

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

Author

Anna Saibold

Submission

Institute of Bioinformatics

Thesis Supervisor

Werner Retschitzegger

Elisabeth Kapsammer

June 2018

Application of Data Engineering

Technologies in Bioinformatics

Prototypical Implementation of a Selected Case Study

Bachelor’s Thesis

to confer the academic degree of

Bachelor of Science

in the Bachelor’s Program

Bioinformatics

2

Abstract

Due to the huge amount of biological data, the various available data

sources, and the diversity of their structure as well as content, data

engineering technologies are required. They provide an important op-

portunity to support their exploitation. This thesis aims at applying sev-

eral data engineering steps to a particular real-world data source to

demonstrate the additional benefit with respect to utilization of the data

by means of connecting to other data sources as well as querying and

analyzing the data. Therefore, in the practical part of this thesis a con-

tinuous example showing several engineering steps is constructed,

comprising the development of different schemata, the creation of a

database as well as the mapping and integration of future heterogene-

ous data. Finally, processing queries against the engineered data

source is compared to an online database search regarding different

aspects like time, effort, and usability. As the example shows, an engi-

neered database can have huge benefits over online search, especial-

ly for complex queries, processing data from several sources.

3

Contents

1. Introduction………………………………………………………….. 5

2. Data Resources in Bioinformatics………………………………… 6

2.1. Data Bases……………………………………………….... 7

2.1.1. NCBI – GeneBank……………………………………. 8

2.1.2. UniProt – SwissProt………………………………….. 8

2.1.3. RCSB – PDB………………………………………….. 8

2.1.4. EMBL – ENA………………………………………….. 9

2.1.5. Comparison of Data Bases………………………….. 9

2.2. Data Formats………………………………………….…… 10

2.2.1. XML…………………………………………………….. 10

2.2.2. JSON…………………………………………………… 12

2.2.3. FASTA…………………………………………………. 13

2.2.4. Relational Database Model……………..…………... 13

2.2.5. Flat File Format………..……………………………... 14

3. Integration of Biological Data…………………………………..... 14

3.1. Challenges…………………………………………………. 15

3.2. Approaches...………………………………………….…… 16

3.3. Example: KEGG…………………………………………… 20

4. Practical Work…………………………………………………….... 23

4.1. Aims………………………………………………………… 23

4.2. Comparison of Data Sources………………………….... 23

4.2.1. Immunization…………………………………………. 24

4.2.2. Allergy Intolerance…………………………………… 24

4.2.3. Single Nucleotide Polymorphism………………….. 25

4.2.4. Human Protein Atlas………………………………… 25

4.2.5. Cancer Gene Disease………………………………. 26

4.2.6. Comparison of Data Sources………………………. 27

4.3. Example: Cancer Gene Disease...………………...…… 29

4.3.1. UML Class Diagram……..………………………….. 29

4.3.2. Data Set and XPath Queries……………………….. 31

4.3.3. Schemata – DTD and XML Schema……………….. 36

4.3.4. Database Creation and Queries…..……………….. 43

4.3.5. Online Database Search…………………………….. 50

4

4.3.6. Integration…………………………….……………….. 52

a) Mapping of Database to XML Schema………… 52

b) Integration of SwissProt…………………………. 54

c) Integration of Prosite…………………………….. 58

d) Mapping XML Schema to JSON……………….. 60

e) Integration of Gene Ontology GO……………… 63

4.3.7. Results………………………………………………… 66

4.4. Discussion…………………………………………………. 69

5. Conclusion………………………………………………………….. 70

6. References.………………………………………………………… 71

6.1. Literature…………………………………………………… 71

6.2. Online Resources…………………………………………. 74

7. List of Figures………………………………………………………. 76

8. List of Tables……………………………………………………….. 76

9. List of Listings……………………………………………………… 76

10. Appendix A: UML Class Diagrams………………………………. 77

11. Appendix B: Program Code……………………………………… 103

5

1. Introduction

Over the last decades a completely new intersection of biology and

computer science developed: Bioinformatics. The goal for bioinformati-

cians is, for example, to analyze biological data and explore their pro-

cesses. Furthermore, this interdisciplinary science can be supposed to

give an overview of the processes by representative models [AnSt15].

Generally, today’s bioinformatic work can be divided in service, which

means the retrieval and storage of biological data, and research, which

means the analysis of this data by creating complex workflows or pipe-

lines [AtPT16]. One important reason for evolving this discipline is the

constantly growing and more sophisticated data and the resulting need

for adequate storage and analyzation mechanisms. In this thesis, an

exemplary process from storage of the data, over processing to the

final step of a subsequent analysis is described and practically per-

formed. In the practical work, a data set with optimal properties for the

next steps is searched, the according UML class diagram is created,

and schemata in XML and DTD are developed. Then, a relational da-

tabase with an according structure is created and data is inserted. Da-

tabase queries in different languages like SQL, XQuery, and XPath are

performed. Different concepts of integration are shown: Schemata with

and without heterogeneities are mapped, an XML file from SwissProt

[SwPr] and a flat file from Prosite [Pros] are integrated to the data and

Gene Ontology [GeOn] is used to extend knowledge. This workflow is

compared to a similar online search. The purpose of this work is to

demonstrate the actual challenges and benefits of data engineering on

a real-world data example.

The outline of the thesis is as follows: Chapter 2 gives an overview on

data resources in bioinformatics by presenting important data bases

and widely-used data formats. Chapter 3 discusses challenges and

approaches for integration of biological data, with KEGG as example.

Chapter 4 comprehends the practical work from the comparison and

selection of data, over the construction of an UML class diagram to the

final revised version of the data. Further, schemata in XML and DTD

are design, based on the structure of the UML class diagram.

6

Then, an according SQL database is created, and several queries are

performed. Afterwards, an online database search is accomplished,

and time and effort estimated. Then, various integration steps are de-

scribed like mapping the database to the XML schema, integration of

another schema from UniProt [UniP], integration of a flat file from Pro-

site [Pros], mapping of heterogeneous data and queries at each step.

Another form of integration presented, is integration by means of on-

tology. An extract from Gene Ontology [GeOn] is used to gain more

information. Next, the effort, time and usability from database and

online search are set in comparison and the methods and results are

discussed. Finally, chapter 5 concludes that data engineering in bioin-

formatics can have great benefits.

2. Data Resources in Bioinformatics

Since the technology to extract biological data evolved and the result-

ing data grows exponentially, there is the necessity for more storage

capacity with more accuracy. For example, the genome of one person,

determined by current sequencing methods, has around 1 terabyte

[Neil14].

The total disc storage at EMBL-EBI centrum in 2015 contains more

than 70 petabytes, which is more than 70 000 terabytes.

Fig. 1. Total Disk Storage at EMBL-EBI [CBFC16].

7

On the one hand, the storage facilities itself get improved and can

store higher amounts of data more efficiently. On the other hand, the

problem is not only the mass of data but also the accessibility and

evaluability. If each laboratory and company store their results on pri-

vate mass storages or local servers, there can hardly be an exchange

of knowledge between researchers. “Historically there has been very

limited cross-linking between biomaterial collections, registries, ge-

nomics, and trial data, with the exception of individual clinical research

centers, where all the information may be held by a single investigator”

[GaFR17].

To get optimal research results, it is necessary to share and cross

evaluate data. In the following, the most typical data resources and

formats in the field of bioinformatics are described. Afterwards, in

chapter 4 the combination of data by integration is depicted.

2.1. Data Bases

To make biological data like genomes, their sequences, and their

structures public, the world wide web is used. There are many plat-

forms providing webservices to share the findings with the community.

The data is commonly stored in different kinds of data bases. These

data bases are usually the basis for data retrieval and analysis.

Some of them are ‘curated’, which means that they are checked for

their correctness and quality regularly. All of them are focused on dif-

ferent areas of biology, since it is neither reasonable nor technically

possible to create one large general-purpose database. Therefore, the

number of databases enlarged incredibly over the last years. In 2017

there are 54 new databases registered according to the Database Is-

sue of Nucleic Acids Research [GaFR17]. Through all these different

data collections there exist great invariancies in semantics, data ac-

cess, and variety of services and tools [LSJV15]. In the following, four

of the pioneers in the area of bioinformatics are selected and com-

pared. They were some of the first ones to offer web-based public data

sharing platforms and are still under the most popular ones.

8

2.1.1. NCBI – GenBank

The National Center for Biotechnology Information released a genetic

sequence database called ‘GenBank’. It is an annotated collection of

all publicly available DNA sequences in nucleotide form and a daily

data exchange is performed [GenB]. It is a primary database and not

curated. This means, it has no restrictions for uploading genomes or

parts of genomes. Errors and redundant (parts of) sequences cannot

be ruled out. The database entries can be exported in various formats,

among others their own ‘GenBank’ format, the sequence-format

FASTA, and XML, which is not bioinformatic specific.

2.1.2. UniProt – SwissProt

Together with TrEMBL, SwissProt is part of the universal protein data-

base. “[It] is the manually annotated and reviewed section of the Uni-

Prot Knowledgebase (UniProtKB). It is a high quality annotated and

non-redundant protein sequence database, which brings together ex-

perimental results, computed features and scientific conclusions”

[ExPA]. Furthermore, it is a hybrid database with entries in form of

XML files stored across the database and a file system. The entries

are downloadable in text and FASTA and few more data formats.

2.1.3. RCSB – PDB

The Research Collaboratory for Structural Bioinformatics (RCSB)

prosecutes the Protein Data Base (PDB) with 3D structures from bio-

molecules. The service is public, cost-free, and the data is updated

every week [RCSB]. Data can be submitted by scientists and the or-

ganization itself. The structures are stored in a crystallographic data-

base, which is a relational database. Although it is complicated to store

structure information as FASTA file, it is available, as well as many

variations of their own PDB format, and an XML structure, called

‘PDBML’.

9

2.1.4. EMBL – ENA

The European Nucleotide Archive (ENA) from the European Molecular

Biology Laboratory (EMBL) and the European Bioinformatics Institute

(EBI) “captures and presents information relating to experimental work-

flows that are based around nucleotide sequencing” [ENAh]. It is com-

posed of three main databases, each with own data formats and

standards. Their data model covers experiment input, output machine

data and interpretations. The input data arises from various sources,

but predominantly from their institutes and their partners. Money from

grants are used to provide the services for free to the public.

2.1.5. Comparison of Data Bases

The data bases provide different data models and data formats (com-

pare Table 1).

Table 1. Common Database Comparison.

They all try to fulfill the requirements of free access and data quality at

the same time. They provide platforms for sharing and integrating data

for comprehensive analysis purposes. They contain similar structured

entries with descriptions and are readable for humans [Groß14].

10

Three of these listed services are marked as ‘primary’. This means

they display directly the experimental data with hardly curation and

annotation. Only one of them, SwissProt, is ‘secondary’ with semi-

structured annotations and links [Groß14]. Therefore, SwissProt is

used for integration in the practical work.

What can be recognized by comparing the rows in the table is that they

make their data exportable in various different formats, but there are

some formats through all of them, namely FASTA and XML.

2.2. Data formats

In the area of biology many different data formats are common. In this

thesis the focus is on the most promising ones for a practical data en-

gineering example.

2.2.1. XML

Extensible Markup Language (XML) can be used as a language basis

for data exchange and integration. As seen in the previous chapter

about common bio-data bases, XML is an export format for all of these

four major data providers. By having the data in the same data format,

it becomes easier to create mappings. XML is text based and therefore

machine and human readable. The data for the subsequent continuous

engineering example will be stored in a relational database and ex-

ported as XML file. The general syntax rules specify that data is repre-

sented by elements and their attributes, while the schema information

is represented by tags, which are surrounded by ‘<’ and ‘>’ characters.

There is a start tag and an end tag, in between is the represented da-

ta. This concept is called a ‘meta language’. The word ‘extensible’ indi-

cates that it is an extensive concept [Pohj08]. There exist pre-defined

tags, but the user can create his own vocabulary.

Each document must start with exactly one root element, which boxes

the rest of the file. Then nested within the root, all elements are de-

clared. Elements can contain further elements and attributes.

11

All opened tags need to be closed and all inner tags need to be closed

before the outer one is closed. The tags can be named and defined

freely, they describe the structure and the semantics of their content.

XML is a structural language, tags can be nested arbitrarily. There can

be semi-structured files with structured and unstructured parts.

Fig. 2. Sample Fragment from a Well-formed XML Document [Holz03].

An XML document may be checked for well-formedness and validity by

an XML processor. The document is well-formed, if all syntax rules are

satisfied. It is valid, if it is well-formed and conforms to a particular

schema provided by a schema document (DTD or XML schema).

These files determine the names and structure of elements and attrib-

utes [Pohj08]. A ‘Document Type Definition’ (.dtd) ensures the quality

of the document according to structure and syntax rules. [Siko14].

Nowadays XML Schemata (.xsd) replace DTDs mainly [LeNa07]. They

define, for instance, elements and their attributes, data types, keys and

structure. The advantages of XML schemata over DTDs are that they

have XML as syntax, which does not require the knowledge of another

language. Further, inheritance is possible, and the key concept is more

flexible. Furthermore, there exist several pre-defined datatypes and the

user can define simple and complex datatypes himself. The XML files

can then be validated against these files and checked for their correct-

ness.

12

2.2.2. JSON

Another format that can be used to represent biological data, is called

JavaScript Object Notation (JSON). It uses the characters ‘{‘ and ‘}’ to

surround concepts and represents each kind of data as objects with

properties and relations. The properties of an object can be elements

and attributes. All objects in a file are surrounded by ‘[‘ and ‘]’ charac-

ters.

Fig. 3. Sample Fragment from a Valid JSON Document [JSON].

13

There are also schemata for JSON files. A JSON schema starts with

so-called ‘keywords’ like the schema definition, title and description.

Then, an object is started, and the properties are defined.

A property has a name, a datatype and can have attributes or a de-

fined number of occurrences. At the end of an object all required prop-

erties, which cannot be null, are listed.

In the practical example a JSON schema is mapped to the XML sche-

ma, to demonstrate how to overcome heterogeneities between data

formats and schemata.

2.2.3. FASTA

FASTA is a very often used export format in the area of biological data.

It is a simple text-based format, usable for storing and displaying DNA

sequences.

2.2.4. Relational Database Model

A relational database consists of tables with columns, rows and rela-

tions between tables. Each table needs a primary key, which means, it

cannot be NULL and must be unique. Primary keys can be referenced

from other tables by means of foreign key constraints. It can be neces-

sary to store the key and the foreign key in some additional columns, if

no existing one is suited.

To create and fill the database, the structured query language (SQL)

can be used. It is designed to manage data in a relational database.

For creating a relational table, the ‘CREATE TABLE’ statement is

used, while for insertion there is a statement ‘INSERT TABLE’. The

data from the practical work will be stored within a relational database.

14

2.2.5. Flat File Format

A flat file database is a collection of data, storing tables and records.

Relations are only possible as references to other data sources. It is

possible that all information is stored in one single table [FFDB].

An example for such a flat file database would be Prosite [Pros]. It

stores entries with sequence patterns as a flat file. The single entries

are nevertheless structured by a two-letter line code at the beginning

of each line. This code defines the kind of information stored in this

line. Entries are separated by ‘//’. A file from Prosite will be used for

integration in the practical part.

3. Integration of Biological Data

To combine, analyze, and interpret data from more than one data

source, it is important to integrate the required data sources. Integra-

tion can mean to represent information from overlapping systems free

from redundancy (as far as possible) [LeNa07] or to integrate through

data exchange. It is a necessary step in biological research, because

many data make more sense in context. It allows access to several

data bases and to find coherences or patterns, which provide conclu-

sions about the investigated data sets. It is common that the answers

for more complex queries are spread over several databases, which

makes the performance of such a query challenging [BeLT16]. Fur-

thermore, integration is “essential to ensure the reproducibility of the

analysis and interpretation of the experimental findings” [LSJV15].

Without integration and cross-analyzation the collecting of biological

data in large amounts might not lead to great results. Although the

concept of integration is unavoidable for bio-databases, there are a lot

of challenges, which have to be dealt with.

15

3.1. Challenges

There are three main challenges to cope with, namely redundancy,

heterogeneity, and performance.

• Redundancy

Integration should be free from redundancies, which could occur from

samples which are recognized in more than one of the sources. Be-

cause of the variety of different databases, very often sequences or

fragments of sequence(s) are listed multiple times. If sources with

identical or overlapping content are integrated, this may lead to redun-

dancies and therefore further problems. A “common situation is that

the same patient is associated with multiple entries in different systems

[…] but without any possibility of linking the data sets” [TJTM14]. This

can even lead to “missed opportunities for discovery, diagnosis, or

treatment” in the worst case [TJTM14].

• Heterogeneity

“One of the major challenges in the integration task is to address the

heterogeneity of data” [PBJM15]. Data sources vary on many levels.

Firstly, they can have diversity of syntax and data models. This means

data can be stored as several data formats, for example as the rela-

tional model or the XML data format or simply as text format [LeNa07].

All data must be somehow transformed to a unified model. Then, there

can be differences in the structure of the schemata, which can be

solved by correct mapping. In addition, there can be discrepancies in

semantics, i.e., “subject to different interpretations depending on the

local context used” [LSJV15]. This can lead to misunderstandings, and

not mapping same concepts because of naming interpretations. These

are dangerous heterogeneities.

What also can become a problem, is the evolution of schemata and

models. If, for instance, the structure of one of the integrated sources

is changed, a query might fail.

16

• Performance

“The unanticipated need for additional performance and capacity is

one of the most common challenges to data integration” [USDT10].

The term performance describes the time effort of processing a data

framework. If a huge amount of new data is added to an environment,

hardware and software may reach their limit.

3.2. Approaches

There are several common approaches for integration of multiple data

sources, which try to avoid or decrease the mentioned problems. The

integration can be done automated or manually. Often semi-automatic

integration takes place. Some web services offer a kind of ‘search en-

gine’ through various databases. They translate the queries to the re-

quired query-language and their results to a human readable format.

Some provide an interface, where queries can be composed by click-

ing on diverse elements, to simplify the task for biologists, who are not

familiar with the query languages.

Automatic processes are not perfect and can in some cases not fulfill

the task satisfying. Often ‘semi’-automatic approaches are used, be-

cause refinement and corrections have to be done manually. Some-

times, manual integration is indispensable. There the integration is

done based on the knowledge of the author, who creates a global

schema and maps the concepts of different sources [LSJV15]. The

author is responsible that redundancy is avoided on the level of the

schema as well as on the level of the actual data [LeNa07]. To get a

fitting and error free integration for a certain project, “it is particularly

important for the biological research community to get acquainted with

the conceptual basis of data integration, its limitations, challenges and

actual terminology” [LSJV15].

Most bio-databases are connected only through links, linking objects

from different sources by references. Most of the more than 500 public

data sources are connected via hyperlinks to other bio-databases,

without using a global schema [Rahm04].

17

As can be seen, there are different integration approaches applicable

in the area of biologic databases. Some basic strategies for integrating

data are explained in the following.

• Virtual Integration

Utilizing virtual integration, a universal global schema is possible, but

not mandatory. One popular representative for virtual integration is a

‘federated database’, which has a global schema and defines

mappings between elements from different local datasources. Queries

to the global schema are translated into queries to the local schemata

[LeNa07]. This concept can be found at the European Bioinformatics

Institute (EBI), for instance.

The following graphic represents the connections between various

databases from EMBL-EBI. The outside circle is indexed with the

different resources. The arcs between the resources stand with propor-

tional width for the number of interactions [CBFC16]. For all other data

resources like UniProt, RCSB or NCBI, a similar graphic could be

created, with a large number of links between the single databases.

18

Fig. 4. Virtual Integration at EMBL-EBI [CBFC16].

• Materialized Integration

Utilizing materialized integration, the data from the distinct sources are

replicated and stored together in one system, e.g., within a central re-

lational database. A global schema can be used, but is not required.

This approach is “increasingly used in the biological field because it is

extremely well adapted to some needs of domain (confidentiality,

treatment control, full data cleansing)” [LSJV15]. The disadvantages of

this form of integration are the effort to keep the data updated, the dif-

ficulty of queries, and the increased storage mass.

19

• Ontologies

One helpful approach for improving and automating the step of data

integration can be the usage of ontologies. The principle of ontologies

is to provide a taxonomy of terms with relationships in between like

synonymity, is-a, and part-of, representing similar causalities and their

definitions. This enlarges the number of hits in a database query with

high accuracy. Ontologies are machine understandable and were

agreed between a group of researchers in the specific area. In biologi-

cal databases “there is the need for consistent descriptions of gene

products […], providing not only comprehensive coverage of biological

concepts but also community-wide agreement on how those should be

used to describe gene functions across all organisms” [Cons15].

Ontologies can help in the process of data integration by specifying

how to overcome the heterogeneities between data sets. In a Rela-

tional-to-Ontology data integration the ontology “is ‘connected’ to data-

bases with the help of mappings that are declarative specifications

describing the relationship between the ontological vocabulary and the

elements of the database schema” [PBJM15]. Through the mapping

from an element in one data set to the ontology, it is at the same time

connected to other terms with equivalent meaning, which are perhaps

mapped to a similar element in another data set.

The Gene Ontology (GO) [GeOn] is one of the most popular ontologies

for biologists, their effort - according to the consortium - consists of

“the development and maintenance of the ontology, the annotation of

gene products and the development and continuous improvement of

tools and training that facilitate the creation, maintenance, and use of

the ontologies” [Cons15]. It is published and updated regularly by the

‘Gene Ontology Consortium’ and contains more than 600.000 annota-

tions (2017) [Cons17]. It has several branches from fields all over biol-

ogy and is continuously growing. In the practical part a small extract

from GO data is used to show a simple application of an ontology.

20

3.3. Example: KEGG

One important freely available integrated database, using internal inte-

gration with a good performance, is the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [KEGG], for instance. It is an “integrated data-

base resource for biological interpretation of completely sequenced

genomes” [KFTS17]. KEGG is a metabolic pathway database, which

derives its data from 17 separated databases, containing metabolic,

genomic, and chemical information. Metabolic pathways are all bio-

chemical reactions occurring around and in an organism like respira-

tion, digestion or fermentation. These 17 databases are connected by

virtual integration, the contents are linked by references. The database

‘KEGG PATHWAY’ is the backbone of the whole system, containing

pathway maps describing the ongoing biochemical processes. These

maps integrate several information, as genes, proteins, diseases and

drugs for instance, from entries in other KEGG databases. The data is

reviewed and therefore non-redundant. Since all the databases come

from the same authors, heterogeneities can be avoided or overcome

while construction of the databases. One of the sub-databases worth

mentioning is ‘KEGG BRITE’, which is an ontology not only for molecu-

lar interactions but also for various related topics. It is mapped to sev-

eral of the 17 KEGG databases and builds a framework with all con-

nections and relations between these databases and their entries. The

other ones of the main important databases are ’KEGG Gene’ and

‘KEGG Ligands’. They store information about genomics and their

chemical behavior [KGHA06].

21

Fig. 5. KEGG Main Databases and their Relationships [KGHA06].

The chemical behavior is directly linked to the according genes by

some defined rules. Genes and ligands both are expressed in the

pathway maps and reached by forwarding to their detailed entries.

KEGGs mapping approach is well developed and allows an applicable

integration of disease and drug data, even from sources outside of

these KEGG internal databases [KGSF12].

22

Fig. 6. Photosynthesis Pathway Map from KEGG.

Fig. 6. depicts a screenshot from the KEGG database showing the

pathway map of the biochemical reactions during photosynthesis. By

clicking on a compound, one can navigate to a different entry with de-

tailed information.

23

4. Practical Work

4.1. Aims

The goal of the practical work is to construct a continuous example of

engineered biological data from a real-world data source, resulting in

the data itself, schemata in different formats, and queries, with the

purpose to show the richness of information in a well-engineered inte-

grated dataset. All kinds of engineering steps should be used to

demonstrate the spectrum of opportunities. Further, the effort and the

needed time is compared to an internet database search by using

search functions and hyperlinks. Some further possible engineering

steps, which cannot be observed in online database search, are stated

and explained.

4.2. Comparison of Data Sources

As a first step, a data set is searched, which provides richness of in-

formation, which means several classes, various constraints and

enough entries to construct interesting queries. Further, it should be

easy to understand and not too complex for implementation. The data

source should be used to demonstrate various steps in data engineer-

ing. Therefore, a data set providing the data format in XML format with

approximately 10 classes and adequate number of XML entries would

be appropriate. To support the next steps, it would be helpful, if there

are different schemata and different export formats as well as a similar

schema with heterogeneities, which can be mapped to the example

with a reasonable number of correspondences. Five different online

available data sets are described and the best suited one is figured

out. The UML class diagrams for all data sources can be found in Ap-

pendix A.

24

4.2.1. Immunization

The first qualified data source is the Immunization data source, which

provides an XML schema [Immu] for clinical data regarding immuniza-

tion and vaccination with the according class diagram is online. The

data can be exported as XML and as JSON format. There are three

example entries. It has five classes with simple constraints.

The most important class is Immunization, it contains different infor-

mation like the patient, the vaccine manufacturer and date, for

example. It is connected to the class Reaction which yields details

and date of the immune reaction. Furthermore, it is connected to the

VaccinationProtocol which has more details about the dose and its

efficiency. Another class is Explanation which contains reasons

for the Immunization. The last class is Practitioner which contains

the role of the practitioner in the course of the immunization.

A similar schema with just one class for mapping [ImmM] with approx-

imately seven correspondences exists. This class contains information

like name, date, sequence, and manufacturer of the immunization.

4.2.2. Allergy Intolerance

Another possible data source is the Allergy Intolerance data source,

which provides an XML schema [AlIn] for allergies with the according

class diagram containing two classes. The data can be exported as

XML and as JSON format. There are three example entries available.

The UML class diagram contains two classes with sub elements and a

very simple constraint. Having two classes, only, is very small for the

required purposes, since the construction of the class diagram is an

important part.

The main class is AllergyIntolerance and it has the attributes re-

corder, patient, reporter, type and few more. It is connected to

the class Event. Events cause intolerances and it contains information

like substance, duration and severity.

25

The Allergy Intolerance schema could be mapped with another sche-

ma [AllM] having one class allergy with approximately the two corre-

spondences first-observed and allergen-type.

4.2.3. Single Nucleotide Polymorphism

The next conceivable source is the Single Nucleotide Polymorphism

data source, it provides an XML schema [SNPs] for single nucleotide

polymorphism entries, which are single mutations in DNA sequences.

The generated class diagram contains 31 classes. Unfortunately, there

is just one sample entry. The other entries have to be created artificial-

ly and would not represent real scientific results.

One of the main classes is called Identifiable and is connected to a

database reference class. Some attributes are creation date, dele-

tion date, name, source, and similar. It is constituted from several

subclasses like location, description, methodology and taxon.

Another important class is residue_change which is another biological

term for mutation. Additional attributes are name and dates and further

has a location and the new and the old residue. The class is con-

nected to the database reference class. Its subclasses are specific

types of DNA fragments (oligo, exon and CDS). The location is con-

structed from different classes and different type of locations. Further

there are the classes Person, Contributor and Organization but

with no important role for the schema.

A similar schema for the mapping would have been one class from

SNP schema documentation [SNPM] from the NCBI SNP database,

namely class Sequence. But it is not possible to create a valid XML

schema file for it. Therefore, there is no UML class diagram and no

possibility for correspondences.

4.2.4. Human Protein Atlas

Another alternative is the Human Protein Atlas data source. The hu-

man protein atlas (HPA) is a database containing all proteins that oc-

cur in humans. Amongst others, information about cell, tissue, and pa-

thology are stored and displayed graphically.

26

Its schema [HPAs] has 66 classes, which is really complex. But most

of these classes represent complex types and the main classes are

comprehensible. A lot of entries are downloadable, and some subset

of the classes has to be chosen in order to get a reasonable example.

The root of the schema is the class proteinAtlas that contains the

attributes entry and a copyright. The class for the entry-type

consist of a lot of elements, for example name, protein, tissue, and

antibody. All of them again have complex types containing many el-

ements. Further classes, worth mentioning, are patient, which has

sex, age, an ID and a sample as attribute. Such a sample can be the

result of several analyses with some intermediate steps. The anal-

yses, images, dilution, arrays or staining, for instance, are also

complex types with many connections.

The XML schema for mapping could be the UniProt schema [UniP]

having 52 classes. The UniProt schema contains also protein entries.

There are approximately 13 correspondences between the schemata.

The schema begins with class uniprot which can reference a copy-

right and references any number of entries. Class entry stores

basic information like date, version, and accession, but also biologi-

cal data like gene, organism, protein and sequence. They all have

types with further sub elements. There are also classes for location,

database reference, and disease. All classes representing names,

comments or other strings have very strict rules for the composition of

the string.

4.2.5. Cancer Gene Disease

The last investigated data source is the Cancer Gene Disease Data

Source. The 2017 newly created and detailed documented Cancer

Gene Disease database [CaGD] provides a DTD schema file as well

as entries. The XML file contains 7181 entries, from which a subset

can be taken. Ignoring the types there are eight classes, defining the

structure of an entry representing a gene associated with cancer.

27

The root element GeneEntry contains a minimum of one GeneAlias

instance, which is another common name for the gene, and gene ac-

cession numbers from several other databases. It can have any num-

ber of sentences which have information regarding the organism, a

gene term and a disease term. Further it can contain a statement

and comments. It is related to the role of the gene in this disease.

There are primary roles as well as other roles.

4.2.6. Comparison of Data Sources

Again, mapping to the Uniprot schema [UniP] is possible, having ap-

proximately ten correspondences.

Table 2. Comparison of Data Sources.

28

Table 2 gives a quick overview about the five data sets. The availability

of certain properties or features is marked by a check sign. The capital

G indicates that this feature was generated by some program and was

not available in the original data source.

Firstly, the Single Nucleotide Polymorphism dataset was excluded,

because there is no good schema to be mapped to, it has just one en-

try, and the remaining entries would need to be created. Another small

minus is that there is no documentation explaining the classes, which

could be very helpful. Then, the Allergy Intolerance was excluded,

since its schema has just two classes, what would be too simple for

the example, also it has not enough XML files. Both, Human Protein

Atlas and Cancer Gene Disease were preferable over Immunization,

since Immunization has just three XML files and five classes. From the

Human Protein Atlas, a subset from the 66 classes would have to be

taken. Interesting parts would be entry, patient, antibody, pro-

tein, western-blot, subcellData, tissue, and location. From the

very many XML files various subsets could be taken and used with

according queries. The number of classes in Cancer Gene Disease

can be taken as it is. From the more than 7000 entries a subset can be

taken. One further advantage over HPA is the detailed documentation

about the elements in the DTD schema. For both, there might be a

biological ontology related to their topics. Finally, Cancer Gene Dis-

ease was chosen for the example, because the content of the example

and the queries are more interesting.

29

4.3. Example – Cancer Gene Disease

To use the content of the Cancer Gene Disease data source for an

analysis, further processing steps are necessary. All entries of the data

set are stored in one file. As a first step the structure of the data needs

to be investigated and represented as UML class diagram. Based on

the knowledge about the structure, a relational schema can be creat-

ed. Then a database, fitting this schema, has to be constructed and

the data has to be inserted. In case, that the set does not fulfill all re-

quirements needed for a relational database, the data has to be

changed before. As soon as all data is entered, queries can be per-

formed. An online database for some query is performed to be able to

compare the two approaches. Further possibilities for an engineered

database are to map to heterogeneous schemata and to integrate var-

ious data sources like SwissProt [SwPr], Prosite [Pros], and the Gene

Ontology [GeOn].

4.3.1. UML Class Diagram

The Unified Modeling Language (UML) is a common modelling lan-

guage for constructing and describing software artefacts. It offers

graphical notation elements to represent diagrams in a unified way.

Therefore, it is understandable and interpretable for others - not only

data engineering specialists. It is also useful for documentation, to an-

swer later questions regarding the architecture. By having a class dia-

gram as common basis for all other subsequent steps, errors can be

reduced and time saved.

The data from the Cancer Gene Disease dataset is missing some im-

portant attributes and constraints for the following engineering steps.

Therefore, some optimizations have to be done. Following is the de-

scription and representation of the optimized class diagram. The ac-

cording UML class diagram is depicted in Fig. 7.

30

Class GeneEntry contains all information of one entry and has two

mandatory attributes HUGOGeneSymbol (that is a standardized name

acronym by the Human Genome Organization) and geneStatus (the

status shows the progress of the research of this entry, the corre-

sponding enumeration comprises new, finished, withdrawn, and en-

try_withdrawn). It has five non-mandatory attributes. These are all ac-

cession numbers from other more or less known databases (hgnc, lo-

cusLink, genbank, refSeq and uniProt). GeneEntry is related to any

number of GeneAlias (which are other common names for this gene)

and to none, one or several instances from class Sentence. Class

Sentence contains more detailed information about the gene de-

scribed by the entry plus the according disease and has ten attributes,

namely a unique sentenceID, pubMedID (which shows an entry num-

ber for a related PubMed entry), compulsory organism (in which the

gene was found), negationIndicator (Boolean, whether the findings

of a gene-disease association within a sentence were negative),

cellLineIndicator (Boolean, whether the data was collected from a

cellline, a cellline are cells derived from one cell in laboratory), and

necessarily sentenceStatus (signals the status of the Sentence, in

the enumeration there are finished, no_fact, unclear, and redundant).

Further, it contains a mandatory matchedGeneTerm (term matched to

the gene from the NCI Thesaurus ontology) and an optional NCIGene-

ConceptCode (a digit code assigned by the NCI research team for this

gene concept, namely gene-disease-pair), a compulsory

matchedDiseaseTerm (a term for a disease connected to the gene,

e.g., tumor found by their ontology) and an obligatory NCIDiseaseCon-

ceptCode (a digit code for this disease assigned by the NCI research

team), as well as none, one or several instances from the class

Statement, Roles (which has only an ID), EvidenceCode and Com-

ments. PrimaryNCIRoleCode and OtherRole are parts of the class

Roles. Both have an ID and PrimaryNCIRoleCode, states the rela-

tionship from the gene to the disease as a string (e.g.

“Gene_Associated_ With_Disease”) while OtherRole describes further

functions not related to the disease.

31

Statement is a summarizing text added by the researchers from

National Cancer Institute. EvidenceCode is a string (referencing to

another publication of the gene, to prove its existence) and Comments

are some additional remarks by the researchers.

Fig. 7. Cancer Gene Disease UML.

4.3.2. Data Set and XPath Queries

The original data set is one XML file with 7181 entries from the Nation-

al Cancer Institute (NCI) [CaDI]. One advantage of an XML file is that

the document is readable for humans and for the computer. Because it

is plain text, no special tools are needed to view it and it can be modi-

fied by any text editor. This makes the understanding and modification

quick and easy. It is layout independent, the structure is defined by the

document itself and its meta data. Then, as mentioned, it is extensible

and has no restrictions for new areas of interest. [Cera06]. Another

benefit of XML is the possible validation by DTDs or XML schemata.

These external files can check if all rules were kept. This avoids

spending time with debugging and provides though a valid document.

32

In order to have the dataset according to all our requirements some

optimizations were necessary:

─ Some classes need to be renamed to be more plausible.

─ Elements with more than one instance become an own class, while

classes with 1:1 relation are merged.

─ For some elements the cardinalities differ from the original docu-

ment.

─ The elements NegationIndicator and CelllineIndicator are

changed to datatype Boolean, because their original values are

“yes” and “no”, which is more complicated to use in later queries.

─ The datatype from SentenceStatus and GeneStatus is changed to

an enumeration because all entries have one of the four enumerated

values.

─ In each class a surrogate ID is introduced which can be used as

primary key later while construction of the database. Only in the

class GeneEntry it is possible to use the attribute HUGOGeneSymbol

as primary key because it cannot be null and is unique.

─ For reasonable queries, a subset with only 55 of the entries is creat-

ed.

<GeneEntry HUGOGeneSymbol="PRKX">
 <geneStatus>finished</geneStatus>
 <hgncID>9441</hgncID>
 <locusLinkID>5613</locusLinkID>
 <genbankAccession/>
 <refSeqID>NM_005044</refSeqID>
 <uniProtID>P51817</uniProtID>
 <GeneAlias geneAliasID="456">pkx1</GeneAlias>
 <GeneAlias geneAliasID="457">pkxi</GeneAlias>
 <GeneAlias geneAliasID="458">protein kinase,
 x-linked</GeneAlias>
 <GeneAlias geneAliasID="459">prkx</GeneAlias>
 <GeneAlias geneAliasID="460">pkx-i</GeneAlias>
 <GeneAlias geneAliasID="461">pkx 1</GeneAlias>
 <GeneAlias geneAliasID="462">pkx-1</GeneAlias>

 </GeneEntry>

Listing 1. Cancer Gene Disease Example Entry.

33

The Listing 1 shows the entry for gene PRKX, for example, it has the

HUGOGeneSymbol “PRKX”, four alternative names, four accession

numbers from other databases and zero sentences. The status is

finished.

• XPath

A typical language for querying such XML documents is XML Path

Language (XPath) from the W3C [W3Ch]. XPath is a language that

allows the retrieval of elements, attributes, and values from XML

documents. In the following XPATH expression are used to find the

answer to some queries.

Query:

 “Select the overall number of gene entries.”

Statement:

count(GeneEntryCollection/GeneEntry)

Result: 55

Query:

“Select all grandchildren of the context node.”

Statement:

/

Result:

Resulting are all 55 entries with their HUGOGeneSymbol.

Query:

“Select the GeneAlias elements of GeneEntry.”

Statement:

GeneEntryCollection/GeneEntry/GeneAlias

Result:

As a result, all 742 GeneAliases are shown.

34

Query:

“Select the organisms from all Sentences.”

Statement:

GeneEntryCollection/GeneEntry/Sentence/organism

Result:

The result is the organism from each entry.

Query:

“You want to finish an old entry. Select those gene entries which have

the status ‘withdrawn’.”

Statement:

GeneEntryCollection/GeneEntry[geneStatus="withdrawn"]

Result:

There is just one withdrawn entry and its HUGOGeneSymbol is TP53L.

Query:

“Select the first Statement for the 24th gene entry.”

Statement:

GeneEntryCollection/GeneEntry[24]/Sentence[1]

Result:

That is the sentence with the ID 66.

Query:

“Select all gene entries, which have exactly five sentences as child

elements.”

Statement:

GeneEntryCollection/GeneEntry[count(Sentence)=5]

Result:

There are eight entries with exactly five sentences, namely C4BPA,

EED, NEURL, HOXB13, MN1, RBM17, FAM107A and UBC.

35

Query:

“You want to read more about a specific disease. Select the child ele-

ment ‘pubMedID’ from those Sentence elements where the

‘matchedDiseaseTerm’ is “tumors”.”

Statement:

GeneEntryCollection/GeneEntry/Sentence[matchedDiseaseTerm

='tumors']/pubMedID

Result:

There are ten sentences with disease term ‘tumors’ and as a result are

the PubMed IDs displayed.

Query:

“Select the 3rd gene entry element if it has a child attribute Sentence

with a cellLineIndicator ‘false’.”

Statement:

GeneEntryCollection/GeneEntry[3, /Sentence/cellLineIndicator eq ‘false’]

Result:

The HUGOGeneSymbol of the 3rd entry is DLEU7.

36

4.3.3. Schemata – DTD and XML Schema

As mentioned, DTD and XML Schema are schemata used to validate

XML files. To validate the XML file from the example, a schema is re-

quired.

• DTD

In the Cancer Gene Disease DTD, the root element is called

GeneEntryCollection and it contains at least one instance from ele-

ment GeneEntry. A GeneEntry is composed of one geneStatus, op-

tionally five IDs from different databases, a minimum of one element

GeneAlias and zero or many instances of element Sentence. The

HUGOGeneSymbol is a required ID, defined as attribute. The element

Sentence is composed of one sentenceStatus, optionally one pub-

MedID, one organism, one negationIndicator, one cellLineIndi-

cator, one matchedGeneTerm, one NCIGeneConceptCode, one

matchedDiseaseTerm and one NCIDiseaseConceptCode. It refer-

ences an arbitrary number of elements from class Statement, Roles,

EvidenceCode and Comments. Its ID is called sentenceID. Element

Roles contains a minimum of one instance PrimaryNCIRoleCode and

any desired number of instances OtherRole. All of them have IDs,

declared as attributes.

<!-- DTD for Cancer Gene Disease -->
<!ELEMENT GeneEntryCollection (GeneEntry+)>

<!ELEMENT GeneEntry (hgncID?, locusLinkID?, genbankAccession?, ref-
SeqID?, uniProtID?, GeneAlias+, Sentence*)>
<!ATTLIST GeneEntry HUGOGeneSymbol ID #REQUIRED>
<!ATTLIST GeneEntry geneStatus (finished|new|withdrawn|
entry_withdrawn) "new">

<!ELEMENT hgncID (#PCDATA)>
<!ELEMENT locusLinkID (#PCDATA)>
<!ELEMENT genbankAccession (#PCDATA)>
<!ELEMENT refSeqID (#PCDATA)>
<!ELEMENT uniProtID (#PCDATA)>

<!ELEMENT GeneAlias (#PCDATA)>
<!ATTLIST GeneAlias geneAliasID ID #REQUIRED>

37

<!ELEMENT Sentence (pubMedID?, organism, matchedGeneTerm, NCIGene-
ConceptCode?, matchedDiseaseTerm, NCIDiseaseConceptCode?, Statement*,
Roles*, EvidenceCode*, Comments*)>
<!ATTLIST Sentence sentenceID ID #REQUIRED>
<!ATTLIST Sentence sentenceStatus (fin-
ished|no_fact|unclear|redundant) "no_fact">
<!ATTLIST Sentence negationIndicator (true|false) "false">
<!ATTLIST Sentence cellLineIndicator (true|false) "false">
<!ELEMENT pubMedID (#PCDATA)>
<!ELEMENT organism (#PCDATA)>
<!ELEMENT matchedGeneTerm (#PCDATA)>
<!ELEMENT NCIGeneConceptCode (#PCDATA)>
<!ELEMENT matchedDiseaseTerm (#PCDATA)>
<!ELEMENT NCIDiseaseConceptCode (#PCDATA)>

<!ELEMENT Statement (#PCDATA)>
<!ATTLIST Statement statementID ID #REQUIRED>

<!ELEMENT Roles (PrimaryNCIRoleCode+, OtherRole*)>
<!ATTLIST Roles rolesID ID #REQUIRED>

<!ELEMENT PrimaryNCIRoleCode (#PCDATA)>
<!ATTLIST PrimaryNCIRoleCode primaryRoleID ID #REQUIRED>

<!ELEMENT OtherRole (#PCDATA)>
<!ATTLIST OtherRole otherRoleID ID #REQUIRED>

<!ELEMENT EvidenceCode (#PCDATA)>
<!ATTLIST EvidenceCode evidenceID ID #REQUIRED>

<!ELEMENT Comments (#PCDATA)>

<!ATTLIST Comments commentsID ID #REQUIRED>

Listing 2. DTD Schema for Cancer Gene Disease Example.

38

• XML Schema

In the Cancer Gene Disease XML schema, the root element

GeneEntryCollection contains a minimum of one reference to

GeneEntry. Each GeneEntry has in a complex type construct manda-

tory one string HUGOGeneSymbol and one geneStatus, optionally it has

hgncID and locusLinkID as integer and genbankAccession, ref-

SeqID and uniProtID as string. Then, it references a minimum of one

instance from GeneAlias and any number of instances from class

Sentence. GeneStatus is a simple type geneStatusType and is an

enumeration with four possibilities (finished, new, withdrawn, en-

try_withdrawn). The element GeneAlias is of type string. The element

Sentence is composed of exactly one sentenceStatus and one or-

ganism as string. Optionally, there can be one integer pubMedID. Fur-

thermore, Sentence contains two booleans negationIndicator and

cellLineIndicator and mandatory elements matchedGeneTerm and

matchedDiseaseTerm of type string and the optional strings NCIGene-

ConceptCode and NCIDiseaseConceptCode. Sentence can contain

any number of elements from classes Statement, Roles, Comments,

and EvidenceCode.

The simple type for sentenceStatus is called sentenceStatusType

and is an enumeration with four possibilities (finished, no_fact, unclear,

redundant). Element Roles has a minimum of one sub element Pri-

maryNCIRoleCode of type string and optionally sub elements from

OtherRole.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:cgd="http://www.cis.jku.at/CancerGeneDisease"
targetNamespace="http://www.cis.jku.at/CancerGeneDisease"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- - - - - - - Root element - - - - - - - - - - -->
 <!-- - - - - Gene Entry Collection - - - - - - - - -->
 <element name="GeneEntryCollection"
 type="cgd:GeneEntryCollectionType">
 <!-- - - - - - - - - KEYs - - - - - - - - - - - - -->
 <key name="GeneEntry_key">
 <selector xpath="cgd:GeneEntry"/>
 <field xpath="@HUGOGeneSymbol"/>

39

 </key>
 <key name="GeneAlias_key">
 <selector xpath="cgd:GeneEntry/cgd:GeneAlias"/>
 <field xpath="@geneAliasID"/>
 </key>
 <key name="Sentence_key">
 <selector xpath="cgd:GeneEntry/cgd:Sentence"/>
 <field xpath="@sentenceID"/>
 </key>
 <key name="Statment_key">
 <selector xpath="cgd:GeneEntry/cgd:Sentence/
 cgd:Statement"/>
 <field xpath="@statementID"/>
 </key>
 <key name="Role_key">
 <selector xpath="cgd:GeneEntry/cgd:Sentence/
 cgd:Roles"/>
 <field xpath="@rolesID"/>
 </key>
 <key name="PrimaryNCIRoleCode_key">
 <selector xpath="cgd:GeneEntry/cgd:Sentence/
 cgd:Roles/cgd:PrimaryNCIRoleCode"/>
 <field xpath="@primaryRoleID"/>
 </key>
 <key name="OtherRole_key">
 <selector xpath="cgd:GeneEntry/cgd:Sentence/
 cgd:Roles/cgd:OtherRole"/>
 <field xpath="@otherRoleID"/>
 </key>
 <key name="EvidenceCode_key">
 <selector xpath="cgd:GeneEntry/cgd:Sentence/
 cgd:EvidenceCode"/>
 <field xpath="@evidenceID"/>
 </key>
 <key name="Comments_key">
 <selector xpath="cgd:GeneEntry/cgd:Sentence/
 cgd:Comments"/>
 <field xpath="@commentsID"/>
 </key>
 </element>
 <complexType name="GeneEntryCollectionType">
 <sequence>
 <element ref="cgd:GeneEntry"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <!-- - - - - - - - - - - Gene Entry - - - - - - - - - - - -->
 <element name="GeneEntry" type="cgd:GeneEntryType"/>
 <complexType name="GeneEntryType">
 <sequence>

40

 <element name="geneStatus"
 type="cgd:GeneStatusType"/>
 <element name="hgncID" type="integer"
 minOccurs="0"/>
 <element name="locusLinkID" type="integer"
 minOccurs="0"/>
 <element name="genbankAccession" type="string"
 minOccurs="0"/>
 <element name="refSeqID" type="string"
 minOccurs="0"/>
 <element name="uniProtID" type="string"
 minOccurs="0"/>
 <element ref="cgd:GeneAlias"
 maxOccurs="unbounded"/>
 <element ref="cgd:Sentence" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="HUGOGeneSymbol" type="string"
 use="required"/>
 </complexType>
 <simpleType name="GeneStatusType" final="restriction">
 <restriction base="string">
 <enumeration value="finished"/>
 <enumeration value="new"/>
 <enumeration value="withdrawn"/>
 <enumeration value="entry_withdrawn"/>
 </restriction>
 </simpleType>
 <!-- - - - - - - - - - Gene Alias - - - - - - - - - - - - -->
 <element name="GeneAlias" type="cgd:GeneAliasType"/>
 <complexType name="GeneAliasType">
 <simpleContent>
 <extension base="string">
 <attribute name="geneAliasID"
 type="integer" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 <!-- - - - - - - - - - - Sentence - - - - - - - - - - - -->
 <element name="Sentence" type="cgd:SentenceType"/>
 <complexType name="SentenceType">
 <sequence>
 <element name="sentenceStatus"
 type="cgd:SentenceStatusType"/>
 <element name="pubMedID" type="integer"
 minOccurs="0"/>
 <element name="organism" type="string"/>
 <element name="negationIndicator"
 type="boolean"/>
 <element name="cellLineIndicator"
 type="boolean"/>

41

 <element name="matchedGeneTerm" type="string"/>
 <element name="NCIGeneConceptCode" type="string"
 minOccurs="0"/>
 <element name="matchedDiseaseTerm" type="string"
 minOccurs="1"/>
 <element name="NCIDiseaseConceptCode"
 type="string" minOccurs="0"/>
 <element ref="cgd:Statement" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="cgd:Roles" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="cgd:EvidenceCode" minOccurs="0"
 maxOccurs="unbounded"/>
 <element ref="cgd:Comments" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="sentenceID" type="integer"
 use="required"/>
 </complexType>
 <simpleType name="SentenceStatusType" final="restriction">
 <restriction base="string">
 <enumeration value="finished"/>
 <enumeration value="no_fact"/>
 <enumeration value="unclear"/>
 <enumeration value="redundant"/>
 </restriction>
 </simpleType>
 <!-- - - - - - - - - - - Roles - - - - - - - - - - - - - -->
 <element name="Roles" type="cgd:RolesType"/>
 <complexType name="RolesType">
 <sequence>
 <element ref="cgd:PrimaryNCIRoleCode"
 maxOccurs="unbounded"/>
 <element ref="cgd:OtherRole" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="rolesID" type="integer"
 use="required"/>
 </complexType>
 <element name="PrimaryNCIRoleCode"
 type="cgd:PrimaryNCIRoleCodeType"/>
 <complexType name="PrimaryNCIRoleCodeType">
 <simpleContent>
 <extension base="string">
 <attribute name="primaryRoleID"
 type="integer" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 <element name="OtherRole" type="cgd:OtherRoleType"/>
 <complexType name="OtherRoleType">

42

 <simpleContent>
 <extension base="string">
 <attribute name="otherRoleID"
 type="integer" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 <!-- - - - - - - - - - - - Statement - - - - - - - - - - -->
 <element name="Statement" type="cgd:StatementType"/>
 <complexType name="StatementType">
 <simpleContent>
 <extension base="string">
 <attribute name="statementID"
 type="integer" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 <!-- - - - - - - - - - - - Comments - - - - - - - - - - - -->
 <element name="Comments" type="cgd:CommentsType"/>
 <complexType name="CommentsType">
 <simpleContent>
 <extension base="string">
 <attribute name="commentsID"
 type="integer" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 <!-- - - - - - - - - - Evidence Code - - - - - - - - - - -->
 <element name="EvidenceCode" type="cgd:EvidenceCodeType"/>
 <complexType name="EvidenceCodeType">
 <simpleContent>
 <extension base="string">
 <attribute name="evidenceID"
 type="integer" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
</schema>

Listing 3. XML Schema for Cancer Gene Disease Example.

43

4.3.4. Database Creation and Queries

For further steps, a relational database is realized. To ensure to have

unique keys, surrogate IDs were added to almost all classes, as al-

ready mentioned earlier.

The first class to implement is GeneEnty, it has one primary key and

six further attributes.

Statement:

CREATE TABLE GeneEntry (

 HUGOGeneSymbol VARCHAR2(10),

 geneStatus VARCHAR2(10) NOT NULL CHECK (GeneStatus

 IN('finished','new','withdrawn','entry_withdrawn')),

 hgncID NUMBER(20),

 locusLinkID NUMBER(20),

 genbankAccession VARCHAR2(20),

 refSeqID VARCHAR2(20),

 uniProtID VARCHAR2(20),

 CONSTRAINT PK_GeneEntry PRIMARY KEY (HUGOGeneSymbol)

);

The name of the table is written after the ‘CREATE TABLE’ command.

The columns and constraints are defined in the outer parenthesis. The

first column is the HUGOGeneSymbol which constitutes the primary key.

The second column is geneStatus, which needs to be one value de-

fined by the check constraint, realizing an enumeration. As already

mentioned, the status of the entry can be finished, new, withdrawn or

entry_withdrawn. The other five columns store accession numbers

from different databases. Next, table GeneAlias is implemented.

Statement:

CREATE TABLE GeneAlias (

 geneAliasID NUMBER(5),

 geneAlias VARCHAR2(90) NOT NULL,

 HUGOGeneSymbol VARCHAR2(10) NOT NULL,

 CONSTRAINT PK_GeneAliases PRIMARY KEY (GeneAliasID),

 CONSTRAINT FK_Alias_Entry FOREIGN KEY (HUGOGeneSymbol)

 REFERENCES GeneEntry

);

44

The first column is called geneAliasID and is used as primary key.

The column HUGOGeneSymbol realizes foreign keys and allows to ref-

erence values from the table GeneEntry, which was created before.

Statement:

CREATE TABLE Sentence (

 sentenceID NUMBER(5),

 pubMedID NUMBER(20),

 organism VARCHAR2(20) NOT NULL,

 negationIndicator VARCHAR(5) NOT NULL CHECK (NegationIndicato

 IN('true','false')),

 cellLineIndicator VARCHAR(5) NOT NULL CHECK (CelllineIndicator

 IN('true','false')),

 sentenceStatus VARCHAR(10) NOT NULL CHECK (SentenceStatus

 IN('finished','no_fact','unclear','redundant')),

 matchedGeneTerm VARCHAR2(50) NOT NULL,

 NCIGeneConceptCode VARCHAR2(20),

 matchedDiseaseTerm VARCHAR2(50) NOT NULL,

 NCIDiseaseConceptCode VARCHAR2(20),

 HUGOGeneSymbol VARCHAR2(10) NOT NULL,

 CONSTRAINT PK_Sentence PRIMARY KEY (sentenceID),

 CONSTRAINT FK_Sentence_Entry FOREIGN KEY (HUGOGeneSymbol)

 REFERENCES GeneEntry

);

In the table Sentence the sentenceID is the primary key. Again, a

check constraint is used, containing the values true and false. This

realizes the datatype boolean. For the status an enumeration is used

again. The foreign key references attribute HUGOGeneSymbol from

class GeneEntry. The next table is Statement.

Statement:

CREATE TABLE Statement (

 statementID NUMBER(5),

 statement VARCHAR2(530) NOT NULL,

 sentenceID NUMBER(5) NOT NULL,

 CONSTRAINT PK_Statement PRIMARY KEY (statementID),

 CONSTRAINT FK_Statement_Sentence FOREIGN KEY (sentenceID)

 REFERENCES Sentence

);

45

It has as usual an ID, a foreign key and contains a statement with 530

characters length. The next table is called Roles.

Statement:

CREATE TABLE Roles (

 rolesID NUMBER(5),

 sentenceID NUMBER(5) NOT NULL,

 CONSTRAINT PK_Role PRIMARY KEY (rolesID),

 CONSTRAINT FK_Role_Sentence FOREIGN KEY (sentenceID)

 REFERENCES Sentence

);

This table has only an ID and a foreign key, no other information. Pri-

maryNCIRoleCode references this class.

Statement:

CREATE TABLE PrimaryNCIRoleCode (

 primaryRoleID NUMBER(5),

 primaryNCIRoleCode VARCHAR2(100) NOT NULL,

 rolesID NUMBER(5) NOT NULL,

 CONSTRAINT PK_PrimaryRole PRIMARY KEY (primaryRoleID),

 CONSTRAINT FK_PrimaryRole_Sentence FOREIGN KEY (rolesID)

 REFERENCES Roles

);

The table PrimaryNCIRoleCode contains additionally to the primary

key constraint the information about the primaryNCIRoleCode. Table

OtherRole also references class Roles.

Statement:

CREATE TABLE OtherRole (

 otherRoleID NUMBER(5),

 otherRole VARCHAR2(100) NOT NULL,

 rolesID NUMBER(5) NOT NULL,

 CONSTRAINT PK_OtherRole PRIMARY KEY (otherRoleID),

 CONSTRAINT FK_OtherRole_Sentence FOREIGN KEY (rolesID)

 REFERENCES Roles

);

46

Table OtherRole is of the same structure as table PrimaryNCIRole-

Code. The following table is called EvidenceCode and contains a

string, an ID and a foreign key.

Statement:

CREATE TABLE EvidenceCode (

 evidenceID NUMBER(5),

 evidenceCode VARCHAR2(50) NOT NULL,

 sentenceID NUMBER(5) NOT NULL,

 CONSTRAINT PK_EvidenceCode PRIMARY KEY (evidenceID),

 CONSTRAINT FK_EvidenceCode_Sentence FOREIGN KEY (sentenceID)

 REFERENCES Sentence

);

The same applies for table Comments.

Statement:

CREATE TABLE Comments (

 commentsID NUMBER(5),

 comments VARCHAR2(300) NOT NULL,

 sentenceID NUMBER(5) NOT NULL,

 CONSTRAINT PK_Comments PRIMARY KEY (commentsID),

 CONSTRAINT FK_Comments_Sentence FOREIGN KEY (sentenceID)

 REFERENCES Sentence

);

Then, after all classes are implemented as tables within the relational

database, these tables need to be filled with values. This can be done

by SQL ‘INSERT’ statements. To enter all entries, this needs to be

done 55 times for table GeneEntry. For other tables there can be more

or less statements. For table GeneAlias, these statements can look

similar to the following.

Statement:

INSERT INTO GeneAlias (geneAliasID, geneAlias, HUGOGeneSymbol)

VALUES (1,'polm','POLM');

INSERT INTO GeneAlias (geneAliasID, geneAlias, HUGOGeneSymbol)

VALUES (2,'polymerase (dna directed), mu','POLM');

47

After ‘INSERT INTO’ comes the name of the table. In the first paren-

thesis are the names of the columns and in the second parenthesis are

the values which should be entered in the according columns. In this

example, geneAliasID becomes 1, geneAlias is set to “polm” and

HUGOGeneSymbol gets the value “POLM” for the first row. In the second

row there is the next ID another value for geneAlias and the next for-

eign key.

These steps need to be done for all tables with all tuples. To avoid

writing all these statements by hand, some simple python script which

processes the XML document, identifies the tags and creates the

INSERT statements from them, is written. The python script to create

the insert statements is attached in Appendix B.

The final statement of each SQL script, containing the insert state-

ments for a particular table, counts the number of inserted tuples. If

everything was successful, the following numbers are displayed:

 GeneEntry 55

 GeneAlias 742

 Sentence 164

 Statement 164

 Roles 163

 PrimaryNCIRoleCode 263

 OtherRole 192

 EvidenceCode 191

 Comments 26

Finally, all data of the XML document is stored within the relational

database.

48

Possible data management steps to keep the data up-to-date would be

updates, deletes or further inserts. If specific data from such a data-

base needs to be retrieved, corresponding queries have to be issued

against the database. The so-called SQL/XML Generation Functions

may be used in SQL statements, take relational data, retrieved from

the database as input and produce data in XML format as elements

and attributes as output. Thus, various data can be combined and re-

turned as value of a column of type XMLType.

This approach can be used to issue queries against relational data-

bases, from various integrated data sources. Utilizing such functions is

beneficial for bioinformaticians, who want to investigate as much data

as possible to draw conclusions about the coherencies of samples, for

instance.

In the following, some queries that could be interesting to know from

the database are specified and the according statements and results

are presented.

Query:

“Which organisms (in upper or lower case) other than human (organ-

ism != human) are affected by the cancer diseases? Return the organ-

ism, how often it occurs in the database (count) and then the according

acronym(s), given by the Human Genome Organization (HUGO) as

simple value in XML format.”

The organism is selected and the occurrences counted. To combine

all HUGOGeneSymbols in one column, the functions XMLAgg() and

XMLElement() are used. In the WHERE-clause it is defined that non-

human organisms are needed and it is grouped by organism to have

one tuple per organism in the result.

Statement:
SELECT organism, COUNT (*),

XMLAgg(XMLElement("HUGO", s.HUGOGeneSymbol))result

FROM Sentence s

WHERE lower(organism) != 'human'

GROUP BY organism;

49

Result:

Table 3. Result from Query Regarding Genes Sorted by Organism

 (not whole lines shown).

There are 31 mice, six rats and one other organism in the result,

whereby the XML elements for the HUGOGeneSymbol are aggregated to

a simple value of type XMLType.

Query:

“Find all genes associated with a disease as primary role. (Prima-

ryNCIRoleCode = “Gene_Associated_With_Disease”). For further as-

sumptions the name of the disease (matchedDiseaseTerm) and of the

gene (matchedGeneTerm), as well as the UniProt identification num-

ber and the PubMed entry number are required. The IDs should be

nested within an element called IDs.”

MatchedDiseaseTerm, matchedGeneTerm, and pubMedID are selected

from table Sentence and uniProtID from table GeneEntry. The

WHERE-clause filters for the PrimaryNCIRoleCode. Therefore,

GeneEntry needs to be joined to Sentence, Sentence to Roles, and

Roles to PrimaryNCIRoleCode.

Statement:
SELECT s.matchedDiseaseTerm, s.matchedGeneTerm,

XMLElement ("IDs", XMLForest(g.uniProtID, s.pubMedID)) result

FROM GeneEntry g, Sentence s, Roles r, PrimaryNCIRoleCode p

WHERE g.HUGOGeneSymbol=s.HUGOGeneSymbol AND s.sentenceID=r.sentenceID

AND r.rolesID=p.rolesID

AND p.primaryNCIRoleCode = 'Gene_Associated_With_Disease';

Result:

The result is a table with the disease and gene names and in XML

format UniProt accession number and the PubMed number.

50

Table 4. Result from Disease Query (only the First Lines Shown).

4.3.5. Online Database Research

To compare queries against the database with online search with re-

spect to speed and effort, a similar task for an online search was

created.

Query:

“Given the gene TDH, you want to know its function in the human me-

tabolism and the diseases it can cause by searching various data-

bases. Why is it a ‘pseudogene’? For further researches save the ac-

cession numbers from common used databases. Research a reasona-

ble disease in detail.”

Firstly, the full name of the gene needs to be found, since TDH is just

an acronym. Therefore, the HUGO (Human Genome Organization)

homepage [HUGO] is visited, the abbreviation is entered, and the re-

sult is chosen. The full name is “L-threonine dehydrogenase (pseudo-

gene)”. Now the corresponding accession numbers in PDB (5L9A),

SwissProt (Q8IZJ6 (TDH_HUMAN)), ENA (AY101186.1 Homo sapiens

L-threonine 3-dehydrogenase (TDH)) and GenBank (157739 TDH

L-threonine dehydrogenase (pseudogene) [Homo sapiens (human)])

are searched by entering the full name (without the pseudogene) in

their search fields. If available, the human gene is chosen.

Now, to find out why it is called a “pseudogene”, PubMed is used to

search again for the full name together with the term pseudogene.

The full text is chosen, where this statement can be found: “There is a

loss of the acceptor splice sites in exon 4 and 6 and an in-frame stop

codon in exon 6 (from the expected CGA to TGA) resulting in arginine-

214 being replaced by a stop codon. Together, these mutations sug-

gested that the human TDH gene is a pseudogene” [Edga02]. As a

next step, at KEGG PATHWAY webpage “TDH” is entered into the

search field.

51

Then the resulting entry link is taken, which is the ‘Glycine, serine and

threonine metabolism’. In the section ‘disease’ these are listed: “Prima-

ry hyperoxaluria (HP), Cystathioninuria, Homocystinuria, Hypermethio-

ninemia, Nonketotic hyperglycinemia, Guanidinoacetate methyltrans-

ferase (GAMT) deficiency, Creatine deficiency syndrome, Dimethylgly-

cine dehydrogenase deficiency (DMGDHD), 3-Phosphoglycerate de-

hydrogenase (3-PGDH) deficiency, Phosphoserine aminotransferase

(PSAT) deficiency, Glycogen storage disease type X”. By clicking on

the graphical pathway, the role of Threonine in the pathway can be

seen. The main path reveals that Threonine can become Glycine and

Glycine can become Serine, and the other way round.

OMIM can be used to get more information about one of these diseas-

es. Therefore, the OMIM browser is opened and the name of the first

disease is entered in the search field. There are three different types of

this disease. “Type I is an autosomal recessive disorder characterized

by an accumulation of calcium oxalate in various bodily tissues, espe-

cially the kidney, resulting in renal failure. Affected individuals have

decreased or absent AGXT activity and a failure to transaminate gly-

oxylate, which causes the accumulated glyoxylate to be oxidized to

oxalate.” [WAAC09]. Type II primary hyperoxaluria is caused by muta-

tion in the glyoxylate reductase/hydroxypyruvate reductase gene on

chromosome 9. Type III primary hyperoxaluria is caused by mutation in

the mitochondrial dihydrodipicolinate synthase-like gene on chromo-

some 10q24.

Time and effort of this online database research were evaluated: find-

ing these results (without documentation) took slightly more than 40

minutes. In this time, 12 searches were performed and over 24 hyper-

links were used. Collecting and summarizing the data took in total ap-

proximately 1.5 hours.

The succeeding steps concerning the data engineering example

demonstrate important methods to enrich a database by mapping to

different schemata and integrating additional data sources. They are

not considered in the time comparison between the engineered data-

base and online databases, but they are worth to be investigated be-

cause of their benefits.

52

4.3.6. Integration

In addition to the previous discussed procedure, there can be further

steps with respect to an engineered database, which otherwise would

have to be done manually. One possible further step is the explicit in-

tegration of other data sources.

Integration is necessary to combine and cross-analyze data from dif-

ferent sources. Some data makes only sense in the context of other

collections of information. Integration can be used to create output files

with shared information or to construct complex queries against differ-

ent data sources using intersections in the data.

One integration mechanism is called ‘mapping’. It means to connect all

corresponding components at the schema level. No additional inte-

grated schema is required. After mapping the schemata, it is possible

to transform the instances from the first schema to instances of the

second schema. All mandatory concepts in the destination schema

must be connected to create a valid schema.

a) Mapping Database to XML Schema

One example of mapping is to map a relational database to an XML

schema and auto generate an XML file with all instances from the da-

tabase. This could be required, for example, to send a part of the da-

taset to another laboratory.

To demonstrate this step, the Cancer Gene Disease database is

mapped to the Cancer Gene Disease XML schema. This is done

graphically utilizing the tool MapForce [Alto]. Since the database was

originally created from the XML schema, all corresponding concepts

can be mapped, and a valid XML instance file is created.

53

Fig. 8. Database to XML Schema Mapping.

54

b) Integration of SwissProt

If data from a different biological database should be considered in the

particular research, this could be supported by data integration, too.

For this example, data is taken from UniProt. For the purpose of inte-

gration, the Oracle XML DB functionality is used to register the uniprot

XML schema in the example database. For storing instances of this

XML schema, a table is created with a column Version which will

contain a date, indicating the insertion date of the entry as well as a

column for storing the XML instances. Then four sample entries are

inserted with different dates. Two of these entries contain information

about human genes, one about genes from mice and another one from

rats. The samples were taken from SwissProt [SwPr], the curated part

of UniProt. The statements for registration and insertion are attached

in Appendix B. To demonstrate the operability of the added data, relat-

ing queries can be created.

Query:

For example, entries with the specific entry name SUH can be found

by using the ‘contains’ function.

Statement:

SELECT XMLQuery('declare default element namespace

"http://uniprot.org/uniprot";

for $i in /uniprot/entry

where contains($i/name, "SUH")

return $i/gene'

PASSING xml_doc

RETURNING CONTENT) genes

FROM swissprot;

Result:

The only found gene with SUH in the name is “Rbpj”.

55

Query:

Next, all primary names and according synonyms can be displayed.

Statement:

SELECT gene_names.geneprimary, gene_names.genesynonym

FROM swissprot,

 XMLTable(XMLNAMESPACES(DEFAULT 'http://uniprot.org/uniprot'),

'for $i in /uniprot/entry/gene/name[@type="synonym"]

 return

 <temp>

 <primary>{$i/../name[@type="primary"]}</primary>

 <synonym>{$i}</synonym>

 </temp>'

PASSING xml_doc

COLUMNS geneprimary VARCHAR(60) PATH 'primary',

 genesynonym VARCHAR(60) PATH 'synonym') gene_names;

Result:

The result is a table listing the primary names and the according syno-

nyms.

Table 5. Result from Query for Finding Synonym Names (only First Lines Shown).

56

Query:

Further, the number of entries for a specific organism, e.g. human, can

be determined and shown for each version.

Statement:

SELECT Version, XMLQuery('declare default element namespace

 "http://uniprot.org/uniprot";

for $i in /uniprot/entry

return

<temp>

 <counter>

 {count(/uniprot/entry[organism/name[@type="common"]="Human"])}

 </counter>

</temp>'

PASSING xml_doc RETURNING CONTENT) Result

FROM swissprot;

Result:

In version 17-04-2018 and 18-04-2018 are eleven entries with human

each. In version 19-04-2018 and 20-04-2018 are zero entries with or-

ganism human.

Since not all of the information contained in this XML file is needed,

views on the important classes are created. The focus is set to five

classes, namely Protein, Accession, GeneNames, Keywords, and

DatabaseReference. The creation statements can be found in the

Appendix B. In this way, the SwissProt data is virtually integrated with

the relational database schema.

Fig. 9. UML SwissProt Views.

57

If these views are joined to the tables from Cancer Gene Disease, a

query across the originally separated data can be performed. There

are two correspondences in the data, these should be used as con-

nectors, i.e., join attributes.

Query:

An example for an integrated query between the Cancer Gene Dis-

ease example and the SwissProt views would be to find all genes with

organisms which are not human, together with the according UniProt

accession number and the according names from both.

Statement:

SELECT DISTINCT GeneEntry.uniProtID, SP_Accession.Accession,

GeneEntry.HUGOGeneSymbol, SP_GeneNames.name AS SP_Genename,

SP_Protein.OrganismName

FROM GeneEntry

INNER JOIN Sentence ON GeneEntry.HUGOGeneSymbol=

 Sentence.HUGOGeneSymbol

INNER JOIN SP_Accession ON GeneEntry.uniProtID=SP_Accession.Accession

INNER JOIN SP_Protein ON Sentence.organism=SP_Protein.OrganismName

INNER JOIN SP_GeneNames ON SP_Protein.ID=SP_GeneNames.ID

AND SP_Protein.SP_version=SP_GeneNames.SP_version

INNER JOIN SP_Accession ON SP_Protein.ID=SP_Accession.ID

AND SP_Protein.SP_version=SP_Accession.SP_version

WHERE Sentence.organism!='Human';

Result:

As a result, the HUGOGeneSymbols with the according name in

SwissProt for entries with the same UniProtID and organism are dis-

played.

Table 6. Result from SwissProt joined with Cancer Gene Disease (Exemplary Lines).

58

c) Integration of Prosite

Integration can be done even between different formats. To demon-

strate this step, a file from the Prosite [Pros] database in flat file format

is selected. The lines need to be split up to be used in a database. For

the integration with the Cancer Gene Disease example, three views

are created: Entry, Pattern, and DatabaseReference. One entry in

Prosite can contain several database references and several patterns,

since they can be spread over more lines. All classes get an artificial

ID (‘AID’). The entire code for the creation of the external table and the

views are located in Appendix B.

Fig. 10. UML Prosite Views.

Query:

The attribute SwissProt_ID from class DatabaseReference can be

joined with the ID from class Protein from the SwissProt views. The

intersection clause can be used to find entries available in both da-

tasets with the same SwissProt ID.

Statement:

SELECT SwissProt_ID FROM Prosite_DatabaseReference

INTERSECT

SELECT ID FROM SP_Protein;

Result:

In the concrete example there are 37 intersections of IDs.

59

Query:

One of them is called ‘CREB3_HUMAN’, which will be investigated

further. Hence, the artificial ID (AID), the value of the pattern, and the

entry accession are selected for this gene. To join the tables, they

need to have the same AID.

Statement:

SELECT p.aid, p.pattern, e.accession FROM Prosite_Pattern p, Pro-

site_Databasereference d, Prosite_Entry e

WHERE upper(d.Swissprot_ID) = 'CREB3_HUMAN'

AND d.aid = p.aid

AND e.aid = p.aid;

Result:

The displayed AID is 0031 and the pattern is [KR]-x(1,3)-[RKSAQ]-N-

{VL}-x-[SAQ](2)-{L}-[RKTAENQ]-x-R-{S}-[RK].

Query:

As a next step it is counted how many Prosite database references

belonging to this artificial ID truly have this pattern. These patterns

have ‘T’ (short for true) as ‘Flag’.

Statement:

SELECT COUNT(*) FROM Prosite_Databasereference

where

aid = ‘00031’ and

flag = 'T';

Result:

For ‘CREB3_HUMAN’ there are 235 entries, which have the ID from

the previous query before and ‘T’ as flag.

Query:

To examine, if there are entries in the SwissProt data fitting to this pat-

tern, the pattern is searched in the sequence of the protein by a regu-

lar expressions function. Therefore, the pattern has to be translated

according to the rules from Oracle XML DB [OXDB].

60

Statement:

SELECT * FROM SP_PROTEIN

WHERE

REGEXP_LIKE(sequence,'[KR].{1,3}[RKSAQ]N[^VL].[SAQ]{2}[^L][RKTAENQ].R

[^S][RK]');

Result:

The result of this query is the ‘CREB3_HUMAN’ itself and two more

proteins with organism rat plus all other information from the various

columns.

If files from different sources should be integrated and their schemata

are available, these schemata can be mapped, and the instances may

be transformed automatically according to these schemata. By the

process of mapping corresponding concepts in both schemata are

identified and connected. There are functions to transform elements,

thus even not completely identical entries can be combined.

d) Mapping XML Schema to JSON

An often occurring case in biological research is that other research

teams are dealing with the same topic. To share and compare data it is

essential to have them in the same format. To demonstrate the pro-

cess of mapping the current data to some possibly foreign schema, a

schema with several heterogeneities was created. There are incon-

sistencies in schema structure and content. The new schema is written

in JSON format and has a similar GeneEntry class, but the sub-

classes vary. In Fig. 11 the UML class diagram of the JSON Cancer

Gene Disease schema can be seen. The accession numbers are

stored in a separate class SequenceIdentificationList, while the

classes Statement and Comments are only represented as string at-

tributes in class Sentence. The classes except GeneEntry and Sen-

tence have no unique IDs in this schema. Two additional classes are

shown, one with the gene information, one with the disease infor-

mation. OtherRole and PrimaryNCIRoleCode are not distinguished,

while the attribute date and ENAID are not available in the schema

from the previous example and need to be introduced.

61

In the new schema, evidence only needs the information about the

source of evidence from EvidenceCode, which is the last part, for ex-

ample NAS from EV-AS-NAS. The sentenceID in the JSON schema

should be constituted from the first two letters from organism followed

by a generated digit code. The indicators are not expressed as boole-

an but with ‘yes’ and ‘no’. Further, the sentenceStatus is boolean in

the JSON schema, which indicates ‘true’, only if the sentence is ‘fin-

ished’. The datatype from locusLinkID needs to be transformed

from integer to string. And the enumeration strings from geneStatus

and entryStatus in the JSON schema differ in nomenclature.

Fig. 11. UML JSON Schema.

The following functions from MapForce [Alto] were used:

− ‘Value-map’ to turn “true” in “yes” and “false” in “no” and to trans-

form the enumeration strings for the statusTyp.

− ‘String’ to convert the integer from lokusLinkID to string.

− ‘Equal’ to test if the sentenceStatus is finished.

− ‘Substring’ to find the first two characters from organism.

− ‘Auto-number’ for generating consecutive numbers, which are add-

ed to the characters from substring and form the sentenceID.

− ‘Concat’ to concatenate OtherRole and PrimaryNCIRoleCode

together, separated by a comma.

− ‘Substring-after’ to find the last part of the EvidenceCode, which

occurs after the second ‘-‘ character.

− ‘String-join’ to store all elements to one string.

62

Fig. 12. Mapping XML Schema to JSON.

63

e) Integration of Gene Ontology GO

As mentioned in an earlier chapter, one special kind of integration is

the integration utilizing ontologies. This is very useful in bioanalytical

researches. Ontologies can be used to get further information about

names or relationships of some concepts.

To demonstrate this function by means of the example database from

the chapters before, a very small fragment from Gene Ontology (GO)

[GeOn] in SQL format was selected and edited accordingly. This is not

the typical format for ontologies but is more convenient to use in this

example.

The selected part of the ontology consists of two tables. One table

contains terms with attributes, like name, type and some short form

describing different biological terms.

Table 7. Table term.

The second table is called term2term and contains IDs from two terms,

that are in some relation, and the type of their relationship. The state-

ments for creating the tables can be inspected in Appendix B.

64

Table 8. Table term2term.

By joining this information to our dataset, a larger knowledge base is

obtained. Firstly, all genes with organism mouse are selected.

Statement:

SELECT DISTINCT organism, HUGOGeneSymbol

FROM Sentence

WHERE organism='Mouse';

Result:

Table 9. All genes with Organism Mouse.

Then, in the table term it is searched for the occurrence of the word

mouse using the like function. Accessing the term2term table allows to

find all related terms for the resulting IDs.

65

Statement:

SELECT t1.id, t1.name AS term, t2.id AS relatedID, t2.name AS relat-

edTerm

FROM term t1, term2term tt, term t2

WHERE LOWER(t1.name) LIKE '%mouse%' AND

 t1.id = tt.term1_id AND

 tt.term2_id = t2.id

UNION

SELECT t1.id, t1.name AS term, NULL, NULL

FROM term t1

WHERE LOWER(t1.name) LIKE '%mouse%' AND

 t1.id NOT IN

 (SELECT tt.term1_id

 FROM term2term tt);

Result:

The result shows the found terms and their related terms found by the

ID from table term2term.

Table 10. Resulting Table for Sentence Joined with Term.

For the current example research this information might not be a signif-

icant improvement, but for subsequent queries in later research this

increased data supply can be necessary or at least helpful.

66

4.3.7. Results

After proceeding all these steps, a comparison of the two approaches

– data engineering and online search – can be done.

The effort itself is hard to compare, the online database search includ-

ed 12 searches and over 24 hyperlinks to get the result for the query.

The creation of the database itself was a huge effort of writing very

roughly estimated 3000 lines of code. But accessing the database, by

sending a query, is a perceptible less complicated task of writing about

5 to 10 lines on average. Neglecting the creation of the database, the

engineered database has a clear advantage over the online database

research.

A better factor to evaluate the utility of engineering an own database is

the needed time per query. The evaluated time of the online database

research for collecting and summarizing the data was approximately

1.5 hours. This time is needed for every single query.

Times estimated for the construction and processing of the engineered

database:

Editing data set: 5 h

Schema creation: 2 h DTD

3 h XML schema

Data base creation + insertion: 4 h

Every Query: 15 min

This gives an approximate time of 14.15 hours for doing a single query

by using data engineering. This is a considerably higher number than

1.5 on the first sight. But usually a biologist or bioinformatician works

over years on the same data set and needs to do more than one que-

ry. Some more time periods were calculated for further queries and

compared to the constant time from online database search. There-

fore, the total time was divided through the number of queries, since

the data framework is constructed only once. In case of more than ten

queries, time can be saved. The eleventh query only took 1.42 hours

according to these numbers.

67

For a high number of queries – which typically will be the case if more

people work over years with the database – comparable low values

are reached. For 1000 queries it would take approximately only 16

minutes per query.

Fig. 13. Time Comparison Online vs. Engineered Database.

In Fig. 13 one can see that the time per query stays constant for the

online database research, while the time per query decreases almost

exponentially for the engineered data research. The lines are crossing

between the tenth and the eleventh query. For ten queries and more

the data engineering approach gets profitable. For over 1000 queries

one can almost neglect the time needed for the pre-processing engi-

neering steps.

68

Even more important are the opportunities given by an engineered

database. More elaborated queries are possible by joining different

tables through additional lines in the query. Searching online it is nec-

essary to filter for all the requested data in several specialized data-

bases manually. Even if there are functions to filter the results from the

online database, it is more convenient to do this directly by the query.

The number of query results possibly increases, if more data sets were

integrated together. Data from different data sources, from different

labs for example, can be merged by mapping the schemata. All the

instances unite accordingly. This means more entries are available

and thus probably more results.

Further, the informativeness of the results enhances due to the en-

richment by various data with miscellaneous content. If schemata

which are not very similar but have at least one element in common

are connected, the information from both is brought together in one

place.

By the usage of an ontology the query hits can be improved immense.

On the one hand the number of hits can be increased, because results

with similar nomenclature are found. On the other hand, the quality is

improved, since the result is expanded by the synonyms and defini-

tions.

69

4.4. Discussion

The practical work of this thesis represents a demonstration of different

engineering steps. In a real-world data set it is often not possible to

change the structure afterwards according to the needs of the next

step. Furthermore, the following steps might be unknown, thus the re-

quirements cannot be fulfilled previously.

The analysis of time is a very rough valuation and does not consider

several alternating cases. Firstly, the numbers were estimated for the

construction of this specific dataset. They cannot be directly projected

on every dataset. If the dataset is larger, for example, the computer will

probably take longer to treat the query. Filtering through a huge data-

base can take clearly longer than 15 minutes. The construction of the

database depends on the complexity of the data. More classes with

more constraints can lead to deviations in time. Taking into account

that most biologists themselves do not have the necessary experience

in programming and creating information systems, this task can be

challenging. The needed time therefore depends also on the capability

of the person constructing and using the database. Having a bioinfor-

matician for these tasks saves time. Another aspect is the fact that

adapting changes to an existing data framework can be very difficult

and again time needs to be invested. If a new column, for instance, is

required, all schemata, data entries and tables have to be changed.

Thus, the modification of an existing dataset can be error-prone. Nev-

ertheless, it pays off to invest the time for creating a database for long

term projects. If a dataset needs to be investigated frequently, maybe

even from more than one person or over a longer time span, it might

be beneficial to use an own data framework.

In addition to time, data engineering provides huge benefits in the field

of bioinformatics. These benefits are more query hits with higher quali-

ty and richer informativeness, for example. Another benefit is the pos-

sibility to create very comprehensive queries, also across tables stor-

ing data from different data sources.

70

5. Conclusion

This thesis deals with the application of data engineering technologies

in bioinformatics. The theoretical part gives an overview on data bases

and data formats common in bioinformatics and focuses on integration

of biological data. Some approaches, resulting possibilities and

challenges of data engineering in the field of bioinformatics are shown.

In the practical part, an overall process for a real-world biological data

set to an integrated database was accomplished. Various steps of a

typical data engineering process were walked through and are ana-

lyzed. Through integration steps the knowledge base can be increased

and the results can be more meaningful. If a database is often used,

the average time per query decreases. There are useful query

languages for databases, which make the process of searching un-

complicated. Time saving, mastering of complex queries and the

convenience of an engineered database can have enormeous benefits

over usual online search. Having a well-engineered data framework

can enhance the work of a bioinformation and can lead to more

sophisticated data analyses.

71

6. References

6.1. Literature

[AtPT16] Teresa K. Attwood, Stephen R. Pettifer, David Thorne. “Bioinformatics

Challenges at the Interface of Biology and Computer Science”. John

WileySons Ltd. 2016.

[AnSt15] Antony T. Vincent, Steve J. Charette. “Who qualifies to be a bioinfor-

matician?”. Front Genetics, 6:164. 2015.

[Belt16] Michael Benedikt, Rodrigo Lopez-Serrano, Efthymia Tsamoura. “Bio-

logical Web Services: Integration, Optimization, and Reasoning”.

BAI@IJCAI. 2016.

[CBFC16] Charles E. Cook, Mary Todd Bergman, Robert D. Finn, Guy

Cochrane, Ewan Birney, and Rolf Apweiler. “The European Bioinfor-

matics Institute in 2016: Data growth and integration”. Nucleic Acids

Research, 44(Database issue), D20–D26. 2016.

[Cera06] Ethan Cerami. “XML for Bioinformatics”. Springer Science +Business

Media, Inc. 2006.

[Codd70] E. F. Codd. “A relational model of data for large shared data banks”.

Communications of the ACM 13(6), pp. 377-387. 1970.

[Cons15] The Gene Ontology Consortium. “Gene Ontology Consortium: going

forward”. Nucleic Acids Research, 43(D1), D1049–D1056. 2015.

[Cons17] The Gene Ontology Consortium. “Expansion of the Gene Ontology

knowledgebase and resources”. Nucleic Acids Research,

45(Database issue), D331–D338. 2017.

[Edga02] Edgar, A. J. “The human L-threonine 3-dehydrogenase gene is an

expressed pseudogene”. BMC Genetics, 3, 18. 2002.

[GaFR17] Michael Y. Galperin, Xosé M. Fernández-Suárez, Daniel J. Rigden.

“The 24th annual Nucleic Acids Research database issue: a look back

72

and upcoming changes”. Nucleic Acids Research, 45(D1), D1-D11.

2017.

[Groß14] Dr. Anika Groß. “BioDM”. University Leipzig. 2014.

[Holz03] Steven Holzner. “Creating Well-Formed XML Documents”. Informit.

2003.

[KFTS17] Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko Sato, Kanae

Morishima. “KEGG: new perspectives on genomes, pathways, dis-

eases and drugs”. Nucleic Acids Research, 45(D1), D353–D361.

2017.

[KGHA06] Minoru Kanehisa, Susumu Goto, Masahiro Hattori, Kiyoko Aoki-

Kinoshita, Masumi Itoh, Shuichi Kawashima, Toshiaki Katayama,

Michihiro Araki, Mika Hirakawa. “from genomics to chemical ge-

nomics: New developments in KEGG”. Nucleic Acids Research

34(Database issue):D354-7. 2006.

[KGSF12] Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. “KEGG

for integration and interpretation of large-scale molecular data sets”.

Nucleic Acids Research, 40(Database issue), D109–D114. 2012.

[LaWa15] Brendan Lawlor, Paul Walsh. “Engineering bioinformatics: building

reliability, performance and productivity into bioinformatics software “.

Bioengineered 6:4, 193—20.

[LeNa07] Ulf Leser, Felix Naumann (2007): “Informationsintegration”.

dpunkt.verlag GmbH. 2015.

[LSJV15] Vasileios Lapatas, Michalis Stefanidakis, Rafael C. Jimenez, Allegra

Via and Maria Victoria Schneider. “Data integration in biological re-

search: an overview”. Journal of Biological Research, 22(1), 9. 2015.

[Neil14] Neil Savage. “Bioinformatics: Big data versus the big C”. Nature 509,

S66–S67. 2014.

73

[PBJM15] Christoph Pinkel, Carsten Binnig, Ernesto Jiménez-Ruiz, Wolfgang

May, Dominique Ritze, Martin G. Skjæveland, Alessandro Solimando,

Evgeny Kharlamov. “RODI: A Benchmark for Automatic Mapping

Generation in Relational-to-Ontology Data Integration”. Springer

LNCS 9088, pp. 21-37. 2015.

[Pohj08] Jussi Pohjolainen. “Introduction to XML”. Slideshare. 2008.

[Rahm04] Erhard Rahm. “Data Integration in the Life Sciences”. Springer-Verlag

Berlin Heidelberg. 226. 2004.

[Siko14] Leslie Sikos. “Web Standards: Mastering HTML5, CSS3, and XML”.

Apress. 2014.

[TJTM14] Rachel Thompson, Louise Johnston, Domenica Taruscio, Lucia Mon-

aco, Christophe Béroud, PharmD, Ivo G. Gut, Mats G. Hansson, Pe-

ter-Bram A. ’t Hoen, George P. Patrinos, Hugh Dawkins, Monica En-

sini, Kurt Zatloukal, David Koubi, Emma Heslop, Justin E. Paschall,

Manuel Posada, Peter N. Robinson, Kate Bushby, Hanns Lochmüller:

“RD-Connect: An Integrated Platform Connecting Databases, Regis-

tries, Biobanks and Clinical Bioinformatics for Rare Disease Re-

search”. Journal of General Internal Medicine, 29 (Suppl 3), 780–787.

2014.

[USDT10] U.S. Department of Transportation - Federal Highway Administration.

“Data Integration Primer”. pp. 31-35. 2010.

[WAAC09] Williams, E. L., Acquaviva, C., Amoroso, A., Chevalier, F., Coulter-

Mackie, M., Monico, C. G., Giachino, D., Owen, T., Robbiano, A.,

Salido, E., Waterham, H., Rumsby, G. “Primary hyperoxaluria type 1:

update and additional mutation analysis of the AGXT gene”. Hum.

Mutat. 30: 910-917. 2009.

74

6.2. Online Resources

[AlIn] Allergy Intolerance schema:

https://www.hl7.org/FHIR/2015May/allergyintolerance.html, last access:

23.10.2017

[AllM] Allergy schema for mapping: https://docs.microsoft.com/en-

us/healthvault/datatypes/allergy#xsd-schema, last access: 23.10.2017

[Alto] Altova MapForce: https://www.altova.com/de/mapforce, last access:

15.05.2018

[CaGD] Cancer Gene Disease schema:

https://wiki.nci.nih.gov/display/cageneindex/The+Cancer+Gene

+Index+Gene-Disease+and+Gene-Compound+XML+Documents, last

access: 12.04.2018

[ENAh] ENA homepage: http://www.ebi.ac.uk/ena/about, last access: 08.12.2017

[ExPA] ExPASy homepage: https://www.expasy.org/, last access: 06.12.2017

[FFDB] Flat File Database: Definition & Example: https://study.com/academy/

lesson/flat-file-database-definition-example.html, last access: 05.06.2018

[GenB] GenBank homepage: https://www.ncbi.nlm.nih.gov/genbank/, last access:

05.12.2017

[GeOn] GO homepage: www.geneontology.org/, last access 04.04.2018

[HPAs] HPA schema: https://www.proteinatlas.org/download/proteinatlas.xsd, last

access: 30.11.2017

[HUGO] Human Genome Organisation homepage: http://www.hugo-

international.org/, last access: 05.06.2018

https://wiki.nci.nih.gov/display/cageneindex/The+Cancer+Gene+Index+Gene-Disease+and+Gene-Compound+XML+Documents
https://wiki.nci.nih.gov/display/cageneindex/The+Cancer+Gene+Index+Gene-Disease+and+Gene-Compound+XML+Documents
https://www.expasy.org/
https://www.ncbi.nlm.nih.gov/genbank/
http://www.geneontology.org/
https://www.proteinatlas.org/download/proteinatlas.xsd

75

[ImmM] Immunization schema for mapping: https://docs.microsoft.com/en-

us/healthvault/datatypes/immunization#xsd-schema, last access:

19.10.2017

[Immu] Immunization schema: https://www.hl7.org/fhir/immunization.html, last

access: 18.10.2017

[JSON] JSON example: http://json-schema.org/example1.html, last access:

05.06.2018

[KEGG] KEGG homepage: www.genome.jp/kegg/, last access: 08.01.2018

[OXDB] Oracle XML DB documentation:

https://docs.oracle.com/database/121/ADXDB/xdb05sto.htm#ADXDB0600,

last access: 24.04.2018

[Pros] Prosite homepage: https://prosite.expasy.org/, last access: 24.04.2018

[RCSB] RCSB homepage: www.rcsb.org/, last access: 06.12.2017

[SNPM] SNP schema for mapping:

https://www.ncbi.nlm.nih.gov/projects/SNP/docsum/docsum0.html, last

access:18.11.2017

[SNPs] SNP schema:

http://dbarchive.biosciencedbc.jp/archive/openpml/2009/snp.xsd, last ac-

cess: 16.11.2017

[SwPr] SwissProt homepage: http://www.uniprot.org/uniprot/?query=reviewed:yes,

last access: 24.04.2018

[UniP] UniProt schema: http://www.uniprot.org/docs/uniprot.xsd, last access:

29.11.2017

[W3Ch] W3C homepage: https://www.w3.org/standards/xml/components.html, last

access: 01.02.2018

http://www.genome.jp/kegg/
http://www.rcsb.org/
https://www.ncbi.nlm.nih.gov/projects/SNP/docsum/docsum0.html
http://www.uniprot.org/docs/uniprot.xsd
https://www.w3.org/standards/xml/components.html

76

7. List of Figures

Fig. 1. Total Disk Storage at EMBL-EBI [CBFC16]…………………………….. 6

Fig. 2. Sample Fragment from a Well-formed XML Document [Holz03]….…. 11

Fig. 3. Sample Fragment from a Valid JSON Document [JSON]…………….. 12

Fig. 4. Virtual Integration at EMBL-EBI [CBFC16]……………………………… 18

Fig. 5. KEGG Main Databases and their Relationship [KGHA06]……………. 21

Fig. 6. Photosynthesis Pathway Map from KEGG………………………………. 22

Fig. 7. Cancer Gene Disease UML……………………………………………….. 31

Fig. 8. Database to XML Schema Mapping………………………………………. 53

Fig. 9. UML SwissProt Views……………………………………………………… 56

Fig. 10. UML Prosite Views………………………………………………………….. 58

Fig. 11. UML JSON Schema………………………………………………………… 61

Fig. 12. Mapping XML Schema to JSON………………………………………….. 62

Fig. 13. Time Comparison Online vs. Engineered Database……………………. 67

8. List of Tables

Table 1. Common Database Comparison…………………………………………. 9

Table 2. Comparison of Data Sources……………………………………………... 27

Table 3. Result from Query Regarding Genes Sorted by Organism (not whole

lines shown)………………………………………………………………...

49

Table 4. Result from Disease Query (only the First Lines Shown)..…………... 50

Table 5. Result from query for finding synonym names (only First Lines

Shown)………………………………………………………………………

55

Table 6. Result from SwissProt joined with Cancer Gene Disease (Exemplary

Lines)………………………………………………………………………...

57

Table 7. Table term…………………………………………………………………... 63

Table 8. Table term2term……………………………………………………………. 64

Table 9. All Genes with Organism Mouse..……………………………………….. 64

Table 10. Resulting Table for Sentence Joined with Term…………..…………… 65

9. List of Listings

Listing 1. Cancer Gene Disease Example Entry…………………………………. 32

Listing 2. DTD Schema for Cancer Gene Disease Example……………………. 36

Listing 3. XML Schema for Cancer Gene Disease Example……………………. 38

77

10. Appendix A: UML Class Diagrams

a) Immunization

b) Allergy

78

c) SNP

79

80

81

82

d) HPA

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

11. Appendix B: Program Code

a) Python code to create the INSERT statements

#!/usr/bin/env python
Author: Anna Saibold
import sys
import re
infile = open("Alternative1.xml", 'r') # read
entryFile = open("INSERT_GeneEntry.sql", 'a')
aliasFile = open("INSERT_GeneAlias.sql", 'a')
sentenceFile = open("INSERT_Sentence.sql", 'a')
statementFile = open("INSERT_Statement.sql", 'a')
rolesFile = open("INSERT_Roles.sql", 'a')
proleFile = open("INSERT_PrimaryRole.sql", 'a')
oroleFile = open("INSERT_OtherRole.sql", 'a')
evidenceFile = open("INSERT_EvidenceCode.sql", 'a')
commentFile = open("INSERT_Comments.sql", 'a')
wholeF = infile.read()
#print(wholeF)
entry=wholeF.split("</GeneEntry>")
for e in range(0, len(entry)-1):
 #GeneEntry
 HUGO = re.findall(" HUGOGeneSymbol=\"(.*?)\">", entry[e])
 gStatus = re.findall("<geneStatus>(.*?)</geneStatus>", entry[e])
 hgnc = re.findall("<hgncID>(.*?)</hgncID>", entry[e])
 if not hgnc:
 hgnc.append("")
 locuslink = re.findall("<locusLinkID>(.*?)</locusLinkID>", entry[e])
 if not locuslink:
 locuslink.append("")
 genbank = re.findall("<genbankAccession>(.*?)</genbankAccession>", entry[e])
 if not genbank:
 genbank.append("")
 refseq = re.findall("<refSeqID>(.*?)</refSeqID>", entry[e])
 if not refseq:
 refseq.append("")
 uniprot = re.findall("<uniProtID>(.*?)</uniProtID>", entry[e])
 if not uniprot:
 uniprot.append("")
 entryFile.write("INSERT INTO GeneEntry (HUGOGeneSymbol, geneStatus, hgncID, lo-
cusLinkID, genbankAccession, refSeqID, uniProtID) VALUES
(\'"+str(HUGO[0])+"\',\'"+str(gStatus[0])+"\',"+str(hgnc[0])+","+str(locuslink[0])+",\'"+
str(genbank[0])+"\',\'"+str(refseq[0])+"\',\'"+str(uniprot[0])+"\');\n")
 #GeneAlias
 gaID = re.findall(" geneAliasID=\"(.*?)\">", entry[e])
 GeneA = re.findall("<GeneAlias.*>(.*?)</GeneAlias>", entry[e])
 for id in range(0, len(gaID)):
 aliasFile.write("INSERT INTO GeneAlias (geneAliasID, geneAlias, HUGOGeneSymbol)
VALUES ("+str(gaID[id])+",\'"+str(GeneA[id])+"\',\'"+str(HUGO[0])+"\');\n")
 #Sentence
 sentenceID = re.findall(" sentenceID=\"(.*?)\">", entry[e])
 sentence = re.split("</Sentence>", entry[e])
 for s in range(0, len(sentenceID)):
 sStatus = re.findall("<sentenceStatus>(.*?)</sentenceStatus>", sentence[s])
 pubmed = re.findall("<pubMedID>(.*?)</pubMedID>", sentence[s])
 if not pubmed:
 pubmed.append("")
 organism = re.findall("<organism>(.*?)</organism>", sentence[s])
 nIndicator = re.findall("<negationIndicator>(.*?)</negationIndicator>", sen-
tence[s])
 cIndicator = re.findall("<cellLineIndicator>(.*?)</cellLineIndicator>", sen-
tence[s])

104

 mGeneT = re.findall("<matchedGeneTerm>(.*?)</matchedGeneTerm>", sentence[s])
 NCIGeneConceptCode = re.findall("<NCIGeneConceptCode>(.*?)</NCIGeneConceptCode>",
sentence[s])
 if not NCIGeneConceptCode:
 NCIGeneConceptCode.append("")
 mDiseaseT = re.findall("<matchedDiseaseTerm>(.*?)</matchedDiseaseTerm>", sen-
tence[s])
 NCIDiseaseConceptCode =
re.findall("<NCIDiseaseConceptCode>(.*?)</NCIDiseaseConceptCode>", sentence[s])
 if not NCIDiseaseConceptCode:
 NCIDiseaseConceptCode.append("")
 sentenceFile.write("INSERT INTO Sentence (sentenceID, sentenceStatus, pubMedID,
organism, negationIndicator, cellLineIndicator, matchedGeneTerm, NCIGeneConceptCode,
matchedDiseaseTerm, NCIDiseaseConceptCode, HUGOGeneSymbol) "
 "VALUES
("+str(sentenceID[s])+",\'"+str(sStatus[0])+"\',"+str(pubmed[0])+",\'"+str(organism[0])+"
\',\'"+str(nIndicator[0])+"\',\'"+str(cIndicator[0])+"\',\'"+str(mGeneT[0])+"\',\'"+str(N
CIGene-
Con-
ceptCode[0])+"\',\'"+str(mDiseaseT[0])+"\',\'"+str(NCIDiseaseConceptCode[0])+"\',\'"+str(
HUGO[0])+"\');\n")
 #Statement
 statemID = re.findall(" statementID=\"(.*?)\">", sentence[s])
 statem = re.findall("<Statement.*>(.*?)</Statement>", sentence[s])
 for id in range(0, len(statemID)):
 statementFile.write("INSERT INTO Statement (statementID, statement, senten-
ceID) VALUES ("+str(statemID[id])+",\'"+str(statem[id])+"\',"+str(sentenceID[s])+");\n")
 #Roles
 rolesID = re.findall(" rolesID=\"(.*?)\">", sentence[s])
 role = re.split("</Roles>", sentence[s])
 for r in range(0, len(rolesID)):
 rolesFile.write("INSERT INTO Roles (rolesID, sentenceID) VALUES (" +
str(rolesID[r]) + "," + str(sentenceID[s]) + ");\n")
 #PrimaryRole
 prolesID = re.findall(" primaryRoleID=\"(.*?)\">", role[r])
 pRole = re.findall("<PrimaryNCIRoleCode.*>(.*?)</PrimaryNCIRoleCode>",
role[r])
 for id in range(0, len(prolesID)):
 proleFile.write("INSERT INTO PrimaryNCIRoleCode (primaryRoleID, prima-
ryNCIRoleCode, rolesID) VALUES (" + str(prolesID[id]) + ",\'" +str(pRole[id])+"\',"+
str(rolesID[r]) + ");\n")
 #OtherRole
 orolesID = re.findall(" otherRoleID=\"(.*?)\">", sentence[s])
 oRole = re.findall("<OtherRole.*>(.*?)</OtherRole>", sentence[s])
 for id in range(0, len(orolesID)):
 oroleFile.write("INSERT INTO OtherRole (otherRoleID, otherRole, rolesID)
VALUES (" + str(orolesID[id]) + ",\'" + str(oRole[id]) + "\'," + str(rolesID[r]) +
");\n")
 #EvidenceCode
 evidenceID = re.findall(" evidenceID=\"(.*?)\">", sentence[s])
 evi = re.findall("<EvidenceCode.*>(.*?)</EvidenceCode>", sentence[s])
 for id in range(0, len(evidenceID)):
 evidenceFile.write("INSERT INTO EvidenceCode (evidenceID, evidenceCode, sen-
tenceID) VALUES (" + str(evidenceID[id]) + ",\'" + str(evi[id]) + "\'," +
str(sentenceID[s]) + ");\n")
 #Comments
 commentsID = re.findall(" commentsID=\"(.*?)\">", sentence[s])
 Comm = re.findall("<Comments.*>(.*?)</Comments>", sentence[s])
 for id in range(0, len(commentsID)):
 commentFile.write("INSERT INTO Comments (commentsID, comments, sentenceID)
VALUES (" + str(commentsID[id]) + ",\'" + str(Comm[id]) + "\'," + str(sentenceID[s]) +
");\n")

105

b) UniProt schema registration

CREATE OR REPLACE DIRECTORY XML_FILES AS '/home/teaching/ex4_data_cgd';
BEGIN
 DBMS_XMLSCHEMA.registerSchema(
 SCHEMAURL => 'www.uniprot.org/support/docs/uniprot.xsd',
 SCHEMADOC => bfilename('XML_FILES','uniprot.xsd'),
 CSID => nls_charset_id('AL32UTF8'));
END;
/

c) UniProt as columns and insertion of UniProt data

CREATE TABLE uniprot_as_column(Version VARCHAR2(10), xml_doc XMLType)
XMLTYPE COLUMN xml_doc
STORE AS CLOB
XMLSCHEMA "www.uniprot.org/support/docs/uniprot.xsd"
ELEMENT "uniprot";

CREATE OR REPLACE DIRECTORY XML_FILES AS '/home/teaching/ex4_data_cgd';
INSERT INTO uniprot_as_column (Version, xml_doc) VALUES(
 '17-04-2018',
 XMLType(BFILENAME('XML_FILES', 'uniprot_sprot_human5.xml'),
 NLS_CHARSET_ID('AL32UTF8')));
INSERT INTO uniprot_as_column (Version, xml_doc) VALUES(
 '18-04-2018',
 XMLType(BFILENAME('XML_FILES', 'uniprot_sprot_human6.xml'),
 NLS_CHARSET_ID('AL32UTF8')));
INSERT INTO uniprot_as_column (Version, xml_doc) VALUES(
 '19-04-2018',
 XMLType(BFILENAME('XML_FILES', 'uniprot_sprot_mouse5.xml'),
 NLS_CHARSET_ID('AL32UTF8')));
INSERT INTO uniprot_as_column (Version, xml_doc) VALUES(
 '20-04-2018',
 XMLType(BFILENAME('XML_FILES', 'uniprot_sprot_rat5.xml'),
 NLS_CHARSET_ID('AL32UTF8')));

d) Creation of SwissProt views

create or replace VIEW SP_PROTEIN AS
select uac.VERSION as SP_Version, x_ml.*
from uniprot_as_column uac, XMLTable(
xmlnamespaces
(DEFAULT 'http://uniprot.org/uniprot'),
'for $i in /uniprot/entry return $i'
passing uac.XML_DOC
columns
Id varchar2(12) path 'name',
CreateDate date path '@created',
ModifiedDate date path '@modified',
Version int path '@version',
OrganismName varchar2(30) path 'organism/name[@type="common"]',
SequenceLength int path 'sequence/@length',
Mass int path 'sequence/@mass',
Sequence varchar2(2470) path 'sequence'
) x_ml;

create or replace VIEW SP_DBREFERENCE AS
select uac.VERSION as SP_Version, x_ml.*
from UNIPROT_AS_COLUMN uac, XMLTable(
xmlnamespaces
(DEFAULT 'http://uniprot.org/uniprot'),
'for $i in /uniprot/entry,

106

 $j in $i/dbReference
 return element a{
 $i/name,
 element dbaccession {$j/@id/string()},
 element db {$j/@type/string()}
 }'
passing uac.XML_DOC
columns
Id varchar2(20) path 'name',
DBAccession varchar2(30) path 'dbaccession',
db varchar2(30) path 'db'
) x_ml;

create or replace VIEW SP_KEYWORDS AS
select uac.VERSION as SP_Version, x_ml.*
from UNIPROT_AS_COLUMN uac, XMLTable(
xmlnamespaces
(DEFAULT 'http://uniprot.org/uniprot'),
'for $i in /uniprot/entry,
$j in $i/keyword
return element a{
 $i/name,
 element keyword {
 $j/text()
 }
}'
passing uac.XML_DOC
columns
Id varchar2(20) path 'name',
Keyword varchar2(30) path 'keyword'
) x_ml;

create or replace VIEW SP_ACCESSION AS
select uac.VERSION as SP_Version, x_ml.*
from UNIPROT_AS_COLUMN uac, XMLTable(
xmlnamespaces
(DEFAULT 'http://uniprot.org/uniprot'),
'for $i in /uniprot/entry,
$j in $i/accession
return element a{
 $i/name,
 element accession {
 $j/text()
 }
}'
passing uac.XML_DOC
columns
Id varchar2(20) path 'name',
Accession varchar2(10) path 'accession'
) x_ml;

create or replace VIEW SP_GENENAMES AS
select uac.VERSION as SP_Version, x_ml.*
from UNIPROT_AS_COLUMN uac, XMLTable(
xmlnamespaces
(DEFAULT 'http://uniprot.org/uniprot'),
'for $i in /uniprot/entry,
$j in $i/gene/name
return element a{
 $i/name,
 element nametype {
 $j/@type/string()
 },
 element genename{
 $j/text()
 }

107

}'
passing uac.XML_DOC
columns
Id varchar2(20) path 'name',
NameType varchar2(20) path 'nametype',
Name varchar2(10) path 'genename'
) x_ml;

e) Creation of the external Prosite table

CREATE OR REPLACE DIRECTORY ex5_data_cc AS '/home/teaching/ex5_data_cc';
drop table PROSITE;
create table PROSITE (
 AID char(5),
 LineCode char(2),
 Value char(153)
)
organization external (
 type oracle_loader
 default directory ex5_data_cc
 access parameters (
 records delimited by "\n"
 fields (
 AID position(1:5) char(5),
 LineCode position(7:8) char(2),
 Value position(12:164) char(153)
)
)
 location ('prosite.dat')
)
reject limit unlimited;

f) Creation of the Prosite views

create or replace view Prosite_Pattern (AID, Pattern) as
select AID, value from prosite where
linecode = 'PA';

create or replace view Prosite_Entry_ID as
select AID, value from PROSITE where
LineCode = 'ID';

create or replace view Prosite_Entry_AC as
select AID, value from PROSITE where
LineCode = 'AC';

create or replace view Prosite_Entry_DT as
select AID, value from PROSITE where
LineCode = 'DT';

create or replace view Prosite_Entry_DE as
select AID, value from PROSITE where
LineCode = 'DE';

create or replace view Prosite_Entry_DO as
select AID, value from PROSITE where
LineCode = 'DO';

create or replace view PROSITE_ENTRY as
select Prosite_Entry_ID.AID as AID, Prosite_Entry_ID.value as Identification,
Prosite_Entry_AC.value as Accession, Prosite_Entry_DT.value as Dates, Pro-
site_Entry_DE.value as Description,
Prosite_Entry_DO.value as Documentation from
Prosite_Entry_ID, Prosite_Entry_AC, Prosite_Entry_DT,

108

Prosite_Entry_DE, Prosite_Entry_DO where
Prosite_Entry_ID.AID = Prosite_Entry_AC.AID and
Prosite_Entry_ID.AID = Prosite_Entry_DT.AID and
Prosite_Entry_ID.AID = Prosite_Entry_DE.AID and
Prosite_Entry_ID.AID = Prosite_Entry_DO.AID;

create or replace view Prosite_DBRef_SUB1 as
select AID, REGEXP_SUBSTR(value, '[[:alnum:]]{6}') as SwissProt_AC,
REGEXP_SUBSTR(value, '[[:alnum:]]{0,5}_[[:alnum:]]{0,5}') as SwissProt_ID,
substr(REGEXP_SUBSTR(value, '[[:alnum:]];'),1,1) as Flag
from PROSITE where
regexp_instr(value,'[[:alnum:]]{6}') != 0 and
regexp_instr(value,'[[:alnum:]]{0,5}_[[:alnum:]]{0,5}')!=0 and
regexp_instr(value,'[[:alnum:]];') != 0 and
LineCode = 'DR';

create or replace view Prosite_DBRef_SUB2 as
select AID, REGEXP_SUBSTR(value, '[[:alnum:]]{6}',1,2) as SwissProt_AC,
REGEXP_SUBSTR(value, '[[:alnum:]]{0,5}_[[:alnum:]]{0,5}',1,2) as SwissProt_ID,
substr(REGEXP_SUBSTR(value, '[[:alnum:]];',1,2),1,1) as Flag
from PROSITE where
regexp_instr(value,'[[:alnum:]]{6}',1,2) != 0 and
regexp_instr(value,'[[:alnum:]]{0,5}_[[:alnum:]]{0,5}' ,1,2)!=0 and
regexp_instr(value,'[[:alnum:]];',1,2) != 0 and
LineCode = 'DR';

create or replace view Prosite_DBRef_SUB3 as
select AID, REGEXP_SUBSTR(value, '[[:alnum:]]{6}',1,3) as SwissProt_AC,
REGEXP_SUBSTR(value, '[[:alnum:]]{0,5}_[[:alnum:]]{0,5}',1,3) as SwissProt_ID,
substr(REGEXP_SUBSTR(value, '[[:alnum:]];',1,3),1,1) as Flag
from PROSITE where
regexp_instr(value,'[[:alnum:]]{6}',1,3) != 0 and
regexp_instr(value,'[[:alnum:]]{0,5}_[[:alnum:]]{0,5}',1,3)!=0 and
regexp_instr(value,'[[:alnum:]];',1,3) != 0 and
LineCode = 'DR';

create or replace view Prosite_DatabaseReference as
select * from Prosite_DBRef_SUB1
union
select * from Prosite_DBRef_SUB2
union
select * from Prosite_DBRef_SUB3;

g) Creation of table terms

CREATE TABLE term (
id NUMBER(11) NOT NULL UNIQUE,
name VARCHAR2(255) NOT NULL,
term_type VARCHAR2(55) NOT NULL,
acc VARCHAR2(255) NOT NULL,
is_obsolete NUMBER(11) NOT NULL,
is_root NUMBER(11) NOT NULL,
is_relation NUMBER(11) NOT NULL
);

h) Creation of table term2term

CREATE TABLE term2term (
id NUMBER(11),
relationship_type_id NUMBER(11) NOT NULL,
term1_id NUMBER(11) NOT NULL,
term2_id NUMBER(11) NOT NULL,
is_complete NUMBER(11) NOT NULL,
CONSTRAINT PK_term2term PRIMARY KEY (id),

109

CONSTRAINT FK_type FOREIGN KEY (relationship_type_id) REFERENCES term(id),
CONSTRAINT FK_term1 FOREIGN KEY (term1_id) REFERENCES term(id),
CONSTRAINT FK_term2 FOREIGN KEY (term2_id) REFERENCES term(id)
);

