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Abstract 
Excessive fertilization can cause environmental pollution, such as water contamination and 
greenhouse gas emissions, along with economic losses. To mitigate these issues, it is impor
tant to adjust fertilization rates to the specific needs of crops. This thesis explores the use 
of remotely sensed vegetation indices to monitor crop nitrogen uptake and guide fertilization 
application. The study was conducted in Oensingen, Switzerland, during an internship at E T H 
Zurich. The main objective was to develop a prediction model based on vegetation indices to 
estimate the nitrogen uptake of grass-clover mixtures and winter wheat. Additionally, the cor
relation between various vegetation indices and crop characteristics, especially nitrogen uptake, 
was analyzed. Vegetation indices (NDVI, N D R E , G N D V I , M C A R I , EVI) were derived from 
Sentinel-2 images using Google Earth Engine. Various crop characteristics, including the Leaf 
Area Index (LAI) and crop height, were measured, and winter wheat samples were analyzed for 
nitrogen uptake using an elemental analyzer. Additional nitrogen uptake data for grass from 
previous years was also included. In total, data from the years 2021-2023, that included both 
grass-clover mixture and winter wheat values, were used in the analysis. Correlation and regres
sion analysis were performed to examine the relationships between vegetation indices and the 
measured crop characteristics. The index showing the strongest relationship with crop nitrogen 
uptake was then used to create a prediction model. The analysis revealed that the Enhanced 
Vegetation Index (EVI) was the most effective predictor of nitrogen uptake. The constructed 
prediction model based on E V I values achieved a high coefficient of determination (R 2 ) of 0.89, 
a low root mean square error (RMSE) of 1.05, and a mean absolute error (MAE) of 0.89. The 
results indicate that E V I is a reliable index for predicting nitrogen uptake in crops. The devel
oped EVI-based model could be potentially used for optimizing nitrogen application in crops, 
which can reduce the negative environmental and economic impacts of over-fertilization. 

Abstrakt 
Nadměrné hnojení může způsobit znečištění životního prostředí, jako je kontaminace vody a 
emise skleníkových plynů, a také ekonomické ztráty. Ke zmírnění těchto problémů je důležité 
přizpůsobit míru hnojení specifickým potřebám plodin. Ve své práci se zabývám možností využití 
dálkově snímaných vegetačních indexů pro monitorování příjmu dusíku rostlinami a řízení ap
likace hnojiv. Měření byla provedena v Oensingenu, Švýcarsku, během stáže na E T H Zurich. 
Hlavním cílem bylo vyvinout predikční model založený na vegetačních indexech k odhadu příjmu 
dusíku travní směsi a ozimé pšenice. Dále byla analyzována korelace mezi různými vegetačními 
indexy a charakteristikami plodin, především příjmu dusíku. Vegetační indexy (NDVI, N D R E , 
G N D V I , M C A R I , EVI) byly získány ze snímků družice Sentinel-2 pomocí Google Earth Engine. 
Byly změřeny různé charakteristiky plodin, včetně indexu listové plochy (LAI) a výšky plodin, a 
vzorky ozimé pšenice byly analyzovány na příjem dusíku pomocí elementárního analyzátoru. Do 
analýzy byla také zahrnuta další data týkající se příjmu dusíku travin z předchozích let. Celkem 
byla v analýze použita data z let 2021-2023, která zahrnovala hodnoty pro travní směs i ozimou 
pšenici. Byly provedeny korelační a regresní analýzy k určení vztahů mezi vegetačními indexy a 
měřenými charakteristikami plodin. Index, který vykazoval nejsilnější vztah s příjmem dusíku 
plodin, byl poté využit k vytvoření predikčního modelu. Analýza ukázala, že Enhanced Vege
tation Index (EVI) byl nejúčinnějším prediktorem příjmu dusíku. Vytvořený predikční model 
založený na hodnotách E V I dosáhl vysokého koeficientu determinace (R 2 ) 0,89, nízké směrodatné 
odchylky chyb (RMSE) 1,05 a průměrné absolutní odchylky (MAE) 0,89. Výsledky naznačují, 
že E V I je spolehlivým indexem pro predikci příjmu dusíku plodinami. Vyvinutý model založený 
na E V I by mohl být potenciálně použit k optimalizaci aplikace dusíkatých hnojiv na plodiny, 
což by pomohlo snížit negativní environmentální a ekonomické dopady nadměrného hnojení. 
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1 Introduction 

Nitrogen plays a crucial role in supporting plant growth, influencing factors such as yield, quality, 
and overall crop health. To ensure that plants receive the necessary amount of nitrogen, it is 
introduced into the soil through the application of either synthetic or natural N-fertilizers. 
Synthetic fertilizers are produced in the Haber-Bosch process, which was developed in the early 
20th century by the German chemists Fritz Haber and Carl Bosch. In this catalytic process, 
molecular nitrogen is converted to ammonia under high temperature and pressure conditions, 
which is then used for fertilizer production [1]. The use of nitrogen fertilizers on an industrial 
scale was made possible through this groundbreaking process and has significantly boosted 
agricultural productivity, playing an important role in sustaining the nutritional needs of the 
growing global population. 

However, excessive nitrogen application often leads to the accumulation of this nutrient in 
the soil, since crops typically use only around 50% or less fertilizer nitrogen added to the soil 
[2]. The rest is lost to the environment through various pathways or remains in the soil. This 
accumulation often leads to various environmental problems. Excess nitrogen can alter the pH 
balance of the soil, leading to soil acidification or alkalization. This disruption in pH results in 
changes in the structure of the soil, reducing its ability to hold water and nutrients. Furthermore, 
high levels of nitrogen modify the composition of the microbial community, favoring species 
that thrive in nutrient rich environments while suppressing others [3]. This reduced microbial 
diversity can compromise important soil processes such as organic matter decomposition and 
nitrogen fixation. When combined with excessive irrigation or heavy rain, nitrogen in the soil also 
contributes to the release of N2O, a potent greenhouse gas. Agriculture contributes significantly 
to these emissions, accounting for approximately 80% of the total N2O emissions [4]. In addition, 
excessive nitrogen accumulation can result in nitrate leaching, a process in which nitrates move 
through the soil profile and infiltrate groundwater, posing potential risks to human health. 
Therefore, it is crucial to optimize fertilizer use efficiency to prevent nitrogen accumulation in 
the soil. Fertilizer use efficiency is defined as the ratio between nutrients absorbed by plants 
and the amount of fertilizer applied [5]. Enhancing fertilizer use efficiency can be achieved 
by tailoring fertilizer rates to local and current crop needs [6], an approach known as precision 
nitrogen management [7]. This strategy not only reduces the environmental impacts of excessive 
nitrogen application, but is also economically beneficial, considering the high cost of fertilizers. 

Monitoring nitrogen uptake is crucial for adjusting fertilizer rates and determining the spe
cific nitrogen needs of crops. Conventionally, nitrogen uptake has been measured using manual 
and destructive methods, where crop samples are obtained from the field and subsequently an
alyzed in the laboratory. However, such techniques are time-consuming and associated with 
other significant drawbacks, including high costs, labor-intensive procedures, and limited rep
resentation of spatial or temporal variability. To overcome these limitations, satellite-derived 
vegetation indices have emerged as a potential alternative to monitor nitrogen uptake in crops 
[8]. Unlike traditional methods, satellite-derived vegetation indices provide more efficient and 
cost-effective means of monitoring nitrogen uptake in crops. 

In this thesis, the correlation between remotely sensed vegetation indices and crop nitrogen 
uptake was analyzed. The goal was to explore the possibility of using these indices to adjust 
fertilizer rates and reduce the negative impact of agriculture on the environment. Although these 
indices can provide field-scale crop information quickly and easily, they provide less accurate 
results. Nevertheless, the utilization of satellite-derived vegetation indices holds the promise 
of enabling remote near-real-time measurement of crop nitrogen uptake, offering considerable 
advantages over current methodologies in practice. 
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2 State of the art 

This chapter presents the theoretical background of the thesis topic. First, it describes the 
nitrogen cycle and how it is disrupted by anthropogenic activities, along with the resulting 
consequences. Next, the principles of precision agriculture and remote sensing are introduced, 
and the use of satellite imagery to monitor and manage crops is explained. Lastly, the chapter 
contains a description of vegetation indices used in the analysis and references similar research 
to provide context. 

2.1 Nitrogen cycle 

Nitrogen is an essential component of proteins, D N A , and chlorophyll, which makes it vital for 
all living organisms, including plants. Nitrogen compounds can be divided into two categories: 
non-reactive and reactive. Dinitrogen (N2) is non-reactive due to its strong triple bond, which 
most organisms are unable to break. On the other hand, reactive nitrogen (Nr) refers to nitrogen 
compounds that are chemically active or readily available for biological and chemical processes 
[9]. Although N2 gas is abundant in the atmosphere, plants cannot directly utilize it due to its 
inert nature. It must first be converted into a reactive nitrogen compound such as ammonium 
(NH±) or nitrate (NO^) through a series of reactions performed by various microorganisms 
or high-energy events capable of breaking the triple bond of N2. These series of reactions form 
the nitrogen cycle, which is divided into multiple steps, including nitrogen fixation, nitrification, 
anammox, and denitrification [1]. The individual steps in the nitrogen cycle are explained in 
the corresponding subsections below. 

The nitrogen cycle is a global biogeochemical process that encompasses three primary cycles: 
atmospheric, marine, and terrestrial cycles. Nitrogen flows from the atmosphere to terrestrial 
and aquatic ecosystems, while being converted from inert molecular nitrogen to reactive nitrogen 
forms [10]. The global nitrogen cycle is driven by a range of environmental variables such as 
solar energy, precipitation, temperature, soil texture, moisture, the presence of other nutrients 
and atmospheric CO2 concentrations [11]. These factors collectively regulate the movement and 
availability of nitrogen within ecosystems on a global scale. 

The terrestrial nitrogen cycle represents a crucial component of this global process, focusing 
specifically on the dynamics of nitrogen within land-based ecosystems. Unlike the broader scope 
of the global cycle, the terrestrial cycle is concerned only with the movement and availability of 
nitrogen within terrestrial ecosystems alone. The processes of the terrestrial nitrogen cycle and 
their relations can be seen in Figure 2.1. Terrestrial ecosystems act as the primary interface for 
nitrogen interaction with plants within the global nitrogen cycle. The same factors that drive 
the global nitrogen cycle also regulate the terrestrial nitrogen cycle. For instance, solar energy 
impacts plant growth, which affects nitrogen demand, while precipitation and temperature in
fluence the movement of nitrogen and microbial activity in the soil. Nitrogen typically moves 
in three main directions within ecosystems: upward, through processes such as crop uptake and 
gaseous release; downward, as it leaches into groundwater; and laterally, via both surface and 
subsurface flows that lead to various water bodies. Soil texture, moisture, and the balance of 
other nutrients in the soil further impact the retention and accessibility of nitrogen for plants 
[11]. 
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Figure 2.1: Scheme of the terrestrial nitrogen cycle showing the transformation and movement 
of nitrogen through various biological and chemical processes within a terrestrial ecosystem [11] 

2.1.1 Nitrogen fixation 

In the nitrogen fixation process, molecular nitrogen (A^) is converted into biologically reac
tive ammonia (NH3) or ammonium (NHf). The main natural source of reactive nitrogen is 
biological nitrogen fixation, done by nitrogen-fixing microorganisms called diazotrophs. These 
microorganisms have the unique ability to reduce nitrogen gas into ammonia with an enzy
matic complex called nitrogenase. Nitrogenase enzymes are responsible for breaking the triple 
bond between nitrogen atoms in N2, using the energy from the hydrolysis of A T P (adenosine 
triphosphate) as shown in the equation below [12]. 

N2 + 8e" + 8H+ + IQATP -> 2NH3 + H2 + IQADP + IQPi 

Diazotrophs can live freely in the soil or form symbiotic relationships with certain plants, 
particularly legumes. In the symbiotic relationship, the microorganisms called rhizobia inhabit 
the legume root nodules and provide the plant with nitrogen in exchange for carbohydrates 
[13]. This symbiosis not only benefits plants by providing them with essential nitrogen, but also 
enriches the soil with fixed nitrogen, which enhances the fertility of the soil and contributes to 
plant growth and productivity. 

In addition to biological fixation, nitrogen can also be fixed through high-energy events such 
as lightning or forest fires. These events provide the energy necessary to break the strong triple 
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bond of atmospheric nitrogen, making individual nitrogen atoms available for chemical reactions 
and transformations [1]. 

To meet the nitrogen demands of crop production, artificial nitrogen fixation is necessary 
in addition to natural nitrogen fixation. Anthropogenic processes have become a significant 
source of fixed nitrogen, more than doubling the amount of nitrogen fixed in the biosphere. 
Most anthropogenic reactive nitrogen is produced by the Haber-Bosch process, during which 
nitrogen reacts with hydrogen under high temperature and pressure, resulting in ammonium, as 
is shown in the equation below. Nitrogen can also be added through the intentional cultivation 
of legumes and other plants with the ability to fix nitrogen [1]. This additional nitrogen can 
disrupt the balance of the nitrogen cycle and have negative consequences for the environment, 
which is explained in the chapter Changes to the nitrogen cycle. 

N2 + 3H2 -)• 2NH3 + AH(J/mol) 

2.1.2 Ammonification 

Ammonification is a step in the nitrogen cycle, in which nitrogen in organic matter is broken 
down and converted to ammonium (NH^) or ammonia (NH3). This process is carried out by 
decomposers such as bacteria and fungi. The resulting ammonium is then assimilated for the 
synthesis of amino acids or used in the metabolic processes of these microorganisms. Any excess 
of ammonium beyond their immediate metabolic demands is excreted into the surrounding envi
ronment where it becomes an accessible nutrient for plant uptake or a substrate for subsequent 
microbial processes, notably nitrification. Ammonification plays an important role in recycling 
nitrogen from dead organic matter back into the soil. It is a significant factor in plant nutrition 
as it directly impacts the availability of ammonia for the subsequent nitrification process [14]. 

2.1.3 Nitrification 

Nitrification is a process during which NH^ or NH% is converted into nitrites (NO2) and 
subsequently to nitrates (NO$). This transformation is carried out by specialized groups of 
microorganisms called nitrifiers, including ammonia oxidizing bacteria, ammonia oxidizing ar-
chaea, and nitrite oxidizing bacteria [15]. Ammonia oxidizing bacteria and archaea (also referred 
to as ammonia oxidizers) are autotrophic microorganisms, meaning that they can produce or
ganic compounds from inorganic sources. These microbes play a crucial role in nitrification by 
oxidizing ammonia (NH%) as part of their metabolic processes. In this oxidation, they derive 
energy from ammonia and generate nitrite {NO 2) as a by-product. The resulting nitrite is then 
used as an energy source by nitrite-oxidizing bacteria, which turn it into nitrate during their 
metabolic process. The two processes are shown in the following equations. 

NH3 + 1.50 2 -)• NO2 + H20 + H+ 

NO2 + 0.5O 2 -)• N O 3 

During these processes, some intermediate by-products can be produced, including nitric 
oxide (NO) and nitrous oxide (N2O). Nitrous oxide is typically produced under low-oxygen 
conditions and its production leads to the loss of nitrogen from the soil. Not only does nitrogen 
become unavailable for plant uptake as it escapes into the atmosphere, but N2O is also a potent 
greenhouse gas [15]. The two steps of nitrification, together with the subsequent conversion of 
nitrates to N2 is shown in Figure 2.2. 

Nitrogen is often added to the soil in the form of ammonium, which can be readily absorbed 
by plants. Positively charged ammonium ions adhere to negatively charged clay particles and 
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Figure 2.2: Diagram showing the conversion of ammonia to dinitrogen through nitrification and 
denitrification 

organic matter. This interaction immobilizes ammonium, reducing its mobility and reducing its 
susceptibility to leaching [1]. In contrast, nitrates are fully soluble in water and do not adsorb 
to clay particles due to their negative charge. This solubility enables them to dissolve readily in 
water and move downward with infiltrating rain or water from irrigation, increasing the risk of 
leaching. Because of this, nitrification inhibitors are often added along with fertilizers to slow 
the transformation of ammonium to nitrate, so that nitrogen is maintained within the soil for 
better plant uptake. 

2.1.4 Nitrogen uptake and assimilation 

Due to the large losses of nitrogen through leaching or volatilization, it is often a limiting nutrient 
for plant growth in both natural and agricultural ecosystems [16]. Being a limiting nutrient 
means that its availability is a factor that restricts the growth and productivity of plants even 
if all other nutrients are present in sufficient quantities. The process of nitrogen uptake and 
utilization involves several steps: uptake via root absorption, assimilation, translocation, and 
remobilization [17]. 

Plants have evolved various strategies to thrive under low nitrogen conditions. They have 
developed sensitive and selective uptake mechanisms and the ability to grow on different ni
trogen sources such as ammonium (NH^), amino acids and nitrate ( iVOj) [16]. They utilize 
specialized structures such as root hair and root cell membranes to absorb nitrogen from the 
surrounding soil. The preferred type of nitrogen for plant uptake depends on the specific en-
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vironmental conditions and adaptations of the plant species. In acidic soils and rice paddies, 
ammonium (NH^) is the preferred form for plant uptake, while in climates where nitrifica
tion and mineralization are limited, such as arctic regions, plants typically rely on amino acids 
as their nitrogen source. Plants adapted to alkaline soils and more aerobic conditions most 
commonly use nitrate [16, 17]. 

The next step is assimilation, which involves the conversion of absorbed nitrogen, typically in 
the form of nitrate ( iVOj) , into usable organic compounds for growth and metabolic functions. 
After nitrate is taken up by roots, it is reduced to nitrite (iVO^ -) in the cytosol by the enzyme 
nitrate reductase. Next, nitrite is transported to plastids or chloroplasts, where it is further 
reduced to ammonium by nitrite reductase. This reduction from nitrate to ammonium occurs 
primarily in root cells, although in cases where NO^ uptake exceeds the root assimilation 
capacity, excess nitrate is transported to the shoot and leaves and transformed there. The 
resulting NH^~ is integrated into amino acids through enzymatic reactions. These amino acids 
serve as fundamental building blocks for proteins, enzymes, chlorophyll, and other essential 
molecules that support plant growth, reproduction, and overall physiological functions [16, 18]. 

Chlorophyll, the green pigment responsible for converting light energy into chemical energy 
during photosynthesis, plays a significant role in the monitoring of nitrogen uptake through 
remote sensing and optimizing fertilizer rates. Its unique interactions with light, which are ex
plained in more detail in the chapter Remote sensing, enable us to assess the concentrations 
of chlorophyll in vegetation and their changes. As plants assimilate nitrogen, leading to the 
synthesis of chlorophyll, there is increased absorption of light used in photosynthesis. In the 
case of nitrogen deficiency, chlorophyll synthesis is directly affected, resulting in reduced chloro
phyll levels and decreased light absorption [18]. This dynamic relationship between nitrogen 
assimilation, chlorophyll synthesis, and light absorption forms the basis for the use of remote 
sensing techniques to detect and respond to changes in plant nitrogen status. 

Nitrogen remobilization is a vital mechanism that ensures optimal nitrogen utilization within 
plants. This process starts with the breakdown of nitrogen-rich compounds, particularly chloro-
plast proteins, in older leaves or storage organs. The resulting nitrogen-containing compounds, 
such as amino acids, are then transported through the phloem to growing tissues where they 
are utilized for the synthesis of new proteins and other essential molecules [17]. This mecha
nism allows plants to prioritize nitrogen utilization in areas crucial to growth, reproduction, and 
metabolic functions. Especially during nitrogen deficiency, the chloroplast proteins are broken 
down to supply nitrogen to essential areas of the plant. This, in turn, leads to a reduction in 
chlorophyll levels in older leaves of the plant. 

2.1.5 Denitrification 

Denitrification is a process in which nitrate is converted into gaseous forms of nitrogen, mainly 
N20 and N2. This reduction process is a form of respiration carried out by a diverse group of 
microorganisms called denitrifiers [19]. Most denitrifiers are facultative aerobes, which means 
they can switch to anaerobic respiration when oxygen is scarce and use nitrate as an electron 
acceptor instead of oxygen [20]. 

2iVOg + 10e _ + 12H+ -> N2 + 6H20 

In environments with limited oxygen and available nitrate or nitrite, these microorganisms 
produce denitrification enzymes to facilitate this conversion. However, when reintroduced to 
oxygen-rich conditions, the activity of the denitrification enzymes is typically inhibited. The 
regulation of these enzymes varies among different denitrifying microorganisms and their re
sponse to oxygen levels [19]. Denitrification occurs in 4 subsequent stages as shown in the 
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equation below. 
iVOg ->• iVO^" -> iVO -> i V 2 0 -> iV 2 

Ammonia oxidizers can also contribute to the production of A^2 gas under low-oxygen con
ditions. This process is called nitrifier denitrification [20]. 

NH+ -)• NH2OH ->• i V O ^ ->• iVO -»• i V 2 0 -> iV 2 

The occurrence of denitrification depends on three criteria: the presence of an energy source 
for the microorganisms, typically in the form of organic carbon; anoxic conditions within the soil 
environment; and the availability of nitrate. In addition to these, denitrification is also influenced 
by factors such as temperature or pH, which play a crucial role in modulating microbial activity 
[21]. 

The oxygen levels in the soil, a critical component in denitrification, are influenced by various 
factors such as irrigation, rainfall, soil type, and other environmental conditions. Excess irriga
tion or heavy rainfalls can lead to waterlogging, during which the air spaces in the soil fill with 
water, reducing the availability of oxygen to plant roots and soil organisms [21]. Consequently, 
denitrification rates tend to increase after irrigation or rainfall events, only to recede once the 
soil dries out again. 

In addition to oxygen, the amount of NO^ in the soils directly impacts denitrification rates. 
Higher levels of NO^ usually lead to increased denitrification, as there is more substrate available 
for denitrifying bacteria to consume in the process. Due to this fact, denitrification rates and 
i V 2 0 emissions are the highest after fertilization or manure application, as they introduce a 
significant amount of NO^ [21]. 

The type of soil is another factor that affects denitrification. Less porous peat and clay soils, 
characterized by their higher water retention capacity, are more susceptible to denitrification, 
while highly porous sandy soils have a lower denitrification potential [22]. In arable land, human 
interventions can further contribute to denitrification. Incorporating crop residues, especially 
those rich in easily available carbon such as sugar beet or vegetables, and the application of 
manure can increase denitrification activity and i V 2 0 emissions [21]. 

Denitrification has both positive and negative effects on the environment. On the positive 
side, it reduces leaching of NO^, contributing to water quality. On the other hand, denitri
fication is responsible for the loss of nitrogen that could otherwise be taken up by plants and 
increases the emissions of i V 2 0 , a potent greenhouse gas. 

2.1.6 Anammox 

Another group of nitrifiers is anammox (anaerobic ammonium oxidation) organisms. Unlike 
other nitrifying bacteria, anammox bacteria conduct their metabolic processes in the absence 
of oxygen. Through the anammox process, the bacteria oxidize ammonia to N2 using nitrite 
(NO2) as an electron acceptor instead of oxygen. The produced nitrogen gas is not biologically 
available to plants and is lost from the system through evasion. Therefore, anammox plays a 
significant role in the removal of nitrogen from various ecosystems, particularly in environments 
where oxygen levels are low, such as oxygen-depleted zones in oceans, wetlands, and sediments 
[15, 23]. Furthermore, anammox has found application in wastewater treatment, especially in 
the treatment of concentrated industrial wastewater [23]. 

NOz + NH+ ^ J V 2 + 2H20 
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2.2 Anthropogenic changes to the nitrogen cycle 
The nitrogen cycle plays a critical role in the survival of all living organisms by facilitating food 
production. Before the invention of the Haber-Bosch process, food production relied heavily 
on the recycling of nitrogen from crop residues and manure within the same agricultural area, 
maintaining a relatively stable level of nitrogen in the ecosystem [11]. Any additional nitrogen 
sources were also naturally occurring, including guano, a natural fertilizer derived from the 
accumulated droppings of seabirds, bats or seals on arid islands, and evaporite nitrate deposits in 
South America, particularly in Chile [24]. However, these sources did not supply enough nitrogen 
to sustain the rapidly growing human population. Following the breakthrough of the Haber-
Bosch process, the ability to synthesize nitrogen-based fertilizers revolutionized agriculture. The 
transition from reliance on natural sources of nitrogen to industrial nitrogen fixation marked a 
significant shift in agricultural practices. However, this shift has led to an exponential increase 
in nitrogen inputs into the environment, disrupting the nitrogen cycle. 

Human activities such as fertilizer use, biomass and fossil fuel combustion, deforestation, 
cultivation of nitrogen-fixing legumes, and industrial processes have significantly altered the ni
trogen cycle, pushing it beyond its natural limits. This anthropogenic influence has extended the 
imbalance in the nitrogen cycle beyond Earth's planetary boundaries. The planetary boundary 
concept was introduced to define nine key Earth system processes, or „planetary boundaries", 
that, if crossed, could lead to abrupt and/or irreversible environmental changes, significantly 
affecting the stability of the Earth system [25]. The planetary boundary value for nitrogen fix
ation through industrial processes and intentional biological fixation, set at 62 Tg N/year, has 
been far surpassed. In 2020, the annual fixation rate reached an alarming 226 Tg N/year and 
continues to gradually increase each year. In comparison, the amount of nitrogen fixed through 
natural processes is estimated to be 58-128 Tg N/year [3, 26]. 

Most anthropogenic reactive nitrogen comes from the industrial fixation of N for use as fer
tilizers, which adds up to approximately 106 Tg N/year in 2020 and an additional 43 Tg N/year 
produced for industrial processes other than fertilizer use. The industrial nitrogen fixation rate 
has increased exponentially since the 1940s, when it was nearly zero. The global production of 
reactive nitrogen between the years 1961 and 2020 can be seen in Figure 2.3. Fossil fuel com
bustion also affects the nitrogen cycle by releasing nitrogen from long-term geological reservoirs 
into the atmosphere, currently emitting more than 30 Tg N/year. In addition to fossil fuels, ni
trogen is stored in long-term biological storage pools such as forests or wetlands. Activities such 
as biomass burning, deforestation, and drainage of wetlands could mobilize around 60 Tg/year 
of stored nitrogen. Additionally, the cultivation of leguminous crops leads to the fixation of 
around 40 Tg of nitrogen annually [26]. Approximately 75% of the reactive nitrogen generated 
by human activity is used within agroecosystems. Nevertheless, the majority of this nitrogen 
does not stay there; instead, it is either removed with the crop or disperses into other systems 
through processes like evaporation, runoff, or leaching. [24]. 

It is important to note that different regions contribute differently to the alterations of the 
nitrogen cycle. Variations in nitrogen production are primarily influenced by diverse economic 
activities, levels of industrialization, agricultural practices, and regulatory policies. The most 
significant contributor to reactive nitrogen creation are Asian countries, which produce about 
50% of the total anthropogenic Nr [26]. On the other hand, Africa and Oceania have the lowest 
production rates. Highly industrialized regions, such as parts of North America, Europe, and 
Asia, often exhibit elevated nitrogen emissions stemming from intensive industrial processes, 
substantial fossil fuel combustion, and the extensive use of nitrogen-based fertilizers in agricul
ture. This dependence on industry and agricultural intensity contribute significantly to nitrogen 
loading in the environment. 
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Figure 2.3: Graph showing global nitrogen (N) creation by different sources: Haber-Bosch 
Production of NH3 for Fertilizer, Haber-Bosch Production of NH3 for Industrial Processes (HBI), 
Fossil Fuel Combustion, and Cultivation-Induced Biological N Fixation. The data covers the 
period from 1961 to 2018, with HBI data available from 1980 to 2018. Estimates for 2019 and 
2020 were extrapolated based on the previous ten years' data. [26] 

2.2.1 Consequences of the changes 

As people produce and input more and more reactive nitrogen into the nitrogen cycle, going 
beyond what is sustainable, the consequential impact on ecosystems becomes increasingly ap
parent. Reactive nitrogen, characterized by its high mobility, disperses extensively throughout 
the environment, cascading through air, water, and terrestrial ecosystems. Despite the ultimate 
conversion of Nr to unreactive dinitrogen gas, the rapid production of Nr exceeds its conversion 
rate, leading to its accumulation in many regions [27]. The consequences range from affect
ing biological diversity, and degradation of air quality to eutrophication and the creation of 
so-called dead zones [3]. This subsection discusses in more detail the consequences of human-
induced changes in the nitrogen cycle, focusing on the atmosphere and aquatic and terrestrial 
ecosystems. 

Aquatic ecosystems 

One primary concern revolves around nutrient runoff, where excess fertilizers are washed away 
by rainfall or irrigation and enter nearby water bodies. In addition, fertilizers can infiltrate 
the water through a process known as leaching. Nitrate leaching is one of the most important 
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pathways of nitrogen loss in which nitrates move down through the soil profile and eventually 
reach groundwater [28]. Leaching occurs when nitrogen inputs exceed crop demand and the 
nitrogen from applied fertilizer is not used by plants and accumulates in the soil. When large 
amounts of water, typically from rainfall or irrigation, seeps through the soil, it carries these 
nitrates along with it. 

These pathways carry high levels of nitrogen, primarily in the form of nitrates, along with 
phosphorus, initiating a phenomenon known as eutrophication. The term eutrophication en
compasses excessive nutrient enrichment of water bodies and its effects. It is estimated that 
up to 40% of the applied nitrogen globally ends up in both surface water and groundwater 
[11]. Increasing concentrations of nitrogen have been observed in surface waters throughout the 
world, for example, the concentration of nitrate has more than doubled in the Mississippi River 
since 1965 and has risen similarly in Norwegian lakes [3]. Nitrate concentrations have also been 
monitored in wells located in Káraný waterworks situated along the Jizera River in the Czech 
Republic, which supply Prague with drinking water. Although the measured concentrations 
vary between different well systems, there is a noticeable trend. On average, the concentration 
of NO3 has increased from 15-20 mg/1 in the years 1938-1940 to 104 mg/1 in 2011 [29]. As 
these nutrients accumulate in water, they can promote excessive growth of algae leading to algal 
blooms. These blooms are not only toxic in some cases, but can also deplete oxygen levels in 
the water, causing harm to fish and other marine organisms. Furthermore, the decomposition 
of these excessive plant materials can further deplete oxygen levels [11] and create dead zones, 
areas in bodies of water with extremely low oxygen levels, where only very few marine organisms 
can survive. In addition to environmental concerns, nitrates in drinking water pose a threat to 
human health, being linked to conditions such as methemoglobinemia, also known as 'blue baby 
syndrome', in infants and stomach cancer in adults [28]. 

Atmosphere 

Anthropogenic alterations of the nitrogen cycle substantially affect the atmosphere, mainly 
through the release of nitrous oxide (N2O), nitrogen oxides (NOx) and ammonia (NH3). These 
compounds, which originate from various sources, such as industrial activities, combustion pro
cesses, and agricultural practices, significantly impact air quality and pose potential risks to 
human health [27]. 

Oxidized nitrogen compounds, specifically nitric oxide (NO) and nitrogen dioxide (NO2), 
are created primarily through the combustion of fossil fuels in internal combustion engines 
and industrial power plants and by burning biomass [30]. Additionally, agricultural fertilization 
increases the concentration of volatile NH3 and other nitrogen emissions from the soil. Nitrogen 
gases in the form of NO or N2O are produced during microbial denitrification and contribute 
to atmospheric nitrogen levels. Among these, nitrous oxide holds particular significance as a 
greenhouse gas and as a contributor to the depletion of stratospheric ozone. Wi th an atmospheric 
lifespan of approximately 100 years [30], N2O concentrations are increasing at a rate of 0.2-0.3% 
per year [3]. Beyond its environmental impacts, nitrous oxide can be harmful to human health, 
acting as an irritating gas that can cause lung damage when inhaled. Long-term exposure to 
low levels of nitrous oxide can lead to symptoms such as coughing, headaches, loss of appetite, 
and stomach problems [27]. 

As mentioned earlier, nitrous oxide has a very long lifetime and due to this characteristic 
affects the Earth globally. On the other hand, the highly reactive compounds NO, NO2 and NH$ 
remain in the atmosphere only for a few hours to a few days, undergoing reactions and therefore 
having a mainly local effect [30]. Nitric oxide participates in the formation of tropospheric 
ozone, a key pollutant that affects both human health and plant productivity. In addition, the 
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oxidation of N O results in nitric acid, a crucial component of acid rain. Ammonia enters the 
atmosphere through volatilization of fertilizer N or as emission from domestic animal waste and 
biomass burning [3]. Ammonia acts as a primary acid neutralizing agent, helping mitigate the 
harmful effects of acid rain, but it can also contribute to the formation of fine particles, which 
have adverse effects on respiratory health [27]. 

Terrestrial ecosystems 

Nitrogen is an essential nutrient for plants, and alterations in its availability can impact plant 
growth and ecosystem dynamics. Given that reactive nitrogen (Nr) is often the limiting nutrient 
in most natural and seminatural ecosystems, plants have adapted to soils with low levels of nitro
gen. Wi th the addition of nitrogen, these plants are out-competed by more nitrophilic or acid-
resistant plants, ultimately resulting in a decline in biodiversity [27]. Experiments across various 
regions, including North American grasslands, European grasslands, and European heathlands, 
confirmed that the addition of nitrogen can reduce plant diversity, with certain experiments 
indicating a more than fivefold decrease in the number of plant species [3]. 

Although nitrogen is an essential nutrient for plant growth, excessive amounts can lead to 
nitrogen toxicity. Elevated Nr concentrations can inflict direct foliar damage, especially in lower 
plants, and long-term high levels of Nr can make them more susceptible to stress, such as frost 
damage, herbivory, or disease. 

To mitigate the negative impacts of excessive fertilizer use, it is crucial to adopt sustainable 
farming practices such as precision agriculture, where fertilizers are applied in a targeted manner 
based on the specific nutrient needs of the crops. Implementing nutrient management plans, 
practicing controlled release fertilization, and promoting organic farming methods can also help 
minimize the environmental effects of fertilizers. 

2.3 Precision agriculture 

As discussed in earlier sections, agriculture, particularly the use of fertilizers, can have negative 
impacts on the environment. Traditional agricultural practices often involve the overuse of pes
ticides, fertilizers, and water, resulting in water contamination, greenhouse gas emissions, and 
reduced biodiversity. To address these environmental issues, it is necessary to adopt innovative 
approaches that balance agricultural productivity with ecological preservation. Precision agri
culture (PA), also known as precision farming, is a modern approach to crop cultivation and 
animal husbandry based on the principles of sustainable agriculture [31]. 

Precision farming practices consider the heterogeneous characteristics of farmland as op
posed to the conventional approach, where the agricultural plot is viewed as a uniform unit. It 
began to take shape in the late 20th century with the emergence of global positioning system 
(GPS) technology in the 1970s [32], which provided farmers with the means to accurately map 
and navigate their fields and laid the foundations for the integration of technology to address 
the spatial complexity of modern agricultural landscapes. Various techniques have been used to 
obtain spatial and temporal data on soil, crops, and livestock, some of which are radio, laser, 
microwave systems, and others. P A uses up-to-date information technologies and data-driven 
strategies to optimize production processes with the use of sensors, drones, GPS, artificial in
telligence, etc. [31]. The collected data are analyzed and used to precisely determine the needs 
of plants or animals with respect to the heterogeneity of the system. The goal is to maximize 
yields while minimizing losses, along with optimizing resource use, such as water, fertilizers, and 
energy. 
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2.4 Remote sensing 
Remote sensing is the process of detecting and monitoring the physical characteristics of an area 
by measuring its reflected and emitted radiation from a distance, using tools such as unmanned 
aerial vehicles (UAVs) or satellites [31]. This technology allows for near-real-time assessment 
of various crop conditions, including the nitrogen status, without the need for sampling and 
laboratory analysis, while effectively capturing spatio-temporal variability. 

Each satellite or remote sensing device is designed with specific purposes and capabilities, 
leading to variations in the data they capture. Data can vary in terms of spectral, spatial, and 
temporal resolution and atmospheric correction. Spectral resolution refers to the number and 
size of spectral bands in which data are collected. In general, the narrower the spectral band 
and the higher the number of bands, the more precise the results are. However, with smaller 
spectral bands, a very high sensor sensitivity is required, leading to an increase in the price of 
the device [31]. Satellites have sensors that can capture data in various spectral bands. Some 
may have multispectral sensors with a few bands (e.g. Landsat, MODIS), while others might 
have hyperspectral sensors capturing hundreds of narrow bands (e.g. Hyperion) [33]. Temporal 
resolution refers to the frequency at which data or information can be obtained from a specific 
area over time. In the context of satellite imagery, the temporal resolution is influenced by 
the orbit of the satellite, which determines how frequently the satellite passes over the region 
of interest [31]. Another characteristic influencing the quality of the resulting data is spatial 
resolution, the pixel size of the image, which refers to the level of detail in the imagery and the 
size of the smallest object that can be detected. High spatial resolution means that finer details 
can be distinguished [31]. 
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Figure 2.4: Spectral signatures of five distinct surfaces are depicted, with wavelength (um) 
represented on the x-axis and reflectance (%) on the y-axis. In the case of healthy vegetation, 
a noticeable dip in reflectance is observed in the red spectrum, followed by a sudden increase 
representing the Red Edge. Red Edge is not noticeable on the spectral signature of dry grass. 
[34] 
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Due to limited spatial resolution, certain objects cannot be identified solely based on their 
shape or spatial details. Instead, materials can be distinguished based on their interaction with 
light. The unique pattern or curve that represents the way an object reflects or absorbs elec
tromagnetic radiation across different wavelengths is called a spectral signature [33]. Healthy 
vegetation absorbs light in the red (600-700 nm) and blue (400-500 nm) parts of the electro
magnetic spectrum for photosynthesis, while reflecting light in the near-infrared (NIR, 780-2500 
nm) spectrum. Green light is reflected by chlorophyll, resulting in the characteristic green color 
of plants [35]. Stress in plants is accompanied by reduced near-infrared reflectance and reduced 
red light absorption; however, the degree of change in reflectivity is different among different 
plants. The region with a sharp increase in reflectance between the red and NIR spectrum is 
known as the Red Edge. This slope is influenced by the amount of chlorophyll in leaves and 
can be used to determine stress in plants. Non-vegetated surfaces, such as soil and water, have 
different reflectance patterns [35]. Figure 2.4 depicts the spectral signatures of different surfaces. 

Spectral signatures are quantified and characterized using mathematical representations 
called vegetation indices (Vis). Vegetation index is a numerical value without units that repre
sents the state of vegetation at the particular moment in time when it was obtained. [35] These 
indices are designed to capture specific aspects of vegetation, such as the amount of chlorophyll 
and overall plant health. In doing so, they provide valuable insights into the physiological state 
of plants and can serve as indicators of important plant processes, including nitrogen uptake. It 
is important to note that the data collected by remote sensing can be distorted by the scattering 
of solar radiation in the atmosphere, potentially influencing the values of vegetation indices. 
Therefore, it is crucial to apply atmospheric corrections, which aim to remove or minimize the 
effects of atmospheric conditions [31]. 

To effectively convey spatial variations in vegetation health and vigor, vegetation indices are 
often visualized with color maps, such as the one shown in Figure 2.5. These color maps assign 
specific colors to different index values, making it easier to interpret the data. 
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2.4.1 Overview of vegetation indices 

The launch of satellites such as Landsat 1 in 1972 enabled the collection of multispectral imagery 
[33], establishing the foundation for satellite remote sensing and field monitoring using vegetation 
indices (Vis). These indices serve as crucial tools to assess the health and conditions of vegetation 
on large spatial scales. 

The first vegetation index created to estimate and monitor crop growth is the ratio vegetation 
index (RVI) proposed by Jordan in 1969 [36]. This index, which is calculated as a simple ratio 
of red to near-infrared bands, laid the groundwork for subsequent indices. One of the oldest, 
yet still one of the most commonly used indices is the Normalized Difference Vegetation Index 
(NDVI), introduced by Rouse et al. in 1974. It bears a strong resemblance to RVI; but instead of 
being a simple ratio of the red and NIR bands, it is computed as a normalized difference between 
the two, leading to more precise outcomes. However, N D V I does not correct for atmospheric and 
soil effects and can easily become oversaturated at higher vegetation densities. This can lead 
to inaccurate results. Therefore, many other vegetation indices were created to overcome these 
issues and obtain more precise results. Over the years, researchers have developed numerous 
vegetation indices that are tailored to address specific challenges and applications. For example, 
the Soil Adjusted Vegetation Index (SAVI), proposed by Huete in 1988, aimed to mitigate the 
influence of soil brightness on vegetation detection [36]. Similarly, the Enhanced Vegetation 
Index (EVI), introduced by L iu and Huete in 1995, offered improved sensitivity to regions of 
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high biomass density and reduced atmospheric influences compared to N D V I . One of the most 
recent vegetation indices is the Visible Band-Difference Vegetation Index (VDVI) created by 
Wang et al. in 2015 [36]. Currently, there are 519 different vegetation indices according to the 
Index DataBase [37], each tailored to specific purposes and offering varying levels of precision. 

Vegetation indices can be categorized based on their calculation formulas, functional require
ments, and spectral bands used. NV5 Geospatial Solutions outlines seven categories, including 
Broadband Greenness, Narrowband Greenness, Light Use Efficiency, Canopy Nitrogen, Dry or 
Senescent Carbon, Leaf Pigments, and Canopy Water Content Vis [31]. Each category targets 
specific vegetation properties, such as vigor, nitrogen content, or water status, which are related 
to wavelengths included in the calculation. 

Among the types of Vis , broadband greenness indices, calculated as simple ratios between 
bands, offer information on the general quantity and vigor of green vegetation [38]. They 
combine reflectance measurements sensitive to factors such as chlorophyll concentration, leaf 
area, foliage clumping, and canopy architecture and provide a measure of the overall amount 
and quality of photosynthetic material in vegetation, which is essential for understanding the 
state of vegetation for any purpose. Some examples of indices belonging to this group are N D V I , 
E V I , G N D V I , and SAVE 

Similarly to broadband greenness Vis , narrowband greenness Vis are designed to provide a 
measure of the overall amount and quality of photosynthetic material in vegetation. Most of 
these Vis utilize red and near-infrared measurements to capture the red edge of the reflectance 
curve, providing greater sensitivity to changes in vegetation health [38]. This is especially 
beneficial in densely vegetated areas where broadband measures can become saturated. The 
red-edge spectral region is more sensitive to changes in chlorophyll content than the red band. 
Given the close association between chlorophyll concentration and crop nutrients, numerous 
indices that assess crop nitrogen status, including nitrogen uptake, are derived from the red 
edge band [39]. Some examples of indices belonging to this group are M C A R I and N D R E . 

It is essential to recognize that various external factors, such as site characteristics, crop 
type, and environmental conditions, can influence the resulting vegetation index values. This 
means that the effectiveness of a specific vegetation index on one crop type within a particular 
setting does not automatically ensure similarly favorable outcomes when applied to a different 
field with a different crop. The context in which a vegetation index is employed must be 
carefully considered, as variations in external factors can significantly impact the reliability and 
interpretability of the results. 

2.4.2 Vegetation indices used in the practical part 

In this thesis, five vegetation indices were used in the analysis: 

• Normalized Difference Vegetation Index (NDVI) 

• Normalized Difference Red Edge (NDRE) 

• Green Normalized Difference Vegetation Index (GNDVI) 

• Modified Chlorophyll Absorption in Reflectance Index (MCARI) 

• Enhanced Vegetation Index (EVI) 

While N D V I , N D R E and G N D V I are simple normalized difference indices, M C A R I and E V I 
are enhanced indices designed to minimize the impacts of soil and atmospheric influences. 
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N D V I 

The Normalized Difference Vegetation Index can be used to assess the amount of green biomass, 
the leaf area index, the percentage of vegetation cover, plant vigour and health, plant stress, 
photosynthetic activity, and agricultural crop yield [35]. The formula for N D V I is expressed as 
the ratio of the difference to the sum of near-infrared (NIR) and red radiation [38], as shown 
below: 

NIR - Red 
NIR + Red 

By integrating both NIR and red reflectance, N D V I exhibits a heightened sensitivity to changes 
in chlorophyll content and overall vegetation health. Elevated chlorophyll activity correlates 
with increased red light absorption and increased reflectance of NIR light, resulting in higher 
N D V I values [35]. Typically ranging between -1 and +1, the N D V I values differ between specific 
surfaces. For example, water surfaces exhibit N D V I values less than 0, bare soils fall between 0 
and 0.1, clouds produce values around 0.23, and snow and ice approximately 0.38 [35]. Vegetation 
generally reaches values between 0.2 and 0.8 [31]. A major disadvantage of this index is the 
fact that, at certain chlorophyll concentrations, the index becomes saturated, meaning that 
further increases in chlorophyll content may not produce proportional increases in N D V I [35]. 
Consequently, this index is most suitable for measuring the conditions of plants in the early and 
middle stages of growth [40]. 

N D R E 

As proposed by Barnes et al. (2000), the Normalized Difference Red Edge Index is calculated 
in the same way as the N D V I , but uses the RedEdge band instead of the red band [38]. 

NIR - RedEdge 
NIR + RedEdge 

Red edge is more sensitive to changes in chlorophyll concentrations compared to other bands 
and is particularly effective in capturing subtle variations in chlorophyll content. As a result, it 
can be used to identify areas that might benefit from further soil analysis or that may require 
adjustments to fertilizer application [39]. The Red Edge band tends to saturate later than 
the red band; therefore, N D R E is more suitable for the middle and late stages of crop growth 
compared to N D V I [40]. 

G N D V I 

The Green Normalized Difference Vegetation Index (GNDVI) is another modification of the 
NDVI , but instead of the red band, it is calculated as a normalized difference between the NIR 
and the green band [38]. 

NIR - Green 
NIR + Green 

According to Gitelson et al. (1996), the green region of the spectrum is more sensitive to fluctu
ations in chlorophyll levels compared to the red region, making it more suitable for measuring 
nitrogen in vegetation [31, 35]. 
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M C A R I 

The Modified Chlorophyll Absorption Ratio Index (MCARI) , introduced by Daughtry et al. in 
2000, is one of several C A R I indices that serves as an indicator of the relative concentration 
of chlorophyll [38]. M C A R I is designed to minimize the combined effects of soil and non-
photosynthetic surfaces. It can be obtained using the following equation: 

((RedEdge - Red) - 0.2 * (RedEdge - Green)) * ( R e d E d 9 e \ 
Red 

However, M C A R I is still sensitive to background reflectance properties, particularly when deal
ing with low Leaf Area Index (LAI) or low chlorophyll concentrations. To address this issue, 
Daughtry et al. (2000) suggested combining M C A R I with a soil line vegetation index, such as 
the Optimized Soil Adjusted Vegetation Index (OSAVI) [41]. 

E V I 

In 1997, Huete et al. introduced the Enhanced Vegetation Index (EVI) as a refinement of NDVI . 
E V I was specifically designed to address the limitations encountered with N D V I , especially in 
areas with dense vegetation or where atmospheric conditions significantly influence the measure
ments. It accounts for residual atmospheric contamination, such as aerosols, and addresses the 
variability in soil background reflectance [35]. E V I is calculated using the following formula: 

NIR - Red  
* NIR + dRed - C2Blue + L 

Here, G represents a gain factor, C I and C2 are coefficients used to correct for aerosol effects 
in the red band by incorporating information from the blue band, and L is a coefficient that 
adjusts for the canopy background reflectance (Huete et al., 1997). Initially tailored for the 
satellite-based MODIS sensor, E V I requires adjustments to its coefficients based on the specific 
sensor employed. Ideally, E V I values are expected to range from 0 to 1 for vegetation pixels. 
However, bright features such as clouds and white buildings, as well as dark features such as 
water, can result in anomalous pixel values in an E V I image. Therefore, it is crucial to first 
mask out clouds and other bright objects in the image for an accurate analysis [38]. 
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3 Current trends in remote sensing 

The evolution of precision agriculture has witnessed major changes since the pioneering work 
of Schafer et al. (1985) [42], who introduced the concept of „custom prescribed tillage" - an 
approach that emphasizes tailoring tillage practices to the specific requirements of crops. This 
early recognition that customizing for individual crops, soils, and environmental conditions 
is crucial laid the foundation for subsequent developments in precision agriculture. As GPS 
technology became more reliable in the 1990s, precision agriculture saw significant advances, 
and researchers have begun exploring the possibility of using satellite imagery to map soil and 
crop conditions [43]. Simultaneously, sensors were developed for direct measurement of soil and 
crop parameters, such as soil organic matter, crop yields, or soil nitrogen [43]. 

Today, remote sensing plays an increasingly important role in modern agriculture, offering 
a non-destructive and efficient means of assessing soil and vegetation characteristics, including 
the estimation of crop nitrogen uptake. The specific applications of remote sensing are explored 
in the rest of the chapter, specifically focusing on the estimation of crop nitrogen uptake using 
vegetation indices derived from satellite imagery and spectrometers. 

Sharif! et al. [44] used Sentinel-2 satellite data to estimate maize nitrogen uptake in three 
fields under various climatic conditions in Iran. The research spanned three years (2017-2019) 
and focused on evaluating various vegetation indices, including S R R E , SR, N D V I , N D R E , 
T C A R I , M C A R I , M T V I 2 and G N D V I . These vegetation indices were used to create a nitrogen 
uptake prediction model. The predicted values were then compared with the estimated nitro
gen uptake of the destructive biomass samples collected. The study identified the simple ratio 
red-edge (SRRE) as the top performing index, yielding the highest R2 (0.91) and the lowest 
root-mean-squared error (RMSE) values (11.34 kg/ha). The main limitation of this study is 
that it only considers one crop (maize) and one sensor (satelite Sentinel-2), and therefore the 
results may not be generalizable to other crops and sensors. 

L i et al. [45] conducted field experiments in Germany and China during the period 2007-
2011 to optimize vegetation indices to estimate canopy nitrogen uptake in corn and wheat. Corn 
and wheat canopy reflectance was measured using a handheld field spectrometer and evaluated 
using two widely used indices, N D V I and RVI, along with seven three-band indices - all using 
the red-edge band known for its sensitivity to chlorophyll content and N uptake. Data sets 
for wheat and corn were randomly divided into two sub-data sets: 75% to establish regression 
models between spectral indices and N uptake and 25% for model validation. The central 
bands suitable for assessing canopy N uptake for corn, wheat and for corn and wheat combined 
were determined. The optimized three-band N planar domain index (NPDI) provided the most 
accurate predictions, achieving an R 2 of 0.86 and the lowest R M S E (20.1 kg N ha-1) and relative 
error (RE, 18.7 %). The main contribution of this study is that it proposes a new vegetation 
index (NPDI) that can effectively estimate canopy nitrogen uptake for both corn and wheat and 
optimizes central bands for different crops and regions. The main limitation of this study is that 
it relies on field measurements of canopy reflectance taken with a handheld spectrometer, which 
may not represent the spatial and temporal variability of crop nitrogen uptake at larger scales. 

Fiorio et al. [46] focused on estimating the nitrogen content of leaves in sugarcane using 
hyperspectral reflectance data. The experiment was carried out in Brazil during the 2014-
2015 harvest. Hyperspectral data was obtained using a laboratory spectroradiometer, and the 
leaf nitrogen content (LNC) was analyzed. The obtained values were used to create spectral 
models through Partial Least Squares Regression (PLSR) analysis. Acceptable models, with 
R2 > 0.70 and R M S E < 1.41gkg-l, were generated, with the most robust models derived from 
visible spectra (400-680 nm) and red edge (680-750 nm) bands. These models were employed for 
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nitrogen prediction in different periods from calibration and validated using leave-one-date-out 
cross-validation ( L O O C V ) . In particular, the visible (400-480 nm) and red edge (680-750 nm) 
bands were of utmost importance in predicting nitrogen uptake through spectral data. This 
study focuses on the leaf nitrogen content, which is related to nitrogen uptake. It can be used 
to optimize nitrogen application rates similarly to nitrogen uptake by using models that relate 
leaf nitrogen content to crop growth and yield. However, the leaf nitrogen content may not 
capture the effects of nitrogen on other plant organs or processes. Additionally, the study uses 
laboratory measurements of leaf reflectance, which may not match field or aerial measurements 
due to variations in illumination, viewing angle, and background noise. 

Although the studies differ in crops, locations, and sensors (satellites or spectrometers), they 
share some common methods and findings. Two of the studies used vegetation indices, such as 
N D V I and red-edge indices, to assess crop nitrogen uptake, demonstrating their applicability. 
Additionally, the use of remote sensing technology, whether through satellites or spectrometers, 
allowed for non-destructive data acquisition. Various modeling techniques were used to predict 
nitrogen uptake or nitrogen content values based on vegetation indices, all of which showed 
promising results. Evaluation of different climatic conditions (Sharifi et al. [44]) and nitrogen 
application rates (Li et al. [45]) highlights the importance of considering environmental factors 
in nitrogen uptake estimation. However, the studies did not consider the effects of other factors, 
such as soil moisture, temperature, and phenology, which can also affect nitrogen uptake. 
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4 Goal of the thesis 

In common agricultural practices, the excessive application of nitrogen fertilizers leads to envi
ronmental pollution, such as water contamination and greenhouse gas emissions, and economic 
losses. Remote sensing technology offers a promising approach to optimize nitrogen fertilizer 
application rates by providing a quick and efficient means of assessing nitrogen uptake. Mul 
tiple studies have demonstrated the possibility of using remotely sensed vegetation indices for 
nitrogen status assessment, crop yield predictions, and others. 

This thesis investigates the use of remote sensing technology, specifically using Sentinel-2 
satellite imagery, to adjust the application of nitrogen fertilizer in agriculture by monitoring 
and predicting nitrogen uptake. The study was carried out in Oensingen, Switzerland, and the 
analyzed crops were grass-clover mixture and winter wheat. The central aim of this work is to 
compile a comprehensive data set that includes both manually measured nitrogen uptake data 
and the corresponding vegetation index values. The specific objectives are as follows: 

• To measure Leaf Area Index (LAI), crop height, nitrogen concentration and biomass weight 
of the crops and to calculate the nitrogen uptake of the crops 

• To obtain satellite images using Google Earth Engine and calculate the selected vegetation 
indices (NDVI, N D R E , G N D V I , M C A R I , EVI) 

• To assess the relationship between satellite-derived vegetation indices and crop character
istics, including nitrogen uptake, through correlation and regression analysis 

• To create and validate a prediction model capable of estimating nitrogen uptake based on 
vegetation index data 

The ultimate goal of this research is to develop an efficient tool to predict nitrogen uptake 
in crops using remote sensing technology. The prediction model could guide precision nitrogen 
management, reducing the negative impacts of over fertilization. 
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5 Used methodology 

This chapter outlines the methodology used in this study. It begins with a description of the 
site where the measurements were taken, followed by an explanation of the sampling procedures. 
The methods used to measure the Leaf Area Index (LAI) and crop height are then detailed. 
Next, the chapter covers the sample analysis process and the calculation of vegetation indices. 
The programming language R is introduced, along with any additional libraries used for the 
analysis. Finally, the correlation and regression analysis and the creation of the prediction 
model are described. 

5.1 Study site description 

The sampling and remote sensing analysis was carried out at the Oensingen field site in Switzer
land (longitude (WGS 84): 7°44'01.5 E, latitude (WGS 84): 47°17'11.1 N), which serves as an 
experimental farmland with extensive management. It is a part of the Swiss FluxNet, a network 
of flux sites in Switzerland that measures greenhouse gas fluxes at the ecosystem scale using 
the eddy-covariance method. The ecosystem sites belonging to Swiss FluxNet, including the 
Oensingen site, are shown in Figure 5.1. Aligned with the Swiss integrated management frame
work of the Proof of Ecological Performance, the Oensingen site follows a typical crop rotation 
cycle, predominantly featuring winter wheat cultivation every other year with other crops grown 
in the intervening years. 

Figure 5.1: Map illustrating the distribution of ecosystem flux measurement sites across Switzer
land [47] 
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The collection of samples was conducted during my internship at E T H Zurich between June 
and August 2023, which coincided with the cultivation of winter wheat. Additionally, biomass 
weight and nitrogen concentration data were provided for the years 2021 and 2022, representing 
the time period when the site operated as a grassland. The grass-clover mixture, consisting of red 
clover (Trifolium pratense), white clover (Trifolium repens), orchard grass (Dactylis glomerata), 
meadow fescue (Lolium pratense), English ryegrass (Lolium perenne), and timothy grass (Phleum 
pratense), was sown in August 2020. The grass was cut regularly at intervals of 1-2 months, 4 
times a year. Shortly after the removal of the grass, winter wheat was sown in November 2022. 
Mineral fertilizer and slurry were applied in February and Apr i l 2023, with harvest conducted 
in July of the same year. 

During the period from 2021 to 2023, the mean annual precipitation was 1216.1 mm, with 
an average yearly temperature of 10.6 °C, as recorded by the MeteoSwiss station in Wynau. 
The soil of the study site falls under the Cambisol / Gleysol classification, characterized by a 
silt loam texture, with a pH of 5.3 in the topsoil [48]. 

5.2 Data collection 

This section focuses on the process of collecting data essential for the analysis. Information on 
the sampling process used for winter wheat collection and its subsequent analysis of nitrogen 
concentration is provided, together with methods used to measure Leaf Area Index (LAI) and 
crop height. The acquisition of satellite images and the pre-processing necessary to calculate 
vegetation indices are also described. 

5.2.1 Winter wheat sampling and sample processing 

To obtain information on nitrogen uptake of crops, the above-ground biomass of winter wheat 
was sampled. In the beginning, it is important to carefully choose the sampling scheme and 
method and then follow the procedures accordingly. This part is crucial because correctly 
performed sampling allows one to obtain information on nitrogen intake throughout the entire 
plant population, which is key for determining fertilization needs and optimizing plant nutrition. 

Before sampling was performed, the site was divided into four quadrants, with the flux station 
positioned in the center, which is illustrated in Figure 5.2. Dividing the site into quadrants 
ensures a more balanced representation of the overall conditions, as each quadrant represents 
a distinct section of the field. This allows for the inclusion of variations in soil characteristics, 
microclimates, and other spatial factors that can influence winter wheat growth and nitrogen 
uptake. Furthermore, this approach ensured that the sampling locations were distributed across 
the field. To maintain impartiality and equal representation, a random sampling method was 
used. This approach involves selecting samples without any specific pattern or bias, ensuring 
that every unit of the population has the same chance to be included in the sample. 

Biomass sampling was always conducted shortly after rainfall, a time when denitrification 
activity peaks and nitrogen availability to plants is enhanced. To ensure consistency in the 
sample size, a sampling frame with a defined area of 0.1 m2 was used. For each sample, the 
sampling frame was randomly tossed behind my back to ensure an unbiased selection. The 
winter wheat contained within the frame upon landing was collected with scissors and then 
stored in a bag with the corresponding quadrant and sample number. Each bag was marked 
with the date, sampler's name, study site ID, quadrant, and sample number to maintain proper 
organization and prevent any potential mixing of samples. From each quadrant, three random 
samples were collected, resulting in a total of 12 samples per sampling date. 
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Figure 5.2: Division of the Oensingen site into 4 quadrants for sampling purposes. The yellow 
line indicates the borders of the field, while the red line borders the area of sampling together 
with each quadrant. The satellite image was obtained from Swisstopo. 

Subsequently, each sample was subjected to a two-step process: initially, it was weighed in its 
fresh state and then weighed again after drying for five days at 60°C. Data for each sampling date 
were precisely documented in dedicated Excel sheets. Once dried, the samples were prepared 
for analysis of nitrogen concentrations. First, the biomass was crushed into smaller pieces, after 
which a subsample was finely ground to powder using a ball mill (MM200, Retsch, Germany). 
The powdered material was then carefully weighed in small tin capsules in preparation for the 
subsequent analysis of nitrogen concentrations. 

5.2.2 Analysis of nitrogen content 

The preprocessed above-ground biomass samples were subjected to elemental analysis using the 
Flash E A 1112 series elemental analyzer (Thermo Italy, formerly C E Instruments, Rhodano, 
Italy). This instrument is specifically designed for elemental analysis, including determination 
of the nitrogen concentration by dynamic flash combustion of the sample [49]. 

Elemental analysis is an analytical technique that is used to determine the elemental com
position of chemical compounds. It involves the identification and quantification of individual 
elements present in a sample. In this case, the analyzer was employed to determine the nitrogen 
concentration in the above-ground biomass samples, but it is also commonly used to determine 
the concentrations of carbon, hydrogen, and sulfur. During analysis, the sample undergoes com
bustion in a reactor, producing oxides of the present elements. These gases are then separated 
by chromatographic columns and detected using a thermal conductivity detector [49, 50]. After 
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the analysis is completed, the analyzer provides nitrogen concentrations, displayed as weight 
percentages. 

As a result, 12 nitrogen concentration values were obtained per sampling date. In addition 
to the results of the current analysis, data from previous years were also provided. However, 
these only included four values per date (one per each quadrant). The dry biomass weight and 
nitrogen concentration were later used for the nitrogen uptake calculation. 

5.2.3 Leaf Area Index and crop height measurements 

The amount of foliage in a plant canopy reflects various factors such as water and nutrient use, 
microclimatic conditions, and management practices such as fertilization. The plant canopy 
foliage content is quantified using the Leaf Area Index (LAI), a dimensionless measure that 
represents the ratio of the total area of one side of leaf tissue to the ground surface area [51]. 
This index serves as an indicator of plant health, vigor, and canopy density. Higher L A I indicates 
a greater amount of leaf cover relative to the soil area and may indicate higher photosynthetic 
activity and plant productivity. L A I can be measured by different methods, including direct 
measurements, such as harvesting and measuring leaves, or indirect methods that rely on various 
indicators that allow L A I to be estimated [51]. The most frequently used indirect methods are 
optical methods that are based on the Lambert-Beer law. 

In this case, the Leaf Area Index was measured indirectly using the LAI-2000 Plant Canopy 
Analyzer (LI-COR Biosciences, USA) . The LAI-2000 operates on the principle of measuring the 
amount of light that infiltrates the canopy. It does so using a fisheye optical sensor positioned 
just above the ground level, which captures the incoming light from various angles. As the 
density of leaves in the canopy increases, less light reaches the sensor, and the Leaf Area Index 
(LAI) also increases [52]. When taking measurements using the LAI-2000, the L A I of the sky 
without any cover was first measured to ensure that the resulting value would be zero, as there 
is no leaf cover. Subsequently, the index was measured six times within each quadrant, resulting 
in a total of 24 data points that were then averaged to obtain the representative value. It was 
crucial to shade the area of measurement as direct light can influence the final value. 

Measurement of the leaf area index together with analysis of nitrogen uptake provides a 
comprehensive assessment of plant growth, photosynthetic efficiency, and nutrient management. 
By correlating L A I with vegetation indices, the effectiveness of nitrogen utilization by plants 
can be evaluated, which can help optimize nutrient management practices. 

In addition to L A I , crop height was measured to obtain a more complete understanding 
of plant growth dynamics and nutrient utilization. By measuring height at different stages 
of the plant's life cycle, the growth rate can be monitored, and the measured values can be 
compared with the expected ones. Stress factors such as lack of nutrients, water, diseases, or 
pest infestations can thus be revealed. Crop height also serves as a tangible indicator of the 
accumulation of above-ground biomass and the distribution of nitrogen within the canopy. 

The crop height measurements used in this thesis were obtained using a cardboard board 
and a tape measure. The board was carefully placed on the vegetation canopy, and then the 
height from the ground to the board was measured and recorded. This process was repeated six 
times per quadrant, resulting in a total of 24 values per date. 

5.2.4 Remote sensing data acquisition 

Alongside manual sample collection and analysis, satellite imagery was used to assess nitrogen 
uptake of the vegetation cover. This was achieved by calculating vegetation indices using Google 
Earth Engine (GEE), a cloud-based platform developed by Google equipped with vast amounts 
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of satellite imagery and geospatial datasets. Designed for analysis, processing, and visualiza
tion of geospatial data, G E E can be used for a wide range of applications in earth observation, 
environmental monitoring, land use planning, disaster management, agriculture, forestry, etc. 
Data can be accessed through a web-based interface and the JavaScript Application Program
ming Interface (API), which enables users to work with the data in Google Earth Engine using 
programming code written in JavaScript [53]. Google Earth Engine can be used to obtain veg
etation indices by applying calculation algorithms on multispectral satellite imagery, such as 
Landsat and Sentinel data. 

In the analysis of vegetation indices, the harmonized Sentinel-2 Level 2-A images were ac
cessed from the Google Earth Engine database. Sentinel-2 was chosen mainly for its temporal 
and spatial resolution, which offers finer detail compared to other publicly available satellite 
data. The Sentinel-2 images are captured every five days, and most bands have a spatial resolu
tion of 10 meters, except for the RedEdge band, which provides a resolution of 20 meters. For 
comparison, Landsat images are taken at a 30-meter resolution. This difference can significantly 
impact results, especially when analyzing smaller areas, such as in this case. 

To prepare the Sentinel-2 images for analysis, they were filtered based on their acquisition 
dates, only keeping images captured between 1st January 2021 and 28th November 2023 which 
were relevant to the analysis of winter wheat and grass cover. The images were cropped to 
the boundaries of the study site by importing a georeferenced shapefile created in Geographic 
Information System (GIS) software. The shapefile acts like a digital map, specifying the ge
ographic extent of the study site. One significant challenge in processing satellite images was 
the presence of bright white objects, such as clouds or snow cover, which can distort the values 
of vegetation indices. To mitigate their influence, a cloud masking technique was employed 
using the s2cloudless image collection available in G E E . This process involves identifying and 
removing cloud-covered pixels from being included in the computation. The cloud masking is 
demonstrated in Figure 5.3, which contains an image before and after the cloud masking was ap
plied. In addition, images with snow cover exceeding 20 % of the image area were also excluded. 
Given that the Sentinel-2 program operates with a constellation of two satellites, Sentinel-2 A 
and Sentinel-2B, the database often contains two images captured on the same date. Having 
one image per day is sufficient; therefore, only the image with the lower cloud cover from the 
pair was kept, since it would have a clearer view of the Earth's surface. During the selected time 
period, the satellite took in total 401 images. This number has been reduced to 68 throughout 
the filtering process. 

After filtering was performed, the selected vegetation indices N D V I , N D R E , M C A R I , E V I , 
and G N D V I , which are described in more detail in Subsection 2.4.2 Vegetation indices used 
in the practical part, were computed using their respective equations. The final values were 
produced by taking the mean index value of the whole field for the day of image acquisition. 
Finally, the results were exported as a C S V file for further analysis. 

5.3 Data analysis 

This chapter is dedicated to the preprocessing and analysis of the collected data and explains the 
software and methods used. This includes the creation of time-series plots and an investigation 
of the relationship between nitrogen uptake and vegetation indices through correlation and 
regression analysis and the development of a prediction model. It describes the fundamental 
concepts of correlation and regression, followed by a detailed explanation of the functions used 
in R for analysis. 
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Figure 5.3: Cloud masking application on an image from 14th Apr i l 2022. Left side - image 
before cloud masking was applied, right side - image after cloud masking was applied. The 
Oensingen study site is depicted in green color. 

5.3.1 Programming language R and R studio 

R is a programming language used for data analysis and visualization. It provides an extensive 
range of statistical techniques, including linear and nonlinear modeling, classical statistical tests, 
and time-series analysis [54]. One of its most valuable characteristics is its extensibility. Through 
the installation of libraries, users can enhance its functionality by integrating various additional 
features to suit specific analytical needs. Most of these packages, which were created by other 
users, are available through C R A N (the Comprehensive R Archive Network) and other sources 
such as GitHub. 

RStudio is an integrated development environment (IDE) for the R programming language, 
providing a user-friendly interface to write, run, and debug R code. 

Libraries used during the analysis 

During the analysis, a variety of additional libraries were imported into RStudio. These included 
extensions of existing functions as well as entirely new functions and visualization tools. 

The first library that was imported is data.table, a package that improves the fundamental 
data.frame structure in R. It enhances data manipulation capabilities by providing concise syntax 
for tasks such as file reading and writing, subsetting, grouping, and aggregating large datasets. 
It offers improved speed and efficiency, particularly when handling large data sets [55]. 

Another package for data manipulation used during analysis is called dplyr, which enables 
filtering, selecting specific columns, arranging data, and joining data sets [56]. One of the most 
important features that dplyr adds is the piping operator, which enables users to chain multiple 
functions together, reducing the need for intermediate variables and improving code readability. 

The next library is fuzzyjoin, an invaluable tool for performing fuzzy matching and joining 
operations in R. Fuzzy matching allows matching records in datasets that are not identical but 
similar, based on specified criteria such as string similarity or distance metrics [57]. This was 
especially useful when merging data sets containing values of nitrogen uptake and vegetation 
indices. 

To create visually appealing and custom graphs, the packages ggplot2 and ggthemes were 
used. The ggplot2 library allows users to create a wide range of graphs, including scatter plots, 
bar charts, histograms, and more. A l l aspects of graphs can be easily customized, from colors 
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and shapes to labels and themes, to effectively communicate data insights [58]. In combination 
with ggplot2, ggthemes provides additional themes and color palettes to further enhance the 
appearance of the plots. Another extension of ggplot2 used is G Gaily, which adds even more 
types of plots and customization options. 

It is possible to create a linear regression model in R without the use of an additional 
library. However, for the performance validation of the model, the caret library was used as 
it can significantly simplify the process and is more reliable. The caret package, short for 
Classification And REgression Training, is an R package designed to optimize the process of 
model training, tuning, and performance evaluation [59]. It provides functions for performing 
various cross-validation techniques, including the Leave-One-Out Cross-Validation (LOOCV) 
which was used in this work. 

Other libraries used were stringr [60] for string manipulation and tidyr [61] for data cleaning. 

5.3.2 Creation of time-series plots 

Time series of nitrogen uptake and vegetation indices are valuable for monitoring, analysis, 
and understanding changes in vegetation health over time. The plots help to visualize trends, 
patterns, and fluctuations in both nitrogen uptake and vegetation indices over time. Sudden 
increases or decreases in their values can indicate environmental stress, such as drought, pest 
infestation, or nitrogen deficiency. In addition, trends in values over longer periods of time can 
highlight gradual changes in vegetation health that can indicate soil degradation or environmen
tal pollution. 

The time-series plots were created in R Studio using the ggplot2 library. To accomplish this, 
nitrogen uptake data and all vegetation indices were imported into R and organized into data 
frames. These data frames included a column with the date of data collection and a column 
containing the corresponding values. 

In the previous chapter, the crop sampling and analysis process was discussed, from which the 
biomass weight and nitrogen concentrations for each quadrant were obtained. These parameters 
were used to calculate nitrogen uptake. Following the import of these data into R Studio, any 
N A values were removed and a nitrogen uptake column was added to the data frame. Nitrogen 
uptake in g /m 2 was calculated using the formula: 

(dry - tara x 10) x (%N corr./100) 

where dry-tara is the dry weight of biomass in g/0.1m 2 and % N corr. represents the nitrogen 
concentration in weight percentage. After this was done, the mean nitrogen uptake for the entire 
field was calculated per date. Since the dataset included nitrogen uptake data for both grass and 
winter wheat, a column indicating the type of crop was added. Table 5.1 presents the data on 
the mean nitrogen uptake per field for grass and winter wheat collected on various dates. The 
columns of the table detail the date of measurement, the dry weight of the samples in grams, 
the corrected percentage of nitrogen (% N corr.), the nitrogen uptake and the crop. 

Similarly, the values corresponding to each vegetation index were imported and organized 
into five separate data frames. Values very close to zero were removed because they may be the 
result of cloud or snow interference and probably do not represent the state of vegetation well. 
Specific thresholds were established to filter these insignificant values: a minimum of 0.1 was set 
for N D V I , N D R E , G N D V I , and E V I , while for M C A R I , which generally exhibits lower values, a 
threshold of 0.01 was used. The plots have the same structure as those that illustrate N uptake, 
except for the time extent, which is 30th March 2021 to 16th October 2023. Individual plots were 
created for each index, displaying values per field and per quadrant. In addition, a combined 
graph was generated that presents all indices simultaneously to highlight their differences. 
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Table 5.1: Mean Nitrogen Uptake 
Date Dry Weight (g) %N Corr. Mean N Uptake Material 

2020-10-19 5.1500 3.6724 1.8802 grass 
2021-05-26 66.5350 1.6819 11.0675 grass 
2021-07-20 54.0575 1.9491 10.5621 grass 
2021-09-02 33.6175 2.5087 8.4949 grass 
2021-10-19 25.6225 3.3031 8.6463 grass 
2022-05-10 44.7550 2.4457 10.8053 grass 
2022-06-27 33.5050 2.6858 9.1360 grass 
2022-08-08 23.4500 2.8714 6.7255 grass 
2022-09-19 11.1225 3.6013 4.0209 grass 
2022-12-13 4.3517 3.2523 1.3523 winter wheat 
2023-02-07 3.9867 3.3363 1.3089 winter wheat 
2023-03-17 6.5617 4.0697 2.6571 winter wheat 
2023-04-14 19.1483 3.2388 6.0642 winter wheat 
2023-05-19 79.3208 1.6666 13.2026 winter wheat 

5.3.3 Correlation and regression analysis using R Studio 

A linear model was used to analyze the relationship between nitrogen uptake and vegetation 
indices. Linear models assume a linear relationship between the variables, which is a type of 
relationship characterized by changes in one variable being linearly reflected in changes in the 
other [62]. In addition to the main analysis, the relationship between vegetation indices and 
other measured variables, including dry biomass weight, nitrogen concentration, L A I , and crop 
height, was evaluated. In statistical modeling, variables can be classified as independent or 
dependent variables. A dependent variable is the one that is being predicted or explained and 
its values depend on the changes in the independent variable [63]. In this case, vegetation indices 
were the independent variable and nitrogen uptake, dry biomass, nitrogen concentration, L A I , 
and crop height were the dependent variables. Within this model, correlation and regression 
analyses were employed to further explore the connection between these variables. 

Correlation analysis is a statistical technique that helps assess the presence, nature, strength, 
and direction of associations between two quantities. In R, the cor() function facilitates the 
evaluation of this relationship by computing the Pearson correlation coefficient (r), which ranges 
between -1 and +1. A value of ± 1 signifies a perfect degree of association between the two 
variables, with a positive sign indicating a positive relationship and a negative sign indicating a 
negative one. As the value of the correlation coefficient approaches 0, the association weakens 
[64]. It is important to note that while correlation analysis can reveal potential associations 
between variables, it does not imply causation. To provide additional clarity, a table of graphs 
was generated with the help of the GGally package, showing the relationship between all variables 
through scatterplots and their correlation coefficients. 

Similarly to correlation, regression analysis is a statistical method used to examine the 
relationship between a dependent variable and one or more independent variables. In linear 
regression, a straight line of best fit is established to depict the relationship between variables, 
with the slope of the line indicating how changes in the independent variable impact a change 
in the dependent variable [65]. The ordinary least squares (OLS) approach was used to find this 
line that best fits the data by minimizing the sum of the squared differences between observed 
and predicted values. The coefficient of determination R 2 was used to quantify the degree to 
which the model predicts an outcome. Ranging from 0 to 1, it measures the proportion of 
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variance in the dependent variable (for example, nitrogen uptake) that is predictable from the 
independent variables (vegetation indices). The closer the R 2 value is to 1, the better the model 
is at making predictions [66]. 

A more comprehensive understanding of the relationship between variables can be provided 
using both correlation and regression analysis. Correlation measures the strength and direction 
of the linear relationship. However, correlation does not imply causation nor can it be used in 
case of a non-linear relationship between the variables. Regression analysis goes a bit further 
by quantifying the relationship between dependent and independent variables and providing an 
equation that can be used to make predictions. 

To construct the linear model, the data sets containing vegetation indices were merged 
with dry biomass weight, nitrogen concentration, L A I , crop height, and nitrogen uptake. Since 
satellite image acquisition did not always align perfectly with crop sampling dates, the variable 
values were combined within a 7-day window using fuzzy matching. After assigning the value 
of the vegetation index to each value of nitrogen uptake and other variables, the data could 
be inserted into a linear model. The lm() function in R was used to fit the linear regression 
model to the dataset, determining the coefficients (slope and intercept) of the regression line, 
while also calculating the coefficient of determination and other characteristics. Following this, 
a scatter plot was generated that visualizes the relationship and includes the model equation, 
the coefficient of determination, and the Pearson correlation coefficient. 

5.3.4 Development and validation of prediction model in R Studio 

The linear regression model described previously was used to predict nitrogen uptake values 
based on vegetation indices. Linear regression was chosen mainly because it is relatively simple, 
produces easily interpretable results, and can often provide reliable predictions with relatively 
small amounts of data. 

The evaluation of a model is crucial to assess its performance and reliability. The performance 
of a model is evaluated by measuring how well the predictions made by the model match the 
observed data. Typically, this involves dividing the data set into training and testing sets. The 
model is built using only the data in the training set and then used to make predictions on the 
testing set to see how well it performs on unknown data. However, the results of this method can 
vary depending on how the data set was separated. Additionally, when working with very small 
data sets, such as in this case, splitting the data may not be feasible. To address these concerns, 
the created model was validated using Leave-One-Out Cross-Validation ( L O O C V ) , which fits 
the model several times using a different training and testing set each time [67]. In L O O C V , 
the training set consists of all but one data point, and the prediction accuracy of the model is 
evaluated by predicting the removed data point. This process is repeated for each data point in 
the data set, allowing a thorough assessment of the predictive ability of the model even with a 
small number of data points. Once validated, a dataset was created that contains both predicted 
and actual values. This data set served as the basis for calculating the key evaluation metrics: 
the root mean squared error (RMSE) and the mean absolute error ( M A E ) . R M S E measures 
the average deviation between the predicted and actual values by calculating the square root of 
the average squared difference, while M A E measures the mean absolute difference between the 
predicted and actual values [68]. These evaluation metrics quantify the predictive performance 
of the model and provide valuable insights into its accuracy and reliability. The lower the M A E 
and R M S E , the better a model fits a data set. For easier interpretation, the predicted and actual 
values were visualized using a scatter plot 6.16. 
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6 Results of the analysis and discussion 

The relationship between vegetation indices and nitrogen uptake was examined, along with 
other characteristics of the plants. The analysis aimed to reveal their interrelationships and 
correlations, which would support the possibility of using vegetation indices to estimate nitrogen 
uptake by plants. This chapter summarizes the results and discusses their implications. The 
results of the analysis are shown in Table 6.1, including the Pearson correlation coefficient and 
the determination coefficient. 

Table 6.1: Results of the correlation and regression analysis between vegetation indices and crop 
characteristics. Each cell of the table contains the values of Pearson correlation coefficient and 
the coefficient of determination, in this order. 

N D V I N D R E G N D V I M C A R I E V I 
L A I 0.69, 0.47 0.53, 0.28 0.39, 0.16 0.62. 0.39 0.86, 0.74 

crop height 0.43, 0.19 0.42, 0.18 0.31, 0.09 0.1, 0.01 0.33, 0.11 
nitrogen concentration -0.69, 0.48 -0.54, 0.3 -0.48, 0.23 -0.81, 0.66 -0.77, 0.6 

biomass weight 0.74, 0.55 0.59, 0.35 0.51, 0.26 0.88, 0.78 0.82, 0.67 
nitrogen uptake 0.86, 0.74 0.72, 0.51 0.6, 0.36 0.9, 0.81 0.95, 0.89 

The results are discussed in more detail in the following subsections. 

6.1 Plant nitrogen uptake of observed winter wheat 

The course of nitrogen uptake changes through the observation period can be seen in the time-
series plots. Figure 6.1 shows the mean nitrogen uptake for the whole field and figure 6.2 shows 
the mean nitrogen uptake per quadrant. 

Figure 6.1: Time-series plot of mean nitrogen uptake per field in g /m 2 . The biomass type is 
represented by color and shape of the data point. The error bars represent standard deviation. 
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The generated plot provides a visualization of the mean nitrogen uptake variations over the 
period from 19th October 2020, to 11th July 2023. The x-axis displays dates in the month/year 
format, while the y-axis represents nitrogen uptake in g /m 2 . The plot distinguishes between the 
grass and the winter wheat using different shapes and colors for clarity. A line connecting the 
data points is present in the plot to further aid in the identification of trends over time. 

Decreased nitrogen uptake in grass can be observed during September and October, which 
may be due to the preparation of the plants for dormancy in the upcoming winter months. This 
preparation can include a reduction in nutrient uptake, including nitrogen, as the grass stops 
growing [69]. Another reason could be the transport of nitrogen from the leaves to the roots or 
to storage organs within the plant, which occurs as the grass approaches the end of its growing 
season [70]. 

Cutting of the grass-clover mixture started in May 2022 with complete removal in October 
2022, which is visible in the plot. The removal was followed by the sowing of winter wheat in 
November 2022. 

In the plot, a steady increase in nitrogen uptake by winter wheat can be observed, with 
a decrease in July. This decrease is most likely a sign of senescence, during which nitrogen 
is relocated towards the grains. At this point, nitrogen uptake in the above-ground biomass 
is lower, although the crop remains healthy and produces high values of vegetation indices 
(Vis). Because of this, only measurements obtained before the end of June were included in the 
correlation and regression analysis between nitrogen uptake and vegetation indices. 

Figure 6.2 shows the nitrogen uptake changes for each quadrant. In this plot, the quadrants 
are visualized in different colors and the shapes correspond to the type of biomass. 

Figure 6.2: Time-series plot of nitrogen uptake per quadrants in g /m 2 . The quadrants are 
separated by colors and the shapes represent the biomass type. 

The grass cover exhibits variations in nitrogen uptake throughout the field, while nitrogen 
uptake of winter wheat is more consistent. Plant uptake can be affected by variability in soil 
conditions, moisture, pH, temperature, and other environmental factors. Variations in nitrogen 
uptake within grasses are likely mainly due to the nature of the mixture. Red clover (Trifolium 
pratense) and white clover (Trifolium repens) are nitrogen-fixing plants, which means they enrich 
the soil with nitrogen. Therefore, parts of the field with higher concentrations of clover would 
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be richer in nitrogen, and the crops collected there would exhibit higher nitrogen uptake. The 
age and stage of growth of the plants can also influence nitrogen uptake, with younger plants 
having different nutritional needs compared to mature plants. The proportions of different age 
groups within the samples can vary, causing further variability in nitrogen uptake. 

6.2 Obtained time variations of vegetation indices 

The following time-series plot 6.3 illustrates the fluctuation of the values of the Normalized 
Difference Vegetation Index (NDVI) over consecutive months, spanning from March 2021 to the 
end of June 2023. The x-axis denotes the date in a month/year format, and the y-axis represents 
the corresponding N D V I values, which measure the reflectance difference between near-infrared 
and red light. The grass cover and the winter wheat are distinguished in the plot by color and 
shape. 

Compared to nitrogen uptake, vegetation indices offer a more detailed insight into plant 
dynamics due to the higher number of measurement dates. Notable decreases in N D V I values 
can be observed in the plot. These correspond to grass cuts, dormancy, or crop harvesting events, 
demonstrating the sensitivity of N D V I to changes in plant biomass and chlorophyll content. 

> 
Q 

Figure 6.3: Time-series plot of N D V I for grass-clover and winter wheat over 2021-2023, high
lighting changes in the status of the crops. 

Low values during January, February, and March 2022 may be attributed to grass entering a 
dormant state due to colder temperatures and shorter daylight hours. During dormancy, grasses 
stop growing to conserve energy and its chlorophyll content in leaves decreases, resulting in 
lower N D V I values [71]. This reduction in N D V I values can be related to the decreased nitrogen 
uptake observed in subchapter 6.1 as lower nitrogen uptake can lead to reduced chlorophyll. 
However, at the moment when nitrogen uptake decreases, the grass may still appear green and 
healthy, which is why higher N D V I values can be observed during the fall. 

Winter wheat was planted in October, after which it germinated before entering a dormant 
phase during the cold winter months. This limited growth period, during which winter wheat 
does not significantly expand its biomass, is reflected in the graph by a slow increase in N D V I 
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between November and March. As temperatures begin to rise in spring and daylight hours 
increase, winter wheat resumes active growth. This can be observed in the graph, where the 
N D V I values surge during the period from Apr i l to May. The peak N D V I values observed in 
June typically represent the maximum leaf area and chlorophyll concentration as the wheat 
approaches maturity. The plant then enters senescence, during which resources are diverted 
from leaf development towards seed maturation. Leaves begin to lose chlorophyll and die off, 
leading to a decrease in N D V I values around July. 

On 14th May 2022, unusually low values were recorded for the vegetation indices N D V I , 
N D R E , and G N D V I , while M C A R I and E V I showed expected levels. The indices N D R E , 
G N D V I , M C A R I and E V I are displayed in Figure 6.4. The lower values were probably caused 
by rain during image acquisition, which affects the reflection of light. As depicted in Figure 
2.4, water absorbs most of the light at wavelengths beyond 0.7 //m, leading to a decrease in 
reflectance in the near-infrared (NIR) spectrum. Healthy vegetation reflects light in the NIR 
spectrum and absorbs red light. The higher the reflectance in the NIR spectrum and the greater 
the absorption of red light, the higher the values of the Normalized Difference Vegetation Index 
(NDVI). However, the presence of water affects these values. Although water does not signif
icantly change the reflectance of red light, it decreases the reflectance in the NIR spectrum, 
leading to lower values of the N D V I . N D R E and G N D V I are also affected in a similar way. 
G N D V I is most affected because water absorbs even less green light than red light. This means 
that there is almost no decrease in the green light reflectance, making the lower NIR reflectance 
have an even greater impact on the G N D V I results. Since the values were low due to weather 
conditions and not the actual state of the plant, the data points are not well correlated with the 
status of the crops and caused a lower ability of the models to predict N uptake. The deviating 
point is clearly visible in Figures 6.7 and 6.15. 

Date Date 

Figure 6.4: First row left to right: time-series plot of N D R E , G N D V I . Second row left to right: 
time-series plot of M C A R I , E V I . The values from 14th May 2022 are circled. While there is a 
decrease in N D R E and G N D V I due to the rain, M C A R I and E V I are not affected. 
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Indices like M C A R I and E V I are less affected by rain because they are designed to minimize 
atmospheric and soil background influences. M C A R I focuses on the red-edge spectrum, which is 
less affected by water reflectance, and E V I includes a blue band to correct for aerosol influences 
in the atmosphere. 

The plot 6.5 includes the normalized values of all the observed vegetation indices to high
light their differences. Most of the indices exhibit a similar course of development, with some 
variations in sensitivity. In particular, M C A R I stands out with its very low values for winter 
wheat. 
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Figure 6.5: Time-series plot of all the observed vegetation indices to highlight their differences. 
The values are normalized. 

Time series of vegetation indices were also collected per quadrant. However, because of 
the low spatial resolution of the images, each quadrant consisted of only a few large pixels. 
These pixels often overlapped with the boundaries of the quadrants, resulting in unreliable val
ues. Consequently, minimal variations in vegetation indices were observed between the different 
quadrants. 

6.3 Results of correlation and regression analysis 
The relationship between vegetation indices (Vis) and Leaf Area Index (LAI), crop height, dry 
biomass weight, nitrogen concentration, and nitrogen uptake was analyzed. The results of each 
correlation and regression analysis were visualized in scatterplots that include the correlation 
coefficient and the coefficient of determination. 

Relationship between V i s and Leaf Area Index (LAI) 

Among the vegetation indices analyzed, the Enhanced Vegetation Index (EVI) showed the 
strongest relationship with L A I , with R 2=0.74 and r=0.86. The high correlation coefficient 
suggests a strong positive relationship, meaning that as L A I increases, E V I also tends to in
crease. The R 2 value indicates that 74% of the variability in L A I can be explained by the 
variability in E V I . 
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In contrast, the Green Normalized Difference Vegetation Index (GNDVI) showed a much 
weaker relationship with R 2=0.16 and r=0.39. This implies that only 16% of the variation in 
L A I can be explained by changes in G N D V I . In this case, the low correlation is mainly due 
to the inability of G N D V I to correct for the influence of the atmospheric and soil background. 
One point can be seen in the scatterplot that is deviating greatly from the line of best fit and 
is causing the inaccuracy of the model. This point represents the G N D V I value obtained on 
14th May 2022 and is most likely lower than the real value due to the influence of rain on the 
reflectance. 

y = 12 *x + -5.8 
R2 = 0.74 
Correlation: 0.86 

O 
y = 12 *x + -4.9 
R2 = 0.16 
Correlation: 0.39 

0.65 

EVI 

0.70 0.75 0.I 

GNDVI 

Figure 6.6: Relationship between E V I and Figure 6.7: Relationship between G N D V I and 
L A I . L A I . A data point that is influenced by atmo

spheric noise is highlighted in red. 
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Relationship between V i s and crop height 

Crop height was not highly correlated with any of the indices analyzed. This was expected as 
vegetation indices reflect aspects of crop health and physiological status. Crop height does not 
necessarily relate to these factors because tall crops can be unhealthy or sparse, and shorter 
crops can be dense and vigorous. 

Crop height was most strongly correlated with N D V I , but even then an R 2 of only 0.19 and 
a correlation coefficient of 0.43 were achieved. This could be due to the fact that N D V I captures 
the overall biomass, which coincidentally correlates with crop height, as higher crops usually 
have more biomass. 

The lowest correlation was observed with the Modified Chlorophyll Absorption Ratio Index 
(MCARI) , with a very low R 2 of 0.01 and a correlation coefficient (r) of 0.1, which means that 
there is basically no relationship between M C A R I and crop height. Since M C A R I was designed 
to serve as an indicator of chlorophyll concentration, it is insensitive to variations in height, 
which do not directly affect chlorophyll content. 

75 y = 135 *x + -70 
R2 = 0.19 
Correlation: 0.43 

y = 20 *x + 39 
R2 = 0.01 
Correlation: 0.1 
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0.85 0.90 

o 
O 

50 

25 

0.1 0.2 0.3 

MCARI 

Figure 6.8: Relationship between N D V I and Figure 6.9: Relationship between M C A R I and 
crop height. crop height. 
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Relationship between V i s and nitrogen concentration 

The correlation between vegetation indices and nitrogen concentration was negative, which 
means that as the V I values increase, the nitrogen concentration decreases. This inverse re
lationship can be attributed to the so-called dilution effect, a phenomenon in which the accu
mulation of dry biomass is accompanied by a decrease in the concentration of nutrients in plant 
tissues. This is because when the crop intakes a growth-limiting elements, such as nitrogen, the 
dry biomass accumulates more rapidly than the amount of nitrogen [72]. As a result, although 
the total amount of nitrogen has grown, its concentration relative to the biomass has decreased. 

Among the indices analyzed, M C A R I exhibited the strongest negative correlation with ni
trogen concentration, with R 2=0.66 and r=-0.81. The good results can be attributed to the fact 
that M C A R I is designed to observe the chlorophyll content of the leaf, which is closely related 
to the nitrogen content. 

On the other hand, G N D V I showed the weakest correlation across the indices, with R 2=0.23 
and r=-0.48, indicating a lower sensitivity to changes in nitrogen concentration within plant 
tissues. The measurement point from May 2022 was not as deviated during this analysis as it 
was with L A I . 
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Figure 6.10: Relationship between M C A R I 
and nitrogen concentration in the above 
ground biomass. 

Figure 6.11: Relationship between G N D V I 
and nitrogen concentration in the above 
ground biomass. 
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Relationship between V i s and biomass weight 

Similarly to nitrogen concentration, the most well correlated index with biomass weight was 
M C A R I and the least correlated index was G N D V I . M C A R I resulted in R 2=0.78 and r=0.88, 
while for G N D V I R 2=0.26 and r=0.51. As mentioned above, M C A R I is sensitive to leaf chloro
phyll, which usually increases together with biomass; therefore, M C A R I is also capable of effec
tively capturing the biomass weight of crops. 

G N D V I exhibited a much weaker correlation, with an R 2=0.26 and r=0.51. Interestingly, 
G N D V I showed a good correlation at lower biomass weight values, but the correlation weakened 
when the biomass weight exceeded 40 grams. The correlation at lower biomass weights is clearly 
visible in Figure 6.13 where the values below 40 g appear to increase linearly with G N D V I . 
This suggests that G N D V I is more effective in monitoring sparse vegetation as it becomes 
oversaturated with denser canopies. Dense canopies absorb and scatter more green light, which 
is then not being reflected and captured by the index. As a result, G N D V I remains the same 
even though the biomass weight continues to increase. 
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Figure 6.12: Relationship between M C A R I 
and biomass weight. 

Figure 6.13: Relationship between G N D V I 
and biomass weight. Positive correlation can 
be observed for biomass weight below 40 g, 
while higher values do not seem to have a 
strong relationship with G N D V I . 
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Relationship between V i s and nitrogen uptake 

Significant differences in indices performance were observed during correlation and regression 
analysis between vegetation indices and nitrogen uptake. 

E V I exhibited the strongest relationship with nitrogen uptake, achieving an R 2 of 0.89 and a 
correlation coefficient (r) of 0.95. This indicates that E V I is highly effective in predicting nitrogen 
uptake, likely due to its sensitivity to changes in chlorophyll content and canopy structure, 
and its ability to correct for atmospheric and soil interference. The relationship between E V I 
and nitrogen uptake is plotted in Figure 6.14. Since E V I showed the highest correlation and 
predictive capacity with nitrogen uptake, it was later used in the prediction model. 

Biomass type 
• grass 

winter wheat 

0.6 0.7 0.8 0.9 

EVI 

Figure 6.14: Relationship between E V I and N uptake. 
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In contrast, the Green Normalized Difference Vegetation Index (GNDVI) showed much 
weaker results, with an R 2 of only 0.36 and a correlation coefficient of 0.6. This relatively 
low correlation can be attributed primarily to the inability of G N D V I to correct for atmospheric 
influence. The G N D V I value from May 2022, which was lower than the real value due to rain, 
significantly affected the accuracy of the model and caused the low R 2 and the correlation 
coefficient. The relationship between G N D V I and nitrogen uptake can be seen in Figure 6.15. 
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Correlation: 0.6 
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Figure 6.15: Relationship between G N D V I and N uptake. Measurement point influenced by 
rain is clearly deviating from the rest of the values. This point is located in the top left corner. 

It is notable that while M C A R I performed better in the correlation and regression analy
sis with nitrogen concentration and biomass weight, E V I showed a stronger relationship with 
nitrogen uptake. This is likely because factors such as environmental stressors or management 
practices can cause fluctuations in nitrogen uptake but do not immediately affect chrolophyll 
levels in leaves, which M C A R I measures. Therefore, M C A R I cannot capture these changes. 
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6.4 Prediction model performance 

The Enhanced Vegetation Index (EVI) was used to create the prediction model, because it per
formed the best during the correlation and regression analysis between the indices and nitrogen 
uptake. 

The prediction model was evaluated using the L O O C V method, which was chosen due to 
the limited number of data points. This method ensures that each data point is used for both 
training and validation, thus maximizing the use of available data and avoiding overfitting. 
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Figure 6.16: The N uptake predicted by E V I plotted against the real data. The 1:1 line represents 
a condition where predicted values exactly match the real values. 

The model achieved an R 2 of 0.89, indicating a high level of accuracy in the predictions 
compared to the actual values of nitrogen uptake. The precision of the model was further 
quantified by calculating the Root Mean Square Error (RMSE) and the Mean Absolute Error 
(MAE) , with values of 1.05 and 0.89, respectively. A n R M S E of 1.05 means that the square 
root of the average squared differences between the predicted values made by the model and 
the actual values is 1.05 units (in this case g/m 2 ) . Similarly, an M A E of 0.89 means that, on 
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average, the the predicted values are 0.89 units away from the actual data points. Although both 
R M S E and M A E provide measures of average error, R M S E gives a relatively higher weight to 
larger errors, which can reveal the sensitivity of the model to outliers. The relationship between 
predicted and real values was visualized in Figure 6.16. 

In the scatter plot, the points are arranged along a so-called 1:1 line, which represents a 
perfect condition, where the predicted values exactly match the actual values. The points are 
distributed closely around the line, which indicates accurate and consistent predictions of the 
model and confirms the suitability of E V I as a predictive tool for nitrogen uptake. 

In conclusion, high R 2 , low R M S E , and M A E confirm the effectiveness of the EVI-based 
model in accurately predicting nitrogen uptake. 

6.5 Comparison with existing literature 

The methodology of this study differed from other research in several ways. First, data collection 
was restricted to a short period of time and was performed at only one field site. This limited the 
number of observations, potentially affecting the robustness and generalizability of the results. 
Secondly, while most studies focus on a single crop, in this thesis both grass and winter wheat 
were analyzed simultaneously. The results suggested that some indices were effective for both 
crops, while others were more crop specific. For example, M C A R I appeared to perform rather 
well when analyzing its relationship with grass nitrogen uptake (r=0.88, R 2=0.78), but there 
did not seem to be a strong relationship between M C A R I and nitrogen uptake of winter wheat 
(r=0.42, R 2=0.18). However, this could be caused by the low number of nitrogen uptake mea
surements of winter wheat. Other studies found that there is a non-linear relationship between 
M C A R I and chlorophyll leave content in winter wheat [73], which would also explain the low 
performance. 

E V I was the best-performing vegetation index; however, it did not perform as well in other 
studies, such as the one conducted by Troy et al. [74], where N D R E outperformed E V I . This 
could indicate that, while E V I does not perform well when analyzing winter wheat by itself, it 
yields better results when both grass and winter wheat, or only grass, are observed. The method 
of acquisition of satellite images could also play a role. The study by Troy et al. only included 
satellite images captured at the peak of greenness in the calculation, while in this study images 
from across the entire crop life cycle were used. N D R E also performed well in this study but 
was limited by its inability to correct for atmospheric influence. 

In contrast to the previous literature, G N D V I showed the lowest performance in predicting 
nitrogen uptake in this study. This was unexpected, as G N D V I is generally considered to be 
more sensitive to chlorophyll concentrations and nitrogen uptake in crops compared to other 
indices such as N D V I . For example, Francisco et al. [75] demonstrated high efficiency of G N D V I 
under controlled greenhouse conditions with crops such as cucumbers and broccoli. Similarly, 
studies that analyzed corn yield [76] using spectral images collected from an aircraft have found 
strong correlations between G N D V I and nitrogen uptake. It is important to note that in both 
cases the atmospheric influences were negligible because of the nature of image acquisition and 
field characteristics. These findings suggest that while G N D V I can be a reliable indicator under 
controlled conditions, it may not perform well under field conditions with atmospheric variability. 
Other studies in which vegetation indices were calculated from satellite images confirmed the 
results of this work [44]. 

Currently, most studies use vegetation indices only on one crop at a time. Future research 
should investigate the development and validation of vegetation indices that are reliable for 
multiple types of crops, which would have practical implications for agricultural management. 
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7 Conclusion 

In summary, this thesis investigated the relationships between vegetation indices and nitrogen 
uptake, along with other plant characteristics, using correlation and regression analysis. In 
addition, a model was developed to predict nitrogen uptake based on the Enhanced Vegetation 
Index (EVI). 

Time-series analysis revealed different nitrogen uptake patterns in grass and winter wheat, 
reflecting different environmental and physiological factors. In particular, the time-series plots 
of the vegetation indices highlighted various changes in crop status throughout its life cycle. 

Correlation and regression analyzes were performed to better understand the relationship 
between vegetation indices and nitrogen uptake together with other vegetation characteristics. 
E V I showed a strong correlation with the Leaf Area Index (LAI) and nitrogen uptake. Nitrogen 
concentration and biomass weight were best correlated with the Modified Chlorophyll Absorp
tion in Reflectance Index (MCARI) , while crop height was not strongly correlated with any of 
the indices. In contrast to other studies, the Green Normalized Difference Vegetation Index 
(GNDVI) did not perform well, mainly due to its sensitivity to atmospheric conditions, which 
caused a lower value for a speficic date. 

A prediction model was created that uses E V I to predict nitrogen uptake. It achieved very 
good results, with an R 2 of 0.89, an R M S E of 1.05, and an M A E of 0.89. This indicates that E V I 
is suitable for predicting nitrogen uptake in grass and winter wheat. This model could be used 
in precision agriculture, allowing monitoring and optimizing nitrogen application. However, it 
should be tested under various climatic conditions and for different crop species to validate its 
applicability and robustness. 

There were many limitations in the performed analysis. The main limitation was the insuf
ficient number of manual measurements, particularly for winter wheat, which had only three 
measurement points. This is not enough to confidently conclude the relationship between nitro
gen uptake of winter wheat and vegetation indices. Even when grass data were included in the 
dataset, there were only 11 data points in total. To improve the results, more nitrogen uptake 
measurements are necessary. Another drawback was that the satellite images were only taken 
once per five days and as a result the vegetation indices values could not be precisely combined 
with nitrogen uptake. Cloud cover further complicated the analysis, as images taken on cloudy 
days are unreliable and had to be excluded. The removal of cloud-covered images greatly re
duced the final number of vegetation index values. Therefore, vegetation indices derived from 
satellite images have a greater potential for use in regions with low cloud cover. 

The results of this thesis contribute to the understanding of the relationship between vege
tation indices and crop characteristics, particularly nitrogen uptake. This can help significantly 
mitigate the negative impacts of excessive fertilization, including environmental pollution and 
economic loss. Better fertilization practices would reduce nutrient runoff, water pollution, green
house gas emissions, and unnecessary economic costs. The Enhanced Vegetation Index (EVI) 
showed a strong ability to predict nitrogen uptake by crops, making it a useful tool for adjusting 
fertilizer application to the actual needs of crops. 
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