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ABSTRACT 

The Master’s thesis are focused on the degradation study of magnetic resonance imaging contrast 

agents, which are nowadays widely used in the countries with well developed healthcare system. 

These compounds can be found in the wastewater treatment plans effluent. This indicates, that 

the conventional water treatment processes are not sufficiently effective in terms of contrast 

agents removal. Only a little is known about the degradation of gadolinium-based contrast 

agents. The photocatalytical degradation process and ozonation of chosen compound gadobutrol 

was followed by: total organic carbon measurements, thermal lens microscopy and 

spectrophotometry.   

ABSTRAKT 

Diplomová práce je zaměřena na studium degradace kontrastních látek pro magnetickou 

rezonanci. Tyto látky se dnes ve velké míře používají v oblastech s rozvinutým zdravotnictvím. 

Můžeme je najít v odtocích z čistíren odpadních vod, což svědčí o tom, že běžné stupně čištění 

odpadních vod nejsou dostatečně efektivní pro jejich odstranění. O degradaci kontrastních látek 

na bázi gadolinia je jen málo informací. Fotokatalytický rozklad za pomoci oxidu titaničitého 

a také ozonace vybrané kontrastní látky gadobutrolu, byl sledován pomocí měření celkového 

organického uhlíku, mikroskopie termálních čoček a spektrofotometrie. 
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1. INTRODUCTION 

 

Environmental issues are one of the most serious problems presently faced on the global scale. 

Pollution and destruction of natural resources are closely connected to industrial growth, 

development and increasing number of world population. With the introduction of magnetic 

resonance imaging, many contrast agents for diagnosis quality enhancement have been 

developed. Every new generation of this agents, has more desirable properties than the previous 

one. One of the most important aspect is the inertness and high stability of these substances. 

With the great improvement of healthcare system, an anomaly has emerged 20 years ago in well 

developed countries. In many rivers, lakes, but also tap water, abnormal quantities of gadolinium 

have been reported. This metal can have negative effects on human body, especially on the 

people with renal disfunction. The behavior of Gd chealtes used in magnetic resonance imaging 

in the process of sewage treatment is widely unknown. Due to the varying toxicity of particular 

Gd species, it is important not to only investigate the total Gd concentrations, but also the 

possible degradation methods and mechanisms. These thesis are focused on the degradation of 

chosen Gd-based contrast assisted by advanced oxidation processes, namely: (i) photocatalysis 

on the immobilized TiO2 slides, and (ii) ozonation; which are both promising techniques for 

wastewater treatment. 
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2. THEORETICAL PART 

2.1 Heterogeneous photocatalysis 

2.1.1 Introduction 

Interest in TiO2–based photocatalysis has been noteworthy since Fujishima and Honda’s first 

reports in the early 1970’s of UV–induced redox chemistry on TiO2 [1]. In their more recent 

report [2] from year 2008, they have published a figure, where we can see dramatical growth of 

published scientific papers about photocatalysis and photocatalysis with TiO2 (Fig.1). This high 

numbers of publications are reflecting the potential of new applications emerging from research 

in this discipline [3]. 

 

 

Figure 1. Numbers of research articles appearing on photocatalysis per year: search result in the period of 

1972–2007 with the “Web of Science” (a) by the keyword “photocataly*” (blue bars) and (b) the 

keywords “TiO2  AND photocataly* ” (green bars) [2] 

 

2.1.2 Advanced oxidation processes (AOP’s) 

Heterogeneous photocatalysis belongs to the group of advanced oxidation processes. These 

processes can transform organic pollutants into less complex compounds. Ideal scenario is, when 

the pollutants undergo complete mineralization. AOP’s are considered clean technologies for 

treatment of polluted waters or air and they are based on the concept of producing hydroxyl 

radicals (HO˙), which then attack organic pollutants. The efficiency of processes is than 
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determined by the generation of these highly reactive radicals that are non–selective and 

powerful oxidizing species (E
0
 = 2.80V), which degrade arbitrarily micropollutants with reaction 

rate constants usually around 10
9
 L.mol

-1 
.s

-1 
[4]. Final products are CO2, H2O and possibly 

inorganic ions [5]. The diverse AOP’s include following [6]:  

 

1)   Photolysis (UV or VUV). 

2)   Hydrogen peroxide (this includes the H2O2 + UV, Fenton: H2O2 + Fe
2+

/Fe
3+

, Fenton–like         

reagents: H2O2 + Fe
2+

 -solid/Fe
3+

 -solid and photo/Fenton: H2O2 + Fe
2+

/Fe
3+ 

+ UV). 

3)   Ozone (ozonation, photo–ozonation, ozonation + catalysis, O3 + H2O2 and O3 + Fe
2+

/Fe
3+

). 

4)   Photocatalysis (heterogeneous catalysis and photocatalysis and TiO2 + CdS + combinations).  

 

2.1.3 Photocatalytic materials 

Solids that can elevate reactions in the presence of light and are not consumed in the overall 

reaction are referred to as heterogeneous photocatalysts. These are always semiconductors [7]. 

An ideal photocatalyst for photocatalytical oxidation is characterized by the following attributes: 

 

 Photo-stability (i.e. not prone to photocorrosion); 

 Photo-activity and photo-suitability towards visible or near UV light; 

 Chemical and biological inertness; 

 Availability and low cost; 

 Nontoxicity;  

 Capability to adsorb reactants under efficient photonic activation. 

Many semiconductors such as TiO2, ZnO, ZrO2, CdS, MoS2, Fe2O3, CdS, SnO2, ZnS, WO3, etc. 

have been examined and used as photocatalysts for the degradation of organic compounds. 

Among them, TiO2 is the most extensively studied material owing to its properties like resistance 

towards photocorrosion, availability, non–toxicity, low price and its applicability at ambient 

conditions [10]. 
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2.1.4 Properties of TiO2 

TiO2 exists in amorphous form and crystallizes in three different polymorphs in nature according 

to the order of abundance i.e. rutile, anatase and brookite. As shown in Fig.2, anatase and rutile 

are tetrahedral while brookite is orthorhombic in structure. 

 

 

Figure 2. The crystal structures of TiO2; (a) Rutile, (b) Anatase, (c) Brookite. [8] 

 

Anatase is thermodynamically less stable than rutile and displays a shorter wavelength 

absorption edge. The structure of rutile and anatase can be described as chains of TiO6 octahedra. 

These two crystal structures differ by the distortion of each octahedron and by the assembly 

pattern of the octahedral chains. On the figure above, we can see unit cell structures of TiO2 

crystals. Each Ti
4+

 ion is surrounded by an octahedron of six O
2-

 ions. The octahedron in rutile is 

not regular, exhibiting a slight orthorhombic distortion. The octahedron in anatase is 

significantly distorted so that its symmetry is lower than orthorhombic. The Ti‒Ti distances in 

anatase are greater (3.79 and 3.04 Å versus 3.57 and 2.96 Å in rutile) whereas the Ti‒O distances 

are shorter than in rutile (1.934 and 1.980 Å in anatase versus 1.949 and 1.980 Å in rutile). In the 

rutile structure each octahedron is in contact with 10 neighbor octahedrons (two sharing edge 

oxygen pairs and eight sharing corner oxygen atoms). In the anatase structure each octahedron is 

in contact with eight neighbors (four sharing an edge and four sharing a corner). These 

differences in lattice structures are causing different mass denseness and electronic band 

structures [11]. 
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2.1.5 The principles of photocatalysis  

Heterogeneous photocatalysis is a discipline consisting of a great variety of reactions like for 

instance: oxidation, dehydrogenation, metal deposition, hydrogen transfer, photoreduction, 

disinfection, water detoxification, gaseous pollutant removal, etc. Among them, TiO2 – assisted 

heterogeneous photocatalytic oxidation is the main reaction of our interest. Photocatalyst is 

inducing a series of reductive and oxidative reactions on its surface. This is exclusively 

conducted by the distinct lone electron feature in its outer orbital. Photocatalytic reaction is 

induced when the photon energy (hν), which is illuminating the semiconductors surface, is 

higher or equal to its band-gap energy. For TiO2, it is usually 3.2 eV for anatase and 3.0 eV for 

rutile. After illumination is the electron photoexcited from the valence band to the empty 

conduction band in femtoseconds. The mechanisc of the electron–hole pair (e
–
–h

+
) formation is 

illustrated on the Fig.3. Adequate photon energy (hν) matches with the light wavelengths lower 

than 380 nm.  

 

 

Figure 3. Photo-induced formation mechanism of electron–hole pair in a semiconductor TiO2 particle 

with the presence of water pollutant (P). [9] 
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Creation of (e
–
–h

+
) pairs leads to the series of chain oxidative‒reductive reactions on the surface 

as follows: 

 

Photoexcitation:                                 TiO2 + hν → e
‒ 

+ h
+
                                         (1.1) 

Charge-carrier trapping of e
‒
:            e

‒
CB   → e

‒
TR                                                                      (1.2) 

Charge-carrier trapping of h
+
:            h

+
VB  → h

+
TR                                                                  (1.3) 

Electron‒hole recombination:            e
‒

TR  + h
+

VB (h
+

TR) → e
‒

CB   + heat                                 (1.4) 

Photoexcited e
‒
 scavenging:              (O2)ads + e

‒ 
→ O2˙

‾
                                                       (1.5) 

Oxidation of hydrolxyls:                    OH
‒
 + h

+
 → OH˙                                                      (1.6) 

Photodegradation by OH˙:                 R–H + OH˙ → R’˙ + H2O                                           (1.7) 

Direct photoholes: R + h
+ 
→ R

+
˙ →  Intermediate(s)/Final Degradation Products         (1.8) 

Protonation of superoxides:               O2˙
-
 + OH˙ → HOO˙                                                (1.9) 

Co-scavenging of e
–
:                          HOO˙  + e

–
 →    

                                     (1.10) 

Formation of H2O2:                            HOO
–
 + H

+ 
→ H2O2                                                                             (1.11) 

 

The e
‒

TR and h
+

TR (in Eq. 1.4) represents the surface trapped valence band electron and 

conduction-band hole respectively. It was described [12], that these trapped carriers are usually 

TiO2 surface bounded and do not recombine straightaway after photon excitation. When there is 

a deficiency of electron scavengers (Eq. 1.4), the photoexcited electron recombines with the 

valence band hole in nanoseconds with simultaneous dissipation of energy in the form of heat. 

The presence of electron scavengers plays its significant role in prolonging the recombination 

and hence making the photocatalytical degradation successful. Presence of oxygen (Eq. 1.5) 

prevents the recombination of electron‒hole pair, while allowing the creation of superoxides 

radicals (O2˙
‾
). This O2˙

‾ 
radical can be further protonated to form the hydroperoxyl radical 

(HOO˙) and afterwards H2O2 as shown in (Eqs.1.9 and 1.11), respectively. The HOO˙ radical 

formed was also reported to have scavenging property and thus, the co-existence of these radical 

species can surely prolong the recombination time of the h
+

TR in the entire photocatalysis 

reaction. It should be noted that we are talking about the systems where dissolved oxygen and 

water molecules are present. Without water molecules, extremely reactive hydroxyl radicals 

(OH˙) could not be formed and enhance the photodegradation of liquid phase organic pollutants. 

Nonetheless, some simple organic molecules (e.g. oxalate and formic acid) can be mineralized 

by direct electrochemical oxidation where the e
‒

TR is scavenged by metals ions in the systems 

without water [13]. Many mechanistic studies aimed on different organic compounds have been 

carried out. Aromatic compounds can be hydroxylated by the reactive OH˙ radical, which leads 
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to successive oxidation and potentially ring opening. The resulting intermediate products consist 

mostly from aldehydes and carboxylic acids. These are afterwards further carboxylated into 

carbon dioxide and water. The whole process than can be summarized as follows [9]: 

 

Organic Contaminants → Intermediate(s) → CO2 + H2O          (1.12) 

2.1.6 Reaction kinetics 

The overall reaction (Eq. 1.12) can be splitted into five independent steps, illustrated in Fig.4 

[14]: 

 

1. Mass transport of the organic contaminant(s) (e.g. A) in the liquid phase to the TiO2 surface. 

2. Adsorption of the organic contaminant(s) onto the photon activated TiO2 surface (i.e. surface 

activation by photon energy occurs simultaneously in this step). 

3. Photocatalytical reaction of the adsorbed phase on the TiO2 surface (e.g. A→ B). 

4. Deposition of intermediate(s) (e.g. B) from the TiO2 surface. 

5. Mass transfer of the intermediate(s) (e.g. B) from the interface area to the bulk fluid. 

 

 

Figure 4. Steps in heterogeneous catalytic reaction [14]. 

The overall rate of the reaction is equal to the slowest pace. When the mass transfer steps 

(1 and 5) are very fast compared to the rest of reaction steps (2, 3 and 4), the organic 

concentrations in the immediate neighborhood of the active sites are identical to those in the bulk 

liquid phase. In this case, the mass transfer steps are not rate limiting and do not have impact on 



16 

 

the overall rate of photocatalytic reaction. Photodegradation rate is dependent on pollutant’s 

surface coverage of the utilized photocatalysts [15]. This fact highlights the importance of 

molecules adsorption onto surface and the surface contact with the catalyst during the 

photocatalytic degradation. If the mass transfer steps are suppressed, a change in the aeration or 

liquid flow conditions over the TiO2 photocatalyst may alter the overall photocatalytic reaction 

rate. Same rule applies for the photo-disinfection. The surface interaction between 

microorganisms and catalyst is essential for effective disinfection process [14]. 

 

2.1.7 Influence of various parameters governing the kinetics 

2.1.7.1  Mass of catalyst 

The initial reaction rates are directly related to the mass m of catalyst. Nevertheless, when the 

mass is larger than certain value, the rate of reaction becomes independent of m. This limit is 

depending on the geometry and on the working conditions of the photoreactor. These limits are 

corresponding to the maximal amount of TiO2 in which all the particles ‒ i.e. all the surface 

exposed – are entirely irradiated. If the amounts of catalyst are too high, hindering effect takes 

place – i.e. photosensitive surface is partly masked by the excess mass of catalyst. Optimal mass 

of photocatalyst must be chosen in order (i) to avoid useless excess of catalyst and (ii) to be sure, 

that the absorption of efficient photons is maximal. These values usually range from 0.2 g/L to 

2.5 g/L of titanium in slurry batch photoreactors [16]. 

 

 

Figure 4. Influence of catalyst mass m on the photocatalytic reaction rate r. [16] 
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2.1.7.2  Wavelength 

Reaction rate as a function of the wavelength follows the absorption spectrum of the catalyst, 

with a threshold corresponding to its band-gap energy. For TiO2 having band-gap energy 3.2 eV 

for anatase and 3.0 eV for rutile it requires: λ ≤ 400 nm and λ ≤ 380 nm respectively, i.e. near-

UV wavelengths (UV-A). It is also crucial, that the reactants do not absorb the light to preserve 

the photoactivation of the catalyst for a true heterogeneous catalytic process (no homogeneous or 

photochemistry in the absorbed phase). Photocatalysis can be also triggered by the sun radiation 

(i.e. Helio-photocatalysis), since it contains about 3‒5% of UV-energy [16]. 

 

 

Figure 5. Influence of wavelength λ on photocatalytic reaction rate r. [16] 

 

2.1.7.3 Initial concentration 

The kinetics follows a Langmuir‒Hinshelwood mechanism endorsing the heterogeneous 

catalytic nature of the system with the rate r varying proportionally with the coverage θ as: 

                                                                                            (2.1) 

Where k is the true rate constant; K is the constant of adsorption at equilibrium and C is the 

instantaneous concentration. 

For the low concentration solutions               becomes   1 and the reaction is of the 

apparent first order, whereas for concentrations                 , the reaction rate is 

maximal and is of the apparent order. 

In the gas phase, alike Langmuir‒Hinshelwood expressions have been found including partial 

pressures P instead of C. In some instances, such as liquid alcohol dehydrogenation [17], the rate 

follows variations including the square root of concentration: 

                                                     
 

    
 

         
 

    
 

                               (2.2) 
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This manifests that the active form of the reactant is in a dissociated adsorbed state. In other 

cases, a zero kinetic order was found, even at low concentrations. This was caused by the 

chemisorptions. For a maximum yield, reactions should be performed with initial concentrations 

equal to, or higher that the threshold of the plateau                  [16]. 

 

 

Figure 6. Influence of initial concentration C0 on photocatalytic reaction rate r. [16] 

 

2.1.7.4 Temperature 

Photocatalytic reactions are triggered by photons. This means that no heating is needed, and they 

are thus operational at ambient temperatures. The true activation energy Et, relative to the true 

rate constant k      
 
   

     , is zero, whereas the apparent activation energy Ea is often very 

small in the medium temperature range                . Nonetheless, at very low 

temperatures                 , the activity is reduced and the activation energy Ea 

becomes positive. At higher temperatures               for various types of 

photocatalytic reactions, the activity decreases and the apparent activation energy becomes 

negative [16]. 

 

 

Figure 7 Influence of temperature T, on photocatalytic reaction rate r. [16] 
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2.1.7.5 Radiant flux 

The reaction rate of photocatalytic reactions r is greatly depending on the radiant flux Φ. This is 

due to photo-induced character of the activation process, with the participation of photo-induced 

electrical charges (i.e. electrons and holes) in the reaction mechanism. However, above certain 

value, which was estimated in laboratory experiments to be around 25 m.W/cm
2
, the reaction 

rate r becomes proportional to Φ
1/2

. This is due to the rate of electron-hole formation, which 

becomes greater than the photocatalytic rate. In any photocatalytic device, the optimal light 

power usage corresponds to the domain where r is proportional to Φ [16]. 

 

 

Figure 8. Influence of the radiant flux Φ on photocatalytic reaction rate r. [16] 

 

2.1.7.6 The pH 

The pH plays multiple roles in the process of photocatalytical degradation. First, it is related to 

the ionization state of the surface according to the following reactions: 

 

TiOH + H
+   TiOH2

+ 
                         (2.3) 

TiOH + OH
    TiO

 
 + H2O                   (2.4) 

 

The pH change can thus have influence on the contaminant adsorption onto surface of the 

photocatalyst. This process is very important for the photocatalytic oxidation to take place [18]. 

Acid-base properties of the metal oxide surfaces can have considerable implications upon their 

photocatalytic activity. The point of zero charge of the TiO2 (Degussa P25) is at pH 6.8 [19]. 

Thus, the TiO2 surface is positively charged in acidic media (pH < 6.8), whereas it is negatively 

charged under alkaline conditions (pH > 6.8).  
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Second, hydroxyl radicals can be formed by the reaction between hydroxyl ions and positive 

holes (eq.1.6). The positive holes are considered as the major oxidation species at low pH 

whereas hydroxyl radicals are considered as the pre-dominant species at neutral or high pH 

levels [20]. 

Third, the TiO2 particles tend to agglomerate under acidic conditions and the surface area 

available for contaminant adsorption and photon absorption would be reduced [21]. 

 

2.1.7.7 Electron Scavengers 

Electron scavengers play an important role by obstructing electron-hole recombination. Oxygen 

acts efficiently as an electron scavenger, preventing the recombination of photo-generated 

electrons and holes. When amount of oxygen is limited, the fast recombination of electrons and 

hole in TiO2 would greatly reduce its photocatalytic effectivity. In lack of oxygen, inorganic 

oxidants such as    
 ,     

  ,     
 ,     

 , and      can scavenge the conduction-band 

electrons and form reactive radical intermediates, hence reducing the probability of 

recombination of the photo-generated electrons and holes. This leads to enhancement of 

pollutant photodegradation by valence holes [22‒24]. However, the relative efficiency of these 

oxidants has not been reported as it varies from system to system [7]. 

 

2.1.7.8 Oxygen 

Molecular dissolved oxygen is an efficient electron scavenger and forms   
  . Molecules of 

oxygen on the catalyst surface are providing a natural drain for the photo-generated electrons. 

The   
   formed, may generate hydrogen peroxide (eq.1.9-1.11). The generated hydrogen 

peroxide, may than undergo photo-induced degradation, mainly on the surface of the catalyst, by 

direct interaction with photo-generated charged species, i.e.    
 ,    

 , or other reactive species 

such as hydroxyl radicals or superoxide radical anion [7]. 

 

2.1.7.9 Hydrogen peroxide 

Hydrogen peroxide can likewise oxygen enhance the photocatalytic oxidation process. It can 

actually entrap    
  even more efficiently. During the reaction, hydrogen peroxide also produces 

    by reacting with   
   or by direct photolysis (eq. 2.5; 2.6). Nevertheless, when present at 

high concentration, it renders an inhibition of photocatalytic oxidation process due to scavenging 
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of    
 , and     [25] (eq. 2.7; 2.8; 2.9). Besides this, H2O2 can be adsorbed onto TiO2 particles 

to modify their surfaces and after decrease their catalytic activity [7]. 

 

       
                           (2.5) 

                                               (2.6) 

         
                               (2.7) 

                
                       (2.8) 

   
                                       (2.9) 

 

2.1.7.10 Peroxydisulphate 

The presence of the oxidant peroxydisulphate (    
   , e.g.       ) can similarly as above 

mentioned scavengers, accelerate the photocatalytic process by ensnaring conduction-bad 

electrons and thereafter prevent its recombination with holes. At the same time, it produces    
  , 

a very strong oxidant (E
0
 = 2.5‒3.1 V) [25] (eq. 2.10). An important feature of using     

   as 

   
  scavenger is, that it produces     radicals in aqueous solution at various pH values (eq. 

2.11). In fact,    
   starts decomposing into     at pH>8.5, and     becomes the major species 

at pH>10.7 [26]. 

 

    
      

     
      

                        (2.10) 

   
          

                        (2.11) 

 

2.1.7.11 Periodates 

Periodate ion has more than two atoms of oxygen per one halogen atom, where I is the central 

atom. Polarizability variations in the constituent atoms of    
  , can capture conduction-band 

electrons (eq. 2.12) generated by photocatalyst more efficiently than other oxidants. Besides 

trapping of conduction-band electrons, periodate undergoes decomposition under UV light and 

generates numerous highly reactive radicals (eq. 2.13; 2.14) and nonradical intermediates 

[27‒29] including    . It was reported that the reaction rate order with respect to periodate is 0.8 

times higher than that for hydrogen peroxide [30]. The fact that    
  is a more effective oxidant 

than      
   and        for degradation, has been reported in some studies. However, the 

concentration of    
  must be optimized, due to hydroxyl radicals scavenging at higher 

concentrations (eq.2.15) [7]. 
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                              (2.12) 

                                        
        

                                       (2.13) 

     H+                                                   (2.14) 

       
         

                                (2.15) 

 

2.1.8 Application  

2.1.8.1 Environment 

Due to the unique photocatalytic and photo-induced superhydrophilic properties, TiO2 is 

potentially useful in three major areas of environmental applications: (i) production of self-

cleaning surfaces [30], (ii) degradation of volatile organic/inorganic compounds in the gas phase 

[31‒33], and (iii) waste water treatment [34‒36] and disinfection of drinking water [37‒39]. 

Photocatalytic reactors used for water treatment can be classified according to either those with 

an immobilized photocatalyst or with the photocatalyst suspended in the aqueous medium. There 

are several types of photocatalytic reactors [40] with immobilized TiO2 and among them, 

packed-bed and monolith photocatalytic reactors are offering remarkable advantages: (i) no post-

separation process is needed, (ii) the photocatalytic surface can be significantly increased by 

using the proper substrate (e.g. glass beads, fibers, foamed ceramics), (iii) these substrates or 

fillers enhance the mixing of reactants, which tends to reduce undesirable diffusive resistances, 

and (iv) these two types of photocatalytic reactors have less catalyst attrition problems than the 

fluidized bed reactors [41]. 

2.1.8.2 Construction materials 

The usage of TiO2 in construction materials, is the highest among all TiO2 applications on the 

market [42]. This is because of TiO2 photo-induced superhydrophilicity. Superhydrophilic 

properties are acquired after UV illumination. In this case, electrons and holes are still produced, 

but they react in a different way. The electrons tend to reduce Ti(IV) cations to the Ti(III) state, 

and the holes may oxidize the O
2-

 anions. In the process, oxygen atoms are ejected, creating 

oxygen vacancies. Water molecules can then occupy the oxygen vacancies, producing absorbed 

OH groups, which tend to make the surface hydrophilic. The longer the surface is illuminated 

with UV light, the smaller the contact angle for water becomes. After about half an hour under 

moderate UV light intensity, the contact angle approaches zero, meaning that water has tendency 

to spread completely across the surface [43]. This surface phenomenon of anti-fogging properties 
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is used for various kind of purposes e.g. road mirrors, mirrors for bathrooms, heat exchangers, 

glass films, windshields, optical and contact lenses. 

The combination of photocatalytic and superhydrophilic properties is perfect for the outdoor 

self-cleaning materials e.g. glass, tiles, tents, plastic films, aluminum panels, coatings and 

particularly for road-construction materials with the air cleaning properties e.g. soundproof 

walls, tunnel walls, road-blocks, coatings, traffic signs and reflectors, lamp covers [44]. 

 

2.1.8.3 Self-sterilizing surfaces 

As was mentioned before, TiO2 photocatalysis can be used to kill bacteria. This is profitable not 

only in waste/drinking water treatment, but also for the self-sterilizing surfaces. The first 

experiments were carried out with E. coli suspensions [45]. A typical experiment involves 

placing bacteria suspension containing 3x10
4
 cells on an illuminated TiO2-coated glass plate 

(1 m.W.cm
-2

 UV light). Under these conditions, there were no surviving cells after only 1 hour 

of illumination. By contrast, after 4h under UV illumination without a TiO2 film, only 50% of 

the cells were killed. Nowadays, this can be used for places with high hygienic standards i.e. 

hospitals, where its suitable to use for floor/wall tiles of operating rooms, silicone rubber for 

medical catheters or hospital garments and uniforms. It is also suitable for use in the public rest 

rooms and bathrooms [43, 44]. There are a lot of patents containing claims or information related 

to photocatalytic disinfection or cell killing (Tab.1; Tab.2) [46]. 

 

 

2.2 Magnetic resonance contrast agents 

2.2.1 Magnetic resonance 

Magnetic resonance imaging (MRI) is a powerful medicinal imaging modality to display 

anatomical structures of body, especially used for the detection and characterization of diseased 

soft tissues, e.g. solid tumors. MRI has many advantages as it has no ionizing radiation and 

provides three-dimensional images with high spatial resolution and high contrast. In the last 30 

years, the quality of MR body images, including spatial resolution, signal-to-noise and contrast-

to-noise ratios, has been greatly improved. In addition to stronger magnets, the development of 

effective and safe contrast agents (CA) has played an important role for improving the scan 

image quality by enhancing the image contrast between normal and diseased tissues [47]. 
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2.2.2 Magnetic resonance contrast agents 

Magnetic resonance contrast agents are biocompatible magnetic materials that alter the 

longitudinal (T1) and transverse (T2) relaxation rates of the surrounding water protons, therefore 

enhancing image contrast in tissues of interest [48]. MRI contrast agents are generally 

categorized as T1 and T2 CA based on their magnetic properties and relaxation mechanisms. 

Gadolinium Gd(III) chelates are effective for increasing T1 relaxation rate (1/T1) and commonly 

used as a T1 CA, generating a positive image contrast. Superparamagnetic iron oxide 

nanoparticles are more effective for increasing T2 relaxation rate (1/T2) and commonly used as 

T2 CA. producing negative image contrast. The majority of MRI CA used in clinical practice are 

Gd(III) chelates, with over 10 million contrast enhanced MRI scans on an annual basis, because 

of their high paramagnetism, favourable properties in terms of relaxation enhancement, relatively 

high stability and inertness in the body [49]. 

From the viewpoint of clinical applications, clinical contrast agents can be divided into two main 

categories: (i) positive, i.e. extracellular agents, blood pool agents and hepatobiliary agents, and 

(ii) negative, i.e. passive targeting and blood-pool imaging [52]. Those with a wide clinical 

application can be classified as extracellular, blood pool, and hepatobiliary agents, as well as 

pharmaceuticals enhancing the lymph nodes, liver and tumors [51]. 

Since the observation of difference in the nuclear magnetic relaxation times of normal tissues 

and tumors, MRI has played a significant role in cancer prediction and diagnosis [50]. 

Paramagnetic CA have been utilized to enhance the image contrast for more accurate cancer 

detection and diagnosis, and timely evaluation of therapeutic efficiency [47]. About 35% of MRI 

examinations involve the use of contrast agent (by the year 2013), but this percentage is expected 

to increase further following the development of more effective and specific contrast media [51]. 

 

2.2.2.1 Gd-based contrast agents 

Gd-based CA belongs to the T1 group of agents with longitudinal relaxation. In this category we 

can find also other paramagnetic ions, specifically transition metals and lanthanide metals with 

unpaired spins, but for the metal to be effective as a relaxation agent, the electron spin-relaxation 

time must match the Larmor frequency of the protons. This condition is met better for the Fe
3+

, 

Mn
2+

, and Gd
3+

 ions. We can find also some other paramagnetic metals in the Table 1 [53]. 
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Table 1. Some of the paramagnetic metal ions[53] 

 

 

 

Gadolinium, a representative of the rare earth elements (REE), is the most commonly used metal. 

Unfortunately, Gd
3+

 is highly toxic and shown to inhibit Ca
2+

 binding. Acute toxicity of Gd
3+

 can 

cause ataxia, writhing, respiratory problems, sedation, hypotension, and death by cardiovascular 

collapse. Therefore, Gd in MRI techniques is applied as a very stable chelate complex [54]. The 

ideal chelator prevents interactions between Gd
3+

 ions and endogenous tissues, and thus allows 

rapid renal excretion of the complex without significant biotransformation or accumulation in the 

body. Polyaminocarboxylic acids are the most common molecular group in these water soluble 

agents. Two categories of gadolinium based CA are currently in use: (i) macrocyclic chelates 

where Gd is “caged” in a pre-organized cavity of the polyaminopolycarboxylic ligand, namely: 

Gd-DOTA and Gd-BT-DO3A, and (ii) “open-chain” or “linear” chelates, such as Gd-DTPA and 

Gd-BOPTA. The second type of classification is based on ionic and non-ionic properties. The 

structure of most common Gd-based contrast agents can be seen on the Fig.10 and Fig.11. [55].  
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Figure 10. Structures of several linear Gd-based MRI contrast agents and the representative trademarks 

[56]. 
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Figure 11. Structures of several macrocyclic Gd-based MRI contrast agents and the representative 

trademarks [56]. 

 

2.2.3 Gadolinium chelates in environment 

In general, Gd-based MRI contrast agents are stable complexes. After admission by patients, 

they are rapidly eliminated from the patient’s body. After excretion, they enter the public sewer 

and after the waste-water treatment plant (WWTP). These treatment plants are designed to 

remove toxic matter, contaminants and also pharmaceuticals. Owing to their polar or anionic 

nature, the Gd complexes are most likely neither adsorbed onto surfaces nor by particulate 

organic matter. Studies of the past decade indicated that sewage treatment leaves the Gd chelates 

almost unaffected [56, 57]. 
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2.2.3.1 Anthropogenic gadolinium in wastewater and surface waters 

In 1996, Bau and Dulski published observations of large positive Gd anomalies in several 

environmental water samples [58]. In this extensive study, 21 different rivers, tap water in 

Berlin, surface water of the Baltic Sea, the effluent of a wastewater treatment plant and hospital 

were sampled. Analysis of all rare earth elements (REE) was done simultaneously by ICP-MS. 

REE concentrations varied over two orders of magnitude between the different samples. The 

normalized REE patterns displayed positive Gd anomalies. The anomaly ratios ranged in 

between 1.5 and 240.  

 

 

Figure 12.  Normalized REE patterns of rivers draining non-industrialized and thinly populated areas 

(Vasterdalalven-Sweden, Toshibetsu-Japan) and rivers draining heavily populated areas in Germany [58]. 
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The examination of WWTP effluent showed an anomaly ratio (that compares anthropogenic Gd 

content to the geogenic background) of 1680. This significant output of Gd indicates the obvious 

anthropogenic nature of this REE. The ability of Gd to pass WWTF unaffected indicates the 

involvement of very stable and highly water soluble compounds. The source of the Gd anomalies 

was soon discovered to be Gd-based contrast agents, which were at that time applied during MRI 

examinations for several years. This important study was the starting point for many following 

examinations [59‒72] and for the discussion about the impact of the agents on the environment 

[56]. 

 

2.2.4 Methods of determination 

Various methods for the determination of Gd in waters but also body fluids and tissue have been 

described in recent years (Table 2.). The vast majority of utilized techniques for the detection of 

Gd-based contrast agents are mass spectrometry (MS) and optical emission spectrometry (OES), 

both using inductively coupled plasma (ICP) as ionization and excitation method. However, 

techniques employing ICP without previous separation can only reveal the total gadolinium 

content present in the sample, regardless the origin of the rare earth element (REE). Rare earth 

elements consist of Scandium, Yttrium and Lanthanides. They are all obtained in the earth, but 

mostly in the trace amounts. If the natural uncontaminated water is scanned for the presence of 

REE, the natural background (pattern) is obtained. For contaminated waters, the anthropogenic 

gadolinium concentration is approximated based on the other REE content, which are not used 

by humans and thus, can’t contribute to the natural background pattern (subtraction of expected 

natural background). Other studies presented detection of Gd species also by methods such as: 

UV‒Vis detection [76,77,81,87,97], radioactivity detection [113], SEM [82] (scanning electron 

microscope), etc. Speciation analysis was achieved mostly by incorporating the hydrophilic 

interaction chromatography [64,90,105,109,110] (HILIC), and some of CA’s were also 

successfully separated by classical reverse phase liquid chromatography. Because of the wide 

range of contrast agents used, and due to their different characteristics, the methods are various. 

The overview of methods used in recent years (including the experimental details) is summarized 

in Table 2.
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Table 2. Overview of detection techniques for Gd-based contrast agents in different aqueous media. MP, mobile phase; BGE, background electrolyte; em., 

emission wavelength; ex., excitation wavelength; Rad., radioactivity detection; WE, working electrode; RE, reference electrode. Analytes: 1, Total Gd; 2, 

Gd(III) ion; 3, Gd-DTPA; 4, Gd-BOPTA; 5, Gd-DTPA-BMA; 6, Gd-DTPA-BMEA; 7, Gd-DOTA; 8, Gd-BT-DO3A; 9, Gd-HP-DO3A; 10, DTPA; 11, Gd-

EDTA; 12, Gd-DTPA-BP; 13, Gd-DTPA-MMA; 14, Gd-DO3A; 15, Gd-NP-DO3A; 16, Gd-EOB-DO3A; 17, Cu-DTPA; 18, Fe-DTPA; 19, Zn-DTPA; 20, 

REE. 

Author Year Ref. Analytes Analytical methods Experimental details LOD 

Abraham 2007 82 1 SEM SEM: acc. 20 keV, 15-16 mm distance n/a 

Abraham  2008 75 1 SIMS 
SIMS: 

157
Gd

+
, 

158
 Gd

+
, and 

160
Gd

+
  

Beam: 5.5 keV, 100 nA 
n/a 

Andrasi 2011 76 3,4,5,7,6 MEKC/UV-Vis 
CE: 25 kV, BGE:SDS, phospate  

UV: 200 nm 
0.4-20 μM 

Arburgi 1998 77 4 HPLC/UV-Vis     
HPLC: C8, 0.18% n-octylamine 

UV: 200nm 

0.24 nM(plasma), 

0.47 nM (urine), 

2.6 nM (feces), 

0.63 nM (bile), 

2.8 nM (liver) 

Bau 1996 58 1,20 ICP-MS n/a n/a 

Bau 2006 60 1,20 ICP-MS n/a 0.01-0.1 pg m/L 

Behra-

Miellet 
1998 78 3,5,7 

ESI-MS       

HPLC/ESI-MS 

HPLC: C18, MP: 0.1% TFA 

water/AcN (gradient)    

Quadrupole ESI-MS: pos. ionization 

n/a 

Cacheris 1990 79 5, 12 

Pot. Titration 

UV  

Computation 

AgCl reference combination electrode 

UV: 268 nm 
n/a 

Campa  2005 80 4 
CE/UV-Vis      

CE/ESI-MS 

CE: 20kV, BGE: 50 mM NH4HCO3, pH 8.0; 

UV: 195 nm and 210 nm 

Ion-trap MS (positive and negative ionization) 

1μM 

Chellquist 1993 81 3 HPLC/UV-Vis 

HPLC: PRP-X100, MP: 0,1 mM TRIS, 

0.025 mM KCl, 1 mM EDTA, pH 8.0    

UV: 272 nm 

n/a 
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Table 2. (Continued) Overview of detection techniques for Gd-based contrast agents in different aqueous media. MP, mobile phase; BGE, background 

electrolyte; em., emission wavelength; ex., excitation wavelength; Rad., radioactivity detection; WE, working electrode; RE, reference electrode. Analytes: 1, 

Total Gd; 2, Gd(III) ion; 3, Gd-DTPA; 4, Gd-BOPTA; 5, Gd-DTPA-BMA; 6, Gd-DTPA-BMEA; 7, Gd-DOTA; 8, Gd-BT-DO3A; 9, Gd-HP-DO3A; 10, 

DTPA; 11, Gd-EDTA; 12, Gd-DTPA-BP; 13, Gd-DTPA-MMA; 14, Gd-DO3A; 15, Gd-NP-DO3A; 16, Gd-EOB-DO3A; 17, Cu-DTPA; 18, Fe-DTPA; 19, 

Zn-DTPA; 20, REE. 

Author Year Ref. Analytes Analytical methods Experimental details LOD 

Chellquist 1993 81 3 HPLC/UV-Vis 

HPLC: PRP-X100, MP: 0.1 mM TRIS, 

0.025 mM KCl, 1 mM EDTA, pH 8.00    

UV: 272 nm 

n/a 

Elbaz-

Poulichet 
2002 83 1,2 ICP-MS n/a 

0.5 pM (Lu) 

0.8 pM (Nd) 

Frenzel 2008 84 2,3,4,5,6,7,8,9,16 HPLC/ICP-MS 

HPLC: chealting Sepharose
TM

,  

MP: 10 mmol/L bis-tris-buffer, pH 6, 

ICP-MS: 
158

Gd 

n/a 

Hagan 1988 85 1,2,3,7,11 
HPLC/fluorescence        

ICP-OES 

HPLC: C18, MP: 50 mM tris base, 

2 mM EDTA, pH 7.3        

Fluorescence: ex. 280 nm, em. 316 nm,    

ICP-OES: n/a 

n/a 

Haustein 1990 86 1 ICP-OES ICP-OES: 342.247 nm 60 nM (blood) 

Hvattum 1995 87 3,5,13 HPLC/UV-Vis 

HPLC: C18, 10 mM TEAA, 2 mM EDTA,    

pH 6.5- 7.0; Post-collumn reagent: 

0.15 mM Arzenazo III; 0,1 M HNO3, 

0.01 M urea    

UV: 658 nm 

0,3 μM 

Joffe 1998 88 1 ICP-OES n/a n/a 

Kahakachi 2009 89 3,4,5,6,7,9 HPLC/ICP-OES 
HPLC: C18, MP: 10 mM NH4AC    

ICP-OES: 242.246 nm 
50 nM 
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Table 2. (Continued) Overview of detection techniques for Gd-based contrast agents in different aqueous media. MP, mobile phase; BGE, background 

electrolyte; em., emission wavelength; ex., excitation wavelength; Rad., radioactivity detection; WE, working electrode; RE, reference electrode. Analytes: 1, 

Total Gd; 2, Gd(III) ion; 3, Gd-DTPA; 4, Gd-BOPTA; 5, Gd-DTPA-BMA; 6, Gd-DTPA-BMEA; 7, Gd-DOTA; 8, Gd-BT-DO3A; 9, Gd-HP-DO3A; 10, 

DTPA; 11, Gd-EDTA; 12, Gd-DTPA-BP; 13, Gd-DTPA-MMA; 14, Gd-DO3A; 15, Gd-NP-DO3A; 16, Gd-EOB-DO3A; 17, Cu-DTPA; 18, Fe-DTPA; 19, 

Zn-DTPA; 20, REE. 

Author Year Ref. Analytes Analytical methods Experimental details LOD 

Knappe 2005 57 1,2 ICP-MS n/a 0.01 – 0.1 pg/mL 

Kindberg 2010 91 1,5 

Rad. Detection  

ICP-OES  

ICP-SF-MS 

Rad.: Gd[
14

C]DTPA-BMA     

ICP-OES: 336.223 and 342.247 nm      

ICP-MS: 
157

Gd 

0.1 μg Gd/g Tissue 

(ICP-OES) 

Kulaksiz 2007 69 1,2 ICP-MS n/a n/a 

Kümmerer 2000 63 1 ICP-MS 
ICP-MS: 

156
Gd, 

157
Gd, 

158
Gd, and 

160
Gd    

ICP-MS: 
158

 Gd 
1 μg/L 

Künnemeyer 2008 90 1,3,4,5,7,8 
HPLC/ESI-MS       

ICP-OES 

HPLC: zic-HILIC, MP: 76% 12.5 mM NH4FA, 

24% AcN, (pH 3.75)    

Ion-trap MS (possitive ionization)     

ICP-OES: 335.047, 336.223, and 342.247 

0.1 - 10 μM 

Künnemeyer 2009 92 1,3,4,7 
CE/ESI-MS      

ICP-OES 

CE: 30 kV, BGE: 25 mM morpholine, 

12.5 mM AcOH, pH 8.0    

ESI-ToF-MS: positive ionization    

ICP-OES: 335.047, 336.223, and 342.247 nM 

0.2 μM 

Künnemeyer 2009 93 3,10,17,18,20 
CE/ESI-MS       

ICP-OES 

CE: 30 kV, BGE: 25 mM morpholine,  

12.5 mM AcOH, pH 8.0    

ESI-ToF-MS: positive ionization   

ICP-OES: 335.047, 336.223, and 342.247 nM 

(CE): 500 nM (3), 

 1 μM (10,18) 

Künnemeyer 2009 64 1,3,4,5,7,8 HPLC/ICP-MS 
HPLC: zic-HILIC, MP: 76% 12.5 mM NH4FA, 

24% AcN (pH 3.75) 
1 nM 
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Table 2. (Continued) Overview of detection techniques for Gd-based contrast agents in different aqueous media. MP, mobile phase; BGE, background 

electrolyte; em., emission wavelength; ex., excitation wavelength; Rad., radioactivity detection; WE, working electrode; RE, reference electrode. Analytes: 1, 

Total Gd; 2, Gd(III) ion; 3, Gd-DTPA; 4, Gd-BOPTA; 5, Gd-DTPA-BMA; 6, Gd-DTPA-BMEA; 7, Gd-DOTA; 8, Gd-BT-DO3A; 9, Gd-HP-DO3A; 10, 

DTPA; 11, Gd-EDTA; 12, Gd-DTPA-BP; 13, Gd-DTPA-MMA; 14, Gd-DO3A; 15, Gd-NP-DO3A; 16, Gd-EOB-DO3A; 17, Cu-DTPA; 18, Fe-DTPA; 19, 

Zn-DTPA; 20, REE. 

Author Year Ref. Analytes Analytical methods Experimental details LOD 

Lawrence  2010 94 1,2 ICP-MS n/a n/a 

Loreti  2004 96 2,3 SEC/ICP-MS 

HPLC: BioSep-SEC-S3000,  

MP: 20 mM Tris-HCL, pH 7.4     

ICP-MS: 
155

Gd, 
156

Gd, 
157

Gd, 
158

Gd, and 
160

Gd 

n/a 

Larusso 1994 97 4 HPLC/UV-Vis 
HPLC: C8, MP: 74% 6.8 mM TBAH2PO4, 

26% AcN  

1.1 μM (plasma)   

7.6 μM (urine),  

1.7 μM (bile) 

Mazzucotelli 1995 98  HPLC/ICP-OES 

HPLC: C8, MP: 0.01 mol/L KH2PO4,  

12% (v/v) MeOH     

ICP-OES: 342.238 nm, ultrasonic nebulizer 

15.9 μM 

Möller 2002 99 1,2 ICP-MS n/a n/a 

Morteani 2006 95 1,2 ICP-MS n/a n/a 

Moutiez 1997 100 2,3,7 HPLC/TRL 
Lum.: ex. 274 nm, em. 313nm   HPLC: C8,  

MP: TRIS-HCL, 7.8% AcN, pH 7.6 
n/a 

Normann 1995 101 5 
HPLC 

Rad. Detection 

HPLC: beta-cyclodextrin column    

Rad.: 
154

Gd 
n/a 

Nozaki 2000 102 1,2 ICP-MS n/a n/a 

Okada 2001 103 1 ICP-OES n/a n/a 

Puttagunta 1996 104 1 ICP-OES n/a n/a 

Rabiet 2009 65 1,2 ICP-MS n/a n/a 
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Table 2. (Continued) Overview of detection techniques for Gd-based contrast agents in different aqueous media. MP, mobile phase; BGE, background 

electrolyte; em., emission wavelength; ex., excitation wavelength; Rad., radioactivity detection; WE, working electrode; RE, reference electrode. Analytes: 1, 

Total Gd; 2, Gd(III) ion; 3, Gd-DTPA; 4, Gd-BOPTA; 5, Gd-DTPA-BMA; 6, Gd-DTPA-BMEA; 7, Gd-DOTA; 8, Gd-BT-DO3A; 9, Gd-HP-DO3A; 10, 

DTPA; 11, Gd-EDTA; 12, Gd-DTPA-BP; 13, Gd-DTPA-MMA; 14, Gd-DO3A; 15, Gd-NP-DO3A; 16, Gd-EOB-DO3A; 17, Cu-DTPA; 18, Fe-DTPA; 19, 

Zn-DTPA; 20, REE. 

Author Year Ref. Analytes Analytical methods Experimental details LOD 

Raju 2010 105 1,3,4,5,7,8 
HPLC/ICP-MS   

ICP-MS 

HPLC: zic-HILIC, MP: 60% 20 mM NH4Ac, 

40% AcN (pH 3.75)     

ICP-MS: 
158

Gd 

22 ng/L 

Sausserau 2008 106 1 ICP-MS 
157

Gd n/a 

Schumann 1991 107 1 ICP-OES ICP-OES: 342.247 nm n/a 

Telgmann 2011 108 1 TXRF TXRF: Ex.: 50 kV, 750 mA, t = 1000s 
100 μg/L (urine)     

80 μg/L (plasma) 

Telgmann 2012 109 3,7,18 

HPLC/ESI-MS       

EC/LC/ESI-MS     

EC/LC/ICP-MS 

HPLC: HILIC/PGC 

Orbitrap MS (positive ionozation)    

CE: 30 kV, BGE: 25 mM morpholine, pH 8.0     

LC: PGC, MP: 25 mM NH4Ac, pH 5.0 

50 nM (Fe-DTPA) 

Telgmann 2012 110 
1,2,3,4,5,7,8, 

11,20 

ICP-MS 

HPLC/ICP-SF-MS    

IC/ICP-MS 

Isotope dilution: 
158

Gd enriched Gd2O3, 
156

Gd, 

158
Gd,and 

160
Gd; mass bias correction: 

203
Tl/

205
Tl 

HPLC: solid core HILIC, 30% 50 mM NH4Ac 

(pH 3.75), 70% AcN     

IC: cation exchange, Nucleosil 5 SA 125/4.0 

 HPLC/ICP-SF-MS        

 0.82 nM   
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Table 2. (Continued) Overview of detection techniques for Gd-based contrast agents in different aqueous media. MP, mobile phase; BGE, background 

electrolyte; em., emission wavelength; ex., excitation wavelength; Rad., radioactivity detection; WE, working electrode; RE, reference electrode. Analytes: 1, 

Total Gd; 2, Gd(III) ion; 3, Gd-DTPA; 4, Gd-BOPTA; 5, Gd-DTPA-BMA; 6, Gd-DTPA-BMEA; 7, Gd-DOTA; 8, Gd-BT-DO3A; 9, Gd-HP-DO3A; 10, 

DTPA; 11, Gd-EDTA; 12, Gd-DTPA-BP; 13, Gd-DTPA-MMA; 14, Gd-DO3A; 15, Gd-NP-DO3A; 16, Gd-EOB-DO3A; 17, Cu-DTPA; 18, Fe-DTPA; 19, 

Zn-DTPA; 20, REE. 

Author Year Ref. Analytes Analytical methods Experimental details LOD 

Telgmann 2012 74 3,4,5,7,8 

EC/ESI-MS   

EC/CE/ESI-MS   

EC/CE/ICP-MS   

EC/LC/ESI-MS    

EC/LC/ICP-MS 

EC: WE: BDD, RE: Pd/H2, 0-2500 mV     

ESI-MS: ToF (positive) or Orbitrap (positive)    

ICP-MS: 
158

Gd, CE: 30kV,  

BGE: 25 mM morpholine, pH 8.00 

LC: PGC, MP: 25 mM NH4Ac, pH 5.00 

n/a 

Tweedle 1991 111 3,7,9 HPLC/UV-Vis HPLC: C18, 50 mM, MP: TrisAc, 2 mM n/a 

Verplanck 2010 112 1,2 ICP-MS n/a n/a 

Vora 1986 113 2,3,10 
HPLC/UV-Vis    

Rad. Detection 

HPLC: C18; MP: 90% 5 mM KH2PO4,  

10% AcN, pH 7.00    

UV: 200 nm; Rad.: 
153

Gd 

n/a 

Weinmann 1984 114 3 
HPLC/UV-Vis     

ICP-OES 

HPLC: C8, 17% MeOH, 83% TBA perchlorate    

UV: 238 nm    

ICP/OES: n/a 

1 umol/L (ICP-OES) 

Zhu 2004 115 1,2 ICP-MS n/a 0.003-0.027 ng 
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2.3 Thermal lens methods 

2.3.1 Thermal lens effect 

Thermal lens effect occurs in high power laser beams propagating in an absorbing medium. 

When a high power laser beam propagates through an absorbing medium, a small portion of 

its energy is absorbed by the medium. For a Gaussian laser beam propagating through 

a sample of absorbing material, more energy is absorbed at the axis of the beam where light 

intensity is the highest. This absorption of light energy results in local heating of the medium 

because of radiationless deexcitation processes through which the absorbed energy is 

released. Heating leads to change in the local temperature of the medium. Since refractive 

index of the medium is temperature dependent, absorption of laser light ultimately results in 

creation of a non-uniform refractive index of the medium along the propagation of laser beam. 

Such non uniform refractive index (refractive index gradient) depends on the power density of 

the laser beam and on the thermal properties (temperature coefficient of the refractive index, 

thermal conductivity) of the medium along the beam path. The refractive index gradient can 

be considered as a lens like element, which increases the beam divergence [116]. The thermal 

lens effect is observable for laser beams in the power range of only microwatts in samples 

normally thought to be transparent, and thus it is suitable for the low absorption 

measurements of nonfluorescent samples. Its sensitivity is higher than that of the conventional 

transmission or reflectance techniques because, in this technique the signal is directly 

proportional to the absorbed energy and therefore to the excitation power [117]. 

The thermal lens signal can be expressed as: 

 

                                                          
      

    
 
  

  
                             (2.16) 

Where: S- signal, z- sample position, t- time, Pe- total excitation light power, α- absorption 

coefficient, l- sample’s length, k- thermal conductivity, dn/dt- temperature coefficient of the 

refractive index, λp- probe beam wavelength, η- intracavity amplification factor. 

 

2.3.2 Instrumentation 

Based on the principle of the instruments operation, TLS instuments can be classified into two 

groups: (i) single-beam, and (ii) dual-beam or pump-probe instruments. Besides this 

classification, dual beam instruments can be divided according to the optics used into: 
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classical thermal lens spectrometers (TLS) and thermal lens microscopes (TLM). Thermal 

lens microscopes are primarily developed for the microfluidic systems, because they possess 

an extra microscope-like lens, which grants better focusation of the beams. 

 

2.3.2.1 Single-beam instruments 

Single-beam instruments are using the same laser beam to excite the sample and in the same 

time to probe the thermal lens generated. This kind of instruments, were initially developed to 

study the dependence of thermal lens effect on parameters such as laser power, beam 

divergence, sample length, concentration, convection, and flow. Single-beam instruments are 

relatively simple to build, and easy to operate when compared to dual-beam instruments. 

The laser beam is focused with a lens and modulated at low frequency (or just On-Off). After 

passing through the sample, the beam center intensity is usually measured in the far field with 

a photodiode placed behind a pinhole. The photodiode output is amplified and fed into a 

storage oscilloscope which facilitates the recording of transient changes in the beam 

intensity [118].  

The choice of suitable laser is critical, and usually the first step in the construction of 

instrument. To obtain required sensitivity, the laser must possess the sufficient power and also 

the correct wavelength, based on the compound which we want to detect, and its absorption 

spectrum. Various lasers are available and among these, Ar lasers are widely used due to their 

versatility and possibility of intracavity frequency doubling in cw mode (several discrete 

wavelengths in the 244 – 514.5 nm range). Except Ar lasers, also other types can be used such 

as: He‒Cd lasers (441.6nm), He‒Ne lasers (632.8 nm), Kr lasers (from 476.2 to 799.3 nm), 

semiconductor and continuously tunable dye lasers [118]. 

 

Figure 13. Schematic diagram of a single-beam instrument: L,lens; C, chopper; S, sample cell; M1, 

M2, mirrors; P, pinhole; Pd, photodiode; Sc, scope [118]. 
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2.3.2.2 Dual-beam instruments 

In a dual-beam instruments is the generation and detection of the thermal lens is achieved 

separately by a modulated pump beam and a nonmodulated probe beam respectively. A high 

power laser usually serves as a source of the pump beam, while the probe beam is usually 

relatively weaker. To focus the excitation (pump) beam directly on the sample and to 

mismatch the beam waist of the pump and probe beams, separate lenses are used. This allows 

the highest thermal lens strength. Significant spatial overlapping of both beams inside the 

sample is essential for good sensitivity. The generated thermal lens produces fluctuations in 

the intensity of the probe beam that can be sensitively monitored by signal averaging devices 

e.g. lock-in amplifiers. 

 

Figure 14. Schematic diagram of a dual beam thermal lens instrument with a possibility of collinear  

(- - -) or transverse (...) propagation of the pump beam relative to the probe beam(‒‒‒): ex, excitation 

laser; p, probe laser; L1 and L2, lenses; C, chopper; Bs, beamsplitter; S, sample cell; B, beam blocker; 

M1 – M3, mirrors; F, filter; P, pinhole; Pd, photodiode[118]. 

 

On the Fig.14 are two possible configurations of the pump beam direction: transversal or 

collinear. Transversal configuration is particularly useful for samples which are available in 

small volume, and for chromatographic detection. The collinear configuration, on the other 

hand provides better absolute sensitivity because of the longer interaction length of the two 

beams. 

The choice of pump laser is wider here because pulse lasers are also suitable for excitation 

purposes. Possible types are: He‒Ne, He‒Cd, Ar, Kr, dye and semiconductor, pulsed dye 

lasers for visible light, nitrogen, frequency doubled and frequency mixed Nd
3+

: YAG lasers 

for UV light; fundamental Nd
3+

: YAG and Ti‒sapphire lasers for the near IR. Again the 

choice depends on the compound which we want to detect, and the sensitivity is depending on 

the power.  
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For the probe beam, lasers with high stability should be chosen. The power of the probe beam 

is not important here unlike for pump laser. Therefore, He‒Ne lasers are usually used, 

because they are well known for their stability and reliability [118]. 

 

2.3.3 TLS applications 

Thermal lens spectrometry is highly sensitive spectroscopic technique for measurements of 

liquid samples, where it enables determinations of optical absorbances lower than 10
-6 

[119]. 

It is not so common method in the routine analysis because of the limited availability of 

suitable laser sources, especially UV wavelengths. The major disadvantage is the poor 

selectivity, and limited tuneability. This is because TLS instruments are unable of 

simultaneous multiwavelength detection. TLS has a fast response and is therefore a suitable 

detection method for liquid flows e.g.: high performance liquid chromatography (HPLC), 

capillary electrophoresis (CE), ion chromatography (IC) or flow injection analysis (FIA). 

Separation techniques can discriminate several analytes, while TLS provides high sensitivity 

as well as the possibility of probing small amounts of samples. High specificity can also be 

achieved with TLS methods by applying the concepts of biorecognition exploiting various 

biomolecules such as enzymes and antibodies [121]. 

 

2.3.3.1 TLS detection in high performance liquid chromatography 

Spectrophotometric detectors in HPLC are the most spread and versatile detectors. Sensitivity 

of this detector is determined by the optical path length in the cell. On going to capillary and 

microcolumn chromatographic systems, the sensitivity is strongly decreased when the 

capillary size becomes as large as several micrometers. 

TLS is successfully used in HPLC for the detection of organic and also inorganic compounds 

[122-125]. The application of thermal lens detectors, lowers the limits of detection (LOD) by 

two or three orders of magnitude, when compared to spectrophotometric detectors [122,126]. 

The majority of publications are describing application of TLS detection coupled with HPLC 

for determination of organic compounds like for example: carotenoids [124,127], 

catecholamines [128], or amino acids [129]. 
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2.3.3.2 TLS detection in flow injection analysis  

TLS has a great importance in FIA [123,125,130,131], as the universal detector for this 

technique is currently not available, and the choice of detector is mostly depending on the 

analytical application of the system [121,133-135]. When peristaltic pumps are used the main 

problem of detection in FIA is the noise caused by flow fluctuation, particularly in case of 

TLM detection [136]. This problem was resolved by using pulseless syringe pumps. 

 

2.3.3.3 TLS detection in capillary electrophoresis 

Spectrophotometric detection, is currently the most reliable and universal technique for 

detection in capillary electrophoresis (used in about 4/5 of all works). Photothermal methods, 

which combine the advantages of spectrophotometric and refractometric detection techniques 

and possess high sensitivity, are however considered as one of the best detection techniques in 

capillary electrophoresis. Due to this fact, TLS is currently actively developed in this area 

[121,137-142]. 

 

2.3.3.4 TLS detection in microfluidic systems 

Applications of TLS in flow injection analysis (FIA) and TLM in combination with FIA on 

microchemical chips was recently reported [120, 121]]. Microchip implementation provides 

high sample throughput, reduced operational costs, simplicity and high reproducibility. This is 

well suited for rapid screening of various samples for presence of non-desired compounds e.g. 

pesticides, allergens and others. Coupling with FIA technique also provides an elegant 

solution, how to avoid losses of sensitivity or systematic errors due to degradation of analytes, 

uder high intensity light from lasers [121]. TLM makes it possible to characterize reactions in 

small volumes (to 1 μm
3
) with reagent concentrations at a level of nanograms and also to 

count single molecules [143-148]. TLM is also used as a detection technique in various 

separation methods [132,146,149-150]. 
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3. THE SUBJECT OF STUDY 

Subject of degradation study is at this moment probably the most widespread Gd-based 

contrast agent Gadobutrol (Gd-BT-DO3A). Even though the Gd anomaly is in recent years 

actively monitored, little is known about the contrast agents chemical behavior in 

environment or in the waste water treatment plant processes regarding degradation and the 

formation of transformation processes. Nevertheless, there were some studies recently about 

stability of these compounds towards UV radiation [152], and also ozone [153]. It was 

revealed that Gadobutrol is extremely stable chelate, resistant to UV radiation. For some 

reason, no one tried to degrade this compound by TiO2 assisted photocatalysis. The 

degradation of this compound can be however questionable, because in its stable chelated 

form, gadolinium shows no toxicity, but it is well known that the free Gd
3+

 ions are toxic for 

the environment, and in human body when released from contrast agent, they may induce the 

nephrogenic fibrosing dermopathy (NFD) and nephrogenic system fibrosis (NSF). Critical 

group of people which are likely to suffer from this disease, are the patients with decreased 

renal function. NSF is a distressing and debilitating condition that causes exhibition of 

fibrosis on the skin, joints, eyes and internal organs, hardened skin, fibrotic nodules and 

plaques [154-156]. No effective therapy is currently available, although successful renal 

transplantation or resolution of underlying acute kidney injury may stabilize the fibrosing 

process and in some cases reverse some of the clinical symptoms [157]. 

 

Figure 15. Chemical structure of the subject of our interest, with commercial name included. 
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This chelate compound, was designed to resist the metabolic processes in human body. It is 

highly hydrophilic and belongs to the macrocyclic, non-ionic Gd-based contrast agent family. 

The molecule consists of neutral Gd(III) central atom, coordinated by four nitrogens, three 

monodentate carboxyle oxygens, and one hydroxyalkyl oxygen. High stability is achieved by 

trapping the Gd(III) atom in the middle of 1,4,7,10-Tetraazocyclododecane [158].  

 

Table 3. Some of the main characteristics of studied compound [159]. 

Name Gadobutrol 

CAS 138071-82-6 

Molecular weight 604.712 g/mol 

Osmolarity 1117 mOsm/Kg  (37°C) 

Viscosity 4.96 mPa (37°C) 

log P(n-octanol/water) -5.4 (25°C) 
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4. THE AIM OF THE WORK 

The aim of this study was to develop or optimize existing method which could be used for 

degradation experiment monitoring, by thermal lens effect-based detection techniques. The 

substance which was chosen for degradation experiments is nowadays widely used contrast 

agent for magnetic resonance imaging which can be found in the wastewater treatment plants 

effluents [63]. This indicates that, the conventional water treatment processes are not 

sufficiently effective in terms of contrast agents removal. Only a little is known about 

degradation of gadolinium-based MRI contrast agents and so far, there are no published 

studies about photocatalytic degradation of these compounds.  
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5. EXPERIMENTAL PART 

5.1 Instrumentation 

 Furnance, EUP-K 6/1200 Laboratory furnace, Bosio d.o.o. Slovenia 

 Elcometer 501 pencil hardness tester, Elcometer 

 Stemi
TM

 DV4 Stereomicroscope, Carl Zeiss 

 Arctic A25 refrigerated circulator, Thermo Scientific 

 Ozonator, LAB series, Pacific Ozone 

 Prototype photoreactor 

 TOC/TN analyzer, AG MULTI N/C 3100, Analytik Jena 

 Tempered water bath, JB Aqua 5 Plus, Grant 

 Spectrophotometer, HP 8453E, Hewlett-Packard GmbH 

 TLM spectrometer, pump beam source: 532 nm solid-state laser, 10 mW, Flex, 

B&VTEC inc. ; probe beam source: 660 nm-solid state laser, 100 mW,  

CUBE 600-100C, Coherent inc. 

 pH meter, HI 8417 ; HI 1131 – glass electrode; Hanna Instruments 

 

5.2 Software 

 Microsoft office 2007 

 OriginPro 8.5 

 Adobe Illustrator CC 2015 

 MATLAB 7.4.0 (R2007a) 

 multiWin, TOC software 

 

 

5.3 Chemicals 

5.3.1 Photocatalyst preparation 

 Highly pure water, NANOpure system, Barnstead 

 Absolute ethanol, Sigma-Aldrich 

 Hydrochloric acid; (37%), Sigma-Aldrich 

 Lewasil 200/30%, colloidal SiO2, H.C.Starck 
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 Titanium dioxide nanopowder, Aeroxide® P25 (80% Anatase, 20% Rutile), Evonik 

Degussa 

 1F solution, mixture of HClO4,TTIP, EtOH, H2O (see [151] for details) 

 396W solution, mixture of TEOS, HCl and H2O (see [151] for details) 

 

5.3.2 Degradation experiments and analysis 

 Methylene blue hydrate; 96%, Fluka Analytical 

 Gadobutrol, Gadovist (7.5 mL injection, 1 mM/mL), Bayer HealthCare 

Pharmaceuticals inc. 

 Gadolinium (III) nitrate hydrate; 99.9% (REO), Alfa Aesar 

 1-(2-Pyridylazo)-2-naphtol (PAN); 98%, Alfa Aesar 

 Hexadecyltrimethylammonium bromide (CTAB), ≥99%, Sigma-Aldrich 

 Ammonium chloride, extra pure, Riedel-de Haën AG. 

 Ammonium hydroxide; 25%, J.T.Baker 

 

5.3.3 Toxicity assessment 

 Calcium chloride, Sigma-Aldrich 

 Magnesium sulfate, Fluka Analytical 

 Sodium bicarbonate, Sigma-Aldrich 

 Potassium chloride, Sigma-Aldrich 

 

5.4 Catalyst preparation 

5.4.1 Titania/binder sol preparation 

Catalyst was prepared according to the SI 23585 A (Šuligoj, A.) patented preparation 

procedure of durable titania coatings [151] as follows: 

Given volumes (Tab.4) of 1F (nanocrystalline titania sol), 396W (silica sol), Levasil 200/30% 

(colloidal SiO2) and absolute ethanol were mixed together in the beaker to create a binder sol. 

While rapid mixing with magnetic stirrer, P25 powder was slowly added. The suspension was 

than mixed for 1 hour and after stored in fridge for further use. 
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Table 4. Amounts of reagents used for catalyst preparation. 

1F [151] 396W[151] Levasil 200/30% EtOH TiO2 P25 

10.5 mL 1.5 mL 25 mL 10 mL 4 g 

 

5.4.2 Slides preparation 

Glass slides (1.2 cm x 28 cm x 0.1 cm) were cleaned by ethanol. Layers of photocatalyst were 

then applied on the glass surface by brush (it is important to do each side of the glass by just 

one slow movement). After application, slides were dried with hair dryer, placed in a holder, 

and finally treated in the furnace at 150°C for 1 hour. This cycle was repeated 3 times, to 

obtain sufficient catalyst surface density. 

 

5.5 Catalyst characterization 

5.5.1 Mechanical resistance of the layers 

Mechanical resistance of prepared slides was tested by the Wolff-Wilborn pencil hardness 

test, fully described in BS 3900-E19, ISO 15184 and ASTM D 3363-92a. Each pencil from 

the set, starting with hardest 6H and ending with softest 2B was one by one attached to trailer-

like pencil lead under the contact angle of 45°. Pencil lead was after placed on the glass slide 

with photocatalyst, and pulled for about 1cm along. After each pencil, the surface was 

checked by stereomicroscope with LED illumination, wheter there is a scratch or not. The 

hardness of TiO2 layers was proved to resist 1H and softer. 

 

5.5.2 Photocatalytic activity 

For photocatalytic activity evaluation, methylene blue (MB) was chosen as a model 

compound. Experiment was carried out in a house-made reactor, described in chaper 5.6.1. 

60 mL of MB solution (4 μM) in deionized water was degraded in the reactor cell, firstly by 

prepared slide and secondly, by P25 Aeroxide® powder with concentration of 0.1 g/L. 

Degradation efficiency was than monitored spectrophotometrically by measuring the 

absorbance decrease at λ = 664 nm. 
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Figure 16. Absorbance decrease of MB for λ = 664 nm with time for both P25 (circle) and slide 

(square). 

 

Fig.16. shows, that the time which was needed for complete removal of methylene blue from 

the solution, is more than twice higher for the slides. From the slope values of linearized plot 

equations (Fig.17), we can obtain rate constants k. 

 

Figure 17. The kinetics of MB photocatalytic degradation, using P25 nanopowder (circle), 

immobilized TiO2 (square). 
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Fig.17 reveals, that the kinetic rate constants k, are equal to 0.09893 min
-1

 and 0.39428 min
-1

 

for the slide and P25 powder respectively. 

However, the P25 powder works better, we decided to use by us prepared slides because of 

the practical reasons, when taking in account the real possibility of usage in wastewater 

treatment technologies. Usage of P25 powder in real WWTP processes is at the moment not 

feasible due to the problems with reusage of P25 powder and the separation from water in 

general. 

 

5.6 Experimental set-up 

5.6.1 Reactor 

For our experiments, house-made prototype reactor was used. Reactor body is made of 

polished aluminium plate bended, especially to focus the light from the lamps to the middle of 

reactor where the reaction cell is attached. The reactor setup can be seen on Fig.18. 

 

 

 

 

Figure 18. Prototype reactor: top view (A), side view (B) 
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5.6.2 Irradiation source 

The reactor was equipped with 6 low-pressure mercury fluorescent lamps (CLEO, 43.8 cm 

x 2.6 cm, Philips) with 20 W power each. Emission maximum of these UVA lamps is at 

355 nm. 

5.6.3 Reactor cell 

The reactor cell is made of DURAN® borosilicate glass. The body of reactor cell is coated 

with the water cooling system, which was used to maintain constant temperature of 24°C 

during all experiments. This was achieved with refrigerated bath circulator, which provided 

efficient cooling. During all experiments, the air (or ozone) was purged into the reactor 

through the glass frit with the valve. The volume of reactor cell is slightly more than 60 mL 

with dimensions of 40 cm in length, 1.85 cm and 22.7 cm inner and outer diameter 

respectively. Before each experiment, 1 slide with immobilized TiO2 was inserted inside with 

tweezers. 

 

Figure 19. Scheme of the reactor cell. 
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5.7 Degradation experiments 

All degradation experiments i.e. photocatalysis and ozonation, were carried out in the 

experimental set-up described above, performed in presence of P25 immobilized on the glass 

slide (TiO2 + UV for photocatalysis), or without – ozone only (O3 generator for ozonation). 

Before each experiment, reactor cell was filled with 57mL of deionized water, and purged 

with synthetic air (79% N2, 21% O2), or ozone generated from oxygen feed gas by ozonator. 

After 15 minutes, 3 mL of 0.636 mM stock solution of gadobutrol in water was added and just 

before turning the lamps on (after another 15 min in the dark for photocatalysis), samples 

were taken for initial analysis. The amount of gadolinium in reactor remained for each 

experiment constant (5 mg/L). This solution was purged with air/ozone during the whole 

experiment duration. Due to the higher sample demand for further analysis, and relatively 

small volume of reactor cell, as well as preserving the contaminant/catalyst ratio, samples 

couldn’t be taken in the process, but the whole volume of reactor cell was taken after the 

catalysis time (0 to 5 hours) was over. After degradation process, samples were stored in glass 

vials, wrapped in aluminium foil, at the tempereature of 4°C and consequently used for TOC 

(total organic carbon), UV-Vis or TLM (thermal lens microscope) analysis. 

Ozonation was performed with the same contaminant concentration. Before introducing the 

pollutant into ozonated water, ozone concentration in solution after 15 minutes of purging was 

determined spectrophotometrically at 260 nm and directly calculated (Eq. 5.1). Its 

concentration was determined to be 6.5 mg/L. 

 

 

Figure 20. Absorption spectrum of Ozone in solution (c = 6.5 mg/L).  
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[O3] (mg/L) = 14.59 x A260              (5.1) 

 

After the end of degradation experiments, samples were transferred into glass vials and left 

open over-night in the hood, and thus dissolved ozone could be naturally removed. Vials with 

solution were after stored under same conditions as previously described. 

 

5.8 Methods of analysis 

5.8.1 UV-Vis spectrophotometry 

For spectrophotometric detection as well as for the thermal lens microscopy, method [160] 

based on the formation of metal complex was adapted and modified. For calibration, stock 

solution of Gd with concentration 38.16 μM (6 mg/L) was prepared by dissolving respective 

amount of gadolinium(III) nitrate hydrate (Alfa Aesar) in deionized ultrapure water.  

Reagent solution, was prepared by dissolving 0.0187 g of 1-(2-Pyridylazo)-2-naphtol (PAN), 

and 0.4556 g of hexadecyltrimethylammonium bromide (CTAB), in ammonia buffer with 

pH= 9.22; in 500 mL volumetric flask. The whole mixture was than heated in water bath at 

70°C for 5 hours to achieve better dissolution of PAN. Such prepared solution than had 

cPAN = 1.5 x10
-4

 mol/L and cCTAB = 2.5 x 10
-4

 mol/L. 500 mL of buffer was prepared by 

dissolving 8.0235 g of NH4Cl with 19.425 mL of NH4OH in water. 1600 μL of this final 

reagent solution was each time taken and mixed with 400 μL of sample solution/standard Gd 

solution. 

Such prepared solutions were than measured after 25 minutes spectrophotometrically, using 

HP 8453 spectroscopy system, and subsequently with TLM system. Absorbance values at 

λ = 532 nm were recorded. All spectrophotometric measurements were conducted in 10 mm 

quartz cell. 

Calibration measurements were conducted with respect to the blank, which consisted of given 

volume of reagent solution in surfactant (described above) and respective amount of 

deionized water. 
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Figure 21. Absorption spectrum of Gd-PAN complex (cGd-PAN = 7.632 μM in final solution); versus 

blank (cPAN = 0.12 mM , cCTAB = 0.2 mM ) 

 

5.8.2 Thermal lens microscope 

For TLM measurements, double-beam instrument with collinear set-up was modified for our 

purposes. The original system consisted of 2 solid-state lasers, one of them 660 nm (red, 

which originally served as an excitation laser) with power of 100 mW, the second one 532 nm 

(originally as a probe) with power of 10 mW. Since the Gd-PAN complex absorbs strongly in 

525 – 575 nm spectral region, the 532 nm green laser (10 mW) was than utilized for 

excitation beam purposes. On the other hand, the complex compound Gd-PAN does not 

absorb the light at 660 nm and thus, by decreasing of light intensity from 660 nm laser, by a 

neutral density filter, it could be used as a probe beam source. For the all TLM measurements, 

quartz cuvette with 2 mm optical pathlength was used. 
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Figure 22. Schematic diagram of our TLM system. CH: mechanical chopper; DM: dichroic mirror; F: 

interference filter; L1 – L5: lenses; SC: sample cell; OL: objective lens; PD: photodiode; [161] 

 

5.8.3 Total organic carbon  

For the non-purgeable organic carbon (NPOC) and total nitrogen (TN) determination, AG 

MULTI N/C 3100 (Analytic Jena) instrument was used. 

Approximately 25 mL of each sample was added into glass vials and placed into autosampler. 

Before first sample, 2 vials with deionized water were added to the sample rack to rinse the 

system and after each 3 samples, 1 vial with water was inserted. In Table 5, summarizes the 

method parameters. Before running the analysis, samples were manually acidified with 

125 μL of 2 M HCl. In order to remove inorganic carbon, acidified samples were than purged 

with carbon-free air. 

 

Table 5. TOC Analysis parameters 

Method NPOC-TN 

Furnace vertical 

Furnace 

temperature 
850°C 

Rinse volume 2000 μL 

Sample volume 500 μL 

Repetitions min.3, max.4 

Variation 

coefficient 
≥ 2% 

Max. integration 

time 
300s 
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5.8.4 Toxicity assessment 

The toxicity tests were done accordingly to the OECD guidelines for testing of chemicals, test 

no. 202: Daphnia sp.; Acute Immobillisation Test [162]. All tests were done in 4 replicates, 

with 5 animals in 10 mL of aqueous media.  

First, stock solutions of single substances (calcium chloride, magnesium sulfate, sodium 

bicarbonate, potassium chloride) were prepared accordingly to the ISO Test water (1) 

requirements.  

Because of the low concentration of contaminant in the samples (in ultrapure water), we 

decided to double the recommended volumes, which should be added to deionized water in 

order to create artificial freshwater. This 2 times concentrated solution was afterwards diluted 

with our samples 1:1. 

Second, the young Dafnia magna species were added to the vials with our samples in artificial 

freshwater, and placed on the table with day sunlight and constant temperature 20°C. After 

48 hours, immobilized species were counted. 
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6. RESULTS AND DISCUSSION  

The TLM and UV-Vis detection methods were used on the assumption that at one point, the 

Gd
3+

 ion will be released from the photocatalytically degraded compound. However, in 

degradation experiments desirable degradation efficiency was not achieved and thus, the 

reaction with ligand (PAN) was not detected. This could be caused by insufficient 

mineralization/release of gadolinium. For the samples from photoreactor, the products of 

complexation reaction with PAN were under the detection limits. The kinetics of degradation 

was followed by monitoring the dissolved organic carbon. 

 

6.1 UV-Vis Spectrophotometry and thermal lens microscopy 

 

6.1.1 Calibration 

For calibration, stock standard solution of Gadolinium(III) nitrate hydrate with concentration 

38.16 μM was prepared and subsequently diluted to achieve desired gadolinium 

concentration. Measurements within the concentration range from 1.9 μM (300 μg/L) to 

38.16 μM (6 mg/L) were conducted.  

6.1.2 UV-Vis spectrophotometry 

Calibration measurements were conducted with respect to the blank, which consisted of given 

volume of reagent solution in surfactant (described above) and respective amount of 

deionized water, in 10 mm quartz cell. 

 

Figure 23. Calibration curve for Gd-PAN complex, done at λ = 532 nm  

with UV-Vis spectrophotometer. 
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For all measurements the same blank (cPAN = 0.12 mM, cCTAB = 0.2 mM) was used, and this 

had a great influence on the measurements at higher concentrations. The higher gadolinium 

concentration, the lower concentration of free ligand in the solution and thus, only one blank 

value for subtraction is not appropriate. For low concentration of Gd, the blank changes are 

negligible, and therefore the calibration curve is linear.  

From calibration line, the limit of detection is calculated as a three times the standard 

deviation of the blank signal (n=10) (SDblank) divided by the slope of the calibration curve (b): 

 

    
        

 
                   (6.1) 

 

The standard deviation of blank sample was SDblank= 9.17x 10
-4

, and the slope of calibration 

curve was 0.0292/μM. LOD was than calculated to be 0.1 μM which represents the amount of 

15.7 μg/L of gadolinium. Limit of quantification (LOQ) was calculated similarly (eq.5.5) to 

be 0.31 μM (48.7 μg/L). 

        
         

 
                   (6.2) 

The achieved LOD compares favorably to the results reported in literature [160] where an 

LOD of 0.8 μM can be calculated from the reported molar absorptivity of 7.9 L/mol.cm. 

6.1.3 Thermal lens microscopy 

 

Figure 24. Calibration curve for Gd-PAN complex, measured by TLM system. 
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The measurements were done in 2 mm quartz cell. The LOD and LOQ was calculated 

analogically to UV-Vis method (eq. 5.1 and 5.2). For SDblank = 2.4 x 10
-9

 V, and calibration 

line slope b= 1.7689x10
-8 

V/μM, LOD is 0.4 μM (62.9 μg/L of gadolinium) and LOQ = 

1.36 μM (213.9 μg/L of gadolinium). 

From the theory of TLS [117-119, 121] we can predict a simmilar sensitivity of TLS and 

spectrophotometry for a 10 mW excitation power, while 100 mW power would provide 

a 10 times better sensitivity. Considering only a 2 mm optical pathlength in case of TLM 

measurements, the LOD of 0.4 μM for TLM is in good agreement with LOD of 0.1 μM for 

spectrophotometry, what confirms quality of alignment and optimization of the TLM 

instrument. 

6.1.4 Sample measurements 

The samples which were taken during the degradation experiments, were not reacting with 

PAN reagent solution and thus, it was impossible to detect any signs of degradation. We 

assume, that this can be caused by the insufficient degradation of pollutant. Obviously, 

gadolinium atoms are still bonded with some parts of the original compound and the chealting 

power of PAN is too low to make complexation reaction possible, or the gadolinium release 

from the original complex was smaller than LOD value (0.1μM). 

 

6.2 Total organic carbon 

6.2.1 Ozonation experiments 

Non-purgeable organic carbon (NPOC), total nitrogen (TN), pH measurement results, as well 

as degradation curve data and ln(c0/c) are summarized in Tab.6. The graphical visualization 

can be seen as well. 

Table 6. Results of NPOC, TN and pH measurements for ozonation experiments 

Ozonation 

Time[hr] 
NPOC 

[mg/L] 

TN 

[μg/L] 
pH c/c0 ln(c0/c) 

1/c 

[(mg/L)
-1

] 

0 6.86 331.9 4.37 1 0 0.146 

0.5 4.55 366.9 4.20 0.663 0.411 0.220 

1 2.97 340.7 4.27 0.433 0.837 0.337 

2 2.70 398.2 4.21 0.396 0.932 0.370 

3.5 2.49 444.2 4.22 0.363 1.013 0.402 

 



58 

 

 

Figure 25. The zero-order kinetics plots 

 

 

 

Figure 26. The first-order kinetics plot 
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Figure 27. The second-order kinetics plot 

 

6.2.2 Photocatalysis experiments 

Non-purgeable organic carbon (NPOC), total nitrogen (TN), pH measurement results as well 

as degradation curve and ln(c0/c) are summarized in Tab.7. The graphical visualization can be 

seen as well. 

 

Table 7. Results of NPOC, TN and pH measurements for photocatalytic degradation experiments 

TiO2 

time 
NPOC 

[mg/L] 

TN 

[mg/L] 
pH c/co ln(c0/c) 

1/c 

[(mg/L)
-1

] 

0 9.17 1.77 6.89 1 0 0.109 

0.5 6.01 1.20 6.80 0.655 0.423 0.166 

1 3.45 1.09 5.15 0.376 0.978 0.290 

2 2.28 1.36 6.62 0.249 1.392 0.439 

3.5 1.20 1.08 6.63 0.131 2.034 0.833 
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Figure 28. The zero-order kinetics plots 

 

 

Figure 29. The first-order kinetics plot  
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Figure 30. The second-order kinetic plot 

6.2.3 Reaction kinetics 

6.2.3.1 Ozonation 

The reaction rate of degradation by ozone, in our system was best fitted by linear equations 

(Fig.25), which are describing the pseudo-zero-order reactions. The other 2 plots (Fig.26 and 

27) are showing, that the reaction rate order of mineralization is most likely not of the first, 

nor the second order. If it would be so, the correlations (Fig.26 and27) would have to be 

linear. In the first one hour of degradation, we can see relatively rapid mineralization where 

66% of the initial TOC for ozonation and 63% for photocatalysis is mineralized. A zero-order 

occurs when the reaction rate is constant during the whole period of experiment. This can 

happen when the concentration reduction per time is negligible with respect to the initial or 

remaining concentration. This kind of kinetics is always an artifact of the experimental 

conditions. Because of this, reactions following zero-order are often called as pseudo-zero-

order reactions. A zero-order process can not be continuous until the whole pollutant dose is 

degraded. Before this point is reached, the reaction switches to another rate order. However, 

we need to keep in mind that in our case, we are talking about the mineralization rate and not 

the gadobutrol degradation rate. Zero-order reactions can be described as: 
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                             (6.3) 

Where c0: relative initial concentration (c0 = 100%); c: instantaneous concentration; k: rate 

constant; t: time. From the correlation of pollutant concentration and the irradiation time we 

can get the rate constant k. This correlation has a linear character, and k is the slope of the 

mathematical equation of this line. There are however 2 lines for each degradation method. 

For the next calculations of half-life we will use the rate constants of both. Rate constants 

obtained from our experimental data and half-life times are in the Table 8. Half-life was 

calculated as: 

      
  

    
                   (6.4) 

 

Table 8. Obtained pseudo-zero-order rate constants and calculated 1
st
 half-life times. 

 ozonation photocatalysis 

k-1 (hr
-1

) 0.578 0.624 

k-2 (hr
-1

) 0.027 0.096 

t1/2-1(hr)  0.865 0,802 

t1/2-2(hr) 7.407 2,083 

Where: k-1; t1/2-1; are the rate constants and half-life times (c0 = 100%) for the first 1 hour of 

experiment; and: k-2; t1/2-2 are the rate constants and half-life times (c0 = 40%) for the 

remaining duration of experiment. 

6.2.3.2 Photocatalysis 

The reaction rate of photocatalysis, can be described better by pseudo-second-rate order, 

when considering the plotting among the rest. This can be assumed due to good linearity 

(R
2 

= 0.98) of correlation between 1/c and the time (Fig.30). However, there are some 

similarities with the ozonation – reaction rate becomes lower after certain point (1 hour), 

which would be normal for the first-order and the second-order reactions but not for the zero-

order reactions. Calculation of the mineralization half-life times for both, pseudo-first and 

pseudo-second order was done as follows: 

 

 Pseudo-first order       t1/2 = ln2/k , for k = 0.563 h
-1

,  t1/2 = 1.23h 

 Pseudo-second order  t1/2 = 1/(k.c0), for k = 0.207 h
-1

, t1/2 = 4.83h 

 

The half-life differs for different kinetics: (i) for zero-order every next half-life is shorter; (ii) 

for first-order the half-life remains constant; (iii) for second-order it is getting longer.  
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6.2.3.3 Summary 

From the computed half-life times, we can see that the most inaccurate is the second-order 

model even though our data fits graphically better than into the first-order kinetics model. 

The first-order kinetic constant predicts mineralization by 87.5% in 3.7 hours which is close 

to our experimental data (83% in 3.5hr). Nonetheless, it is not corresponding with the first one 

hour of experiment (same as the second-order kinetics), where the mineralization goes faster 

than expected from the first-order kinetics model. The overall mineralization kinetics is then 

very difficult to summarize by one kinetics model, and for the ozonation, based on the data 

obtained, even harder. 

Nevertheless, what we assume, is that during the mineralization many degradation products 

are created which are following different kinetic models. The beginning of mineralization is 

relatively fast. Approximately 65% of the total organic carbon (TOC) removal in 1 hour may 

be caused by the decarboxylation and dealkylation of the carbon atoms, which are not the part 

of a 1,4,7,10-Tetraazocyclododecane core of the ligand. This core is consisting of 8 carbon 

atoms, which are representing about 45% of TOC in the molecule. However, this is just a 

speculation and we would need different techniques, such as mass spectroscopy to follow the 

degradation. 

 

Figure 31. Structure of mother compound 
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6.3 Toxicity assessment 

After 48 hours, following immobilization counts were recorded:  

Table 9. Counts of non-immobilized daphnias, for ozonation experiments.                                            

(O3 means no ozone = blank) 

No.of vial control O3 0min O3 0hr O3 0,5hr O3 1hr O3 2hr O3 3,5hr O3 5hr 

1 5 5 5 5 5 5 3 5 

2 5 5 4 4 5 5 5 5 

3 5 5 4 5 4 5 5 5 

4 5 5 5 4 4 5 4 4 

Immobilization 

rate (%) 
0 0  10 10 10 0 15 5 

 

Table 10. Counts of non-immobilized daphnias, for photocatalysis experiments.                                        

No. Of vial control 0hr 0,5hr 1hr 2hr 3,5hr 5hr 

1 4 5 4 3 4 5 5 

2 5 4 1 5 5 5 5 

3 5 5 3 3 5 5 5 

4 5 5 3 5 4 5 5 

Immobilization 

rate (%) 
5 5 45 20 10 0 0 

 

From the obtained data, it is difficult to find any trend, or make some conclusions. 

Nevertheless, the non-degraded contaminant seem to be less toxic than it’s degradation 

products. 

6.4 Desorption experiments 

After discovering the fact, that there are no free Gd ions in the solution, the desorption 

experiments were carried out. Fresh catalyst slides were prepared, and each of them was used 

only once. After the end of degradation experiment, slide was submerged into 50 mL of 0.1M 

sodium hydroxide solution and purged by air to ensure the mixing for 1 hour. The solution 

was than neutralized by 0.1M hydrochloric acid, and then tested for the presence of 

gadolinium ions. The results were negative, which indicates that the surface absorption is 

probably not the reason why the metal is not in the solution after degradation.  
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7. CONCLUSION 

For degradation experiments of commercially available magnetic resonance imagining 

contrast agent gadobutrol (Gd-BT-DO3A or Gadovist®), titanium dioxide Aeroxide® P25 

(80% Anatase, 20% Rutile) was succesfully immobilized on the glass slides surface 

employing sol‒gel method. The direct detection of analyte was not possible due to the lack of 

light absorption in the visible light and UVA spectrum. Spectrometric method based on the 

complexation reaction of gadolinium ions with 1-(2-Pyridylazo)-2-naphtol (PAN) ligand was 

utilized for mineralization rate determination. Beer-Lambert law was studied over the 

concentration range from 1.9 μM (300 μg/L) to 38.16 μM (6 mg/L). The correlation between 

concentration and signal was observed to be linear for both, UV-Vis spectrophotometry and 

thermal lens microscope in the range between 1.9 μM and 10 μM. The limits of detection 

were calculated to be 0.1 μM and 0.4 μM for the spectrophotometry and thermal lens 

microscopy respectively. Thermal lens techniques are known for their high sensitivity, which 

is directly proportional to the pump beam power. Laser power of utilized pump beam in the 

improvised TLM system, was relatively low (10 mW) and this fact affected the LOD value 

significantly. Another reason for higher LOD is the difference in optical length of cuvette, 

which was 5 times shorter when compared to spectrofotometric determination. However, total 

mineralization and the gadolinium ions released from the mother compound were below the 

limits of detection. The metal adsorption onto catalyst’s surface was not confirmed. For this 

purpose, ozonation was implemented and also desorption experiments with used slides were 

conducted. The kinetics of degradation was after followed by the non-purgeable organic 

carbon measurements. Degradation efficiencies were: (i) photocatalysis (87% TOC decrease 

within 3 hours), assisted by TiO2 and UVA light, and (ii) ozonation (72% TOC decrease 

within 3 hours), assisted only by O3. Toxicity tests with Dafnia magna revealed, that the 

degradation products are most likely more toxic than the mother compound and thus, it is 

debatable whether it is necessary to degrade it, or not. 

The method employing 1-(2-Pyridylazo)-2-naphtol as a colorimetric reagent is very sensitive 

and non-selective (reaction runs with most of transition metals). Probably the most suitable 

technique for degradation monitoring of Gd-based contrast agents, also in the real samples is 

HILIC chromatography with mass spectrometric detection. 
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9. ABBREVIATIONS 

AOP     advanced oxidation processes 

BGE     background electrolyte 

CA     contrast agent(s) 

CAS     chemical abstracts service registry number 

CE     capillary electrophoresis 

CTAB    hexadecyltrimethylammonium bromide 

e.g.     exempli gratia (for example) 

em.     emission wavelength 

ESI     electrospray ionization 

ex.     excitation wavelength 

FIA     flow injection analysis 

HILIC    hydrophilic interaction chromatography 

HPLC    high performance liquid chromatography 

IC     ion chromatography 

ICP     inductively coupled plasma 

i.e.    id est (that is/namely) 

λ      wavelength  

LOD     limit of detection 

LOQ     limit of quantification 

MB     methylene blue 

MP     mobile phase 

MRI     magnetic resonace imaging 

MS         mass spectrometry 

NFD        nephrogenic fibrosing dermopathy 

NPOC      non-purgeable organic carbon 

NSF         nephrogenic system fibrosis 

OECD      Organisation for Economic Co-operation and Development 

OES         optical emission spectrometry 

PAN       1-(2-Pyridylazo)-2-naphtol 

Rad.         radioactivity detection 

RE        reference electrode material 

REE        rare earth elements 

SEM       scanning electron microscope 

SF           double focusing magnetic sector field 

SIMS      secondary ion mass spectrometry 

T1            longitudinal relaxation rate 

T2            transverse relaxation rate 

TLM        thermal lens microcsope 

TLS         thermal lens spectrometry 

TN          total nitrogen 

TOC        total organic carbon 

TXRF      total X-ray fluorescence spectroscopy 

UV          ultraviolet light 

UV-Vis     ultraviolet and visible light spectrophotomoetry 

VUV        vacuum ultraviolet 

WE          working electrode material 

WWTP     wastewater treatment plant 

YAG        yttrium aluminium garnet 
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10. ATTACHMENTS 

 

Figure 32. Reactor cell with TiO2 suspension inside the reactor 

 

 

 

Figure 33. TLM system 
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Figure 34. Reaction cell with TiO2 slide in it. 

 

 

 

Figure 35. TOC/TN analyzer, AG MULTI N/C 3100, Analytik Jena 


