

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

ÚSTAV RADIOELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

DEPARTMENT OF RADIO ELECTRONICS

STUDIUM PROFILU STRUKTURNÍHO PARAMETRU INDEXU LOMU V ATMOSFÉŘE

STUDY OF PROFILE OF REFLACTIVE INDEX STRUCTURE PARAMETER IN ATMOSPHERE

DIPLOMOVÁ PRÁCE MASTER THESIS

VEDOUCÍ PRÁCE

AUTOR PRÁCE Bc. Ondřej Aubrecht

AUTHOR

SUPERVISOR

Ing. Lucie Hudcová, Ph.D.

BRNO, 2012

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav radioelektroniky

Diplomová práce

magisterský navazující studijní obor Elektronika a sdělovací technika

Student:	Bc. Ondřej Aubrecht	ID:	106358
Ročník:	2	Akademický rok:	2011/2012

NÁZEV TÉMATU:

Studium profilu strukturního parametru indexu lomu v atmosféře

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s pojmem strukturní parametr indexu lomu, prostudujte způsoby jeho určování, matematicky popište určení tohoto parametru. Seznamte se s modely, které se využívají pro určení profilu strukturního parametru indexu lomu v atmosféře.

Porovnejte jednotlivé modely. Stanovte míru vlivu atmosférických turbulencí na optický svazek, který se šíří turbulentní atmosférou.

Pro vybrané lokality vytvořte v MATLABu model profilu strukturního parametru indexu lomu ve vertikální rovině.

DOPORUČENÁ LITERATURA:

[1] ANDREWS, D.G. An Introduction to Atmospheric Physics. New York: Cambridge University Press, 2010.

[2] SALEH, B. E. A., TEICH, M. C. Fundamentals of Photonics. New York: John Wiley, 1991.

[3] ANDREWS, L., PHILLIPS, R., HOPEN, C. Laser Beam Scintillation with Applications. Washington: Spie Press, 2001.

Termín zadání: 6.2.2012

Termín odevzdání: 18.5.2012

Vedoucí práce: Ing. Lucie Hudcová, Ph.D. Konzultanti diplomové práce:

> prof. Dr. Ing. Zbyněk Raida Předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Tato práce se věnuje strukturnímu parametru indexu lomu v atmosféře C_n^2 a jeho jednotlivým modelům. Modely jsou pro porovnání simulovány jen pro jednu oblast a pro jeden konkrétní den. V práci je reprezentován vliv atmosférických turbulencí na komunikační prostředí a na jednotlivé modely. Dále je pro vybrané oblasti a vstupní podmínky vytvořen program na modelování strukturního parametru a meteorologických dat v atmosféře.

KLÍČOVÁ SLOVA

Strukturní parametr indexu lomu, turbulence, Kolmogorov, Tatarski, modely, meteorologická data, MSL, Bruntova-Vaisalova frekvence, Moninova-Obhukova délka,

ABSTRACT

This work is dedicated to structural parameter of the refractive index in the atmosphere C_n^2 and his various models. For comparison the models are simulated only for one area and only for one day. The work represented the influence of atmospheric turbulence on the communication environment and on the individual models. In addition this work is for selected areas and for the input conditions created program for modeling of structural parameters and meteorological data in the atmosphere

KEYWORDS

Refractive index of structure parameter, turbulence, the Kolmogorov, Tatarskii, models, meteorological data, MSL, Brunt-Vaisalo frequency, Monin-Obhukov length

РЕЗЮМЕ

Данная работа посвящена структурному параметру показателя преломления в атмосфере C_n^2 и его отдельным моделям. Для сравнения модели смоделированы только для одной области и для одного конкретного дня. В работе представлено влияние атмосферной турбулентности на средства общения и отдельные модели. Кроме того, для конкретных областей и рабочих данных создана программа для моделирования структурных параметров и метеорологических данных в атмосфере.

КЛЮЧЕВЫЕ СЛОВА

структурный параметр, турбулентность, Колмогоров, Татарский, модель, метеорологических данных, МСЛ, Брунт васаилова частоты, Монин-обнуков длина

AUBRECHT, Ondřej. *Studium profilu strukturního parametru indexu lomu v atmosféře*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektroniky, 2012. 100 s., 20 s. příloh. Diplomová práce. Vedoucí práce: ing. Lucie Hudcová, Ph.D.

PROHLÁŠENÍ

Prohlašuji, že svou diplomovou práci na téma Studia profilu strukturního parametru indexu lomu v atmosféře jsem vypracoval samostatně pod vedením vedoucího semestrální práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této semestrální práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení § 11 a následujících zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne

.....

(podpis autora)

PODĚKOVÁNÍ

Děkuji vedoucí diplomové práce ing. Lucii Hudcové, Ph.D. za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé diplomové práce. Dále bych chtěl poděkovat všem těm, kteří mi pomáhali a podporovali mne.

V Brně dne

.....

(podpis autora)

OBSAH

Oł	osah		vii
Se	znam obrázk	ů	X
Se	znam tabulek	ζ.	xiii
Úv	vod		1
1	Atmosféric	ké přenosové prostředí	2
	1.1 G	ravitační zrychlení	5
	1.2 A	tmosférické vlivy na optické spojení	7
	1.2.1	Turbulentní proudění	7
	1.2.2	Druhy turbulence	
	1.2.3	Kolmogorova teorie turbulence	
	1.2.4	Vliv větru na turbulenci	
	1.3 S	trukturní parametr indexu lomu v atmosféře	14
	1.3.1	Fluktuace indexu lomu	14
	1.3.2	Vliv atmosférický turbulencí na optický svazek	16
	1.3.3	Měření strukturního parametru indexu lomu	17
2	Modely stru	ukturního parametru indexu lomu	19
	2.1 P	řízemní vrstva	
	2.1.1	Wyngaardův model	
	2.1.2	Kunkelův-Walterův model	
	2.1.3	Ryznarův-Bartlův model	
	2.1.4	h^(-4/3) model	
	2.1.5	Tunickův Model	
	2.1.6	Thiermannův-Kohnleův model	
	2.1.7	Benderského model	
	2.2 H	Iraniční vrstva	
	2.2.1	Kaimalův model	
	2.2.2	Kukharetsův-Tsvangův model	
	2.3 N	Aezní vrstva	

2.3.1	Tatarského model	32	
2.3.2	Hufnagelův model		
2.3.3	Hufnagelův-Valleyův (H-V) model		
2.3.4	Hufnagelův-Valleyův 5/7 model		
2.3.5	Brooknerův modifikovaný model	35	
2.3.6	NOAA (VanZandt) model	37	
2.4 V	yšší troposféra	37	
2.4.1	CLEAR 1 summer (CLEAR 1) model	38	
2.4.2	Clear 2 model	39	
2.4.3	SLCDay a SLCNight model	39	
2.4.4	AFGL AMOS model	40	
2.4.5	MAUI 3 model	41	
2.4.6	Green Wood model	41	
2.5 D	alší modely Strukturního parametru lomu	.42	
2.6 S	hrnutí modelů strukturního parametru indexu lomu	.42	
2.6.1	Přízemní vrstva	.42	
2.6.2	Konvekční mezní vrtsva	.43	
2.6.3	Mezní vrstva	.43	
2.6.4	Vyšší troposféra	.43	
Simulace je	dnotlivých modelů	45	
3.1 P	arametry stanoviště Praha-Libuš	. 45	
3.2 Jo	ednotlivé modely pro stanoviště Praha - Libuš	. 47	
3.2.1	Přízemní vrstva	. 47	
3.2.	1.1 Wyngaardův model	47	
3.2.	1.2 Kunkelův-Walterův model	48	
3.2.	1.3 Ryznarův-Bartlův model	49	
3.2.	1.4 h-4/3 model	50	
3.2.	1.5 Tunickův model	51	
3.2.	1.6 Thiermannúv-Kohnleuv model	53 54	
3.2.	1.7 Benderskeho model	54	
3.2.2 3.2.1	2.1 Kaimalův model	. 55 55	
3.2.	2.2 Kukharetsův-Tsvangův model	56	
3.2.3 3.2.	Mezní vrstva 3.1 Tatarského model	. 57 57	

3

3.2.3.2 Hufnagelův model	58
3.2.3.3 Hufnagelův-Valleyův model	59
3.2.3.4 Hufnagelův-Valleyův 5/7 model	60
3.2.3.5 Brooknerův model	62
3.2.3.6 NOAA model	63
3.2.4 Vyšší troposféra3.2.4.1 CLEAR 1 Night model	65 65
3.2.4.2 SLCNight a SLCDay model	66
3.2.4.3 AFGL AMOS model	67
3.2.4.4 MAUI model	68
3.2.5 Další modely strukturního parametru3.2.5.1 Green Wood model	69 69
3.2.6 Celkové Srovnání jednotlivých modelů	70
3.3 Modelování jednotlivý modelů v prostředí MATLAB	72
3.3.1 Rozdělení světa na oblasti	72
3.4 Program na modelování modelů v aplikaci Matlab	82
3.4.1 Vytvoření meteo dat	84
3.4.2 Zpracování dat	85
3.4.3 Uživatelské rozhraní	85
3.4.4 Ověření programu	86
Závěr	91
Literatura	92
Seznam symbolů, veličin a zkratek	98
Seznam příloh	101

SEZNAM OBRÁZKŮ

Obr. 1 Struktura atmosféry [32]
Obr. 2 Parametry ICAO modelu [76]4
Obr. 3 Elipsoid Země [31]
Obr. 4 Roční cyklus kolem Slunce [42]6
Obr. 5 Laminární proudění (2), Turbulentní proudění (3) a proudnice (1) [40], s. 27]8
Obr. 6 Vírové proudění [40], s.28]
Obr. 7 Turbulence u letadla [14]9
Obr. 8 Model vzdušné turbulence [24] 10
Obr. 9 Kolmogorova kaskádní teorie proudění [2]11
Obr. 10 Struktura turbulence [39]
Obr. 11 Trajektorie svazku v čase t [44]17
Obr. 12 Putování svazku [44] 17
Obr. 13 Atmosférické nehomogenity při průchodu optického svazku atmosférou [4] 18
Obr. 14 Scintilometr SLS (vlevo) [60] a scintilometr BLS (vpravo) [59]18
Obr. 15 Srovnání Kunkelova-Walterova modelu a Cn2 pro data ve výšce 4,3 m nad zemí a rychlost větru je ve výšce 2,7 m. Měření reprezentuje 15minutové intervaly pro datum 4. června 1980. [63, s. 214]
Obr. 16 Graf pro zjištění mezní vrstvy se základními meteorologickými podmínkami [57, s. 9],
Obr. 17 Porovnání jednotlivých Tunických modelů pro období od 8. do 9. července 1992, ve výškách 1 a 4 m, 2 a 4 m, 4 a 8 m na zemí [74, s. 10]
Obr. 18 Kaimalův model, pro měření. ze září 2005 v 14:19 hod, kde altitude je výška v km [63, s. 215]
Obr. 19 Porovnání Hufnagelova-Valleyova modelu a CLEAR 1 modelu, s parametery $W = 21$ m/s a $A = 1,7 \cdot 10-14$ m- 23. [63, s. 219]
Obr. 20 Brooknerův model pro různá časová období [11],
Obr. 21 Měření pro NOAA model dne 8. června 1988 od 2 do 3hodin [63, s. 224], 37
Obr. 22 Porovnání modelu AFGL AMOS a modelu a CLEAR 1 night modelu, model AMOS je zobrazen od vzdálenosti 3 038 km a CLEAR model je od 1 216 km [63, s. 220]
Obr. 23 Clear 2 model, kde altitude je výška nad mořem [km] [6, s. 89] 39
Obr. 24 Porovnání nočního SLC modelu a AFGL modelu, v minimální výšce 3 038 km.

[63, s. 220]	40
Obr. 25 Greenwood model porovnaný s ostatními modely [78, s. 78]	42
Obr. 26 Teplota ovzduší Praha-Libuš	46
Obr. 27 Rychlost větru Praha-Libuš	46
Obr. 28 Tlak Praha-Libuš	47
Obr. 29 Wyngaardův model - simulace	48
Obr. 30 Kunkelův-Walterův model - simulace	49
Obr. 31 Ryznarův-Bartlův model – simulace	50
Obr. 32 H-4/3 model – simulace	51
Obr. 33 Tunickův model – simulace	52
Obr. 34 Thiermannův-Kohnleův model – simulace	53
Obr. 35 Benderskyho model – simulace	54
Obr. 36 Kaimalův model – simulace	56
Obr. 37 Kukharetsův-Tsvangův model – simulace	57
Obr. 38 Tatarského model – simulace	58
Obr. 39 Hufnagelův model – simulace	59
Obr. 40 Hufnagelův-Valleyův model – simulace	60
Obr. 41 Hufnagelů-Valleyův 5/7 model – simulace	61
Obr. 42 Brooknerův model – simulace	63
Obr. 43 NOAA model – simulace	64
Obr. 44 CLEAR 1 model – simulace	65
Obr. 45 SLCNight a SLCDay model – simulace	66
Obr. 46 AFGL AMOS model – simulace	67
Obr. 47 MAUI model – simulace	68
Obr. 48 Green Wood model – simulace	69
Obr. 49 Mapa Afriky – severní část [30]	72
Obr. 50 Mapa Afriky – jižní část [30]	73
Obr. 51 Mapa Antarktidy [30]	73
Obr. 52 Mapa Austrálie [30]	74
Obr. 53 Mapa Číny [30]	74
Obr. 54 Mapa Evropy [30]	75
Obr. 55 Mapa Indie [30]	75
Obr. 56 Mapa Indonésie – západní část [30]	76
Obr. 57 Mapa Indonésie – východní část [30]	76

Obr. 58 Mapa Jižní Ameriky – severní část [30]	.77
Obr. 59 Mapa Jižní Ameriky – střední část [30]	.77
Obr. 60 Mapa Jižní Ameriky – jižní část [30]	. 78
Obr. 61 Mapa Ruska – západní část [30]	. 78
Obr. 62 Mapa Ruska – východní část [30]	. 79
Obr. 63 Mapa Severní Ameriky – severní část [30]	. 79
Obr. 64 Mapa Severní Ameriky – jižní část [30]	. 80
Obr. 65 Mapa středního východu [30]	. 80
Obr. 66 Mapa Tichomoří [30]	. 81
Obr. 67 Mapa stanic ve světě	. 81
Obr. 68 Vývojový diagram programu	83
Obr. 69 Vzhled uživatelského rozhraní v MATLABU	86
Obr. 70 Noční meteo data pro 8. dubna 2012	87
Obr. 71 Denní meteo data pro 8. dubna 2012	88
Obr. 72 Modely pro noční režim	89
Obr. 73 Modely pro denní režim	89

SEZNAM TABULEK

Tab. 1 Parametry ISA modelu [25]	4
Tab. 2 Přehled nejznáměji používaných elipsoidů [76], [66]	5
Tab. 3 Míra turbulence Cn2 m-23 [80]	16
Tab. 4 Kódové označení mraků	24
Tab. 5 Parametry pro sluneční náklon	25
Tab. 6 Hodnoty Brooknerova modelu pro b, h0 a Cn02 pro různé dny [11]	36
Tab. 7 Naměřené hodnoty pro oblast Praha-Libuš	45
Tab. 8 Wyngaardův model během dne	48
Tab. 9 Kunkelův-Walterův model během dne	49
Tab. 10 Ryznarův-Bartlův model během dne	50
Tab. 11 Model h-4/3 během dne	51
Tab. 12 Tunickův model	52
Tab. 13 Použité hodnoty pro Thiermannův model	53
Tab. 14 Thiermannův-Kohnleův model	54
Tab. 15 Benderského model	55
Tab. 16 Kaimalův model během dne	56
Tab. 17 Kukharetsův-Tsvangův model během dne	57
Tab. 18 Tatarského model během dne	58
Tab. 19 Hufnagelův model během dne	59
Tab. 20 Hufnagelův-Valleyův model během dne	60
Tab. 21 Hufnagelův-Valleyův 5/7 model během dne	61
Tab. 22 Porovnání Hufnagelovských modelů pro noční hodnoty	62
Tab. 23 Porovnání Hufnagelovských modelů pro denní hodnoty	62
Tab. 24 Jednotlivé Denní režimy Brooknerova modelu	63
Tab. 25 NOAA model během dne	65
Tab. 26 CLEAR 1 model	66
Tab. 27 SLC Modely	66
Tab. 28 AFGL model	67
Tab. 29 MUI model	68

Tab. 30 Green Wood model	69
Tab. 31 Celkové srovnání jednotlivých modelů pro noční hodnoty	70
Tab. 32 Celkové srovnání jednotlivých modelů pro denní hodnoty	71
Tab. 33 Hlavička zprávy	84
Tab. 34 Význam hodnot hlavičky zprávy ze serveru	85

ÚVOD

Komunikační kanály vždy budou hrát důležitou roli v sociálních i technických záležitostech. U sociálních spojení dochází k výměně informací jak verbálním, tak i neverbálním projevem. U technické komunikace se využívá k výměně informací optických, rádiových i kabelových komunikačních kanálů. Moderní doba hraje do karet novým komunikačním technologiím, a tak jsou požadavky na inovaci, provedení a vlastnosti sítí stále vyšší. Díky těmto a dalším požadavkům (ochraně památek a přírody, jednoduchosti, ceně atd.), došlo k obrovskému rozšíření bezdrátové komunikace.

Při využití nynějších prostředků je třeba pro stanovení optické trasy znát detailní vlastnosti prostředí, ve kterém se bude komunikace šířit. Musí být známé vstupní parametry, jako je např. teplota, tlak, vlhkost vzduchu, rychlost a směr větru, atp., pomáhající ke stanovení vlastností a k získání obrazu o přenosové cestě.

V závislosti na výšce nad zemským povrchem lze souhrnně stanovit strukturní parametr C_n^2 , který charakterizuje šíření optické komunikace a turbulenci. Z tohoto důvodu byl na tento parametr kladen velký důraz a dal vzniknout několika definicím, věnujícím se strukturnímu parametru C_n^2 , a charakteristikám, podle kterých se určují jednotlivé oblasti na Zemi.

V blízkosti povrchu země a ve vyšších atmosférických vrstvách se nacházejí oblasti s výskytem turbulencí, které negativně ovlivňují optické komunikační systémy. Je tedy vhodné znát vlastnosti turbulence v dílčích částech dne a jejich vliv na jednotlivé vlnové délky, s ohledem na polohu optického vysílače a přijímače.

Strukturní parametr se v blízkosti země pohybuje v rozmezí od $10^{-13} m^{-\frac{2}{3}}$ do $10^{-16} m^{-\frac{2}{3}}$. Hodnoty $10^{-13} m^{-\frac{2}{3}}$ a vyšší vykazují velmi vysoké turbulence, naopak hodnoty $10^{-16} m^{-\frac{2}{3}}$ a nižší obsahují nízké nebo žádné turbulence. Turbulence je velmi důležitá, protože hraje velkou roli při degradaci optické komunikace [72]

Existuje mnoho modelů strukturního parametru, které se snaží co nejlépe vystihnout turbulentní atmosféru, ale každý z nich byl vytvořen z dat měřených v konkrétní geografické oblasti. Vzhledem k atmosférickým jevům se můžeme přiblížit k predikci strukturního parametru v atmosféře.

Tato práce zejména soustřeďuje na jednotlivé modely strukturního parametru indexu lomu v atmosféře. V další části práce jsou modely simulovány a porovnány mezi sebou. Nakonec je vytvořen program, který v závislosti na poloze meteo stanice vypočítá model strukturního parametru a meteorologických dat.

1 ATMOSFÉRICKÉ PŘENOSOVÉ PROSTŘEDÍ

Atmosférické přenosové prostředí je hlavní faktor v optických bezkabelových komunikacích, který způsobuje atmosférický útlum (absorpce a rozptyl) a scintilaci [13].

Plynný obal země neboli atmosféra [25] sahá několik stovek kilometrů nad zemský povrch. Samotný obal se skládá z několika plynů, kde je nejvíce zastoupen dusík (78 %), kyslík (21 %) a ostatní plyny (argon 0,934 %. oxid uhličitý 0,031 4 % a jiné) voda a znečisťující částice. V nižších výškách má vzduch proměnlivé množství kapiček vodní páry různých velikostí, ale i částeček prachu hornin, pilu a kouře. Ve vyšších vrstvách vodních par a znečisťujících látek ubývá.

Atmosféra je dle teploty rozdělena na pět základních vrstev: troposféru, stratosféru, mezosféru, termosféru a exosféru. Mezi dvěma sousedními vrstvami se nacházejí izotermické hranice, které nazýváme tropopauza, stratopauza a mezopauza. Nesmíme opomenout, že tloušťka jednotlivých vrstev (Obr. 1) se samozřejmě mění s aktuální povětrnostní situací, zeměpisnou šířkou a ročním obdobím.

První vrstva nazvaná troposféra [25], představuje hlavní dějiště meteorologických jevů. V tenké přízemní vrstvě, ve které se vytvářejí termické či mechanické turbulence, se nachází mezní planetární vrstva rozkládající se v rozmezí od 1 000 m do 1 500 m nad zemí. Členitost terénu do jisté míry ovlivňuje meteorologické prvky a děje, které zde probíhají. Tento fakt se může projevovat např. denní teplotou, jejíž velikost se s rostoucí vzdáleností od zemského povrchu snižuje. Teplota při povrchu země je největší a s rostoucí výškou klesá až do -55 °C. Již ve výšce 1 500 m nad zemí jsou denní teplotní oscilace velmi malé. Protože v přízemní vrstvě dochází k velké proměnlivosti teploty, větru a vlhkosti, je tato vrstva z pohledu optické komunikace nejdůležitější. Mezní planetární vrstva, sahající asi do 2 km nad povrch země, obsahuje 50 % atmosférické vody a je tak ovlivňována terénem.

Obr. 1 Struktura atmosféry [32]

Díky změnám jednotlivých veličin v atmosféře byla zavedena tzv. Mezinárodní

standardní atmosféra ISA (*International Standard Atmosphere*) [78]). ISA se dá vysvětlit jako normalizovaná závislost teploty, tlaku a hustoty vzduchu v určité výšce v časově stálém prostředí. ISA má konstantní chemické složení s obsahem kyslíku 21,9 %, tíhovým zrychlením g (9,806 65 m/s²) a nulovou vlhkostí vzduchu. Další parametry mezinárodní standardní atmosféry jsou uvedeny níže (Tab. 1), kde MSL znamená Mean Sea level střední hladina moře. Takto definovaná a standardizovaná atmosféra umožňuje cejchování přístrojů v civilním sektoru i v leteckém průmyslu [25].

Tlak vzduchu v úrovni MSL	1 013,25 hPa
Teplota vzduchu v úrovni MSL	288,15 K (15 °C)
Hustota vzduchu v úrovni MSL	1,225 kg/m ³
Vertikální teplotní gradient 0-11 000 m	0,65 °C/100 m
Teplota vzduchu v 11 000 m	216,65 K (-56,5 °C)
Hustota vzduchu	0,363 19 kg/m ³
Tíhové zrychlení v 11 000 m	9,772 7 m/s ²
Vertikální teplotní gradient 11 000-20 000 m	0 °C/100 m
Tlak vzduchu ve výšce 20 000 m	54,749 hPa

Tab. 1 Parametry ISA modelu [25]

Obr. 2 Parametry ICAO modelu [76]

Na atmosférické přenosové prostředí má vliv turbulence a gravitační zrychlení, které je pro každou geografickou polohu jiné. Gravitační zrychlení charakterizuje polohu meteo stanice a udává vzdálenost Země od Slunce. Tento parametr je velmi důležitý pro výpočet modelů strukturního parametru indexu lomu v atmosféře.

1.1 Gravitační zrychlení

Země je nepravidelné rotující těleso (Obr. 3), skládající se z pevniny a oceánu [76]. Pro vyobrazení mapy Země vznikl tzv. geoid, tečný ve směru středu Země. Bohužel i takovýto model Země je dosti matematicky náročný, a tak byl vytvořen rotační elipsoid. Rotační elipsoid vznikne tak, že elipsa Země se nechá rotovat kolem její svislé osy. Tím se stává elipsoid kratší a na pólech zploštělý. Vzhledem k tomu, že je poměr délek vůči velikosti Země malý, používá se pro výpočty tvar koule. Pro zobrazení velmi malého území (100 m^2), se povrch země nahrazuje tečnou rovinou.

Obr. 3 Elipsoid Země [31]

Pro potřeby geodetických a kartografických výpočtů bylo vytvořeno hned několik elipsoidů, které do jisté míry zlepšují přesnost popisovaného reálného povrchu Země. V tabulce (Tab. 2) jsou uvedeny nejznáměji používané elipsoidy [76].

Název	Délka	Délka hlavní	Zploštění	Použití
elipsoidu	rovníku [km]	poloosy [m]	1/f	
Besselův r. 1841	40 070 368,10	6 377 397,155 08	299,152 812 853	ČR
Hayfordův r. 1924	40 076 593,77	6 378 388	297,0	USA
Krasovského r. 1942	40 075 695,27	6 378 245	298,3	USSR
WGS84 r. 1984	40 075 016,69	6 378 137	298,257 223 563	Univerzální

Tab. 2 Přehled nejznáměji používaných elipsoidů [76], [66]

Všechny členské organizace ICAO přešly pro sjednocení zařízení na model WGS84. Detailní popis referenčního elipsoidu WGS84 [55] nebude v této práci rozebrán, ale gravitačním zrychlením, které je potřebné pro výpočet jednotlivých modelů strukturního parametru, se tato práce zabývat bude. Gravitační konstanta se

získává dvěma metodami, a to numerickou nebo experimentální. Pro modely strukturního parametru je použita metoda numerická, kde pro každou konkrétní oblast je z referenčního elipsoidu WGS84 vypočteno gravitační zrychlení [68]. Numerický výpočet gravitačního zrychlení je nutný vzhledem k nedostatku naměřených hodnot gravimetrem.

Dle následujícího Somiglianova vztahu (γ_0) lze vypočítat gravitační zrychlení následovně [68]:

$$\gamma_0 = \gamma_e \cdot \frac{1 + k \cdot \sin^2 \varphi}{\sqrt{1 - e^2 \cdot \sin^2 \varphi}},\tag{1}$$

$$k = \frac{\gamma_p}{\gamma_e} \cdot \sqrt{1 - e^2} - 1, \tag{2}$$

$$e^2 = \frac{(a^2 - b^2)}{a^2},\tag{3}$$

kde γ_e [m/s²] je tíhové rychlení na rovníku a γ_p [m/s²] je tíhové zrychlení na pólu, φ [°] je zeměpisná šířka, *a* je hlavní poloosa a *b* je vedlejší poloosa elipsoidu.

Vzhledem k tomu, že se Země otáčí kolem své vlastní osy a obíhá kolem Slunce po eliptické dráze (Obr. 4) dochází ke změnám gravitačního zrychlení během roku.

Obr. 4 Roční cyklus kolem Slunce [42]

V závislosti na poloze Země, členitosti terénu a atmosférickému proudění, dochází k útlumu optického spojení. Proto budou hrát meteorologické jevy velkou roli při vytváření modelování spojení.

1.2 Atmosférické vlivy na optické spojení

Protože se v atmosféře vyskytují projevy počasí, jako je déšť, sníh, mlha, znečištění a jiné stavy atmosféry (turbulence), tak je optický spoj velmi náchylný na tyto atmosférické podmínky, a proto je nutné s těmito vlivy počítat. Mezi základní procesy mající vliv na šíření vln patří: absorpce, rozptyl a index lomu.

Absorpce je rozptyl složek plynu a částeček atmosféry, při kterém dojde k útlumu optického svazku. Dalším ovlivňováním optického svazku dochází při Rayleigovu rozptylu. Ten je způsoben mlhou a molekulami vzduchu, které jsou při porovnání s délkou záření λ malé. Rozptylový koeficient je pro vzduch $\lambda > 3 \mu m$ a pro modrou oblohu $\lambda < 1 \mu m$.

Mezi hlavní jevy [80], které se během šíření optického svazku v atmosféře objevují, se řadí:

- Extinkce optické intenzity vlivem absorpce nebo rozptylu na molekulách nebo aerosolech
- Extinkce optické intenzity vlivem troposféry
- Fluktuace optické intenzity vlivem turbulence troposféry
- Fluktuace optické intenzity působením deště nebo sněhu
- Fluktuace optické intenzity vlivem deformace tvaru svazku
- Přerušení optického svazku biosférou

Pro modelování vlivu atmosférického prostředí na kvalitu přenosu v optickém spoji jsou rozhodující tyto veličiny [80]

- Koeficient útlumu $\alpha_{1,atm} [dB/km]$
- Index lomu prostředí n [-]
- Strukturní parametr indexu lomu $C_n^2 \left[m^{-\frac{2}{3}}\right]$

Největším projevem útlumu je atmosférické proudění a jeho turbulence, která velmi ovlivňuje kvalitu spojení.

1.2.1 Turbulentní proudění

Turbulenci můžeme charakterizovat jako "chaotickou" a "stochastickou" změnu, která zahrnuje nízkou teplotní rozlišitelnost, vysoký moment konvence a velkou rychlost změny tlaku, rychlosti a času. V závislosti na velikosti Raynoldsově čísle vznikají laminární a turbulentní proudění (Obr. 5).

Proudění rozeznáváme: laminární, turbulentní a vírové proudění [40].

Obr. 5 Laminární proudění (2), Turbulentní proudění (3) a proudnice (1) [40], s. 27]

Laminární proudění (Obr. 5) lze charakterizovat, jako pohyb tekutiny, kde se jednotlivé částice pohybují v rovnoběžných vrstvách po směru proudu a nedochází tak k promíchání proudnic. Proudnice v laminárním proudění jsou čáry, jejíž tečna v kterémkoli bodě souhlasí se směrem vektoru rychlosti proudění [40].

Naopak turbulentní proudění [40] je popsáno nepravidelným pohybem tekutiny. (tzn. jednotlivými dynamickými částice tekutiny, které nepravidelně mění rychlost i směr).

Vírové proudění (Obr. 6) je krouživý pohyb vzduchu kolem určité křivky, která tvoří jeho osu. Nejdříve dochází k růstu rychlosti a poklesu tlaku směrem k ose. Později velikost rychlosti směrem ke středu klesá až na nulovou hodnotu, která je přímo na ose víru [40].

Obr. 6 Vírové proudění [40], s.28]

Laminární proudění (Obr. 5) nastává pro nižší hodnoty (Reynoldsovo číslo kolem 2 100). Turbulentní (Obr. 5) proudění nastává při velikosti Reynoldsova čísla v blízkosti hodnoty 4 000.

Reynoldsovo číslo (Re) je dáno vztahem:

$$Re = \frac{v \cdot l}{v_k},\tag{4}$$

kde v je rychlost vzduchu [m/s], v_k je součinitel kinematické viskozity [m²/s] a l je rozměr [m].

Součinitel kinematické viskozity [37], [48], který je podílem dynamické viskozity a hustoty kapaliny (v_k) lze charakterizovat:

$$v_k = \frac{\eta}{\rho},\tag{5}$$

kde ρ hustota kapaliny [k·g/m³], η je dynamická viskozita [N·s/m²].

Dynamická viskozita [37] je poměr mezi tečným napětím a změnou rychlosti v závislosti na vzdálenosti mezi sousedními vrstvami při proudění skutečné kapaliny vzduchu [37], [48], [62]:

$$\eta = \eta_0 \cdot \frac{T_0 + C}{T + C} \cdot \left(\frac{T}{T_0}\right)^{\frac{3}{2}},\tag{6}$$

kde η_0 je referenční viskozita [N·s/m²] vyskytující se při referenční teplotě T_0 [K], T je teplota [K], C je Shutherlandova konstanta pro plynný materiál [37], [48], [62].

Turbulence (Obr. 7) je proces, který způsobuje víry, přičemž je kinetická energie turbulentního pohybu obsažena ve velkém celku struktur. Energie jednotlivých částí této struktury je inertní.

Obr. 7 Turbulence u letadla [14]

Ke vzniku turbulence dochází při teplotním rozdílu mezi povrchem země a atmosférou [25]. Sluneční energie, která dopadá ze Slunce na Zemi, s rostoucí vzdáleností klesá, proto na fiktivní okraj horní atmosféry dopadá neměnné množství sluneční energie nazývané solární konstanta (1 373 W/m²). Tato energie dále prostupuje atmosférou a vzduchovým obalem Země je absorbována, rozptýlena a v závislosti na úhlu dopadu, průzračnosti, oblačnosti a na obsahu příměsí ve vzduchu zeslabena. Díky různorodému úbytku energie, které dopadá na Zemi, dochází k nerovnoměrnému zahřívání Země a tím jsou určeny podmínky pro vznik atmosférických dějů [25].

Sílu atmosférické turbulence můžeme rozlišit na čtyři druhy intenzit dle rychlosti větru, a to na slabou intenzitu, která nastává při poryvu větru od 1 do 5 m/s, mírnou

intenzitu při nárazech větru od 5 do 10 m/s a silnou intenzitu při rychlostech větru 10 až 15 m/s. Silná turbulence nastane při nárazech větru vyšších než 15 m/s. V tomto případě můžeme např. zpozorovat kolébání letadla ze strany na stranu a náhlé propadávání (výška a kurz se velmi často mění).

Pro velikost turbulence, je nutné rozlišovat jednotlivé druhy atmosférického proudění, termickou a mechanickou turbulenci.

1.2.2 Druhy turbulence

Termická turbulence

Termická turbulence vzniká nehomogenním prouděním. Tento druh turbulence je velmi výrazný, bez ucelených stoupavých a kompaktních proudů v blízkosti zemského povrchu. Dalším ovlivňujícím faktorem termické turbulence, který se vyskytuje v nižších výškách, je samozřejmě charakter terénu. Jednoduše řečeno: čím je terén členitější, tím je termika nad terénem různorodější [25].

Mechanická turbulence

Mechanická turbulence (Obr. 8) vzniká tak, že na závětrné straně překážky dochází ke zvyšování atmosférického tlaku, kdežto v závětrné straně tlak vzduchu klesá. Rozdíl tlaků při proudění vzduchu přes překážku (pohoří) dává vzniknout závětrnému víru s horizontální osou (závětrný rotor) proudění, který vzniká díky tření vzduchu o nerovný zemský povrch. Při proudění vzduchu přes horský terén dochází k orografické turbulenci. Tento druh proudění se vytváří i při stabilním zvrstvení vzduchu v důsledku velké deformace vzdušného proudu [25].

Vznik mechanické turbulence na závětrné straně Obr. 8 Model vzdušné turbulence [24]

Dynamická turbulence

Dynamická turbulence je znázorněna dvěma vzduchovými vrstvami s rozdílnou teplotou a hustotou, kde spodní vrstva je teplotně chladnější a hustší než vrchní (teplejší) vrstva. Při přechodu mezi jednotlivými vrstvami tak dochází k náhlým změnám hustoty.

1.2.3 Kolmogorova teorie turbulence

Pro atmosférické turbulence se používá Kolmogorova kaskádní teorie [3], [81]. Ta zjednodušeně říká, že pokud rychlost vzduchu stoupá až do překročení kritické hodnoty Reynoldsova čísla, dochází ke vzniku víru tím, že se větší vír rozpadne na menší části. Po přenesení energie z makroměřítka L_0 (vnější měřítko turbulence) k mikroměřítku l_0 (vnitřní měřítko turbulence) dojde ke spojité velikosti víru.

Vnější měřítko L_0 udává tzv. velikost nezávislosti výchozího toku na turbulentních vlastnostech – přívod energie. Tím se vytvářejí homogenní a izotropní víry s velikosti menší než L_0 , a nehomogenní a anizotropní pro délku větších nebo rovno L_0 . Makroměřítko turbulence (Obr. 9) se zvětšuje až do výšky 100 m nad zemský povrch společně s úrovní pozorovacího bodu. Naopak mikroměřítko, pro určení víru těsně před rozptýlením energie, nabývá hodnot v rozsahu 1–10 mm při zemském povrchu [3].

Obr. 9 Kolmogorova kaskádní teorie proudění [2]

Velikost energie [39] v turbulenci je závislá na přírůstku větru a teploty. Velikost spektra turbulence je závislá na konkrétním případě (Obr. 10).

Obr. 10 Struktura turbulence [39]

Hodnota spektra je pro $0 \le K < 2\pi/L_0$ neznámá. Kolmogorovo spektrum (Φ_n) [39] pro vnější rozměr L_0 nekonečný a vnitřní rozměr l_0 zanedbatelně malý vypadá následovně:

$$\Phi_n(K) = 0,033 \cdot C_n^2 \cdot K^{-\frac{11}{3}}, \qquad \frac{1}{L_0} < K < \frac{1}{l_0}$$
(7)

pro ostatní modely je proto vhodné použít Tatarskiho spektrum:

$$\Phi_n(K) = 0,033 \cdot C_n^2 \cdot K^{-\frac{11}{3}} \cdot e^{-\frac{K^2 \cdot l_0}{5,92^2}}, \qquad K \gg \frac{1}{L_0}$$
(8)

kde L_0 je rozměr vnější turbulence [m], l_0 je vnitřní rozměr turbulence [m], C_n^2 je strukturní parametr indexu lomu $\left[m^{-\frac{2}{3}}\right]$. Hodnota *K* je definovaná jako:

$$K = \frac{2 \cdot \pi}{velikost turbulence}.$$
(9)

Jak Kolmogorovo spektrum (vztah (7)), tak Tatarskiho spektrum (vztah (8)) mají singularitu při K = 0 a při $1/L_0 = 0$. Pokud je ovšem rozsah $K < 1/L_0$, tak spektrum je považováno za anizotropní a formulace se stává neznámou. V tomto případě se používá pro výpočet modifikované Von Karmánovo spektrum:

$$\Phi_n(K) = 0,033 \cdot C_n^2 \cdot \frac{e^{-\frac{K^2 \cdot L_0}{5,92^2}}}{(K^2 + K_0^2)^{\frac{11}{6}}}, \qquad 0 \le K < \infty$$
⁽¹⁰⁾

kde $K_0 = 1/L_0$ (nebo $K_0 = 2\pi/L_0$) a C_n^2 je strukturní parametr indexu lomu $m^{-\frac{2}{3}}$.

Aproximací Hillova spektra [35] a zahrnutím vnějšího parametru L_0 charakterizoval L. C. Andrews [3] vyšší vlnové spektrální číslo:

$$\Phi_n(K) = 0.033 \cdot C_n^2 \cdot \left[1 + 1.802 \cdot \left(\frac{K \cdot L_0}{3.3}\right)\right] \cdot \frac{e^{-\frac{K^2 \cdot L_0}{5.92}}}{(K^2 + K_0^2)^{\frac{11}{6}}}, \quad 0 \le K < \infty$$
(11)

kde $K_0 = 1/L_0$ (nebo $K_0 = 2\pi/L_0$) a C_n^2 je strukturní parametr indexu lomu $\left[m^{-\frac{2}{3}}\right]$.

Pokud je prostředí homogenní a izotropní, souvisí výkonové spektrum indexu s trojrozměrnou Fourierovou transformací.

$$\Phi_n(k) = \frac{1}{(2 \cdot \pi)^3} \cdot \int_0^\infty B_n(R) \cdot \sin(k \cdot R) \cdot RdR,$$
(12)

kde je pro určení integrálu použita sférická symetrie a k = |K| je velikost turbulence, B_n je inverzní furierova transformace.

Pro inverzní furierovu transformaci (B_n) získáme následující vztah:

$$B_n(R) = \frac{4 \cdot \pi}{R} \cdot \int_0^\infty k \cdot \Phi_n(k) \cdot \sin(k \cdot R) dk,$$
(13)

kde k je velikost turbulence a R je index vzduchu.

Vztah mezi spektrem a strukturní funkcí je vyjádřen vztahem:

$$D_n(R) = 8 \cdot \pi \cdot \int_0^\infty k^2 \cdot \Phi_n(k) \cdot \left(1 - \frac{\sin(k \cdot R)}{k \cdot R}\right) dk,$$
(14)

kde, k je skalární vlnové číslo a R je index vzduchu.

Turbulenci velmi ovlivňuje proudění vzduchu a meteorologické jevy v atmosféře. Vliv větru a jednotlivé druhy větru jsou popsány v následující kapitole.

1.2.4 Vliv větru na turbulenci

Atmosférické teplotní změny a výkyvy rychlosti větru vytváří místní nestabilní masy vzduchu [3]. Tyto masy mají různou teplotu a index lomu, který je funkcí teploty a tlaku. Jednotlivé nehomogenity vzduchu se postupně roztrhají na menší (turbulentní víry), které mají různou velikost a stálost.

Víry v atmosféře se vyskytují v tzv. koulích o vnitřním průměru l_0 a vnějším průměru L_0 (Obr. 9, Obr. 10). Rozměrově větší víry se rozpadají za kratší dobu a mají charakter mechanického pohybu. Malé víry mají dobu rozpadu delší a mají teplotní charakter. Turbulentní vír můžeme vidět v teplém období, kdy se velmi zahřátý vzduch "třepe" nad zemským povrchem.

Vítr [25] patří bezesporu mezi základní a důležité meteorologické prvky, které ovlivňují atmosféru. Důležitým aspektem je proměnlivost vektoru větru, při které dochází ke tření větru o zemský povrch či k vzájemnému tření jednotlivých vzduchových vrstev. V atmosféře dochází díky změně větru k jednotlivým atmosférickým jevům, jako je střihový vítr, bríza, cyklony, tajfuny a jiné, které ovlivňují optický spoj [36].

Střih větru

Střih větru neboli windshier [36] je velmi nebezpečný meteorologický jev, při kterém dochází k prudké změně směru nebo rychlosti větru. Střih větru vzniká za následujících podmínek:

- Konvektivních podmínky (přeháňky, bouřky)
- Frontální systémy
- Silný nebo nárazový vítr
- Teplotní inverze se slabým přízemním větrem, ale se silným prouděním vzduchu ve výšce jen několik metrů nad povrchem země
- Horské vlny
- Geocirkulace typu bríza

Rychlost větru

Rychlost větru se určuje podle 13stupňové Beafortovy stupnice síly větru [36]. Vítr se tak může měnit od orkánu (rychlost je větší než 32,6 m/s) přes mírný vítr (3,4 ~5,4 m/s) až po úplné bezvětří. Pomocí tzv. proudnic (Obr. 5) určujeme pole větru, které se mění v závislosti na terénu, teplotě, Zemi atd. Jak vypadá takové proudění v závislosti na terénu je ukázáno na následujících obrázcích. Je zde možné vidět jednotlivé cyklony a vzdušné víry.

Fluktuace

Vítr za pomocí teplotního gradientu vytváří výkyvy v atmosférickém indexu lomu tzv. fluktuaci (optická turbulence) [3]. Turbulenci můžeme popsat statickým způsobem, za předpokladu, že pole, ve kterém k turbulencím dochází, je statisticky homogenní.

Popis chování optické vlny v turbulentních oblastech je rozděleno na slabých a silných výkyvech. Slabé jsou založeny na Rytových odhadech a na matematických modelech [3]. Silné výkyvy jsou založeny na přísných omezeních.

Pro určení turbulence je zapotřebí znát strukturní parametru indexu lomu, který definuje charakteristiku turbulence, která nastává v atmosférickém prostředí.

1.3 Strukturní parametr indexu lomu v atmosféře

Klíčovým parametrem pro turbulenci je strukturní parametr C_n^2 . Tento parametr souvisí s teplotou, a se změnou větru (vnější měřítko L_0) [22]. Velikost strukturního parametru v přízemní vrstvě se pohybuje od $C_n^2 = 10^{-12} m^{-2/3}$ do $C_n^2 = 10^{-16} m^{-2/3}$. Hodnota větší než $C_n^2 = 10^{-12} m^{-2/3}$ indikuje silnou atmosférickou turbulenci Turbulence je velmi důležitá, protože hraje významnou roli na degradaci optické komunikace [72].

Strukturní parametr, jednoduše popsán jako rozdíl indexů a pozice vzduchu, je detailněji rozebrán v následující kapitole.

1.3.1 Fluktuace indexu lomu

Index lomu n [3], [50] je velmi důležitý pro šíření optické vlny v atmosféře. Tento parametr je velmi citlivý na změny buněk malých rozměrů. Index lomu v prostoru a času t lze zapsat:

$$n(\mathbf{R},t) = n_0 + n_1(\mathbf{R},t), \tag{15}$$

kde $n_0 = \langle n(\mathbf{R}, t) \rangle \cong 1$ je střední hodnota indexu lomu a $n_1(\mathbf{R}, t)$ znázorňuje

náhodnou odchylku $n(\mathbf{R}, t)$ ze střední hodnoty $< n_1(\mathbf{R}, t) > = 1$.

Časové změny indexu lomu jsou často v šíření optických vln potlačeny [3]. To znamená, že vlna zachová při svém šíření stálou frekvenci. Pro normalizovanou $n(\mathbf{R})$ hodnotou n_0 platí

$$n(\boldsymbol{R}) = 1 + n_1(\boldsymbol{R}) \tag{16}$$

Změna indexu lomu [3] souvisí se změnami teploty a tlaku. Pro optické a IR vlnové délky indexu lomu v atmosféře platí:

$$n(\mathbf{R}) = 1 + 77.6 \cdot 10^{-6} \cdot (1 + 7.52 \cdot 10^{-3} \cdot \lambda^{-2}) \cdot \frac{P(\mathbf{R})}{T(\mathbf{R})},$$
(17)

$$n(\mathbf{R}) \cong 1 + 79 \cdot 10^{-6} \cdot \frac{P(\mathbf{R})}{T(\mathbf{R})},\tag{18}$$

kde λ je vlnová délka [µm], *P* je tlak [mbar] a *T* je teplota [K]

Při vlnové délce přibližně $\lambda \sim 0.5 \,\mu\text{m}$ je změna tlaku spolu s indexem lomu zanedbatelná v závislosti na viditelném spektru. Pro IR záření jsou blízké spektrální oblasti způsobeny nahodilou fluktuací teploty, kde nejsou uvažovány změny optického signálu způsobující absorpci nebo rozptyl na molekulách a aerosolech [3].

Pokud je pole vystaveno změnám rychlosti uvnitř dílčího rozsahu s vlastnostmi statické homogenity, jsou v sub-oblastech vnější rozměry L_0 a vnitřní rozměry l_0 spojeny. Izotropy tak zdědí změnu indexu lomu s příslušnou inertní sub-oblastí [3].

Kovariační funkce (B_n) je dána:

$$B_n(\mathbf{R}_1 \mathbf{R}_2) = B_n(\mathbf{R}_1, \mathbf{R}_1 + \mathbf{R}) = \langle n_1(\mathbf{R}_1) \cdot n_1(\mathbf{R}_1 + \mathbf{R}) \rangle,$$
(19)

kde pro statisticky homogenní pole změny indexu lomu je $\mathbf{R} = \mathbf{R}_2 - \mathbf{R}_1$, a *n* je index lomu.

Pokud je pole statisticky homogenní a izotropní [3], podporuje kovarianční funkce redukci na skalární vzdálenost $\mathbf{R} = |\mathbf{R}_2 - \mathbf{R}_1|$.

Rovnice pro Strukturní parametr lze vyjádřit jako [35], [71]:

$$C_n^2 = \frac{\left(n(x) - n \cdot (x+r)\right)^2}{r^{\frac{2}{3}}} = \frac{D_n(r)}{r^{\frac{2}{3}}},$$
(20)

kde n je index lomu vzduchu, (x) je souřadnice pro umístění v prostoru a r je velikost rozdílu mezi vnitřní a vnější turbulentní váhou. Míra turbulence je uvedena v Tab. 3.

Pro statisticky homogenní a izotropní turbulenci platí [3]

$$D_n(R) = \begin{cases} C_n^2 \cdot R^{\frac{2}{3}}, & l_0 \ll R \ll L_0\\ C_n^2 \cdot l_0^{-\frac{4}{3}} \cdot R^2, & R \ll l_0 \end{cases}$$
(21)

kde C_n^2 je strukturní parametr indexu lomu $\left[m^{-\frac{2}{3}}\right]$ a l_0 lze získat měřením cest do 150 m[3], [28] pomocí scintilometru.

$$l_0 = 7, 4 \cdot \eta = 7, 4 \cdot \left(\frac{\nu^3}{\varepsilon}\right)^{\frac{1}{4}},\tag{22}$$

kde v je rychlost vzduchu [m/s], ε je molekulární rozptýlení turbulentní kinetické energie [m²/s³], [8].

Tab. 3 Míra turbulence $C_n^2 \left[m^{-\frac{2}{3}} \right]$ [80]

Míra turbulence	$C_n^2 \left[m^{-\frac{2}{3}}\right]$
Slabá	10^{-16}
Střední	10^{-15}
Silná	10^{-14}
Velmi silná	10 ⁻¹³

Strukturní parametr může být zjistitelný z teploty. Teplotní strukturní parametr C_T^2 je vypočten [3] z následující rovnice

$$C_n^2 = \left(79 \cdot 10^{-6} \cdot \frac{P}{T^2}\right)^2 \cdot C_T^2,$$
(23)

kde *P* je tlak [mbar] a *T* je teplota [K]

$$C_T^2 = \frac{(\Theta \cdot r_0 - \Theta \cdot (r_0 + r))^2}{r^{\frac{2}{3}}},$$
(24)

kde ve vzorci Θ je potencionální teplota, r_0 je polohový vektor a r oddělující vektor.

Strukturní parametr je závislý na mnoha parametrech včetně aktuálního období, místě, času a denní fáze. Přes den jsou hodnoty strukturního parametru nižší než v noci. Tento fakt má za následek větší turbulentní proudění přes den. Také délka r_0 je tím menší, čím silnější je zima a větší v letním období. Dále velikost strukturního parametru C_n^2 závisí na členitosti terénu. Například v pohoří a na horách je koherence v nočních hodinách větší než v nížinách a na rovných plochách. Naopak rozdíl v denních hodinách není mezi nížinami a horami až tak markantní a hodnotami si sou navzájem velmi podobné.

1.3.2 Vliv atmosférický turbulencí na optický svazek

Na degradaci a zhoršení optického svazku působí míšení vzdušných mas s rozdílnými indexy lomu. Výsledkem je pohyblivost svazku a zkreslení vlnoplochy neboli scintilace. Velikost buněk (vzdušných vírů) (Obr. 12) jimiž optický svazek prochází, má značný vliv na interakci svazku po průchodu buňkou [44].

Pokud je velikost buňky menší než poloměr laserového svazku, bude svazek odkloněn do různých směrů a bude sledována neuniformní optická intenzita napříč vlnoplochou.

Pokud je velikost buňky srovnatelná s poloměrem laserového svazku, jeho směr

šíření se nemění, pouze způsobí zvětšení úhlu divergence [44].

Pokud je velikost buňky větší než poloměr laserového svazku, dochází k ohybu a náhodnému cestování svazku. To vede k úplnému přerušení optického bezkabelového spoje [44].

Obr. 11 Trajektorie svazku v čase t [44]

Obr. 12 Putování svazku [44]

Kombinací efektu scintilace a pohyblivého svazku vede k fluktuaci celého signálu. Svazek se v nehomogenním prostředí chová náhodně, tzn. v každém čase t, má svazek jinou trajektorii (Obr. 11). Efekt scintilace je příčinou kolísání intenzity signálu přijímaného v ohniskové rovině přijímače. Rozložení optické intenzity přijímané v rovině přijímače je rovné logaritmickému normálnímu rozložení (p) o určité intenzitě I [44]:

$$p(l,\sigma_x^2) = \frac{1}{2 \cdot l \cdot \sqrt{2 \cdot \pi \cdot \sigma_x^2}} \cdot e^{-\frac{(\ln(l) + 2 \cdot \sigma_x^2)^2}{8 \cdot \sigma_x^2}},$$
(25)

kde v této rovnici znamená p pravděpodobnost a I intenzita a σ směrodatnou odchylku.

1.3.3 Měření strukturního parametru indexu lomu

Pro měření strukturního parametru C_n^2 [38] se používá přístroj nazývaný scintilometr. Celý přístroj se skládá buď z optického, nebo mikrovlnného přijímače a vysílače. Podobné části má měřená trasa skládající se z vysílače, aktivního prostředí a přijímače, který detekuje a následně vyhodnocuje intenzitu kolísání přenášeného signálu.

Některé druhy scintilometrů mohou kromě zaznamenávání parametru C_n^2 umožňovat také měření tepla přenášeného mezi zemským povrchem a vzduchem.

Ze schématu scintilometru (Obr. 12) je patrné, jak takový přístroj pracuje. Vysílač (Laser) vysílá paprsek o určité vlnové délce ve známé vzdálenosti L od

světelného zdroje. Přijímač analyzuje intenzitu způsobenou turbulentními víry. Také velikost délky stupnice je důležitý pro průměr paprsku, protože nad povrchem (Z) jsou různé velikosti L_0 a l_0 vírových elementů.

Obr. 13 Atmosférické nehomogenity při průchodu optického svazku atmosférou [4]

V dnešní době existuje několik druhů scintilometrů, které měří ve vzdálenostech 100 m až 10 km. V této práci je uvedena např. firma Scientec, která nabízí hned dva SLS a BLS modely (Obr. 14). SLS model je určen pro krátkodobé měření, ve kterém je hodnota C_n^2 odvozena od turbulentního proudění, Moninovy-Obhukovy délky nebo stability parametru *L*. BLS model je naopak používán pro dlouhou trasu.

Obr. 14 Scintilometr SLS (vlevo) [60] a scintilometr BLS (vpravo) [59]

2 MODELY STRUKTURNÍHO PARAMETRU INDEXU LOMU

V této kapitole jsou rozebrány modely strukturního parametru indexu lomu v atmosféře, ovšem některé z nich jsou limitovány výškovou hladinou (MUII, CLEAR 1 atd.). Obecný model pro široké uplatnění je Hufnagelův-Vallyeův model, který je se svým výškovým parametrem použitelný pro noční režim. V denním režimu je nestabilní, protože se při povrchu země vyskytuje velmi silná turbulence [70]

Pro simulaci jednotlivých vrstev atmosféry jsou modely rozděleny následovně: přízemní vrstva, konvekční mezní vrstva, mezní vrstva, vyšší troposféra a ostatní modely. Vlastností těchto modelů je odlišnost pro různou výšku, zeměpisnou polohu a atmosférickou podmínku [70].

2.1 Přízemní vrstva

Modely v přízemní vrstvě [63] dosahují dominantní délku stupnice, použitím rozměrové analýzy a fyzikálního modelování. Hlavní veličinou modelů je Moninova-Obhukova délka *L*, která je měřítkem (parametrem) povrchové vrstvy popisující moment přenosu mezi zemní vrstvou a atmosférou. Podobností Moninové-Obhukové délky je součet nestability, volného proudění a stupnice strukturního parametru $C_n^2 \, \mathrm{s} \, h^{-\frac{4}{3}}$ (pokles) pro východ a západ slunce. Stabilní hodnoty $h^{-\frac{2}{3}}$ pro jasnou noc mohou také platit pro denní režim, kdy je výskyt teplého vzduchu nad studeným povrchem (např. zasněžená krajina).

Kritérium stability je určeno Bruntovou-Vaisalovou frekvencí (N) [33], [63]:

$$N = \sqrt{\frac{g \cdot d\theta}{\theta \cdot dz'}},\tag{26}$$

kde g je gravitační zrychlení [m/s], θ je potenciálová teplota [K], z je geometrická výška [m]. Výpočet potenciálové teploty vzduchu θ [58] je definována jako:

$$\theta = T \cdot \left(\frac{P_0}{P}\right)^{\frac{R}{Cp}},\tag{27}$$

kde T je absolutní teplota [K], P je tlak [Pa], R je plynná konstanta vzduchu [J/mol·K], Cp je měrná tepelná kapacita při konstantním tlaku a P_0 je referenční tlak o hodnotě 1 000 mBar.

Moninova-Obhukova délka L [26], [70] je definovaná jako:

$$L = \frac{v_*^2 \cdot \theta}{k^2 \cdot g \cdot \theta_*},\tag{28}$$

kde v uvedeném vztahu je v_* třecí rychlost [m/s], θ_v virtuální potenciálová teplota [K],

Von Kármánova konstanta k (0,4 pro normální terén), g je gravitační zrychlení [m/s²], θ_{v*} je virtuální potenciálová míra teploty [K]

Třecí rychlost je definována jako:

$$v_* = \frac{k \cdot v}{\ln\left(\frac{h}{h_0}\right) - \psi_1},\tag{29}$$

kde v představuje rychlost větru [m/s] ve výšce h, h_0 je dominantní výška flóry. ψ_1 je stabilita tlaku (většinou $\psi_1 = 0$).

Potenciálová teplota je dána jednoduchou rovnicí

$$\theta_* = \frac{\theta - \theta_0}{\ln\left(\frac{h}{h_0}\right) - \psi_2},\tag{30}$$

kde θ_0 je teplota vzduchu v přízemní výšce a ψ_2 je diabetická změna teploty.

Moninova-Obhukova délka nebude nikdy větší než 200 m a je nežádoucí, pokud Moninova-Obhukova délka je menší než h_{0} , z tohoto důvodu musí být $2 \cdot |L|$.

Pro dominantní výšku flóry se používá parametr h_0 který představuje jenom jeden bod. Pokud máme plochu s různou výškou, tak h_0 lze vypočítat jako:

$$\ln(h_0) = -2,85 + 1,19 \cdot \ln(h_e), \tag{31}$$

kde h_e . představuje průměrnou výšku elementů flóry.

2.1.1 Wyngaardův model

První model charakterizuje atmosféru od přízemní vrstvy až po vyšší troposféru. Pro stabilní podmínky (noční režim L > 0):

$$C_n^2 = h^{-\frac{2}{3}} \cdot \left(1 + \frac{2.4 \cdot h}{L}\right)^{-2/3},\tag{32}$$

pro nestabilní podmínky (denní režim L < 0)

$$C_n^2 = h^{-\frac{2}{3}} \cdot \left(1 - \frac{7 \cdot h}{L}\right)^{-2/3},\tag{33}$$

kde L je Moninova-Obhukova délka [m] a h je výška nad zemí

Wyngaardov svojí obdobnou teorii [63] shrnul do dvou rovnic: pro nestabilní podmínky (L < 0):

$$C_T^2(h) = 4.9 \cdot T_*^2 \cdot h^{-\frac{2}{3}} \cdot \left(1 - \frac{7 \cdot h}{L}\right)^{-\frac{2}{3}},\tag{34}$$

a pro stabilní podmínky (L > 0)

$$C_T^2(h) = 4.9 \cdot T_*^2 \cdot h^{-\frac{2}{3}} \cdot \left(1 + \frac{2.4 \cdot h}{L}\right)^{-\frac{2}{3}},\tag{35}$$
kde *h* je výška nad zemí [m], *L* je Moninova-Obhukova délka [m] a T_* je teplotní parametr vyjádřen jako:

$$T_* = k \cdot \theta_*, \tag{36}$$

kde k je Karmánova konstanta a θ_* je potenciálová teplota.

Von Kármánovu konstantu k [53], [34], [28] můžeme vyjádřit podle:

$$k = \frac{v_*}{v} \cdot \ln \cdot \frac{h}{h_0},\tag{37}$$

kde v je rychlost proudění, h_0 je místo, kde v > 0 a v_* je smykové tření [m/s] dané:

$$v_* = \sqrt{\frac{\tau_w}{\rho}},\tag{38}$$

kde ρ je hustota [kg/m³], τ_w je smykové napětí [Pa] definované následujícím vztahem:

$$\tau_w = \mu \cdot \frac{\partial v}{\partial y} \Big|_{y=0},\tag{39}$$

kde μ je dynamická viskozita [kg/s·m], ν je rychlost vzduchu na pomezí mezní vrstvy a *y* je výška nad mezní vrstvou [m].

2.1.2 Kunkelův-Walterův model

Na základě energetické bilance zdokonalili Kunkel a Walter [63] Wygaardovu teorii a vytvořili model (Obr. 15), který pro modelování potřebuje nadmořskou výšku, čas, konkrétní den, rychlost větru a parametry půdy. Je také závislý na čisté, resp. bezoblačné obloze. Model je popsán vztahem:

$$C_n^2 = C_T^2 \cdot \frac{A^2 \cdot P^2}{T^4} \cdot \left(1 + \frac{0.03}{B}\right)^2,$$
(40)

kde hodnota A je $79 \cdot 10^{-6}$ k/m·b, B je Bowienovo číslo (B > 1), které lze zanedbat. P je tlak [mBar] a C_T^2 je teplotní parametr.

Obr. 15 Srovnání Kunkelova-Walterova modelu a C_n^2 pro data ve výšce 4,3 m nad zemí a rychlost větru je ve výšce 2,7 m. Měření reprezentuje 15minutové intervaly pro datum 4. června 1980. [63], s. 214]

Na zobrazených datech strukturního parametru s fixní výškou měření (Obr. 15), je vidět patrná shoda modelu s naměřenými daty mezi 8 a 18 hodinou. Naopak v noci dochází k velkému výkyvu naměřených dat. Model tak poskytuje profil s denním exponentem $h^{-\frac{4}{3}}$ pro klesající nadmořskou výšku a exponentem $h^{-\frac{2}{3}}$ pro noc.

Dále je patrné, že v noci je rozsah nadmořské výšky velmi malý, a tak je užitelnost modelu jen pro několik desítek metrů. Další vlastností modelu je jeho použití pro horizontální strukturní parametr C_n^2 , pokud je ovšem známé proudění v horizontální rovině.

2.1.3 Ryznarův-Bartlův model

Tento model, publikovaný Ryznarem a Bartlem [63], [47], [57], je závislý na vstupních parametrech, jako je teplota půdy, sluneční svit, zeměpisná poloha, vlhkost půdy, rychlost větru, oblačnost, datum a čas. Model se dá použít pro libovolnou oblast, ale vzhledem k tomu, že pro vytvoření modelu byly použity data z oblasti Bílé písky v Americe, je použitelnost modelu omezena jen na subtropické až tropické oblasti.

Pro hodnoty bez mraků nebo malou oblačností je model popsán rovnicí pro stabilní podmínky:

$$C_n^2 = 12.8 \cdot 10^{-14} \cdot e^{-\frac{(\nu-4)^2}{2*(2,3)^2}},\tag{41}$$

kde 12,8 · 10^{-14} je hodnota C_n^2 pro výšku v 10 metrech s rychlostí větru 4 m/s, velikost 2,3 m/s je standardní odchylka rychlosti větru a v je rychlost větru.

Pro výpočet modelu s velkým počtem mraků, slunečním svitem a rychlostí větru, je použit Kukhretsův-Tsvangův model. Vzhledem k nedostatku hodnot při zpracování během celého dne má model určité problémy s nízkou výškou od země, s rychlostí větru a slunečním svitem. Proto je v grafu možné zaznamenat velmi velkou změnu strukturního parametru C_n^2 (Obr. 31).

Jako vstupní hodnoty lze použít graf (Obr. 16) a tabulku (Tab. 4), kde pro rychlost větru a velikost mraků, jsou jednotlivé vlastnosti mraků rozepsány a přiřazeny konkrétní čísla, která jsou potřebná pro výpočet Ryznarova-Bartlova modelu.

Obr. 16 Graf pro zjištění mezní vrstvy se základními meteorologickými podmínkami [57], s. 9],

Tab. 4 Kódové označení mraků

Kódové označení	Popis mraku
0	Bez mraků
1	Nízké mraky, do 3 048 m
2	Střední mraky, velikost od 3 048 m do 6 096 m
3	Nízké a střední mraky
4	Nízké a vysoké mraky
5	Nízké, střední a vyoké mraky
6	Střední a vysoké mraky
7	Vysoké mraky, od 6 096 m

Nestabilní podmínky

Model bere v úvahu polohu a sluneční svit, který dopadá na zemi. Čas svitu (*Eqtm*) je vypočítán dle vztahu [57]:

$$Eqtm = -2,721\ 175 + ib \cdot (-0,507\ 081\ 7 + ib \cdot (0,508\ 285\ 4 \cdot 10^{-2} + ib \cdot (-0,211\ 381\ 6 \cdot 10^{-4} + ib \cdot (0,154\ 385\ 6 \cdot 10^{-5} + ib \cdot (-0,254\ 200\ 1 \cdot 10^{-7} + ib \cdot (0,169\ 264\ 1 \cdot 10^{-9} + ib \cdot (-0,255\ 574\ 7 \cdot 10^{-12} + ib \cdot (0,898\ 746\ 9 \cdot 10^{-15} + ib \cdot (-0,574\ 431\ 8 \cdot 10^{-18}))))))))))$$
(42)

kde ib je den v roce.

Sluneční čas je zobrazen dle:

Stime =
$$time - \left(\frac{Rlon - Rzone}{15} - \frac{Eqtm}{60}\right)$$
, (43)

kde *time* představuje čas dne v desetinném formátu, *Rlon* zeměpisnou délku v desetinném formátu a *Rzone* oblast měření.

Náklon ke Slunci *E* je vypočítán podle:

$$Rad = Etrad \cdot (a - b \cdot cc^2 \cdot sin(E) - d \cdot icc^2 + d \cdot sin(E)), \tag{44}$$

hodnota a, b, c a d je uvedena v

Tab. 5 Parametry pro sluneční náklon

Náklon	a	b	С	d
$E \leq 20^{\circ}$	0,308	1,165	0,058 6	1,074 3
$20^{\circ} < E \le 40^{\circ}$	0,569 5	1,065	0,475 5	0,280 9
$40^{\circ} < E \le 60^{\circ}$	0,786 2	0,273 6	0,694 3	0,046 7
$60^{\circ} < E$	0,642 3	-0,910 9	1,287 3	1,222

kde *icc* je míra oblačnosti v desetinném čísle a *E* je sluneční náklon [°] vypočítán dle:

$$E = 90 - \frac{(\arccos \cdot (\cos z))}{\pi} \cdot 365.$$
⁽⁴⁵⁾

Hodnota Etrad je vypočtena:

$$Etrad = scon \cdot cosz, \tag{46}$$

kde scon je solární konstanta [ly/min] a cosz lze vypočítat jako:

$$cosz = \sin \left(\frac{Rlat}{365} \cdot \pi\right) \cdot \sin(Decl) +$$

$$(47)$$

$$(Rlat) \qquad (Stime - 12 \ 15)$$

$$+\cos\left(\frac{Rlat}{365}\cdot\pi\right)\cdot\cos(Decl)\cdot\cos\left(\frac{Stime-12}{180}\cdot\frac{15}{\pi}\right)$$

Vztah *Decl* je dán:

$$Decl = 0,006\ 991\ 8 - 0,399\ 912 \cdot \cos(ds) + 0,070\ 257 \cdot \sin(ds) - -0,006\ 758 \cdot \cos(2ds) + 0,000\ 907 \cdot \sin(2 \cdot ds) - -0,002\ 697 \cdot \cos(3 \cdot ds) + 0,001\ 48 \cdot \sin(3 \cdot ds),$$

$$(48)$$

kde ds je:

$$ds = \frac{(ib-1)\cdot 2\cdot \pi}{365} \tag{49}$$

Dále vypočteme strukturní parametr C_n^2 ze slunečního záření a rychlosti větru:

$$C_n^2 = (0,127\ 24 \cdot 10^{-6} + 0,173\ 14 \cdot 10^{-6} \cdot Rad - 0,338\ 99 \cdot 10^{-7} \cdot v + 0,622\ 38 \cdot 10^{-6} \cdot Rad^2 + 0,102\ 64 \cdot 10^{-7} \cdot v^2 - 0,392\ 7 \cdot 10^{-6} \cdot Rad^3 - (50) -538\ 24 \cdot 10^{-9} \cdot v^3)^2,$$

kde v představuje rychlost větru [m/s].

2.1.4 h^(-4/3) model

Tento jednoduchý model [63] využívá jako vstupní parametr strukturní parametr v přízemní výšce. Model je charakterizován vztahem:

$$C_n^2 = C_n^2(h_0) \cdot h^{-\frac{4}{3}},\tag{51}$$

kde $C_n^2(h_0)$ je naměřený strukturní parametr v přízemní výšce h_0 [m] a h je výška nad povrchem země [m].

2.1.5 Tunickův Model

Tunickův model [74], [71] pro $h \leq |L|$ lze pro stabilní podmínky popsat následujícím vztahem:

$$C_n^2(h) = C_n^2(h^*) \cdot \left(\frac{h}{h^*}\right)^{-\frac{4}{3}},$$
(52)

a pro nestabilní podmínky vztahem:

$$C_n^2(h) = C_n^2(h^*) \cdot \left(\frac{h}{h^*}\right)^{-\frac{4}{3}},$$
(53)

kde h je výška nad zemí $[m], h^*$ je definován jako:

$$h^* = \frac{\Delta h}{\Delta \ln h}.$$
(54)

Tento model je určen pro velmi nízkou výšku nad zemí, řádově do jednotek metrů. Model tak počítá s gradientním nárůstem výšky h, s Moninovou-Obhukovou délkou, třecí rychlostí, teplotou a rychlostí proudění. Na následujícím obrázku (Obr. 17) je srovnání strukturního parametru $C_n^2(h)$ v jednotlivé výšce h.

Naměřená data byla pořízena z osmimetrové věže, pro 0,5 m, 1 m, 2 m, 4 m a 8 m nad povrchem. Měření probíhalo v rozmezí od 8. do 9. července 1992 v Canyonu ve Spojených státech amerických (35° N a 102° W), kde je nadmořská výška 1 170 m. n. m. Z modelu je vidět, že při výškách 1 a 4 m (červená barva) a pro 4 a 8 m (zelená barva) dochází k razantnímu poklesu strukturního parametru $C_n^2(h)$. Tento jev byl zapříčiněn velkým rozdílem teplot v přízemní vrstvě.

Obr. 17 Porovnání jednotlivých Tunických modelů pro období od 8. do 9. července 1992, ve výškách 1 a 4 m, 2 a 4 m, 4 a 8 m na zemí [74], s. 10]

2.1.6 Thiermannův-Kohnleův model

Jelikož se teplota v blízkosti povrchu země díky půdním vlastnostem, okolní teplotě, slunečnímu záření a rychlosti větru, velmi mění, je Thiermannův-Kohnleův model [8], [68] charakterizován teplotním parametrem C_T^2 . Model je vyjádřen následujícím vztahem:

$$C_n^2 = \left(79 \cdot 10^{-6} \cdot \frac{P}{T^2}\right)^2 \cdot C_T^2,$$
(55)

kde *T* je teplota [K], *P* je tlak [Pa] a C_T^2 je teplotní parametr $\left[m^{-\frac{2}{3}}\right]$.

Pro vzduch teplejší než povrch země je C_T^2 charakterizován $(h_n/L > 0)$ jako:

$$C_T^2 = 4 \cdot \beta \cdot \frac{{T_*}^2}{\left(k \cdot h_n\right)^{\frac{2}{3}}} \cdot \left[1 + 7 \cdot \frac{h_n}{L} + 20 \cdot \left(\frac{h_n}{L}\right)^2\right]^{\frac{1}{3}},\tag{56}$$

pro vzduch studenější než povrch země je C_T^2 charakterizován $(h_n/L < 0)$ jako:

$$C_T^2 = 4 \cdot \beta \cdot \frac{{T_*}^2}{\left(k \cdot h_n\right)^{\frac{2}{3}}} \cdot \left[1 - 7 \cdot \frac{h_n}{L} + 75 \cdot \left(\frac{h_n}{L}\right)^2\right]^{\frac{1}{3}},\tag{57}$$

kde β je konstanta (32 W/m²), *k* je Karmánova konstanta (0,35), h_n [m] nadmořská výška, *L* je Moninova-Obhukova délka [m] a T_* je teplotní parametr [K].

Teplotní parametr je definován jako:

$$T_* = -\frac{\varrho_0}{\nu_*},\tag{58}$$

a rychlost v_* je:

$$v_* = v \cdot k \cdot \left[ln\left(\frac{h}{z_0}\right) - \psi(L) \right]^{-1},\tag{59}$$

kde v je rychlost větru [m/s] ve výšce h[m], z_0 délka drsnosti povrchu (tráva 0,001 m) [m], ϱ_0 je vertikální tepelné proudění vzduchu [km/s], L je Moninova-Obhukova délka [m] a k je Karmánova konstanta.

Parametr $\psi(L)$ je definován jako:

$$\psi(L) = \begin{cases} 2 \cdot ln\left(\frac{1+y}{2}\right) + ln\left(\frac{1+y^2}{2}\right) - 2 \cdot tan^{-1}y + \frac{\pi}{2}, & \frac{h}{L} < 0, \text{ nestabiln} \\ -\frac{4,7 \cdot h}{L}, & \frac{h}{L} > 0, \text{ stabiln} \end{cases}$$
(60)

$$y = \left(1 - 15 \cdot \frac{h}{L}\right)^{\frac{1}{4}} \tag{61}$$

a parametr ϱ_0 lze definovat jako:

$$\varrho_{0} = \begin{cases} \frac{\eta}{c_{p} \cdot \rho} \cdot \left[\left(1 - \frac{\alpha}{1 + \frac{\gamma}{T_{s}}} \right) \cdot (1 - A) \cdot S - \beta \right], & den \\ \frac{c \cdot v^{3}}{1 + \left(\frac{c \cdot c_{p} \cdot \rho}{H_{max}} \right) \cdot v^{3}}, & noc \end{cases}$$
(62)

$$\rho = 1,286 - 0,004\ 05 \cdot T,\tag{63}$$

kde η je konstanta (0,9), c_p je teplota vzduchu (1 004 j/kg·K), α je schopnost vypařování vody ze země (0 je suchá země bez vegetace, 1 je zatravněná země), $T_s[K]$ je teplota odvozená z vlhkosti. A je albedo, S [W/m²] je sluneční záření, H_{max} [W/m³] je tepelné proudění (-50 do -100), v je rychlost vzduchu [m/s] a T je teplota [K].

Hodnota γ/T_s :

$$\frac{\gamma}{T_s} = 1,463\ 1 - 0,092\ 3 \cdot T + 0,002\ 7 \cdot T^2 - 3,18 \cdot 10^{-5} \cdot T^{-3},\tag{64}$$

je vyjádřená teplotou T [°C]. Naopak u hodnoty c platí:

$$c = -\frac{4}{27} \cdot \frac{k^2 \cdot T}{5 \cdot g \cdot h_n \cdot \left[ln\left(\frac{h_n}{z_0}\right) \right]^2},\tag{65}$$

kde teplota T je v K, $z_0[m]$ délka drsnosti povrchu (tráva 0,001 m), h_n [m] nadmořská výška a k je Karmánova konstanta.

2.1.7 Benderského model

Model [8] vychází z Thiermannova-Kohnlova modelu, který je založen na velmi krátkém časovém úseku nebo části dne. Model lze aplikovat do výšky 15 m, při teplotě v rozmezí od 9°C do 35°C, při relativní vlhkosti od 14% do 92% a při rychlosti větru od 0 do 10 m/s. Výsledná rovnice je popsaná následovně:

$$C_n^2 = 3.8 \cdot 10^{-14} \cdot t_w + f(T) + f(v) + f(q_r) - 5.3 \cdot 10^{-13}, \tag{66}$$

pro f(T), f(v) a $f(q_r)$ platí:

$$f(T) = 2 \cdot 10^{-15} \cdot T, \tag{67}$$

$$f(v) = -2.5 \cdot 10^{-15} \cdot v + 1.2 \cdot 10^{-15} \cdot v^2 - 8.5 \cdot 10^{-17} \cdot v^3, \tag{68}$$

$$f(q_r) = -2.8 \cdot 10^{-15} \cdot q_r + 2.9 \cdot 10^{-17} \cdot q_r^2 - 1.1 \cdot 10^{-19} \cdot q_r^3, \tag{69}$$

kde t_w je dočasná doba dobře rozeznané části, T [K] je teplota vzduchu, q_r [%] je relativní vlhkost v procentech a v [m/s] je rychlost vzduchu.

Denní model

Denní model je charakterizován:

$$C_n^2 = 3.8 \cdot 10^{-14} \cdot t_w + \frac{A_{albedo}}{e^T} \cdot 10^{-4} + f(v) + f(q_r) - 4.45 \cdot 10^{-14}, \tag{70}$$

kde pro kamenitý terén je:

$$f(v) = 8 \cdot 10^{-16} \cdot v - 4 \cdot 10^{-18} \cdot v^2, \tag{71}$$

$$f(q_r) = -8 \cdot 10^{-16} \cdot q_r + 5 \cdot 10^{-18} \cdot q_r^2, \tag{72}$$

pro zatravněný terén:

$$f(v) = 8 \cdot 10^{-14} \cdot v, \tag{73}$$

$$f(q_r) = -6,797 \cdot 10^{-15} \cdot q_r,\tag{74}$$

ve kterém je hodnota A_{albedo} (0,5 je pro Golan a 0,35 pro Negevsky experiment), T [°C] je teplota vzduchu, q_r [%] je relativní vlhkost v procentech a v [m/s] je rychlost vzduchu.

Noční model

Pro noční model je rychlost větru určena v rozmezí od 5 do 10 m/s a vysoká hodnota relativní vlhkosti od 92 % do 100 %. Model je dán vztahem:

$$C_n^2 = f(T) + f(v) + f(q_r) - 1.9 \cdot 10^{-14},$$
(75)

pro f(T), f(v) a $f(q_r)$ platí:

$$f(T) = 3 \cdot 10^{-17} \cdot T, \tag{76}$$

$$f(v) = 1, 2 \cdot 10^{-14} \cdot v, \tag{77}$$

$$f(q_r) = -7.5 \cdot 10^{-16} \cdot q_r. \tag{78}$$

2.2 Hraniční vrstva

Hraniční vrstva se nachází nad přízemní vrstvou a je charakterizována jako stabilní vrstva. Tato vrstva se nazývá "konvekční hraniční vrstva" nebo také "smíšená vrstva". Hraniční vrstva je popsána dvěma vertikálními strukturálními rovnicemi (Kaimal a Kukharets-Tsvang) [70].

2.2.1 Kaimalův model

První model (Obr. 18) [70] je definován teplotním parametrem C_T^2 Pro převod mezi teplotním parametrem C_T^2 a strukturním parametrem C_n^2 používá model rovnici Kunkelova-Walterova modelu (vztah (40)). Základní vlastností tohoto modelu je závislost mezi vertikálním větrem a proměnnou energii (sluneční svit):

$$\frac{C_T^2(h)}{C_T^2(h_0)} = \begin{cases} \left(\frac{h}{h_0}\right)^{-\frac{4}{3}}, & h_0 < h \le 0, 5 \cdot h_i \\ \left(\frac{0, 5 \cdot h_i}{h_0}\right)^{-4/3}, & 0, 5 \cdot h_i < h \le 0, 7 \cdot h_i \\ \left(\frac{0, 5 \cdot h_i}{h_0}\right)^{-\frac{4}{3}}, & 0, 7 \cdot h_i < h \le h_i \end{cases}$$
(79)

kde h_i je výška inverzní vrstvy nad zemí [m].

Výška vrstvy se během roku mění a bylo by velmi pracné zjišťovat její velikost. Pro přibližné určení velikosti výpočet vrstvy $\cdot h_i$ slouží následující vztah [70]:

$$h_i = A \cdot e^{-|x - c \cdot y|^b},\tag{80}$$

kde funkce dne v roce A je charakterizována jako:

$$A = 2\ 100 + 1\ 300 \cdot \sin\left(\frac{2 \cdot \pi \cdot (M-3)}{12}\right).$$
(81)

Pohyblivá část měsíce M je podle Juliánského data Jd charakterizována:

$$M = \frac{(J_d - 15)}{365} \cdot 12.$$
(82)

Dále je třeba určit časové parametry pro začátek dne a pro konec dne, které budou sloužit pro výpočet výšky vrstvy $\cdot h_i$. Pro ráno je časový parametr t_m určen podle:

$$t_m = 10,5 + 0,4 \cdot \sin\left(\frac{2 \cdot \pi \cdot (M+2,2)}{12}\right),\tag{83}$$

a pro večer je časový parametr t_a určen:

$$t_a = 17,3 + 0,6 \cdot \sin\left(\frac{2 \cdot \pi \cdot (M - 2,6)}{12}\right) + 0,1 \cdot \sin\left(\frac{2 \cdot \pi \cdot (M - 2,5)}{6}\right).$$
(84)

Parametr x je pak určen:

$$x = 2 \cdot \frac{t - t_0}{t_a - t_m} + \frac{c}{e'},\tag{85}$$

kde t_0 je odchylka od skutečného času t definována:

$$t_0 = \frac{t_m + t_a}{2}.$$
 (86)

Parametr b je zapsán jako:

$$b = \frac{2 \cdot e}{\frac{1}{g_m} - \frac{1}{g_a}},\tag{87}$$

a parametr a jako:

$$a = \frac{1}{2} \cdot \left(\frac{1}{g_m} - \frac{1}{g_a}\right),\tag{88}$$

Kde g_m je hodnota 0,6 a g_a je dáno vztahem:

$$g_a = -1,12 + 0,16 \cdot \sin\left(\frac{2 \cdot \pi \cdot (M+4,4)}{12}\right).$$
(89)

Pro výpočet výslední výšky inverzní vrstvy dosadíme parametr b, c a x do základní rovnice (vztah (80)). Tato výška se mění podle aktuálního dne, měsíce, roku a času.

Obr. 18 Kaimalův model, pro měření. ze září 2005 v 14:19 hod, kde altitude je výška v km [63], s. 215]

Tento model (Obr. 18) je platný pouze pro dominantní proudění v denních hodinách. Vhodné využití tohoto modelu je v denním režimu pro oblast pouště a tropického pásma.

2.2.2 Kukharetsův-Tsvangův model

Druhý model (Obr. 18) [63], [47], [70], z kategorie konvekční mezní vrstvy, je vylepšením Kaimalova modelu, který je doprovázen inverzní vrstvou. Kaimalův model, stejně jako Kukharetsův-Tsvangův model potřebuje pro simulaci výšku inverzní vrstvy. Ta se špatně předpovídá, ale u Kukharetsova-Tsvangova modelu je předpoklad, že $h_{max} = 0.01 \cdot h_i$. Model je definován teplotním parametrem C_T^2 :

$$\frac{C_T^2\left(\frac{h}{h_i}\right)}{C_T^2(0,1)} = 0,046 \cdot \left(\frac{h}{h_i}\right)^{-4/3} + 0,6 \cdot e^{-12 \cdot \left[\left(\frac{h}{h_i}\right) - 1,1\right]^2},\tag{90}$$

přičemž Murphy tuto rovnici (vztah (90)) upravil pro libovolnou referenční výšku. Rovnice vypadá následovně 0:

$$\frac{C_T^2(h)}{C_T^2(h_0)} = \left(\frac{h_i}{10 \cdot h_0}\right)^{-4/3} \cdot \left[\left(\frac{10 \cdot h}{h_i}\right)^{-\frac{4}{3}} + 0.6 \cdot e^{-12 \cdot \left[\left(\frac{h}{h_i}\right)^{-1.1} \right]^2} \right],\tag{91}$$

pro převod mezi teplotním parametrem C_T^2 a strukturním parametrem C_n^2 používá model rovnici Kunkelova-Walterova modelu (vztah (40)).

Při porovnání Kaimalova a Kukharetsova-Tsvangova modelu, je patrné, že vrchol inverzní vrstvy h_i je o něco vyšší než Kaimalův model. Celý model je založen na datech pořízených v roce 1977 kolem 12:00, proto se tento model používá pro denní režim.

2.3 Mezní vrstva

Další kategorií jsou modely v mezní vrstvě [70], [63], které zahrnují meteorologická i naměřená data strukturního parametru C_n^2 .

Tyto modely, jsou hojně používané. Jsou to třeba modely Hufnagelův, Hufnagelův-Valleyův, NOAA (VanZandrt) nebo Tatarského model. Modely zde uvedené vycházejí z Tatarského rovnice (vztah (8)) [63], [5], [22], [23].

2.3.1 Tatarského model

Jako první model z této kategorie je Tatarského model [63] a je kvůli troposférickým turbulencím omezen pouze na stratosféru:

$$C_n^2 = a \cdot L_0^{\frac{4}{3}} \cdot (grad \ n)^2, \tag{92}$$

kde *n* je nekolísavý index lomu, L_0 je vnější škála turbulence, *a* je konstanta 2,8.

Gradient n [63] je vertikální směr vyjádřený:

$$grad \ n = \frac{\partial n}{\partial \theta} \cdot \frac{d\theta}{dh} = \left(79 \cdot 10^{-6} \cdot \frac{P}{g \cdot T}\right) \cdot N^2, \tag{93}$$

kde *N* je Bruntova-Vaisalova frekvence (vztah (26)), *g* je gravitační zrychlení $[m/s^2]$, *P* je tlak [Pa], *T* je teplota [K] a θ je potenciálová teplota [K].

Hodnota L_0 je vyjádřená:

$$L_0 = 0, 1^{\frac{4}{3}} \cdot 10^{y}, \tag{94}$$

pro troposféru a pro stratosféru [22] je y vyjádřeno:

$$y_{troposf\acute{e}ra} = 1,64 + 42 \cdot \left(\frac{\delta v}{\delta h}\right),\tag{95}$$

$$y_{stratos\acute{e}ra} = 0,506 + 50 \cdot \left(\frac{\delta v}{\delta h}\right),$$
(96)

kde v je rychlost větru [m/s] a h je výška nad povrchem země [m].

Výsledná rovnice (vztah (92)) kombinuje velikost turbulence a teplotního gradientu pomocí Bruntovy-Vaisalovy frekvence (vztah (26). Pokud teplota klesne k nule, nabývá strukturní parametr C_n^2 nulové hodnoty. Proto dochází k silným mechanickým turbulencím v blízkosti povrchu země.

Pro nižší výšku lze grad n [65], [5], [22] zapsat následovně:

$$grad \ n = \frac{-79 \cdot 10^{-6} \cdot P}{T^2} \cdot \left(1 + \frac{15\ 500 \cdot q}{T}\right) \cdot \left(\frac{dT}{dh} + \gamma_a - \frac{7\ 800}{1 + \frac{15\ 500 \cdot q}{T}} \cdot \frac{dq}{dh}\right), \ (97)$$

kde *P* je tlak [Pa], *h* je výška [m], *q* je vlkost [g/m³] a γ_a je adiabatický gradient teploty [K/m].

Velikost vlhkosti lze zjednodušeně vypočítat jako [65], [62]:

$$q = \varepsilon \cdot \frac{e}{P'} \tag{98}$$

kde ε je plynná konstanta (0,622), *P* je tlak [Pa] a *e* je poměr hmotnosti vodní páry k hmotnosti suchého vzduchu.

2.3.2 Hufnagelův model

Hufnagelův model [63], obsahuje scintilometrická a balónová měření. Proto nahradil dřívější empirické modely založené na menším množství vstupních dat. Prvotní verze modelu zahrnovala konstrukci modelu a náhodnou modulaci pro rozvrstvení [63].

Hufnagelův model je pro rozmezí výšky 3 až 24 km nad povrchem definován dvěma exponenciálními trendy. První exponenciála dominuje ve vyšších vrstvách troposféry a stratosféry, zatímco druhá exponenciála dominuje v nižších výškách:

$$C_n^2(h) = 8.2 \cdot 10^{-16} \cdot W^2 \cdot \left(\frac{h}{10}\right)^{10} \cdot e^{-h} + 2.7 \cdot 10^{-16} \cdot e^{-\frac{h}{1.5}},\tag{99}$$

kde *h* je výška [km] a rychlost větru *W* [m/s].

Parametr *W* je definován v rozsahu 5 až 20 km nad zemí:

$$W^{2} = \frac{1}{15} \cdot \int_{5}^{20} V^{2}(h) dh, \tag{100}$$

kde V(h) je rychlost větru [m/s] ve výšce h nad zemí [km].

Model používá data ze střední vrstvy (nízká tropopauza), proto není vhodné použití zmíněného modelu pro subtropickou atmosféru s velkou tropopauzou. Při porovnání s AFGL modelem, lze spatřit, že i při sebemenším větru ve vyšších vrstvách vznikne velmi malá hodnota strukturního parametru C_n^2 . Při aplikování tohoto modelu v Pensylvánii došlo ke zjištění, že model neefektivně modeloval změny strukturního parametru C_n^2 , isoplanárního úhlu nebo momentu scintilace [63]. Využití modelu je pro denní, i pro noční režim.

2.3.3 Hufnagelův-Valleyův (H-V) model

Tento model vznikl přidáním mezní vrstvy do základního Hufnagelova modelu [63], [47]. Vylepšený model obsahuje dva parametry, které reprezentují relativní sílu turbulencí v blízkosti země a rychlosti větru:

$$C_n^2(h) = 5.94 \cdot 10^{-53} \cdot \left(\frac{v}{27}\right)^2 \cdot h^{10} \cdot e^{-\frac{h}{1000}} + 2.7 \cdot 10^{-16} \cdot e^{-\frac{h}{1500}} + A \cdot e^{-\frac{h}{100}}, \quad (101)$$

kde *h* je výška [m], *v* je rychlost větru [m/s] a *A* je nominální hodnota $C_n^2(h) \left[m^{-\frac{2}{3}}\right]$ na zemi ve výšce *h*.

Rychlost větru je pak dána vztahem:

$$v = \left[\frac{1}{15 \cdot 10^3} \cdot \int_{5 \cdot 10^3}^{20 \cdot 10^3} V^2(h) dh\right]^{\frac{1}{2}},$$
(102)

kde V(h) je Buftonův větrný model definovaný:

$$V(h) = v_{poh}(h) + v_{v \check{e} tru} + v_t \cdot e^{-\left(\frac{h-h_t}{d_t}\right)^2},$$
(103)

ve kterém je *h* je výška nad povrchem země [m], $v_{v \in tru}$ je přízemní vítr [m/s], v_t rychlost větru [m/s] v tropopauze, h_t je výška tropopauzy [m], d_t je tloušťka [m], $v_{poh}(h)$ je rychlost větru v závislosti na výšce *h*.

Pro H-V model (vztah (101)) jsou použity hodnoty v_t *je* 30 m/s, h_t *je* 9 400 m, $d_t = 4\,800$ m. Pro velmi silný vítr jsou použity hodnoty v je 10,21 m/s a 30 m/s a dvě nominální hodnoty pro turbulenci na zemi A *je* $1,7 \cdot 10^{-14} a 1,7 \cdot 10^{-13} m^{-\frac{2}{3}}$.

2.3.4 Hufnagelův-Valleyův 5/7 model

Hufnagelův-Valleyův 5/7 model (Obr. 19), je vylepšený Hufnagelův-Valleyův model [63], 0, který přidává lepší rozlišení strukturního parametru pro minimální výšku modelu a lze ho aplikovat jak pro noční režim, i pro denní režim.

Model je popsán následující rovnicí:

$$C_n^2(h) = 8,148 \cdot 10^{-26} \cdot W^2 \cdot h^{10} \cdot e^{-h} + 2,7 \cdot 10^{-16} \cdot e^{-\frac{h}{1,5}} + A^{-\frac{h}{0,1}}, \tag{104}$$

kde *h* je výška nad zemí [km], *v* je rychlost větru [m/s] a *A* je nominální hodnota $C_n^2(h)$ $\left[m^{-\frac{2}{3}}\right]$ na zemi.

Obr. 19 Porovnání Hufnagelova-Valleyova modelu a CLEAR 1 modelu, s parametery W = 21 m/s a $A = 1,7 \cdot 10^{-14} m^{-\frac{2}{3}}$. [63], s. 219]

2.3.5 Brooknerův modifikovaný model

Tento numerický model je založený na Hufnagelovských datech [11], a Friedově modelu [11]. Předpokladem tohoto modelu je základní rovnice:

$$C_n^2 = C_n^2(h) = C_{n0}^2 \cdot h^{-b} \cdot e^{-\frac{h}{h_0}},$$
(105)

kde b je konstanta, h_0 je přízemní výška [m] a C_{n0}^2 je strukturní parametr $[m^{-\frac{2}{3}}]$ ve výšce h_0

Obr. 20 Brooknerův model pro různá časová období [11],

Pro lepší aproximaci strukturního parametru $C_n^2(h)$ ve výšce *h* byla původní rovnice (vztah (105)) vylepšena následovně

$$C_n^2(h) = C_{n0}^2 \cdot h^{-b} \cdot e^{-\frac{h}{h_0}} + C_{np}^+ \cdot \delta \cdot (h - h_p),$$
(106)

pro $\delta(h)$ platí:

$$\int_{-\infty}^{\infty} \delta(h) dh = 1, \tag{107}$$

kde $\delta(h) = \infty$ a C_{np}^+ je průměrná hodnota strukturního parametru $C_n^2(h)$ pro tropopauzu $h = h_p = 12 \ km$., pro slunný den je $C_{np}^+ \left(4,3 \cdot 10^{-13} \ m^{\frac{1}{3}}\right)$.

Pro model jsou použity hodnoty pro *b*, h_0 a C_{n0}^2 (Tab. 6), kde parametr C_{n0}^2 je specifikován jako $C_n^2(h) \vee \left[m^{-\frac{2}{3}}\right]$ a *h* v metrech.

Tab. 6 Hodnoty Brooknerova modelu pro b, h_0 a C_{n0}^2 pro různé dny [11]

Verze dne	b	h ₀ [m]	$C_{n0}^2 \left[m^{-\frac{2}{3}} \right]$
Slunečný den	5/6	320	$3,6 \cdot 10^{-13}$
Noc (Clear Night)	1	320	$1,6 \cdot 10^{-13}$
Stmívání	2/3	320	$8,7 \cdot 10^{-15}$

2.3.6 NOAA (VanZandt) model

Model NOAA [63], založený na jemném vertikálním větru a teplotě, je definován Bruntovou-Vaisalovou frekvencí (vztah (26)) [33] a statickým sečtením turbulentních vrstev o tloušťce L.

Pro model NOAA platí:

$$C_n^2 = 2,8 \cdot M_0^2 \cdot \int_{L_{min}}^{L_{max}} L^{\frac{4}{3}} \cdot P_L dL \int_0^\infty P_S dS \int_{-\infty}^\infty N^4 \cdot P_N dN^2,$$
(108)

A pro vertikální gradient indexu lomu M_0 :

$$M_0 = -79 \cdot 10^{-6} \cdot \frac{P}{T \cdot g'}$$
(109)

kde *P je* tlak [mbar], *T je* teplota [K], *g* je gravitační zrychlení [m/s²], *P_L* hustota pravděpodobnosti pro vnější stupnici, *P_S* střihová hustota pravděpodobnosti a *P_N* je hustota pravděpodobnosti Bruntovy-Vaisalovy frekvence (vztah (26)). Vertikální gradient indexu lomu *M* [65] (vztah (109)), který je potřeba pro výpočet indexu lomu, nezahrnuje všechny proměnné, na kterých je strukturní index lomu závislý.

Model obsahuje nejvíce prvků ze všech modelů, a vyžaduje tak dobrou znalost při zpracování v hornatém terénu. Porovnaný teoretického modelu s naměřenými hodnotami je zobrazen na Obr. 21.

Obr. 21 Měření pro NOAA model dne 8. června 1988 od 2 do 3hodin [63], s. 224],

2.4 Vyšší troposféra

Další oblastí atmosféry je vyšší troposféra. Zde se nacházejí modely strukturního parametru indexu lomu založené na CLEAR 1 modelu. Do této kategorie jsou zařazeny modely, jako SLCDay a SLCNight, AFGL model a model CLEAR 1. Nejprve bude popsán model CLEAR 1 model.

2.4.1 CLEAR 1 summer (CLEAR 1) model

Model (Obr. 22) je charakterizován:

pro 1,23 <
$$h \le 2,13$$

 $log_{10}(C_n^2) = -10,702 \ 5 - 4,350 \ 7 \cdot h + 0,814 \ 1 \cdot h^2$ (110)
pro 2,13 < $h \le 10,34$
 $log_{10}(C_n^2) = -16,289 \ 7 + 0,033 \ 5 \cdot h - 0,013 \ 4 \cdot h^2$ (111)

pro 10,34 <
$$h \le 30$$

 $log_{10}(C_n^2) = -17,057\ 7 - 0,044\ 9 \cdot h - 0,000\ 5 \cdot h + (1)$
 $+0,618\ 1 \cdot e^{-0,5 \cdot \left(\frac{h-15,561\ 7}{3,466\ 6}\right)^2}$

12)

kde *h* je vzdálenost od střední hladiny moře [km].

Klíčovou vlastností modelu je gausovský vrcholek v 15km (Obr. 22). Tento vrchol naznačuje stratosférickou vrstvu. Data pro model byla naměřena v letním měsíci v poušti v Novém Mexiku.

Obr. 22 Porovnání modelu AFGL AMOS a modelu a CLEAR 1 night modelu, model AMOS je zobrazen od vzdálenosti 3 038 km a CLEAR model je od 1 216 km [63], s. 220].

CLEAR 1 model je použitelný hlavně pro noční režim. Pro denní režim je použitelný jen do 5 km nad mořem.

2.4.2 Clear 2 model

Tento model (Obr. 23) [6] je založen na datech získaných z WSMR (White Sands Missile Range), a je definován pro 1 230 m $\leq h \leq 30$ km. Pro vhodnější numerické výpočty je za hodnotu C_n^2 , která je nižší než 1 230 m, dosazena hodnota C_n^2 (1 230 m).

Obr. 23 Clear 2 model, kde altitude je výška nad mořem [km] [6], s. 89]

2.4.3 SLCDay a SLCNight model

SLC (Submarine Laser Communication studies) model patří mezi nejrozšířenější modely [63], [3]. Denní model (SLCDay):

$$C_n^2(h) = \begin{cases} 1,7 \cdot 10^{-14}, & h \le 18,5 \\ 3,13 \cdot 10^{-13} \cdot h^{-1}, & 18,5 < h \le 240 \\ 1,3 \cdot 10^{-15}, & 240 < h \le 880 \\ 8,87 \cdot 10^{-7} \cdot h^{-3}, & 880 < h \le 7200 \\ 2,10 \cdot 10^{-16} \cdot h^{-0.5}, & 7200 < h \le 20000 \end{cases}$$
(113)

vznikl přepracováním nočního modelu (SLCNight):

$$C_n^2(h) = \begin{cases} 8.4 \cdot 10^{-15}, & h \le 18.5 \\ 2.87 \cdot 10^{-12} \cdot h^{-2}, & 18.5 < h \le 110 \\ 2.5 \cdot 10^{-16}, & 110 < h \le 1500 \\ 8.87 \cdot 10^{-7} \cdot h^{-3}, & 1500 < h \le 7200 \\ 2.10 \cdot 10^{-16} \cdot h^{-0.5}, & 7200 < h \le 20000 \end{cases}$$
(114)

kde *h* je výška nad povrchem země [m]. Pro výšku 1 500 m mají SLCDay (vztah (113)) a SLCNight (vztah (114)) modely stejné hodnoty. Noční model je zobrazen na Obr. 24

Díky nedostatku naměřených hodnot pro noční model došlo mezi výškou 110 m a 1 500 m k chybě. Tento fakt má za následek schodovitý skok, který je z následujícího Obr. 24 jasně patrný.

Obr. 24 Porovnání nočního SLC modelu a AFGL modelu, v minimální výšce 3 038 km. [63], s. 220]

Data pro tento model byla naměřena bez mezní vrstvy v observatoři AMOS na Havaji, a proto nevznikají žádné jiné parametrické závislosti kromě nadmořské výšky. Model se dobře hodí pro subtropické podnebí. I přesto, že umístění a odvození modelu [63] z logaritmicky průměrných hodnot měření je pro model dost limitující, hodí se i tak pro všestranná použití.

2.4.4 AFGL AMOS model

AFGL model je modifikací SLC modelu [63] při velkém počtu přesných měření v několika meteorologických podmínkách. Model je tvořen aritmetickým průměrem, na rozdíl od SLC modelu, kde je použit logaritmický průměr (Obr. 24). Odlišností mezi SLC a AFGL modelem je jejich chování ve stratosféře a troposféře.

AFGL model je definován pro $3,052 < h \le 5,2$:

$$log_{10}(C_n^2) = -12,412 - 0,4713 \cdot h - 0,0906 \cdot h^2, \tag{115}$$

pro 5,2 < $h \le 30$:

$$log_{10}(C_n^2) = -17,127 \ 3 - 0,030 \ 1 \cdot h - 0,001 \cdot h^2 +$$

$$+0,506 \ 1 \cdot e^{-0,5 \cdot \left(\frac{h-15,086 \ 6}{3,297 \ 7}\right)^2},$$
(116)

pro noční AFGL model platí, že h je vzdálenost od střední hladiny moře [km]

2.4.5 MAUI 3 model

Tento model Maui 3 [6] je vylepšený model AFGL AMOS. Data jsou definovaná pro $h > 3\,050$ m. Model vychází z hodnoty 3 038 m (hora Haleakala):

$$C_n^2(h) = \begin{cases} 8,4 \cdot 10^{-15} \cdot \left(\frac{h}{18,5}\right)^{-2}, & 18,5 < h \le 110\\ 2,5 \cdot 10^{-16}, & 110 < h \le 1500\\ 8,87 \cdot 10^{-16} \cdot \left(\frac{h}{1000'}\right)^{-3}, & 1500 < h \le 7000 \quad (117)\\ 6,34 \cdot 10^{-18} \cdot \left(\frac{h}{1000'}\right)^{-\frac{1}{2}}, & 7000 < h \le 20500\\ 0, & 20500 < h \end{cases}$$

kde *h* je výška [m], nulová výška nad zemí jsou 3 km.

2.4.6 Green Wood model

Green Wood model [78], [6] (Obr. 25) je obdobou modelu SLC. Popis modelu je dán následujícím vztahem

$$C_n^2(h) = [2, 2 \cdot 10^{-13} \cdot (h+10)^{-1,3} + 4, 3 \cdot 10^{-17}] \cdot e^{-\frac{h}{4\,000}},$$
(118)

kde h výška nad povrchem země [m].

Obr. 25 Greenwood model porovnaný s ostatními modely [78], s. 78]

2.5 Další modely Strukturního parametru lomu

Pro velký rozsah práce jsou zde uvedeny jenom názvy modelů strukturního parametru lomu. Jsou to:

Coulmanův model [63], [14], LEEDR model [6], [61], NSLOT model (mořská voda) [6], Heeleesův model, WSMR model [6], Pamela model [22], HELHEM model 0, Army model (Tofsted, Brien, Vaucher) [70] a Clear Air model.

2.6 Shrnutí modelů strukturního parametru indexu lomu

V této kapitole jsou postupně srovnány jednotlivé modely, jak podle umístění a teploty, tak i podle použití samostatných modelů. Jednotlivé modely včetně jejich vlastností a použití byly v práci popsány, a proto bude v této kapitole provedeno jenom shrnutí modelů a popis jejich základních charakteristik.

2.6.1 Přízemní vrstva

Tato kategorie využívá pro modelování Moninovu-Obhukovu délku a Bruntovu-Vaisalovu frekvenci. První model v této kategorii je Wyngaardův model, který je pro výšku 133 m nad povrchem země v denním režimu podobný H-V modelu. H-V model pod touto výškou projevuje lehké zvýšení strukturního parametru C_n^2 až k povrchu země.

Dalším modelem je Kunkelův-Walterův model, (Obr. 18), který k simulaci potřebuje nadmořskou výšku, čas, rok, rychlost větru, parametry půdy a vlhkost půdy. Tento model se nejlépe hodí jen pro bezoblačnou oblohu, a tak je jeho možnost použití velmi limitující. Ve dne jsou vlastnosti modelu velmi dobré, ale v nočních hodinách se

již hodnoty mírně odlišují.

Ryznarův-Bartlův model [63], [47], [57] je díky závislosti na slunečním svitu a rychlosti větru velmi limitující. Další vlastností tohoto modelu je, že při vzrůstající rychlosti větru dochází k poklesu strukturního parametru Pro rozsah 10 m–300 m je nadmořská výška v závislosti na síle větru v rozsahu $z^{-0,5}$ až z^{-2} .

H model je použitelný pro čas mezi svítáním a soumrakem. Pro simulaci tohoto modelu je potřeba změřit strukturní parametr v přízemní výšce.

Tunickův model byl navržen pro měření ve velmi nízké výšce nad zemí, proto se nedá aplikovat do větších výšek atmosféry.

Thiermannův-Kohnleův model používá hodně vstupních parametrů, jako je albedo, drsnost povrchu země, vlhkost a sluneční záření. Díky tomu je možné použít model v jakékoliv oblasti na Zemi.

Posledním modelem v této kategorii je Benderského model, který je zdokonalením Thiermanova-Kohnlova modelu. Benderského model definuje pro různé povrchy země speciální vztahy, které jsou aplikovány při výpočtu samotného modelu. Model tak lze použít pro noční režim i pro denní režim.

2.6.2 Konvekční mezní vrtsva

Další kategorii modelů je konvekční mezní vrstva, která se nachází nad přízemní vrstvou. V této kategorii jsou zastoupeny jenom dva modely a to Kaimalův a Kukharetsův-Tsvangův model.

První, Kaimalův, model používá k výpočtu Kunkelův-Walterův model. Kaimalův model je použitelný pro denní režim.

Druhý a zároveň poslední model z této kategorie je Kukharetsův-Tsvangův model, který lze použít v blízkosti povrchu země. Tento model také představuje průměrné turbulentní podmínky, a proto je použití modelu vhodné při denních podmínkách, za jasné oblohy a při mírných větrných podmínkách.

2.6.3 Mezní vrstva

Do této kategorie je zařazen Hufnagelův model [63]. Tento model je definován pro výškové rozmezí 3 až 24 km nad povrchem země. Je navržen pro modelování strukturního parametru C_n^2 v subtropické atmosféře s vysokou tropopauzou.

Vylepšenou variantou modelu je Hufnagelův-Valleyův (H-V) model, kde se do modelu zahrnují data ze vzdáleností blízkých k povrchu země. Dalším je Hufnagelův-Valleyův 5/7 model, se nejlépe hodí pro noční režim.

Dalším modelem z této kategorie je NOAA (VanZandt) model založený na jemném vertikálním větru. Později byl model zdokonalen zahrnutím teploty a Bruintovy-Vaisalovy frekvence [63]. Model je komplexní a byl vyvinut pro hornatý terén.

2.6.4 Vyšší troposféra

V této kategorii jsou veškeré modely založeny na CLEAR 1 modelu. CLEAR 1 je

použitelný zejména pro noční režim, ale do výšky 5 km se dá použít i pro denní režim. Model CLEAR 2 je zdokonalením modelu CLEAR 1.

Dalšími modely jsou model SLCNight a SLCDay. Tyto modely se nehodí pro subtropickou oblast.

AFGL AMOS model [63] je vytvořený z SLC modelu doplněný o několik balonových měření. Ačkoliv je hora, ze které byla data pořízena, 3 038 m vysoká, začíná samotný model již od 14 m nad zemí. Odlišnost modelů je vidět ve spodní části na obrázku (Obr. 24), kde je také možné spatřit omezení výšky observatoře (hora Haleakala). Zpřesněním AFGL modelu získáváme typ MAUII 3.

Poslední modelem je Green Wood model, který je podobný SLC modelu, ale nemá schodovitou charakteristiku při povrchu země. To je způsobeno přesnějším měřením.

3 SIMULACE JEDNOTLIVÝCH MODELŮ

V této kapitole jsou postupně rozebrány a zhodnoceny jednotlivé modely. Modely, které jsou uvedeny v této kapitole, se vztahují na místo Praha-Libuš, kde byl vypuštěn meteorologický balón, aby zaznamenal hodnoty tlaku, teploty a rychlosti větru do výšky 30 km.

3.1 Parametry stanoviště Praha-Libuš

Vzdálenost nad povrchem země v měřené destinaci je nadmořská výška = 303 m(červená vertikální čára). Kódové označení stanice je 11 520, výška nad hladinou země *h* je od 0 km do 30 km. Datum provedeného měření je: 8. dubna 2012 čas: 00:00 h (noc) a 12:00 h (den). Pro přehlednost je zde přiložena tabulka naměřených hodnot (Tab. 7) teploty (Obr. 26), rychlosti větru (Obr. 27) a tlaku (Obr. 28) v jednotlivých výškách nad mořem. Vzhledem k tomu, že se rychlost větru během celého roku mění nezávisle, práce neporovnává jednotlivé měsíce, ale pouze jeden den.

	Teplo	ta [K]	Rychlost v	větru [m/s]	Tlak F	[hPa]
Výška [m]	Noc	Den	Noc	Den	Noc	Den
303	278,800	273,000	1,586	2,644	970	976
5 000	249,200	242,800	9,254	6,081	534	532
10 000	225,800	227,800	10,840	5,552	250	250
15 000	219,900	220,500	8,725	4,495	117	117
20 000	218,400	216,300	3,702	3,702	53	50
25 000	223,000	223,500	3,173	4,230	24	25
30 000	231,800	_	6,346	_	11	_

Tab. 7 Naměřené hodnoty pro oblast Praha-Libuš

Z Tab. 7 je patrné, že rozdíl mezi denní a noční teplotou je maximálně 5 °C. V noci byla rychlost větru daleko menší než v denních hodinách. To má za následek vypařování tepla ze země a ovlivňování tepelné proudění. Ve dne se rychlost větru velice měnila a maximální rychlost byla 10,840 m/s. Z následujícího grafu (Obr. 26) je patrné, jak tlak s rostoucí výškou klesá. Tlak se pro noc a den měnil jen minimálně, protože tlak nezávisí na teplotě ani na rychlosti větru, ale pouze na nadmořské výšce (vzduchovém sloupci od povrchu země).

Obr. 27 Rychlost větru Praha-Libuš

Obr. 28 Tlak Praha-Libuš

3.2 Jednotlivé modely pro stanoviště Praha - Libuš

3.2.1 Přízemní vrstva

3.2.1.1 Wyngaardův model

Tento model slouží jako základní model pro přízemní vrstvu. Červená vertikální čára označuje použití modelu od nadmořské výšky. Hodnoty modelu jsou v Tab. 8.

Obr. 29 Wyngaardův model - simulace

Tab. 8 Wyngaardův model během dne

Režim dne	$C_n^2 \left[m^{-\frac{2}{3}}\right]$		
	Minimum	Maximum	
Noc	$6,650 \cdot 10^{-03}$	$5,952 \cdot 10^{-07}$	
Den	2,614 · 10 ⁻⁰²	$1,847 \cdot 10^{-07}$	

Model dosahuje hodnoty strukturního parametru C_n^2 větší než 10^{-10} m⁻²/₃, a tak by měl vykazovat obrovské turbulentní podmínky. Protože hodnota strukturního parametru C_n^2 je moc velká a model v noci vykazuje větší turbulenci, než model ve dne, nedá se tento model považovat za plnohodnotný.

3.2.1.2 Kunkelův-Walterův model

Model vykazuje (Obr. 30) ve dne a v noci "skok", která je patrná v nižší výšce. Tato anomálie je způsobena Moninovou-Obhukovou délkou, která je v přízemní výšce příliš velká. Hodnoty modelu jsou uvedeny v Tab. 9.

Obr. 30 Kunkelův-Walterův model - simulace

Tab. 9 Kunkelův-Walterův model během dne

Režim dne	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Minimum	Maximum
Noc	$1,988 \cdot 10^{-17}$	$5,499 \cdot 10^{-22}$
Den	$5,518 \cdot 10^{-18}$	$3,313 \cdot 10^{-21}$

3.2.1.3 Ryznarův-Bartlův model

Pro model byly použity hodnoty Rzone (15), Rlog (14,45), Rlat (50), scon (1370/697,8), ich (5) a icc (0,1). Z grafu (Obr. 31) je vidět prudké vychýlení hodnoty strukturního parametru $C_n^2 \left(2,771 \cdot 10^{-16} m^{-\frac{2}{3}}\right)$. Tato výchylka je způsobena velkou změnou rychlosti větru a velmi malé hodnotě strukturního parametru C_n^2 .(vztah (50)). Hodnoty modelu jsou v Tab. 10.

Obr. 31 Ryznarův-Bartlův model - simulace

Tab. 10 Ryznarův-Bartlův model během dne

Režim dne	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Minimum	Maximum
Noc	$6,144 \cdot 10^{-16}$	$5,835 \cdot 10^{-19}$
Den	1,081 · 10 ⁻¹⁵	8,392 · 10 ⁻¹⁹

3.2.1.4 h-4/3 model

Tento model se používá jako základní model strukturního parametru, a proto má pouze jednu vstupní veličinu C_{n0}^2 , pro den je použita hodnota $4,2 \cdot 10^{-14} \ m^{-\frac{2}{3}}$ a pro noc $1,6 \cdot 10^{-13} \ m^{-\frac{2}{3}}$. Červená linie označuje použití modelu od nad mořské výšky.

Vzhledem k tomu, že v tomto modelu není zohledněna rychlost větru, ani teplota, nevznikají interference, které jsou patrné např. u NOAA modelu (kap. 2.3.6). Proto je model vhodný zejména pro stručné shrnutí a výpočty, kde není předem známá teplota, a zároveň když je požadovaná pouze jednoduchá charakteristika atmosférického prostředí. Hodnoty modelu jsou uvedeny v Tab. 11.

Obr. 32 H-4/3 model - simulace

Tab. 11 Model h-4/3 během dne

Režim dne	$C_n^2 \left[m^{-\frac{2}{3}}\right]$		
	Minimum	Maximum	Průměr
Noc	$1,529 \cdot 10^{-16}$	$1,452 \cdot 10^{-19}$	$3,132 \cdot 10^{-18}$
Den	$6,792 \cdot 10^{-17}$	4,986 · 10 ⁻²⁰	9,922 · 10 ⁻¹⁹

3.2.1.5 Tunickův model

Tento model (Obr. 33) je horizontálního charakteru, a proto se hodí zejména na časové porovnání strukturního parametru C_n^2 pro jednu konkrétní výšku. Pro porovnání s ostatními modely je model srovnán do horizontální roviny. Vertikální červená čára naznačuje nadmořskou výšku měřené oblasti.

Obr. 33 Tunickův model - simulace

Jak vypadá porovnání Tunickova modelu pro stabilní a pro nestabilní podmínky je ukázáno v Tab. 12.

1 ab. 12 Tunickuv model	Tab.	12	Tunickův	model
-------------------------	------	----	----------	-------

Podmínky		$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
•	Minimum	Maximum	Průměr
Stabilní podmínky	$6,242 \cdot 10^{-13}$	9,400 · 10 ⁻¹⁵	$4,092 \cdot 10^{-14}$
Nestabilní podmínky	$1,877 \cdot 10^{-12}$	3,023 · 10 ⁻¹⁴	$5,247 \cdot 10^{-13}$

Protože model výškový rozdíl je velmi malý chová se model tak, jak je zobrazeno na grafu (Obr. 33). Mezi 15km a 20km dochází k viditelnému propadu (Obr. 33), který je způsoben vstupní výškou.

3.2.1.6 Thiermannův-Kohnleův model

Thiermannův-Kohnleův model (Obr. 34) v sobě zahrnuje mnoho parametrů, proto je velmi náročný na přesný výpočet. Hodnoty používané pro výpočet se mění v závislosti na ročním období, rotaci Země kolem Slunce, povětrnostním vlivům a dalších ovlivňujících aspektech. Pro jednoduchost jsou některé hodnoty uvažovány jako konstanty. V Tab. 13 jsou uvedeny hodnoty, ze kterých se při výpočtu modelu vychází.

Použité parametry	Denní model	Noční model
Gravitační zrychlení [m/s ²]	9,710 2	9,710 2
Hmax [W/m ³]	-50	-50
Teplotní konstanta [J/kg.K]	1004,6	1004,6
Alfa	0,5	0,1
Albedo [%]	35	35
Sun [W/m ²]	1000	1

Tab. 13 Použité hodnoty pro Thiermannův model

Thiermannův-Kohnleův model C_h^2

Obr. 34 Thiermannův-Kohnleův model - simulace

Výsledné hodnoty pro tento model pro denní i pro noční model jsou uvedeny v následující Tab. 14.

Tab. 14 Thiermannův-Kohnleův model

Režim dne			
	Minimum	Maximum	Průměr
Noc	$2,037 \cdot 10^{-17}$	8,811 · 10 ⁻²³	3,996 · 10 ⁻¹⁵
Den	$4,463 \cdot 10^{-04}$	$1,594 \cdot 10^{-07}$	$1,256 \cdot 10^{-05}$

Zde se noční a denní model značně liší. To je způsobené turbulencí, která vzniká při zemi i ve vyšších výškách, sluneční aktivitě, větru atd. Nemůže být provedeno srovnání, protože model používá hodnoty, které se mění s ročním obdobím, atmosférou a denním režimem, a také rozdíl mezi nočním a denním režimem je značně velký.

3.2.1.7 Benderského model

Model vychází z několika hodnot, obdobně jako Tunickův model. Jak je vidět z grafu (Obr. 35), hodnoty se radikálně mění asi do 15km a ve stratosféře nedochází tak radikálním změnám jako v troposféře. Souhrn hodnot je uveden v Tab. 15.

Obr. 35 Benderskyho model - simulace

Tab. 15 Benderského model

Model	$C_n^2 \left[m^{-\frac{2}{3}}\right]$			
	Minimum	Maximum	Průměr	
Normální	$7,704 \cdot 10^{-14}$	$7,629 \cdot 10^{-14}$	$6,198 \cdot 10^{-14}$	
Denní - kamenitý terén	7,819 · 10 ⁻¹⁴	$1,088 \cdot 10^{-13}$	$1,011 \cdot 10^{-13}$	
Denní - Travnatý terén	$2,356 \cdot 10^{-13}$	$2,249 \cdot 10^{-13}$	$2,300 \cdot 10^{-13}$	
Noční	$4,500 \cdot 10^{-14}$	$9,223 \cdot 10^{-14}$	$5,310 \cdot 10^{-14}$	

Model používá vstupní hodnoty, které jsou závislé na podnebí a slunečním cyklu, proto není možné jeho přesné zobrazení. Vzhledem ke struktuře vstupních dat, se hodí na všechny typy terénů a oblastí, kde je možné změřit vstupní údaje jako je třeba sluneční svit, Albedo, rychlost větru, vlhkost. Výrazný pokles u travnatého modelu je způsoben velkou změnou rychlosti větru.

3.2.2 Konvekční mezní vrstva

3.2.2.1 Kaimalův model

Tento model je použitelný pouze do 3 km nad mořem. V grafu (Obr. 36) je vyznačena červenou vertikální čárou nadmořská výška měřeného stanoviště, zelenou vertikální čárou je znázorněna minimální hranice modelu (1,230 km) a černou vertikální čárou je znázorněna maximální hranice modelu (3 km). Souhrn hodnot je uveden v Tab. 16.

Pro tento model byly použity následující hodnoty: $h_i = 2500 m$, $h_0 = 303 m$, pro den: $C_{n0}^2 = 4.2 \cdot 10^{-14} m^{-\frac{2}{3}}$ a pro noc $C_{n0}^2 = 1.6 \cdot 10^{-13} m^{-\frac{2}{3}}$.

Obr. 36 Kaimalův model - simulace

Tab. 16 Kaimalův model během dne

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 1,8 km	Minimum	Maximum
Noc	$1,364 \cdot 10^{-13}$	$3,124 \cdot 10^{-12}$	$2,728 \cdot 10^{-13}$
Den	1,422 · 10 ⁻¹³	$3,007 \cdot 10^{-12}$	$3,357 \cdot 10^{-13}$

Vzhledem k tomu, že daný model je určen pro malou výšku na povrchem země, je v grafu (Obr. 36) naznačeno pokračování modelu ve vyšší výšce. Pokles modelu (1,8 km) je způsoben rozdílem tlaku a teploty v přízemní výšce.

3.2.2.2 Kukharetsův-Tsvangův model

U tohoto modelu vyjadřuje vertikální červená čára začátek oblasti měřených dat a označuje konkrétní výšku nad hladinou moře u měřené oblasti. Naopak černá vertikální čára naznačuje konec oblasti měřených dat. I pro tento model byl pro den použit vstupní parametr $C_{n0}^2 = 4.2 \cdot 10^{-14} m^{-\frac{2}{3}}$ a pro noc $C_{n0}^2 = 1.6 \cdot 10^{-13} m^{-\frac{2}{3}}$. Souhrn hodnot je uveden v Tab. 17.

Obr. 37 Kukharetsův-Tsvangův model - simulace

Tab. 17 Kukharetsův-Tsvangův model během dne

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 3 km	Minimum	Maximum
Noc	$6,331 \cdot 10^{-13}$	$2,106 \cdot 10^{-12}$	9,080 · 10 ⁻¹⁵
Den	$6,335 \cdot 10^{-13}$	$3,679 \cdot 10^{-12}$	$9,207 \cdot 10^{-15}$

Tento model lze použít jen pro velmi malou výšku nad zemí a je tak velmi limitující pro sledování strukturního parametru. Při porovnání modelu pro denní a noční hodnoty (Tab. 17), je vidět, že model pro noční a pro denní režim má velmi podobné hodnoty. Při srovnání modelu výšce 3 km nad zemí, tak je vidět, že rozdíl mezi modelem s nočními daty a denními daty je $\Delta C_n^2 je 0,004 \cdot 10^{-13} m^{-\frac{2}{3}}$. Kukharetsův-Tsvangův model a Kaimalův-Walterův model, jsou až na pokles (1,8 km a 3 km) podobné.

3.2.3 Mezní vrstva

3.2.3.1 Tatarského model

Model vychází z rovnice (8) a (92) a je základním modelem pro ostatní modely jako jsou Hufnagelův, Hufnagelův-Valleyův, Hufnagelův-Valleyův 5/7. V grafu (Obr. 38) je červenou vertikální čarou vyznačena nadmořská výška měřeného stanoviště, zelená

vertikální čára představuje minimální hranici modelu (3 km) a černou vertikální čarou je znázorněna maximální hranice modelu (24 km). Pro denní hodnoty byl použit vstupní parametr $C_{n0}^2 = 4,2 \cdot 10^{-14} m^{-\frac{2}{3}}$ a pro noční hodnoty $C_{n0}^2 = 1,6 \cdot 10^{-13} m^{-\frac{2}{3}}$. Souhrn hodnot modelu je uveden v Tab. 18.

Obr. 38 Tatarského model – simulace

Tab. 18 Tatarského model během dne

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 10 km	Minimum	Maximum
Noc	$3,884 \cdot 10^{-13}$	$2,095 \cdot 10^{-12}$	$2,481 \cdot 10^{-19}$
Den	$1,565 \cdot 10^{-18}$	1,965 · 10 ⁻⁰⁹	$3,119 \cdot 10^{-19}$

V grafu (Obr. 38) dosahuje model v malé výšce nad zemí velkého výkyvu strukturního parametru C_n^2 . Vysoký výkyv strukturního parametru C_n^2 , který se u Tatarskiho modelu projevuje je způsoben vstupními daty (vítr, teplota). Model má vysoké hodnoty C_n^2 , a tak nelze dostatečně porovnat s Hufnagelovskými modely.

3.2.3.2 Hufnagelův model

Vstupním parametrem tohoto modelu je rychlost větru, který se se stoupající výškou mění. V Obr. 39 jsou vyznačeny zelenou vertikální čarou nadmořská výška měřeného stanoviště, červenou vertikální čarou je znázorněna minimální hranice modelu (3 km) a černou vertikální čarou je vyjádřena maximální hranice modelu (24 km). Pro denní

hodnoty byl použit vstupní parametr $C_{n0}^2 = 4.2 \cdot 10^{-14} m^{-\frac{2}{3}}$ a pro noční hodnoty $C_{n0}^2 = 1.6 \cdot 10^{-13} m^{-\frac{2}{3}}$. Souhrn hodnot je uveden v Tab. 19.

Obr. 39 Hufnagelův model - simulace

Tab. 19 Hufnagelův model během dne

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 10 km	Minimum	Maximum
Noc	$4,773 \cdot 10^{-18}$	$4,303 \cdot 10^{-17}$	$4,435 \cdot 10^{-21}$
Den	$1,565 \cdot 10^{-18}$	$4,705 \cdot 10^{-17}$	$4,965 \cdot 10^{-21}$

Z grafu (Obr. 39) je patrné, že hodnota strukturního parametru C_n^2 je do 5 km stejná, pak dochází k rozdělení modelu pro denní a pro noční hodnoty. Rozdíl mezi denními a nočními hodnotami je o $\Delta C_n^2 = 3,208 \cdot 10^{-18} m^{-\frac{2}{3}}$.

3.2.3.3 Hufnagelův-Valleyův model

Tento model vychází z Hufnagelova modelu, akorát používá více vstupních veličin. V grafu (Obr. 40) jsou vyznačeny zelenou vertikální čarou nadmořská výška měřeného stanoviště, červenou vertikální čarou je znázorněna minimální hranice modelu (3 km)

a černou vertikální čarou je znázorněna maximální hranice modelu (24 km). Pro denní hodnoty byl použit vstupní parametr $C_{n0}^2 = 4,2 \cdot 10^{-14} m^{-\frac{2}{3}}$ a pro noční hodnoty $C_{n0}^2 = 1,6 \cdot 10^{-13} m^{-\frac{2}{3}}$, $v_{priz} = 1$ m/s, $h_t = 9400 m$, $d_t = 4800 m$, $v_t = 17,9$ m/s. Při porovnání s Hufnagelovským modelem je rozdíl minima mezi Hufnagel a Hufnage-Valley vidět, že klesá se vzrůstající výškou pozvolněji. Rozdílnost modelů je v přítomnosti přízemního a výškového větru, který se neustále mění. Souhrn hodnot je uveden v Tab. 20.

Obr. 40 Hufnagelův-Valleyův model - simulace

Tab. 20 Hufnagelův-Valleyův model během dne

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 10 km	Minimum	Maximum
Noc	$1,312 \cdot 10^{-17}$	$4,304 \cdot 10^{-17}$	8,040 · 10 ⁻²¹
Den	$6,684 \cdot 10^{-18}$	$4,910 \cdot 10^{-17}$	$1,419 \cdot 10^{-20}$

3.2.3.4 Hufnagelův-Valleyův 5/7 model

Pro tento model je použita vstupní hodnota pro den $C_{n0}^2 = 4.2 \cdot 10^{-14} m^{-\frac{2}{3}}$ a pro noc $C_{n0}^2 = 1.6 \cdot 10^{-13} m^{-\frac{2}{3}}$. V grafu (Obr. 41) jsou vyznačeny zelenou vertikální čarou nadmořská výška měřeného stanoviště, červenou vertikální čarou je znázorněna minimální hranice modelu (3 km) a černou vertikální čárou je znázorněna maximální hranice modelu (24 km).

Obr. 41 Hufnagelů-Valleyův 5/7 model – simulace

Tab. 21 Hufnagelův-Valleyův 5/7 model během dne

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 10 km	Minimum	Maximum
Noc	$4,773 \cdot 10^{-18}$	$4,303 \cdot 10^{-17}$	$4,435 \cdot 10^{-21}$
Den	$1,565 \cdot 10^{-18}$	$4,705 \cdot 10^{-17}$	$4,965 \cdot 10^{-21}$

Modely Hufnagelův, Hufnagelův-Valleyův a Hufnagelův-Valleyův 5/7 jsou definovány pro minimální výšku 3 km nad zemí, maximální výšku 24 km nad zemí a pro subtropické podnebí. Tímto omezením se modely hodí jen pro určení strukturního parametru z výše položeného místa nad zemí, např. z hory atp. Při porovnání Hufnagelovských modelů s výchozím modelem Tatarského, je patrné, že došlo k jistému "průměrování" hodnot. Nejvíce je oblast vyhlazení vidět ve vzdálenosti 5 až 15 km nad mořem. Porovnání Hufnagelovských modelů pro noc je uvedeno v Tab. 22 a pro den v Tab. 23.

Modely	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 10 km	Minimum	Maximum
Tatarského model	$3,884 \cdot 10^{-13}$	$2,095 \cdot 10^{-12}$	$2,481 \cdot 10^{-19}$
Hufnagelův model	$4,773 \cdot 10^{-18}$	$4,303 \cdot 10^{-17}$	$4,435 \cdot 10^{-21}$
Hufnagelův-	$1,312 \cdot 10^{-17}$	$4,304 \cdot 10^{-17}$	8,040 · 10 ⁻²¹
-Valleyův model			
Hufnagelův-	$4,773 \cdot 10^{-18}$	$4,303 \cdot 10^{-17}$	$4,435 \cdot 10^{-21}$
-Valleyův 5/7 model			

Tab. 22 Porovnání Hufnagelovských modelů pro noční hodnoty

Tab. 23 Porovnání Hufnagelovských modelů pro denní hodnoty

Modely	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 10 km	Minimum	Maximum
Tatarského model	$1,487 \cdot 10^{-16}$	$1,965 \cdot 10^{-09}$	3,119 · 10 ⁻¹⁹
Hufnagelův model	$1,565 \cdot 10^{-18}$	$4,705 \cdot 10^{-17}$	$4,965 \cdot 10^{-21}$
Hufnagelův- -Valleyův model	6,684 · 10 ⁻¹⁸	$4,910 \cdot 10^{-17}$	$1,419 \cdot 10^{-20}$
Hufnagelův- -Valleyův 5/7 model	1,565 · 10 ⁻¹⁸	$4,705 \cdot 10^{-17}$	4,965 · 10 ⁻²¹

Minimum Hufnagelovských modelů se liší jen nepatrně. Rozdíl maxim se liší řádově jen $m^{-\frac{2}{3}}$.

3.2.3.5 Brooknerův model

Pro Brooknerův model jsou použity vstupní hodnoty z Tab. 6. Vertikální červená čára naznačuje začátek oblasti měřených dat a označuje konkrétní výšku nad hladinou moře. Rozdíl mezi jednotlivým režimem dne je patrný z grafu (Obr. 42). Pro režim stmívání a noc (čistá noc) je kritická hodnota 7 km (Stratosféra), kde je pro oba dva režimy strukturní parametr C_n^2 stejný. Od této hodnoty noční režim klesá a dosahuje nejnižší hodnoty C_n^2 oproti stmívání. Souhrn hodnot je uveden v Tab. 24.

Obr. 42 Brooknerův model – simulace

Tab. 24 Jednotlivé Denní režimy Brooknerova modelu

Režim dne	$C_{no}^2\left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
		Minimum	Maximum
Normální den	$4,200 \cdot 10^{-14}$	$5,688 \cdot 10^{-15}$	$6,777 \cdot 10^{-20}$
Slunečný den	$3,600 \cdot 10^{-13}$	$2,801 \cdot 10^{-15}$	3,266 · 10 ⁻²¹
Stmívání	$1,600 \cdot 10^{-13}$	$1,754 \cdot 10^{-16}$	$4,439 \cdot 10^{-22}$
Noc	$8,700 \cdot 10^{-15}$	$4,803 \cdot 10^{-16}$	$2,582 \cdot 10^{-22}$

3.2.3.6 NOAA model

Tento model v sobě zahrnuje mnoho konstant (střih větru, gravitační zrychlení atd.), které do velké míry ovlivňují výsledný model. Střih *S* větru je zde počítán jako změna rychlosti větru Δv při změně výšky Δh .

$$S = \frac{\Delta h}{\Delta v} [s^{-1}] \tag{119}$$

Gravitační zrychlení, potřebné pro tento model je vypočteno z modelu WGS84 rovnicí (1) a (3) [45]:

$$e^{2} = \frac{(6\,378\,137^{2} - 6\,356\,752,314^{2})}{6\,378\,137^{2}} = 6,694\,379\,990\,13\cdot10^{-3}$$
(120)

$$g = 9,780\ 326\ 771\ 37\frac{1+0,001\ 931\ 851\ 386\ 39\cdot sin^2 50}{\sqrt{1-6,694\ 379\ 990\ 13\cdot 10^{-3}\cdot sin^2 50}} = 9,783\ 9\ \frac{m}{s^2}\ (121)$$

Pro jednoduchost výpočtu není do gravitační konstanty zahrnuta rotace Země kolem své vlastní osy a kolem Slunce. Jak vypadá NOAA model je vidět v grafu (Obr. 43). Vertikální červená čára naznačuje začátek oblasti měřených dat a označuje konkrétní výšku nad hladinou moře u měřené oblasti. Pro tento model je použita vstupní hodnota pro den $C_{n0}^2 = 4.2 \cdot 10^{-14} m^{-\frac{2}{3}}$ a pro noc $C_{n0}^2 = 1.6 \cdot 10^{-13} m^{-\frac{2}{3}}$.

Vzhledem k tomu, že u modelu (Obr. 43) došlo k velkému poklesu strukturního parametru C_n^2 v přízemní výšce, je nutné zjištěné výstupní hodny modelu ignorovat. Díky tomu se model chová do vzdálenosti 1 km nad hladinou moře (MSL) velmi nestabilně. Tato anomálie NOAA modelu je způsobena nízkými a rozdílnými vstupními hodnotami.

Obr. 43 NOAA model - simulace

Ve výšce 10 km nad zemí (Obr. 43) dochází k nárůstu strukturního parametru následně poklesu na minimální hodnotu. Zvýšení C_n^2 je způsobeno poklesem teploty v dané výškové hladině.

Tab. 25 NOAA model během dne

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 10 km	Minimum	Maximum
Noc	$3,400 \cdot 10^{-18}$	$5,874 \cdot 10^{-17}$	$3,141 \cdot 10^{-22}$
Den	$1,085 \cdot 10^{-18}$	$7,785 \cdot 10^{-17}$	$3,519 \cdot 10^{-21}$

3.2.4 Vyšší troposféra

3.2.4.1 CLEAR 1 Night model

Protože model je určen pro minimální výšku 1,23 km, je graf (Obr. 44) pro přehlednost rozdělen na tři oblasti. První oblast je zvýrazněna červenou vertikální čarou, která označuje nadmořskou výšku. Druhá oblast, zelená vertikální čára, značí začátek použitelnosti modelu. Třetí oblast, označena černou vertikální čarou, znamená konec použitelnosti modelu. Model, je stejně jako AFGL AMOS a SLC model, je použitelný jenom v subtropickém pásu a nižší troposféře. Zhodnocení modelu je uvedeno vTab. 26.

Obr. 44 CLEAR 1 model - simulace

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 15 km	Minimum	Maximum
Noc	$5,939 \cdot 10^{-18}$	7,830 · 10 ⁻¹⁸	$1,458 \cdot 10^{-19}$

3.2.4.2 SLCNight a SLCDay model

Modely SLCNight a SLCDay jsou navzájem velmi podobné, ale SLCDay dosahuje vyšších hodnot při nižší nadmořské výšce. SLC model je vidět na následujícím grafu (Obr. 45). Vertikální červená čára naznačuje začátek oblasti měřených dat a označuje konkrétní výšku nad hladinou moře u měřené oblasti. Černá vertikální čára naznačuje konec oblasti použitelnosti SLC modelu. Souhrn hodnot modelu je uveden v Tab. 27.

Obr. 45 SLCNight a SLCDay model - simulace

Tab. 27 SLC Modely

Model	$C_n^2 \left[m^{-\frac{2}{3}}\right]$		
	Minimum	Maximum	Průměr
SLCNight	$2,500 \cdot 10^{-16}$	$1,494 \cdot 10^{-18}$	$1,556 \cdot 10^{-16}$
SLCDay	$9,701 \cdot 10^{-15}$	$1,494 \cdot 10^{-18}$	$2,533 \cdot 10^{-16}$

Model lze využít jen v subtropickém pásmu a s vysokou tropopauzou (17 km MSL). Jak je vidět z grafu (Obr. 45), model byl vytvořen při MSL= 3 km. Tím se jakékoliv požití tohoto modelu omezuje jen pro minimální výšku 3 km nad zemí.

3.2.4.3 AFGL AMOS model

Tento model vychází z SLCNight modelu (kap. 3.2.4.3), a proto má stejná omezení jako SLC model. U tohoto modelu vertikální červená čára vyjadřuje začátek oblasti měřených dat a označuje konkrétní výšku nad hladinou moře u měřené oblasti. Souhrn hodnot je uveden v Tab. 28.

Obr. 46 AFGL AMOS model - simulace

Tab. 28 AFGL model

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 5 km	Minimum	Maximum
Noc	$4,904 \cdot 10^{-18}$	$2,735 \cdot 10^{-13}$	$7,377 \cdot 10^{-20}$

AFGL AMOS model je z jisté části podobný Hufnagelovskému modelu, protože v oblasti tropopauzy dojde k mírnému nárůstu a následně k rapidnímu poklesu strukturního parametru C_n^2 .

Stejně jako SLC model (kap. 3.2.4.3), i tento model je možné použít, jen v subtropickém pásmu a vysokou tropopauzou (17 km MSL). Model byl vytvořen při MSL = 5 km. Tím se jakékoliv požití tohoto modelu omezuje jen od výšky 5 km nad zemí.

3.2.4.4 MAUI model

Pro tento [6] vylepšený AFGL AMOS model (kap. 3.2.4.3) jsou data definovaná pro výšku větší než 3 050 m nad mořem. Tato hodnota vychází z hory Halekala (3 038 m).

V grafu (Obr. 47) je vyznačena zelenou vertikální čárou nadmořská výška měřeného stanoviště, červenou vertikální čárou je znázorněna minimální hranice modelu (3 km). Souhrn hodnot je uveden v Tab. 29.

Obr. 47 MAUI model - simulace

Tab. 29 MUI model

Režim dne	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$	
	Pro h = 5 km	Pro h = 10 km	Minimum	Maximum
Noc	$2,500 \cdot 10^{-16}$	$2,396 \cdot 10^{-18}$	$3,401 \cdot 10^{-16}$	$2,340 \cdot 10^{-18}$

3.2.5 Další modely strukturního parametru

3.2.5.1 Green Wood model

Green Wood model (Obr. 48) je pro přehlednost rozdělen na tři části, ve kterých je nadmořská výška měřeného místa naznačena vertikální červenou čarou a konec platnosti modelu označen vertikální černou čárou. Oblast mezi vertikální zelenou a vertikální černou čarou je lineárně klesající oblast Green Wood modelu. Souhrn hodnot je uveden v Tab. 30.

Obr. 48 Green Wood model - simulace

Tab. 30 Green Wood model

$C_{no}^2 \left[m^{-\frac{2}{3}}\right]$	$C_n^2 \left[m^{-\frac{2}{3}}\right]$		
Pro h = 3 km	Minimum	Maximum	
$2,530 \cdot 10^{-17}$	$2,641 \cdot 10^{-16}$	$3,178 \cdot 10^{-19}$	

Stejně jako SLC (kap. 3.2.4.2) a CLEAR 1 (kap. 3.2.4.1) model lze tento Green Woodův model požít jen do vzdálenosti 20 km nad mořem.

3.2.6 Celkové Srovnání jednotlivých modelů

Modely s nočními daty

Model	$C_n^2 \left[m^{-\frac{2}{3}}\right]$			
	Minimum	Maximum		
Wyngaard	6,650 · 10 ⁻⁰³	5,952 · 10 ⁻⁰⁷		
Kunkel-Walter	1,988 · 10 ⁻¹⁷	5,499 · 10 ⁻²²		
Ryznar-Bartlo	6,144 · 10 ⁻¹⁶	5,835 · 10 ⁻¹⁹		
h-4/3	1,529 · 10 ⁻¹⁶	$1,452 \cdot 10^{-19}$		
Tunick – Stabilní podmínky	$6,242 \cdot 10^{-13}$	9,400 · 10 ⁻¹⁵		
Tunick – Nestab. podmínky	1,877 · 10 ⁻¹²	$3,023 \cdot 10^{-14}$		
Thierman-Kohnle Noc	2,037 · 10 ⁻¹⁷	8,811 · 10 ⁻²³		
Bendersky Noční	$4,500 \cdot 10^{-14}$	9,223 · 10 ⁻¹⁴		
Kaimal	$3,124 \cdot 10^{-12}$	$2,728 \cdot 10^{-13}$		
Kukharets a Tsvang	$2,106 \cdot 10^{-12}$	9,080 · 10 ⁻¹⁵		
Tatarski	$2,095 \cdot 10^{-12}$	$2,481 \cdot 10^{-19}$		
Hufnagel	$4,303 \cdot 10^{-17}$	$4,435 \cdot 10^{-21}$		
Hufnagel-Valley	$4,304 \cdot 10^{-17}$	8,040 · 10 ⁻²¹		
Hufnagel-Valley 5/7	$4,303 \cdot 10^{-17}$	$4,435 \cdot 10^{-21}$		
Brookner – Noc	4,803 · 10 ⁻¹⁶	2,582 · 10 ⁻²²		
NOAA	5,874 · 10 ⁻¹⁷	$3,141 \cdot 10^{-22}$		
Clear 1 Night	7,830 · 10 ⁻¹⁸	1,458 · 10 ⁻¹⁹		
SLCNight	$2,500 \cdot 10^{-16}$	$1,494 \cdot 10^{-18}$		
AFGL AMOS	$2,735 \cdot 10^{-13}$	$7,377 \cdot 10^{-20}$		
Green Wood	$2,641 \cdot 10^{-16}$	$3,178 \cdot 10^{-19}$		

Tab. 31 Celkové srovnání jednotlivých modelů pro noční hodnoty

V tabulce jsou vyznačeny nejnižší (žlutá barva) a nejvyšší (červená barva) hodnoty C_n^2 . Pro modely s nočními naměřenými daty (Tab. 31) má největší minimální hodnotu C_n^2 Thiermanuv model a minimální hodnotu má Tunickův model. Maximum hodnoty C_n^2 má největší maximum Brookneruv model a nejnižší

maximum má Thierman-Kohnlův model.

Nejlépe vychází NOAA model a Brooknerův model, kde se turbulence moc nemění a nedochází k tak velkým fluktuacím, jako u ostatních modelů.

Modely s denními daty

Model	$C_n^2 \left[m^{-\frac{2}{3}}\right]$		
	Minimum	Maximum	
Wyngaard	$2,614 \cdot 10^{-02}$	$1,847 \cdot 10^{-07}$	
Kunkel-Walter	$5,518 \cdot 10^{-18}$	3,313 · 10 ⁻²¹	
Ryznar-Bartlo	$1,081 \cdot 10^{-15}$	8,392 · 10 ⁻¹⁹	
h-4/3	$6,792 \cdot 10^{-17}$	4,986 · 10 ⁻²⁰	
Tunick – Stabilní podmínky	$6,242 \cdot 10^{-13}$	9,400 · 10 ⁻¹⁵	
Tunick – Nestab. podmínky	1,877 · 10 ⁻¹²	$3,023 \cdot 10^{-14}$	
Thierman-Kohnle Den	4,463 · 10 ⁻⁰⁴	1,594 · 10 ⁻⁰⁷	
Bendersky Normání	$7,704 \cdot 10^{-14}$	7,629 · 10 ⁻¹⁴	
Bendersky Denní	7,819 · 10 ⁻¹⁴	$1,088 \cdot 10^{-13}$	
kamennitý			
Bendersky Denní travnatý	$2,356 \cdot 10^{-13}$	$2,249 \cdot 10^{-13}$	
Kaimal	$3,007 \cdot 10^{-12}$	$3,357 \cdot 10^{-13}$	
Kukharets a Tsvang	$3,679 \cdot 10^{-12}$	$9,207 \cdot 10^{-15}$	
Tatarski	$1,965 \cdot 10^{-09}$	$3,119 \cdot 10^{-19}$	
Hufnagel	$4,705 \cdot 10^{-17}$	$4,965 \cdot 10^{-21}$	
Hufnagel-Valley	$4,910 \cdot 10^{-17}$	$1,419 \cdot 10^{-20}$	
Hufnagel – Valley 5/7	$4,705 \cdot 10^{-17}$	4,965 · 10 ⁻²¹	
Brookner – Normální den	$5,688 \cdot 10^{-15}$	$6,77 \cdot 10^{-20}$	
Brookner – Slunečný den	$2,801 \cdot 10^{-15}$	3,266 · 10 ⁻²¹	
Brookner – Stmívání	$1,754 \cdot 10^{-16}$	4,439 · 10 ⁻²²	
NOAA	$7,785 \cdot 10^{-17}$	$3,519 \cdot 10^{-21}$	
SLC Day	$9,701 \cdot 10^{-15}$	$1,494 \cdot 10^{-18}$	
MAUI	$3,401 \cdot 10^{-16}$	$2,340 \cdot 10^{-18}$	

Tab. 32 Celkové srovnání jednotlivých modelů pro denní hodnoty

V Tab. 32 jsou vyznačeny nejnižší (žlutá barva) a nejvyšší (červená barva) hodnoty strukturního parametru C_n^2 . Pro modely s nočními naměřenými daty má největší minimální hodnotu C_n^2 Thiermanův model a minimální hodnotu má Tunickův model. Wyngaardův model není do statistiky zahrnut, jelikož představuje velké turbulence.

Maximum hodnoty C_n^2 má Brookneruv model a nejnižší maximum má Thierman-Kohnlův model.

Stejně jako u nočního měření, nejlépe vychází NOAA model a Brooknerův model, kde se turbulence moc nemění a nedochází k tak velkým fluktuacím, jako u ostatních modelů.

3.3 Modelování jednotlivý modelů v prostředí MATLAB

Na základě předchozích simulací je vytvořen program v prostředí MATLAB, který vypočítává strukturní parametr konkrétního místa. Úkolem aplikace je zobrazení modelu strukturního parametru pro danou lokalitu. Program obsahuje všechny stanice z celého světa rozdělené na 18 oblastí s celkovým počtem 682 stanic. Jednotlivé stanice jsou popsány v příloze, kde je uvedeno jejich číslo a název.

3.3.1 Rozdělení světa na oblasti

Vzhledem k velkému počtu stanic, byla pro přehlednost mapa světa rozdělena na dílčí části, Afriku sever a jih, Antarktidu, Austrálii, Čínu, Evropu, Indii, Indonésii na západní a východní část, Jižní Ameriku na severní, střední a jižní část. Dále na Rusko na západ a východ, Severní Ameriku na sever a jih, Střední Východ a na Tichomoří. Na Obr. 49 až Obr. 66 je vidět celkové rozmístění jednotlivých meteo stanic. Každá stanice má své unikátní číslo, kde první dvojčíslo identifikuje oblast, ve které se nachází. Tím se lokalizace stanic stává jednodušší a přehlednější.

Obr. 49 Mapa Afriky – severní část [30]

Obr. 50 Mapa Afriky – jižní část [30]

Obr. 51 Mapa Antarktidy [30]

Obr. 52 Mapa Austrálie [30]

Obr. 53 Mapa Číny [30]

Obr. 54 Mapa Evropy [30]

Obr. 55 Mapa Indie [30]

Obr. 56 Mapa Indonésie – západní část [30]

Obr. 57 Mapa Indonésie – východní část [30]

Obr. 58 Mapa Jižní Ameriky – severní část [30]

Obr. 59 Mapa Jižní Ameriky – střední část [30]

Obr. 60 Mapa Jižní Ameriky – jižní část [30]

Obr. 61 Mapa Ruska – západní část [30]

Obr. 62 Mapa Ruska – východní část [30]

Obr. 63 Mapa Severní Ameriky – severní část [30]

Obr. 64 Mapa Severní Ameriky – jižní část [30]

Obr. 65 Mapa středního východu [30]

Obr. 66 Mapa Tichomoří [30]

Program využívá celkem 682 meteo stanic (k datu 20. února 2012). Největší zastoupení meteo stanic v jednotlivých oblastech má Rusko (100 stanic), následované Čínou (83 stanic), USA (75 stanic) a Evropou (66 stanic). Přehledné grafické znázornění meteo stanic v jednotlivých oblastech je znázorněno na Obr. 67.

Rozmístění stanic ve světě

Obr. 67 Mapa stanic ve světě

Vzhledem k tomu, že data pro jednotlivé stanice jsou získávána ze serveru na Univerzitě ve Wyomingu [54], může se stát, že konkrétní stanice nemá pro požadované datum meteo data. To není chyba na straně serveru, ale jen nedostatek dat pro vytvoření meteo zprávy obsahující teplotu, tlak a rychlost větru v určité nadmořské výšce.

3.4 Program na modelování modelů v aplikaci Matlab

Blokové schéma programu je zobrazeno na Obr. 68. Vstupními parametry programu jsou rok, měsíc, den a číslo stanice v závislosti na vybrané lokalitě parametry modelů. Parametry modelů, jako je *Alfa, Albedo, Hmax, Sun a Cn0* (strukturní parametr v přízemní výšce pro normální den), *Cn1* (strukturní parametr v přízemní výšce pro slunečný den), *Cn2* (strukturní parametr v přízemní výšce pro stmívání), *Cn3* (strukturní parametr v přízemní výšce pro noc) není nutné zadávat pro každou stanici. Pro získání meteo dat nebo strukturního parametru C_n^2 modelů je zapotřebí zadat správné datum a vybrat požadovanou lokalitu. Vytvořený program v grafickém prostředí GUI v MATLABU [49] vyžaduje pro plnou funkčnost spolehlivý přístup na internet.

Program se spustí souborem *CN2MODELY.m.* Po spuštění se pomocí funkce *systime* nahraje aktuální datum a čas a zobrazí se mapa Evropy. Funkcí *ginput(1)* se získá, po kliknutí myší do mapy, poloha meteo stanice na mapě. Na základě polohy se stanice ověří v databázi stanic *meteo.mat* a zobrazí potřebné informace v GUI. Pro zobrazení strukturních parametrů v noci slouží skript *grafnoc.m* a pro den *grafden.m.* Meteo data jsou zobrazená pomocí funkce *meteograf.m* (noc) a *meteograf2.m* (den).

Obr. 68 Vývojový diagram programu

3.4.1 Vytvoření meteo dat

Pro vytvoření potřebných dat na zobrazení meteo dat a modelů strukturního parametru jsou použita reálná data zveřejněná na univerzitní stránce ve Wyomingu [54]. Data jsou získávána z 682 meteo stanic po celém světě. Data na serveru je možné zobrazit v RAWu, v TXT, GIF nebo HTML formátu. Pro potřebu aplikace jsou data získávána pomocí HTML formátu, kde hlavička má tento tvar:

<HTML> <TITLE> University of Wyoming - Radiosonde Data</TITLE> <LINK
REL="StyleSheet" HREF="/resources/select.css" TYPE="text/css"> <BODY
BGCOLOR="white"> <H2>ČÍSLO NÁZEV Observations at ČAS DEN MĚSÍC
ROK</H2> <PRE>

Význam je popsán v Tab. 33. Ukázka hlavičky pro stanici Praha-Libuš vypadá následovně:

<HTML> <TITLE>University of Wyoming - Radiosonde Data</TITLE> <LINK
REL="StyleSheet" HREF="/resources/select.css" TYPE="text/css"> <BODY
BGCOLOR="white"> <H2>11520 Praha-Libus Observations at 00Z 08 Apr
2012</H2> <PRE>

Tab. 33 Hlavička zprávy

Název	Definice	Ukázka	
ČÍSLO	Číslo stanice	11520	
NÁZEV	Název stanice	Praha-Libuš	
ČAS	Hodina měření	00Z	
DEN	Den měření	08	
MĚSÍC	Měsíc měření	Apr	
ROK	Rok měření	2012	

Za hlavičkou zprávy se ve sloupcích nacházejí naměřená data uvozena názvem veličiny a její jednotkou:

		PRES	HGHT	TEMP	DWPT	RELH	MIXR	DRCT	SKNT
THTA	THTE	THTV	hPa	m	С	С	00	g/kg	deg
knot	K	K	К -						
,									

kde význam jednotlivých symbolů je uveden v Tab. 34.

Načtení a zpracování dat provádí skript *cyklus.m*, který ze zprávy odstraní hlavičku a zbylá data zapíše do proměnné *data*. Během zpracování dochází také ke kontrole, jestli je hlavička celá a jestli jsou k dispozici potřebná data. Pokud dojde k chybě, zobrazí se varovné okno "*Data ze stanice nejsou dostupná*".

Název	Název Definice	
PRES	Atmosférický tlak	hPa
HIGH	Nadmořská výška	m
TEMP	Teplota	°C
DWPT	Teplota rosného bodu	°C
RELH	Relativní vlhkost	%
MIXR	Poměr smíšení	g/kg
DRCT	Směr větru	deg
SKNT	Rychlost větru	knot
THTA	Potenciálová teplota	K
THTE	Ekvivalentní potenciálová teplota	K
THTV	Virtuální potenciálová teplota	К
hPa	Jednotka tlaku	hPa
m	Jednotka výšky	m
С	Jednotka teploty	°C
%	Jednotka Relativní vlhkosti	%
g/kg	Jednotka Smíšení	g/kg
deg	Jednotka směru větru	deg
knot	Jednotka rychlosti větru	1 Knot je 0,523 m/s
K	Jednotka teploty	K

Tab. 34 Význam hodnot hlavičky zprávy ze serveru

3.4.2 Zpracování dat

Zpracovaná data ve formě proměnné *data* slouží jako vstupní parametr pro skript *grafnoc.m* a *grafden.m*. V těchto funkcích se podle vybrané stanice vybere model strukturního parametru a provede se jeho výpočet. Výsledná hodnota je zobrazena v GUI.

Také u funkcí *meteograf.m* a *meteograf2.m* slouží proměnná *data* jako vstupní parametr pro vykreslení meteorologický dat.

3.4.3 Uživatelské rozhraní

Uživatelské rozhraní bylo vytvořeno pomocí integrovaného nástroje pro tvorbu grafického rozhraní GUIDE [49]. Vzhled uživatelského rozhraní je zobrazen na Obr. 69.

Obr. 69 Vzhled uživatelského rozhraní v MATLABU

Po vybrání lokality je možné v mapě pomocí myši vybrat stanici nebo stanici zadat ručně do kolonky "číslo stanice". Číslo stanice se ověří s databází. Pokud stanice existuje, je dále nutné zadat potřebný rok, měsíc, den a noční nebo denní režim. Po zobrazení parametrů modelů zadané stanice v "editačním poli", je třeba zadat správné parametry pro simulaci modelů. Po stisknutí tlačítka "Výpočet" dochází k vykreslení výsledků do grafu. Grafické okno je pro denní a pro noční režim.

V případě, že při zadávání vstupních parametrů dojde k chybě (místo čísla je vloženo písmeno, tečka, čárka nebo jiný nepovolený znak), je uživatel upozorněn varovným oknem, kde je uvedena informace, ve kterém editačním poli došlo k chybě. Zadávání či simulace neproběhne a špatná hodnota je nahrazena předdefinovanou hodnotou.

3.4.4 Ověření programu

Pro ověření simulace meteo dat pro stanici č. 11520 (Praha-Libuš) bylo použito datum 8. dubna 2012. Meteo data pro noc (00:00 hod) jsou zobrazena na Obr. 70 a pro den (12:00 hod) na Obr. 71. Meteorologická data jsou pro přehlednost a jasnou čitelnost seskupena pod sebe. V horním řádku grafu se nachází číslo stanice a datum měření. Čas měření je charakterizován návěštím grafu. Pro noc: "Noční Meteo data" a pro den: "Denní Meteo data". Z dat je patrné, že pro noc jsou data dostupná do 35 km nad mořem a pro den do 27 km nad mořem, To je ovlivněno meteorologickým balónem, který nasbíral data jen do té vzdálenosti, která je zde uvedena.

Obr. 70 Noční meteo data pro 8. dubna 2012

Obr. 71 Denní meteo data pro 8. dubna 2012

Pro simulaci modelů konkrétní stanice bylo, jako v předchozím případě, použito datum 8. dubna 2012 a stejná meteo stanice (Praha-Libuš). Simulace jednotlivých modelů pro noc (00:00 hod) jsou zobrazena na Obr. 72 a pro den (12:00 hod) na Obr. 73. Také zde se u simulace v horní části grafu nachází číslo stanice a datum měření. Čas měření je charakterizován návěštím grafu. Pro noc: "Modely pro konkrétní stanici – noční režim" a pro den: "Modely pro konkrétní stanici – denní režim".

Obr. 73 Modely pro denní režim

Meteo data a modely strukturního parametru je možné zobrazit jen s internetovým připojením. Program je vytvořen pro stejné časové pásmo jako Česká republika, protože čas, který je potřebný pro určený doby měření, je uveden v čase UTC. Potřebný čas se tedy získává ze systémového času počítače. Při zadávání dat je také nutné počítat s podmínkou Nového Zélandu, který jako jediná země, měří v 9:00 a v 21:00 místního čas. Ostatní stanice měří v 0:00 a v 12:00 UTC. Proto se musí databáze na serveru přepisovat každých šest měsíců [54].

ZÁVĚR

V práci je popsán vznik turbulencí a míra degradace optického svazku během bezdrátové komunikace. Je rozebrán vítr a jeho jednotlivé varianty, které ovlivňují atmosférické prostředí a strukturní parametr, který charakterizuje atmosférické prostředí.

V další části práce se nachází detailní popis dostupných modelů strukturního parametru indexu lomu v atmosféře, rozdělený do přízemní vrstvy, hraniční vrstvy, mezní vrstvy a vyšší troposféry. Vzhledem k rozsáhlosti celé problematiky nebylo možné analyzovat všechny modely strukturního parametru indexu lomu v atmosféře, proto jsou názvy některých modelů pouze uvedeny. Jednotlivé ukázky modelů se, díky rozdílným naměřeným datům, nedají porovnat. Matematické vztahy některých modelů se v různých publikacích lišily. Jedná se zejména o Hufnagelův model, Kaimalův model a Kukharetsův-Tsvangův model. Pro tyto modely byla použita publikace [70]. Jiný zdroj v matematických vztazích uvádí, místo teplotního parametru C_T^2 , hodnotu strukturního parametru C_n^2 a mírně odlišnou definici vztahu než v publikaci [70].

Praktická část práce se zaměřuje na simulace jednotlivých modelů strukturního parametru. Porovnává jednotlivé modely pro geografickou oblast Praha-Libuš k datu 8. dubna 2012. Simulace byly provedeny pro noc (00:00 hod.) i pro den (12:00 hod.). Z naměřených meteo dat vyplývá, že teplota v noci byla teplejší než ve dne. Tyto meteo data byla použita pro výpočet jednotlivých modelů strukturního parametru. Pro porovnání modelů, uvedených v této práci, musely být voleny stejné vstupní parametry, a proto byly vybrány parametry podle Brooknerova modelu. Hodnoty strukturního parametru jsou sice vyšší, to znamená silnou turbulenci, ale pro porovnání základních modelů jsou plně dostačující. Pro přesnější porovnání by bylo nutné změřit strukturní parametr ve dne i v noci a poté tyto hodnoty požít jako vstupní parametry pro výpočet modelů.

Po části zaměřené na porovnání jednotlivých modelů strukturního parametru se, další část práce zabývá vytvořením programu pro výpočet strukturní parametru v dané lokalitě. Veškeré výpočty a manipulace s uživatelským prostředím probíhají v programovém prostředí MATLAB (GUI). Vytvořený program využívá skript na stažení a vytvoření proměnné s meteo daty, která jsou použita z meteorologické sondy. Ta zaznamenává data o výšce, teplotě, tlaku, vlhkosti a rychlosti a směru větru přibližně do výšky 30 km nad zemí. Součástí programu jsou i skripty na nalezení požadované meteo stanice v mapě světa. Dohromady je v databázi programu ručně zaneseno 682 meteorologických stanic geograficky rozmístěných po celé Zemi. A také skripty na vytvoření jednotlivých modelů strukturního parametru. Vzniklé modely jsou, pomocí zobrazovacího skriptu, upraveny a zobrazeny. V programu jsou použity dostupné modely strukturního parametru indexu lomu v atmosféře. Jednotlivé modely se ze sondážních dat a vstupních parametrů, jako jsou míra oblačnosti, zakrytí mraků, svit slunce, alfa, albedo, Hmax a C_n^2 při nulové výšce, snaží co nejlépe vystihnout atmosféru pro šíření optické komunikace.

Důkladné porovnání jednotlivých modelů s vlastnostmi atmosféry není možné. Pro přesnější měření je nutné použít scintilometrické měření pro každou výšku v atmosféře, a to vzhledem k pracnosti celého měření není možné. Proto modely slouží jen pro přibližné zhodnocení turbulentní atmosféry pro optickou komunikaci.

LITERATURA

- [1] ANDREWS, C. Larry. *Field Guide to Atmospheric Optics*. Washington: SPIE, 2004. s. 97. ISBN 081945318-8.
- [2] ANDREWS, C. Larry., PHILLIPS, L. Ronald. Kolmogorov cascade theory of turbulence [obrázek]. In: ANDREWS, C. Larry., PHILLIPS, L. Ronald. *Laser Beam Propagation through Random Media*. Washington: SPIE, 1998. s. 45. ISBN 0-8194-2787-X. se souhlasem autorů, byl obrázek přeložen a barevně modifikován.
- [3] ANDREWS, C. Larry., PHILLIPS, L. Ronald. *Laser Beam Propagation through Random Media*. Washington: SPIE, 1998. s. 43-64. ISBN 0-8194-2787-X.
- [4] ANDREWS, C. Larry., PHILLIPS, L. Ronald. Propagation geometry for an extended random medium [obrázek]. In: ANDREWS, C. Larry., PHILLIPS, L. Ronald. *Laser Beam Propagation through Random Media*. Washington: SPIE, 1998. s. 8. ISBN 0-8194-2787-X. se souhlasem autorů, byl obrázek přeložen a barevně modifikován.
- [5] ANDREAS, Edgar L., et al. *Probability Distributions for the Inner Scale and the Refractive Index Structure Parameter and Their Implications for Flux Averaging.* Armz research lab. 2003. s. 56. TR-03-24.
- [6] Atmospheric models. In: ATMTools A Toolbox for Atmospheric Propagation Modeling.
 [Online]. last modified on 2011-01-02 [cit. 2011-04-02]. Dostupné z: http://scalingcodes.mza.com/doc/ATMTools/AtmosModels.html.
- [7] BÁRTA, Miroslav. Vliv atmosférických turbulencí na optický svazek. Brno, 2009. diplomová práce. Vysoké učení technické v Brně, fakulta komunikačních a sdělovacích technologii. Vedoucí práce Ing. Lucie Dordová.
- [8] BENDERSKY, Sergey., KOPEIKA, Norman S., BLAUNSTEIN, Natan. Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements. *Applied optics*. [online]. 2004. Applied optics: OSA. Vol. 43. s. 4070-4079 [cit. 2011-04-06]. Dostupné z: < http://dx.doi.org/10.1364/AO.43.004070>.
- [9] BOLDIŠ, Petr. Bibliografické citace dokumentů podle ČSN ISO 690 a ČSN ISO 690-2: Část 2–Modely a příklady citací u jednotlivých typů dokumentů. [Online]. Verze 3.1, 2004-11-11 [cit. 2011-12-31]. Dostupné z: < http://www.boldis.cz/citace/citace2.pdf>.
- [10] BOLDIŠ, Petr.Bibliografické citace dokumentů podle ČSN ISO 690 a ČSN ISO 690-2: Část 1 – Citace: metodika a obecná pravidla. [Online]. Verze 3.3, 2004-11-11 [cit. 2011-12-31]. Dostupné z: http://www.boldis.cz/citace1.pdf>.
- [11] BROOKNER, E. Improved Model for the Structure Constant Variations with Altitude. *Aplied Optics*. [online]. 1971. Massachutes: Aplied Optics, 8. May 1971. Vol. 10, Issue 8, s. 1960-1962. [cit. 2011-03-25]. doi:10.1364/AO.10.001960. Dostupné také z: http://dx.doi.org/10.1364/AO.10.001960>.
- [12] BROWN, James H. A Nighttime structure model of atmospheric optical turbulence, Cn2, delivered from thermosonde and high resolution rawisonde measurements. Hansom: Phillips Laboratory, 1993. No. 1119. s. 70. PL-TR-93-2016.
- [13] CÍSAŘ, David. Vliv atmosférických turbulencí na intenzitní profil laserového svazku. Brno, 2009. bakalářská práce. Vysoké učení technické v Brně, fakulta komunikačních a sdělovacích technologii. Vedoucí práce Ing. Lucie Dordová.
- [14] COULMAN, C.E., et al. Outer scale of turbulence appropriate to modeling refractiveindex structure profiles. *Aplied Optics*. [online]. 1988. Vol. 27. No. 1. s. 155-160 [cit. 2011-03-25]. Dostupné z: < http://dx.doi.org/10.1364/AO.27.000155>.
- [15] ČSN ISO 690. Informace a dokumentace Pravidla pro bibliografickoé odkazy a citace informačních zdrojů. Praha: Úřad pro technickou normalizaci. metrologii a státní zkušebnictví, 2011. Třídící znak 01 0197.
- [16] ČSN ISO 999. Informace a dokumentace Zásady zpracování, uspořádání a grafické úpravy rejstříků. Praha: Úřad pro technickou normalizaci. metrologii a státní zkušebnictví, 1998. Třídící znak 01 0192.
- [17] ČSN ISO 2145. Dokumentace Číslování oddílů a pododdílů psaných dokumentů. Praha: Úřad pro technickou normalizaci. metrologii a státní zkušebnictví, 1997. Třídící znak 01 0184.
- [18] ČSN ISO 6910. Úprava písemností zpracovaných textovými editory Guidelines for text presentation. Praha: Úřad pro technickou normalizaci. metrologii a státní zkušebnictví, 2007. Třídící znak 01 6910.
- [19] ČSN ISO 7144. Dokumentace Formální úprava disertací a podobných dokumentů. Praha: Úřad pro technickou normalizaci. metrologii a státní zkušebnictví, 1997. Třídící znak 01 01961.
- [20] ČSN ISO 8601. Datové prvky a formáty výměny Výměna informací Zobrazení data a času. Praha: Úřad pro technickou normalizaci. metrologii a státní zkušebnictví, 2005. Třídící znak 97 9738.
- [21] D'AURIA, Giovanni., MARZANO, Frank S., MERLO, Ugo. Model for estimating the refractive-index structure constant in clear-air intermittent turbulence. *Applied Optics*. [online]. 1993, vol. 32, iss. 15, s. 2674-2680 [cit. 2011-09-05]. Dostupné také z: < http://dx.doi.org/10.1364/AO.32.002674>.
- [22] DEWAN, Edmond M., GROSSBARD, Neil. The inertial range "outer scale" and optical turbulence. *Environ Fluid Mechanics*. [online]. 2007, vol. 7, num. 5, s. 238-396 [cit. 2011-09-05]. DOI 10.1007/s10652-007-9029-4. Dostupné také z: < http://www.springerlink.com/content/h76v48p26653u527/fulltext.pdf>.
- [23] DOSS-HAMMEL, Steve., et al. A Comparison of Optical Turbulence Models. *Free space Laser Communications IV, edited bz Jennifer C. Ricklin.* [online]. 2004, Boston: SPIE, vol. 2. s. 236-246 [cit. 2011-09-01]. doi: 10.1117/12.563746. Dostupné také z: < http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA465265>.
- [24] DVOŘÁK, Petr. Turbulence [obrázek]. In: DVOŘÁK, Petr. Učebnice pilota 2008: Letecká meteorologie. Praha: Svět křídel, 2008. s. 255. ISBN 978-80-86808-46-8. Se ouhlasem autora byl obrázek upraven a odtsraněn text z originálního obrázku.
- [25] DVOŘÁK, Petr. Učebnice pilota 2008: Letecká meteorologie. 1. vydání. Praha: Svět křídel, 2008. s. 199-258. ISBN 978-80-86808-46-8.
- [26] FARMBROUGH, Rich. Monin–Obukhov_Length. In: Wikipedia: the free encyklopedia [Online]. last modified on 2011-02-12 [cit. 2011-03-25]. Dostupné z: http://en.wikipedia.org/wiki/Monin–Obukhov_Length>.

- [27] FIDLER, Franz. Optical Communication from High-Altitude Platforms. Austria: Viena University of Technology Electrotechnic and informations, Faculty of 2007. Dissertation. s. 171. Dostupné také z: http://publik.tuwien.ac.at/files/PubDat_112010.pdf>.
- [28] FREDERICSON, Paul A., et al. Estimating the Refractive Index Structure Parameter (Cn2) over the Ocean Using Bulk Methods. *Journal of applied meteorology*.[online]. Octomber 2000, vol. 39. iss. 10. s. 1770-1783 [cit. 2011-05-01]. ISSN 1520-0450. Dostupné také z: < http://dx.doi.org/10.1175/1520-0450-39.10.1770>.
- [29] FREDERIKSON, Paul A., DAVIDSON, Kenneth L. Observational Buoy Studies of Coastal Air–Sea Fluxes. *Journal of applied meteorology*. [online]. 2003. California. Vol 16. s. 593-599 [cit. 2011-05-01].
- [30] GOOGLE. *Google Earth* 6.2.1 [software]. Dostupné z: < http://www.google.com/intl/cs/earth/index.html>. Použito na systému: PC Windows 7 64bit; 4 GB RAM.
- [31] GROTZ, Martin. Rotační elipsoid, referenční koule. [obrázek]. In: *Učebnice pilota: Letecká navigace.* 1. vyd. Cheb: Svět křídel, 2008. s. 272. ISBN 978-80-86808-46-8. se solením autora je obrázek barevně upraven.
- [32] HANZ, Coolman. Atmosfeer. [obrázek]. In: Wikipedia: the free encyklopedia: Atmossfeer. [Online]. last modified on 2007-05-08 [cit. 2011-03-06]. Dostupné z: < http://nl.wikipedia.org/wiki/Bestand:Atmosfeer.png>. Se souhlasem autora je obrázek počeštěn a pro lepší rozlišení upraven.
- [33] HARDY, Michael. Brunt–Väisälä frequency. In: *Wikipedia: the free encyklopedia*. [Online] last modified on 2011-02-15 [cit. 2011-02-22]. Dostupné z: http://en.wikipedia.org/wiki/Brunt–Väisälä_frequency.
- [34] HARTOGENESIS, O. K., et al. Derivation of an Effective Height for Scintillometers: La Poza Experiment in Northwest Mexico. *Journal of hydrometeorology*. [online]. 2003. Vol. 4. s. 915-928 [cit. 2011-05-01]. ISSN 1525-7541. Dostupné také z: < http://journals.ametsoc.org/doi/full/10.1175/1525-7541(2003)004%3C0915:DOAEHF%3E2.0.CO%3B2>.
- [35] HILL, Reginard J. Structure Functions and Spectra of Scalar Quantities in the Inertial-Convective and Viscous-Convective Ranges of Turbulence. *Journal of The Atmosperic science*. [online]. 1989. Vol. 46. No. 14. s. 2245-2251 [cit. 2011-04-05]. Dostupné také z: < http://journals.ametsoc.org/doi/pdf/10.1175/ 1520-0469(1989)046%3C2245%3ASFASOS%3E2.0.CO%3B2>.
- [36] HORÁK, Jan. KRŠKA, Karel. Učebnice pilota vrtulníku PPL(H) část II: Meteorologie: Principy letu. 1. vydání. Brno: CEM, 2009. s. 26-55. ISBN 978-80-7204-638-6.
- [37] HUGO., et al. Viskozita. In: *Wikipedia: the free encyklopedia*. [Online]. poslední aktualizace 2011-01-13 [cit. 2011-04-02]. Dostupné z: http://cs.wikipedia.org/wiki/Viskozita.
- [38] HYMNIC, Feline., et al. Scintillometer. In: Wikipedia: the free encyklopedia. [Online]. last modified on 2010-08-16 [cit. 2011-03-03]. Dostupné z: http://en.wikipedia.org/wiki/Scintillometer.
- [39] ISHIMARU, Akira. Wave Propagation and Scattering in Random Media. BM.: IEEE, 1997. s. 321-361[50]. ISBN 0-7803-4717-X.
- [40] KELLER, Ladislav. Učebnice pilota 2008: Principy letu. 1. vydání. Praha: Svět křídel, 2008. s. 199-258. ISBN 978-80-86808-46-8.

- [41] KERBER, Rostislav. Analýza frekvence atmosférických turbulencí. Brno, 2007. bakalářská práce. Vysoké učení technické v Brně, fakulta komunikačních a sdělovacích technologii. Vedoucí práce Ing. Lucie Dordová.
- [42] KEVICKÝ, Dušan. Oběžná dráha kolem Slunce je Elipticá. [obrázek]. In:Vosecký Slavomír a další. *Učebnice pilota PPL(H) část II: Obecná navigace*. Brno: CERM, 2009. s. 99. ISBN 978-7204-638-6. Se souhlasem autora je obrázek barevně upraven.
- [43] KIM, You-Jae, HAN, J.-G., KIM, Youn J. Flow Characteristics of An Atmospheric Pressure Plasma Torch. In: *ArXIV.org.* Cornell University Library. [Online]. 2004 [cit. 2011-04-02]. s. 8. Dostupné z: http://arxiv.org/pdf/physics/0410237.pdf>.
- [44] KOREVAAR, Eric J. *Optical Wireless Communications*. Boston: SPIE, 1999. Vol. 3532 s. 128. ISBN 0-8194-2993-7.
- [45] KŘIVÁK, Petr. Optické bezkabelové spoje s velkým dosahem. Brno, 2009. Disertační práce.Vysoké učení technické v Brně, fakulta komunikačních a sdělovacích technologii. Vedoucí práce prof. Ing. Otakar Wilfert, CSc.
- [46] *KULČÁK*, Ludvík., et al. *Učebnice pilota vrtulníku PPL(H) část 2. 1.* vydání. Brno: CERM, 2009. s. 450. ISBN 978-80-7204-638-6.
- [47] LAWSON, J. K., CARANO, C.J. Using Historic Models of Cn2 to predict r0 and regimes affected by atmospheric turbulence for horizontal, slant and topological paths. USA: SPIE, 2006. s. 14. URCL-CONF-222540.
- [48] MATERIALSCIENTIS., et al. Viscosity. In: *Wikipedia: the free encyklopedia*. [Online]. last modified on 2011-04-01 [Citace: 2011-04-02]. Dostupné z: http://en.wikipedia.org/wiki/Viscosity.
- [49] MATHWORKS. *Matlab 2011b* [software]. Dostupné z: <http://www.mathworks.com/products/matlab>.
- [50] MEIJNINGER, Wouter. The Scintillation method. In: *Meteorology and Air Quality*.
 [Online]. last modified on 2002-07-11 [cit. 2011-02-28]. Dostupné z: http://www.met.wau.nl/projects/intro/scintillation_method.pdf>.
- [51] MOZILLA EUROPE a MOZILLA FOUNDATION. *Mozilla Firefox 10.0* [software]. [přístup v únoru 2012]. Dostupné z: www.mozilla-europe.org/cs/. Použito se systémem: PC Windows 7 64bit; 4 GB RAM.
- [52] NASA. Airplane vortex [fotografie]. In: Wikipedia: the free encyklopedia: Turbulence.
 [Online]. last modified on 2006-06-04 [cit. 2011-03-04]. Dostupné z: http://upload.wikimedia.org/wikipedia/commons/f/fe/Airplane_vortex_edit.jpg.
- [53] NICKCAMPBELL18. Von Kármán constant. In: Wikipedia: the free encyklopedia.
 [Online] last modified on 15. 1. 2010 [cit. 2011-03-25]. Dostupné z: http://en.wikipedia.org/wiki/Von_Kármán_constant.
- [54] OOLMAN, Larry, Michael. Soundings. In: *University of Wyoming: Upperair Air Data* [Online]. last modified on 2011-01-22 [cit. 2012-02-20]. Dostupné z: < http://weather.uwyo.edu/upperair/sounding.html>.
- [55] PATH. Dodatek: Geodetický systém WGS 84. In: path.cz. [Online]. poslední aktualizace2007-07-09[cit. 2011-11-27].z: <http://www.path.cz/forum/viewtopic.php?f=4&t=19>.

- [56] POTVIN, Guy., et al. An Empirical Analysis of Bulk Cn2 Models over Water. *Journal of applied meteorology and climatology*.[online]. 2008. Vol. 47. issue 12. s. 3044 3060 [cit. 2011-05-01]. ISSN 1558-8432. Dostupné také z: < http://journals.ametsoc.org/doi/pdf/ 10.1175/2008JAMC1632.1>.
- [57] RYZNAR Edward, BARTLO, A. Joseph. Dependence of Cn2 in the Atmospheric Boundary Layer on Conventional Meteorological Variables. [online]. 1986, Massachusetts: The University of Michigan College of Engineering. s. 149 [cit. 2012-04-24]. F19628-83-K-0040. Dostupné také z: < www.dtic.mil/dtic/tr/fulltext/u2/a169478.pdf>
- [58] RUBIN, Arthur. Potencial temperature. In: Wikipedia: the free encyklopedia. [Online]. lastmodifiedon2010-11-09[cit.2011-03-25].Dostupnéz: <http://en.wikipedia.org/wiki/Potential_temperature>.
- [59] SCINTEC. Learn more about Scintillation. In: *Scintec*. [Online] last modified on 2010-01-11 [cit. 2011-03-06]. Dostupné z: < http://www.scintec.com/PDFs/BLS900_2012.pdf>. Se svolením autora byl obrázek upraven.
- [60] SCINTEC. Learn more about Scintillation. In: Scintec. [Online] last modified on 2010-01-11 [cit. 2011-03-06]. Dostupné z: http://www.scintec.com/PDFs/SLS20-A_2010.pdf>. Se svolení autora, byl obrázek upraven.
- [61] SETH, Marek L. A computational tool for evaluating thz imaging performance in brownout conditions at land sites throughout the world. [online]. Ohio: Air force of institut , 2009 [cit. 2011-04-03]. 65 s. Dissertation. Dostupné z: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA494962>.
- [62] SMIS, Alexander J., DUSSAUGE, Jean-Paul. *Turbulent Shear Layers in Supersonic Flow*.
 2. edition. USA: Springer Science+Business Media, 2005. s. 410. ISBN 0-387-26140-0.
- [63] SMITH, Frederick G. The Infrared and Electro-Optical Systems Handbook. 2: Atmospheric Propagation of Radiation. Washington: SPIE, 1993. s. 333.
- [64] SPIEL496., et al. Lapse rate. In: *Wikipedia: the free encyklopedia*. [Online]. last modified on 2010-10-14 [cit. 2011-02-04]. Dostupné z: http://en.wikipedia.org/wiki/Lapse_rate>.
- [65] STERENBORG, M.G., POIARES, Baptista, J.P.V., BÜHLER, S. Determining the refractive index structure constant using high-resolution radiosonde data. [online]. Netherland: ESTEC, 2004 [cit. 2011-3-27]. s. 40. Dostupné z: < http://www.sat.ltu.se/members/sab/publications/pedro_scint/scint_paper.pdf>.
- [66] ŠEBESTA, Jiří. MRAR Radiolokační a radionavigační systémy: přednáška č.7. Brno: FEKT VUT v Brně, 2011. s. 47.
- [67] ŠÍMOVÁ. Doporučená typografická pravidla pro zpracování vysokoškolských kvalifikačních prací na FCH VUT v Brně. [Online]. Vysoké učení technické,18. 2 2009.
 [Cit. 2011-12-31]. Dostupné z: http://www.fch.vutbr.cz/media/docs/typografie_vskp_2009_1.pdf.
- [68] ŠVANCARA, Jan. Gravimetrická mapa České republiky. [Online] Geofyzikální ústav ČR.
 2008-02-17 [cit. 2011-11-27]. s. 6. Dostupné z <www.ig.cas.cz/userdata/files/popular/Gravimetricka_mapa.pdf>.
- [69] THIERMANN, V., KOHNLE, A., A Simple model for the structure constant of temperature fluctuations in the lower atmosphere. *Applied Optics*. [online]. 1988, vol. 21, num. 10S, s. 37-40 [cit. 2012-05-06]. DOI:10.1088/0022-3727/21/10S/011.

- [70] TOFSTED, David H, BRIEN, Sean G., VAUCHER. Gail T.. An Atmospheric Turbulence Profile Model for Use in Army Wargaming Applications I. USA: Army research laboratory, 2006. s. 61. ARL-TR-3748.
- [71] TUNICK, Arnold. *Calculating the Microstructure of Atmospheric Optical Turbulence*. Army Research Laboratory, 1998. ARL-MR-419. Dostupné také z: < http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA358511>.
- [72] TUNICK, Arnold. CN2 model to calculate the micrometeorological influences on the refractive index structure parameter. In: *Environmental Modeling & Software* [online]. 2003. ScienceDirect. 2002-06-06. vol. 18. iss 2. s. 165-171 [cit. 2012-02-03]. Dostupné také z: < http://dx.doi.org/10.1016/S1364-8152(02)00052-X>.
- [73] TUNICK, Arnold., et al. *Characterization of optical turbulence (Cn2) data measured at the ARL A_LOT facility.* 2005. s. 31. ARL-MR-625. Dostupné z: < http://www.arl.army.mil/arlreports/2005/ARL-MR-625.pdf>.
- [74] TUNICK, Arnold D. The reflactive Index Structure Parameter Atmospheric Optical Turbulence Model: CN2. USA: Army Research Laboratory, 1998. s. 30. ARL-TR-1615.
- [75] TYSON, Robert K. Introduction to adaptive optics. USA: SPIE, 2000. s. 130. ISBN 0819435112.
- [76] Učebnice pilota 2008: Letecká navigace. 1. vydání. Praha: Svět křídel, 2008. s. 268-273. ISBN 978-80-86808-46-8.
- [77] VAŠÍČEK, Jiří. Turbulence. Český hydrometeorologický ústav ČR: Vysvětlení některých meteorologických pojmů a jevů. [Online]. poslední aktualizace 7. února 2008 [cit. 2011-02-27]. Dostupné z: <http://old.chmi.cz/meteo/olm/Let_met/Pojmy_2.htm#turbulence>.
- [78] WDANWATTS. International Standard Atmosphere. In: Wikipedia: the free encyklopedia.
 [Online]. last modified on 2011-02-11 [cit. 2011-03-04]. Dostupné z: http://en.wikipedia.org/wiki/International_Standard_Atmosphere.
- [79] WILCOX, Christopher C., RESTAINO, Sergio R. New Developments in Liquid Crystals: A New Method of Generating Atmospheric Turbulence with a Liquid Crystal Spatial Light Modulator. book editor Georgiy V. TKACHENKO.. India: In-Tech, 2009. s. 71-92. ISBN 978-953-307-015-5.
- [80] WILFERT, Otakar. *Optoelektronika*. 1. vydání. Brno: FEKT VUT v Brně, 2002. s. 121. ISBN 80-214-2264-5.
- [81] WYNGAARD, John C. *Turbulence in the Atmosphere*. Cambridge: Cambridge, 2010. s. 407. ISBN 978-0-511-76846-0.
- [82] ZAPLATÍLEK, Karel. DOŇAR, Bohuslav. *MATLAB: Tvorba uživatelských aplikací*. Praha: BEN, 2004. s. 215. ISBN 80-7300-133-0.
- [83] ЛУКИН, В.П Атосферная адаптибная оптика.. Новосибирск: Наука, 1986. s. 6-97.

SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK

Α	Nominální hodnota
b	Nominální hodnota
$C_n^2\left[m^{-\frac{2}{3}}\right]$	Strukturní parametr indexu lomu
$C_{np}^{+}\left[m^{\frac{1}{3}}\right]$	Průměrná hodnota strukturního parametru
$C_{n0}^2\left[m^{-\frac{2}{3}}\right]$	Nominální hodnota strukturního parametru
$C_T^2\left[m^{-\frac{2}{3}}\right]$	Strukturní parametr teploty
$C_p\left[\frac{J}{kgK}\right]$	Teplota vzduchu
$d_t [m]$	Tloušťka
$E\left[\frac{kg}{kg}\right]$	Poměr hmotnosti vodní páry a suchého vzduchu
$g\left[\frac{m}{s}\right]$	Gravitační zrychlení
h	Výška nad zemí
<i>h_i</i> [m]	Výška inverzní vrstvy nad zemí
<i>h</i> _o [m]	Referenční nadmořská výška
<i>h_n</i> [m]	Nadmořská výška
<i>h</i> _t [m]	Výška Tropopausy
k	Von Karmán konstanta
Κ	Míra turbulence
<i>L</i> [m]	Moninova-Obhukova délka
<i>L</i> ₀ [m]	Rozměr vnější turbulence
<i>l</i> ₀ [m]	Rozměr vnitřní turbulence
$L_{HAP}\left[m ight]$	Vzdálenost z HAP k satelitu
<i>h_{SAT}</i> [m]	Vzdálenost satelitu od povrchu Země
$M_0\left[\frac{P}{Tg}\right]$	
n	Index lomu
n_0	Střední hodnota indexu lomu

n_1	Náhodná odchylka <i>n</i>
Ν	Bruntova-Vaisalova frekvence
<i>P</i> [Pa]	Tlak
P_L	Hustota pravděpodobnosti pro vnější stupnici
P_N	Hustota pravděpodobnosti Brunovyt-Vaisalovy frekvence
P_S	Střihová hustota pravděpodobnosti
$q\left[\frac{g}{m^3}\right]$	Vlhkost
q _r [%]	Relativní vlhkost
<i>r</i> ₀ [m]	Koherenční délka
$R\left[\frac{J}{mol\cdot K}\right]$	Plynná konstanta vzduchu
$u\left[\frac{m}{s}\right]$	Rychlost proudění
$u_*\left[\frac{m}{s}\right]$	Třecí rychlost
r _{země} [m]	Poloměr země
$R\left[\frac{J}{mol\cdot K}\right]$	Plynná konstanta vzduchu
$S\left[\frac{W}{m^2}\right]$	Sluneční záření
<i>t</i> [s]	Čas
t _w	Dočasná hodina
<i>T</i> [K]	Teplota
<i>T</i> ₀ [K]	Referenční teplota
<i>T</i> _s [K]	Teplota odvozená z vlhkosti
$V\left[\frac{m}{s}\right]$	Rychlost vzduchu
v _{HAP} [m/s]	Rychlost HAP
$v_k \left[\frac{m^2}{s} \right]$	Součinitel kinematické viskozity
$v_{poh}(h)\left[\frac{m}{s}\right]$	Rychlost větru v závisloti na výšce
$v_{v \check{e} tru} \left[\frac{m}{s} \right]$	Přízemní vítr
$v_t \left[\frac{m}{s}\right]$	Rychlost větru v Tropopause
V(h)	Buftonuv větrný model
$W\left[\frac{m}{s}\right]$	Rychlost větru pro 5 – 20 km nad zemským povrchem
<i>w_s</i> [m]	Nezávislá výška na úhlové rychlosti laserového paprsku z HAP

y [m] Výška nad mezní vrstvou *z* [m] Geometrická výška Místo, kde je rychlost proudění větší než nula Z_O $\beta\left[\frac{W}{m^2}\right]$ Empirická konstanta $\gamma_a \left[\frac{K}{m}\right]$ Adiabatický gradient teploty $\mathcal{E}\left[\frac{m^2}{s^3}\right]$ Molekulární rozptýlení turbulentní kinetické energie ε Plynná konstanta $\eta \left[\frac{Ns}{m^2} \right]$ Dynamická viskozita θ [K] Potenciálová teplota vzduchu Θ_0 [rad] Isoplanární úhel $\bar{\theta}_{v}$ [T] Virtuální potenciálová teplota λ [µm] Vlnová délka $\mu \left[\frac{kg}{sm}\right]$ Dynamická viskozita $\rho\left[\frac{kg}{m^3}\right]$ Hustota kapaliny (vzduchu) $\varrho_0 \, [\text{km/s}]$ Vertikální tepelné proudění τ_w [Pa] Smykové tření AFGL Air Force Geophysics Laboratory Albedo Míra odrazivosti tělesa nebo jeho povrchu **CLEAR** Critical Laser Enhancing Atmospheric Research HAP Pozorovací modul, který sbírá data (High Altitude Platform) HELHEM High Energy Laser Handbook Empirical Model ICAO International Civil Aviation Organization ISA Normalizovaná závislost teploty (InternationalStandard Atmosphere) IR Infračervené světlo (Infra Red) MSL Výška nad mořem (Mean Sea level) SLC Submarine Laser Communication studies UTC univerzální čas (Universal Time Coordinated)

SEZNAM PŘÍLOH

A Simulace Meteo stanic		102	
	A.1	Seznam Meteo stanic	102

A SIMULACE METEO STANIC

A.1 Seznam Meteo stanic

Číslo stanice	Kód stanice	Název stanice	Země
1001	ENJA	Jan Mayen	Norsko
1004	ENAS	Ny-Alesund Li	Norsko
1028	ENBJ	Bjornoya	Norsko
1152	ENBO	Bodo	Norsko
1241	ENOL	Orland	Norsko
1400	-	Ekofisk	Norsko
1415	ENZV	Stavanger	Norsko
		Sundsvall-	
2365	-	Harnosand	Švédsko
2591	ESQV	Visby Aerologiska	Švédsko
2836	EFSO	Sodankyla	Finsko
2963	-	Jokionien	Finsko
3005	-	Lerwick	Velká Británie
3354	-	Nottingham	Velká Británie
3808	-	Camborne	Velká Británie
3882	-	Herstmonceux	Velká Británie
3918	-	Castor Bay	Irsko
3953	-	Valentia	Irsko
3953	-	Valetia	Island
4018	BIKF	Keflavikurflugvollur	Reykjavík
		Aasiaat	
4220	BGEM	(Egedesminde)	Grónsko
4270	BGBW	Narsarsuaq	Grónsko
4320	BGDH	Danmarkshavn	Grónsko
4339	BGSC	Ittoqqortoormiit	Grónsko
		Tasiilaq	
4360	BGAM	(Ammassalik)	Grónsko
6011	-	Torshavn	Faerské ostrovy
6260	EHDB	De Bilt	Nizozemsko
6610	LSMP	Payerne	Švýcarsko
7110	LFRB	Brest	Francie
7145	-	Trappes	Francie
7510	LFBD	Bordeaux Merignac	Francie
7645	LFME	Nimes-Courbessac	Francie
7761	LFKJ	Ajaccio	Francie

Číslo stanice	Kód stanice	Název stanice	Země
8001	-	La Coruna	Portugalsko
8023	-	Santander	Španělsko
8160	LEZG	Zaragoza	Španělsko
8190	-	Barcelona	Španělsko
8221	LEMD	Madrid	Španělsko
8302	-	Palma De Mallorca	Španělsko
8430	-	Murcia	Španělsko
8495	LXGB	Gibraltar	Španělsko
8522	-	Funchal	Portugalsko
8579	-	Lisboa	Portugalsko
10035	-	Schleswig	Německo
10113	-	Norderney	Německo
10184	-	Greifswald	Německo
10238	ETGB	Bergen	Německo
10393	-	Lindenberg	Německo
10410	EDZE	Essen	Německo
10548	-	Meiningen	Německo
10618	ETGI	Idar-Oberstein	Německo
10739	-	Stuttgart	Německo
10771	ETGK	Kuemmersbruck	Německo
		Muenchen-	
10868	-	Oberschlssheim	Německo
11035	-	Wien	Rakousko
11520	-	Praha-Libus	Česká republika
11747	-	Prostějov	Česká republika
11952	-	Poprad-Ganovce	Slovenská republika
12120	-	Leba	Polsko
12374	-	Legionowo	Polsko
12425	-	Wroclaw I	Polsko
13275	-	Beograd	Srbsko
14240	LDDD	Zagreb	Chorvatsko
14430	-	Zadar	Chorvatsko
15420	LDDC	Bucuresti Inmh-	
15420	LRBS	Banesa	Rumunsko
15614	LBSF	Sofia (Observ)	Bulharsko
16044		Udine	Itálie
16080	LIML	Milano	Itálie
16113	-	Cuneo-Levaldıgı	Itálie
16245	LIRE	Practica Di Mare	Itálie
16320	LIBR	Brindisi	Itálie
16429	LICT	Trapani	Itálie
16560	LIEE	Cagliari	Itálie
16716	LGAT	Athinai (airport)	Recko

Číslo stanice	Kód stanice	Název stanice	Země
17030	-	Samsun	Turecko
17062	-	Istanbul	Turecko
17095	ERZM	Erzurum	Turecko
17130	-	Ankara	Turecko
17220	-	Izmit	Turecko
17240	LTBM	Isparta	Turecko
17281	-	Diyarbakir	Turecko
17351	-	Adana	Turecko
17607	LCNC	Athalassa	Kypr
		Polargmo Im.	
20046	-	Krenkelja	Rusko
20202		Gmo Im. E.K.	
20292	-	Federova	Rusko
20674	-	Ostrov Dikson	Rusko
20744	-	Malye Karmakuly	Rusko
21432	-	Ostrov Kotelnyj	Rusko
21824	-	Tiksi	Rusko
21946	-	Chokurdah	Rusko
22113	ULMM	Murmansk	Rusko
22217	-	Kandalaksa	Rusko
22522	-	Kem	Rusko
22820	-	Petrozavodsk	Rusko
22845	-	Kargopol	Rusko
23205	-	Narjan-Mar	Rusko
23330	-	Salehard	Rusko
23418	-	Pechora	Rusko
23472	-	Turuhansk	Rusko
23804	UUYY	Syktyvkar	Rusko
23884	-	Bor	Rusko
23921	-	Ivdel	Rusko
23933	USHH	Hanty-Mansijsk	Rusko
23955	-	Aleksandrovskoe	Rusko
24125	-	Olenek	Rusko
24266	-	Verhojansk	Rusko
24343	-	Zhigansk	Rusko
24507	-	Tura	Rusko
24641	-	Viljujsk	Rusko
24688	-	Omjakon	Rusko
24726	-	Mirnvy	Rusko
24908	-	Vanavara	Rusko
24944	-	Olekminsk	Rusko
24959	UEEE	Jakutsk	Rusko
25123	-	Cherskij	Rusko

Číslo stanice	Kód stanice	Název stanice	Země
25400	-	Zyrjanka	Rusko
25428	-	Omon	Rusko
25703	-	Sejmchan	Rusko
25913	UHMM	Magadan	Rusko
		St. Petersburg	
26063	ULLI	(Voejkovo)	Rusko
26298	-	Bologoe	Rusko
26477	ULOL	Velikie Luki	Rusko
26702	-	Kaliningrad	Kaliningrad
26781	-	Smolensk	Rusko
27199	-	Kirov	Rusko
27459	-	Niznij	Rusko
27595	-	Kazan	Rusko
27(12		Moskva	
27612	-	(Dolgoprudnyj)	Rusko
27707	-	Suhinici	Rusko
27730	-	Rjazan	Rusko
27962	UWPP	Penza	Rusko
27995	-	Samara (Bezencuk)	Rusko
28225	-	Perm	Rusko
28275	-	Tobolsk	Rusko
28445	-	Verhnee Dubrovo	Rusko
28661	-	Kurgan	Rusko
28698	-	Omsk	Rusko
28722	-	Ufa	Rusko
29231	-	Kolpasevo	Rusko
29263	UNII	Enisejsk	Rusko
29282	-	Bogucany	Rusko
29572	-	Emeljanovo	Rusko
29612	-	Barabinsk	Rusko
29634	UNNN	Novosibirsk	Rusko
29698	UINN	Nizhneudinsk	Rusko
29862	-	Hakaskaja	Rusko
30054	-	Vitim	Rusko
30230	UIKK	Kirensk	Rusko
30309	-	Bratsk	Rusko
30372	-	Chara	Rusko
30554	-	Bagdarin	Rusko
30635	-	Ust-Barguzin	Rusko
30673	-	Mogoca	Rusko
30715	-	Angarsk	Rusko
30758	UIAA	Chita	Rusko
30935	-	Krasynyj Chikoj	Rusko

Číslo stanice	Kód stanice	Název stanice	Země
30965	-	Borzja	Rusko
31004	-	Aldan	Rusko
31088	-	Ohotsk	Rusko
31168	-	Ajan	Rusko
31300	-	Zeja	Rusko
		Nikolaevsk-Na-	
31369	-	Amure	Rusko
31510	-	Blagovescensk	Rusko
31736	-	Habarovsk	Rusko
31873	-	Dalnerechensk	Rusko
31977	_	Vladivostok (Sad Gorod)	Rusko
32061	-	Aleksandrovsk- Sahalnskij	Rusko
32098	-	Poronajsk	Rusko
32150	UHSS	Juzno-Sahalinsk	Rusko
32389	-	Kljuchi	Rusko
32540	UHPP	Kamchatskij	Rusko
33041	-	Gomel	Bělorusko
33345	UKKK	Kyiv	Ukrajina
33791	-	Kryvyi Rih	Ukrajina
34009	-	Kursk	Rusko
34122	UUOO	Voronez	Rusko
34172	-	Saratov	Rusko
34247	-	Kalac	Rusko
34560	URWW	Volgograd	Rusko
34731	URRR	Rostov-Na-Donu	Rusko
34858	-	Divnoe	Rusko
34880	-	Astrahan	Rusko
35121	-	Orenburg	Rusko
35229	UATT	Aktjubinsk	Kazachstán
35394	-	Karagada	Kazachstán
35671	-	Zhezkazgan	Kazachstán
35700	-	Atyran	Kazachstán
36003	-	Pavlodar	Rusko
36096	-	Kyzyl	Rusko
37018	-	Tuapse	Rusko
37054	URMM	Mineralnye Vody	Rusko
38341	-	Zhambyl	Kazachstán
40179	-	Bet Dagan	Izrael
40373	OEPA	Al-Qaisumah	Saúdská Arábie
40375	OETB	Tabuk	Saúdská Arábie
40394	OEHL	Hail	Saúdská Arábie

Číslo stanice	Kód stanice	Název stanice	Země
40430	OEMA	Al-Madinah	Saúdská Arábie
		King Khaled Intl	
40437	OERK	Arpt	Saúdská Arábie
40582	OKBK	Kuwait Intl Arpt	Kuwait
40745	OIMM	Mashad	Irán
40754	OIII	Tehran-Mehrabad	Irán
40766	OICC	Kermanshah	Írák
40800	OIFM	Esfahan	Irán
40809	OIMB	Birjand	Irán
40841	OIKK	Kerman	Irán
40948	OAKB	Kabul Airport	Afgánistán
40990	OAKN	Kandahar Airport	Afgánistán
		Jeddah (King Abdul	
41024	OEJN	Aziz)	Saúdská Arábie
41112	OEAB	Abha	Saúdská Arábie
41017		Abu Dhabi Intern	Spojené arabské
41217	OMAA	Arpt	emiráty
41780	ОРКС	Karachi Airport	Påkistån
42101	-	Patiala	Indie
42182	VIDD	New delphi	Indie
42339	VIJO	Jodhpur	Indie
42647	VAAH	Ahmadabad	Indie
42701	VERC	M.O.Ranchi	Indie
43003	VABB	Bombay	Indie
43041	-	Jagdalpur	Indie
43150	-	Vihakhapatnam	Indie
43279	VOMM	Madras	Indie
43311	-	Amini Divi	Indie
43353	VOCC	Cochin	Indie
43369	-	Minicoy	Indie
43413	-	Mannar	Srí Lanka
43466	-	Colombo	Srí Lanka
44231	-	Muren	Mongolsko
44292	-	Ulaan-Baator	Mongolsko
44373	-	Dalanzadgad	Mongolsko
45004	-	Kings Park	Hong Kong
47090	-	Sokcho	Jižní Korea
47102	-	Baengnyenogdo	Severní Korea
47122	RKSO	Osan Ab	Jižní Korea
47138	-	Pohang	Jižní Korea
47158	RKJJ	Kwanglu Ab	Jižní Korea
47185		Cheju Upper	Jižní Korea
47401	-	Wakkanai	Japonsko

Číslo stanice	Kód stanice	Název stanice	Země
47412	-	Sapporo	Japonsko
47580	RJSM	Misawa	Japonsko
47582	-	Akita	Japonsko
47600	-	Wajima	Japonsko
47646	-	Tateno	Japonsko
47678	-	Hachijyojima	Japonsko
47681	RJNH	Hamamatsu	Japonsko
47778	-	Shinomisaki	Japonsko
47807	-	Fukuoka	Japonsko
47827	-	Kagoshima	Japonsko
47909	-	Naze	Japonsko
47918	ROIG	Ishigakijima	Japan
47945	ROMD	Minamidaitojima	Japonsko
47971	RJAO	Chichijima	Japonsko
47991	RJAM	Minamitorishima	Mikronesie
48327	VTCC	Chiang Mai	Thajsko
48354	VTUD	Udon Thani	Thajsko
48407	VTUU	Ubon Ratchathani	Thajsko
48431	VTUN	Nakhon Ratchasima	Thajsko
48477	-	Sattahip	Thajsko
48480	VTBC	Chanthaburi	Thajsko
48500	VTBP	Prachuap Khirikhan	Thajsko
48551	VTSB	Surat Thani	Thajsko
48565	VTSP	Phuket Airport	Thajsko
48568	VTSH	Songkhla	Thajsko
48601	WMKP	Penang	Malajsie
48615	WMKC	Kota Bharu	Malajsie
48620	WMBA	Sitiawan	Malajsie
48650	-	Sepang	Malajsie
48657	WMKD	Kuantan	Malajsie
48698	WSSS	Singapore	Singapur
48820	VVNB	Ha Noi	Vietnam
48855	VVDN	Da Nang	Vietnam
48900	VVTS	Ho Chi Minh	Vietnam
50527	-	Hailar	Čína
50557	-	Nenjiang	Čína
50774	-	Yichun	Čína
50953	-	Harbin	Čína
51076	-	Altay	Čína
51431	ZWYN	Yining	Čína
51463	-	Urumqi	Čína
51644	-	Kuqa	Čína
51709	ZWSH	Kashi	Čína

Číslo stanice	Kód stanice	Název stanice	Země
51777	-	Ruqiang	Čína
51828	ZWTN	Hotan	Čína
51839	-	Minfeng	Čína
52203	ZWHM	Hami	Čína
52267	-	Ejin Qi	Čína
52323	-	Mazong Shan	Čína
52418	-	Dunhuang	Čína
52533	ZLJQ	Jiuquan	Čína
52614	ZLIC	Yinchuan	Čína
52681	-	Minqin	Čína
52818	-	Golmud	Čína
52836	-	Dulan	Čína
52866	ZLXN	Xining	Čína
52983	-	Yu Zhong	Čína
53068	-	Erenhot	Čína
53463	ZBHH	Hohot	Čína
53513	-	Linhe	Čína
53614	ZLIC	Yinchuan	Čína
53772	ZBYN	Taiyuan	Čína
53845	ZLYA	Yan An	Čína
53915	-	Pingliang	Čína
54102	-	Xilin Hot	Čína
54135	-	Tongliao	Čína
54161	ZYCC	Chanhgchun	Čína
54218	-	Chifeng	Čína
54292	-	Yanji	Čína
54342	ZYYYY	Shenyang	Čína
54374	-	Linjiang	Čína
54511	ZBAA	Beijing	Čína
54662	ZYTL	Dalian	Čína
54857	ZSQD	Qingdao	Čína
55299	-	Nagqu	Čína
55591	ZULS	Lhasa	Čína
56029	-	Yushu	Čína
56080	-	Hezuo	Čína
56137	-	Qamdo	Čína
56146	-	Garze	Čína
56571	-	Xichangh	Čína
56691	-	Weining	Čína
56739	-	Tengchong	Čína
56778	ZPPP	Kunming	Čína
56964	-	Simao	Čína
56985	-	Mengzi	Čína

Číslo stanice	Kód stanice	Název stanice	Země
57083	ZHCC	Zhengzhou	Čína
57127	-	Hanzhong	Čína
57178	-	Nanyang	Čína
57447	-	Enshi	Čína
57461	-	Yichang	Čína
57494	ZHHH	Wuhan	Čína
57516	ZUCK	Chogqing	Čína
57679	ZGCS	Changsha	Čína
57749	-	Huiahua	Čína
57816	ZUGY	Guiyang	Čína
57957	ZGKL	Guilin	Čína
57972	-	Chenzhou	Čína
57993	ZSGZ	Ganzhou	Čína
58027	-	Xuzhou	Čína
58150	-	Sheyang	Čína
58203	-	Fuyang	Čína
58238	ZSNJ	Nanjing	Čína
58362	-	Shanghai	Čína
58424	-	Anqing	Čína
58606	ZSCN	Nanchang	Čína
58633	-	Qu Xian	Čína
58665	-	Hongjia	Čína
58725	-	Shaowu	Čína
58847	ZSFZ	Fuzhou	Čína
58968	-	Taibei	Tchaj-wan
59134	ZSAM	Xiamen	Čína
59211	-	Baise	Čína
59265	-	Wuzhou	Čína
59280	-	Qing Yuan	Čína
59316	ZGOW	Shantou	Čína
59431	ZGNN	Nanning	Čína
59758	ZGHK	Haikou	Čína
59981	-	Xisha Dao	Ostrovy Paracel
60018	-	Guimar-Tenerife	Kanárské ostrovy
60155	GMMC	Casablanca	Maroko
60390	DAAG	Dar-El-Beida	Alžírsko
60571	DAOR	Bechar	Maroko
60630	-	In-Salah	Alžírsko
60656	DAOF	Tindouf	Alžírsko
60680	-	Tamanrasset	Alžírsko
60715	DTTA	Tunis-Carhage	Tunisko
60760	DTTZ	Tozeur	Tunisko
61024	DRZA	Agadez	Nigerie

Číslo stanice	Kód stanice	Název stanice	Země
61052	DRRN	Niamey-Aero	Niger
61223	GATB	Tombouctou	Mali
61265	GAMB		Mali
61291	GABS	Bamako	Mali
61415	GQPP	Nouadhibou	Mauritánie
61442	GQNN	Nouakchott	Mauritánie
61641	GOOY	Dakar	Senegal
61687	GOTT	Tambacounda	Senegal
61901	-	St.Helena Is.	
61995	-	Vacoas (Mauritius)	Mauricius
62378	-	Helwan	Egypt
		South Of Valley	
62403	-	Univ	Egypt
62423	-	Farafra	Egypt
63741	HKNC	Nairobi	Keňa
		Sychelles	
63985	FSSS	(Rawinsonde)	Seychelly
(1150	FODD	Brazzaville/Maya-	IZ
64450	FCBB	Maya	Kongo
64700	FIIJ	Ndjamena	Lad
64910	FKKD	Douala R.S	Kamerun
65503	DFFD	Ouagadougou	Burkina Faso
65578	DIAP	Abidjan	Pobrezi slonoviny
67027	-	Majunga	Madagaskar
6/083	FMMI	Antanario	Madagaskar
6/19/	FMSF	Fort-Dauphin	Madagaskar
67774	-	Harare (Belvedere)	Zimbabwe
68263	FAIR	Pretoria (Irene)	Jižní afrika
68117	EADI	Bloemfontein	ližní ofriko
68502		King Shaka	Jižní afrika
08392	ГАК	Cono Town Intri	JIZIII allika
68816	FACT	Arport	ližní afrika
70026	PABR	Barrow	Aliaška
10020	TADA	Kotzebue Ralph	7 Hjušku
70133	РАОТ	Wien	Aljaška
70200	PAOM	Nome	Aljaška
70219	PABE	Bethel	Aliaška
70231	РАМС	Mcgrath	Aljaška
70261	PAFA	Fairbanks	Aljaška
70273	PANC	Anchorage	Aliaška
70308	PASN	St. Paul	Aliaška
70316	PACD	Cold Bay	Aljaška
70326	PAKN	King Salmon	Aliaška
67083 67197 67774 68263 68442 68592 68816 70026 70133 70200 70219 70231 70261 70273 70308 70326	FMMI FMSF - FAIR FABL FABL FAIR FACT PABR PAOT PABR PAOT PAOM PABE PAMC PAFA PANC PAFA PANC PASN PACD PAKN	AntanarioFort-DauphinHarare (Belvedere)Pretoria (Irene)BloemfonteinAirportKing ShakaCape Town Intnl.ArportBarrowKotzebue, RalphWienNomeBethelMcgrathFairbanksAnchorageSt. PaulCold BayKing Salmon	Madagaskar Madagaskar Zimbabwe Jižní afrika Jižní afrika Jižní afrika Jižní afrika Aljaška Aljaška Aljaška Aljaška Aljaška Aljaška Aljaška Aljaška

Číslo stanice	Kód stanice	Název stanice	Země
70350	PADQ	Kodiak	Aljaška
70361	PAYA	Yakutat	Aljaška
70398	PANT	Annette Island	Aljaška
70414	PASY	Shemya Afb	Aljaška
71043	YVQ	Norman Wells UA	Kanada
71081	YUX	Hall Beach	Kanada
71082	WLT	Alert	Kanada
71109	YZT	Port Hardy	Kanada
71119	WSE	Edmonton Stony	Kanada
71203	WLW	Kelowna	Kanada
71600	WSA	Sable Island	Kanada
71603	YQI	Yarmouth	Kanada
71722	WMW	Maniwaki	Kanada
71802	AYT	Mt Peral	Kanada
71811	YZV	Sept-Iles	Kanada
71815	YJT	Stephenville	Kanada
71816	YYR	Goose Bay	Kanada
71823	YAH	La Grande Iv	Kanada
71836	YMO	Moosonee	Kanada
71845	WPL	Pickle Lake	Kanada
71867	YQD	The Pas	Kanada
71906	YVP	Kuujuuaq	Kanada
71907	WPH	Inukjuak	Kanada
71908	ZXS	Prince George	Kanada
71909	YFB	Iqaluit	Kanada
71913	YYQ	Churchill	Kanada
71915	YZS	Caral Harbour	Kanada
71917	WEU	Eureka	Kanada
71924	YRB	Resolute	Kanada
71925	YCB	Cambridge Bay	Kanada
71926	YBK	Baker Lake	Kanada
71934	YSM	Fort Smith	Kanada
71945	YYE	Fort Nelson	Kanada
71957	YEV	Inuvik	Kanada
71964	YXY	Whitehorse	Kanada
			Spojené státy
72201	EYW	Key West	americké
70000			Spojené státy
72202	MFL	Miami	americké
70006		Lookaon villa Inti	Spojené státy
/2200	JAA	Jacksonville Inti	Spojoná státy
72208	CIS	Charleston	americké
12200			unionexe

Číslo stanice	Kód stanice	Název stanice	Země
72210	TBW	Tampa Bay Area	Spojené státy americké
72214	TLH	Tallahassee	Spojené státy americké
72215	FFC	Peachtree City	Spojené státy americké
72230	BMX	Shelby County Airport	Spojené státy americké
72233	LIX	Slidell Muni	Spojené státy americké
72235	JAN	Jackson Thompson Fld.	Spojené státy americké
72240	LCH	Lake Charles	Spojené státy americké
72248	SHV	Shreveport	Spojené státy americké
72249	FWD	Ft Worth	Spojené státy Americké
72250	BRO	Brownsville Intl	Spojené státy americké
72251	CRP	Corpus Christi Intl	Spojené státy americké
72261	DRT	Del Rio	Spojené státy americké
72265	MAF	Midland	Spojené státy americké
72274	TUS	Tucson	Spojené státy americké
72293	NKX	San Diego	Spojené státy americké
72305	MHX	Newport	Spojené státy americké
72317	GSO	Greensboro	Spojené státy americké
72318	RNK	Blacksburg	Spojené státy americké
72327	BNA	Nashville	Spojené státy americké
72340	LZK	North Little Rock	Spojené státy americké
72357	OUN	Norman	Spojené státy americké
72363	AMA	Amarillo Arpt (Awos)	Spojené státy americké
72364	EPZ	Santa Teresa	Spojené státy americké

Číslo stanice	Kód stanice	Název stanice	Země
72365	ABQ	Albuqueque	Spojené státy americké
72376	FGZ	Flagstaff	Spojené státy americké
72388	VEF	Las Vegas	Spojené státy americké
72393	VBG	Vandenberg Afb	Spojené státy americké
72402	WAL	Wallops Island	Spojené státy americké
72403	IAD	Sterling	Spojené státy americké
72426	ILN	Wilmington	Spojené státy americké
72440	SGC	Springfield	Spojené státy americké
72451	DDC	Dodge City (Awos)	Spojené státy americké
72456	TOP	Topeka	Spojené státy americké
72467	GJT	Grand Junction	Spojené státy americké
72469	DNR	Denver	Spojené státy americké
72489	REV	Reno	Spojené státy americké
72493	OAK	Oakland	Spojené státy americké
72501	ОКХ	Upton	Spojené státy americké
72518	ALB	Albany	Spojené státy americké
72520	PIT	Pittsburgh	Spojené státy americké
72528	BUF	Buffalo	Spojené státy americké
72558	OAX	Omaha	Spojené státy americké
72562	LBF	North Platte	Spojené státy americké
72572	SLC	Salt Lake Citv	Spojené státy americké
72582	LKN	Elko	Spojené státy americké
72597	MFR	Medford	Spojené státy americké

Číslo stanice	Kód stanice	Název stanice	Země
72632	DTX	White Lake	Spojené státy americké
72634	APX	Gaylord	Spojené státy americké
72645	GRB	Green Bay	Spojené státy americké
72649	MPX	Chanhassen	Spojené státy americké
72659	ABR	Aberdeen	Spojené státy americké
72662	RAP	Rapid City	Spojené státy americké
72672	RIW	Riverton	Spojené státy americké
72681	BOI	Boise	Spojené státy americké
72694	SLE	Salem	Spojené státy americké
72712	CAR	Caribou	Spojené státy americké
72747	INL	Int. Falls	Spojené státy americké
72764	BIS	Bismarck	Spojené státy americké
72768	GGW	Glasgow	Spojené státy americké
72776	TFX	Great Falls	Spojené státy americké
72786	OTX	Spokane	Spojené státy americké
72979	UIL	Quillayute	Spojené státy americké
74002	APG	Aberdeen Prv. GRND	Spojené státy americké
74455	DVN	Davenport	Spojené státy americké
74494	СНН	Chatham	Spojené státy americké
74560	ILX	Lincoln	Spojené státy americké
74646	LMN	Lamont Oklahoma	Spojené státy americké
74794	XMR	Cape Kennedy	Spojené státy americké
76225	-	Chihuahua, Chih.	Mexiko
76394	ADN	Monterrey Intl.	Mexiko

Číslo stanice	Kód stanice	Název stanice	Země
		Colonia	
76458	-	Juancarrasco	Mexiko
76526	-	Guadalupe	Mexiko
76595	-	Cancun	Mexiko
76612	-	Guadalajara, Jal.	Mexiko
76644		Aerop. Internacional	
70044	MIMIMD		Mexiko
/6654	-	Manzanillo, Col.	Mexiko
76679	_	Aerop. Intl Mexico,	Mexiko
76805		Acapulco Gro	Mexiko
70005		Bermuda Nyl Str	Νιελικό
78016	TXKF	Kindley	Bermudské ostrovy
			Spoiené státy
78073	MYNN	Nassau Airport	americké
78384	MWCR	Owen Roberts Arpt.	Kajmanské ostrovy
78397	MKJP	Kingston	Jamajka
78526	TJSJ	San Juan	Portoriko
78583	MZBZ	Phillip Golston Intl.	Belize
78807	MPCZ	Corozal	Panama
78866	TNCM	Juliana Airport	Sint Maarten
		Le Raizet,	
78897	TFFR	Guadeloupe	Guadeloupe
78970	TTPP	Piarco Int. Airport	Trinidad a Tobago
		Hato Airport,	
78988	TNCC	Curacao	Curaqua
80001	SKSP	San Andres Isl.	Nikaragua
80222	SKBO	Bogota	Kolumbie
80371	SKTQ	Tres Esquinas	Kolumbie
81405	SOCA	Rochambeau	Francouzská Guyana
82022	SBBV	Boa Vista	Brazílie
82099	SBMQ	Macapa	Brazílie
82193	SBBE	Belem (Aeroporto)	Brazílie
82332	SBMN	Manaus (Aeroporto)	Brazílie
82397	-	Fortaleza	Brazílie
		Fernando De	_ "
82400	SBFN	Noronha	Brazílie
82599	SBNT	Natal Aeroporto	Brazílie
82678	-	Floriano	Brazílie
82705	-	Cruzerio Do Sul	Brazílie
00004	CDDV	Porto Velho	D
82824	SBLA	(Aeroporto)	Brazilie
82900		Recite	Brazilie
82965	SBAT	Alta Floresta (Aero)	Brazilie

Číslo stanice	Kód stanice	Název stanice	Země
82983	-	Petrolina	Brazílie
83208	SBVH	Vilhena (Aeroporto)	Brazílie
83288	SBLP	Bom Jesus Da Lapa	Brazílie
83362	SBCY	Cuiaba (Aeroporto)	Brazílie
83378	SBBR	Brasilia (Aeroporto)	Brazílie
83498	-	Caravelas	Brazílie
83566	-	Confis Intl Arpt	Brazílie
		Campo Grande	
83612	SBCG	(Aero)	Brazílie
83649	-	Victoria	Brazílie
83650	-	Trindade (Ilha)	Brazilie
83746	SBGL	Galeao	Brazílie
83779	SBMT	Marte Civ	Brazílie
00007	CDEL	Foz Do Iguacu	
83827	SBFI	(Aero)	Brazílie
83840	SBCT	Curitiba (Aeroporto)	Brazilie
83899	SBFL	Florianopolis	Brazilie
83928	SBUG	Uruguaniana	Brazílie
83937	SBSM	Santa Maria	Brazílie
85442	SCFA	Antofagasta	Chile
85586	SCSN	Santo Domingo	Chile
85799	SCTE	Puerto Montt	Chile
85934	SCCI	Punta Arenas	Chile
87155	SARE	Resistencia Aero	Argentina
87576	SAEZ	Ezeiza Aero	Argentina
87623	SAZR	Santa Rosa Aero	Argentina
070(0		Comodoro	
87860	SAVC	Rivadavia Aero	Argentina
89002	-	Neumayer	Antarktida
89009	-	Amundsen-Scott	Antarktida
89022	-	Halley	Antarktida
89532	-	Syowa	Antarktida
89564	-	Mawson	Antarktida
89571	-	Davis	Antarktida
89611	-	Casey	Antarktida
89664	-	McMurdo	Antarktida
91165	РНЦ	Lihue	Spojené státy americké
91212	PGUM	Guam Intl Arnt	Guam
			Spoiené státy
91285	РНТО	Hilo	americké
91334	РТКК	Truk	Mikronesie
91348	PTPN	Ponape	Mikronesie
91376	РКМЈ	Majuro	Marshallovy ostrovy

Číslo stanice	Kód stanice	Název stanice	Země
91408	PTRO	Koror, Palau Is	Palau
91413	РТҮА	Yap	Mikronesie
91532	-	Republic Of Nauru (Arcs2)	Nauru
91592	NWWN	Noumea (Nlle- Caledonie)	Nová Kaledonie
91680	NFFN	Nadi Aerport	Fidži
91765	NSTU	Pago Pago	Americká Samoa
92035	-	Port Moresby W.O.	Papua Nová Guinea
92044	-	Momote W.O.	Papua Nová Guinea
93112	NZWP	Whenuapai	Nový Zéland
93417	NZPP	Paraparaumu Aedrome	Nový Zéland
93614	NZHK	Hokitika Aerodrome	Nový Zéland
02844	NZNIV	Invercargill	Nový Záland
93844		Aerodronne Derregin Airment	Novy Zeland
94120	I PDN VDCV		Austrália
94130	IDGV	Waina Ama	Austrália
94170	VDDM	Breame Amo	Austrália
94203	I BRM	Columna Alimnant OLL	Australie
94287	YBCS	Tauravilla A are	Australie
94294	YBIL	I ownsville Aero	Australie
94299	-	Willis Island	Australie
94300	-	We.	Austrálie
94302	YPLM	Learmonth Airport	Austrálie
94312	YPPD	Port Hedland Amo	Austrálie
94326	YBAS	Alice Springs Aero	Austrálie
94332	YBMA	Mount Isa Amo	Austrálie
94346	YBLR	Longreach Amo, QU	Austrálie
94374	YBRK	Rokhampton Aero	Austrálie
94403	YPGN	Geraldton Amo	Austrálie
94430	YPMR	Meekatharra Amo	Austrálie
94461	-	Gile	Austrálie
94510	YBCV	Charleville Amo	Austrálie
94578	YBBN	Brisbane Airport Aero	Austrálie
94610	YPPH	Perth Airport	Austrálie
94637	YPKG	Kalgoorlie-Boulder Amo	Austrálie
94638	-	Esperance Mo	Austrálie
94647	-	Eucla Amo	Austrálie
94653	YPCD	Ceduna Amo	Austrálie
94659	YPWR	Woomera Aero.	Austrálie

Číslo stanice	Kód stanice	Název stanice	Země
94672	YPAD	Adelaide	Austrálie
94711	-	Cobar Mo	Austrálie
94767	YSSY	Sydbey Airport Amo Aws.	Austrálie
94776	YSWM	Williamtown Amo Raaf	Austrálie
94802	YPAL	Albany Airport	Austrálie
94821	YMMG	Mount Gambier	Austrálie
94866	YMML	Melbourne Airport	Austrálie
94910	YSWG	Wagga Wagga Amo	Austrálie
94975	YMHB	Hobart Airport	Austrálie
94995	-	Lord Howe Island	Austrálie
94996	YSNF	Norfolk Island Aero	Norfolk
95527	-	Moree Mo	Austrálie
96009	WITM	Lhokseumawe/Malik ussaleh	Sumatra
96035	WIMM	Medan	Indonesie
96073	WIMS	Sibolga/Pinangsori	Sumatra
96075	WIMB	Gunung Sitoli/Binaka	Sumatra
96091	WIKN	Tanjung Pinang/Kijang	Singapur
96109	WIBB	Pekan Baru/Simpangtiga	Sumatra
96147	WION	Ranai	Indonesie
96163	WIMG	Padang	Indonesie
96171	WIPR	Rengat/Japura	Sumatra
96195	WIPA	Jambi/Sultan Taha	Sumatra
96237	WIKK	Pangkal Pinang	Indonesie
96249	WIKD	Tanjung Pandan/Buluh	Sumatra
96253	WIPL	Bengkulu/Padang Kemiling	Sumatra
96315	WBSB	Brunei Airport	Sultanát Brunej
96412	WBGG	Kuching	Sultanát Brunej
96413	WBGG	Kuching	Indonesie
96441	WBGB	Bintulu	Sultanát Brunej
96471	WBKK	Kota Kinabalu	Sultanát Brunej
96481	WBKW	Tawau	Sultanát Brunej
96529	WRLK	Tanjung Redep/Kalimarau	Indonesie
96581	WIOO	Pontianak/Supadio	Indonesie
96595	WRBM	Maura Teweh/Beringin	Indonesie

Číslo stanice	Kód stanice	Název stanice	Země
96633	WRLL	Balikpapan/Sepingga	Indonesie
		Banjarmasin/Syamsu	
96685	WRBB	din	Indonesie
96737	-	Serang	Sumatra
96749	WIII	Jakarta	Indonesie
96791	-	Cirebon/Jatiwangi	Sumatra
96839	WIIS	Semarang/Ahmad Yani	Sumatra
96925	-	Sangkapura (Bawean)	Sumatra
96935	WRSJ	Surabaya	Indonesie
96973	-	Kalianget (Madura)	Sumatra
96987	-	Banyuwangi	Sumatra
97008	WAMH	Naha/Tahuna	Indonesie
97014	WAMM	Menado	Indonesie
97072	WAML	Palu	Indonesie
97180	WAAA	Ujung Pandang	Sultanát Brunej
97240	WRRA	Mataram/Seleparang	Sumatra
97270	WRRB	Bima/M.Salahuddin	Sumatra
97300	WRKC	Maumere/Wai Oti	Sumatra
97372	WRKK	Kupang	Východní Tichomoří
97560	WABB	Biak	Papua Nová Guinea
97724	WAPP	Ambon	Východní Tichomoří
97900	WAPI	Saumlaki/Olilit	Indonesie
97980	WAKK	Merauke	Papua Nová Guinea
98223	RPLI	Laoag	Filipíny
98433	-	Tanay	Filipíny
98444	RPMP	Legaspi	Filipíny
98618	RPVP	Puertp Princesa	Filipíny