

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS

RAYLEIGH-PLESSETOVA ROVNICE RAYLEIGH-PLESSET EQUATION

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR JUSTÝNA HÁTAŠOVÁ

VEDOUCÍ PRÁCE SUPERVISOR doc. Ing. PAVEL RUDOLF, Ph.D.

BRNO 2015

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav matematiky Akademický rok: 2014/2015

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

student(ka): Justýna Hátašová

který/která studuje v bakalářském studijním programu

obor: Matematické inženýrství (3901R021)

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce:

Rayleigh-Plessetova rovnice

v anglickém jazyce:

Rayleigh-Plesset equation

Stručná charakteristika problematiky úkolu:

Při poklesu lokálního tlaku v kapalině pod hodnotu tlaku nasycených par dochází ke vzniku bublin, které při opětovném nárůstu tlaku velmi rychle zanikají (tzv. kolaps kavitační bubliny). Opakovaný kolaps v blízkosti povrchu vede k jeho poškození nebo-li kavitační erozi. Jedná se o jev velmi častý, přitom nebezpečný, ke kterému dochází při provozu hydraulických strojů. Pro možnost předpovědi kavitačního poškození je nutné znát chování kavitačních bublin, které je popsáno Rayleigh-Plessetovou rovnicí. Jedná se o nelineární obyčejnou diferenciální rovnici druhého řádu, která charakterizuje vývoj poloměru kavitační bubliny v prostředí proměnného tlakového pole. Řešení Rayleigh-Plessetovy rovnice se provádí numericky.

Cíle bakalářské práce:

Cíle bakalářské práce:

- odvození Rayleigh-Plessetovy z rovnice Navier-Stokesovy

- sestavení programu pro řešení Rayleigh-Plessetovy rovnice metodami Runge-Kutta-Fehlberg a Runge-Kutta-Nyström

- numerický výpočet chování bubliny pro různé počáteční podmínky a různé tlakové buzení

Seznam odborné literatury:

[1] Franc, J.P., Michel, J.M.: Fundamentals of cavitation, Springer, 2006

[2] Brennen, C.E.: Cavitation and bubble dynamics, Oxford University Press, 1995

[3] Petrík, P.: Matematická analýza a výpočtový algoritmus Rayleighovy-Plessetovy rovnice v

okolí prudkého kolapsu bublinky, diplomová práce, MFF UK Praha, 2010

Vedoucí bakalářské práce: doc. Ing. Pavel Rudolf, Ph.D.

Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku 2014/2015. V Brně, dne 21.11.2014

L.S.

prof. RNDr. Josef Šlapal, CSc. Ředitel ústavu doc. Ing. Jaroslav Katolický, Ph.D. Děkan fakulty

Abstrakt

Tato bakalářská práce se zabývá numerickým řešením Rayleigh-Plessetovy rovnice. Jejím cílem je tuto rovnici odvodit a sestavit program, který by rovnici řešil metodami Runge-Kutta-Nyström a Runge-Kutta-Fehlberg.

Summary

This bachelor's thesis deals with numerical solution of Rayleigh-Plesset equation. The aim of this thesis is to derive this equation and create a program for solving it with Runge-Kutta-Nyström and Runge-Kutta-Fehlberg methods.

Klíčová slova

Rayleigh-Plessetova rovnice, kavitace, Runge-Kutta-Nystöm, Runge-Kutta-Felhlberg.

Keywords

Rayleigh-Plesset equation, cavitation, Runge-Kutta-Nyström, Runge-Kutta-Fehlberg

HÁTAŠOVÁ, J.*Rayleigh-Plessetova rovnice*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2015. 40 s. Vedoucí diplomové práce doc. Ing. Pavel Rudolf, Ph.D..

Prohlašuji, že jsem bakalářskou práci Rayleigh-Plessetova rovnice vypracovala samostatně pod vedením doc. Ing. Pavla Rudolfa, Ph.D., s použitím materiálů uvedených v seznamu literatury.

Justýna Hátašová

Chtěla bych poděkovat vedoucímu mé bakalářské práce doc. Ing. Pavlu Rudolfovi, Ph.D. za vstřícnost, cenné rady a připomínky při zpracování této závěrečné práce.

Justýna Hátašová

Obsah

1	Úvod							
2	Kavitace							
	2.1	Kavita	ace	. 12				
	2.2	Vznik	bublin	. 12				
	2.3	Fázov	ý diagram	. 13				
	2.4	Odvoz	ení Rayleigh-Plessetovy rovnice	. 14				
3	Numerické metody							
	3.1	3.1 Zdroje chyb						
	3.2	Chyby	v v numerických výpočtech	. 18				
	3.3	Podmi	íněnost úloh a stabilita algoritmů	. 18				
	3.4	Obecn	ná jednokroková metoda	. 19				
	3.5	Explic	$\dot{\operatorname{eitn'i}}$ Eulerova metoda	. 20				
	3.6	Explic	eitní metody Runge-Kutta	. 21				
		3.6.1	Metoda Runge-Kutta 4. řádu	. 25				
		3.6.2	Metoda Runge-Kutta 5. řádu	. 26				
		3.6.3	Metoda Runge-Kutta-Fehlberg	. 27				
		3.6.4	Metoda Runge-Kutta-Nyström	. 28				
4	Numerické řešení Ravleigh-Plessetovy rovnice 30							
	4.1	Bublin	na v proměnlivém tlakovém poli	. 31				
	4.2	Bublir	na ve Venturiho trubici	. 34				
5	Záv	Závěr 3						
6	Sez	Seznam použitých veličin a symbolů 3						
A	Zdrojové kódy v MATLABu							
	A.1 1							
	A.2 2							

1 Úvod

Pojem kavitace je znám již několik století. Název pochází z latinského slova "cavitas", které znamená dutina. Už v roce 1754 se o ní zmiňuje Euler ve své teorii vodních turbín. Do širšího podvědomí se dostala až na přelomu devatenáctého a dvacátého století, kdy bylo zjištěno, že snižuje účinnost lodí, jejichž předpokládaná rychlost neodpovídala výkonu motorů z důvodu ztráty vztlaku na lopatkách lodního šroubu a opotřebení obtékaných materiálů. V současnosti tento zpravidla negativní jev zaznamenáváme u vodních turbín, čerpadel, trysek a dalších hydraulických strojů.

Model kulové bubliny vytvořil v roce 1917 Rayleigh, který uvažoval prázdnou kavitační dutinu (bez páry ani plynu) v nestlačitelné kapalině. Až později v roce 1949 rozšířil Plesset základní teorii, ve které zahrnul vliv povrchového napětí a viskozity vody, a tím pomohl zformulovat vztah popisující kavitaci, který je nyní znám pod názvem Rayleigh-Plessetova rovnice.

V první části této práce je vysvětlena kavitace jako fyzikální jev – kdy a za jakých podmínek nastává a je zde odvozena Rayleigh-Plessetova rovnice. Druhá část je věnována numerickým metodám, které řeší diferenciální rovnice a na závěr jsou dvě vybrané numerické metody aplikovány na odvozenou rovnici a porovnány pro různé parametry.

2 Kavitace

Kavitace znamená pro techniky velikou překážku. V praxi se snažíme o maximální výkon strojů a zařízení, proto je důležité tomuto problému porozumět a snažit se navrhovat technická zařízení tak, aby nebyla provozována v oblasti kavitace. S potlačenou kavitací je možné pracovat jen pokud budeme schopni kavitaci matematicky modelovat.

Tato kapitola čerpá z [2], [3], [11], [13] a [15].

2.1 Kavitace

Kavitací rozumíme jev, kdy v kapalině klesne lokální tlak až pod tlak sytých par (viz kapitola 2.3). Tím vzniknou kavitační bubliny (kaverny), které jsou unášeny do oblasti vyššího tlaku. V této oblasti začne pára v bublinách kondenzovat a zároveň dochází k difuzi plynu do okolní kapaliny. Do uvolněného prostoru vniká velkou rychlostí kapalina, která zbylé plyny stlačuje, přičemž dochází k prudkému zániku (viz obrázek 2.1) a rázům. Imploze je také spojená s vyzařováním tlakových vln. Je zřejmé, že současně v kapalině vzniká a zaniká velké množství bublin a jejich kolaps blízko u obtékaného povrchu může způsobit značné namáhání a následné poškození materiálu. V takovém případě mluvíme o kavitační erozi.

Obrázek 2.1: Zanikající kavitační bublina [7]

2.2 Vznik bublin

Aby se mohla vytvořit bublina, musí dojít k porušení soudržnosti sil. Pokud vezmeme v úvahu kapalinu, tak k vzniku nové bublinky dojde překonáním kohezních (též Van der Waalsových) sil působících mezi jednotlivými molekulami. Při snížení tlaku na tlak nasycených par dojde k odtržení molekul od sebe a vznikne dutina (bublina).

Je prokázáno, že mez pevnosti kapaliny nesnižují rozpuštěné plyny ani mechanické částečky, ale nerozpuštěné plyny zachycené v jejich nerovnostech, které v kapalině tvoří takzvané kavitační jádra. Velikost kavitačních jader je mikroskopická a pouhým okem neviditelná. Až při splnění určitých podmínek, kdy jádro dosáhne kritické velikosti a je rozeznatelné, se z něj stává kavitační bublina.

2. KAVITACE

2.3 Fázový diagram

Na začátku této kapitoly je uvedeno, že jeden z předpokladů vzniku kavitace je pokles tlaku pod tlak sytých par. K vysvětlení tohoto pojmu nám poslouží fázový diagram vody uvedený na obrázku 2.2. Tento diagram znázorňuje rovnovážné stavy pevného (I), kapalného (II) a plynného (III) skupenství a jejich změny v závislosti na tlaku a teplotě. Křivka sytých par (též křivka vypařování) je pak vymezena trojným bodem T, což je stav, při kterém jsou všechna tři skupenství v rovnováze, a kritickou hodnotou K. Pro vodu rovnováha nastává při teplotě $t_T=0.01^{\circ}$ C a tlaku $p_T=611.7$ Pa.

Obrázek 2.2: Fázový diagram vody [9]

2.4. ODVOZENÍ RAYLEIGH-PLESSETOVY ROVNICE

Z fázového diagramu je patrné, že křivka sytých par se dá překročit dvěma způsoby. V kapalině může dojít ke zvyšování teploty (např. ohřevem) za konstantního tlaku, při dostatečném zahřívání překročí teplota bod varu a tím i křivku. Po přechodu do oblasti páry se začne kapalina v celém objemu vypařovat. Tento děj je známý pod názvem var.

Druhý způsob, jak se dostat pod křivku, je izotermické snížení tlaku. V hydraulických strojích je tento pokles způsoben průtokem kapaliny, protože z Bernoulliho rovnice platí, že se zvýšením rychlosti klesá její tlak. Za této situace se dají pozorovat bubliny v proudící kapalině i za pokojové teploty a tento jev označujeme jako kavitace.

2.4 Odvození Rayleigh-Plessetovy rovnice

V praxi je snaha o minimalizování negativních účinků kavitace. Jedním ze způsobů je navrhnout optimální tvar obtékaného povrchu. Proto je nutné znát a umět předpovědět chování bubliny v proměnlivém tlakovém poli. Rayleigh-Plessetova rovnice popisuje chování kulové, osamocené, symetrické bubliny, což v reálném případě neplatí, ale jedná se o poměrně dobré přiblížení.

Uvažujme nejprve bublinu o poloměru R(t) v závislosti na čase t v kapalině o teplotě T_{∞} a tlaku p_{∞} ve velké vzdálenosti od středu bubliny. Předpokládáme, že velikost teploty T_{∞} je konstantní, hodnota tlaku p_{∞} , která ovlivňuje růst a kolaps, je proměnlivá v čase. Kapalinu bereme jako ideální a nestlačitelnou, tím pádem považujeme hustotu vody ρ_L za stálou hodnotu, uvažujeme neměnnou dynamickou viskozitu η_L a homogenní obsah bubliny s rovnoměrným rozložením tlaku $p_B(t)$ a teploty.

Nyní označme tlak p(r, t), teplotu T(r, t) a rychlost u(r, t) působící v bodě vzdáleném r od středu kulové bubliny. Tyto veličiny jsou definovány pro vnějšek kulové sféry neboli pro $r \ge R(t)$. Z fyzikálních zákonů je známé, že vnější rychlost u(r, t) je nepřímo úměrná druhé mocnině vzdálenosti r. Tudíž platí:

$$u(r,t) = \frac{F(t)}{r^2} \tag{2.1}$$

Kde F(t) je nějaká funkce času. Za předpokladu, že nedochází k přenosu hmoty skrz rozhraní bubliny, můžeme ve vzdálenosti R zapsat rychlost ve tvaru:

$$u(R,t) = \frac{dR}{dt}.$$
(2.2)

Dosazením (2.2) do (2.1) a vyjádřením F(t) dostáváme

$$F(t) = R^2 \frac{dR}{dt} \tag{2.3}$$

jako aproximaci funkce F(t). Dále je ukázáno, že tato aproximace je postačující.

Uvažujme nyní bublinu nasycenou vodní párou. Ze zákona zachování hmoty plyne, že množství látky, která za jednotku času přiteče musí také odtéct. V tomto případě platí, že

$$\frac{dm_V}{dt} = \frac{dm_L}{dt},\tag{2.4}$$

kde $\frac{dm_V}{dt}$ značí přírůstek páry a $\frac{dm_L}{dt}$ přírůstek kapaliny za jednotku času. Pro bublinu je přírůstek hmoty uvnitř roven

$$\frac{dm_V}{dt} = \rho_V \frac{dV}{dt} = 4\pi \rho_V R^2 \frac{dR}{dt},$$
(2.5)

2. KAVITACE

kde V je objem kulové bubliny, jejíž změna se vyjádří jako $dV=d(\frac{4}{3}\pi R^3),~\rho_V$ je hustota nasycených par a zároveň platí

$$\frac{dm_L}{dt} = \rho_L u_L 4\pi R^2, \qquad (2.6)$$

kde u_L je relativní rychlost kapaliny vzhledem k povrchu bubliny, kterou vyjádříme z (2.4) dosazením (2.5) a (2.6). Výsledný vztah je ve tvaru

$$u_L = \frac{\rho_V}{\rho_L} \frac{dR}{dt}.$$
(2.7)

Potom

$$u(R,t) = \frac{dR}{dt} - u_L = \frac{dR}{dt} - \frac{\rho_V}{\rho_L}\frac{dR}{dt} = \left(1 - \frac{\rho_V}{\rho_L}\right)\frac{dR}{dt}$$
(2.8)

Platí, že $u(R,t)=\frac{F(t)}{R^2}.$ Dosazením této rovnosti do (2.8) dostaneme hledanou funkciF(t)jako

$$F(t) = \left(1 - \frac{\rho_V}{\rho_L}\right) R^2 \frac{dR}{dt}$$
(2.9)

V reálném případě je $\rho_V \ll \rho_L$, proto tento člen můžeme zanedbat a celou rovnici nahradit vztahem (2.3). V dalším kroku budeme předpokládat, že se jedná o Newtonskou kapalinu, která se řídí Newtonovým zákonem viskozity. Jinými slovy tečné napětí τ je přímo úměrné rychlosti deformace $\frac{du}{dy}$. Tento vztah se dá zapsat ve tvaru $\tau = \eta \frac{du}{dy}$, kde η je dynamická viskozita. Potom proudění v takové kapalině popisuje Navier-Stokesova rovnice (2.10) formulovaná ve sférických souřadnicích.

$$-\frac{1}{\rho_L}\frac{\partial p}{\partial r} = \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial r} - \nu_L \left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r} - \frac{2u}{r^2}\right)\right]$$
(2.10)

Nahrazením u z rovnice (2.1) získáme rovnici

$$-\frac{1}{\rho_L}\frac{\partial p}{\partial r} = \frac{1}{r^2}\frac{\partial F(t)}{dt} - \frac{2F^2(t)}{r^5}$$

Můžeme si všimnout, že člen s kinematickou viskozito
u ν se vyruší. Dále po integraci obdržíme vztah (2.11)

$$-\frac{1}{\rho_L} \int_{p_{(R)}}^{p_{\infty}} dp = \int_R^{\infty} \left[\frac{1}{r^2} \frac{\partial F(t)}{dt} - \frac{2F^2(t)}{r^5} \right] dr$$
$$\frac{p(R) - p_{\infty}}{\rho_L} = \frac{1}{r} \frac{dF}{dt} - \frac{1}{2} \frac{F^2(t)}{r^5}$$
(2.11)

V posledním kroku k dokončení odvození Rayleigh-Plessetovy rovnice musí být zahrnuta okrajová podmínka. Nechť σ_r je normálové napětí (analogie tlaku v kapalině) směřující radiálně od středu bubliny, $p_B(t)$ je vnitřní tlak bubliny a σ povrchové napětí vody. Aby byla splněna rovnováha, musí dojít k vyrovnání tlaků na sféře, tím dostáváme rovnost:

$$\sigma_r + p_B(t) = \frac{2\sigma}{R(t)},\tag{2.12}$$

2.4. ODVOZENÍ RAYLEIGH-PLESSETOVY ROVNICE

kde člen $\frac{2\sigma}{R}$ vyjadřuje, že tlak v bublině roste s velikostí povrchového napětí σ a klesá s poloměrem R. Pro kapalinu s konstatní hustotou a viskozitou platí, že

$$\sigma_r = -p(R) + 2\eta_L \frac{\partial u}{\partial r}.$$
(2.13)

Dále ze vztahu (2.13) dosazením (2.12) pro r=R vyjádříme p(R) jako

$$p(R) = p_B(t) - \frac{4\eta_L}{R(t)} \frac{dR}{dt} - \frac{2\sigma}{R(t)}.$$
 (2.14)

Po dosazení (2.14) a (2.3) do (2.11) s využitím vztahu $\nu_L = \eta_L / \rho_L$ pro r=R dostáváme Rayleigh-Plessetovu rovnici.

$$\frac{p_B(t) - p_\infty(t)}{\rho_L} = R(t)\frac{d^2R}{dt^2} + \frac{3}{2}\left(\frac{dR}{dt}\right)^2 + \frac{4\nu_L}{R(t)}\frac{dR}{dt} + \frac{2\sigma}{\rho_L R(t)}$$
(2.15)

Tuto rovnici poprvé použil pro výpočty Plesset v roce 1949 za předpokladu, že známe tlak $p_B(t)$. Tento tlak obecně není konstatní. Pro další úvahy vyjdeme z Daltonova zákona, který říká, že celkový tlak směsi plynů p je roven součtu parciálních tlaků.

$$p = \sum_{i} p_i, \quad i = 1, ..., n$$

Tedy pro kulovou bublinu vyplněnou párou a plynem můžeme vyjádřit celkový tlak $p_B(t)$ jako

$$p_B(t) = p_V(t) + p_G(t)$$
(2.16)

Kde $p_V(t)$ je tlak nasycených par a $p_G(t)$ tlak plynu. Za předpokladu ideálního plynu považujeme děj uvnitř bubliny za polytropický. Pro takový děj platí, že $pV^n = konst.$, kde n je konstanta polytropy. Z tohoto vztahu vyjdeme pro určení průběhu tlaku plynu. Po drobných úpravách dostaneme:

$$p_G(t) = p_{G0} \left(\frac{R_0}{R(t)}\right)^{3n}$$
(2.17)

Z počáteční podmínky je R_0 poloměr a p_{G0} tlak v čase t=0. Po dosazení (2.16) a (2.17) do (2.15) můžeme původní rovnici přepsat jako

$$\frac{p_V(t) - p_\infty(t)}{\rho_L} + \frac{p_{G0}}{\rho_L} \left(\frac{R_0}{R(t)}\right)^{3n} = R(t)\frac{d^2R}{dt^2} + \frac{3}{2}\left(\frac{dR}{dt}\right)^2 + \frac{4\nu_L}{R(t)}\frac{dR}{dt} + \frac{2\sigma}{\rho_L R(t)}, \quad (2.18)$$

dále využitím vztahu

$$p_{G0} = p_0 - p_V + \frac{2\sigma}{R(t)} \tag{2.19}$$

lze upravit (2.18) následovně:

$$\frac{p_V(t) - p_\infty(t)}{\rho_L} + \frac{1}{\rho_L} \left(p_0 - p_V(t) + \frac{2\sigma}{R_0} \right) \left(\frac{R_0}{R(t)} \right)^{3n} = R(t) \frac{d^2R}{dt^2} + \frac{3}{2} \left(\frac{dR}{dt} \right)^2 + \frac{4\nu_L}{R(t)} \frac{dR}{dt} + \frac{2\sigma}{\rho_L R(t)}$$
(2.20)

Pro větší přehlednost nahradíme $\frac{dR}{dt}$ jednodušším zápisem \dot{R}

$$\frac{p_V(t) - p_\infty(t)}{\rho_L} + \frac{1}{\rho_L} \left(p_0 - p_V(t) + \frac{2\sigma}{R_0} \right) \left(\frac{R_0}{R(t)} \right)^{3n} = R(t)\ddot{R} + \frac{3}{2}\dot{R}^2 + \frac{4\nu_L}{R(t)}\dot{R} + \frac{2\sigma}{\rho_L R(t)}.$$
(2.21)

3 Numerické metody

V reálném životě se často setkáváme s problémy, které se dají charakterizovat matematickým modelem popisujícím nejrůznější fyzikální děje. Někdy může být výpočet složitý nebo neumíme řešení určit analyticky, proto jsme nuceni použít numerické metody. V současné době, kdy jdou moderní technologie rychle dopředu, využíváme pro řešení takových úloh (především pro jejich přesnost) počítače. Potom nastává otázka, do jaké míry jsou takto vypočítané výsledky reálné a přesné.

Numerickou metodou nazýváme řešení numerické úlohy, jejíž vtupní i výstupní data jsou čísla. Algoritmem pak chápeme postup, kterým numerickou metodu vyhodnocujeme. Správná volba numerické metody je v praxi velmi důležitá pro existenci a přenost řešení. Proto se bude první část této kapitoly zabývat chybami, které můžou při výpočtu nastat, a stabilitou numerických metod.

Dále budou popsány metody Runge-Kutta, které jsou nejpoužívanější a nejoblíbenější pro řešení diferenciálních rovnic. První, kdo tyto metody popsal, byl německý matematik C. Runge. V jeho práci z roku 1895 zobecnil Eulerovu metodu, a tím dosáhl větší přesnosti řešení. V dalších letech přispěli k rozvoji Heun a Kutta, kteří popsali metody 4. řádu a navrhli první metodu řádu 5. Další, kdo se touto problematikou zabýval, byl Nyström, který přišel s numerickým řešením diferenciálních rovnic druhého řádu. Nakonec text doplníme o metodu Runge-Kutta-Fehlberg, která narozdíl od výše uvedených formulí používá adaptivní časový krok.

Tato kapitola se opírá zejména o [5], [6], [4], [14] a dále [1], [8], [10] a [12].

3.1 Zdroje chyb

Musíme mít na paměti, že numerické metody nám ve většině případů nedají přesné výsledky. Pro určení přesnosti přibližných hodnot je nutné se zabývat velikostí chyb vzniklých při výpočtu. V první řadě je potřeba se vyhnout nepřesnostem, které nastanou špatným pochopením nebo chybnou interpretací problému.

Za předpokladu, že se těchto chyb vyvarujeme, můžeme ostatní rozdělit do následujících skupin:

Chyby matematického modelu jsou způsobeny rozdílem reálného modelu od idealizovaného, který často uvažujeme. Do této skupiny spadají i chyby ve vstupních datech.

Například pří fyzikálních výpočtech s tíhovým zrychlením g používáme dohodnutou hodnotu, přitom na různých částech zeměkoule tato veličina konstantní není. Dalším zidealizováním modelu může být skutečnost, že naše Země nemá tvar koule, avšak ve většině výpočtů tento fakt zanedbáváme.

Chyba numerické metody vzniká tehdy, pokud použijeme numerickou metodu, která nám vrátí pouze přibližnou hodnotu řešení, například při aproximaci Taylorovým polynomem. Je důležité se proto zabývat odhadem této chyby.

Zaokrouhlovací chyby jsou způsobeny počítáním s nepřesnými hodnotami. První příčinou může být už vložení zaokrouhlených dat. Na počítači můžeme zapsat číslo jen na konečný počet cifer, důsledkem toho dostaneme pouze přibližnou hodnotu. Je zřejmé, že při

3.2. CHYBY V NUMERICKÝCH VÝPOČTECH

výpočtech může docházet k hromadění takto vzniklých chyb, které ve větší míře můžou velmi zkreslit výpočty.

Jako příklad takového problému uvažujme číslo π (nebo obecně číslo s nekonečným desetinným rozvojem). Z předchozího ostavce plyne, že takové číslo nemůže být nikdy vyjádřeno přesně.

3.2 Chyby v numerických výpočtech

Jak už bylo naznačeno výše, někdy jsme nucení nahradit přesné číslo x jeho aproximací \hat{x} . Jejich rozdíl $\Delta x = \hat{x} - x$ se nazývá absolutní chyba aproximace a číslo

$$\frac{\Delta x}{x} = \frac{\hat{x} - x}{x}, \quad x \neq 0$$

se nazývá relativní chyba aproximace. Dále si ukážeme, jaké chyby se dopouštíme při základních aritmetických operacích.

Zvolme si čísla x a y a jejich aproximace \hat{x} a \hat{y} . Pak pro absolutní a relativní chybu jejich součtu a rozdílu platí:

$$\Delta(x\pm y) = \Delta x \pm \Delta y, \qquad \frac{\Delta(x\pm y)}{(x\pm y)} = \frac{x}{(x\pm y)} \frac{\Delta x}{x} \pm \frac{y}{(x\pm y)} \frac{\Delta y}{y}.$$

Dále označme součin předešlých čísel xy, pak jejich relativní a absolutní chybu dostaneme jako:

$$\Delta(xy) = y\Delta x + x\Delta y, \qquad \frac{\Delta(xy)}{xy} = \frac{\Delta x}{x} + \frac{\Delta y}{y}.$$

Obdobně získáme odhad chyb podílu:

$$\Delta\left(\frac{x}{y}\right) = \frac{\Delta x}{y} + \frac{x}{y^2}\Delta y, \qquad \frac{\Delta(x/y)}{(x/y)} = \frac{\Delta x}{x} - \frac{\Delta y}{y}.$$

3.3 Podmíněnost úloh a stabilita algoritmů

Při řešení úloh zkoumáme, jak se nám mění výstupní data v závislosti na vstupních a požadujeme, aby úloha byla dobře podmíněná. Před zavedením tohoto pojmu si nejprve vysvělíme, co znamená korektní úloha.

Numerickou úlohou rozumíme zobrazení y = f(x), které hodnnotě x z množiny vstupních dat X přiřadí údaj y z množiny výstupních dat Y. Pak numerickou úlohu nazveme **korektní**, pokud

- ke každému $x \in X$ existuje jediné $y \in Y$,
- řešení spojitě závisí na vstupních datech, tj. platí $x \to x_0 \Rightarrow f(x) \to f(x_0)$

Potom korektní úloha je **dobře podmíněná**, jestliže malá změna ve vstupních datech způsobí malou změnů výstupních parametrů. Nechť $x + \Delta x$ jsou vstupní data a $y + \Delta y$ příslušná řešení, pak číslo

$$C_p = \frac{|\Delta y|/|y|}{|\Delta x|/|x|}$$

nazýváme číslo podmíněnosti úlohy. Pokud $C_p \approx 1$, je úloha dobře podmíněná. Naopak, pokud $C_p \gg 1$, hovoříme o špatně podmíněné úloze.

Výsledky numerických metod neovlivňují jenom nepřesnosti vstupních dat, ale i zaokrouhlovací chyby, které vznikají ve vstupních datech a dále při samotném výpočtu. Takové algoritmy, které jsou málo citlivé na zaokrouhlovací chyby, nazýváme **numericky stabilní**.

Algoritmus nazveme **stabilní**, pokud je

- dobře podmíněný,
- numericky stabilní.

3.4 Obecná jednokroková metoda

Dále se budeme v textu zabývat numerickým řešením obyčejné diferenciální rovnice 1. řádu

$$y'(x) = f(x, y(x))$$
 (3.1)

s počáteční podmínkou

 $y(x_0) = y_0,$

kde $x_0, y_0 \in R$, f(x, y) je funkce definovaná na oblasti $G \in R \times R$. Tato počáteční úloha se často označuje jako Cauchyova úloha. Otázkou zůstává, za jakých podmínek má tato úloha řešení. Existenci a jednoznačnost můžeme vyšetřit z Peanovy a Picardovy věty. První z uvedených vět mluví pouze o existenci řešení, druhá věta je silnější a zaručuje nám i jednoznačnost. Obě tyto věty si zde bez důkazu uvedeme.

Věta 3.4.1 Peanova věta

Nechť funkce f(x, y) definovaná v $G \in R \times R$ je spojitá v okolí bodu $(x_0, y_0) \in G$. Potom má úloha řešení y(x) v okolí bodu x.

Věta 3.4.2 Picardova věta

Nechť funkce f(x, y) definovaná na G je spojitá a navíc splňuje Lipschitzovu podmínku v proměnné y v okolí bodu (x_0, y_0) , tj. $\exists L \in R$, pro které platí

 $|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|, \qquad \forall [x, y_1], [x, y_2] \in G,$

existuje řešení na nějakém okolí počáteční podmínky a je určeno jednoznačně.

Při numerickém výpočtu vznikají diskeretizační chyby (vlivem zaokrouhlování a aproximací) a jsou dvojího druhu - lokální a globální.

Lokální diskretizační chybou lte_n rozumíme chybu, které se dopustíme v jednom kroku metody použitím přesných hodnot. Můžeme ji vyjádřit následujícím vztahem:

$$y(x_{n+1}) = y(x_n) + hf(x_n, y(x_n)) + lte_n,$$

kde h je délka kroku numerické metody. Velikost této chyby nám určuje řád diferenční metody.

3.5. EXPLICITNÍ EULEROVA METODA

Řekneme, že numerická metoda je **řádu n**, pokud platí

$$lte_n = O(h^{n+1}) \tag{3.2}$$

Je patrné, že kumulace lokálních chyb může ovlivnit hledanou hodnotu. To, jak dobře metoda aproximuje řešení, vyjadřuje **globální diskretizační chyba** e_n , tedy

$$e_n = y(t_n) - y_n$$

Je samozřejmé se zajímat, jak se chyby během výpočtu chovají a jestli numerické řešení konverguje k pravé hodnotě (tj. $|y_n| \to 0$ pro $n \to \infty$). Pro určení stability algoritmu musíme nejdřív vyšetřit funkci stability R(z). Pak obecnou jednokrokovou metodu pro zvolený krok h můžeme nazvat stabilní, jestliže platí

$$|R(z)| \le 1. \tag{3.3}$$

Množina bodů, která tuto vlastnost splňuje, se nazývá oblast absolutní stability.

3.5 Explicitní Eulerova metoda

Explicitní Eulerova metoda je jednou z nejjednodušších formulí pro výpočet (3.1). Můžeme ji zařadit, stejně jako ostatní metody Runge-Kutta, do skupiny jednokrokových diskrétních metod (Diskrétních proto, že přibližné řešení hledáme na nějaké diskrétní množině $\{t_n\}$).

Obecně k-kroková metoda spočívá ve vypočítání přibližného řešení y z předešlých k hodnot $y_0, y_1, \ldots, y_{k-1}$ a $x_0, x_1, \ldots, x_{k-1}$. Z předchozí věty vyplývá, že jednokroková metoda využívá pro výpočet přibližného řešení y_n pouze hodnoty y_{n-1} a x_{n-1} .

Uvažujme nyní interval $\langle a, b \rangle$ a ekvidistantní dělení na tomto intervalu s krokem h. Zřejmě tedy platí, že $x_{n+1} = x_n + h$. Pro odvození explicitní Eulerovy metody vyjdeme z Taylorova rozvoje. S využitím vztahu $y(x_{n+1})=y(x_n+h)$ můžeme psát

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{1}{2}h^2y''(\xi_n), \qquad (3.4)$$

kde $\xi_n \in (x_n, x_{n+1})$. Pokud zanedbáme člen $\frac{1}{2}h^2 y''(\xi_n)$, nahradíme přesné hodnoty $y(x_{n+1})$, $y(x_n)$ aproximovanými a $y'(x_n)$ vyjádříme jako $f(x_n, y(x_n))$ dostáváme rekurentní vztah Eulerovy metody

$$y_{n+1} = y_n + hf(x_n, y_n). (3.5)$$

Tento předpis vlastně znamená, že to dalšího bodu se dostaneme po tečně z bodu předchozího.

Lokální diskretizační chyba je právě rovna členu, který zanedbáváme v (3.4). Tedy

$$lte_n = \frac{1}{2}h^2 y''(\xi_n).$$

Můžeme si všimnout, že tato metoda je řádu 1 viz (3.2).

Oblast absolutní stability můžeme určit z testovací úlohy

$$y' = \lambda y,$$

kde λ je obecně komplexní číslo. Aplikováním (3.5) dostaneme:

$$y_{n+1} = y_n + h\lambda y_n = (1 + h\lambda)^2 y_{n-1} = \dots = (1 + h\lambda)^{n+1} y_0.$$

Aby vypočítaná hodnota konvergovala k přesnému řešení, musí platit

$$(1+z) < 1,$$

kde $z = h\lambda$. Tedy funkce stability R(z) = (1+z). Oblast stability je tedy z (3.3) jednotkový kruh se středem v bodě -1.

Existují také implicitní Eulerovy metody, které vycházejí opět z Taylorova rozvoje. Jak už z názvu vypovídá, hledanou neznámou y_{n+1} musíme vyjádřit z implicitní funkce. To je obecně obtížné. Tato metoda však disponuje jinými přednosmi, a tím je právě oblast stability, která je neomezená. V této práci se implicitní Eulerovou metodou zabývat nebudeme.

3.6 Explicitní metody Runge-Kutta

V této kapitole si uvedeme další jednokrokové metody, které se používají pro řešení diferenciálních rovnic, a jsou to metody Runge-Kutta. Oproti Eulerově metodě jsou tyto formule vyššího řádu, a tudíž dosahují větší přesnosti.

Jak už víme z předchozí podkapitoly, nová aproximace y_{n+1} se počítá pouze z předchozích hodnoty y_n a x_n . Obecný tvar je dán předpisem

$$y_{n+1} = y_n + h\left(\sum_{i=1}^s b_i k_i\right),$$
 (3.6)

kde

$$k_1 = f(x_n, y_n),$$
 (3.7)

$$k_i = f(x_n + hc_i, y_n + h\sum_{j=1}^{i-1} a_{ij}k_i), \quad i = 2, \dots s.$$
 (3.8)

Ćísla a_{ij} , b_i , c_i jsou konstanty a s je stupeň metody. Jedná se opravdu o explicitní metodu, protože nejprve počítáme koeficient k_1 , pomocí něho k_2, \ldots V explicitní Eulerově metodě žádné koeficienty k_1, \ldots, k_s uvedeny nebyly, protože – narozdíl od této metody – se do dalšího bodu neposouváme po tečně z předchozího bodu, ale po směrnici lineární kombinace bodů k_1, \ldots, k_s . Skutečně pro stupeň metody s = 1 dostáváme z (3.6)-(3.8) výše zmiňovanou Eulerovu metodu. Uvedené konstatny můžeme přehledně zapsat do Butcherovy tabulky:

3.6. EXPLICITNÍ METODY RUNGE-KUTTA

Koeficienty nad hlavní diagonálou jsou nulové. V uvedených metodách zároveň platí, že

 $c_i = a_{i1} + a_{i2} + \ldots + a_{i,i-1}, \qquad i = 1, 2, \ldots, s.$

Otázkou zůstává, jakým způspobem vypočítat konstanty pro vyšší řády. Vyjdeme opět z Taylorova rozvoje a ukážeme podobnost se stromovým grafem, který využijeme při odvození.

Uvažujme stromový graf, který je neorientovaný, souvislý (tedy každé dva vrcholy jsou spojeny nějakou cestou) a neobsahuje žádnou kružnici. Takový graf má jeden kořen, ze kterého jdou hrany do ostatních vrcholů. List potom představuje vrchol, ze kterého již nevychází žádná hrana. Stupněm stromu rozumíme počet jeho vrcholů a úrovní chápeme číslo, které označuje nejmenší počet kroků, kterými se dá dostat od daného vrcholu ke kořenu. Dále označme i, j, k, \ldots příslušné úrovně (směrem od kořene dál), pak kořen na nulté úvovni bude b_i , listy ponesou označení c_j, c_k, \ldots a ostatní vrcholy pojmenujeme a_{ij}, a_{jk}, \ldots , kde index na první pozici značí předešlou úroveň a druhý index úroveň stávající. Jako příklad je zde obrázek 3.1, který představuje strom stupně 4.

Obrázek 3.1: Ukázka stromu stupně 4

Nyní sestrojíme Taylorův polynom pro metodu třetího řádu. Víme, že bude obsahovat derivace y', y'' a y''', první derivaci nahradíme obecnou funkcí f a vyjádříme ostatní derivace:

$$y' = f \tag{3.9}$$

$$y'' = f_y f \tag{3.10}$$

$$y''' = f_{yy}f^2 + f_y^2 f. ag{3.11}$$

Každý jednotlivý člen se dá zapsat do stromového grafu a platí, že počet prvních derivací odpovídá počtu listů stromu. Pro představu jsou zde uvenedy grafy výrazů $f_{yy}f^2$ a $f_y^2 f$ (obrázkek 3.2). Je tedy zřejmé, že koeficienty z (3.6)-(3.8) se dají určit ze všech stromových grafů daných členů derivací.

Potom můžeme stromu přiřadit číslo γ a sestavit polynom $\Phi,$ které splňují následující rovnost:

$$\Phi = \frac{1}{\gamma}.\tag{3.12}$$

Sestrojit Φ není obtížné, je to součin všech vrcholů. Určení koeficientu γ je trochu pracnější, jedná se o součin stupňů stromů, které vzniknou postupným ubíráním vrcholů od kořene až na stupeň 1. Pro lepší představu je zde uveden obrázek 3.3 stromu řádu 6 a výpočet parametrů. Pro tento případ číslo γ vychází :

$$\gamma = 6 \cdot 3 \cdot 1 = 6$$

3. NUMERICKÉ METODY

Obrázek 3.2: Znázornění členů $f_{yy}f^2$ a f_y^2f

a odpovídající polynom Φ

$$\Phi = b_i c_j^2 a_{ij} c_k^2$$

Systém rovnic Φ_k , které popisují vztahy mezi koeficienty a_{ij} , b_i , c_i , je potom množina všech odpovídajících polynomů příslušného stupně splňující (3.12).

Obrázek 3.3: Graf stromu stupně 6

Nyní se pokusíme sestavit rovnice pro n=3. Z (3.9)-(3.11) sestrojíme příslušné grafy a určíme čísla γ .

Dále dosazením do (3.12) dostáváme výslednou soustavu rovnic, kterým se říká také podmínky řádu:

$$\Phi_1 = \sum_{i=1}^3 b_i = b_1 + b_2 + b_3 = 1$$
$$\Phi_2 = \sum_{i,j=1}^3 b_i c_j = b_2 c_2 + b_3 c_3 = \frac{1}{2}$$
$$\Phi_3 = \sum_{i,j=1}^3 b_i c_j^2 = b_2 c_2^2 + b_3 c_3^2 = \frac{1}{3}$$

23

3.6. EXPLICITNÍ METODY RUNGE-KUTTA

$$\Phi_4 = \sum_{i,j,k=1}^3 b_i a_{ij} c_k = b_3 a_{32} c_2 = \frac{1}{6}$$

Dostáváme přeurčenou soustavu čtyř rovnic o šesti neznámých. Pro konkrétní metodu 3. řádu musíme zvolit dva parametry a ostatní koeficienty dopočítat.

Oblasti absolutní stability se určí stejně jako u explicitní Eulerovy metody. Do řádu n = 5 jsou zanázorněny na obrázku 3.6, který uvádí [4] Pro 2.– 4. řád lze funkci stability zapsat následovně:

$$\begin{array}{ll} R(z) = 1 + z + \frac{1}{2}z^2 & n = 2 \\ R(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 & n = 3 \\ R(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \frac{1}{24}z^4 & n = 4 \\ R(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \frac{1}{24}z^4 + \frac{1}{120}z^5 + Cz^6 & n = 5 \end{array}$$

C je konstanta, která se určí z konkrétní metody.

Obrázek 3.4: Oblasti absolutní stability do řádu $n{=}5$

Podobně jako u Eulerových formulí existují také implicitní Runge-Kuttovy metody, kde výpočet koeficientů k_1, \ldots, k_s vede na soustavu implicitně zadaných rovnic.

3. NUMERICKÉ METODY

3.6.1 Metoda Runge-Kutta 4. řádu

Klasickou metodou Runge-Kutta rozumíme metodu 4. řádu. Dříve byla tato metoda velmi používaná, protože je celkem jednoduchá. V současné době, kdy počítače zvládají takové výpočty velmi rychle, dáváme přednost metodám s vyšší přesností.

Pro odvození vztahů k výpočtu potřebných koeficientů opět vyjdeme ze stromových grafů. Všechny varianty do řádu 4 jsou uvedeny na obrázku 3.5.

Při zápisu podmínek řádu vyjdeme z předpokladu, že pro stupeň stromu s = 4 uvažujeme $a_{ij} = 0 (i > j)$. Tím pádem odpadnou tři poslední stromy z předešlého obrázku a ostatní podmínky řádu dostaneme ve tvaru:

$$\sum_{i=1}^{4} b_i = b_1 + b_2 + b_3 + b_4 = 1$$

$$\sum_{i,j=1}^{4} b_i c_j = b_2 c_2 + b_3 c_3 + b_4 c_4 = \frac{1}{2}$$

$$\sum_{i,j,k=1}^{4} b_i a_{ij} c_k = b_3 a_{32} c_2 + b_4 a_{42} c_2 + b_4 a_{43} c_3 = \frac{1}{6}$$

$$\sum_{i,j=1}^{4} b_i c_j^2 = b_2 c_2^2 + b_3 c_3^2 + b_4 c_4^2 = \frac{1}{3}$$

$$\sum_{i,j=1}^{4} b_i c_j^3 = b_2 c_2^3 + b_3 c_3^3 + b_4 c_4^3 = \frac{1}{4}$$

To opět vede na přeurčenou soustavu rovnic. Koeficienty klasické metody 4. řádu jsou uvedeny v následující Butcherově tabulce.

$$\begin{array}{c|ccccc} 0 & & & \\ 1/2 & 1/2 & & \\ 1/2 & 0 & 1/2 & & \\ \hline 1 & 0 & 0 & 1 & & \\ \hline & 1/6 & 1/3 & 1/3 & 1/6 & \\ \hline \end{array}$$

Pro tuto tabulku můžeme zapsat příslušné řešení y_{n+1} ve tvaru

~

$$y_{n+1} = y_n + h \frac{(k_1 + 2k_2 + 2k_3 + k_4)}{6},$$

kde

$$k_{1} = f(x_{n}, y_{n}),$$

$$k_{2} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{1}),$$

$$k_{3} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{2}),$$

$$k_{4} = f(x_{n} + h, y_{n} + hk_{3}).$$

3.6.2 Metoda Runge-Kutta 5. řádu

Tato metoda se nedá zkonstruovat tak jednoduše jako například metoda řádu 3, která byla v této kapitole uvedena. Je logické, že se zvětšujícím se řádem numerické metody se velmi rychle zvětšuje počet stromových grafů a podmínky řádu nebude lehké sestrojit, proto už neplatí, že řád metody se rovná stupni stromu. Aby takové formule bylo možné sestavit, musí se zvýšit počet podmínek, toho se dosáne zvýšením stupně metody.

Dá se ukázat, že metoda 5. řádu je minimálně šestistupňová. Výpočet koeficientů jedné konkrétní metody tohoto řádu je uveden zde:

$$y_{n+1} = y_n + \frac{7k_1 + 32k_3 + 12k_4 + 32k_5 + 7k_6}{90},$$

kde

$$\begin{aligned} k_1 &= f(x_n, y_n), \\ k_2 &= hf\left(x_n + \frac{h}{4}, y_n + \frac{k_1}{4}\right), \\ k_3 &= hf\left(x_n + \frac{h}{4}, y_n + \frac{k_1 + k_2}{8}\right), \\ k_4 &= hf\left(x_n + \frac{h}{2}, y_n + \frac{k_3}{2}\right), \\ k_5 &= hf\left(x_n + \frac{3}{4}h, y_n + \frac{3k_1 - 6k_2 + 6k_3 + 9k_4}{16}\right), \\ k_6 &= hf\left(x_n + h, y_n + \frac{-3k_1 + 8k_2 + 6k_3 - 12k_4 + 8k_5}{7}\right)\end{aligned}$$

a odpovídající Butcherova tabulka:

3. NUMERICKÉ METODY

3.6.3 Metoda Runge-Kutta-Fehlberg

Jak už bylo nastíněno v úvodu, velká výhoda metody Runge-Kutta-Fehlberg spočívá v tom, že používá adaptivní časový krok. To představuje značné urychlení výpočtů složitých problémů, protože na relativně klidném intervalu pracuje metoda s větším krokem a naopak, pokud dochází k prudkým změnám řešení, krok se zkrátí.

V každém kroku se vypočítají dvě aproximace řešení, které se dále porovnávají a odhaduje se chyba. Zde je uvedena metoda, která používá pětistupňovou metodu Runge-Kutta řádu 4 a šestistupňovou metodu Runge-Kutta řádu 5.

Koeficienty k_1, \ldots, k_6 používané v této metodě můžeme vyjádřit v obecném tvaru:

$$k_{1} = f(x_{n}, y_{n}),$$

$$k_{i} = f(x_{n} + hc_{i}, y_{n} + h\sum_{j=1}^{i-1} a_{ij}k_{j}).$$

Pro uvažovanou metodu 4. řádu se dá vyjádřit nová přibližná hodnota y_{n+1} jako

$$y_{n+1} = y_n + h \sum_{i=1}^{5} b_i k_i + O(h^5)$$

a dále přesnější aproximace metodou 5. řádu

$$y_{n+1}^* = y_n + h \sum_{i=1}^6 b_i^* k_i + O(h^6).$$

Pro odhad lokální chyby platí:

$$le_n = |y_{n+1} - y_{n+1}^*|.$$

Koeficienty a_{ij}, c_i, b_i, b_i^* určuje uvedená Butcherova tabulka.

Tabulka 3.1: Butcherova tabulka metody Runge-Kutta-Fehlberg

0						
1/4	1/4					
3/8	3/32	9/32				
12/13	1932/2197	-7200/2197	7296/2197			
1	439/216	-8	3680/513	-845/4104		
1/2	-8/27	2	-3544/2565	1859/4104	-11/40	
	25/260	0	1408/2565	2197/4104	-1/5	
*	16/135	0	6656/12825	28561/56430	-9/50	2/55

V každé iteraci dostaneme dvě aproximace y_{n+1} a y_{n+1}^* a lokální odhad jejich chyby le_n , která nám pomůže určit novou délku kroku h. Řízení kroku nám umožňuje, aby se tato chyba pohybovala kolem tolerance tol, kterou požadujeme. Při výpočtu se postupuje následovně:

• V každém kroku se vypočítá le_n a porovná se s tol,

3.6. EXPLICITNÍ METODY RUNGE-KUTTA

- pokud $lte_n < tol$, považujeme krok za úspěšný, přepočítáme délku kroku h a pokračujeme ve výpočtu,
- při neúspěšném kroku se pouze provede redukce kroku h a výpočet se opakuje.

Při úspěšném i neúspěšném pokusu se optimální délka kroku určuje stejným způsobem:

$$h = h\alpha \left(\frac{tol}{lte_n}\right)^{(1/n+1)},$$

kde α je ochranný faktor ($\alpha<1)$
an je řád metody. V dalších výpočtech je zvolen
 $\alpha=0.86.$

Výpočet dále pokračuje s méně přesnou hodnotou y_{n+1} (přesnější metoda pouze pomáhá odhadnout chybu). Můžeme tedy říct, že výpočet probíhá bez lokální extrapolace.

3.6.4 Metoda Runge-Kutta-Nyström

Dosud jsme se zabývali řešením obyčejných diferenciálních rovnic prvního řádu. Pro řešení Rayleigh-Plessetovy rovnice však potřebujeme metodu, která by řešila následující problém:

$$y''(x) = f(x, y(x), y'(x))$$
(3.13)

s podmínkami

$$y(x_0) = y_0$$

 $y'(x_0) = y'_0.$

Jeden ze způsobů je převední rovnice (3.13) na soustavu diferenciálních rovnic prvního řádu

$$y' = f(v),$$
$$v' = g(t, y, v)$$

a vyřešit je známými metodami. Ukážeme si, jak by řešení vypadalo, kdybychom použili metodu Runge-Kutta 4. řádu. V každé iteraci musíme spočítat nové y_{n+1} a v_{n+1} a jim odpovídající koeficienty k_1, \ldots, k_4 a l_1, \ldots, l_4 . Vyjdeme z Butcherovy tabulky uvedenou pro klasickou metodu 4. řádu, pro kterou můžeme řešení zapsat v následujícím tvaru:

$$k_1 = f(v_n)$$

$$l_1 = g(t_n, y_n, v_n)$$

$$k_2 = f\left(v_n + \frac{h}{2}l_1\right)$$

$$l_2 = g\left(t + \frac{h}{2}, y_n + \frac{h}{2}k_1, v_n + \frac{h}{2}l_1\right)$$

$$k_3 = f\left(v_n + \frac{h}{2}l_2\right)$$

3. NUMERICKÉ METODY

$$l_{3} = g\left(t + \frac{h}{2}, y_{n} + \frac{h}{2}k_{2}, v_{n} + \frac{h}{2}l_{2}\right)$$

$$k_{4} = f(v_{n} + hl_{2})$$

$$l_{4} = g(t_{n} + h, y_{n} + hk_{3}, v_{n} + hl_{3})$$

$$y_{n+1} = y_{n} + h\frac{(k_{1} + 2k_{2} + 2k_{3} + k_{4})}{6}$$

$$v_{n+1} = v_{n} + h\frac{(l_{1} + 2l_{2} + 2l_{3} + l_{4})}{6}$$

Druhý ze způsobů je použít metodu Runge-Kutta-Nyström, ve které nemusíme počítat koeficienty l_1, \ldots, l_4 , čímž se výpočet zjednoduší. Odpovídající algoritmus (opět pro řád 4) je následovný:

$$k_{1} = hf(t_{n}, y_{n}, v_{n}),$$

$$k_{2} = hf\left(t_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}v_{n} + \frac{h}{8}k_{1}, v_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(t_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}v_{n} + \frac{h}{8}k_{1}, v_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf\left(t_{n}, y_{n} + hv_{n} + \frac{h}{2}k_{3}\right),$$

$$y_{n+1} = y_{n} + h\left(v_{n} + \frac{(k_{1} + k_{2} + k_{3})}{3}\right),$$

$$v_{n+1} = v_{n} + \left(\frac{k_{1} + 2k_{2} + 2k_{3} + k_{4}}{3}\right).$$

Dále v textu budou porovnány metody Runge-Kutta-Nyström (RKN) a Runge-Kutta--Fehlberg (RKF), proto je zde uvedeno srovnání těchto dvou metod na příkladu tlumených kmitů, který je zadán rovnicí y'' + 0.2y' + y = 0, y(0) = 10 a y'(0) = 0. Pro tento problém dokážeme vypočítat analytické řešení a porovnat ho s numerickým výsledkem. Výsledný graf na obrázku 3.6 představuje závislost výchylky y na čase t. Pro ukázku, že jsou řešení rozdílná, je zde uveden i detail průběhu v časovém intervalu $t \in < 20, 25 >$ (obrázek 3.7) a tabulka 6, ve které je vidět rozdíl v minimální (h_{min}) a maximální (h_{max}) délce kroku, počtu iterací (i) a řešení y(t) v čase t = 23s při toleranci $tol = 1e^{-4}$ a startovacím kroku h = 0.05.

Analytické řešení rovnice tlumených kmitů y'' + 0.2y' + y = 0s podmínkami y(0) = 10 a y'(0) = 0 můžeme zapsat ve tvaru:

$$y(t) = e^{-0.1t} (1.00504 \sin(0.994987t) + 10\cos(0.994987t)).$$

Z toho dostáváme kontrétní řešení y(23) = -0.706788. V tabulce 6 jsou uvedeny aproximace příslušnými numerickými metodami v čase t = 23s a je patrné, že v tomto případě byla přesnější metoda RKF, která ale pro výpočet potřebovala zhruba $15 \times$ více iterací.

Obrázek 3.6: Graf tlumených kmitů metodami RKN a RKF

Tabulka 3.2: Srovnání vybraných parametrů

RKN	parametry	RKF
0.05	h_{min}	3.237567714551157e-04
0.05	h_{max}	0.8177
1402	i	22810
0.00897	$t_c[s]$	0.000311
-0.6604	y(23)	-0.7063

4 Numerické řešení Rayleigh-Plessetovy rovnice

Poslední kapitola této práce je věnována numerickému výpočtu Rayleigh-Plessetovy rovnice metodami Runge-Kutta-Nyström a Runge-Kutta-Fehlberg. Řešení spočívá v sestavení problému programem MATLAB a následném zpracováním. Tyto metody jsou vyzkoušeny a vzájemně porovnány na dvou případech. Je samozřejmé, že chceme vědět, která z uvedených metod je přesnějí a jak velká je výsledná chyba. Vzhledem k tomu, že rovnice nemá analytické řešení, by ověření muselo proběhnout experimentálně, což není možné.

Obrázek 3.7: Detail průběhu funkce metodami RKN a RKF

4.1 Bublina v proměnlivém tlakovém poli

Nejprve se budeme zabývat kulovou bublinou ve vodě, kde tlakové pole je vyvoláno ultrazvukovou vlnou a má periodický průběh (obrázek 4.1). Při výpočtu vyjdeme ze vztahu (2.21) pro následující vstupní parametry:

$$R_{0} = 4.5 \,\mu m$$

$$R(0) = 4.5 \,\mu m$$

$$\dot{R}(0) = 0 \,m/s$$

$$\nu = 1 \times 10^{-5} \,m^{2}/s$$

$$n = 1.33$$

$$p_{0} = 100000 \,Pa$$

$$p_{v} = 0 \,Pa$$

$$\rho_{L} = 998 \,kg/m^{3}$$

$$\sigma = 0.0725 \,N/m$$

$$p_{\infty}(t) = p_{0} - A \cos(2\pi f t)$$

$$A = 120000 \,Pa$$

$$f = 26500 \,Hz$$

Výpočet provedeme pro počáteční krok $h = 7.547 \times 10^{-10}$ a pro toleranci $tol = 1 \times 10^{-10}$ (pro metodu RKF). Průběh pro jednu periodu tlakového pole je znázorněn na obrázku 4.2,

Obrázek 4.1: Sinusový průběh budícího tlaku

Tabulka 4.1: Srovnání vybraných parametrů

RKN	parametry	RKF
$7.547e^{-10}$	h_{min}	2.758211418655764e - 10
$7.547e^{-10}$	h_{max}	7.066092310378487e - 07
50000	i	10619
3.16004	$t_c[s]$	2.867304

zároveň je zde uveden detail řešení v kritickém místě, kde má poloměr bubliny minimální hodnotu (obrázek 4.3). Můžeme si všimnout, že pro požadovanou toleranci potřebuje metoda RKF přibližně pětinu kroků než metoda RKN. Je porovnán i celkový čas metody t_c , který je pro obě metody zhruba stejný. Více zajímavější je rozdíl mezi největším a nejmenším krokem u RKF. Můžeme si všimnout, že mezi minimální a maximální hodnotou je rozdíl tří řádů, to je také důvodem, proč metoda potřebuje méně iterací.

Obrázek 4.2: Průběh poloměru bubliny

Obrázek 4.3: Detail průběhu funkce metodami RKN a RKF

4.2 Bublina ve Venturiho trubici

V dalším příkladu je rovnice řešena pro reálné rozložení tlaku ve Venturiho trubici, což je typ dýzy, která se používá jako průtokoměr. Schéma je uvedeno na obrázku 4.4.

Obrázek 4.4: Schéma Venturiho trubice

4. NUMERICKÉ ŘEŠENÍ RAYLEIGH-PLESSETOVY ROVNICE

Ve zúženém místě dojde k největšímu poklesu lokálního tlaku, tuto skutečnost můžeme vidět na obrázku 4.5, který znázorňuje průběh tlaku p_t pro jednu konkrétní proudnici v trubici. Naměřená data byla po částech aproximována polynomem šestého stupně, oblast konstantního tlaku byla nahrazena lineární křivkou. Pro výpočet byla použita modifikovaná rovnice (2.21), ve které je zahrnutý člen, který popisuje slačitelnost plynů uvnitř bubliny, a tlak p_G obsahuje kritický poloměr h_k (tyto dva členy řešenou rovnici zpřesňují). Výsledný vztah je tedy ve tvaru:

$$\frac{p_V(t) - p_\infty(t)}{\rho_L} + p_G + \frac{R}{c_l} \frac{d}{dt} p_G = R(t)\ddot{R} + \frac{3}{2}\dot{R}^2 + \frac{4\nu_L}{R(t)}\dot{R} + \frac{2\sigma}{\rho_L R(t)},\tag{4.1}$$

kde

$$p_G = \left(p_0 - p_V(t) + \frac{2\sigma}{R_0}\right) \left(\frac{R_0^3 - h_r^3}{R(t)^3 - h_r^3}\right)$$

a c_l je rychlost zvuku ve vodě. Výpočet probíhal pro následující parametry:

$$\begin{aligned} R_0 &= 50 \ \mu m \\ R(0) &= 50 \ \mu m \\ \dot{R}(0) &= 0 \ m/s \\ \nu &= 1e^{-5} \ m^2/s \\ n &= 1 \\ p_0 &= 101325 \ Pa \\ p_v &= 0 \ Pa \\ \rho_L &= 998 \ kg/m^3 \\ S &= 0.0725 \ N/m \\ p_\infty(t) &= p_0 - p_t \ Pa \\ c_l &= 1481[m/s] \\ h_r &= 1e^{-5} \end{aligned}$$

Obrázek 4.5: Průběh tlaku ve Venturiho trubici

4.2. BUBLINA VE VENTURIHO TRUBICI

Numerické řešení se ukázalo jako složité, pro různou kombinaci počátečního kroku a tolerance se podařilo získat průběh metodou RKF až do místa, kde poloměr bubliny klesne na nejnižší hodnotu (obrázek 4.6). V okolí tohoto místa měla metoda problém dál správně pokračovat. K přesnějšímu výpočtu by došlo, kdyby byla zmenšena tolerance nebo počáteční krok. To by ovšem vedlo na velmi časově náročný výpočet, při kterém by metoda udělala velký počet kroků. Problém se tedy jeví jako tuhý.

Obrázek 4.6: Průběh poloměru bubliny

5 Závěr

Cílem této práce bylo odvodit Rayleigh-Plessetovu rovnici a sestavit program pro řešení metodami Runge-Kutta-Nyström a Runge-Kutta-Fehlberg.

Po úvodní části byla rovnice odvozena v druhé kapitole, která se dále věnuje kavitaci a jejímu vzniku. Prostřední část se zabývá numerickými metodami a jejich stabilitě, značnou část kapitoly pak tvoří popsání vybraných metod Runge-Kutta, které se používají k řešení obyčejných diferenciálních rovnic. Na závěr byl proveden numerický výpočet sestavenými metodami v programu MATLAB.

Numerický výpočet probíhal pro různé počáteční podmínky. V prvním případu jsme uvažovali kulovou bublinu v proměnlivém sinusovém tlakovém poli. Pro tento případ byla metoda s adaptivním časovým krokem o trochu rychlejší a hlavně potřebovala o pětinu méně iterací. Zajímavý je také fakt, že rozdíl mezi maximálním a minimálním krokem byl zhruba tři řády. Dále byla rovnice řešena pro bublinu ve Venturiho trubici, ve které jsme znali rozložení budícího tlaku. Naměřené hodnoty byly po částech proloženy polynomy šestého stupně, aby se dosáhlo přesnější interpolace. V místě lineárního chování byla data proložena pouze přímkou. Problém se ukázal jako tuhý, tedy pro jeho vyřešení těmito metodami s omezenou oblastí stability je potřeba velký počet kroků. Možné řešení spočívá v použití rychlejšího programu pro výpočty nebo posouzení, zda by nebylo vhodnější použít jinou metodu s neomezenou oblastí absolutní stability.

LITERATURA

Literatura

- ATKINSON, Kendall E.: Numerical solution of ordinary differential equations. Hoboken: Wiley, 2009, xii, 252 s. Pure and applied mathematics (John Wiley: Unnumbered). ISBN 978-0-470-04294-6.
- [2] BRDIČKA, M.: Kavitace: diagnostika a technické využití. 1. vyd. Praha: SNTL, 1981, 332 s.
- [3] BRENNEN, C.E: Cavitation and bubble dynamics. Oxford University Press, 1995.
- [4] BUTCHER, J.: Numerical methods for ordinary differential equations. 2nd ed. Chichester, West Sussex, England: J. Wiley, 2003, xiv, 425 s. ISBN 04-719-6758-0.
- [5] ČERMÁK, L.: Numerické metody pro řešení diferenciálních rovnic. Vyd. 1. Brno: Litera Brno, 2013, 81 s. ISBN 978-80-903586-7-6.
- [6] ČERMÁK, L., HLAVIČKA, R.: Numerické metody. Vyd. 2. Brno: Akademické nakladatelství CERM, 2008, 110 s. ISBN 978-80-214-3752-4.
- [7] FOCUS-IT: Cavitation[online].[cit. 2015-05-29]. Dostupné z: http://eswt.net/cavitation.
- [8] FRANCÜ, J.: *Obyčejné diferenciální rovnice*. [online]. [cit. 2015-05-16]. Dostupné z: http://www.mat.fme.vutbr.cz/home/francu/
- [9] FYZIKA: Látka a její skupenství [online]. [cit. 2015-05-29]. Dostupné z: http://www.musilek.eu/fyzika/32.html?menu=term
- [10] JAŠKOVÁ, J.: Diferenční metody pro diferenciální rovnice a inkluze. [Diplomová práce.] Olomouc: UPOL, PřF, 2010.
- [11] HILGENFELDT, S., BRENNER, M. P., GROSSMANN, S. a LOHSE, D.: Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. ISBN 10.1017/s0022112098001207.
- [12] MATHEWS, J.: Numerical methods using MATLAB. 4th ed. Upper Saddle River: Pearson Prentice Hall, 2004, 680 s. ISBN 01-306-5248-2.
- [13] NOSKIEVIČ, J.: Kavitace v hydraulických strojích a zařízeních. Vyd. 1. Praha: SNTL, 1990, 333 s. ISBN 80-030-0206-0.
- [14] PERSSON, P.: Runge-Kutta Order Conditions [online]. [cit. 2015-05-16]. Dostupné z: http://persson.berkeley.edu/228A/Fall10/
- [15] PETRÍK, P.: Matematická analýza a výpočtový algoritmus Rayleighovy-Plessetovy rovnice v okolí prudkého kolapsu bublinky. [Diplomová práce.] Praha: UK, MFF, 2010.

6 Seznam použitých veličin a symbolů

Symbol	Rozměr	Veličina
c_l	[m/s]	rychlost zvuku ve vodě
C_p		číslo podmíněnosti
e_n		globální chyba
h		krok metody
h_{min}		minimální krok metody
h_{max}		maximální krok metody
i		počet iterací
K		kritický bod
lte_n		lokální diskretizační chyba
n		polytropická konstanta
p_0	[Pa]	počáteční tlak
$p_B(t)$	[Pa]	tlak bubliny
p_G	[Pa]	tlak plynu v bublině
p_{G0}	[Pa]	počáteční tlak plynu v bublině
p_T	[Pa]	tlak trojného bodu vody
p_V	[Pa]	tlak nasycených par
p_{∞}	[Pa]	tlak ve velké vzdálenosti od bubliny
R(t)	[m]	poloměr bublinky v čase t
R_0	[m]	počáteční poloměr bubliny
t	[s]	čas
T		trojné bod vody
t_c	[s]	celkový čas metody
t_t	$[^{\circ}C]$	teplota trojného bodu vody
T_{∞}	[K]	teplota kapaliny ve vzdálenosti od bubliny
tol		tolerance
u_L	[m/s]	rychlost kapaliny
u(R,t)	[m/s]	rychlost bubliny v místě R a čase t
p_{∞}	[Pa]	
α		bezpečnostní faktor
η_L	[Pa/s]	dynamická viskozita
ν	$[m^2/s]$	kynematická viskozita
$ ho_L$	$[kg/m^3]$	hustota vody
σ	[N/m]	povrchové napětí
σ_r	[N/m]	normálové napětí

A Zdrojové kódy v MATLABu

Zdrojové kódy scriptů a textový soubor s naměřenými hodnotami tlakového pole ve Venturiho trubici jsou rozděleny do dvou složek na přiloženém CD. V první složce (1) jsou zdrojové kody pro řešení průběhu bubliny v sinusovém proměnlivém poli, druhá složka (2) pak obsahuje skript a naměřené hodnoty tlaku ve Venturiho trubici.

A.1 1

- RKF.m script pro metodu Runge-Kutta-Fehlberg
- RKN.m script pro metodu Runge-Kutta-Nyström

A.2 2

- VenRKF.m script pro metodu Runge-Kutta-Fehlberg
- castlak.txt naměřené hodnoty tlakového pole