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Abstract

Homodyne detection is a powerful tool used in many fields of optics such as
optical communications and metrology. This work aims at quantum homodyne
detection, which is widely used in quantum optics for the measurement of quan-
tum states. Here we perform the detailed characterization of a time-resolved
quantum homodyne detector and demonstrate its balancing and calibration.

The homodyne detection is applied to the characterization of coherent state
thermalization. The single-mode thermal light can be emulated by the inter-
ference of many coherent states with random phases. We show the dynamic
of the transition between coherent and thermal states by mixing two and four
coherent states and perform the homodyne measurement of the resulting states
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Chapter 1

Introduction

Homodyne detection is a measurement method widely used in many fields of
optics. The most important application is in optical communications [1, 2, 3],
where is used for measuring signals with phase or quadrature-amplitude modu-
lation. Another important application of homodyne detection is optical metrol-
ogy. A special form of homodyne detection is quantum homodyne detection
used for the observation of quantum states such as squeezed states. This can
be used in quantum cryptography and basic research such as gravitational-wave
detection [4], or elsewhere where we need to work with well-defined quantum
states.

Unlike other methods such as detectors using one photodiode or charge-
coupled devices, homodyne detection offers the possibility to measure phase
information of an unknown signal [5]. The phase information is obtained by
comparing the measured signal with a reference signal (local oscillator), which
allows measuring the relative phase between these signals. This method can be
used with arbitrary optical or RF signals. In homodyne detection, the measured
signal and the local oscillator have the same frequency. For this reason, it is
convenient to use the same light source for both signals.

The measured signal and the local oscillator interfere at the beam splitter
and the high quantum efficiency photodiodes detect the output signals. For
balanced homodyne detection, the mean values of the photocurrent from the
photodiodes are the same. We get the signal from the detector by subtracting
the signals from photodiodes. Since the signal from homodyne detection is
weak, the amplifier is an important part of homodyne detection. The noise
of the amplifier must be lower than the noise of the signal. For this reason,
we can use only a few suitable amplifiers, especially in a time domain. There
are two types of amplifiers mostly used for homodyne detection, transimpedance
amplifiers and charge sensitive amplifiers. In this work, we use a charge sensitive
amplifier, first employed for quantum homodyne detection by Hansen et al. [6].

There are two basic modes of homodyne detection, the frequency domain
where the local oscillator and signal are obtained from continuous-wave sources,
and the time domain, where the local oscillator and signal are obtained from
pulsed sources. The homodyne detection in the frequency domain can be used
for the measurement of coherent, vacuum and squeezed states of light, which can
be used, for example, for optical communications. On the other hand, nontrivial
quantum states are usually generated in the time domain [7, 8]. However, ho-

1



modyne detection in pulse mode is extremely experimentally challenging. The
most important is the bandwidth of the detector, which is given by the response
of photodiodes and the cut-off frequency of the amplifier. This frequency must
be higher than the repetition frequency of the laser source. Typically, there is
a trade-off between the cutoff frequency and signal-to-noise ratio (SNR) of the
amplifier.

Optical homodyne detection was first used for the measurement in the fre-
quency domain [9]. The first quantum time-domain homodyne detection was
performed in 1993 by Raymer et al. [5]. The homodyne detector was used for the
measurement of the Wigner distribution of the vacuum state and the squeezed
state. Hansen et al. in 2001 [6] used charge sensitive amplifier for amplifying the
signal from the homodyne detector for the first time. The homodyne detector
had a cutoff frequency higher than 1 MHz with SNR 14 dB and was used for
the reconstruction of the single-photon fock state. The homodyne detector with
a cutoff frequency of 250 MHz was designed by Okubo et al. [10] in 2008, but
the SNR was only 7.5 dB and the detector was unstable. In 2009 Haderka et al.
[11] used transimpedance amplifier for homodyne detection; the detector had a
cutoff frequency of 54 MHz and SNR 12 dB. The detectors designed by Zavatta
et al. [12] in 2011, Kumar et al. [13], and Cooper et. al [14] in 2012 can be used
for detecting signals from most commercially available mode-locked lasers.

For the full reconstruction of the quantum coherent states from homodyne
measurements, we use a procedure called homodyne tomography. The arbitrary
quantum state can be described by the density operator ρ̂ or by the quasiprob-
ability distribution in phase space called the Wigner function. Assume that we
observe an unknown quantum state via homodyne detection. The measured
data will form statistics, which corresponds to a marginal distribution of the
unknown state along an axis determined by the relative phase between the local
oscillator and the measured signal. We perform many measurements with dif-
ferent relative phases and from obtained data we can reconstruct the unknown
state. With an increasing number of measurements, we can reconstruct the state
more precisely. The different methods of homodyne tomography are reviewed
by Lvovsky and Raymer in [15].

Thermal sources are the major sources of natural light. The radiation of
these sources can be approximated by the black body radiation. This radiation
is incoherent with a continuous frequency spectrum, which density is described
by Planck’s law. When we filter out a single mode from a thermal source, it
possesses the Bode-Einstein photon statistics. On the other hand, the most
simple model of light emission known from the theory of electromagnetic field
is an oscillating electric dipole emitting monochromatic and coherent light with
Poissonian statistics. We assume, that the black body is composed of many such
dipoles, while each dipole emits coherent light (coherent state) with random
frequency and phase. Thus single-mode thermal light (thermal state) is formed
by interference of many coherent states with random phases. A coherent state
thermalization is a transition between coherent and thermal light. We can
study the thermalization for only a few interfering coherent states to explore
the transition in detail.

This work will focus on the homodyne detector characterization and the
measurement of the coherent state thermalization. In Chapter 2, the basic
theory of homodyne tomography, the maximum likelihood estimation method,
and the thermalization process will be presented. We will define the quantum
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states used in the work such as vacuum state, coherent state, and thermal state.
We will also show their decomposition into the basis of Fock states. In Chapter
3, we will propose a method for selecting suitable photodiodes for the homodyne
detector and we will show the dependence of the photodiode time response shape
on the bias voltage. Furthermore, we will characterize the electronic spectrum of
the homodyne detector and the dependence of the noise variation on the power
of the local oscillator. We will also describe the balancing process of the detector
and its calibration. In Chapter 4, the setup of the thermalization experiment
will be described in detail. We will show the main problems of the adjustment
of the setup and its characterization. Finally, the results of the coherent state
thermalization and their comparison with the simulations will be presented.
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Chapter 2

Basic concepts

2.1 Homodyne detection

To get a better idea of the fundamentals of homodyne detection, let us show
the homodyne detection for a classical coherent state as local oscillator. This
can be in phase space (x, p) described by complex number a, or by quadrature
amplitudes X and P given by

X =
1√
2
(a+ a∗), (2.1)

P =
1

i
√
2
(a− a∗). (2.2)

Sometimes is more convenient to describe the position of the state by a mean
photon number n̄ (or intesity I) and optical phase ϕ. These are given by

n̄ = I = |a|2 (2.3)

ϕ = arctan
P

X
. (2.4)

If we consider the free evolution of the mode, the coherent state oscillates as

a = a0e
iωt, (2.5)

where ω/2π is the frequency of the oscillations. This frequency is for visible
light in the hundreds of THz, which is typically impossible to measure with
electronic detectors. For this reason, we can only measure the relative phase
between two states of light. We can define a rotated quadrature Xθ given by

Xθ =
1

2
(e−iθa+ eiθa∗), (2.6)

where θ is the relative phase.
In homodyne detection, we have the coherent reference state (local oscillator)

β with intensity Iβ , and the measured state (signal) α with intensity Iα, with
relative phase between them θ. These states are mixed at a beam splitter
with transmittance T and reflectance R. The interaction provided by the beam
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Figure 2.1: The scheme of the homodyne detection.

splitters is given as (
γ
δ

)
=

( √
T

√
R

−
√
R

√
T

)(
α
β

)
(2.7)

The output states γ and δ are converted into electrical signals by the photodi-
odes. We get the resulting signal i by subtracting these signals from each other.
The scheme of homodyne detection can be seen in Fig. 2.1. The signal i will be
given as

i = (Iα − Iβ)(T −R) + 4
√
R · T · IαXθ. (2.8)

For the beam splitter 50:50, T = R = 1/2, and the detected current i is given
by

i = 2
√
ILOXθ. (2.9)

However, in the full quantum description, the state in the phase space is
given by the probability density distribution. Due to that, we have to replace
quadrature amplitudes X and P with quadrature operators X̂ and P̂ given by

X =
1√
2
(â+ â†), (2.10)

P =
1

i
√
2
(â− â†), (2.11)

where â† and â are bosonic creation and annihilation operators, [â, â†] = 1. The
commutation between quadrature operators is then [X̂, P̂ ] = i and uncertainty
relations are

∆X̂∆P̂ ≥ 1

4
. (2.12)

The final equation for the detected current can be derived from the classical
case as

î = 2
√
ILOX̂θ. (2.13)

As we can see, the measured signal depends only on the local oscillator amplitude
and on the relative phase θ between the signal and the local oscillator. For this
reason, the power of the local oscillator has to be as high as possible for the
highest SNR. However, there is the power of the local oscillator has to be lower
than the power, which saturates the homodyne detector. Homodyne detection
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allows us to measure the quantum state probability distribution in phase space
along an axis whose direction is given by θ. It follows that the quantum state can
be reconstructed from many measurements with different θ, where the number
of measurements determines the resolution of the reconstructed state. Thus
we need many copies of the measured quantum state. For the measurement of
classical quantum states following the Gaussian probability density distribution
we need at least two measurements along different axes. This can be done
by two measurements using a single homodyne detector, or one measurement
using two distinct homodyne detectors. In this work, we use the first approach.
The procedure of reconstructing the quantum states from the homodyne data
is called homodyne tomography.

2.2 Quantum states

In quantum optics, there are several basic quantum states. The first and most
important is the vacuum state. If we consider that light can be approximated by
the linear harmonical oscillator model, the vacuum state has the lowest possible
energy, but this energy is non-zero. This can be possible due to uncertainty
relations between X̂ and P̂ . The vacuum state is also symmetric about the origin
of the phase space. Due to this, the other states can be created by injecting
photons into this state or displacing it from the origin of the phase space. The
vacuum state is important for calibrating the homodyne detector. Since the
variance of the vacuum state is the lowest possible and its mean amplitude in
phase space is zero (see Fig. 2.2 A), we can assume, that the vacuum state has
the same Gaussian probability distribution along all axis with a variance of 1

2
and a mean value of 0.

The Fock states are quantum states with an exactly defined number of par-
ticles (photons). The probability distribution of Fock state |1⟩ in phase space
is shown in Fig. 2.2 B. This single-photon state can be used in quantum com-
puting or quantum cryptography. In this work, we use a Fock representation of
quantum states for their characterization; it corresponds to the photon-number
distribution. This distribution can be described by the moments such as the
mean photon number (the first moment) and the variation (the second central
moment).

Coherent states are eigenstates of the linear harmonic oscillator. In the
phase space, their variance is the same as the vacuum state and their amplitude
depends on their energy (see Fig. 2.2 C). In the Fock basis, the coherent state
has a Poisson distribution (see Fig. 2.3 A) given as

f(n) =
n̄ne−n̄

n!
, (2.14)

where n̄ is the mean photon number. For the Poisson distribution, the variance
of the distribution is the same as the mean photon number. The coherent state
was first proposed by Erwin Scrödinger in 1926. From the electromagnetic field
theory, a coherent wave is emitted by the oscillating electric dipole. The laser
light can be considered coherent with good approximation.

Thermal light is produced by the radiation of the black body with tempera-
ture T . In our case, the temperature is represented by the mean photon number
n̄. In the phase space, the thermal state variation is greater than the variation
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Figure 2.2: (A) The vacuum state probability distribution in the phase space.
(B) The Fock state probability distribution in the phase space. (C) The co-
herent state probability distribution in the phase space. (D) The thermal state
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Figure 2.3: (A) The theoretical photon number distribution of the coherent
state. (B) The theoretical photon number distribution of the thermal state.
Both distributions are for n̄ = 1.8
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of the vacuum state and its amplitude is zero (see Fig. 2.2 D). The thermal
state for the temperature 0 K is the vacuum state. The distribution in the Fock
basis is the Bose-Einstein statistics (see Fig. 2.3 B) given as

f(n) =
n̄n

(n̄+ 1)n+1
. (2.15)

2.3 Coherent state thermalization

Photon statistics, i.e. the probability distribution of various numbers of photons
in a quantum state of light, is a fundamental characteristic of optical signals.
As said above, the single-mode thermal state can be achieved by the interfer-
ence of many coherent states of light with random phases. Thus, in the limit
of infinitely many coherent states, the resulting superposition signal is indis-
tinguishable from a single-mode thermal state. The photon statistics of the
coherent state follows the Poissonian distribution and the photon statistics of
the single-mode thermal state follows the Bose-Einstein distribution. In the
coherent state thermalization, we want to explore the photon statistics of the
states between those two extremes. To this end, we measured the photon statis-
tics of the coherent state, interference of two phase-randomized coherent states
(1st thermalization stage) and interference of four phase-randomized coherent
states (2nd thermalization stage) by homodyne detection. For the preparation
of these states, we had four coherent states, which we pair-wise interfered at
beam splitters (see Fig. 2.4).

LO

Figure 2.4: The scheme of the coherent state thermalization.

We compared measured statistics with theoretical ones. As said above, for
one coherent state, the photon statistics follow the Poissonian distribution. The
other photon statistics we obtained with theoretical simulations performed using
the Python programming language and Qutip library. We created mathematical
models of two coherent states with random phases, |α1⟩ and |α2⟩. These states
are mixed on the 50:50 beam-splitter. Output states can be described in the
Heisenberg representation by relation

ρ̂12,out = Û ρ̂12,inÛ
† (2.16)

where ρ̂12,out is a density operator of output state given as ρ̂12,out = |α1, α2⟩⟨α1, α2|.
Û is evolution operator given by Û(ϕ) = e−iϕĤ , where ϕ = π

2 for beam-splitter
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50:50 and Ĥ is Hamiltonian of the beam-splitter given by

Ĥ =
i

2
(â†1â2 − â1â

†
2), (2.17)

where â1 and â2 are annihilation operators of the first and second modes, re-
spectively. The resulting output states ρ̂out can be obtained as the partial traces
of ρ̂12,out, ρ̂out = Tr2[ρ̂12,out]. Higher thermalization stages can be obtained by
repeating this process. Instead of the coherent states, we brought on the beam-
splitter input states from the first thermalization stage for the preparation of
the second thermalization stage state, and so on.

For the description of the photon statistics, we used the mean photon number
n̄, the variance Var(n) and the parameter g(2)(0). The g(2)(τ) is a degree of
second-order coherence given as

g(2)(τ) =
⟨I(t)I(t+ τ)⟩

⟨I(t)⟩2
, (2.18)

where I is the intensity of the signal. For our needs, we consider τ = 0, hence
the parameter can be calculated as

g(2) = 1 +
Var(n)2 − n̄

n̄2
, (2.19)

where n is the photon number. For the Poissonian distribution Var(n) = n̄, and
for Bose-Einstein distribution Var(n) = n̄(n̄ + 1). Thus for the ideal coherent
state g(2) = 1 and for the thermal state g(2) = 2.

2.4 Maximum likelihood estimation

Maximum likelihood estimation (MaxLik) is the statistical method used for
the estimation of parameters of a joint probability distribution of the set of
independent random variables. In quantum optics, the MaxLik is used for the
reconstruction of a density matrix of the unknown quantum state from the
measured data set. In other words, we want to assign to the measured data set a
density matrix ρ̂est as similar as possible to the density matrix ρ̂ of the measured
quantum state. This is similar to linear regression, where we want to estimate
a model that fits the measured data as much as possible, but the problem is
highly nonlinear in this case. The mathematical formulation of the MaxLik for
quantum state reconstruction is developed in [16, 17, 18]. Let us assume a finite
number n of identical copies of unknown state. The probabilities of individual
outcomes of a measurement are pl(ρ̂) = Tr[ρ̂ Π̂l], where Π̂l are positive operator-
valued measure elements. Let fl = kl/n be the relative detection frequencies
where kl are occurrences of the outcomes Π̂l. The density operator ρ̂est is given
as

ρ̂est = arg maxρL(fl, pl), (2.20)

L(fl, pl) =
∑
l

fl ln(pl)− λTr[ρ̂], (2.21)

where λ is a Lagrange multiplicator. The function L(fl, pl) represents the dis-
tance between the probability distribution pl and the relative frequencies fl. To
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maximize the likelihood functional, we have to formulate a nonlinear extremal
operator equation for the density matrix ρ̂

ρ̂ = R̂ρ̂R̂, R̂ =
∑
l

fl
pl
Π̂l, (2.22)

which preserves the positive semidefinitness and normalization of the density
operator ρ̂. From this equation, we get an iteration algorithm

ρ̂(n+1) = R̂(n)ρ̂(n)R̂(n), (2.23)

where we can choose the initial form of the density matrix ρ̂(0) = 1̂. Each itera-
tion of this algorithm will monotonically increase the likelihood of the estimated
density matrix to the measured one.

For homodyne detection, the probability of detecting a particular quadrature
y for a given relative phase θ is

p(y) = Tr[Π̂(θ, y)ρ̂], (2.24)

where Π̂(θ, y) = |θ, y⟩⟨θ, y| is the projection onto this quadrature eigenstate,
which can be in Fock basis expressed as

Πmn(θ, x) = ⟨m|θ, y⟩⟨θ, y|n⟩. (2.25)
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Chapter 3

Homodyne detector
operation and
characterization

3.1 Homodyne detector construction and pho-
todiodes time response

Quantum homodyne detection requires a homodyne detector with the SNR
as high as possible. We also need a bandwidth higher than the laser pulse
repetition rate. To this end, the components we use must be suitable for high
frequencies with low noise. In this work, we used a homodyne detector with
charge sensitive amplifier designed by Hansen et al. [6] and modified by M.
Ježek. For the construction of the detector, we used two Hammamatsu S3883
PIN diodes, charge sensitive preamplifier AMPTEK A250, and two amplifiers
AMPTEK A250. The scheme of the detector is shown in Fig. 3.1.

For the most balanced homodyne detector, we must choose two photodiodes
with time responses as similar as possible. As said above in the detector used in
this work, we use Hamamatsu S3883 PIN photodiodes, which are widely used
in quantum homodyne detectors and provide the best trade-off of quantum
efficiency and frequency response. The radius of the active area of these diodes
is 1.5 mm, the quantum efficiency is 92.2 % at the wavelength of 780 nm.

Time response characterizes the dependence of the electronic signal from
the photodiode on the measured optical signal. For the ideal photodiode, the
electronic signal is the same as the optical one, but for a real photodiode, the
electronic signal can be deformed due to the nonzero response time. This effect
can be affected by the bias voltage Ubias applied to the photodiode, which can
change the shape of the time response. We put the photodiode in the testbed
for this measurement, shown in Fig. 3.2. For a better understanding of how the
time response depends on the Ubias, we performed the measurement of the time
responses of the pulsed laser signal for the different bias voltages (see Fig. 3.3
A). From measured time responses we find the area under the pulses and then
compared these areas with the bias voltages (see Fig. 3.3 B).

We had a batch of 10 photodiodes, from which we had to select two with the
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Figure 3.1: The simplified electronic scheme of the homodyne detector. The
signals from photodiodes PD1 and PD2 are subtracted and brought to the input
of the charge-sensitive preamplifier. We use several low-pass filters to reduce
noise from external noise.

+Ubias

FB

R

C

C

1

2

RL

BNC
coax out

50R

g

AMP

OSC

MJ

PD

Figure 3.2: The scheme of the testbed for the photodiodes characterization. The
bias voltage Ubias is brought to the photodiode PD through a series of low-pass
filters. The signal is displayed on the oscilloscope OSC.
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Figure 3.3: (A) The time responses for all bias voltages. (B) Dependence of the
area under the pulse on the bias voltage.
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Figure 3.4: (A) The time responses for all photodiodes. (B) The corrected time
responses of two chosen photodiodes.

most similar time responses. We performed the characterization for two values
of Ubias, 20 V and 25 V. As the light source, we used a pulsed signal from a
titanium–sapphire laser Mira Optima 900-F. Signal power was set to 0.488 mW
at wavelength 800 nm. The output of the testbed was displayed on the oscillo-
scope LeCroy WavePro 715Zi. Measured traces from the oscilloscope for each
photodiode can be found in Fig. 3.4. In our scheme of balanced homodyne
detection, we could use several possible degrees of freedom to balance the pho-
tocurrent passing through photodiodes and the delay between pulses impinging
both photodiodes. For this reason, we could consider two free parameters D
and G, for which we search the global minimum Omin of the function

O =

∫ T

0

∣∣∆2
1 +∆2

2

∣∣ dt, (3.1)

which characterizes the overlap of time responses for both values of Ubias. The
parameters ∆2

1 and ∆2
2 are the overlaps for Ubias,1 = 20 V and Ubias,2 = 25 V;

their values are given by

∆2
n = (UA,n(t)−Gn · UB,n(t+Dn))

2. (3.2)
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We find the Omin for all pairs (A,B) of photodiodes. The pair with the
lowest value of Omin was the best pair with the most similar time responses.
For the measured samples, it was diode numbers 2 and 8. The time responses
of these photodiodes with the correction for parameters D and G are plotted in
Fig. 3.4(b).

3.2 Electronic spectrum and balancing of the
homodyne detector

Figure 3.5: Scheme of the setup for balancing and characterization of the ho-
modyne detector. The optical signal from the laser diode with polarization
controlled by the half-wave plate HWP is brought to the input of the polariz-
ing beam-splitter PBS. Outputs of PBS are brought to the inputs of homodyne
detector HD. The output from HD is displayed on the oscilloscope OSC and
electronic spectrum analyser ESA.

It is crucial for homodyne detection to balance the detector as much as
possible. For the balancing and characterization of the homodyne detector, we
used an optical setup with the local oscillator at the first port of the beam
splitter and a vacuum state o the second port. The scheme of the optical setup
is in Fig. 3.5. There are several degrees of freedom used to balance the detector
in our optical setup. The first was a half-wave plate before the polarization
beam splitter, which can optimize signal power distribution. The second is the
lens in Z–axis mount, which can change the focus of the laser beam to one of the
photodiodes. The last degree of freedom is the bias voltage of the photodiodes.

To determine the degree of balance of the detector we used two methods.
The first uses the oscilloscope and the second uses the spectrum analyzer. After
we connected the unbalanced detector output to the oscilloscope we could see
unipolar laser pulses envelope, which we want to decrease so that only quantum
noise remains. The difference between the unbalanced and balanced detector
signals is shown in Fig. 3.6. This method we use only for primary balancing, for
the final balancing we connected the output to the frequency spectrum analyzer.
If the detector is unbalanced there is a peak in the frequency spectrum of the
detector at the repetition frequency and its harmonics. For the best possible
balanced homodyne detection, we must minimalize these peaks as much as pos-
sible. We perform the measurement of the electronic spectrum of the balanced
homodyne detector for local oscillator power 10µW, the unbalanced homodyne
detector for local oscillator power 0.05 µW, and the homodyne detector with-
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out the local oscillator, which represents electronic noise. Measured electronic
spectrums are shown in Fig. 3.7. We compensated the difference between pow-
ers of the local oscillator for better comparison of electronic spectrums of the
balanced and unbalanced homodyne detector. The CMRR of the first peak of
the unbalanced homodyne detector electronic spectrum is 45 dB.

A

B

Figure 3.6: (A) The signal from the unbalanced homodyne detector. (B) The
signal from the balanced homodyne detector. In the background of the signal
trace is the trigger trace. For a clearer display of the signal, we used the persis-
tency mode of the oscilloscope.
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Figure 3.7: Electronic spectrum of the signal from the balanced and unbalanced
homodyne detector. The CMRR for the first peak of the spectrum of the un-
balanced detector is 45 dB.
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3.3 Linearity and calibration of homodyne de-
tector

As said above, homodyne detection allows us to measure the rotated quadrature
X̂(θ). The one rotated quadrature is given by the area under the homodyne
detection signal for the time of one pulse for the homodyne detection in the
time domain. The positions of pulses are given by the trigger signal from the
driver switching the laser diode. The number of measured quadratures depends
on the acquisition time of the oscilloscope and the repetition rate of the pulses.
In this work, we obtain several thousand quadratures for one run of the mea-
surement. We can construct a histogram of measured quadratures and calculate
their variance and mean value.
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Figure 3.8: Dependence of the quadrature variance on the power of the local
oscillator in LogLog scale. The measured variances are fitted by a linear function
with direction 1.135.

As said in Chapter 2, the signal from the homodyne detector depend on the
power of the local oscillator. To this goal, we measured the dependence of the
quadratures variance (and SNR) on the power of the local oscillator for vacuum
state (see Fig. 3.8). The graph shows a region from 6 million photons/pulse
to 55 million photons/pulse, where the dependence is linear. For the power
smaller than 6 million photons/pulse, the measured shot noise is close to the
electronic noise of the detector. Nonlinearity for the power larger than 55 million
photons/pulse is probably caused by imperfect balancing or saturation of the
operational amplifier in the detector. For the next measurements, we need to
choose the local oscillator power, which is in the linear region and at the same
time is strong enough. After considering these conditions, we choose the local
oscillator power of 41 million photons/pulse (10µW). This local oscillator power
corresponds to the SNR higher than 20 dB.

For calibration of the detector, we used the vacuum state, which is easy
to prepare and its probability distribution is the same along all axis. The
quadrature distribution of the vacuum state follows the Gaussian distribution.
The measured quadratures and their histogram can be found in Fig. 3.9. We
fitted the histogram of the measured quadratures with the Gaussian function of
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the form

ψ(x) =
1

σ
√
2π
e−

(x−µ)2

2σ , (3.3)

which is a probability density function of the Gaussian distribution with variance
σ2 and mean value µ. For the vacuum state σ2 = 1

2 . The variance is given as
a sum of the different noises, which include mainly the vacuum noise, but also
the noise of the detector and light source. The mean value of the vacuum
state is 0 by the definition, but there can be some offset caused by an offset of
the operational amplifier. The variance and the mean value of the measured
quadratures were σ2 = 323 and µ = 21. Actual values of both parameters are
affected by the amplifier gain, its response, and also the data postprocessing. We
compensate the offset and rescale the noise of the vacuum state. The calibrated
quadratures are given as

ψ′(x) =
ψ(x)− µ

σ
. (3.4)

The calibrated quadratures possess the variance σ2 = 1
2 and the mean value

µ = 0.

A B

Figure 3.9: The measured quadratures (A) and the quadrature histogram (B)
from the balanced homodyne detector. The variance and the mean value are
σ2 = 323 and µ = 21.
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Chapter 4

Thermalization of coherent
states

4.1 Thermalization setup and its adjustment

The scheme of the setup we used for coherent state thermalization is shown
in Fig. 4.1. As an optical source (LASER), we used the QFLD-810-10S laser
diode manufactured by Q-Photonics and switched by a homemade electronic
pulser, emitting nanosecond pulses with a repetition frequency of 1.1 MHz at
a wavelength 808 nm. We placed a 3 nm bandpass filter after the light source
for the well-defined wavelength and spectrum. The laser light is split into four
signal paths |αn⟩ and the local oscillator path (LO). The optical power of these
paths is controlled via half-wave plates (HWP), polarizing beam-splitters (PBS)
and variable neutral-density attenuators. We must use the attenuators because
of other polarization modes, which cannot be muted by the half-wave plate and
polarizing beam splitter system. For the best results, the power levels of the
input signal states have to be as similar as possible. The power of the local
oscillator was set to 10 µW.

The input signals are pair-wise interfered in Michelson interferometers. Each
interferometer was made of a 50:50 beam-splitter (BS) and two plane mirrors
attached to piezo crystals (PZT) controlling the phase shift of input signals. The
piezo crystals were driven by the voltage source providing a triangle waveform
with controlled amplitude 0-55 V and frequency 0.1-1.1 kHz. One output of
each interferometer is brought to a 50:50 beam-splitter forming a Mach-Zehnder
interferometer. This setup allowed us to prepare a coherent state, two mixed
coherent states, and four mixed coherent states. The prepared states were
interfered with the local oscillator and measured by the homodyne detector
(HD), which was presented in 3. The interferences in the experiment are not
perfect, but in theory, we assume the perfect interferences of coherent states.
For this reason, the visibilities have to be as high as possible. The coherence
length of the laser source is 10−4 m. For this reason, there are two delay lines
(DL1, DL2) on adjustable stages in the setup for visibility as high as possible.
The mirrors in the Michelson interferometers were on the adjustable stages too.
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Figure 4.1: (A) The scheme of the experimental setup for the coherent state
thermalization. (B) A photo of the experimental setup.

4.2 Transmittance and visibility characterization

The homodyne detector is placed and aligned at the output of the setup. How-
ever, the initial coherent states and the pairs of interfered coherent states are
prepared after the attenuators and after Michelson interferometers, respectively.
To properly characterize these states, we have to quantify the transmittance of
optical paths between the detector and the point, where the states are prepared.
In this goal, we measured the power of the laser signal at the input Iin and at the
output Iout (homodyne detector input) of the optical setup for each path. From
the measured powers we determined the transmittance T = Iout/Iin, which are
listed in Table 4.1.

Table 4.1: Measured transmittances of individual signal paths.

Signal path T
|α1⟩ 0.178
|α2⟩ 0.159
|α3⟩ 0.175
|α4⟩ 0.167
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Figure 4.2: The dependence of the signal intensity on the phase shift.

As said above, for the measurement of the coherent state thermalization
we need to measure the visibilities of interferences. The visibilities depend on
the setup adjustment and stability of the laser diode, thus they can slightly
change in time. Hence, we have to determine them before the measurement.
For this reason, we brought the laser signal from each interferometer to a high-
sensitivity photodetector. The output was displayed on the oscilloscope. As we
can see from Fig. 4.2, the measured function is sinusoidal with maximum Imax

and minimum Imax. The visibility V of the interference is then given as

V =
Imax − Imin

Imax + Imin
. (4.1)

The measured visibilities are listed in Table 4.2. As we can see, the visibilities
of the coherent states |α1⟩ + |α2⟩ and |α3⟩ + |α4⟩ are larger than others. The
reason is, that these interferences take place on the Michelson interferometers,
which have much shorter arms and are more simple than other interferometers
used in the setup.

Table 4.2: Measured visibilities of the interferences.

Interference V
|α1⟩+ |α2⟩ 0.98
|α2⟩+ |α3⟩ 0.89
|α3⟩+ |α4⟩ 0.96
|α2⟩+ LO 0.91
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Figure 4.3: Photon-number distribution of the initial coherent state (A-B) with
input mean-photon number n̄ = 2, two interfered coherent states (C-D), and
four interfered coherent states (E-F). Measured photon-number distributions
are shown in the left panels (A, C, E). The corresponding ideal theoretical
distributions are depicted in the right panels (B, D, F).
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4.3 Coherent state thermalization results

For coherent state thermalization, we need to characterize the coherent state,
1st thermalization stage, and 2nd thermalization stage for several different mean
photon numbers. For each state, we measured the photon-number distribution,
its mean photon number n̄, variance Var(n), and parameter g(2). The measured
values are compared with the theoretical values, which are determined by nu-
merical simulations. The coherent state is prepared from signal branch |α2⟩,
the 1st thermalization stage is prepared by mixing the two phase-randomized
coherent states |α1⟩ and |α2⟩, and the 2nd stage thermalization is prepared by
mixing all phase-randomized coherent states. The phase-randomization is done
by the coprime frequencies of the drive signals of the piezo crystals. The com-
parison of the measured photon-number distributions with the theoretical ones
for input mean photon number n̄ = 2 is shown in Fig. 4.3. The fidelity between
measured and theoretical photon-number distributions is 0.994 for the coherent
state, 0.982 for 1st thermalization stage, and 0.988 for 2nd thermalization stage.

The measured values of Var(n) and g(2) for mean values n̄ are shown in
Fig. 4.4. The measured data correspond well to theoretical values except for
the g(2) values for low mean photon number (n̄ ≲ 1). This is caused by the
strong sensitivity of g(2) to noise in higher photon-numbers terms, which is
unavoidable in experimental data. This sensitivity also increases the error bars.
Furthermore, slightly larger values of g(2) compared to the theoretical value of
g(2) = 1 for initial coherent states represent another discrepancy in Fig. 4.4 B.
It is caused by excess fluctuations of the coherent states, i.e. instabilities of the
light source and instabilities of the balancing of the homodyne detection.
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Figure 4.4: ((A) Variances of the measured photon statistics. (B) Values of the
parameter g(2) calculated from the measured photon statistics. Points denote
experimental data, dashed lines depict the ideal theoretical values.
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Chapter 5

Conclusions and outlook

The main goal of this thesis was to characterize the quantum homodyne detector
and describe the main problems associated with homodyne detection such as the
selection of suitable photodiodes or balancing of the detector. We also showed
how powerful tool the homodyne detection is for quantum states reconstruction.
This was demonstrated in the coherent state thermalization experiment.

First, the methods used for the operation of the homodyne detector are
discussed. In Section 3.1, the method for selection of the most suitable pho-
todiodes is demonstrated. Furthermore, the dependence of the time responses
on the bias voltage is shown. From the batch of 10 photodiodes, we choose the
best-matching photodiodes. Then, in Section 3.2 the methods for balancing the
homodyne detector are described and there is also shown the frequency spec-
trum of the unbalanced homodyne detector. The CMRR of the first peak in
the electronic spectrum of the unbalanced homodyne detector is 45 dB. In Sec-
tion 3.3, the measurement of the vacuum state is presented. From the measured
data the quadratures are processed. From the quadrature statistics, the variance
σ2 = 323 and mean value µ = 21 are determined. These values were used for
the calibration of the homodyne detector. Also, we performed the measurement
of the dependence of the variance of the vacuum state quadratures statistics on
the local oscillator power. From this dependence, the suitable power of the local
oscillator 10µW was determined. The SNR at this power is higher than 20 dB.

In Sections 4.1 and 4.2, the basic properties of the optical setup, which is
used for coherent state thermalization, are demonstrated. The main tasks of the
setup adjustment and characterization are discussed, such as the transmittance
and visibility measurements. Then, in Section 4.3, the results of the coher-
ent state thermalization were provided. We prepared the coherent state, two
mixed coherent states, and four mixed coherent states for four different input
mean photon numbers. All states were measured with the homodyne detector.
From the measured data, the photon number distributions were reconstructed
via maximum likelihood estimation. Consequently, the variances of these dis-
tributions and g(2) parameters were determined and compared with theoretical
values.

As the next step, we plan to study the thermalization process and its dy-
namic in more detail. We will place the heralding detectors at the unused
output ports of the interferometers and study the thermalization conditioned
on the non-detection (zero photons detected) of these detectors. Furthermore,
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we will continue the development of the homodyne detectors. We aim for a ho-
modyne detector with a bandwidth large enough for detecting the signal from
an ultra-fast mode-locked laser. Another goal is to improve the signal-to-noise
ratio and balancing of our detectors.
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