manual file 
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