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Annotation

With the significant potential of microalgae as a major biofuel source of the fu-
ture, a considerable scientific attention is attracted towards the field of biotech-
nology and bioprocess engineering. Nevertheless the current photobioreactor
(PBR) design methods are still too empirical. With this work I would like to
promote the idea of designing a production system, such as a PBR, completely
in silico, thus allowing for the in silico optimization and optimal control deter-
mination.

The thesis deals with the PBR modeling and simulation. It addresses two
crucial issues in the current state-of-the-art PBR modeling. The first issue rele-
vant to the deficiency of the currently available models - the incorrect or insuffi-
cient treatment of either the transport process modeling, the reaction modeling
or the coupling between these two models. A correct treatment of both the
transport and the reaction phenomena is proposed in the thesis - in the form of
a unified modeling framework consisting of three interconnected parts - (i) the
state system, (ii) the fluid-dynamic model and (iii) optimal control determina-
tion. The proposed model structure allows prediction of the PBR performance
with respect to the modelled PBR size, geometry, operating conditions or a par-
ticular microalgae strain. The proposed unified modeling approach is applied
to the case of the Couette-Taylor photobioreactor (CTBR) where it is used for
the optimal control solution.

The PBR represents a complex multiscale problem and especially in the
case of the production scale systems, the associated computational costs are
paramount. This is the second crucial issue addressed in the thesis. With re-
spect to the computational complexity, the fluid dynamics simulation is the most
costly part of the PBR simulation. To model the fluid flow with the classical
CFD (Computational Fluid Dynamics) methods inside a production scale PBR
leads to an enormous grid size. This usually requires a parallel implementation
of the solver but in the parallelization of the classical methods lies another rel-
evant issue - that of the amount of data the individual nodes must interchange



with each other. The thesis addresses the performance relevant issues by propos-
ing and evaluation alternative approaches to the fluid flow simulation. These
approaches are more suitable to the parallel implementation than the classical
methods because of their rather local character in comparison to the classical
methods - namely the Lattice Boltzmann Method (LBM) for fluid flow, which is
the primary focus of the thesis in this regard and alternatively also the discrete
random walk based method (DRW).

As the outcome of the thesis I have developed and validated a new La-
grangian general modeling approach to the transport and reaction processes in
PBR - a framework based on the Lattice Boltzmann method (LBM) and the
model of the Photosynthetic Factory (PSF) that models correctly the trans-
port and reaction processes and their coupling. Further I have implemented
a software prototype based on the proposed modeling approach and validated
this prototype on the case of the Coutte-Taylor PBR. I have also demonstrated
that the modeling approach has a significant potential from the computational
costs point of view by implementing and validating the software prototype on
the parallel architecture of CUDA (Compute Unified Device Architecture). The
current parallel implementation is approximately 20 times faster than the un-
parallized one and decreases thus significantly the iteration cycle of the PBR
design process.
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Václav Štumbauer





List of the papers

This thesis is based on the following papers, first three of which have been
already published and where the thesis’s author is either the main author or a
coauthor. The papers are listed chronologically.
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Václav Štumbauer participated in writing the manuscript, which is a gen-
eralized summarization/review of the bioreactor model-based design pro-
cess and builds upon the previous work.





Contents

1 Introduction 1

1.1 Microalgae cultivation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Cultivation systems . . . . . . . . . . . . . . . . . . . . . 5

1.2 PBR Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 PBR modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Transport modeling . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Reaction modeling . . . . . . . . . . . . . . . . . . . . . . 17

1.4 PBR modeling approaches . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Scale-up methodology . . . . . . . . . . . . . . . . . . . . 20

1.4.2 Multizonal approach . . . . . . . . . . . . . . . . . . . . . 20

1.4.3 Stochastic approach . . . . . . . . . . . . . . . . . . . . . 22

1.5 Computational performance . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 CUDA platform . . . . . . . . . . . . . . . . . . . . . . . 23

2 Papers 25

2.1 Paper I - Growth impact of hydrodynamic dispersion in a Couette-
Taylor bioreactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Paper II - Modelling and simulation of photosynthetic microor-
ganism growth: random walk vs. finite difference method . . . . 35

2.3 Paper III - Lattice Boltzmann method in bioreactor design and
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Paper IV - Modeling and optimization of microalgae growth in
photobioreactors: a multidisciplinary multiscale problem . . . . . 65

3 Discussion 69



4 Conclusion 73

A Selected source codes 77
A.1 LBM simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1.1 Streaming kernel . . . . . . . . . . . . . . . . . . . . . . . 78
A.1.2 Collision kernel . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.3 Boundaries kernel . . . . . . . . . . . . . . . . . . . . . . 81

A.2 PSF Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B List of abbreviations 85

References 87



Chapter 1

Introduction

Microalgae attract a lot of scientific interest because of its promising po-
tential in wide range of applications, which is the reason of the extensive re-
search activity in the field of photobioreactors (PBR) - devices for the artificial
photoautotrophic cultivation of the microalgae, whose modeling is the primary
purpose of this work.

Microalgae are mostly unicellular eukaryotic or prokaryotic photosynthetic
microorganisms living in both marine and fresh-water environments and even
in the soil. It may also exist as a group of cells, but it does not exist as a
multicellular organism as such.

Microalgae are a diverse and large family [1] of photosynthetic microor-
ganisms and thus offer a wide spectrum of, still mostly uncharted, bioactive
compounds [2]. Due to its diversity, it is believed to contain many possible
novel pharmaceuticals and other bioactive compounds and microalgae are thus
subject to various screening programs - see e.g. [3].

It is also due to the high energy content, that microalgae are considered a
promising source of biofuels [4, 5], which naturally attracts a lot of scientific
attention due to the ever-increasing demand for the fuels and the associated
commercial potential. There are several advantages that microalgae have over
the terrestrial plants as a source of renewable energy. First, it does not com-
pete with agricultural crops and thus it does not place any further pressure on
the prices of the basic agricultural commodities. Second, the photosynthetic
efficiency of the fast growing microalgae greatly exceeds the photosynthetic ef-
ficiency of the terrestrial plants. Also, microalgae are rich in lipids and starch.
On the other hand, with respect to the biofuels, it should be also noted, that be-
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cause of the limitation on the culture density due to the light requirements and
high water content/energetically demanding drying process, the costs associ-
ated with microalgae cultivation and harvesting in comparison to the terrestrial
plants are still substantial and need to be addressed yet. While the currently
sensitive topic of biofuels may receive the most attention, of a significant in-
terest are also the environmental applications, where microalgae may be used
for bio remediation [6] - e.g. heavy metals removal, waste water treatment and
CO2 sequestration. Further applications may be found in aquaculture [7] and
cosmetic industry [8].

In its natural habitat, microalgae do not occur in such a culture density,
that would allow for economically feasible harvesting. Artificial microalgae cul-
tivation systems are thus also subject of the scientific research. As of now, the
microalgae are cultivated either in large open outdoor systems, where there are
currently several predominant types [9] - large open ponds, circular ponds with
a mixing arm and raceways. Or in a closed cultivation system - in a bioreac-
tor [10, 11], or more specifically, a photobioreactor (PBR) in the case of the
closed-system phototrophic cultivation. PBR and its in silico design is also the
research subject of this thesis.

Despite the scientific interest, the process of bioreactor design is still rather
empirical and a complete computer based modeling approach or software is still
unavailable [10]. Such an approach would allow for cheaper design process and
better parameters and operating conditions optimization. The unavailability
of such a in silico PBR design tool has several reasons. The field of biotech-
nology is currently used to the empirical or semi-empirical approaches to the
photo/bioreactor design and there exists a substantial group of biotechnological
scientists believing in the superiority of such a design method. Apart from this,
rather philosophical issue, the computer based PBR design is complicated due
to the complexity of the relevant processes and their interplay and last but not
least also due to the immense computational complexity involved in the sim-
ulation of a production-scale PBR. The performance related design issues are
another important point this works concentrates on.

The ultimate aim this work contributes to, i.e. being able to predict in
reasonable time the microalgae growth rate for a particular PBR in question
- respecting the geometry and scale of the device as well as mixing mechanism
and its intensity, illumination setup etc., is of yet more importance when it comes
to the PBR optimization, where the search for the optimal device parameters
and optimal operating conditions may involve many simulation runs in order to
explore the relevant parameter space.
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1.1 Microalgae cultivation

1.1.1 Principles

Light

The primary influencing factor in the phototrophic microalgae cultivation is def-
initely light [10]. Economical feasibility of any cultivation system commands an
artificially high culture concentration and, apart from some special cases, a large
cultivation volume. Since the light penetrating into the culture is attenuated
exponentially in dependence on the penetrated depth, the efficient light distri-
bution among the cultivated cells introduces a necessity of mixing the culture,
so that all the cells are exposed to the light relatively evenly and none of them
are either light-limited or light-inhibited. The exponential attenuation may be
expressed by the Beer-Lambert law as follows:

Id = I0exp(−Ad) (1.1)

where I0 stands for the culture surface irradiance intensity, Id for the light
intensity at the depth d and A stands for the absorbance - i.e. optical density
of the culture.

It is worth noting, that there exist more complex approaches to the light
distribution modeling in bioreactors than those, that are based on the Beer-
Lambert law, since this law may be considered inaccurate with respect to its
aggregated treatment of the two underlying optical phenomena - the absorption
and the scattering. For the details on these alternative modeling approaches
please see e.g. [12, 13, 14].

The currently most accurate models are the diffuse light distribution models
which account for the effects of absorption of the light by the pigments, scat-
tering of the light by cells and other present particles and also incorporate the
geometry of the light source and PBR [15, 16]. In [16] it has been shown that
these models can be employed in the productivity prediction of the outdoor col-
umn photobioreactor with varying external conditions. A disadvantage of this
light distribution modeling approach is the requirement of a huge amount of
experimental data.

Relying solely on the Beer-Lambert law, as was done in the published papers,
the light distribution model for the cylindrical Couette-Taylor photobioreactor
(CTBR) with radial illumination - a model corresponding to our laboratory
setup and thus a model which has been used extensively in the published papers
- may be formalized as follows:
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Ir =
I0R

r
[exp(−A(R− r)) + exp(−A(R+ r))] (1.2)

where r stands for the distance from the outer surface in the radial axis and
R stands for the outer radius.

Flashing light effect
Important, from the PBR design point of view, is also the capacity of the

microalgae to grow under sufficiently fast light intensity fluctuations as if it was
illuminated by a light source of constant intensity. This flashing-light effect was
described in [17] and further model based clarification has been presented in
[18]. This effect is crucial for the possibility of cultivation of dense cultures
in PBRs, which are, as further explained, being mixed and where cultivated
microalgae travels between the dark and the photic region of the PBR. The effi-
ciency of the photosynthesis grows hyperbolically with the increasing frequency
of the light/dark cycles, reaching its maximum value when the light/dark cycles
frequency matches that of the photosystem II electron’s turnover rate [19].

Naturally, not only the frequency, but also the duty cycle and light intensity
in the photic phase play an important role with respect to the photosynthetic
activity [20, 21].

Mixing

It is not only the distribution of light that makes the suspension mixing in the
PBR necessary. The phototrophically cultivated microalgae do also require a
sufficient concentration of the nutrients, sufficient supply of the carbon dioxide
and removal of the products, such as e.g. oxygen. Without mixing, concentra-
tion gradients would occur and thus the mixing plays an essential role in the
processes of mass-transfer and gas-exchange [10, 22].

There are various approaches to mixing the suspension with microalgae [11]
- from the simplest mechanical approach to the more indirect approaches as e.g.
in the case of the airlift or bubble column photobioreactors. Another alternative
approach to mixing is a rotating wall in the case of the cylindrical device - the
so-called Couette-Taylor photobioreactor (CTBR), first proposed in the [23],
whose advantage are the well defined flow regimes and shear stress at the lower
Reynolds numbers - i.e. before the turbulent regime is reached.

Mixing has not only the positive effects on the cell culture growth. With
increasing intensity it may become detrimental to the cultivated cells in the form
of the shear stress that the cells are exposed to. The microalgae are very diverse
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and there are significant differences between different strains with respect to the
levels of the shear forces they can tolerate without detrimental effects on the
cell physiology or the growth.

There is currently a general unavailability of the microalgae growth mod-
els that would incorporate the shear stress. Nevertheless, there exist studies
analyzing the dependence of the microalgae growth on the shear forces the mi-
croalgae are exposed to. In [24] the authors identify as critical, in the case of
the Phaeodactylum tricornutum, values of shear rates γ exceeding the value of
7000 s−1 and the turbulent micro eddies of smaller sizes than 45 µm, relating
the micro eddies size to the turbulence dissipation rate as follows:

l = (
ν

ρ
)

3
4 ε−

1
4 (1.3)

where ν stands for the suspension viscosity, ρ for the fluid density and ε
for the turbulence dissipation rate. In [25] the impact of the shear stress on
the cell viability was studied in a combination of a rheometer and a special
shearing device in the case of the Chaetoceros muelleri. It is noteworthy that
such a device is in principal very similar to the Couette-Taylor photobioreactor
(see further), that is a research subject in our laboratory. It is the very well
definable and controllable shear stress inside the device, if the laminar flow
regime is sustained, that makes this device very interesting with respect to the
fragile strains cultivation and shear stress growth rate dependence assessment.
With respect to the shear stress, it must be noted that the artificial cultures must
be aerated with CO2 which is another source of the shear stress the cultivated
microalgae are exposed to - through their contact with the bubbles [26, 27].

The aforementioned leads to the necessity of adjusting either the whole PBR
design or the operating conditions according to the microalgal strain that is to
be cultivated.

1.1.2 Cultivation systems

The systems for microalgae cultivation vary widely in many respects. The top-
most categorization is based on the fact, whether the particular system in ques-
tion is either an open system - where the mass-transfer between the system
and surrounding is possible, or a closed system where such a transfer is not
possible [10]. While the open cultivation systems offer the advantage of lower
construction and operating costs in comparison to the closed systems, they are
not suited well to the cultivation of all the microalgal strains, but rather those
that either grow under extreme conditions or grow extremely fast and are thus
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resistant to the culture contamination. Examples of the strains, that may be
cultivated in the open systems are e.g. Dunaliella [28] which grows under highly
saline conditions or Chlorella [29] which grows rapidly.

Another distinction can be made from the cultivation regime, the system in
question provides. The microalgae may be cultivated either in a batch or semi-
batch regime, where the necessary nutrients, inoculum etc. are put into the
system at discrete time intervals. The product is removed at the discrete time
intervals as well. Examples of such a cultivation regime are e.g. the air-lift [30],
bubble column [30] and Couette-Taylor photobioreactors [23]. As opposed to the
batch or semi-batch cultivation regime, in a continuous cultivation regime, the
relevant concentrations are adjusted adaptively and the product is thus removed
continuously.

In either case a cultivation system must provide the cultivated culture with
optimal growth conditions and this can be achieved more easily in the case of a
closed system, because of the better control of the cultivation conditions.

Closed systems

In the case of the closed cultivation systems we deal either with the photobiore-
actors (PBRs) in the case of the autotrophic and mixotrophic modes of cultiva-
tion or with the fermenters in the case of the heterotrophic mode of cultivation,
where the light is not required. This thesis concentrates on the photoautotrophic
microalgae cultivation, ant the subsequent text deals with the PBRs only.

Unlike in the case of an open system, a PBR as a closed system offers much
better control over the environment and operating conditions, which makes it
possible to cultivate the microalgae under well-defined/optimal and relatively
stable conditions.

The closed systems are economically much more demanding [31] than the
open systems such as open ponds or raceways, but an open system is not an
universal solution for all the microalgal species. Generally a closed system
is to be used, where the mono-culture growth under well defined cultivation
conditions is required.

The most popular enclosed PBR design solutions are the flat panel PBRs
and tubular PBRs [32]. In [33] the modeling of the flat panel reactor based on
the random walk method and finite differences method is presented. In [34] the
special case of the tubular photobioreactor accompanied by the Fresnel lenses -
leading to the artificially high culture irradiance - is presented.

A particular example of a closed cultivation device is the Couette-Taylor
photobioreactor (CTBR), which has been used as the main validation case
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for the bioreactor modeling software developed in the scope of this thesis -
[35, 36].

The device, first proposed for microalgal cultivation in [23], is comprised of
two concentric cylinders, where the rotation of the inner cylinder provides the
necessary mixing to ensure the mass-transfer, gas-exchange and intermittent
illumination of the cultivated culture. The device has been chosen as the main
validation use case because it is a research subject of our laboratory and because
it exhibits interesting properties with respect to well defined hydrodynamic
stress the cultivated culture is exposed to and offers the possibility of shear
stress control by varying the rotation frequency of the rotating cylinder. The
device has been also physically constructed and was subject to experimental
work with respect to the microalgal culture growth measurement under various
physiological circumstances - mainly under varying shear stress conditions.

A particular configuration of the device, corresponding to the experimen-
tal device used in our research facility, is schematically depicted in figure 1.1.
The system of two concentric vertical cylinders has the inner cylinder connected
through a drive shaft with a motor with adjustable rotation rate (a). A sys-
tem of light belts (d) is coiled around the outer cylinder (b), providing thus a
symmetrical and controllable homogeneous light source. The suspension with
culture (b) is put into the device at the cultivation start and collected at the end
- the device is operated in the batch regime. Carbon is provided by bubbling
the suspension with a 5% mixture CO2 and air.

Based on the angular velocity of the inner cylinder and on the inner and
outer cylinder diameter, different fluid flow patterns occur in the cylindrical gap.
First a simple laminar Couette flow occurs. With increasing angular velocity
of the inner cylinder a Taylor vortex flow is reached [37], which is subsequently
transformed into the wavy vortex flow. Further increasing the cylinder angular
velocity leads to the onset of the turbulence. In [38], it has been demonstrated
that even in the turbulent flow regimes, there is an increase in the light/dark
cycle frequency for the cultivated microalgal cells relevant to the increase in the
angular velocity of the mixing cylinder.

The transitions between the different characteristic fluid flow patterns are
best described by the so-called Taylor number, which may be defined as follows:

Ta =
Ω2R1(R2 −R1)3

ν2
(1.4)

where Ω stands for the characteristic angular velocity, R2 for the internal
radius of the outer cylinder and R1 for the external radius of the inner cylinder.
The critical Taylor number Tac = 41.3 marks the transition of the laminar
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a

d

c

b

Figure 1.1: Couette-Taylor photobioreactor depicted schematically. a - inner
cylinder connected through a drive shaft with a motor governed by speed regu-
lator, b - suspension is placed inside the cylindrical gap. While it is not shown
in the depicted image, the gap is capped and only degassing is allowed through
a valve leading through the cap, c - outer cylinder must let the maximum pho-
tosynthetically active light through, so that it can reach the cultivated culture, d
- artificial illumination is required for the higher/artificial culture densities, e -
the system is bubbled with 5% mixture of CO2 with air
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flow to the vortex flow. Further increase in the Taylor number leads to the
vawy vortex flow under the assumption that the following condition is fulfilled:
R2

R1
< 1.4 [39].

1.2 PBR Design

This work concentrates primarily on the photobioreactors, a closed systems
where the microalgae are cultivated in the photoautotrophic mode and where
light plays the most important role in the cultivation process. Under the as-
sumption that no other relevant parameters are limiting, light is the single
governing parameter for microalgae growth [10].

Although different microalgal strains may grow under wide range of en-
vironmental conditions, productivity of a cultivation process may be severely
impacted when the environmental conditions such as temperature or pH are not
in the vicinity of its optimal value for the given strain - see e.g. [40]. With closed
systems, as is the case of PBR, there is much better control over the operating
conditions such as temperature and pH. The primary concern in the case of a
closed system is thus the light distribution and the relevant suspension mixing
[10, 22]. Mixing mechanism and its intensity should allow for the optimal mass-
transfer and gas-exchange and formostly for the optimal light distribution to the
cultivated microalgal cells, while at the same time it should not be detrimental
to the cultivated cells by exposing them to excessive levels of shear stress.

Enormous diversity of the microalgae also complicates the matter of PBR
design. The attributes of a particular specie in question are of paramount
importance when it comes to the optimal mixing mechanism and intensity and
the relevant optimal irradiance. Various species may also yield various products
under different forms of limitation. And thus the PBR design aim may be the
maximization not of the overall product, but e.g. a production of a particular
metabolite, which may subsequently require yet different operating conditions
- e.g. exposing the microalgae to a certain minimal level of the shear stress or
light stress [41].

1.3 PBR modeling

PBR design process has a clear objective - to determine the optimal device
parameters and operating conditions allowing for productivity maximization for
a particular strain or a particular product/metabolite in question. This leads
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to the necessity of being able to simulate the productivity of a system with a
given set of parameters - so that the optimal system parameters and operating
conditions may be found. In other words a reliable PBR model or modeling
framework is required in the PBR design.

PBR modeling is, from the computational point of view, an enormously
complicated task. Generally, it deals with the modeling of a three dimensional
multiphase and multiscale problem and it is further complicated by the spatial
scale of the simulated domain when modeling a production scale PBR.

PBR model must deal with the fast transport processes coupled to the slower
processes of the reaction model - the biological processes, which, in the case of
the phototrophic organisms, also operate on multiple time scales [43, 44, 45]. In
general, both models - of the transport and of the reaction - cannot be separated
in a trivial manner. The transport model yields not only the information about
the trajectories of the cultivated microalgae - thus allowing for the computation
of the cells’ irradiance at any given moment, but it also gives crucial information
regarding the mass-transfer, gas-exchange and shear stresses to which are the
cultivated cells subjected at a particular moment.

1.3.1 Transport modeling

In general the transport processes inside the PBR are governed by the incom-
pressible Navier-Stokes equations. Navier-Stokes(NS) equations are partial non-
linear differential equations of the second order constraining the pressure scalar
and velocity vector at a given point in the fluid. Their solution leads to obtain-
ing the velocity field and pressure throughout the fluid. While NS equations
may be formulated with regard to the compressibility of a fluid, it is unnecessary
for the presented aims and only the incompressible NS equations have relevance
to the following text.

The incompressible form of the Navier-Stokes equations along with the rel-
evant continuity equation may be written as follows:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + f (1.5)

∂ρ

∂t
+∇ · (ρv) = ∇ · v = 0 (1.6)

Navier-Stokes based computerized solution of the transport leads to the dis-
cretization of the PBR volume with one one the available methods (e.g. a
Finite Volume Method or Finite Difference Method) and solving the discretized
NS system.
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NS equations in their basic form are not suited well for the description of the
turbulent flow regime because of the very small spatial and temporal scales that
need to be reflected in the discretization mesh - the so-called direct numerical
simulation (DNS) that uses the NS equations directly without a turbulent model
must reflect all the spatial scales from the smallest Kolmogorov microscales up
to the global scale. The mesh size in DNS is constrained by the Reynolds number
Re as follows:

N3 >= Re
9
4 (1.7)

where N3 corresponds to the number of mesh points. It is thus computa-
tionally unfeasible to perform DNS for the higher Raynold numbers, especially
in the case of a non-stationary flow.

Different approaches thus exist to approach the turbulence in the scope
of the NS equations - Reynolds-averaged Navier-Stokes(RANS) equations or
Large Eddy Simulation(LES) being the most notable adjustments to the NS
equations with respect to turbulent flow modeling. While RANS is based on
time-averaging, the LES approach is based on the idea of a low-pass filter used
to remove the spatial scales that are under the resolution capability of a given
discrete mesh.

One of the most common methods to approach the turbulence in regard to
the NS equations is the k-ε turbulence model family. The k-ε models (as well as
e.g. the k-ω) introduce two more transport partial differential equations with
transported variables being the turbulent kinetic energy k and the turbulent
dissipation ε.

With relevance to the field of biotechnology, in [46] a RNG (Renormalization
- group) k-ε model has been successfully employed to obtain the trajectories of
the cultivated microalgal cells inside the Couette-Taylor photobioreactor.

With respect to the performance potential of the NS based methods on the
parallel computational architectures, a certain non-negligible amount of data
must be interchanged between the individual nodes. This is the reason, why
in this work, two alternative approaches to the transport solution, in my opin-
ion better suited for parallel implementation, have been studied - the Lattice
Boltzmann Method (LBM) [36] for fluid flow and a random walk (RW) based
method [33].

The Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) for fluid flow simulation [47, 48] attracts
a lot of attention due to its capability to simulate the complex flows, its perfor-
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mance potential and straight-forward implementation. The method is based on
the streaming and collision of the particles, or particle densities, on a discrete
mesh. It is also noteworthy that the NS equations can be recovered from the
LBM [47]. Basically the LBM method may be viewed as a simplified form of the
Boltzmann’s transport equation with reduction in the number of particles, in
space - the particles are confined to a discrete lattice and in time - the particle
positions are recalculated at discrete time steps. The possible momenta are also
constrained to a set of discrete directions and relevant magnitudes.

At first, the LBM method was developed for regular lattices, where different
discretizing schemes have been developed, differing in the number of supported
directions and dimensions. In [49] a classification of these schemes was in-
troduced. In the case of the two dimensional simulation, the D2Q9 scheme,
constraining the momenta to 9 discrete directions and magnitudes, is probably
the most employed. The same applies to the D3Q19 scheme, which constrains
the momenta to 19 discrete directions and magnitudes in the three dimensional
simulations and is commonly employed as a trade-off between the computational
costs and accuracy. The D3Q19 lattice structure is depicted in figure 1.2. In
this scheme, there are 19 directional vectors e1 - e19. Vectors 1-18 connect the
node to adjacent nodes, vector e19 corresponds to the particles at rest.

LBM operates in discrete time steps. Every step, the particles are streamed
to the adjacent nodes of the lattice - the so-called streaming step and then
the node-local collision is evaluated, leading to the adjustment of the particle
densities for each of the discrete directions.

This can be expressed for the so-called single-relaxation-time (SRT) model
in the following form [48]:

fa(x + ea∆t, t+ ∆t) = fa(x, t)− [fa(x, t)− feqa (x, t)]

τ
(1.8)

where a denotes the relevant discrete direction, fa corresponds to the density
distribution function in the direction a, ea is a particle velocity vector in the
direction a, ∆t is a time step and τ is the ’single-relaxation-time’(SRT) - timely
constant expressing the relaxation rate to the local equilibrium. This constant
is related to the kinematic viscosity as follows: ν = 1

3 (τ − 1
2 ).

Particle equilibrium density in the direction a at the lattice site x is denoted
as feqa (x, t) and in the BGK SRT model is calculated as follows:

feqa (x, t) = waρ(x, t)

[
1 +

ea · u(x, t)

c2s
+

(ea · u(x, t))2

2c4s
− u2(x, t)

2c2s

]
(1.9)
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Figure 1.2: LBM D3Q19 lattice structure

where u(x, t) stands for macroscopic velocity, ρ for the macroscopic density,
cs for lattice speed of sound cs = 1√

3
and wa for weighting coefficients, which

specifically for the case of the D3Q19 model have the following values:

wa =





2
36 1 ≤ a ≤ 6
1
36 7 ≤ a ≤ 18
12
36 a = 19

(1.10)

Macroscopic velocity vector and macroscopic density are related to the den-
sity distribution function as follows:

ρ(x, t) =
∑

a

fa (1.11)

u(x, t) =
1

ρ(x, t)

∑

a

faea (1.12)

Boundary conditions treatment
One of the advantages of the Lattice-Boltzmann method is its capability

to simulate very complex flow domains [48] and a significant effort has been
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already invested in the boundary conditions analysis. The most simple and
widely adopted is the so-called bounce back boundary condition (BBC) [47],
which is based on the idea of particle flow densities being consumed by the solid
wall and then reemerging with the inverted velocity vector. The weaknesses of
the BBC have been demonstrated in [50, 51] and in [52] it has been shown that
with a proper position of the bounce-back lattice nodes and selection of τ close
to 1 [52] leads to satisfactory results. With BBC a second order accuracy may
be obtained if the bounce-back nodes are fictively placed in the middle between
the last fluid and first solid node - the so-called half-way bounce-back boundary
condition.

In [53] a straight wall velocity and pressure boundaries treatment based on
the bounce-back of the non-equilibrium parts of the distribution function has
been proposed.

The aforementioned boundary treatments can cover a wide range of scenarios
but unfortunately are insufficient for the simulation of the rotating inner wall
- i.e. curved velocity boundary - in the case of CTBR. As it has already been
elaborated in our paper [36], a special treatment of the curved velocity boundary
is required in order to preserve the accuracy and stability of the solution.

Multiphase and multicomponent flows
In real PBR we deal with a multiphase and multicomponent flow. In order to

simulate such a flow, introduction of the external forces into LBM is necessary.
Impact of the external force F is introduced through the adjustment to the
macroscopic velocity vector that is used in the calculation of the equilibrium
particle density function feq as follows [48]:

ueq = u +
τF

ρ
(1.13)

feqa (x, t) = waρ(x, t)

[
1 +

ea · ueq(x, t)

c2s
+

(ea · ueq(x, t))2

2c4s
− ueq

2(x, t)

2c2s

]

(1.14)
Interactions between the particles are necessary in order to incorporate mul-

tiple phases and components into the LBM. Based on the interaction with the
adjacent nodes, the inter-particle interaction may be formulated as follows ([48]):

F(x, t) = −Gψ(x, t)
∑

a

waψ(x + ea∆t, t)ea (1.15)
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here G represents the interaction strength and ψ the interaction potential. In
[54] the following form of the interaction potential is proposed for the multiphase
single component fluid flows:

ψ(ρ) = ψ0exp(
−ρ0

ρ
) (1.16)

Various other forms of the inter-particle potential are in common use - see
e.g. [55, 56].

In order to incorporate other components into the fluid flow simulation, the
LBM approach is replicated to the individual components and componental in-
teraction is modeled again by the inter-particle interactions [48]. If the individ-
ual components are denoted by σ, the macroscopic velocities of the individual
components uσ, coupled macroscopic velocity u′, component-specific macro-
scopic densities ρσ, component-specific relaxation parameter τσ and component-
specific microscopic particle densities fσa , then for the case of the multicompo-
nent flow the following relations are valid:

uσ =
1

ρσ

∑

a

fσa ea (1.17)

u′ =

∑
σ

1
τσ

∑
a f

σ
a ea∑

σ
1
τσ
ρσ

(1.18)

ρσ =
∑

a

fσa (1.19)

and for the force exerted on the individual fluid component Fσ holds the
following relation [48]:

Fσ(x, t) = −Gψσ(x, t)
∑

a

waψσ̄(x + ea∆t, t)ea (1.20)

where σ denotes the other fluid component. The macroscopic velocity used
for the collision evaluation of the component σ, denoted as ueqσ , is then evaluated
as follows

ueqσ = u′ +
τσFσ
ρσ

(1.21)
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LBM discretization
The LBM simulation operates on the discrete lattice and in discrete time

steps. If we denote the discrete spatial unit as ∆x and the discrete time step as
∆t, the following relation is valid between the relaxation rate τ and viscosity ν
([57]):

ν =
∆x2

3∆t
(τ − 0.5) (1.22)

If we further denote the characteristic physical scale as L, the characteristic
macroscopic velocity as U and the number of lattice nodes along the character-
istic scale as N = L

∆x we obtain the relation for the Mach number Ma:

Ma =
∆x

L
√

3
(τ − 0.5)Re (1.23)

LBM can simulate the incompressible fluid flow relatively accurately under
the condition of keeping the Mach number low and the LBM error is in the
order of Ma2 [57]. This implies that the number of lattice nodes N along the
characteristic scale and the relaxation rate τ must be chosen with respect to
keeping the Mach number Ma low.

Further in order to obtain correspondence between the real physical system
and the discrete LBM simulation, the Reynolds number defined by the physical
characteristic scale L and velocity U must be equal to the ’lattice’ Reynolds
number based on the number of lattice nodes N :

Re =
UL

ν
=
uN

ν
(1.24)

The lattice velocity u should be at the order of approx. u <= 0.1 and
the other parameters are then be chosen arbitrarily - based on the preceding
relations, so that the stability and accuracy are ensured and the simulated
system corresponds to the physical system.

Discrete Phase Modeling

The discrete phase modeling, in the context of PBRs, yields the microalgal
cells’ (further denoted as particles in the scope of this section) positions and
trajectories which are necessary primarily for the evaluation of the light intensity
the individual cells encounter in PBR - light being the primary input for the
growth/reaction model. Although also Eulerian based approaches to the particle
tracking exist, especially with respect to the focus on the Lattice Boltzmann
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fluid flow simulation method, only the Lagrangian based approaches tracking
the positions of the individual cells are described further.

As shown e.g. in [58], even a very dense microalgal suspension has a very low
volumetric ratio of the dispersed solid phase to the fluid phase. Furthermore in
[59] an impact of the microalgal proliferation as well as of the exopolysascharide
released by the cells [60] on the suspension viscosity is evaluated, reaching the
conclusion that the change in the viscosity may be neglected unless a longer
experiments (> 10 days - [61]) with higher concentration of exopolysascharides
were considered. This leads to the conclusion that a one-way coupling between
the fluid phase and the dispersed solid phase is sufficient.

The easiest way of tracking the particles in the suspension would be a simple
alignment of the particle trajectories with the local velocity field, but especially
in the case of turbulent flows, such a model is not too realistic. Better results,
when modeling a turbulent dispersion of particles, may be obtained by e.g. the
particle cloud method or by the discrete random walk (DRW) based stochastic
particle tracking - see e.g. [62].

In the case of the stochastic tracking, every injected particle is tracked mul-
tiple times in order to obtain a reasonable statistic sample. Every time step,
particle velocity is adjusted as follows:

ui = ūi +N

√
2k

3
(1.25)

In this relation ui stands for the particle velocity component in the direction
of i, ūi stands for the flow field velocity, N for the normally distributed random
variable and k represents the turbulent kinetic energy.

The particles dispersed in the fluid phase may encounter the physical bound-
aries of the simulated domain, they may come into contact with the dispersed
gaseous phase (CO2 bubbles) or with each other. In [63], the importance of
modeling the interaction between the dispersed gaseous and solid phases have
been demonstrated.

1.3.2 Reaction modeling

In the case of the phototrophic organisms growth modeling - i.e. a reaction
modeling of the PBR, the light becomes often the sole determinant factor, since
all the other influencing parameters, such as nutrient concentrations, tempera-
ture etc., may be kept relatively easily at their optimal values. The goal of a
reaction model is thus in the case of the PBR often reduced to the evaluation
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the specific growth rate µ or productivity P of the cultivated culture based on
the light intensity.

The cultures in the cultivation systems must be unnaturally dense in order
for the biotechnological process to be economically feasible. The dense and thick
culture also means that not all the cells are exposed to the sufficient light, i.e.
that would support the photosynthetic growth and positive net productivity,
all the time. The volume of the photobioreactor may be in the simplest of
terms divided into two zones - the photic zone, where there is sufficient light
available to support the photosynthesis/growth and the dark zone, where the
light is insufficient. With the necessary mixing, the cells traverse between these
two zones and thus encounter various light intensities over the course of the
time. These dynamic effects simply cannot be captured by the static nature of
the so-called P-I curve [64], which is still used extensively in the biotechnology.
The P-I curve models the steady-state dependence of the productivity P on the
average/constant light intensity I, that the culture es exposed to.

Much better suited to the dynamic nature of PBR cultivation is a Lagrangian
time-resolved model, that is capable of taking into account the inherent dynamic
nature of the underlying physiological processes (i.e. photosynthesis relevant
processes of microalgae) and building on the coupling with the fluid dynamics.
In these models the timely course of the light intensity and possibly also other
phenomena as e.g. shear stress and temperature is captured and used as a
model’s input.

It is in this way, that the model of the so-called Photo Synthetic Factory
(PSF), firstly introduced in [43, 44], is built. The model’s sole input parameter
is the light intensity as a function of time. It is the light intensity the individual
cell or a given volume (based on the PSF interpretation as either a system of
ordinary or stochastic differential equations) is exposed to. The model mimics
the physiological processes of photo-limitation and photo-inhibition and covers
also the dynamic effects of the flashing-light effect [65]. The Model of PSF, as
used throughout the presented papers, is based on the further improvements
and analysis of the original model as presented in [45, 66, 67, 68, 69].

To formalize the model of PSF, it is comprised of 3 ODEs and a normalizing
condition:

1 = xA + xI + xR (1.26)

dxR
dt

= γxA + δxI − αuxR (1.27)
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Figure 1.3: Stochastic treatment of PSF - photo state switching of microalgae
cells

dxA
dt

= −γxA + αuxR − βuxA (1.28)

dxI
dt

= −δxI + βuxA (1.29)

where xR, xA and xI stand for resting, activated and inhibited microalgae
photo states respectively and u stands for the local irradiance intensity. α,β,γ
and δ describe the behavior of a particular strain under cultivation.

The actual growth rate is proportional to the spatial-averaged amount of
activated state:

µ = κγxA −Me (1.30)

Here Me stands for metabolism overhead and κ is a constant of proportionality
between the growth rate and averaged activated state amount for a particular
strain.

In the scope of the presented papers, the PSF model was treated in a stochas-
tic Lagrangian manner as expressed in figure 1.3.

It should also be noted, that the time-resolved Lagrangian models are defi-
nitely not a generally-valid answer to the microalgae growth modeling require-
ments. In the case of e.g. reactors with low cell density, short optical path and
low sparge rates, especially in cases of the industrial scale outdoor photobioreac-
tors is the use of models like PSF still unjustified because of the disproportionate
increase of the computational costs. In such systems the mixing does not affect
dramatically the resulting growth rate - see e.g. [64] and the growth models may
be build on the assumption of the culture adopted to the average light intensity
[10].
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1.4 PBR modeling approaches

The problems enumerated in the preceding sections make it generally impossible
to simulate the PBR directly without any simplification. If we are not capable
yet of such a simulation, then we must strive to get so close as possible it. The
following existing state-of-the-art solutions to the PBR simulation represent
various degrees of such a simplification.

1.4.1 Scale-up methodology

This is an example of a simplification that can not be exploited in the case of
the cultivation of the microalgae - as described further. The idea behind the
scale-up methodology, as presented e.g. in [21, 70] on the case of the tubular
photobioreactor, is very tempting from the computational point of view - to
simulate only the small scale analogy of the production scale device, which is
computationally much more feasible.

The basic principle is that an appropriate scale-up criterion is chosen, a one
that ensures ”equality” of the cultivation conditions between the small scale
and production scale device. In the case of the photobioreactors, the light is the
crucial and most influencing parameter, as already described earlier. In [21, 70]
is thus a light related scale-up criterion chosen that leads to the same light/dark
cycle frequency on all the scales.

This leads to the dependence of the axial fluid velocity on the bioreactor
scale and as pointed out in [70] and further discussed in [34], such a scale-up
approach thus has its natural limitations relevant to the hydrodynamic shear
stress associated with the increase of the fluid flow velocity. As is also further
discussed in [34], the frequency of the light/dark cycles is not a fully satisfying
criterion not only because of the shear stress, but also because of the importance
of the duty cycle.

1.4.2 Multizonal approach

The main reason for the current inability to directly simulate the production-
scale bioreactor is that the full-scale CFD simulation coupled with the full-scale
reaction simulation is still too computationally demanding. The first attempts
to overcome this computational obstacle led to the oversimplified models based
on the mixing idealization over the whole volume of the bioreactor, which make
it impossible to correctly simulate the impact of the local hydrodynamic condi-
tions (e.g. shear stresses) on the reaction model and vice-versa (e.g. the impact
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Figure 1.4: Two-dimensional schematic depiction of the multizonal model sep-
arating the simulated domain into a set of well mixed zones. The mass and
energy transfer between the adjacent zones is captured by the vector f .

of the inhomogeneous product concentration on the model of the transport).
Subsequently the efforts to farther improve the accuracy of these models led
to the so-called multizonal approach, which still avoids the full-scale CFD but
improves the model accuracy by spatially splitting the simulated domain into a
set of well-mixed zones. The advantage of the multizonal models is also that,
while increasing the process simulation accuracy, they do not represent any ma-
jor increase in the computational complexity. Figure 1.4 depicts schematically
a 2 dimensional domain split into a set of zones. The mass and energy transfer
between the adjacent zones is captured in the form of vector f .

The multizonal approach has already been a research subject for several
decades, as already the authors in e.g. [71, 72, 73] have used the method to
model a stirred tank bioreactor. The weaknesses of the approach are the de-
termination of the mass and energy transfer between the adjacent zones and
also the necessity of the zone allocation reflecting the relevant transport and
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reaction phenomena.
Attempts to further improve the multizonal model led subsequently to the

development of the hybrid models - the multizonal/CFD models. See e.g. [74,
75, 76, 77] for a generalized framework for the multiscale modeling based on
multizonal/CFD approach.

Authors in [46] have successfully employed the method to the simulation
of the microalgae growth in the Couette-Taylor photobioreactor - with inter-
compartment flows estimated by means of classical CFD.

1.4.3 Stochastic approach

Stochastic approaches to the PBR modeling try to express the hydrodynamic
conditions inside the PBR in such a statistical form that would allow for the
prediction of the irradiance history of the individual cells or their volumetric
equivalents. The statistical approaches may be based either on the discretization
of the simulated domain into a set of well-mixed/parameter-homogeneous zones
where the statistical model yields the flux coefficients between the adjacent
zones and the average cell residence time in each of the zones or on the random
walk (RW) based simulation of transport by the turbulent diffusion, which is
the subject of the subsequent text.

In [33] a dispersion coefficient dependent on both the spatial location and
the ”mixing force” (e.g. angular speed of rotational mixing or an average flow
velocity caused by a pump) is used to evaluate the individual cell trajectories
inside the PBR. Authors in [33] verify this approach on the case of a flat panel
photobioreactor and come to the results consistent with classical methods - in
this case the Finite Difference Method. In this Lagrangian approach, the indi-
vidual cell trajectories through the simulated system are directly transformed
into a stochastic description of the irradiance history - the timely course of the
cell irradiance - which subsequently serves as a stochastic input variable to the
ODE system of the reaction model (the Model of the Photosynthetic Factory in
this case).

1.5 Computational performance

The PBR modeling simplification goes in the direction of decreasing the com-
putational complexity of the simulated phenomena at the expense of the accu-
racy. But trying to find the alternative computational approaches to the models
that are already available should not be underestimated. With the present day
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technology and the growing availability of the massively parallel platforms, the
potential hidden in the computational optimization may decrease the simulation
times rapidly, while not compromising the accuracy of the relevant models.

With the emergence of the parallel platforms and parallel solvers, a question
arises with respect to the suitability of the classical transport solving methods
for these parallel platforms and implementations. While the classical methods,
like e.g. the FVM method, are still of scientific interest with respect to its
parallel implementation (see e.g. [78]), the fact, that these methods require too
much information to be exchanged between the computational nodes leads to
the search for an alternative transport solver with better properties regarding
the parallel implementation.

The LBM method for the fluid flow offers an advantage over the classical
CFD methods, like e.g. FVM, in the form of the perfectly local collision oper-
ator. It is also worth a note, that the LBM method stands on a solid grounds,
because from the LBM model, the incompressible Navier-Stokes equations can
be recovered - see e.g. [79] for further information.

In [36], the parallel potential of an alternative transport model based on the
Lattice Boltzmann method for fluid flow simulation and its parallel performance
are investigated. In the same paper the performance enhancement of the parallel
stochastic implementation of the PSF-based reaction model is evaluated.

1.5.1 CUDA platform

CUDA (Compute Unified Device Architecture) emerged in 2006 as a result of
the already present tendency to exploit the steadily increasing performance of
the GPUs (Graphics Processing Unit) for the computationally intensive data
processing - originally performed on CPUs (Central Processing Unit). While the
CPUs are slowly adopting the parallel-core architectures, having several cores
per single CPU, GPUs have typically hundreds or even thousands of parallel
cores already. At the core of the CUDA platform are several key abstractions
[80] - hierarchy of thread groups, shared memories and barrier synchronization.
CUDA C - the platform programming language - is basically a minimal set of
language extensions to the C programming language [80].

CUDA platform has already been employed for the parallel implementation
of the Navier-Stokes CFD solver - see e.g. [81] as well as for the three dimensional
parallel implementation of the Lattice Boltzmann method based flow solver,
which has been presented in [82].

In my paper [36], CUDA-based performance enhancement to the LBM solver
was evaluated based on the comparison between CPU implementation and
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Figure 1.5: Performance comparison between GPU/CUDA-based LBM solver
and CPU based solver. Computations were performed on AMD Athlon TM 64
X2 Dual Core Processor 5000+ and GeForce 9800 GT with 512 MB of memory.

CUDA implementation. Various grid sizes were evaluated and as depicted in
figure 1.5, the speedup for the reasonably large grids was approximately 20.
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Chapter 2

Papers

2.1 Paper I - Growth impact of hydrodynamic
dispersion in a Couette-Taylor bioreactor

In this paper an extension of the lumped parameter model of the Photosynthetic
Factory (PSF) into the domain with heterogeneously distributed parameters of
irradiance and hydrodynamic dispersion is presented. The hydrodynamic dis-
persion based model is treated in the Eulerian manner in the form of differen-
tial model. The presented computational scheme is applied on the case of the
Couette-Taylor photobioreactor (CTBR), where it is computationally evaluated
using the finite difference scheme. Specifically for the case of the CTBR a sim-
plification of the solution is proposed based on the axisymmetry and subsequent
problem reduction from three-dimensional to one-dimensional space, where the
one dimensional problem is aligned with the radial linear profile in the cylindri-
cal gap of CTBR. The paper also shows that the hydrodynamic dispersion based
model exhibits the limit growth rate reached by increasing the driving force ex-
pressed by the increasing parameters of the relevant hydrodynamic dispersion
function, in this paper proposed in the following form:

D(x) = D0(ω)(p0 + p1[1− (|2x− 1|)n]) (2.1)

In this equation D(x) stands for the spatially dependent dispersion coeffi-
cient, D0(ω) expresses the dependence of the dispersion profile along the radial
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dimension x on the driving force - angular velocity ω of the inner cylinder. p0,
p1 and n are dimensionless constants determined empirically.

The importance of the paper is also in the validation of the hydrodynamic
dispersion based photobioreactor modeling, which is important for the possi-
bility of employing the Lagrangian random walk based modeling approaches
investigated in the subsequent paper.
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Abstract

The development of a distributed parameter model of microalgae growth is
presented. Two modelling frameworks for photo-bioreactor modelling, Eulerian
and Lagrangian, are discussed and the complications residing in the multi-scale
nature of transport and reaction phenomena are clarified. It is shown why is
the mechanistic two time-scale model of photosynthetic factory the adequate
model for biotechnological purposes. For a special laboratory Couette-Taylor
bioreactor with cylindrical geometry, we reached a reliable simulation results
using steady-state Eulerian approach and the finite difference scheme. Moreover,
we prove numerically that the resulting photosynthetic production rate in this
reactor goes, for growing inner cylinder angular velocity, to a certain limit value,
which depends on the average irradiance only.

Keywords: multi-scale modelling, distributed parameter system, boundary
value problem, random walk, photosynthetic factory
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1. Introduction

Biotechnology with microalgae and photo-bioreactor (PBR) design is nowa-
days regaining attention thanks to emerging projects of CO2 sequestration and
algae biofuels. Nevertheless, there neither exist reliable methods nor software
for modelling, simulation and control of PBR [14]. Modelling in a predictive way
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the photosynthetic response in the three-dimensional flow field seems unrealistic
today, because the global response depends on numerous interacting intracel-
lular reactions, with various time-scales. In our previous works [10, 13, 11],
we examined an adequate multi-scale lumped parameter model, describing well
the principal physiological mechanisms in microalgae: photosynthetic light-dark
reactions and photoinhibition. Now our main goal is the development and im-
plementation of a mathematical model of microalgae growth in a general gas-
liquid-solid PBR as tool in PBR design and optimization of its performance.
Afterward, as a case study, we simulate the growth of microalgae in Couette-
Taylor bioreactor [9], in order to validate our results.

2. Development of a distributed parameter model of microalgae growth
in a PBR

Leaving apart the inherently non-reliable scale-up methodology for PBR de-
sign [14], two main approaches for transport and bioreaction processes modelling
are usually chosen [15]: (i) Eulerian, and (ii) Lagrangian. While the Eulerian
approach, resulting in partial differential equations, is a usual way to describe
transport and reaction phenomena in bioreactors, the Lagrangian approach,
leading either to stochastic ordinary differential equations or to random walk
simulation of transport by turbulent diffusion (hydrodynamic dispersion), is an
interesting alternative to PBR models.

Till nowadays, the most important information about the photosynthetic
production of some microalgae species resides in the measurement of the cou-
pling between photosynthesis and irradiance (being a controlled input), in form
of the steady-state light response curve (so-called P–I curve), which represents
the microbial kinetics, see e.g. Monod or more general Haldane type kinetics
[15]. However, PBR operating under high irradiance, permitting large non-
homogeneities of irradiance and allowing the photoinhibition of the cell culture
and the photolimitation as well, belong to intensively studied topics of microal-
gal biotechnology, see e.g. [14] and references within there. Hence, we need such
a model of microalgal growth, which can describe both the steady state and dy-
namic phenomena, i.e. it has to fulfill the following experimental observations:
(i) the steady state kinetics is of Haldane type or Substrate inhibition kinetics
[8]; (ii) the microalgal culture in suspension has the so-called light integration
property [16, 8], i.e. as the light/dark cycle frequency is going to infinity, the
value of the resulting production rate (e.g. oxygen evolution rate) goes to a
certain limit value, which depends on the average irradiance only [10]. These
features are best comprised by the mechanistic model of photosynthetic fac-
tory - PSF model [6, 17, 10]. Using the re-parametrization firstly introduced
in [13], three-state PSF model has the following form:

ẏ =
[
A+ u(t)B

]
y, µ = q2q3(1 + q5) yA(t) , (1)

A = q4




0 q2(1 + q5)
q5

q2(1+q5)

0 −q2(1 + q5) 0
0 0 − q5

q2(1+q5)


 , B = q4




−1 0 0
1 −q5 0
0 q5 0


 , (2)
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where y = (yR, yA, yB)
⊤, yR + yA + yB = 1 , and qi, i = 1..5, are five positive

model parameters, cf. [13, 11]. Notice that (1) is composed by one ODE system
and one algebraic equation connecting the hypothetical state yA of PSF model
with the specific growth rate µ := ċx/cx, where cx stands for microbial cell con-
centration. Considering that the values of q3 in s−1 and q5 (dimensionless) are
of order 10−4, cf. [17, 13, 11], and yA(t) is periodic with period T , cf. [10] for

more details, we have for the specific growth rate: µ = q2q3(1+q5)
T

∫ T

0
yA(t)dt ,

and we see that PSF model successfully simulates the growth in high-frequency
fluctuating light conditions because the growth is described through the ”fast”
state yA. Hence the sensitivity to high-frequency inputs, see e.g. flashing
light experiments [8] or light/dark cycles induced by hydrodynamic mixing,
is reached. The single scalar input u(t), representing the dimensionless irradi-
ance in the culture, is defined as u := I/q1, where I is the non-scaled irradiance
(units: µE m−2 s−1), and q1 := Iopt (Iopt maximizes µ). It is assumed that
u(t) is at least piecewise continuous. In other words, PSF model is the so-called
bilinear controlled system which inherent property is the so-called light integra-
tion capacity [8], i.e. due to the Lipschitz dependence of trajectories on control,
cf. [3] and references within there, as the frequency of fluctuating light is going
to infinity, the value of resulting production rate (specific growth rate µ) goes
to a certain limit value, which depends on average irradiance only [10]. For the
constant input signal (irradiance u ≥ 0) the ODE system (1) is linear and its
system matrix A+uB has three distinct eigenvalues. Two eigenvalues are nega-
tive (λF , λS), and the third is zero (its corresponding eigenvector is the globally
stable steady state solution of (1)). In the sequel, we will need the steady state

values of states yA and yB: yAss
= u

q2(1+q5)(u2+u/q2+1) , yBss
= u2

u2+u/q2+1 .

Finally we can see that the steady state PSF model behavior is defined by
the parameters q1, q2, q3, and the PSF model dynamics is determined by the fast
rate q4 and the slow rate q4q5, for more details cf. [13, 11].

Eq. (1) represents, for some known input signal u(t), the Lagrangian
model of PBR. However, it should be stressed that u(t) is a random vari-
able, depending on the fluid flow in PBR.

In some special, although common, conditions, e.g. in the case of constant
average irradiance uav := 1

tf−t0

∫ tf
t0

u(t)dt, and when the period of light fluc-

tuation is ”small”, we can simplify the ODE system (1) by reducing the PSF
model dynamics to the one dimensional system using the singular perturbation
approach with respect to the small parameter q5 ≈ 10−4. The system (1) thanks
to the properties of its right hand side clearly satisfies the sufficient condition
for the convergence of the singular perturbation [7]. One can therefore take the
limit q5 → 0 in (1) to obtain:1 ˙yA

F = −q4q2 yA
F + q4u(t) yR , ẏFB = 0 , and

1Roughly speaking we can also apply the theorem of Lipschitz dependence of trajectories
on control [3, 10, 11] when we suppose that the period of light cycles is ”sufficiently small”
for ”averaging” of yB but not so small for averaging yA.
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consequently (recall that yR = 1− [yA + yB] ):

˙yA
F = −q4(u(t) + q2)yA

F + q4u(t) [1− yBss (uav)] . (3)

3. Microalgae growth in Couette-Taylor bioreactor: Simulation re-
sults

We aim to simulate, eventually to optimize, microalgae cell growth in a
Couette-Taylor bioreactor (CTBR) with cylindrical geometry, cf. [9]. For the
sake of clarity, we further suppose all phenomena are axi-symmetrical, i.e.
CTBR is homogeneously illuminated from the outside, and the biomass con-
centration is sufficiently high for making irradiance level decreasing from the
CTBR outer wall to the CTBR core. Thus, the CTBR volume (our computa-
tional domain) can be divided into layers with the same irradiance level. More-
over, we also transform the 3D fluid dynamics problem into the one-dimensional.
It means that only the cell motion in direction of light gradient is taken into
account. Let then suppose this motion is caused by the turbulent diffusion (hy-
drodynamic dispersion) characterized by the dispersion coefficient De(r), the
tensor of second order in 3D case.

As stated before, the only input parameter determining the bio-reaction rate
is the spatially dependent irradiance u(r). Based on [5] we use the following
relations for u(r) and for the average (absorbed) irradiance:

u(r) =
R u1

r

coshκ r
R

sinhκ
, uav = u1

2R2

R2 − r02
[sinhκ− sinhκ r

R ]

κ coshκ
, (4)

where u1 is the incident irradiance on the outer CTBR wall, κ is the dimen-
sionless attenuation coefficient, R and r0 are the outer and inner cylinder radii,
respectively. The dimensionless attenuation coefficient κ > 0 is defined as fol-

lows: κ := ln(2)R
r1/2

, where r1/2, is the length interval (unit: m) making diminish

the intensity of light to one half (in rectangular geometry). Furthermore, we
introduce the dimensionless spatial coordinate in radial direction x, and dimen-
sionless dispersion coefficient p(x) as follows:

x :=
r

R
, x ∈ [

r0
R
, 1], De := p(x) D0, p(x) := p0 + p1 [1− (|2x− 1|)n] , (5)

where D0 is a constant with some characteristic value (unit: m2s−1), and p0,
p1, n are dimensionless positive constants (to be determined empirically).

According to [2], nearly all mass transfer is linearly dependent on the driving
force. Hence, for the growing power supply to the CTBR (by augmenting inner
cylinder angular velocity ω) we expect D0 proportionally grows, meanwhile the
De shape, i.e. p(x), remains constant.

All the values needed to perform further calculations are summarized in
Table 1 (u1 is chosen accordingly to fulfill the condition uav = 1):

Similarly as in our work [12], Lagrangian time dependent simulation (data
not shown) revealed that the state vector converges to a steady state in few min-
utes (this is the time scale of the photoinhibition process). Moreover, only the
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u1 D0 κ r0 R p0 p1 q2 q4 n
R2−r0

2

2R2
κ coshκ

[sinhκ−sinhκ r
R ] 0.0001 24 ln(2) 0.04 0.06 2 1 0.3 0.5 2

long term cultivation either in continuous or batch operation mode, where the
quasi-steady state is reached, is of biotechnological importance. Consequently,
based on the above reasons, our Eulerian modelling approach is simpler
than generally three dimensional non-stationary transport-reaction PDE sys-
tem: ∂y

∂t − ∇ · (De(~r)∇y) =
[
A + u(r)B

]
y in Ω,∇y = 0 on ∂Ω. Furthermore,

employing the fast reduction (3) and omitting the upper index ”F”,2 we get
only one ODE for modelling the steady state of one state yA in radial direction
x (i.e. x is the only one independent variable):

− 1

x
[xp(x)y′A]

′
+ q(x) yA = q(x) yA∞ , y′A(r0/R) = 0, y′A(1) = 0 , (6)

where q(x) := q4(u(x)+q2) R2

D0
. The function yA∞(x) is calculated as the steady

state solution of (3):

yA∞(x) =
u(x)

u(x) + q2
[1− yBss(uav)] =

u(x)

u(x) + q2

[
uav + q2

q2(uav
2 + uav/q2 + 1)

]
.

Let be defined the characteristic number, the so-called Damköhler number of

second type, as DaII := q4 R2

D0
, then q(x) := (u(x) + q2) DaII holds. In the

sequel, the dependence of the solution of (6) on DaII will be studied.
The boundary value problem with Neumann boundary conditions and

inhomogeneous right-hand side (6) has a lot of nice properties. It is symmetric
and positive and the corresponding linear differential operator of the second
order is self-adjoint. As q(x) > 0, problem (6) has a unique solution. It was
solved numerically using the finite difference scheme for uniformly distributed
nodes with the steplength h, cf. [1]. It leads to the symmetric and positive
definite system of linear equations with the tridiagonal matrix for unknown
values

yAi = yA(xi) ≡ yA(xi,∞), i = 0, . . . , N.

The scheme approximates the exact solution of the boundary value problem (6)
with accuracy of order h2.

In our numerical experiments we have chosen the values from Table 1 to-
gether withN = 1000. The following Fig. 1 shows the dependence of the solution
on the Damköhler number DaII . We can see that the solution approaches con-
stant value yA(x,∞) = 0.625 forDaII → 0. Let us see that the solution becomes
flatter for decreasing DaII and for DaII = 0.1 the solution is nearly constant.
Notice also that the value yA = 0.625 corresponds to the value yAss(1) =

1
2q2+1 ,

2The lower index ”ss” is omitted as well, nevertheless, when some confusion could arise,
the term yA(x,∞) is used.
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cf. (2). This means that the ODE system (6), for the case DaII → 0, performs
the ”averaging” of u(x).

From practical point of view, in order to maximize the specific growth rate,
cf. (1), it is important to evaluate the integral average of the activated state
yA(x,∞), depending on the operational conditions, i.e. on the u1 and on ω. Let
define

J =
1

V

∫

V

yA(x,∞)dV =
2

R2 − r02

∫ 1

r0/R

xyA(x,∞)dx , (7)

recalling that yA(x,∞) is a solution of (6). Then we can formulate the optimiza-
tion problem residing in maximizing of J . The next Fig. 2 shows the dependence
of J , cf. (7), on DaII , for the incident irradiance u1 taken from Table 1. The
maximum value arises for DaII → 0 and its value is again J = 0.625. The
minimum value in (7) arises when the solution of (6) is yA(x,∞) = yA∞(x),
which leads to a value J ≈ 0.4539.
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Fig. 1. Approximate solution of (6):

yA(x,∞) vs. x.
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Fig. 2. Performance index J , cf. (7), vs.

DaII .

4. Conclusions

The main benefit of this paper resides in an extension of a multi-scale lumped
parameter model of photosynthetic factory to the domain with heterogeneously
distributed relevant parameters; in our case these parameters are irradiance and
hydrodynamic dispersion (turbulent diffusion). For a special laboratory biore-
actor based on Couette-Taylor flow, the so-called Couette-Taylor bioreactor, we
reached reliable simulation results using Eulerian modelling framework and the
finite difference scheme. Moreover, our results reflect well the dependence of mi-
croalgae growth on Damköhler number DaII , i.e. on hydrodynamic dispersion
(depending on inner cylinder angular velocity ω), permitting the announcement
of our statement about light integration property of PSF model for CTBR as
well: The resulting photosynthetic production rate in CTBR, for growing ω,
goes to a certain limit value, which depends on the average irradiance only.
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2.2 Paper II - Modelling and simulation of pho-
tosynthetic microorganism growth: random
walk vs. finite difference method

In this paper two different PBR modeling approaches are compared to each
other, namely the Eulerian Finite difference based approach and Lagrangian
Random Walk (RW) based approach. By the successful comparison, the validity
of the RW method is proven. The comparison is based on the PBR productivity
devised from the model of Photosynthetic Factory (PSF) - specifically on the
timely-averaged steady-state amount of the PSF activated state ya to which the
PBR productivity is directly proportional. The steady-state timely-averaged
amount of ya reached under optimal operating conditions was 0.62 for the RW
based method and 0.625 for the finite difference based method.

Further it was shown, that the Lagrangian RW based method allows the
massively parallel implementation - the possible performance enhancement was
studied between the single threaded RW based implementation on the classi-
cal (CPU AMD AthlonTM 64 X2 Dual Core Processor 5000+) and a parallel
implementation on the Compute Unified Device Architecture (CUDA), which
was evaluated on GeForce 9800 GT with 512 MB of memory. Despite the slight
difference in the random number generator implementations (RNG) given by
the different library RNG implementations on CUDA and Boost, the CUDA
based implementation has been shown to be 90 times faster.
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microorganism growth: Random walk vs. Finite

difference method✩
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Abstract

The paper deals with photosynthetic microorganism growth modelling and simu-
lation in a distributed parameter system. Main result concerns the development
and comparison of two modelling frameworks for photo-bioreactor modelling.
The first ”classical” approach is based on PDE (reaction-turbulent diffusion
system) and finite difference method. The alternative approach is based on ran-
dom walk model of transport by turbulent diffusion. The complications resid-
ing in modelling of multi-scale transport and reaction phenomena in microalgae
are clarified and the solution is chosen. It consists on phenomenological state
description of microbial culture by the lumped parameter model of photosyn-
thetic factory (PSF model) in the re-parametrized form, published recently in
this journal by Papáček, et al. (2010). Obviously both approaches lead to the
same simulation results, nevertheless they provide different advantages.

Keywords: multi-scale modelling, distributed parameter system, boundary
value problem, random walk, photosynthetic factory
PACS: 93C10, 37N25

1. Introduction

The photosynthetic microorganism growth description is usually based on
the microbial kinetics (so-called P–I curve), i.e. on the static lumped param-
eter models (LPM) describing the photosynthetic response in small cultivation
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systems with a homogeneous light distribution [5, 21]. However, there is an
important phenomenon, which occurs under fluctuating light condition, the so-
called flashing light enhancement, demanding some other model than it resid-
ing in the artificial connection between the steady state kinetic model and the
empiric one describing the photosynthetic productivity under fluctuating light
condition, see e.g. [22]. Nevertheless, even having an adequate dynamical LPM
of microorganism growth, e.g. phenomenological model of so-called photosyn-
thetic factory [6, 7, 9, 25], another serious difficulty resides in the description
of the microalgal growth in a photo-bioreactor, i.e. in a distributed parameter
system with strongly non-homogeneous light distribution, e.g. accordingly to
the exponential attenuation, see Section 4.

In our previous papers [15, 19, 17, 16, 4] we studied the PSF model be-
havior and the techniques for parameter estimation as well. In this paper we
aim to develop the distributed parameter model (DPM) of a photosynthetic mi-
croorganism growth in a photo-bioreactor (PBR), mainly due to the necessity
to evaluate the PBR performance and to optimize PBR operating conditions.
Leaving apart the inherently non-reliable scale-up methodology for PBR design
[8, 12], two main approaches for transport and bioreaction processes modelling
are usually chosen [21]: (i) Eulerian, and (ii) Lagrangian. While the Eulerian
approach, leading to the partial differential equations (PDE), is an usual way
to describe transport and reaction systems, the Lagrangian approach, resulting
either in a stochastic ordinary differential equations, or in the further described
technique based on random walk simulation of transport by turbulent diffusion,
is an interesting alternative to the PDE models.

The main purpose of this paper is to clarify how the PSF model can be ad-
vantageously used in DPM of microalgae growth in a general PBR. Hence, after
having presented the main results concerning PSF model as LPM in Section
2, in Section 3 we present the development of two above mentioned modelling
approaches. Section 4 is devoted to simulate PBR performance. As a case study
we took the PBR with rectangular geometry, see e.g. the flat-panel PBR and
FMT 150 in Fig. 1 (for more details cf. [11] and references within there), receiv-
ing the problem depending only on one space coordinate in direction of light
gradient. This simplification permits to formulate the simple optimization prob-
lem, having as result the incident irradiance maximizing the PBR productivity
(Subsection 4.3). The simulation results and advantages of each approach, as
well as outlooks for further research, are discussed in the final section.

2. Lumped parameter model of photosynthesis and photoinhibition
in microalgae

The dynamical model of photosynthetic factory – PSF model, see
Fig. 2 below, has been thoroughly studied in the biotechnological literature
[6, 7, 9, 25]. The state vector y of the PSF model is three dimensional, namely,
y = (yR, yA, yB)

⊤, where yR represents the probability that PSF is in the resting
state R, yA the probability that PSF is in the activated state A, and yB the
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Figure 1: Two examples of rectangular PBR geometry: Photobioreactor FMT 150, made
by Photon Systems Instruments, Czech Republic, www.psi.cz (left), and Flat panel photo-
bioreactor, Institute of Physical Biology, University of South Bohemia, Nové Hrady, Czech
Republic (right).

probability that PSF is in the inhibited state B. The PSF can only be in one
of these states, so:

yR + yA + yB = 1 . (1)

The PSF model has to be completed by an equation connecting the hypothetical
states of PSF model with some quantity related to the cell growth. This quantity
is the specific growth rate µ.1 According to [6, 25], the rate of photosynthetic
production is proportional to the number of transitions from the activated to
the resting state, i.e. γ yA(t). Hence, for the average specific growth rate we
have the relation:

µ =
κγ

tf − t0

∫ tf

t0

yA(t)dt , (2)

where κ is a new dimensionless constant – the fifth PSF model parameter.
Equation (2) reveals the reason why PSF model can successfully simulate the
microalgae growth in high-frequency fluctuating light conditions: the growth is
described through the ”fast” state yA, hence the sensitivity to high-frequency
input fluctuations is reached, see e.g. flashing light experiments [14].

2.1. Re-parametrization of the PSF model

Using the re-parametrization firstly introduced in [19], PSF model has the
following form (recall that y = (yR, yA, yB)

⊤):

ẏ =
[
A+ u(t)B

]
y, (3)

A = q4




0 q2(1 + q5)
q5

q2(1+q5)

0 −q2(1 + q5) 0
0 0 − q5

q2(1+q5)


 , B = q4




−1 0 0
1 −q5 0
0 q5 0


 , (4)

1µ := ċ/c, where c is the microbial cell density. The notation used is the most usual in
biotechnological literature, cf. [5].
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inhibition kinetics. S stands here
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where the new parameters qi, i = 1, .., 5, are related to the old ones as follows:

q1 :=

√
γδ

αβ
, q2 :=

√
αβγ

δ(α + β)
2 , q3 := κγ

√
αδ

βγ
, q4 := αq1, q5 := β/α. (5)

The single scalar input u(t), representing the dimensionless irradiance in the
culture, is defined as u := I/q1, where I is the non-scaled irradiance (units: µE
m−2 s−1). It is assumed that u(t) is at least piecewise continuous. In other
words, PSF model is the so-called bilinear controlled system which inherent
property is the so-called light integration capacity [14], i.e. due to the Lipschitz
dependence of trajectories on control, cf. [3] and references within there, as
the frequency of fluctuating light is going to infinity, the value of resulting
production rate (specific growth rate µ) goes to a certain limit value, which
depend on average irradiance only [15].

Let see that q1 = Iopt (Iopt maximizes µ, see Fig. 3 and Remark 1), q2, q5
are dimensionless, q3, q4 are in s−1. The reasoning for such a choices arises
from the utility to separate the steady state PSF model behavior (parameters
q1, q2, q3) from the PSF model dynamics (the fast rate q4 := αIopt and the slow
rate q4q5 := βIopt), for more details cf. [19, 17]. The relation for the specific
growth rate is now:

µ = q2q3(1 + q5)
1

tf − t0

∫ tf

t0

yA(t)dt . (6)

For the constant input signal (irradiance u ≥ 0) the ODE system (3) is linear
and its system matrix A + uB has three distinct eigenvalues. Two eigenvalues
are negative (λF , λS), and the third is zero (its corresponding eigenvector is
the globally stable steady state solution of (3)). In the sequel, we will need the
steady state values of states yA and yB:

yAss =
u

q2(1 + q5)(u2 + u/q2 + 1)
, yBss =

u2

u2 + u/q2 + 1
. (7)
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Remark 1: Notice that the parameter q5 quantifies the separation between
the fast and slow dynamic; q5 ≈ 10−4, based on [25].2 Moreover, the PSF
model steady state behavior corresponds to Haldane type kinetics (or so-called

Substrate inhibition kinetics), see Fig. 3: µ = µ∗ I
KS+I+I2/KI

, where I is irradiance

(i.e. limiting substrate S for photosynthetic microorganism) and µ∗, KS , KI

are model constants. The connection between PSF model and Haldane kinetics
could be described as follows: µ∗ = q2q3, KS = q1q2, and KI = q1

q2
. For the

constant value of irradiance which maximizes the steady-state growth rate, i.e.
Iopt := q1 =

√
KSKI , holds µ(Iopt) := µmax = µ∗

2
√

KS/KI+1
= q2q3

2q2+1 . See also

that for KI → ∞, the production curve changes to Monod kinetics.

2.2. Order reduction of the ODE system (3)

In some special although common conditions, e.g. in the case of constant
average irradiance uav := 1

tf−t0

∫ tf
t0

u(t)dt, and when the period of light fluctua-

tion is ”small”, we can simplify the ODE system (3) by reducing the PSF model
dynamics to the one dimensional one using the singular perturbation approach
with respect to the small parameter q5 ≈ 10−4 [23]. The system (3) thanks to
the properties of its right hand side clearly satisfies the sufficient condition for
the convergence of the singular perturbation. One can therefore take the limit
q5 → 0 in (3) to obtain

˙yA
F = −q4q2 yA

F + q4u(t) yR , ẏFB = 0 . (8)

Upper index ”F” aims to avoid confusion with notation for the non-reduced
model (3). Taking into account the normalization condition (1), and preferring
the states yA, yB (due to their measurability3), we further analyze only two
above differential equations (8); for more detail see our paper [17]. The second
relation in (8), i.e. ẏFB = 0, means that the ”slow” state variables reach its steady
state value, i.e., yB = yBss(uav). Recalling relation (1), i.e., yR = 1− yA − yB,
only one ODE for the fast dynamics of yA

F state is received:

˙yA
F = −q4(u(t) + q2)yA

F + q4u(t) [1− yBss(uav)] . (9)

Roughly speaking we can also apply the theorem of Lipschitz dependence of
trajectories on control [3, 15, 17] when we suppose that the period of light cycles
is ”sufficiently small” for ”averaging” of yB but not so small for averaging yA.
Further we denote the steady state solution of the above equation (9) as: yA∞ .
In subsection 4.3, we shall advantageously use this term.

2For the microalga Porphyridium sp., on basis of Wu and Merchuk’s parameters α, β, γ,
δ, κ, we have calculated: q1 = 250.106 µE m−2, q2 = 0.301591, q3 = 0.176498e − 3 s−1,
q4 = 0.483955 s−1, q5 = 0.298966e − 3.

3The connection of yA with a measurable quantity describes (6), and yB can be estimated
via chlorophyll fluorescence measurement, cf. [11, 25].
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3. Distributed parameter model of photosynthesis and photoinhibi-
tion in microalgae

Two approaches for modelling of microbial growth are usually chosen: (i)
Eulerian, and (ii) Lagrangian. The first ”more classical” approach, based on
the balance equation for an infinitesimal volume, leads to the partial differential
equation (reaction-convection-diffusion system). The quantities to describe are
concentrations of microbial cells and some other species.

The Lagrangian approach, consisting in description of each individual mi-
crobial cell, offers two possibilities: first, to compute or measure (cf. e.g. [10])
the cell trajectories in PBR and evaluate the so-called irradiance history u(t) as
the stochastic input variable for the ODE (3), resulting in a stochastic ordinary
differential equation; the second possibility is based on random walk simulation
of transport by turbulent diffusion, and is further described in subsection 3.2.

3.1. Distributed parameter model of photosynthesis and photoinhibition in mi-
croalgae: Eulerian approach

Accordingly to [1], the transport and reaction phenomena of some species
or components describes the following equation (where ci = ci(~r, t) is either a
species concentration or cell density):

∂ci
∂t

+∇ · (~vci)−∇ · (De∇ci) = R , i = 1, ...,m, (10)

where R is the reaction (source) term, ~v is the velocity flow field, and ~r stands
for a vector of space coordinates. De(~r) is the dispersion coefficient (generally
the tensor of second order), which corresponds to the diffusion coefficient in
microstructure description and becomes mere empirical parameter suitably de-
scribing mixing in the system. De is influenced by the molecular diffusion and
velocity profile (this explains why De is spatially dependent). When mixing
is mainly caused by the turbulent micro-eddies, the phenomenon is called the
turbulent diffusion and a turbulent diffusion coefficient is introduced, e.g. in [1].

The initial condition and boundary condition (impermeability of PBR walls,
i.e. domain boundary ∂V ) to (10) are following:

ci0 = ci(~r, t0), ∇ci(∂V, t) = 0, i = 1, ...,m. (11)

The solution of transport equation (10-11) usually causes many complica-
tions residing in fact that the relevant transport and reaction phenomena are
multi-scale. If we realize that the characteristic time of microalgae growth (e.g.

doubling time tg := ln(2)
µ ) is in order of hours, and the the characteristic time

of turbulent diffusion (td := L2

De
) is in order of seconds (similarly that of convec-

tive transport tc :=
L
v ), then actually only two alternatives exist: (i) to neglect

the details concerning mixing phenomena, e.g. by accepting the hypothesis that
the entire cell culture dispersed in medium was homogenized at each calculation
step (cf. [13], where the time step ∆t was set to one hour), and (ii) to observe
the changes due to the hydrodynamic mixing and neglect those of biochemical
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reaction. Both alternatives completely lose the coupling between transport and
reaction phenomena, which qualify the corresponding modelling framework as
unsatisfactory.

Our proposition to resolve about mentioned difficulties is based on the ex-
tension of PSF model ”into space”. The stochastic formulation of PSF model,
as described in Section 2, is not unique: instead of one photosynthetic factory
(with three states), we can imagine as many factories as cells in the cultivation
system (i.e. PBR). Each microalgae cell with certain probability stays in its
current state or is transformed into one of the remaining states, and at he same
time it travels inside the PBR. Assuming we know the irradiance distribution
in PBR, i.e. u = u(~r, t), then we evaluate the specific growth rate not only as
the value proportional to the temporal average of the activate state, cf. (6), but
also the spatial averaging takes place:

µ = q2q3(1 + q5)
1

tf − t0

∫ tf

t0

(
1

V

∫

V

yA(~r, t)dV

)
dt . (12)

The only thing which rests to explain is how to introduce into the transport
equation (10) the reaction term coherently with PSF model. Let us evaluate the
PSF model states as relative concentrations (molar fractions) of microbial cells
in respective state (R, A, or B). Let define the variables ci as the concentrations
of cells in respective states of PSF model, and c as an overall cell concentration.
The concentrations are generally varying in time and space ci = ci(x, t), i ∈
{R,A,B}, nevertheless it holds: c = cR + cA + cB. Consequently, without loss
of precision, we re-define the state vector of PSF model as follows:

y = (yR, yA, yB)
⊤ :=

1

c
(cR, cA, cB)

⊤. (13)

Furthermore, after dividing (10) by c, we can substitute the right hand side
of PSF model equation (3) as the reaction term in the right hand side of the
following (14):

∂y

∂t
+∇ · (~vy)−∇ · (De∇y) =

[
A+ u(~r, t)B

]
y . (14)

Equation (14) with the corresponding initial and boundary condition (11) rep-
resents the PDE based model for describing multi-scale transport and reaction
phenomena in a general PBR. To illustrate the reliability of our approach, we
will analyze in Section 4, as a case study, the microalgae growth in a simple
rectangular PBR.

3.2. Distributed parameter model of photosynthesis and photoinhibition in mi-
croalgae: Lagrangian approach

In our Lagrangian based modelling approach, both the biochemical reaction
and transport are treated in a stochastic manner. This brings several advantages
over the classical PDE based approach, high potential of parallel implementa-
tion, as described further, being one of them. Stochastic model of the transport
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is based on a discrete random walk model which reflects the spatially dependent
turbulent diffusion coefficient. It is this coefficient that binds the stochastic be-
havior to the real hydrodynamic conditions in the simulated domain. Spatial
dependence of the diffusion coefficient may be obtained by classical means, i.e.
CFD (Computational Fluid Dynamics) numerical simulation for the given ge-
ometry. With respect to the implementation - mainly computational issues, the
apparent advantage of this approach is mutual independence of the individual
cells under cultivation, where every cell is represented by an independent photo-
synthetic factory, whose only input parameter is spatially dependent irradiance
u(~r) (the temporal variation of irradiance is neglected, because it occurs in sev-
eral order slower time-scale). The succession of states of the individual cells (R,
A, and B) forms a Markov chain, with A+ uB being the system matrix of (3),
the infinitesimal generator, see e.g. [2] and references within there. The de-
tails about algorithm design and implementation are discussed in the following
Section 4.

4. Simulation results: Random walk vs. Finite difference method

4.1. Problem formulation

We aim to simulate, eventually to optimize microalgae cell growth in a PBR.
For the sake of clarity, we further suppose the rectangular, axi-symmetrical PBR
geometry, illuminated from one side, i.e. the irradiance level is decreasing from
the PBR wall to PBR core, cf. Fig. 1. Thus, the PBR volume (our com-
putational domain) can be divided into layers with the same irradiance level.
Moreover, if the flow field in the PBR is stationary and does not depend on the
coordinates perpendicular to the direction of light gradient, then we can neglect
the cell motion over the layers with the same irradiance level, transforming the
3D problem into the one-dimensional. It means that only the cell motion in
direction of light gradient is of most interest. This motion is caused by the tur-
bulent diffusion (hydrodynamic dispersion) characterized by an only parameter
De(r), i.e. by the dispersion coefficient (a tensor of second order in 3D case).

As stated before, the only input parameter determining the bio-reaction rate
is the spatially dependent irradiance u(r). Here we announce the exponential,
so-called Lambert-Beer law, and the relation for average (absorbed) irradiance,
in the form:

u(r) = u0 e−Λr , uav = u0
1− e−ΛL

ΛL
, (15)

where u0 is the incident irradiance, Λ is the attenuation coefficient (unit: m−1)
and L is the PBR thickness in direction of light gradient. It is convenient to
define a dimensionless ”thickness constant” k > 0 as follows: L := k r1/2, where

r1/2 := ln(2)
Λ , is the length interval (unit: m) making diminish the intensity of

light to one half. Furthermore, we introduce the dimensionless spatial coordinate
x and as follows:

x :=
r

L
, x ∈ [0, 1] . (16)
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After this transform, we introduce also the dimensionless dispersion coeffi-
cient p(x) by De := p(x) D0, where D0 is a constant with some characteristic
value, unit: m2s−1. According to [1], nearly all physical exchange is linearly
dependent on the driving force. Hence, for the growing power supply to the
PBR pumping device we expect D0 proportionally grows, meanwhile the De

shape (i.e. p(x)) remains constant. For p(x) we propose the following relation:

p(x) := p0 + p1 [1− (|2x− 1|)n] , (17)

where p0, p1, n are dimensionless positive constants (to be determined empiri-
cally).

All the values needed to perform further calculations are summarized in
Table 1:

u0 D0 k L p0 p1 q2 q4 n yR(t0) yA(t0) yB(t0)
8 ln(2)
1−2−8 0.0001 8 0.02 2 1 0.3 0.5 2 1 0 0

Table 1: Parameters summary

The values representing initial guess for operating conditions (to be opti-
mized) are in the first two columns, the middle seven data are empirical con-
stants, and the last three values are initial conditions for simulation of time
course of PSF states. It is important at this stage to point out that the empir-
ical data have an illustrative and testing purpose only.

4.2. Lagrangian simulation

The Lagrangian simulation algorithm was designed with parallel platform
implementation in mind and was performed both on the classical PC and a par-
allel platform - namely CUDA (Compute Unified Device Architecture) archi-
tecture. Random walk model was implemented on top of the Mersenne Twister
parallel random number generator in combination with Box-Muller transforma-
tion. With this parallel reimplementation on CUDA we were able to get an
additional 90-fold gain in speed when compared to the single threaded imple-
mentation running on PC.

The simulation results for the Lagrangian simulation are summarized in
Tables 2 and 3

From the last columns it is evident that the steady state was reached. All
the simulation parameters besides D0 were the same as shown in Table 1. The
particular value D0 = 0.5 was found empirically as a minimal D0 at which the
culture growth is not transport-limited, i.e. the mixing is sufficient.
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Time [s] 0 1 10 50 100 500 1000 2000 3000 4000 5000

yRav 1.00 0.61 0.21 0.20 0.21 0.20 0.20 0.18 0.17 0.17 0.17
yAav 0.00 0.39 0.79 0.79 0.78 0.74 0.70 0.66 0.65 0.62 0.62
yBav 0.00 0.00 0.00 1.00 0.01 0.06 0.10 0.16 0.18 0.21 0.21

Table 2: Random walk simulation results, D0 = 0.5, maximum growth rate reached

Time [s] 0 50 100 500 1000 2000 3000 4000 5000 10000

yRav 1.00 0.43 0.42 0.40 0.38 0.36 0.34 0.33 0.33 0.33
yAav 0.00 0.57 0.56 0.54 0.51 0.47 0.46 0.45 0.44 0.44
yBav 0.00 0.00 0.02 0.06 0.11 0.17 0.20 0.22 0.23 0.23

Table 3: Random walk simulation results, D0 = 0.005

4.3. Eulerian simulation and optimization of incident irradiance u0

Based on the previous time dependent Lagrangian simulation results, we ar-
gue that all PSF states are approaching some value yiss(x) = limt→∞ yi(x, t), i ∈
{R,A,B}, depending on the external inputs u0 and D0 only. Moreover, the in-
hibited state yBss(x) is nearly constant across the PBR (data not shown) and
holds: yB = yBss(uav).

Consequently, based on the above reasons, we modify the transport-reaction
system (14) as follows: first, let us put ∂c

∂t = 0, then employ (9), then we obtain
(omitting the upper index ”F”):

− [p(x)y′A]
′
+ q(x) yA = q(x) yA∞ , y′A(0) = 0, y′A(1) = 0 , (18)

where q(x) := q4(u(x)+q2) L2

D0
. The function yA∞(x) is calculated as the steady

state solution of (9):

yA∞(x) =
u(x)

u(x) + q2
[1− yBss(uav)]

=
u(x)

u(x) + q2

[
uav + q2

q2(uav
2 + uav/q2 + 1)

]
. (19)

Let the characteristic number, the so-called Damköhler number of second
type be defined as

DaII :=
q4 L2

D0
, (20)

then q(x) := (u(x)+ q2) DaII holds. Further, the dependence of the solution of
(18) on DaII will be studied.

The boundary value problem with Neumann initial conditions and inhomo-
geneous right-hand side (18) has a lot of nice properties. It is symmetric and
positive and the corresponding linear differential operator of the second order

L(yA) = − [p(x)y′A]
′
+ q(x) yA,
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is self-adjoint. As q(x) > 0, problem (18) has a unique solution (see e.g. [20],
[24]). It was solved numerically using a following finite difference scheme with
uniformly distributed nodes which leads to a symmetric and positive definite
system of linear equations for unknown values

yAi = yA(xi) ≡ yA(xi,∞), i = 0, . . . , N,

with a tridiagonal matrix:



a0 b0 0 . . . 0

b0 a1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . bN−1

0 . . . 0 bN−1 aN







yA0
...
...
...

yAN




=




g0
...
...
...
gN




where

a0 = p(x0 + h/2) + h2q(x0)/2,

ai = p(xi − h/2) + p(xi + h/2) + h2q(xi), i = 1, . . . , N − 1,

an = p(xN − h/2) + h2q(xN )/2,

bi = −p(xi + h/2), i = 0, . . . , N − 1,

g0 = h2f(x0)/2,

gi = h2f(xi), i = 1, . . . , N − 1,

gn = h2f(xN )/2.

Here f(x) = q(x) yA∞(x), xi = ih, and h = 1
N , where N denotes the number

of nodes. Such a scheme approximates the exact solution of the boundary value
problem (18) with accuracy of order h2.

In our numerical experiments we have chosen the values from Table 1 to-
gether with N = 1000. The following Fig. 4 shows dependence of the solution
on the Damköhler number DaII . We can see that the solution approaches a
constant value yA(x,∞) = 0.625 for DaII → 0. Let us see that the solution
becomes flatter for decreasing DaII and for DaII = 0.2 the solution is nearly
constant.

One of the most important issues in biotechnological literature is the analysis
of bioreactor performance. In our context, the measure of PBR performance
is the photosynthetic productivity which is directly proportional to the specific
growth rate, cf. (12). For the PBR continuous operation mode and after certain
operations leading to (18), we define the cost functional (performance index) as
follows:

J =

∫ 1

0

yA(x,∞)dx, (21)

recalling that yA(x,∞) is a solution to (18). Further, we can formulate the
optimization problem residing in maximizing the performance index J , having
u0 and/or DaII as optimization parameters.
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The next Fig. 5 shows dependence of J on DaII , for the incident irradiance
u0 taken from Table 1. The maximum value arises for DaII → 0 and its
value is J = 0.625. Minimum value in (21) arises when the solution of (18) is
yA(x,∞) = yA∞(x), which leads to a value J ≈ 0.4254.

Remark 2: Notice that the value J = 0.625 corresponds to the value
yAss(1) = 1

2q2+1 , cf. (7). This means that the ODE system (18), for the

case DaII → 0, performs the ”averaging” of u(x).
We have made several simulations for various u0 and the values of J were

smaller than those for u0 taken from Table 1. This is a numerical confirmation
of the hypothesis often mentioned in biotechnological literature.
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5. Conclusions

The purpose of this paper was to present an extension of a lumped pa-
rameter model of photosynthetic microorganism growth to the domain with
heterogeneously distributed relevant parameters, e.g. irradiance and turbulent
diffusion (hydrodynamic dispersion). The principal problem was to find how
to reconcile the multi-scale problem in such a manner, that the corresponding
modelling framework was sensitive to all relevant phenomena. The key decision
was to adopt the model of photosynthetic factory (PSF model), which operates
in three time-scales, being sensitive to the time-scale of turbulent diffusion.

Both approaches and corresponding numerical techniques, i.e. random walk
and finite difference method, show the consistent results, proving the viability
of our efforts. The advantage of the stationary PDE based model resides in
less computationally expensive solution of optimization of PBR operating con-
ditions. On the other hand, Lagrangian approach and random walk technique
permit the parallel stochastic simulation of microalgal growth in a real time.
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2.3 Paper III - Lattice Boltzmann method in
bioreactor design and simulation

In this paper a Lattice Boltzmann method (LBM) based approach to the sim-
ulation of the transport phenomena is presented and validated on the case of
the Couette-Taylor photobioreactor (CTBR). This photobioreactor presents a
challenge from the boundary conditions perspective because of the circular ro-
tating wall that provides mixing in the device. The correct treatment of this
boundary condition in LBM is identified and the validity of the LBM solver was
proven by the successful comparison of the analytical solutions of the Couette
cylindrical flow and the simulated results.

Further the performance potential of both the LBM method for the trans-
port phenomena and the method of the Photosynthetic Factory (PSF) for the
reaction phenomena were studied and the resulting performance enhancement
based on the grid size and cell count is presented.
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Václav Štumbauera, Karel Peterab, Dalibor Štysa
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Abstract

The Lattice Boltzmann Method (LBM) for fluid flow has already proven itself a
viable alternative to classical CFD (Computational Fluid Dynamics) methods
based on discrete scheme application to Navier Stokes equations governing the
fluid flow. In this paper, we aim to verify the applicability of LBM in a special
case of a Couette-Taylor Photobioreactor – a device comprised of two coaxial
cylinders with a rotating inner wall. An appropriate numerical approach to the
curved moving wall boundary condition is presented and verified by velocity flow
field comparison with analytical solution. The parallelism potential of LBM is
exploited on the parallel platform of CUDA (Compute Unified Device Architec-
ture). Microalgae growth in the flow field simulated by LBM is based on the
Model of Photosynthetic Factory (PSF) treated in a parallel stochastic manner
and implemented also on the parallel platform of CUDA. Parallel stochastic
PSF solver has been validated by comparison with analytical solution of PSF
model at constant irradiance.

Keywords: Lattice Boltzmann Method, bioreactor simulation, photosynthetic
factory
PACS: 93C10, 37N25

1. Introduction

Microalgae has gained a lot of attention due to its wide area of applica-
bility. It has been shown that it has a high potential as a source of renewable
energy – i.e. biofuels [1, 2] and as a source of wide spectra of valuable bioactive
compounds. It may also be used in other environmental applications like CO2

sequestration, bioremediation [3], waste water treatment and others.
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Microalgae is nowadays cultivated mostly in either large open systems or
closed photobioreactors [4]. While the outdoor open systems present a lower
construction and operating costs they have several disadvantages over the closed
systems – e.g. higher risk of contamination (i.e. they’re not suitable for all the
strains) and higher harvesting costs due to lower biomass concentration [4].
Within the scope of our work we focus on a special case of a closed system –
the so-called Couette-Taylor photobioreactor [5].

Mainly due to the complex multi-scale processes governing the microalgae
growth in multi-phase, multi-component flow the microalgae cultivation still is
rather an empirical process [4]. Bezzo et al. [6] have used a hybrid multi-
zonal/CFD approach to tackle the problem. Papáček et al. have studied a
multi-scale lumped parameter model for description of principal physiological
processes in microalgae [7, 8, 9, 10] and have successfully employed the hybrid
multizonal/CFD method in the case of Couette-Taylor photobioreactor [5] with
inter-compartment flows estimated by means of classical CFD. In our previous
work [11, 12] we have introduced an alternative approach based on random walk
with spatially dependent dispersion coefficient devised from a CFD simulation.

With the work presented we would like to contribute to a more deterministic
bioreactor design with a method based on parallel LBM fluid flow simulation
and parallel stochastic implementation of PSF.

2. Materials and Methods

2.1. Couette-Taylor Photobioreactor

Couette-Taylor photobioreactor (CTBR) is a tubular device comprised of
two coaxial cylinders. Rotation of the inner cylinder provides suspension mixing,
which is important for mass transfer of nutrients and waste-products and for
intermittent illumination of cultivated microalgae. Both the bioreactor walls
are translucent and a constant outer wall irradiance is supposed. This yields an
irradiance profile in the following form:

u(r) =
U0Ro

r
(exp−Λ(Ro−r)+exp−Λ(Ro+r)) (1)

where U0 is light intensity at the outer wall, Ro radius of the outer wall and Λ
is a microalgae concentration dependent light attenuation coefficient.

All dense microalgae cultures require CO2 supply, our CTBR is supplied
with CO2 by bubbling the inner volume with compressed air with 5% CO2.
Another important advantage of the device is the possibility to explore wide
range of “well-defined”shear stress and its impact on microalgae growth. One
of the reasons for choosing this specific device is the long-term goal of enhancing
the microalgae growth models with mechanical stress tensor dependence.

2.2. Lattice Boltzmann method

The lattice Boltzmann method [13] has gained a lot of attention in diverse
areas because of its ability to simulate complex flows, straight-forward imple-
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mentation and parallelism potential. Instead of solving the Navier-Stokes equa-
tions governing the fluid flow, it simulates the flow by particles that are streamed
and collided over a discrete lattice. LBM can be regarded as a solution to the
Boltzmann single particle distribution function in discrete time and space.

Various discrete schemes and relaxation models towards the local equilibrium
exist. A scheme with nineteen discrete directions (D3Q19) is widely adopted in
literature for three dimensional flow simulation as a trade-off between computa-
tional costs, accuracy and stability. D3Q19 scheme together with the so-called
BGK [14] single-time-relaxation model to local equilibrium has been employed
in our approach. The following equation expresses both the streaming and
collision step:

fa(x + ea∆t, t+∆t) = fa(x, t)−
[fa(x, t)− feq

a (x, t)]

τ
(2)

Where fa stands for a density distribution function along direction a, ea is a
particle velocity vector in the direction a, ∆t is a time step and τ is the ’single-
relaxation-time’(SRT) which is related to kinematic viscosity in the following
form:ν = 1

3 (τ − 1
2 ).

Equilibrium density feq
a (x, t) is in BGK SRT model calculated as follows:

feq
a (x, t) = waρ(x, t)

[
1 +

ea · u(x, t)
c2s

+
(ea · u(x, t))2

2c4s
− u2(x, t)

2c2s

]
(3)

where u(x, t) stands for macroscopic velocity, ρ for the macroscopic density, cs
for lattice speed of sound cs =

1√
3
and wa for weighting coefficients:

wa =





2
36 1 ≤ a ≤ 6
1
36 7 ≤ a ≤ 18
12
36 a = 19

(4)

The required macroscopic variables may be recovered from the density dis-
tribution function in the following way:

ρ(x, t) =
∑

a

fa (5)

u(x, t) =
1

ρ(x, t)

∑

a

faea (6)

2.2.1. Curved velocity boundary treatment

Interaction with the solid wall in LBM is mostly solved by bounce-back
boundary condition. Second order accuracy is in the case of the bounce-back
condition achieved when the boundary is placed in the middle between the fluid
and outer lattice node – the so called half-way bounce-back [15]. Zou and He
also proposed a straight wall velocity boundary treatment based on the idea of
bounce-back of non-equilibrium parts of the distribution function [15]. As for
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Figure 1: Curved boundary depicted against a regular lattice.

the case of a curved boundary, the boundary often lies somewhere in-between
the fluid and outer node and a special treatment is required to preserve the
accuracy.

Most of the curved boundary treatments are based on interpolation of the
unknown densities based on known information from the surroundings of the
boundary node – see e.g. [16, 17, 18, 19]. In this study we’ve employed a model
of Filippova and Hänel [16] which was further enhanced for better stability by
Mei et al. [18].

Figure 1 depicts the scenario of a curved boundary, where empty circles
stand for fluid nodes, full circles for the outside nodes and half-filled circles for
the intersections of the wall with the lattice links. The interpolation takes into
account the distance between the boundary and the fluid node in the form of
the following ratio ∆:

∆ =
|xf − xw|
|xf − xb|

(7)

Based on the value of ∆, an imaginary velocity for interpolation ubf and a
weighting factor χ are calculated:

ubf = uff = u(xff , t), χ =
2∆− 1

τ − 2
, if 0 ≤ ∆ <

1

2
(8)

ubf = (1− 3

2∆
)uf +

3

2∆
uw, χ =

2∆− 1

τ + 1
2

, if
1

2
≤ ∆ < 1 (9)

Unknown post-collision density f̃ᾱ is then calculated as follows:

f̃ᾱ(xb, t) = f̃α(xf , t)− χ[f̃α(xf , t)− f
(eq)
α (xf , t)]+

+ωαρ(xf , t)
3
c2 eα · [χ(ubf − uf )− 2uw]

(10)
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2.2.2. Parallelization

Parallelization of LBM is rather straight-forward. All the microscopic den-
sities have a memory block of their own. During the streaming step and inter-
polated boundary evaluation, these blocks are copied into arrays and mapped
as 3D textures for memory access optimization. Texture based streaming also
simplify the implementation of periodic boundary conditions.

2.3. Photosynthetic factory

The so-called Photosynthetic Factory model [20, 21] has been employed for
microalgae growth simulation in the 3D flow field of homogeneously irradiated
CTBR. Irradiance is the sole input parameter of the model and the model
exhibits the important property of ’integrating’ fast irradiance changes. Thus
in dense well-mixed cultures all microalgae cells may be exposed to irradiance
intermittently and grow as if exposed to an averaged irradiance value. The
model is comprised of 3 ODEs and a normalizing condition:

1 = xA + xI + xR (11)

dxR

dt
= γxA + δxI − αuxR (12)

dxA

dt
= −γxA + αuxR − βuxA (13)

dxI

dt
= −δxI + βuxA (14)

where xR, xA and xI stand for resting, activated and inhibited microalgae
photo states respectively and u stands for the local irradiance intensity. α,β,γ
and δ describe the behavior of a particular strain under cultivation.

The actual growth rate is proportional to the averaged amount of activated
state:

µ = κγxA −Me (15)

Here Me stands for metabolism overhead and κ is a constant of proportionality
between the growth rate and averaged activated state amount for a particular
strain.

2.4. Parallel stochastic treatment

The PSF model has been treated in a stochastic manner. Each microalgae
cell is always in one of the possible photo states, no partial state probabilities
are stored. Photo states are reevaluated at each time step based on switching
probabilities devised from local irradiance intensity and model coefficients α, β, γ
and δ. Independence of different microalgae cells makes it an easy task to
implement the PSF simulation on the parallel architecture of CUDA.
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Figure 2: Comparison of simulated cylindrical Couette flow velocity profile with analytical
solution at different r1
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3. Results

3.1. LBM solver

As a means of validation for the LBM solver in the case of CTBR a cylindrical
Couette flow was simulated at various r1

r2−r1
and compared with the analytical

velocity profile – see figure 2. Analytical solution for the cylindrical Couette
flow is as follows:

u(r) = Ar +
B

r
,A =

−ω1ν
2

1− ν2
, B =

ω1r
2
1

1− ν2
, ν =

r1
r2

(16)

Results obtained correspond to the Reynolds number Re = 6.4. Computa-
tions have been done on a grid of 64× 64 nodes in the transverse plane (i.e. the
plane perpendicular to CTBR axis).

3.1.1. Speedup

Speedup of LBM solver between CPU implementation and parallel GPU
(Graphics Processing Unit) implementation has been measured at various grid
sizes and is shown in figure 3. Smaller grid sizes (16×16×16) show much lower
speedup mainly due to the frequent kernel invocations.

Computations have been done on AMD AthlonTM64 X2 Dual Core Processor
5000+ and GeForce 9800 GT with 512 MB of memory.
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Figure 3: Speedup for the LBM solver implemented both on host CPU and GPU

3.2. PSF solver

To validate the PSF solver a comparison of simulated results with the analy-
tical solution for xA of the PSF model at constant irradiance has been per-
formed. Figure 4 depicts comparison of averaged simulated results for 8192
microalgae cells and analytical solution at various levels of constant irradiance
normalized by the optimal irradiance Iopt. Comparison is based on results from
[20], where the coefficients have the following relations: α = 5β, γ = 5δ.

3.2.1. Speedup

Speedup obtained in the case of the parallel stochastic implementation of
PSF at various cell counts is shown in figure 5. The results are slightly distorted
by different random number generator implementations – while on host a Boost
library’s Mersenne Twister has been used, CUDA platform’s cuRand library
has been used on GPU. Speedup increased clearly till 8192 cells, then with
increasing number of cells it remained almost constant.
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4. Conclusions

Within the presented work an alternative approach to bioreactor design and
simulation based on parallel implementation of Lattice Boltzmann method for
fluid flow and parallel stochastic implementation of Photosynthetic Factory for
microalgae growth has been presented. Simulation approach has been validated
in the case of cylindrical closed photobioreactor – the so-called Couette-Taylor
photobioreactor. Fluid flow has been validated against analytical velocity pro-
files in the case of cylindrical Couette flow. Parallel stochastic approach to the
model of Photosynthetic Factory has been successfully validated by comparison
of simulated results and analytical results at constant irradiance.
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2.4 Paper IV - Modeling and optimization of
microalgae growth in photobioreactors: a
multidisciplinary multiscale problem

In this paper a formalized unified general PBR modeling approach, consisting
of a state and a fluid model, is presented. This model allows the production
prediction and operating conditions and control optimization for the general
PBR, regardless of the device and cultivated strain. Optimization is based
on the following objective function, averaging the productivity over the total
cultivation time T and spatial domain Ω:

J(d, g) =
1

meas(Ω)T

T∫

0

∫

Ω

µ(x, t)cxdxdt (2.2)

where d and g stand for the design and control variables respectively, µ corre-
sponds to the specific growth rate and cx to the product concentration.

As a use case of the method, production optimization is presented for the
case of the Couette-Taylor photobioreactor.
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Abstract

Microalgae have potential to be a major biofuel source of the future. To under-
stand biological processes within microalgae and optimize the biofuel produc-
tion, computational biology plays a key role. Here, we present a multi-timescale
modeling approach of microalgae growth in photobioreactors - closed produc-
tion systems. We propose a multidisciplinary modeling framework to bridge
biology (cell growth), physics (hydrodynamics and light distribution) and opti-
mization together. This framework consists of (i) the state system (mass balance
equations, e.g., in form of advection-diffusion-reaction PDEs), (ii) the fluid flow
equations (e.g., Navier-Stokes equations), and (iii) the optimization problem
formulation. To demonstrate this method, the modeling and optimization of
microalgae growth in the Couette-Taylor reactor is presented. Moreover, we
show the impact of hydrodynamically induced light fluctuation on performance
index, i.e. we demonstrate how the flashing light effect can be an intrinsic
part of the model. Finally, we discuss further methodological integration with
metabolomic-transcriptomic kinetic model which explains cellular concentra-
tions of key metabolites in connection with cell growth.

Keywords: Microalgae, photobioreactor, optimization, multiscale modeling,
flashing light effect
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Chapter 3

Discussion

The far fetched motivation for this work is a bioreactor CAD (Computer Aided
Design) software that would make the production prediction of a general PBR
possible. A tool that would also be able to determine the optimal device param-
eters, such as dimensions with respect to the chosen geometry and operating
conditions such as the intensity of mixing, optimal illumination regime/inten-
sity etc. The main reason for which there is still no such a design tool is the
multi-disciplinary character and complexity of the relevant phenomena and also
the size of the simulated physical domain in the case of the production-scale
systems. As it is common in the modelling world, the complexity and the scale
of the simulated phenomena may be reduced, but as the example of the unreli-
able bioreactor scale-up demonstrates quite clearly, not all the problems may be
approached in this way. This led to the development of alternative techniques
to the bioreactor simulation and their performance optimization on the modern
parallel computing platform of Compute Unified Device Architecture (CUDA)
- as covered by this work.

The work presents novel approaches to the transport and reaction modelling
in photobioreactors (PBR). These are a stochastic Lagrangian transport mod-
elling approach based on the random walk (RW), Lattice-Boltzmann method
(LBM) based transport modelling and stochastic simulation of the reaction
based on the model of the Photosynthetic Factory (PSF). All of the mentioned
approaches have also been implemented on the parallel architecture of CUDA
in order to evaluate the potential performance of the method on the modern
computing architectures.

The outcomes of the work are general, independent of a particular bioreactor
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type in question, nevertheless in order to demonstrate and verify the newly
proposed simulation methods two use cases were chosen in the presented papers
- the Couette-Taylor photobioreactor (CTBR) and a flat panel photobioreactor.

The first presented paper - Growth impact of hydrodynamic dispersion in
Couette-Taylor bioreactor - investigates the relation of the microorganism growth
with the hydrodynamic dispersion. The research covered by this paper serves
as a precursor to the subsequent research of the random walk based method,
where the spatially dependent dispersion coefficient serves as a coupling fac-
tor between the hydrodynamic conditions inside the bioreactor and the random
walk based simulation of the microorganism trajectories. Paper also presents a
distributed parameter model extension of the lumped parameter model of the
Photosynthetic Factory (PSF) - i.e. the chosen model for the reaction, with
distributed parameters being the spatially dependent hydrodynamic dispersion
and strongly spatially dependent light intensity. Important contribution of the
paper is also the numerical proof of a limiting value of the microorganism growth
in the CTBR in dependence on the inner angular velocity and the dependence
of the limiting value on the average irradiance.

In the second paper - Modelling and simulation of photosynthetic microorgan-
ism growth: Random walk vs. Finite difference method - a random walk based
bioreactor modelling approach is developed. As it has been already stated, this
Lagrangian approach is based on the spatially dependent hydrodynamic disper-
sion, which may be obtained by the means of the classical CFD methods/avail-
able CFD simulation packages. The random walk based method is found to be
a usable alternative approach, mainly due to the simulation results correspond-
ing to the Finite Difference Method simulation results on the particular case of
the flat panel photobioreactor. Moreover, the function of spatially dependent
hydrodynamic dispersion for the case of CTBR is developed and presented.

The third presented paper - Lattice Boltzmann method in bioreactor design
and simulation - investigates the alternative bioreactor modelling framework
based on the Lattice Boltzmann method for solving the transport. In the scope
of the paper, a three dimensional parallel Lattice Boltzmann solver is imple-
mented and is coupled with the implementation of the parallel stochastic model
of PSF. Both of the presented models are validated against analytic solutions of
the relevant phenomenon. The transport solver was validated against analytical
solutions of the Couette radial velocity profile corresponding to a lower Taylor
number flow in the CTBR. The parallel stochastic PSF solver was validated
against the analytical solution for the active photosynthetic state at various ra-
tios of constant light intensity against the optimal light intensity. The paper also
further investigates the potential of improving the computational performance
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of the presented methods on the parallel architecture of CUDA and gives the
performance enhancement ratios for both the transport and reaction at various
lattice sizes and cultivated cell count respectively. The paper demonstrates that
the Lattice Boltzmann based approach is a viable one and also demonstrates
the strength of this approach, which is the considerable potential of the method
on the parallel architectures, where by decreasing the computational time, the
faster design process is allowed.

The fourth presented paper - Modeling and optimization of microalgae growth
in photobioreactors: a multidisciplinary multiscale problem - presents a unified
modelling approach to the general PBR. Aim of the paper is to have a gen-
eral modelling framework in which to operate. The proposed framework treats
correctly both the transport and the reaction phenomena and, what is impor-
tant, also couples them correctly together. The approach allows for production
prediction and operating conditions and control parameters optimization with
respect to the productivity, regardless of the PBR scale or strain under cultiva-
tion. As a showcase the proposed state and hydrodynamic model is shown to
provide an adequate description of microalgae growth in the Couette-Taylor re-
actor under hydrodynamically induced high frequency light-dark cycles regime,
for which an optimal control problem solution is presented.
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Chapter 4

Conclusion

The purpose of the work was to advance the microalgae photobioreactor (PBR)
design and modeling. I have addressed two crucial issues. The first issue is the
oversimplification of the current models with respect to the modeling of either
the transport or of the reaction. Part of this issue is also the incorrect coupling
of the transport and reaction processes in the current models. The second
issue is computational - it is currently impossible to perform the simulation of
a general PBR in a time that would allow a viable optimization of the device
parameters and operating conditions. This issue may be approached by either
searching for different (computationally more suitable) models or by increasing
the performance of the available models as demonstrated below.

My results addressing the aforementioned issues are the following:

• Unified general framework for PBR modeling

I have developed a new Lagrangian PBR model that treats correctly both
the transport and reaction processes in a general PBR and couples these
processes correctly together. The model itself is independent on the PBR
geometry and the used reaction model. With respect to the model im-
plementation, the reaction model of the Photosynthetic Factory (PSF)
has been identified as an optimal compromise between the sophisticated
physiological models and the simple and insufficient steady-state reaction
models. For the first time, the Lattice-Boltzmann method (LBM) for fluid
flow simulation has been demonstrated as a suitable and advantageous al-
ternative to the classical Computational Fluid Dynamics (CFD) methods
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in solving the transport processes in a PBR and it has been shown that
LBM introduces an advantage from the computational costs point of view
- due to its intrinsic potential for parallel processing - see the following
points

• PBR simulation prototype

I have developed a simulation software prototype based on the proposed
unified general framework for PBR modeling and successfully validated it
on the case of the Couetter-Taylor photobioreactor (CTBR).

Implemented software simulates the microalgal growth through the cou-
pled LBM and PSF simulation and has been successfully validated as
demonstrated in paper III, where the PSF model results and LBM re-
sults have been validated against analytic solutions of the simpler flow
regimes/steady irradiance conditions.

• Performance optimization - parallel processing

In order to prove the performance advantage of the proposed approach,
I have also reimplemented the simulation software prototype on the par-
allel architecture of CUDA and successfully validated against the unpar-
allelized implementation and analytic solutions of the simpler scenarios.
The current parallel implementation of the solver shows approximately
20 times better performance when compared to the single threaded CPU
implementation, thus introducing an important advantage by decreasing
significantly the iteration cycle time in the PBR design process.

• Evaluation of the transport modeling alternatives

Apart from the LBM based PBR transport model I have also developed a
novel stochastic PBR modeling approach based on the random walk (RW).
I have also implemented a working software prototype and successfully
validated it against a Finite Difference Method (FDM) based model. It has
been shown that the RW based model coupled to the real hydrodynamics
by the means of the turbulent diffusion/spatially dependent dispersion
coefficient is a viable alternative to the solution of the transport, or more
correctly to the trajectories determination of the dispersed solid phase.
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Future goals

Although a major progress in the field of PBR simulating software developement
was made and presented in this thesis, further research based on the results from
this work is required in order to obtain a general PBR design software, namely
in the following areas:

• Generalization of the software prototype - the simulation software
should be further generalized in order to be capable to simulate a custom
geometry PBR

• Further performance optimization/supercomputing architectures
- the current potential of the modern supercomputers should allow for an-
other significant iteration cycle reduction in the PBR design process. It
has been shown that the proposed framework copes well with the parallel
architectures and this would be the next logical step.

• Experimental verification - in order to give more credibility to the
general PBR simulation software, certainly more laboratory experiments
regarding microalgal growth under various operating conditions should be
performed and demonstrated in relation to the simulated results.
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Appendix A

Selected source codes

In the scope of the thesis a coupled LBM/PSF photobioreactor simulation pro-
totype has been implemented on the parallel architecture of CUDA. In this
appendix, some of the related source codes and their outlines are presented.

A.1 LBM simulation

Simulation step consists of the invocation of the several CUDA kernels (see
further) as outlined by the following source code (abbreviated):

void lbmSimulationStep(void) {

preStreaming ();

kern_boundaries <<<grid , block >>>(...);

CUSAFE(cudaThreadSynchronize ());

postStreaming ();

preStreaming ();

kern_streaming <<<grid , block >>>(...);

CUSAFE(cudaThreadSynchronize ());

postStreaming ();

kern_updateMacroVariables <<<grid , block >>>(...);

CUSAFE(cudaThreadSynchronize ());

kern_collissions <<<grid , block >>>();

CUSAFE(cudaThreadSynchronize ());

}

77



A.1.1 Streaming kernel

The streaming kernel of the LBM simulation leverages the 3D textures for better
performance due to the spatially local caching - memory blocks for individual
micro flow densities are mapped as 3D textures before being streamed to the
adjacent node locations by the following CUDA kernel:

__global__ void kern_streaming (...) {

int sliceHeightInBlocks = domainHeight/blockDim.y;

int x = blockIdx.x * blockDim.x + threadIdx.x;

int y = (( blockIdx.y%( sliceHeightInBlocks)) * blockDim.y +

threadIdx.y);

int z = blockIdx.y/( sliceHeightInBlocks)*blockDim.z+threadIdx.z;

int idx = (z*domainHeight+y)*floatsPerLine + x;

d_f1[idx] = tex3D(d_f1_txt , (float) (x-1), (float) y, (float)z);

d_f2[idx] = tex3D(d_f2_txt , (float) (x+1), (float) y, (float)z);

d_f3[idx] = tex3D(d_f3_txt , (float) x, (float) y, (float)(z-1));

d_f4[idx] = tex3D(d_f4_txt , (float) x, (float) y, (float)(z+1));

d_f5[idx] = tex3D(d_f5_txt , (float) x, (float) (y-1), (float)z);

d_f6[idx] = tex3D(d_f6_txt , (float) x, (float) (y+1), (float)z);

d_f7[idx] = tex3D(d_f7_txt , (float) (x-1), (float) y, (float)(z

-1));

d_f8[idx] = tex3D(d_f8_txt , (float) (x-1), (float) y, (float)(z

+1));

d_f9[idx] = tex3D(d_f9_txt , (float) (x-1), (float) (y-1), (float)

z);

d_f10[idx] = tex3D(d_f10_txt , (float) (x-1), (float) (y+1), (

float)z);

d_f11[idx] = tex3D(d_f11_txt , (float) (x+1), (float) y, (float)(z

-1));

d_f12[idx] = tex3D(d_f12_txt , (float) (x+1), (float) y, (float)(z

+1));

d_f13[idx] = tex3D(d_f13_txt , (float) (x+1), (float) (y-1), (

float)z);

d_f14[idx] = tex3D(d_f14_txt , (float) (x+1), (float) (y+1), (

float)z);

d_f15[idx] = tex3D(d_f15_txt , (float) x, (float) (y-1), (float)(z

-1));
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d_f16[idx] = tex3D(d_f16_txt , (float) x, (float) (y+1), (float)(z

-1));

d_f17[idx] = tex3D(d_f17_txt , (float) x, (float) (y-1), (float)(z

+1));

d_f18[idx] = tex3D(d_f18_txt , (float) x, (float) (y+1), (float)(z

+1));

}

A.1.2 Collision kernel

__global__ void kern_collissions (...) {

int sliceHeightInBlocks = domainHeight/blockDim.y;

int x = blockIdx.x * blockDim.x + threadIdx.x;

int y = (( blockIdx.y%( sliceHeightInBlocks)) * blockDim.y +

threadIdx.y);

int z = blockIdx.y/( sliceHeightInBlocks)*blockDim.z+threadIdx.z;

int nodeType = d_nodeTypes [(z*domainHeight+y)*intsPerLine+ x];

if (nodeType != NT_COMMON && nodeType 1= NT_PERIODIC) {

return;

}

int idx = (z*domainHeight+y)*floatsPerLine + x;

float rho = d_macroDensities[idx];

float vx = d_velocityComponentsX[idx];

float vy = d_velocityComponentsY[idx];

float vz = d_velocityComponentsZ[idx];

float Bvxsq = vx * vx;

float Bvysq = vy * vy;

float Bvzsq = vz * vz;

float BxyAsq = 4.5*(vx+vy)*(vx+vy);

float BxyDsq = 4.5*(vx-vy)*(vx-vy);

float BxzAsq = 4.5*(vx+vz)*(vx+vz);

float BxzDsq = 4.5*(vx-vz)*(vx-vz);

float ByzAsq = 4.5*(vy+vz)*(vy+vz);

float ByzDsq = 4.5*(vy-vz)*(vy-vz);

float C = 1.5*(vx*vx+vy*vy+vz*vz);

d_f1[idx]=(1- invTau)*d_f1[idx] + invTau * (rho*EQ_COEF_1_6* (1+3*

vx+Bvxsq -C));
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d_f2[idx]=(1- invTau)*d_f2[idx] + invTau * (rho*EQ_COEF_1_6* (1-3*

vx+Bvxsq -C));

d_f3[idx]=(1- invTau)*d_f3[idx] + invTau * (rho*EQ_COEF_1_6* (1+3*

vz+Bvzsq -C));

d_f4[idx]=(1- invTau)*d_f4[idx] + invTau * (rho*EQ_COEF_1_6* (1-3*

vz+Bvzsq -C));

d_f5[idx]=(1- invTau)*d_f5[idx] + invTau * (rho*EQ_COEF_1_6* (1+3*

vy+Bvysq -C));

d_f6[idx]=(1- invTau)*d_f6[idx] + invTau * (rho*EQ_COEF_1_6* (1-3*

vy+Bvysq -C));

d_f7[idx]=(1- invTau)*d_f7[idx] + invTau * (rho*EQ_COEF_7_18*

(1+3*( vx+vz)+BxzAsq -C));

d_f8[idx]=(1- invTau)*d_f8[idx] + invTau * (rho*EQ_COEF_7_18*

(1+3*(vx -vz)+BxzDsq -C));

d_f9[idx]=(1- invTau)*d_f9[idx] + invTau * (rho*EQ_COEF_7_18*

(1+3*( vx+vy)+BxyAsq -C));

d_f10[idx]=(1- invTau)*d_f10[idx] + invTau * (rho*EQ_COEF_7_18*

(1+3*(vx -vy)+BxyDsq -C));

d_f11[idx]=(1- invTau)*d_f11[idx] + invTau * (rho*EQ_COEF_7_18*

(1-3*(vx-vz)+BxzDsq -C));

d_f12[idx]=(1- invTau)*d_f12[idx] + invTau * (rho*EQ_COEF_7_18*

(1-3*(vx+vz)+BxzAsq -C));

d_f13[idx]=(1- invTau)*d_f13[idx] + invTau * (rho*EQ_COEF_7_18*

(1-3 *(vx-vy)+BxyDsq -C));

d_f14[idx]=(1- invTau)*d_f14[idx] + invTau * (rho*EQ_COEF_7_18*

(1-3 *(vx+vy)+BxyAsq -C));

d_f15[idx]=(1- invTau)*d_f15[idx] + invTau * (rho*EQ_COEF_7_18*

(1+3 *(vz+vy)+ByzAsq -C));

d_f16[idx]=(1- invTau)*d_f16[idx] + invTau * (rho*EQ_COEF_7_18*

(1+3 *(vz-vy)+ByzDsq -C));

d_f17[idx]=(1- invTau)*d_f17[idx] + invTau * (rho*EQ_COEF_7_18*

(1-3 *(vz-vy)+ByzDsq -C));

d_f18[idx]=(1- invTau)*d_f18[idx] + invTau * (rho*EQ_COEF_7_18*

(1-3 *(vz+vy)+ByzAsq -C));

d_f19[idx]=(1- invTau)*d_f19[idx] + invTau * (rho*EQ_COEF_19* (1-C

));

}
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A.1.3 Boundaries kernel

Apart from the basic boundary conditions like bounce back, periodic etc... an
interpolation boundary scheme based on [83] has been implemented and vali-
dated in paper [36]:

__device__ void interpolate (...) {

float xb = x - (domainWidth -1) /2.0;

float zb = z - (domainDepth -1) /2.0;

int targetNodeType = tex3D(d_nodeTypes_txt , (float) (x+elx), (

float) y+ely , (float)z+elz);

if (targetNodeType != NT_COMMON) {

return;

}

float B = 2*xb*elx+2*zb*elz;

float A = elx*elx+elz*elz;

float C = xb*xb+zb*zb-innerRadiusInNodes*innerRadiusInNodes;

float D = B*B-4*A*C;

float k1 = (-B+sqrtf(D))/(2*A);

float k2 = (-B-sqrtf(D))/(2*A);

//we want to go in the direction of the unit vector -> let’s

select the positive k

float k = (k1 <0||(k2 >0&&k1>k2))?k2:k1;

float SIGMA = 1-k;

float xw = xb + elx*k;

float zw = zb + elz*k;

float phi = 0;

if (xw==0&& zw==0) {

phi = 0;

} else if (xw <=0) {

phi = asinf(zw/innerRadiusInNodes);

} else {

phi = -asinf(zw/innerRadiusInNodes)+CUDART_PI_F;

}

float Uwx = omega * innerRadiusInNodes *sinf(phi);

float Uwy = 0.0;

float Uwz = omega * innerRadiusInNodes *cosf(phi);
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float Ufx = tex3D(d_velocityComponentsX_txt , x+elx , y+ely , z+elz)

;

float Ufy = tex3D(d_velocityComponentsY_txt , x+elx , y+ely , z+elz)

;

float Ufz = tex3D(d_velocityComponentsZ_txt , x+elx , y+ely , z+elz)

;

float chi , Ubfx , Ubfy , Ubfz;

if (SIGMA <0.5) {

chi = (2*SIGMA -1)/(tau -2);

Ubfx = tex3D(d_velocityComponentsX_txt , x+2*elx , y+2*ely , z+2*

elz);

Ubfy = tex3D(d_velocityComponentsY_txt , x+2*elx , y+2*ely , z+2*

elz);

Ubfz = tex3D(d_velocityComponentsZ_txt , x+2*elx , y+2*ely , z+2*

elz);

} else {

chi = (2*SIGMA -1)/(tau +0.5);

Ubfx = (1 -3/(2* SIGMA))*Ufx +3/(2* SIGMA)*Uwx;

Ubfy = (1 -3/(2* SIGMA))*Ufy +3/(2* SIGMA)*Uwy;

Ubfz = (1 -3/(2* SIGMA))*Ufz +3/(2* SIGMA)*Uwz;

}

int outIdx = (z*domainHeight+y)*floatsPerLine+x;

float density = tex3D(d_macroDensities_txt , x+elx , y+ely , z+elz);

float f1f = tex3D(d_f1_txt , x+elx , y+ely , z+elz);

float f2f = tex3D(d_f2_txt , x+elx , y+ely , z+elz);

float f3f = tex3D(d_f3_txt , x+elx , y+ely , z+elz);

float f4f = tex3D(d_f4_txt , x+elx , y+ely , z+elz);

float f5f = tex3D(d_f5_txt , x+elx , y+ely , z+elz);

float f6f = tex3D(d_f6_txt , x+elx , y+ely , z+elz);

float f7f = tex3D(d_f7_txt , x+elx , y+ely , z+elz);

float f8f = tex3D(d_f8_txt , x+elx , y+ely , z+elz);

float f9f = tex3D(d_f9_txt , x+elx , y+ely , z+elz);

float f10f = tex3D(d_f10_txt , x+elx , y+ely , z+elz);

float f11f = tex3D(d_f11_txt , x+elx , y+ely , z+elz);

float f12f = tex3D(d_f12_txt , x+elx , y+ely , z+elz);

float f13f = tex3D(d_f13_txt , x+elx , y+ely , z+elz);

float f14f = tex3D(d_f14_txt , x+elx , y+ely , z+elz);

float f15f = tex3D(d_f15_txt , x+elx , y+ely , z+elz);

float f16f = tex3D(d_f16_txt , x+elx , y+ely , z+elz);

float f17f = tex3D(d_f17_txt , x+elx , y+ely , z+elz);

float f18f = tex3D(d_f18_txt , x+elx , y+ely , z+elz);

float vXf = (f1f +f7f+f8f+f9f+f10f -(f2f+f11f+f12f+f13f+f14f))/

density;
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float vYf = (f5f +f13f+f15f+f17f+f9f -(f6f+f10f+f14f+f16f+f18f))

/density;

float vZf = (f3f +f7f+f11f+f15f+f16f -(f4f+f8f+f12f+f17f+f18f))/

density;

float d_fInEq = computeEQ(weight , -elx , -ely , -elz , Ufx , Ufy , Ufz

, density);

float fin = tex3D(d_fIn_txt , x+elx , y+ely , z+elz);

d_fOut[outIdx] = fin -chi*(fin -d_fInEq)+density*weight *3*

(

-elx*(chi*(Ubfx -Ufx) -2*Uwx)

-ely*(chi*(Ubfy -Ufy) -2*Uwy)

-elz*(chi*(Ubfz -Ufz) -2*Uwz)

);

}

__device__ __inline__ float computeEQ(

float weight ,

int elx , int ely , int elz ,

float velX , float velY , float velZ ,

float density) {

return weight*density*

(

1

+3*( elx*velX+ely*velY+elz*velZ)

+4.5*( elx*velX+ely*velY+elz*velZ)*(elx*velX

+ely*velY+elz*velZ)

-1.5*( velX+velY+velZ)*(velX+velY+velZ));

}

A.2 PSF Simulation

PSF simulation is based on a Lagrangian model where the dispersed solid phase
is tracked as individual particles as described and validated against analytic
solutions of the PSF model in [36]:

__global__ void kern_updatePhotoStates (...) {

int particleId = threadIdx.x + blockDim.x *blockIdx.x;

curandState randState = d_curandStates[particleId ];

float uniRand = curand_uniform (& randState);

int currentState = d_particlePhotoStates[particleId ];
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int newState = currentState;

float particlePositionY_LU = d_particlePositionsY[particleId ];

float particleDistanceFromSource_m = particlePositionY_LU *

physicalHeight /(float)heightInNodes;

float lightIntensity = surfaceLightIntensity * exp(-attenuation*

particleDistanceFromSource_m);

float r2AThreshold=alpha*lightIntensity*timeStep;

float a2IThreshold =( gamma+beta*lightIntensity)*timeStep;

if (currentState == ACTIVATED) {

if (uniRand <= a2RThreshold) {

newState=RESTING;

} else if (uniRand <= a2IThreshold) {

newState=INHIBITED;

}

} else if (currentState == INHIBITED) {

if (uniRand <= i2RThreshold) {

newState=RESTING;

}

} else if (uniRand <= r2AThreshold) {

newState=ACTIVATED;

}

d_curandStates[particleId] = randState;

d_particleActivatedCounter[particleId] += (( newState == ACTIVATED

)?1:0);

d_particlePhotoStates[particleId] = newState;

}
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List of abbreviations
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Abbreviations

Abbreviation Meaning
BC Boundary condition
BGK BhatnagarGrossKrook LBM collision model
CAD Computer Aided Design
CFD Computational fluid dynamics
CPU Central Processing Unit
CTBR Couette-Taylor Photobioreactor
CUDA Compute Unified Device Architecture
D3Q19 three-dimensional 19 velocity LBM lattice
DNS Direct Numerical Simulation
DRW Discrete Random Walk
FDM Finite difference method
FEM Finite element method
FVM Finite volume method
GPU Graphics Processing Unit
LBM Lattice-Boltzmann Method for fluid flow
LES Large Eddy Simulation
ODE, PDE (s) Ordinary/partial differential equation(s)
PBR Photobioreactor
PRNG Parallel Random Number Generator
PSF Photosynthetic factory
RANS Reynolds-Averaged Navier-Stokes
RNG Random Number Generator
RW Random Walk
SRT Single Relaxation Time LBM model
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