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ANNOTATION  
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articles. 
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ABSTRACT 

The thermal buffering ability of ectotherms describes how their body temperatures are adjusted under 

varying ambient temperatures. Understanding how ectotherms buffer their body temperature is crucial and 

timely to precisely predict their responses to climate change. The thesis aims to identify the phylogenetic 

correlations between wing morphometrics (phenotypic traits) and the buffering thermoregulation ability of 

71 butterfly species found in the Andean foothills. To do this, we first gather DNA sequences of the COI 

gene and reconstruct a maximum likelihood phylogeny. Afterwards, we measure the butterfly wing shapes 

and sizes and compile a dataset consisting of butterfly thorax and ambient temperatures recorded in the field 

in Peru. Finally, we use phylogenetic comparative methods to find statistical correlations between the 

butterfly thermal buffering ability predicted by the measured morphological traits: thorax cylindric volume 

(cm3), total wing area (cm2), wing loading (the ratio of thorax volume and total wing area), and aspect ratio 

(forewing length divided by forewing width). Our results show that butterflies with high aspect ratio, 

describing species with elongated and narrow wings, have high thermal buffering ability, i.e., they keep 

stable thorax temperatures across a wide range of ambient temperatures. These butterflies are often 

associated with long gliding flights, which might reduce heat production by having long non-flapping flight 

and decreased flight muscle activity. However, other morphometric traits were not associated with butterfly 

thermal buffering ability, despite previous predictions suggested a correlation between increased body 

temperatures and increased body sizes together with increased flight speed (assessed by proxy through wing 

loading). Thermoregulation is important for animals to adapt and survive environmental and climatic 

change. Our work provides a standardized and replicable approach for forthcoming studies on 

thermoregulation of butterflies, to assess the thermal buffering ability along environmental gradients in the 

tropics (e.g., along elevational zones) predicted by ecomorphological traits of ectotherm animals. 
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1.  Introduction 

The climate is changing at an unprecedented pace, affecting ecosystems and species worldwide. In the 

tropics, the summer days have already been 20% warmer than the average recorded temperatures (Byrne 

2021). In 2023, temperatures might break previous records because El Niño is predicted to drive weather 

and climate extremes worldwide (Rodrigues, 2023). This will likely cause extreme tropical drought and 

rapid shifts in global mean temperatures. Together with other factors such as extensive deforestation in the 

tropics, biodiversity will likely face its highest threats ever due to climate extremes. 

Species have different strategies to cope with environmental changes, such as tracking of the optimum 

climate by dispersal or behavioral thermoregulation. However, our understanding of morphological traits 

predicting effective responses to climate change is limited, especially in species-rich ectotherm groups such 

as insects, and in biodiverse regions such as the tropics. Climate change and extremes, such as heatwaves, 

might cause ectothermic animals to become extinct,  specially, when they are isolated and cannot relocate 

via dispersal to a better microclimate (Hayes et al. 2023). Thus, to cope with such conditions, some species 

including butterflies tend to seek shade and shelters to thermoregulate and lower their body temperature.  

1.1.  How ectotherms deal with climate change  

Ectotherms stand out as a vulnerable group in the context of the ongoing climate crisis, given their 

dependence on ambient temperatures to regulate their metabolic processes (Johansson, Orizaola, and 

Nilsson-Örtman 2020). Climate change poses a significant threat to tropical species because they have 

narrow physiological tolerances to temperature extremes, which might have caused the high estimated 

frequency of climate-related local extinctions (Grinder and Wiens 2023). Thus, it is timely to understand 

the potential responses of tropical ectotherm groups to climate change. For example, species might respond 

to environmental changes by genetic-based adaptations (Kellermann and van Heerwaarden 2019), but 

ectotherms also employ more often different strategies to thermoregulate, including environmental-driven 

changes in behavior (Barton, Porter, and Kearney 2014), changes of physiology (Ashe-Jepson et al. 2023), 

or plastic responses in morphology (Hill et al. 2021). 

In terms of physiological tolerances, for example, Heliconius butterflies (Nymphalidae) from the Andean 

foothills have different thermal tolerances along an altitudinal gradient; lowland populations have higher 

tolerances than high elevation ones (Montejo-Kovacevich et al. 2020). Further, there are phenotypic traits 

that potentially enhance the thermoregulatory abilities of species, such as dark coloration and body size, 

which were associated with butterflies occurring in cooler conditions across tropical habitats in Australia 

(Xing et al. 2016). Regarding behavioral responses to climate changes along microhabitats, Alpine 

temperate species can utilize warm microclimates, and low-altitude grassland species may seek colder 

microhabitats to escape heat (Dongmo et al. 2021). However, tropical ectotherms might be more endangered 
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due to the global warming as they experience temperatures much closer to their physiological optimum than 

temperate taxa (Johansson, Orizaola, and Nilsson-Örtman 2020). Although, most findings on behavioral 

thermoregulation reported to date were mostly for temperate ectotherms and butterflies, limited support to 

similar behaviors in tropical species has been reported. Overall, more research regarding thermoregulatory 

mechanisms of tropical butterflies, including physiological, ecomorphological, and behavioral responses, is 

needed to address this gap in knowledge. 

1.2.  Thermal buffering ability of butterflies in the tropics 

Thermal buffering ability is the capacity of an organism to maintain a stable body temperature despite the 

fluctuations of the ambient temperature (Bladon et al. 2020). Thermoregulation plays an important role in 

the survival fitness of butterflies.  

Buffering ability in butterflies is driven by the interaction of body size, habitat use, and physiological limits 

(Ashe-Jepson et al. 2023; Kleckova and Klecka 2016). In a community of tropical lowland butterflies, Ashe-

Jepson et al. (2023) identified a negative association between thermal buffering ability and physiological 

thermal tolerance, suggesting a potential trade-off in how butterflies cope with climatic fluctuations and 

extreme events. Furthermore, smaller species seem to be less efficient in buffering their body temperature 

(De Keyser et al. 2015), in both temperate (Bladon et al. 2020) and tropical communities (Laird-Hopkins et 

al. 2023), but they exhibited higher thermal tolerances (Ashe-Jepson et al. 2023). Additionally, wing color 

and shape seem to be good predictors of butterfly responses to environmental changes. For example, aspect 

ratio, which is a morphometric measure of how elongated and narrow the forewings are, seem to positively 

correlate with thermal buffering ability in a community of tropical lowland butterflies (Laird-Hopkins et al. 

2023). However, despite these recent efforts to understand the behavioral and phenotypic traits affecting 

thermal buffering ability, there is still a lack of substantial evidence for other tropical communities and 

along elevational gradients. 

1.3.  Work aim 

The goal of this research is to investigate whether butterfly morphometrics (phenotypic traits) are reliable 

predictors of the thermal buffering ability of butterflies from a tropical community in the Andean foothills. 

In my thesis, we investigate how thermal buffering of butterflies is explained by phylogenetic relatedness 

of species occurring in the local community, and how thermal buffering is explained by morphological 

traits. We gather partial DNA sequences of the mitochondrial COI gene and reconstruct the phylogeny of 

the local butterfly assemblage. We rely on DNA barcoding, which is a method to identify species using a 

short region of DNA from a specific gene or genes. They are called “barcode” because it uses short, 

standardized DNA sequences acting as unique identifiers for species. With a molecular phylogeny based on 
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COI, we then measure wing shapes and sizes of 71 species of the local butterfly assemblage, and compile 

thorax temperatures recorded in the field in Peru. Our overall aim is to find statistical correlations among 

thermal buffering ability against morphological traits, such as wing loading, total area (cm2), aspect ratio 

and thorax volume (cm3). 
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2.  Materials and Methods 

2.1.  Study sites and species 

Butterflies were caught at the locality of Tarapoto, which is characterized by a premontane (~400 –800 m) 

tropical rainforest near a national park (Área de Conservación Regional Cordillera Escalera) in northeastern 

Peru. The research team (Pável Matos, Daniel Linke, and local collaborators) visited the locality twice, first 

during the rainy-season of 2021/22 from October to February, and second during the dry-season of 2022 

from June to September. The area is covered by ~50-year-old secondary growth forests with small pockets 

of extensively used farmlands (under 5%). Both climate and flora vary greatly within a very limited 

geographic scale, influencing the distribution and composition of butterflies in the community. Local 

conditions ranged from moist and shady valleys, semi-open permaculture plantations, closed secondary 

forest cut by walking paths to dry, windy hilltops with xerophilic plants. 

2.1.1.  Data Collection 

Butterflies, when encountered during field walking, were captured using entomological nets without active 

chasing to not bias our records towards artificially increased body temperatures. For data collection, we 

followed the protocol of Bladon et al. (2020) with minor modifications: Within 5 seconds after capture, the 

thoracic temperature (Tb) was measured, using a thin thermocouple (0.5 mm diameter) and a handheld 

thermometer (Tecpel Thermometer 305B, TC Direct); Afterwards, the air temperature was measured in the 

shade at waist height (Ta). The butterfly was removed from the net and identified to species level, or as 

taxonomically close as possible, before being either released or collected in glassine envelopes for further 

analyses. In the present dataset, only the most abundant species/subspecies with at least 10 measured 

individuals across a range of 16.6 °C to 43.0 °C from Tb and 15.3 °C to 35.2 °C from Ta were used to obtain 

reliable estimates of per-species thermal buffering ability. Butterfly sampling was random and did not 

represent true species diversity and composition at the study location.  

2.1.2.  DNA sequencing 

Total DNA was extracted from two butterfly legs per specimen using the QIAGEN’s DNeasy kit by a 

technician. Amplification of the mitochondrial cytochrome c oxidase subunit I (COI) gene was performed 

using published primers and PCR protocols (Matos-Maraví et al. 2013). DNA sequencing was conducted 

by the company Macrogen Europe BV (Amsterdam, The Netherlands). The resulting chromatograms and 

DNA sequences were inspected and edited accordingly using the program Geneious Prime 2023.2.1 

(http://www.geneious.com/). 

http://www.geneious.com/
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2.2.  Phylogenetic Analysis 

2.2.1.  Bioinformatics pipelines to retrieve BOLD databases. 

First, a bioinformatics pipeline was developed to retrieve species sequences from the Barcode of Life Data 

Systems (BOLD) system, accessible at http://www.boldsystems.org. This retrieval process was facilitated 

using a command line interface known as "BOLD-CLI," as detailed by Nugent (2019) (Appendix code 1). 

Subsequently, a series of Bash commands were applied to perform data curation procedures, such as the 

automatic renaming of sequence headers and removal of DNA sequences that do not come from the COI 

fragment used for barcoding. Second, local BLAST databases were constructed in the Metacentrum 

environment (the Czech National Grid Organization, https://metavo.metacentrum.cz/) using the COI 

sequences retrieved from BOLD (Appendix code 2). Third, we performed BLAST searches using the 

command ‘blastn’ (Altschul et al. 1990) using our samples as queries against the reference database 

(Appendix code 3). Subsequently, the output data underwent further refinement and filtering procedures 

using Bash commands, resulting in an Excel file with pairwise sequence identities (P-identity) higher than 

a threshold of 95%, and highlighting the best high-confidence match per sample as well as the proportion 

of matches with the same taxonomic name from our local BLAST databases. Altogether, these values were 

necessary to assess the species identities of our sampled specimens. 

2.2.2.  COI sequences for missing species 

For this study, our focus was a subset of 71 distinct species/subspecies from the field work in Peru because 

those had robust temperature data to assess thermal buffering ability and photographs to assess 

morphometrics measures. We were able to sequence and confidently identify 36 species after the BLAST 

search procedure using our own sequences as queries. Therefore, a total of 35 studied species/subspecies 

with missing COI sequences were obtained from publicly accessible repositories, specifically the National 

Center for Biotechnology Information (NCBI) database available at https://www.ncbi.nlm.nih.gov/ 

supplemented by public data from the BOLD database. 

2.2.3.  Phylogenetic Tree 

To account for the evolutionary relationships among the studied species in the comparative analyses, we 

inferred a maximum likelihood phylogenetic tree. The obtained COI sequences were aligned using the 

Multiple Alignment using Fast Fourier Transform (MAFFT) tool v7.520 (Katoh and Standley 2013), which 

estimated homologous positions along the COI gene (Appendix code 4). To construct the phylogenetic tree 

using the aligned dataset, we utilized the IQ-TREE multicore software version 2.2.0  (Minh et al. 2020) 

(Appendix code 5). This allowed us to systematically explore various potential tree topologies and choose 

the maximum likelihood phylogeny based on our data, with statistical support values estimated using the 

Ultrafast Bootstrap Approximation (Hoang et al. 2018) with 1,000 replicates. To achieve model accuracy, 

http://www.boldsystems.org/
https://metavo.metacentrum.cz/
https://www.ncbi.nlm.nih.gov/
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we partitioned the COI alignment into codon positions, and allowed the program, via ModelFinder, to find 

the best partitioning scheme and substitution models using the commands `-m MFP --merge`. Finally, we 

constrained the relationships among butterfly families and the monophyly for each of them. Ultimately, we 

assigned the age of the butterfly superfamily (Papilionoidea) to 110 million years, following current 

estimations (Kawahara et al., 2023). 

2.3.  Butterfly morphology 

Morphology traits were scored based on one photographed specimen per species with a scale reference in 

millimeters (mm) or centimeters (cm). The photographs were manually retrieved from the online database 

"Butterflies of America" (https://www.butterfliesofamerica.com/) using the respective species names as 

search criteria or from the mounted collection in České Budějovice. To ensure reproducibility, all 

measurements were conducted in accordance with Figure 1. The measurements were executed using the 

software ImageJ v1.54 software (Schneider, Rasband, and Eliceiri 2012) with the exception of total wing 

areas, which were measured using the semi-automated MATLAB script "wingImageProcessor 1.1”. The 

aspect ratio was computed by dividing the forewing length by the forewing width.  

 

 

Figure 1. Measurements on the butterfly (García-Barros 2015). 

 

For the total wing area measurements, we first employed Photoshop version 24.1.0 to extract one forewing 

and one hindwing from images displaying the entire specimen, as depicted in Figure 2. Following this, we 

imported these wing images into the program wingImageProcessor 1.1. We specified the length of the scale 

bar in cm and defined a rectangular region of interest, as illustrated in  

Figure 3. The program, then, performed automatic calculations of wing area, expressed in square centimeters 

(cm²). To measure the total wing area for each specimen, we summed the forewing and hindwing areas, and 

multiplied them by two to account for the four butterfly wings. 

 

https://www.butterfliesofamerica.com/
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Figure 2. Sampled forewing for analysis in the program wingImageProcessor 1.1. 

 

Figure 3. Automated isolation of the region of interest. To isolate the best part of the wing, we used a threshold of 0.9 for all samples, except 

by minor adjustments for some specimens, while keeping “Speck removal” and “Annealing” parameters at zero. 

Wing loading relates the body mass against total wing area. However, our morphometrics measures derive 

only from photographed individuals, as weight of species was not available. Thus, as a proxy of weight, we 

used the cylinder volume of thorax, which is the body part harboring the muscles allowing powered flight. 

We employed the following equation to derive the wing loading: 
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Where TW= the thorax width, TL = the thorax length, TA = the total wing area. 

2.4.  Thermal buffering ability of wild butterflies 

We conducted all statistical analyses using R version 4.3.1 (R Core Team 2023). 

2.4.1.  Thermal buffering ability 

We applied a linear regression model to fit the relationship between air temperature (Ta) and butterfly body 

temperature (Tb) for each studied species/subspecies.We used the command “lm()” in R 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lm) to fit the formula lm(Tb ~ Ta ) 

(Appendix code 7). This analysis determined the slope of the fitted regression, which served as an indicator 

of the ability of butterflies to adjust their body temperature in response to variations in ambient temperature 

(Bladon et al. 2020); the lower the slope of the fitted regression, the higher the thermal buffering ability of 

the butterfly species (i.e. butterfly keeping stable Tb across a wide range of ambient temperatures). 

2.4.2.  Associations of buffering ability with morphometrics of butterflies 

To test our hypotheses on the effects of butterfly wing morphology in thermal buffering ability, we used 

two phylogenetic comparative methods, Phylogenetic Independent Contrasts (PIC, Felsenstein 1985a) and 

Phylogenetic Generalized Least Squares (PGLS, Martins and Hansen 1997) (Appendix code 11). We were 

interested in whether wing loading, total area, thoracic volume, and aspect ratio, can predict the estimated 

thermal buffering ability of each studied species. We used the R packages: nlme v 3.1.162 (Pinheiro and 

Bates 2000) for function gls() to fit a generalized least squares (GLS) model; dplyr v 1.1.3, (Wickham et al. 

2023) to manipulate the data; ape v 5.7.1 (Paradis and Schliep 2019) for PIC analyses and plotting 

phylogenetic trees with function pic(); caper v 1.0.3 (Orme et al. 2023) for PGLS analyses with function 

pgls(). These analytical techniques were implemented under the context of the Brownian motion model of 

evolution (Felsenstein 1985). Further, to visualize the approximate evolution of each trait along the 

phylogeny of the 71 studied species, we used the function contMap() from the R package phytools v 1.9-16 

(Revell 2012) to plot the reconstructed ancestral trait states for every internal node reconstructed using the 

method described in Felsenstein (1985). 

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lm
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3.  Results 

3.1.  Sampled specimens and phylogenetic relationships 

3.1.1.  Sampled specimens 

The 71 species included in this study were represented by 4,319 individuals classified in five butterfly 

families (Hesperiidae, Nymphalidae, Papilioneidae, Pieridae, and Riodinidae) and one day-flying moth 

species for comparisons (Uraniidae). For all species, we measured their wing morphometrics and thermal 

buffering ability, as well as we obtained COI sequences for each species from our own sampling in Peru or 

from public databases. Specifically, there were 964 individuals (17 species) of Hesperiidae, 2,842 

individuals (43 species) of Nymphalidae, 348 individuals (6 species) of Papilionidae, 129 individuals (2 

species) of Pieridae, 20 individuals (2 species) of Riodinidae, and 16 individuals (1 species) of Uraniidae 

(Appendix table 1. Morphological characteristics.). This reflected the relative abundances and encounter rate 

of such species during the field work in Peru. 

3.1.2.  Phylogenetic relationships 

To compare the evolutionary relationships among the studied groups, we inferred a maximum likelihood 

phylogenetic tree using the COI sequences. The program ModelFinder found that the first and second coding 

positions should be merged, and the best-fit substitution model was “TIM”, while the third coding position 

had the “TIM2” model as best-fitting. For the statistical support of our inferred phylogenetic relationships, 

there were more than 52% of internal nodes with ultrafast bootstrap values higher than 95%, which was 

good given the low amount of data used to infer the phylogeny of the six Lepidoptera families. 

3.2.  The morphological traits of the butterflies 

All the morphometrics were measured using the software ImageJ v1.54 (Schneider, Rasband, and Eliceiri 

2012), with the exception of the total wing areas, which were measured using the MATLAB script 

"wingImageProcessor 1.1". 

The results were based upon our 71 sampled species, and it may be different when comparing to larger 

and more diverse populations. Hesperiidae had the highest mean wing loading at 0.016 ± 0.004, while 

Uraniidae obtained the lowest wing loading at 0.001. The observation for Hesperiidae was largely 

explained by their robust and heavy thoraces. Nymphalidae stood out with the highest aspect ratio of 

2.050 ± 0.429, reflecting their typical elongated and narrow wings. Riodinidae and Hesperiidae had lower 

aspect ratios (1.582 ± 0.196 and 1.914 ± 0.265, respectively) compared to other families, suggesting that 

their wings are rounder, which might be linked to increased flight abilities. Meanwhile, Riodinidae 

possessed the smallest wing area at 4.219 ± 3.495 cm2. Papilionidae exhibited the highest mean thorax 
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volume at 0.190 ± 0.086 cm3. In contrast, Riodinidae had the smallest mean thorax volumes at 0.018 ± 

0.017 cm3 ( 

 

 

 

 

 

 

Appendix figure 1). A summary of the morphometric parameters per family is presented in Table 2. 

 

Family species per family Number of individuals 

Hesperiidae 17 959 

Nymphalidae 43 2,831 

Papilionidae 6 347 

Pieridae 2 129 

Riodinidae 2 20 

Uraniidae  1 16 

Table 1. Summary of total number of species per family and individuals among the species. 

 

 

Family 

Wing 

loading 

(TV/TA) 

Aspect 

ratio (WL/ 

WW) 

Wing 

length 

(WL) (cm) 

Wing width 

(WW) (cm) 

Total area 

(TA) (cm2) 

Thorax 

volume 

(TV)(cm3) 

Hesperiidae (N 

= 17) 

0.016 

± 0.004 

1.914 

± 0.265 

2.340 

± 0.331 

1.230 

± 0.144 

8.013 

± 1.466 

0.128 

± 0.046 

Nymphalidae 

(N = 43) 

0.004 

± 0.002 

2.050 

± 0.429 

3.831 

± 1.292 

1.959 

± 0.853 

21.428 

± 17.878 

0.069 

± 0.043 

Papilionidae (N 

= 6) 

0.007 

± 0.002 

1.969 

±0.099 

5.115 

±1.304 

2.594 

±0.615 

28.406 

±12.009 

0.190 

±0.086 

Pieridae (N= 2) 

0.003 ±3e-

04 

2.004 

±0.132 

3.270 

±0.135 

1.633 

±0.040 

15.208 

±1.975 

0.038 

±7e-04 

Riodinidae (N= 

2) 

0.004 

±0.001 

1.582 

±0.196 

1.702 

±0.602 

1.060 

±0.249 

4.219 

±3.495 

0.018 

±0.017 
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Uraniidae (N= 

1) 
0.001 1.968 4.987 2.534 34.772 0.030 

Table 2. Summary of average morphological characteristics in centimeters (cm) including standard deviation (± SD) for each butterfly and moth 

family. The N indicated how many different species were measured for the morphological parameters.  

3.3.  Thermal buffering ability 

The body temperature, air temperature and thermal buffering ability of the studied butterflies are 

summarized in Table 3 and Table 4. A linear regression model was applied to fit the relationship between 

the air temperature and butterfly body temperature for each sampled species/subspecies.This analysis aimed 

to determine the slope of the fitted linear regression, which serves as an indicator of the buffering ability of 

butterflies (Bladon et al. 2020); the higher the thermal buffering ability results in a lower slope value of the 

fitted model. Overall, for our dataset, Pieridae had the highest average body temperature (Tb) at 32.29 ± 4.29 

°C. Conversely, Nymphalidae exhibited the lowest Tb at 27.90 ± 3.25°C. In terms of air temperature (Ta), 

Pieridae also had the highest mean at 27.47 ± 2.67 °C. Meanwhile, Riodinidae showed the lowest average 

Ta at 24.74 ± 2.69 °C, in line with their propensity to occupy cooler micro-environments (e.g., resting under 

leaves of forest vegetation). 

 

 

Table 3. Summary of average recorded temperatures in degree Celsius (°C). The table presents a summary of both body temperature (Tb) and 

air temperature (Ta) for six butterfly and moth families. It includes the maximum, minimum, average and standard deviation of temperature 

values. 

 

 

 

 Mean slope Min slope Max slope  

Hesperiidae 1.09 0.53 2.55 

Nymphalidae 0.94 0.33 1.91 

Family average_Tb

ody 

Min_Tbo

dy 

Max_Tbo

dy 

average_T

air 

Min_T

air 

Max_T

air 

SD_Tbo

dy 

 

SD_Ta

ir 

 

Hesperiidae 31.95 20.00 43.00 26.05 18.00 33.30 3.80 2.56 

Nymphalidae 27.90 16.60 39.30 25.11 15.30 35.20 3.25 2.51 

Papilionidae 30.29 20.30 40.30 25.48 20.00 32.10 4.16 2.34 

Pieridae 32.29 21.80 39.10 27.47 20.40 31.90 4.29 2.67 

Riodinidae 29.80 22.80 37.50 24.74 18.30 29.20 4.63 2.69 

Uraniidae 29.43 26.40 34.40 26.59 24.20 32.20 2.04 2.39 



 

  18/49 

Papilionidae 1.03 0.88 1.24 

Pieridae 0.97 0.88 1.05 

Riodinidae 0.72 0.66 0.78 

Uraniidae 0.77 0.77 0.77 

Between_species 0.97 0.33 2.55 

Table 4. Results of the linear regression models. Models describing dependence of the Tb on Ta  (Appendix code 7 and Appendix code 8). The 

table summarizes the mean (average), minimum, and maximum values of slope parameters of each species per family and across all families 

(between species); the lower the slope of the fitted linear regression (Tb ~ Ta), the higher the thermal buffering ability. 

 

 

Figure 4. Butterfly body temperature (°C) variations at different ambient temperatures (°C) for each family (Appendix code 6). The solid blue 

lines display the fitted linear regression and the slope using function lm(Tb ~ Ta ) of such a relation is considered as a proxy for thermal buffering 

ability. The region surrounding the fitted regression line denotes the 95% confidence interval band. 

 

The linear regression model applied to Tb ~ Ta resulted in slopes that can be used as proxies to understand 

how body temperatures of each species per family change compared to the air temperature. On average, 

buffering abilities species across the families exhibited nearly 0.97± 0.32. Notably, species exhibited diverse 

thermal buffering abilities, ranging from regression slopes of around 0.33 (Morpho menelaus, Nymphalidae) 

to approximately 2.55 (Elbella blue, Hesperiidae). Among families, Hesperiidae recorded the highest per-

species mean slope with 1.09 ± 0.49 ranging from 0.53 to 2.55, which implies their strong dependence to 
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ambient temperature (i.e., less buffering ability), however, their lifestyle should be considered as potentially 

relying more on behavioral thermoregulation as they might heat up rapidly thanks to their large thoracic 

muscles and their fast flight speed might allow them to cool down slowly. Contrarily, Riodinidae had the 

lowest per-species average slope at 0.72 ± 0.09 ranging from 0.66 to 0.78 (Table 4), implying a high 

buffering ability. 

 

 

Figure 5. Bar plot depicting the distributions of body temperature and air temperature from a range of 10 °C to 40 °C by butterflies and moth 

family with the frequency of each Ta and Tb appearing within the family Appendix code 9 and Appendix code 10). It indicates that each family 

responded differently with the ambient temperature. Notably, Hesperiidae, Papilionidae, Pieridae, and Riodinidae exhibited significantly higher 

temperatures than the ambient air conditions that these species encountered. While Nymphalidae and Uraniidae were more stable compared to 

their air temperatures. 
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3.4.  Does buffering ability correlate with butterfly morphology? 

To assess the hypothesis on whether the butterfly morphometrics predict the thermal buffering ability of 

species, we used two phylogenetic comparative methods, Phylogenetic Independent Contrasts (PIC, 

Felsenstein 1985a) and Phylogenetic Generalized Least Squares (PGLS, Martins and Hansen 1997). 

Overall, the results produced by either method remained highly congruent. 

 

 

 

Thermal Buffering vs. P-value Slope 

(without the intercept) 

Wing loading  

 

0.421 

 

-0.051 

 

Aspect ratio  0.033 -0.304 

Total area  0.927 -0.008 

Thoracic volume  0.458 -0.040 

Table 5. Results of the linear regressions by species. Models describing dependence of the buffering ability (slope) on the morphometrics (wing 

loading, aspect ratio, etc.). The table shows the effect of morphological characteristics (wing loading, aspect ratio, total area, and thoracic 

volume) on the thermal buffering ability. The model was applied via the R function gls()and accounting for the effect of phylogeny via 

correlation of Brownian to fit the data (PGLS). In bold, the aspect ratio had a significant effect on per-species thermal buffering ability. 

 

The aspect ratio of the species showed a significant effect (p-value ~0.033) on predicting the variation in 

butterfly buffering ability per species. The slope of the fitted regression was -0.304, which suggested that 

there is a significantly negative trend between the aspect ratio and the slope. All other morphological 

characteristics did not have a significant explanatory power for buffering ability. Furthermore, the 

approximate evolution of each trait along the phylogeny of the 71 sampled species/subspecies was 

visualized using the function contMap() from the R package phytools. The Felsenstein (1985) method was 

used to plot the reconstructed ancestral trait states for every internal node reconstructed and along 

branches in the maximum likelihood tree (Appendix figure 2 to Appendix figure 5). 
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Figure 6. Ancestral character state reconstruction for aspect ratio (forewing length divided by the forewing width). Colors represent low (red), 

intermediate (green), and high (blue) values of aspect ratio (the higher the aspect ratio the more elongated and narrower the forewings). 
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4.  Discussion 

Our aim was to determine whether wing morphometrics are good predictors for the estimated thermal 

buffering ability of tropical butterflies found in the Andean foothills. This suggests that butterflies w 

ith greater aspect ratio (elongated and narrow forewings) correlates with increased thermal buffering ability 

(Table 5). Our finding might be explained by behavioral regulation of butterfly body temperatures, because 

species with high aspect ratio are often associated with gliding flight behavior (Le Roy, Debat, and Llaurens 

2019). In our case, we found that while all butterfly families experienced similar ambient air temperatures, 

Hesperiidae tended to have higher Tb compared to others (right shifted Poisson distribution; Figure 5). 

Hesperiidae and other butterflies with rounded wings (i.e., low aspect ratio) may actively elevate their body 

temperatures by basking behavior and flight activity (Srygley and Chai 1990). The findings revealed the 

different thermoregulation abilities between the families, highlighting Nymphalidae as one with the largest 

aspect ratio among families. In the thesis, overall, we did not find evidence for ecomorphological traits, 

except for the forewing aspect ratio, being good predictors of thermal buffering ability. 

This study is an important first step to estimate thermal buffering abilities of lower montane butterfly 

communities, which, thanks to our standardized and reproducible approach, can be compared to other 

studies (Laird-Hopkins et al., 2023; Ashe-Jepson et al., 2023). Nonetheless, the limitation of our approach 

was that we relied on photographic databases to measure the wing morphometrics of many of our studied 

butterflies. This limited the thesis to a subset of all recorded species (71 species), as it was challenging for 

us to collect all morphometrics of all the sampled species. Furthermore, the morphological traits examined 

in our study did not include the variability among individuals within species. Future studies should aim to 

collect such data by measuring the morphometrics on more reliable resources, such as freshly collected 

specimens, and to include the variation in morphological characteristics within species.  

The diversity in thermoregulation abilities of species might be driven by their phylogeny (physiological 

constraint), morphology and behavior. Distinguishing the individual effects of these factors is not trivial, 

with each element playing a nuanced role. For example, Erebia butterflies in temperate regions present 

variations in thermoregulation abilities that were associated with differences in their habitat preferences 

(Kleckova and Klecka, 2016). This can be reconciled with other studies reporting similar patterns, and which 

may suggest that physical constraints such as body size play a more crucial role on the thermal requirements 

for flight (Nève and Hall 2016). 

Our results indicated that the wing loading (predicting fast flight) and body size (wing area, thorax volume) 

had non-significant correlations with the thermal buffering ability of tropical butterflies (Table 5). Although 

we did not expect this outcome, as wing loading (fast flight) and large body size are usually correlated with 

low thermal buffering ability in other animals (Dyer et al. 2023), we cannot rule the alternative as our 

sampling size was low and focused on a single locality. In butterflies, however, buffering ability might be 

also due to behavioral rather than morphological features. Perhaps, active microhabitat choice plays a more 
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important role in determining the buffering ability in certain butterfly groups than the examined 

ecomorphological characteristics. Notably, butterflies with long elongated wings were found more 

frequently in the tropical climates than in the temperate regions (Laird-Hopkins et al. 2023). In future 

studies, it would be important to record the habitat preferences, temperature of microhabitats, and behavioral 

responses of butterflies to accurately predict how they would cope with the ongoing climate change. We, 

nonetheless, recovered strong evidence that butterflies with high buffering ability were strongly associated 

with greater wing aspect ratio. The results were also found in other tropical species where large winged 

butterflies had stronger thermal buffering abilities than small butterflies (Ashe-Jepson et al. 2023).  

Alternatively, most of the elongated and narrow wing butterflies such as Ithomiini and Heliconiini 

(Nymphalidae), are known to be unpalatable, which are often associated with slow movement (Srygley and 

Chai 1990). Both traits, nonetheless, could have evolved together as part of a multifaceted survival strategy, 

providing these butterflies with a dual advantage in terms of protection against predators and environmental 

challenges. However, to predict the likely responses of butterflies with high aspect ratio to climate change, 

further measures should be taken, including their thermal tolerance, which can be important for persisting 

during climatic extremes (Ashe-Jepson et al. 2023).  

Under the scenario of climatic extremes, for example during heatwaves, butterflies typically hide in the 

shade, which hinders their ability to fly, feed or mate during such conditions, with potential long-term 

impacts (Hayes et al. 2023). For example, during hot weather events in the UK, butterflies were less active 

and more likely to hide than on subsequent ‘normal’ days (Hayes et al. 2023). Therefore, microclimate 

variability in the habitat, together with thermoregulation traits of butterflies, would be crucial for species to 

cope with future heatwave events and the ongoing climate change (Kleckova and Klecka 2016). 

Studying the thermal buffering abilities and thermal tolerances of species occurring along environmental 

gradients is important to untangle the roles of behavioral variation and physiological constraints. For 

instance, Heliconius species from different elevations had different temperature tolerances (Montejo-

Kovacevich et al. 2020). However, when these butterflies were raised in controlled environmental 

conditions, the differences decreased, suggesting that such species possess thermal plasticity leading to 

variation of thermal buffering ability along altitudes. The evidence suggests that butterflies living at high 

altitudes with low temperatures were better resistant to the cold than to heat, which might be an adaptive 

evolutionary response (Karl, Janowitz, and Fischer 2008). Crucially, heat stress resistance traits 

demonstrated notable flexibility, indicating a possible ability for adaptive changes in response to 

environmental conditions (Sørensen, Dahlgaard, and Loeschcke 2001). Therefore, when predicting the 

responses of species to temperature fluctuations, whether brief (extremely hot or cold periods) or prolonged 

(such as global warming), it is essential to account for both genetic adaptation and plasticity of the thermal 

abilities. This underscores the capacity of animals to adapt to temperature shifts through a combination of 

genetic modifications and short-term physiological and behavioral adaptations. In conclusion, 
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thermoregulation of ectotherms has complex and intertwined mechanisms, which can both reflect and 

influence the specific habitats and resource exploration preferences of different species or families (for 

example, Hesperiidae having high wing loading and body sizes, weakly correlated with buffering ability, 

while Ithomiini having elongated, and narrow wings are strongly correlated with improved buffering 

ability). 
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5.  Conclusions 

• The results showed that there were variations in thermal buffering ability between and among 

butterfly and moth families. 

• Overall, after accounting for the effect of phylogeny, Nymphalidae had the larger aspect ratio 

compared to other families in our samples.  

• Traditional morphological indicators of thermal resilience, such as fast flight and large body size, 

might not necessarily correlate with effective thermal buffering in butterflies. However, we found 

strong evidence that the aspect ratio of the forewings is positively correlated with the thermal 

buffering ability of the sampled species. 

 

The thesis provided a standardized and reproducible approach for other studies that focus on measuring 

thermal buffering ability on lower montane butterfly communities. Future studies should focus on collecting 

these data in long term field works as well as in other environmental tropical gradients such as higher 

altitudes or a gradient of habitats, microhabitat choices (e.g., in butterfly sitting), record flight speed and 

escape abilities of butterflies. Altogether, such multi-evidence data may provide insights into the differences 

in thermoregulation mechanisms among butterfly species. The findings from this study offer insights of how 

butterflies handle temperature challenges by their adaptive strategies. As ongoing climate changes, the 

predictors of how butterflies respond to the environment become vital for conservation efforts and ecology.  
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  32/49 

9.  Appendix 

Appendix table 1. Morphological characteristics. 
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Appendix figure 1. The regression (blue line) depicting the positive relationship between the forewing width and length using lm() function. 

The region surrounding the fitted linear regression denotes the 95% confidence interval band. 
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Appendix figure 2. Ancestral character state reconstruction for total wing area (cm2). Colors represent low (red), intermediate (green), and high 

(blue) values of the total area (log). 
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Appendix figure 3. Ancestral character state reconstruction for wing loading (thorax volume divided by the total wing area). Colors represent 

low (red), intermediate (green), and high (blue) values of wing loading (log). 
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Appendix figure 4. Ancestral character state reconstruction for buffering ability (inversed slopes). Colors represent high (red), intermediate 

(green), and low (blue) estimated thermal buffering ability. 
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Appendix figure 5. Ancestral character state reconstruction for thorax volume (cm3). Colors represent low (red), intermediate (green), and high 

(blue) values of thorax cylinder volume (log). 
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Appendix code 1.BOLD-CLI command to retrive the databases on BOLD Systems for butterflies. 

 

 

Appendix code 2.The makeblastdb command to create databases from the metadatabases. 

 

 

Appendix code 3.The blastn command to query the best matches bettwween our databases and the output from makeblastdb command. 

 

 

Appendix code 4.The script of mafft to submit on metacentrum to align the obtained COI sequences. 

 

 

Appendix code 5.The script of iqtree2 to submit on Metacentrum to construct the phylogeny tree. 
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Appendix code 6. Code to plot the regression plot by family on the Tb depending on Ta. 

library(ggplot2) 

 

setwd("../measurement/buffering_ability") 

 

lp <- read.csv("lp_correctfam.csv", encoding = "UTF-8") 

lp[lp==""] <- NA 

lp[lp=="?"] <- NA 

lp <-  na.omit(lp) 

 

# Convert the variables to numeric values 

 

lp$Tbody<-as.numeric(lp$Tbody) 

lp$Tair<- as.numeric(lp$Tair) 

 

#store the unique value of family for iterate 

family <- as.vector(unique(lp$family)) 

 

 

k_purple <- "#800080"  # Purple color 

k_orange <- "#FFA500"  # Orange color 

 

# plot hist for butterfly vs temp air 

for (f in family){ 

   

  tmp <- subset(lp, lp$family == f) 

  air <- tmp$Tair 

  body <- tmp$Tbody 

  xy.limits <- range( c(air,body) ) 

   

  p <- ggplot(data = data.frame(air, body), 

              mapping = aes(x = air, y = body)) + 

    geom_point(size = 2) + 

    scale_color_manual(values = c(k_purple, k_orange)) + 

    theme_classic() + 

    geom_smooth(method = "lm") + 

    ggtitle(f)+ 

    theme(plot.title = element_text(hjust = 0.5))+ 

    xlab("Air Temperature (°C)") + 

    ylab("Body Temperature (°C)")+ 

    xlim(c(15,40))+ ylim(15,40)+ 

     

    scale_x_continuous(limits=xy.limits) +  

    scale_y_continuous(limits=xy.limits) +  

    coord_fixed( ratio=1)+ 
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    theme( 

      axis.title.x = element_text(size =20), 

      axis.title.y = element_text(size = 20), 

      title =  element_text(size = 22), 

      legend.text = element_text(size =17), 

      axis.text.x = element_text(size =17), 

      axis.text.y = element_text(size =17) 

    )+ 

    annotate( 

      "text", 

      x = mean(range(air)), 

      y = min(body), 

      label = paste0("Slope == ", round(coef(lm(body ~ air))[2], 3)), 

      parse = TRUE, 

      size = 7 

    ) 

   

   

  # Save the plot with the species name 

  plot_filename <- paste0("plots/lines_", f, "_plot.png") 

  ggsave(plot_filename, plot = p) 

} 

 

 

 

Appendix code 7. Code to plot the regression lines of each species. 

library(dplyr) 

library(ggplot2) 

 

setwd("C:/Users/anhch/OneDrive/Desktop/Thesis/dataset 2022/R studio/measurement/buffering_ability") 

 

leps1<-read.csv("dataset.csv", fileEncoding = "UTF-8-BOM", sep = ",",row.names=1) 

 

data <- read.csv("species_names.csv", fileEncoding = "UTF-8-BOM") 

 

 

#data frame of species with no >= 5 

leps_edit1 <- leps1 %>%       

  dplyr::select(., species_final, Tbody, Tair,family) %>%  

  dplyr::count(., species_final) %>%  

  dplyr::filter(., species_final %in% data$species_names) %>% 

  dplyr::filter(., n >= 5) %>%  

  dplyr::filter(., !species_final == '') 

 

#data frame with required data 

leps_edit <- leps1 %>%     

  dplyr::select(., species_final, Tbody, Tair,family) %>%  

  dplyr::filter(., species_final %in% data$species_names, family %in% data$family) %>% 

  dplyr::filter(., !species_final == '') 
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#select species from leps_edit that is present in leps_edit1 

lp <- leps_edit[as.vector(leps_edit$species_final) %in% (as.vector(leps_edit1$species_final)),] 

# drop all the NÁ 

lp[lp==""] <- NA 

lp[lp=="?"] <- NA 

lp <-  na.omit(lp) 

 

# Convert the data into numeric 

lp$Tbody<-as.numeric(lp$Tbody) 

 

lp$Tair<- as.numeric(lp$Tair) 

 

# Initiate new values  

tab <- list() 

mod <- list() 

species <- as.vector(unique(lp$species)) 

# Create empty dataframe 

 

for(i in species) 

{ 

  tab[[i]] <- data.frame(M =NA,  Inter = NA, R2= NA, family = NA) 

} 

 

k_purple <- "#800080"  # Purple color 

k_orange <- "#FFA500"  # Orange color 

 

# Iterate through the species loop and plot the regression lines for each species 

# And store values for the unique species.  

 

for (spec in species) { 

   

  tmp <- subset(lp, lp$species == spec) 

  air <- tmp$Tair 

  body <- tmp$Tbody 

  family <- unique(tmp$family) 

   

  mod_tmp <- lm(body ~ air) 

  mod[[spec]] <- mod_tmp 

  cf <- coef(mod[[spec]]) 

   

  tab[[spec]][1, "M"] <- cf[2] 

  tab[[spec]][1, "Inter"] <- cf[1] 

  tab[[spec]][1, "R2"] <- summary(mod_tmp)$adj.r.squared 

  tab[[spec]][1, "family"] <- family 
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  # Create a ggplot and save it as an object 

  p<- ggplot(data = data.frame(air, body), 

             mapping = aes(x = air, y = body)) + 

    geom_point(size = 2) + 

    scale_color_manual(values = c(k_purple, k_orange)) + 

    theme_classic() + 

    geom_smooth(method = "lm") + 

    ggtitle(spec)+ 

    theme(plot.title = element_text(hjust = 0.5))+ 

    xlab("Air Temperature (°C)") + 

    ylab("Body Temperature (°C)")+ 

    annotate("text", x = mean(range(air)), y = min(body), 

             label = bquote(italic(Slope(M)) == .(format(cf[2], digits = 3))), 

             vjust = 1, hjust = 0.5, color = "black") 

 

   # Save the plot with the species name 

  plot_filename <- paste0("plots/lines_", spec, "_plot.png") 

  ggsave(plot_filename, plot = p) 

} 

 

# Convert the list into the dataframe 

 

tabs2 <- bind_rows(tab, .id = 'column_label') 

 

Appendix code 8. Code to summarize the slopes of each species per family. 

# summary of Slope by families 

 

summary_slope_byfamily <- tabs2%>% 

  group_by(family) %>% 

  summarise( 

    Mean_slope = format(round(mean(M, na.rm = TRUE), 2), nsmall =2), 

    Min_slope = format(round(min(M, na.rm = TRUE), 2), nsmall =2), 

    Max_slope = format(round(max(M, na.rm = TRUE), 2), nsmall =2), 

    SD  = format(round(sd(M, na.rm = TRUE), 2), nsmall =2), 

     

  ) 

 

 

Appendix code 9. Code to round and calculate the frequency of the Ta and Tb across the families. 

import pandas as pd 

import matplotlib.pyplot as plt 

import math 

 

def round_all(input_file): 

    """ function to round all number of body and  

air temperature in the dataframe """  

 

    file = pd.read_csv(input_file, index_col=0) 

    file= file.dropna() 
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    lst = [] 

 

    for values in file.values: 

        species = values[0] 

     

 

        # Convert to numeric with 'coerce' to handle non-numeric values 

        Tbody = pd.to_numeric(values[1], errors='coerce') 

 

        # Check for NaN before rounding 

        if not pd.isna(Tbody): 

            Tbody = math.ceil(Tbody) 

 

        # Convert to numeric with 'coerce' to handle non-numeric values 

        Tair = pd.to_numeric(values[2], errors='coerce') 

 

        # Check for NaN before rounding 

        if not pd.isna(Tair): 

            Tair = math.ceil(Tair) 

 

        family = values[3] 

 

        # Check if 'Tbody' or 'Tair' is of type str and convert it to numeric 

        if isinstance(Tbody, str): 

            Tbody = pd.to_numeric(Tbody, errors='coerce') 

            if not pd.isna(Tbody): 

                Tbody = math.ceil(Tbody) 

 

        if isinstance(Tair, str): 

            Tair = pd.to_numeric(Tair, errors='coerce') 

            if not pd.isna(Tair): 

                Tair = math.ceil(Tair) 

        lst.append([species, Tbody, Tair, family]) 

 

    new_df = pd.DataFrame(lst, columns=['species', 'Tbody', 'Tair', 'family']) 

    return new_df 

         

def calculate_freq(input_file, column_name): 

     

    """ Function to count all the number of the  

body temperature (Tb) and air temperature (Ta) 

appearing within family as well as calculate  

the frequency of it (the total number of the Ta  

or Tb divided by the total Ta or Tb in that family). 

   

    """  

    file = round_all(input_file) 

 

    file[column_name] = pd.to_numeric(file[column_name], errors='coerce') 

    file = file.dropna(subset=[column_name])  # Drop rows with NaN or inf in 'Tair' column 

    file[column_name] = file[column_name].round().astype(int) 
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    # Group by 'family' and the specified column, then calculate the count 

    result = file.groupby(['family', column_name]).size().reset_index(name='count') 

 

    # Calculate the sum of counts for each family 

    family_counts = result.groupby('family')['count'].transform('sum') 

 

    # Add a new column for the frequency of each count 

    result['frequency'] = (result['count'] / family_counts) * 100 

 

    result.to_csv(f"{column_name}.csv", index=False) 

 

    return result 

     

 

Appendix code 10. Code to plot the histograms for Ta and Tb faceted by families. 

library(ggplot2) 

library(dplyr) 

 

setwd(".../buffering_ability") 

 

air_data <- read.csv("Tair.csv") 

body_data <- read.csv('Tbody.csv') 

 

count_data <- bind_rows( 

  mutate(air_data, dataset = "Air temperature"), 

  mutate(body_data, dataset = "Body temperature") 

)  

 

ggplot(count_data, aes(x = Tair, y = frequency, fill = dataset)) + 

  geom_bar(aes(x = Tbody, y = frequency, fill = dataset), stat = "identity", position = "dodge", alpha = 0.7) +  # Adjust 

alpha for transparency 

  geom_bar(stat = "identity", position = "dodge", alpha = 0.7) +  # Adjust alpha for transparency 

  facet_wrap(~family, scales = "free_y") + 

  labs(title = "Histograms of ambient  temperature and body temperature by family", 

x = "Air temperature/ Body temperature", y = "Frequency (%)", fill ='Datasets') + theme_minimal() 

 

 

Appendix code 11. Code to run the comparative analysis PIC and PGLS and plot the ancestral states for the slope on the morphometrics. 

library(dplyr) 

library(ape) 

library(caper) 

library(phytools) 

library(nlme) 

 

setwd("…/Comparative analysis") 

 

# read data for slopes value 
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tabs2 <- read.csv("tabs2_aircenter.csv", fileEncoding = "UTF-8-BOM") 

tabs2 <- tabs2 %>% dplyr:: rename("species" = "column_label") 

#new 

tabs2$log_M <- log(tabs2$M) 

 

size <- read.csv("Size_qualifications_update_DL.csv", fileEncoding = "UTF-8-BOM") 

 

#new 

size$log_wing_loading <- log(size$wing_loading) 

size$log_total_area.cm2. <- log(size$total_area.cm2.) 

size$log_aspect_ratio <- log(size$aspect_ratio) 

size$log_Thorax_Volume <- log(size$Thorax.Cylinder.volume) 

 

tree <- read.tree("final_tree.tre") 

#new 

rename <- read.table("rename.csv", header=TRUE, sep=",", stringsAsFactors=FALSE, quote=""); 

tree$tip.label <- rename[[2]][match(tree$tip.label, rename[[1]])]; 

tree$node.label <- NULL 

 

join_table <- left_join(size, tabs2, by ='species') 

 

write.csv(join_table, file = "slopes_all_table.csv") 

 

 

 

# plot slopes against wing_loading 

 

data <- read.csv("slopes_all_table.csv") 

 

trait.X <- (data$log_wing_loading) 

names(trait.X) <- data$species 

trait.Y <- (data$M) 

names(trait.Y) <- data$species 

 

 

par(mfrow=c(4,2)) 

#PIC 

pic.trait.Y <- pic(trait.Y, tree) 

pic.trait.X <- pic(trait.X, tree) 

 

summary(pic.trait.Y) 

summary(pic.trait.X) 

 

plot(pic.trait.X, pic.trait.Y, xlab ="pic_Wing_Loading (log)",xlim = c(-0.2, 0.3), ylim= c(-0.15, 0.1), 

ylab=  "pic_Buffering ability (Slopes)") 
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fit.lm.pic <- lm(pic.trait.Y ~ pic.trait.X - 1) # we fit the lm without1 an intercept term 

abline(fit.lm.pic, col = "red") 

summary(fit.lm.pic) 

 

#new PGLS 

brownian = corBrownian(value = 1, tree, form=~species) 

pgls = gls(M ~ log_wing_loading, data = data, correlation = brownian, method="ML") 

summary(pgls) 

plot(trait.X, trait.Y, xlab ="Wing Loading (log)", ylab= "Buffering ability (Slopes)") 

abline(a = coef(pgls)[1], b = coef(pgls)[2], col = "red") 

 

slope_wingloading <- coef(lm(pic.trait.Y ~ pic.trait.X -1)) 

 

# plot slopes with total area 

 

trait.X <- (data$log_total_area.cm2.) 

names(trait.X) <- data$species 

 

#PIC 

pic.trait.X <- pic(trait.X, tree) 

 

plot(pic.trait.X , pic.trait.Y, xlab = "pic_log Total Area (cm2)", ylab = "pic_Buffering ability (Slopes)") 

fit.pic.MT = lm(pic.trait.Y ~ pic.trait.X -1) 

abline(fit.pic.MT, col = "red") 

summary(fit.pic.MT) 

 

#new PGLS 

pgls = gls(M ~ log_total_area.cm2., data = data, correlation = brownian, method="ML") 

summary(pgls) 

plot(trait.X, trait.Y, xlab ="log Total Area (cm2)", ylab= "Buffering ability (Slopes)") 

abline(a = coef(pgls)[1], b = coef(pgls)[2], col = "red") 

 

slope_area <- coef(lm(pic.trait.Y ~ pic.trait.X -1)) 

 

 

 

 

# plot slopes with aspect ratio 

 

trait.X <- data$aspect_ratio 

names(trait.X) <- data$species 

 

#PIC 

pic.trait.X <- pic(trait.X, tree) 

 

plot(pic.trait.X , pic.trait.Y, xlab = "pic_aspect_ratio", ylab = "pic_Buffering ability (Slopes)") 

fit.pic.MT = lm(pic.trait.Y ~ pic.trait.X -1) 

abline(fit.pic.MT, col = "red") 
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summary(fit.pic.MT) 

 

#new PGLS 

pgls = gls(M ~ aspect_ratio, data = data, correlation = brownian, method="ML") 

summary(pgls) 

plot(trait.X, trait.Y, xlab ="Aspect ratio", ylab= "Buffering ability (Slopes)") 

abline(a = coef(pgls)[1], b = coef(pgls)[2], col = "red") 

 

slope_aspectratio <- coef(lm(pic.trait.Y ~ pic.trait.X -1)) 

slope_aspectratio 

 

# plot slopes with thorax volume 

 

trait.X <- data$log_Thorax_Volume  

names(trait.X) <- data$species 

 

#PIC 

pic.trait.X <- pic(trait.X, tree) 

 

 

plot(pic.trait.X , pic.trait.Y, xlab = "pic_Thorax_volume (log)", ylab = "pic_Buffering ability (Slopes)") 

fit.pic.MT = lm(pic.trait.Y ~ pic.trait.X -1) 

abline(fit.pic.MT, col = "red") 

summary(fit.pic.MT) 

 

#new PGLS 

pgls = gls(M ~ log_Thorax_Volume, data = data, correlation = brownian, method="ML") 

summary(pgls) 

plot(trait.X, trait.Y, xlab ="Thorax Volume (log)", ylab= "Buffering ability (Slopes)") 

abline(a = coef(pgls)[1], b = coef(pgls)[2], col = "red") 

 

slope_thoraxvolume <- coef(lm(pic.trait.Y ~ pic.trait.X -1)) 

 

 

#new plot ancestral states 

par(mfrow=c(1,1)) 

#new plot ancestral states 

# Slopes 

obj.M <- contMap(tree, trait.Y); 

# Wing_loading 

trait.WL <- (data$log_wing_loading) 

names(trait.WL) <- data$species 

obj.WL <- contMap(tree, trait.WL); 

#Total Area 

trait.TA <- (data$log_total_area.cm2.) 

names(trait.TA) <- data$species 

obj.TA <- contMap(tree, trait.TA); 

# Aspect Ratio 
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trait.AR <- (data$aspect_ratio) 

names(trait.AR) <- data$species 

obj.AR <- contMap(tree, trait.AR); 

# Thorax Volume 

trait.TV <- data$log_Thorax_Volume 

names(trait.TV) <- data$species 

obj.TV <- contMap(tree, trait.TV); 

 

 

plot(obj.M, ylim=c(1-0.09*(Ntip(obj.M$tree)-1), Ntip(obj.M$tree)), mar=c(0.5,0.5,2,0.5)) 

title("Buffering ability (Slopes)") 

 

plot(obj.WL, ylim=c(1-0.09*(Ntip(obj.WL$tree)-1), Ntip(obj.WL$tree)), mar=c(0.5,0.5,2,0.5)) 

title("Wing Loading (log)") 

 

plot(obj.TA, ylim=c(1-0.09*(Ntip(obj.TA$tree)-1), Ntip(obj.TA$tree)), mar=c(0.5,0.5,2,0.5)) 

title("Total Area (log)") 

 

plot(obj.AR, ylim=c(1-0.09*(Ntip(obj.AR$tree)-1), Ntip(obj.AR$tree)), mar=c(0.5,0.5,2,0.5)) 

title("Aspect Ratio") 

 

plot(obj.TV, ylim=c(1-0.09*(Ntip(obj.TV$tree)-1), Ntip(obj.TV$tree)), mar=c(0.5,0.5,2,0.5)) 

title("Thorax Volume (log) ") 

 

 

 

 

 

 


