
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

INTEGRATION OF STATIC CODE ANALYSIS
INTO ISSUE TRACKING SYSTEM
INTEGRACE STATICKÉ ANALÝZY KÓDU DO SYSTÉMU NA SLEDOVÁNÍ PROBLÉMŮ A CHYB

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MARKÉTA JANČOVÁ
AUTOR PRÁCE

SUPERVISOR Doc. Dr. Ing. DUŠAN KOLÁŘ
VEDOUCÍ PRÁCE

BRNO 2018

Bachelor's Thesis Specification/20986/2017/xjanco06

Brno University of Technology - Faculty of Information Technology

Department of Information Systems Academic year 2017/2018

B a c h e l o r ' s T h e s i s S p e c i f i c a t i o n

For: Jančová Markéta
Branch of study: Information Technology
Title: Integrat ion of Stat ic Code Analys is into Issue Tracking System
Category: Information Systems

Instructions for project work:
1. Study possibilities of API provided by tools JIRA, SonarQube, and Bitbucket.
2. Propose and design JIRA plug-in that provides information about SonarQube evaluation of

the code connected with particular issue in JIRA. Consider even other possible information
that may be provided.

3. Implement proposal from (2).
4. Suggest and perform suitable testing to verify that the plugin can be used in an enterprise

environment.
5. Discuss and evaluate your solution.

Basic references:
• Sonar API: https://docs.sonarqube.org/display/SONARQUBE43/Documentation
• JIRA for developers: https://developer.atlassian.com/jiradev
• Bitbucket API: https://developer.atlassian.com/static/rest/bitbucket-

server/5.4.1/bitbucket-rest.html
• Other according to recommendation of the tutor.

Requirements for the first semester:
First two items of this specification.

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Bachelor's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier projects or
have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

Supervisor: Kolář Dušan , doc . Dr. Ing . , DIFS FIT BUT
Beginning of work: November 1, 2017
Date of delivery: May 16, 2018

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
Fakulta Informačních technologií

Jnformačjjí&rsy
B12^Brncy(^žfftechova 2

Dušan Kolář
Associate Professor and Head of Department

https://docs.sonarqube.org/display/SONARQUBE43/Documentation
https://developer.atlassian.com/jiradev
https://developer.atlassian.com/static/rest/bitbucket-
http://www.fit.vutbr.cz/info/szz/

Abstract
Static code analysis is a way of improving source code quality. It also helps to reveal
bugs before they cause serious runtime problems. SonarQube is a tool that detects findings
during periodical analyses and creates appropriate issues that provide essential data to help
a developer to fix problems. J i r a is an issue tracking system that is used by agile teams a l l
over the world. Integrating static code analysis into issue tracking system should prevent
J i r a issues to be reopened due to bugs and reduce a number of bugs that are caused by
integrating new features.

This thesis investigates ways of integrating SonarQube into J i r a and provides possible
solution of the integration. The solution is tested, optimized, and another solutions are
provided.

Abstrakt
Sta t i cká a n a l ý z a k ó d u je jedna z možnos t í , jak zlepši t kva l i tu zdro jového kódu . Také napo
m á h á k o d h a l e n í p r o b l é m ů p ř e d t í m , než způsob í závažné p r o b l é m y za b ě h u programu.
SonarQube je n á s t r o j , k t e r ý p rovád í p rav ide lné a n a l ý z y k ó d u , př i nichž detekuje chyby
a nás l edně informuje vývo já ře o kval i tě k ó d u a na lezených p rob lémech . J i r a je s y s t é m
na s ledování p r o b l é m ů a chyb, k t e r ý využívaj í agilní t ý m y po ce lém svě tě . Integrace
s ta t ické a n a l ý z y do s y s t é m u na s ledování p r o b l é m ů a chyb by mě la p ř e d c h á z e t nutnosti
znovuo tev řen í p r o b l é m u kvůl i n e v h o d n é m u řešení a t a k é snížit m n o ž s t v í chyb, k t e r é vznikaj í
z d ů v o d u zaváděn í nových funkcí.

Tato p r á c e z k o u m á způsoby integrace SonarQube do J i ry a ná s l edně nab íz í m o ž n o s t
je j ího řešení . Výs ledná implementace je o t e s tována , zop t ima l i zována a jsou poskytnuty
n á v r h y na dalš í vylepšení .

Keywords
SonarQube, J i ra , Bi tbucket , At lass ian, static analysis, issue tracking, integration

Klíčová slova
SonarQube, J i ra , Bi tbucket , At lass ian, s t a t i c k á ana lýza , s ledování chyb, integrace

Reference
J A N C O V Á , M a r k é t a . Integration of Static Code Analysis into Issue Tracking System. Brno ,
2018. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.
Supervisor Doc . D r . Ing. D u š a n Kolá ř

Rozšířený abstrakt
Kva l i t a k ó d u je def inována osmi z á k l a d n í m i charakterist ikami: vhodnost, spolehlivost,
efektivita, použ i t e lnos t , bezpečnos t , ud ržova te lnos t , p řenos i t e lnos t a kompat ib i l i ta . K v a
l i tní kód umožňu je p ř edcháze t r ů z n ý m p r o b l é m ů m , k t e r é vznikaj í z e jména z d ů v o d u ne
s p r á v n é reakce na neočekávané vstupy, b ě h o v ý m c h y b á m , j akož i p r o b l é m ů m s efektivitou
a bezpečnos t í . P ř e s t o ž e je ne reá lné d o s á h n o u t b e z c h y b n é h o kódu , existuje několik způ
sobů, jak lze zajistit u r č i t ou m í r u kval i ty zdro jového k ó d u . M ů ž e se jednat o m a n u á l n í
i a u t o m a t i z o v a n é metody. V p ř í p a d ě a u t o m a t i z o v a n ý c h metod nejčastěj i hovoř íme o stat
ické a d y n a m i c k é ana lýze kódu .

Tato p r á c e se zabývá statickou a n a l ý z o u k ó d u a z p ů s o b e m , jak zvýši t p ř ínos jejích
výs ledků . J e d n í m z n á s t r o j ů pro statickou a n a l ý z u k ó d u je SonarQube. SonarQube provád í
p rav ide lné a n a l ý z y zdro jového kódu , b ě h e m k t e rých vyh ledává k r i t i cká m í s t a , jež před
s tavuj í rizikové oblasti pro vznik chyb. Na lezené p r o b l é m y rozděluje do ka tegor i í podle
jejich typu a závažnos t i . D r u h y ná lezů se rozděluj í do t ř í zák ladn ích skupin:

• P r o b l é m , k t e r ý by mohl způsob i t chybové stavy, p á d y za b ě h u programu a j i n á
neočekávaná chování .

• U p o z o r n ě n í na nedostatek bezpečnos t i . Hrozí , že aplikace m ů ž e bý t v y u ž i t a j i n ý m
z p ů s o b e m , než je očekáváno .

• Informace o š p a t n é m n á v y k u p r o g r a m á t o r a . Nález s á m o sobě n e p ř e d s t a v u j e p r o b l é m ,
ale snižuje p ř eh l ednos t kódu .

K a ž d ý na lezený p r o b l é m je t a k é klasifikován na zák ladě jeho závažnos t i . Závažnos t je
rozdě lena do pě t i ka tegor i í dle m í r y dopadu a t a k é p r a v d ě p o d o b n o s t i , s jakou tohle chování
nastane.

J i r a je s y s t é m na s ledování p r o b l é m ů , chyb a p o ž a d a v k ů , j ehož cí lem je usnadnit vývoj
apl ikací ag i ln ím t ý m ů m po celém svě tě . Uživa te lé mohou v y t v á ř e t projekty a v r á m c i pro
j e k t ů j edno t l ivé úkoly, k t e r é reprezen tu j í požadavky , k t e r é je p o t ř e b a splnit . J i r a umožňu je
p ř idáván í různých dop lňků , k t e r é realizují chyběj ící funkcionality a integrace. C í l em t é t o
p ráce je využ í t t é t o funkce a vy tvo ř i t t a k o v ý dop lněk , k t e r ý u m o ž n í zobrazován í SonarQube
výs ledků p ř í m o v J i ře .

B y l o stanoveno několik kr i tér i í , k t e r é by SonarQube integrace mě la sp lňovat , jako je
n a p ř í k l a d oddě lenos t od j iných funkcí v J i ř e . Implementace by n e m ě l a nijak ovl ivňovat os
t a t n í p rvky Jiry, nevyuž íva t jejich funkce a u m o ž n i t co ne jsnadnějš í manipulaci a nas t aven í .
S a m o t n é zobrazen í m u s í bý t efekt ivní a in tu i t ivn í .

N a zák ladě p o ž a d a v k ů by l n a v r ž e n z p ů s o b integrace, k t e r ý využ ívá panel na zobra
zování d e t a i l ů j e d n o t l i v ý c h J i r a p r o b l é m ů . Integrace je i m p l e m e n t o v á n a p o m o c í různých
technologi í v jazyc ích Java, JavaScipt a H T M L . S t ruk turu programu tvoř í ob jek tový model,
k t e r ý umožňu je z a h r n o v á n í závis lost í a definování komponent.

Hlavn í součás t í integrace je Ana lyzé r , k t e r ý je zobrazen na panelech j edno t l i vých pro
j ek tových úkolů . Ana lyzé r se s k l á d á ze č ty ř sekcí:

• Všeobecný p řeh l ed o kval i tě kódu . Tahle sekce se sk l ádá ze dvou statistik, podle typu
nebo závažnos t i ná lezu , mezi k t e r ý m i lze p ř e p í n a t .

• Reprezentace j edno t l i vých ná lezů . Reprezentace je rea l izována p o m o c í tabulky, kde
k a ž d ý nález p ř e d s t a v u j e jeden ř ádek . V z á k l a d n í m pohledu je zobrazena závažnos t
a typ p r o b l é m u , v j a k é m souboru se nacház í a odkaz do SonarQube. K a ž d ý ř á d e k lze

expandovat, což zobraz í více informací : čas vy tvořen í , číslo ř á d k u , d a n ý úsek k ó d u
a komu je nález p ř i ř azen .

• V y h o d n o c e n í kval i ty dle p o ž a d a v k ů . P o ž a d a v k y na kva l i tu nastavuje p ro j ek tový ve
doucí ve speciá ln í sekci. M á m o ž n o s t vybrat k o n k r é t n í s t u p n ě závažnos t i a typy
SonarQube ná lezů a l imi t , po k t e r ý jsou akcep tova t e lné . T y t o p o ž a d a v k y jsou p o t é
vyhodnoceny v k a ž d é ana lýze . P o k u d d a n ý J i r a p r o b l é m nesplňuje p o ž a d a v k y pro
j ek tového vedouc ího , už iva te l je na to u p o z o r n ě n .

• U z p ů s o b e n í výs ledků . Výs ledky ana lýzy je m o ž n é filtrovat a upravovat v p ř í p a d ě , že
není žádouc í zobrazovat n ě k t e r é (ze jména m á l o závažné) nálezy.

Realizace spoč ívá v implementaci R E S T o v é webové s lužby v Javě , k t e r á svými konco
v ý m i body realizuje j edno t l ivé funkce A n a l y z é r u . Implementace koncových b o d ů spočívá
v p r o p o j e n í J i r y a SonarQube tak, aby zvolené koncové body vracely co nejpřesnějš í výs ledky
v co n e j k r a t š í m časovém úseku . J edno t l i vé metody jsou volány p o m o c í a synch ronn í ch poža
davků , což umožňu je b ě h více čás t í A n a l y z é r u současně . Data , k t e r á jsou sd í lena n ě k t e r ý m i
č á s t m i , je nutno z ískat s a m o s t a t n ě př i startu A n a l y z é r u a ud ržova t je na s t r a n ě serveru,
aby pozděj i nedocháze lo k r e d u n d a n t í m u zas í lání p o ž a d a v k ů .

Pro d ů k l a d n é o te s tován í řešení byly provedeny t ř i druhy t e s tů : m a n u á l n í , j edno tkové
a testy výkonnos t i . Testy ukázaly , že p ře s tože i m p l e m e n t o v a n é koncové body p ředs t avu j í
p ř í m o u cestu, jak z íska t p o ž a d o v a n é informace o kval i tě kódu , p rávě tento p ř í s t u p způsobuje
největš í p r o b l é m y s efektivitou. Získat všechny informace p ř í m o č a ř e vyžadu je mnoho volání
koncových b o d ů v SonarQube. N a zák l adě výs ledků t e s tován í byly n a v r ž e n y následuj íc í
body optimalizace:

• Naj í t vhodně j š í cestu z ískávání statistik i za cenu toho, že bude nutno loká lně zpra
covávat vě tš í obnos dat,

• v k a ž d é ana lýze provés t ne jdř íve test, zda m á smysl p rovádě t všechny akce A n a l y z é r u
pro p ř ípad , že implementace neobsahuje ž á d n é nálezy,

• zvážit d o č a s n é uchovávání dat, k t e r á jsou složi tě z í ska te lná .

Optimalizace se zaměřova la p řevážně na z p ů s o b , jak loká lně vy tvo ř i t s tat is t iku ve s te jné
kval i tě jako s daty od SonarQube, ale s m i n i m á l n í m m n o ž s t v í m R E S T o v ý c h volání . B y l a
zvolena metoda, k t e r á stahuje informace o všech nálezech v r á m c i d a n é SonarQube analýzy,
a ná s l edně tyhle informace loká lně zpracovává do p o ž a d o v a n é podoby. V ý h o d o u je, že oba
druhy statistik lze nyn í z í ska t současně bez výrazně jš í z t r á t y efektivity. Tato metoda byla
zkombinována s u c h o v á n í m vě t š ího objemu dat na s t r a n ě už iva te le za úče lem urych len í
operac í , jako je n a p ř í k l a d fi l trování výs ledků .

Me tody optimalizace u m o ž n i l y zvýši t efektivitu řešení tak, že se v ý p o č e t n í čas snížil
zhruba na jednu č t v r t i n u p ů v o d n í h o . P r o k á z a l o se, že nen í efekt ivní z ískávat již zp racovaná
data p o m o c í velkého p o č t u R E S T o v ý c h volání . Vhodně j š í je stahovat větš í obnosy dat v co
ne jmenš ím p o č t u volání koncových b o d ů a tyhle data zpracováva t lokálně .

Integration of Static Code Analysis into Issue
Tracking System

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of M r . D u š a n Kolá ř . A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

M a r k é t a J a n č o v á
M a y 13, 2018

Acknowledgements
I would like express my sincere thanks to my supervisor, doc. D u š a n Kolář , for responsible
guidance and providing valuable feedback.

I would also like to thank L u k á š P i t o ň á k for the opportuni ty to work i n Honeywell
and for his guidance.

I a m also grateful to whole Honeywell Software Tools team for their help w i t h the de
velopment.

Contents

1 Introduction 2
1.1 Context 2
1.2 Thesis Structure 2

2 C o d e Quality 4
2.1 Source Code Analys is 4
2.2 Issue Tracking 5

3 Tools 6
3.1 J i r a 6
3.2 SonarQube 7

3.2.1 Issues 7
3.2.2 SonarQube A P I 9

3.3 Bitbucket 10
3.3.1 Bitbucket A P I 10

3.4 U n i t y H
3.4.1 U n i t y A P I 11

3.5 Integrations 11

4 Appl icat ion Design 12
4.1 Requirements 12

4.1.1 Funct ional Requirements 12
4.1.2 Architecture Requirements 13

4.2 Design 13
4.2.1 Integration Concept 14
4.2.2 User Interface 17

5 Implementation 21
5.1 Technologies 21

5.1.1 Atlass ian Software Development K i t 21
5.1.2 Apache Maven 22

5.2 Concept 23
5.3 Integration Implementation 24

5.3.1 Analyzer 24
5.3.2 Integration Admin is t ra t ion 27

6 Verification 31
6.1 Methods 31

I

6.1.1 U n i t Tests 31
6.1.2 Performance Tests 32

7 Optimizat ion and Future W o r k 37
7.1 Latest Versions of SonarQube 37
7.2 Opt imiza t ion Based on Test Results 38
7.3 Opt imiza t ion of F i n d i n g Operations 40

7.4 Future Work 4 1

8 Conclusion 43

Bibl iography 44

A Mockups 4 6

B F i n a l Appl icat ion 4 8

C Installation 5 0

D C D Content 5 1

2

Chapter 1

Introduction

1.1 Context

The At lass ian J i r a is popular tool that is used by agile teams a l l over the world. A l
though it offers many features, there is s t i l l missing integration that would allow displaying
SonarQube issues directly i n J i r a . Possibi l i ty of showing SonarQube findings could help to
predict future bugs that are connected w i t h part icular J i r a issue. This approach prevents
closed issues to be reopened due to a bug that came up from inappropriate task solution
or ignoring unexpected states and inputs. SonarQube also informs a developer about his
bad practices, it can improve code quali ty of whole project and prevent a need of source
code refactoring because of poor code quality.

The main goal of this bachelor thesis is to find a way how to integrate static code
analysis results into J i r a and show them i n a readable and understandable form. The new
J i r a plugin should display any SonarQube findings connected w i t h the J i r a issue, inform
a user about code quality, and provide an information that helps to solve the problem
without using other applications like Unity, SonarQube, and Bitbucket .

The thesis is focused on the possibilities of integration. It discusses both functional
and visual aspects. It is important to br ing the best possible results i n acceptable time.
There are many ways of possible implementation, it depends on chosen combination of end-
points, that are called, and also on the solution of getting missing essential data. The plugin
has to be prepared for a l l issues of any size, that can consist of many commits, so the amount
of data can be large. The result should be well-tested to ensure op t imal and appropriate
behavior of the plugin.

1.2 Thesis Structure

The thesis is further divided into the following eight chapters.
Chapter 1 Introduction describes context and goals of this bachelor thesis.
Chapter 2 Code Quality provides an overview about code quali ty in general and

describes basic terms that are important for effective development.
Chapter 3 Tools introduces applications, that are necessary for successful implemen

tat ion, and discusses possibilities of A P I s that they provide.
Chapter 4 Appl icat ion Design discusses functional and user interface requirements,

and the concept of the applicat ion. These requirements are evaluated to visualize the pro
posal of the plugin structure.

3

Chapter 5 Implementation describes tools that were used for implementation, con
figuration, plugin structure, and the implementat ion process itself.

Chapter 6 Verification sums up bo th manual and automated testing results, and dis
cusses possible opt imizat ion according to these results.

Chapter 7 Optimizat ion and Future W o r k describes methods and refactoring that
came up from the results of verification, and also provides better solution that could be
reached using different versions of tools.

Chapter 8 Conclusion evaluates the goal fulfillment.

4

Chapter 2

Code Quality

The I S O / I E C 25010:2011 product quali ty model categorizes product quali ty properties
into eight characteristics (functional suitability, reliability, performance efficiency, usability,
security, compatibil i ty, maintainabil i ty, and portabi l i ty) [6].

• Funct ional sui tabil i ty is a degree to which a product provides functions that meet re
quirements when used under specified conditions. Th is characteristic consists of func
t ional completeness, functional correctness, and functional appropriateness.

• Rel iab i l i ty is a degree to which a product or its component performs required functions
under specific conditions for a part icular period of time.

• Performance efficiency is a performance under stated conditions wi th the consideration
of the amount of resources that were used.

• Usabi l i ty is a degree to which a product can be used to achieve required goals w i th ef
fectiveness, efficiency, and satisfaction.

• Security degree to which a product protects information and data so that users
or other products have the degree of data access appropriate to their types and levels
of authorization.

• Compat ib i l i ty is a degree to which a product can exchange information w i t h other
products and perform its required functions, while sharing the same hardware or soft
ware environment

• Main ta inab i l i ty is a degree of effectiveness wi th which a product can be modified
without a need of changing other parts.

• Por tab i l i ty is a degree of efficiency wi th which a product can be transferred from one
hardware, software, or other environment to another.

2.1 Source Code Analysis

Some quali ty attributes can be reached using manual or automated methods of analysis
such as static and dynamic code analysis.

5

• M a n u a l code review is the simplest method but also the least effective technique.
It requires high programming language knowledge and abi l i ty to analyze potential ly
cr i t ical parts of source code. Its t ime cost is high because of impossibi l i ty of any
automation. This method usually reveals only the most obvious bugs.

• Static code analysis refers to any process of assessing code without executing it.
Static analysis is powerful because it allows quick consideration of many possibilities.
A static analysis tool can explore a large number of "what if" scenarios without having
to go through a l l the computations necessary to execute the code for a l l the scenar
ios [].

• Dynamic code analysis is based on the system execution, often using instrumen
tat ion. Its advantage is in abi l i ty to detect defects that cannot be revealed in manual
or static code analysis.

2.2 Issue Tracking

Issue tracking systems are systems wi th the main purpose i n collecting requirements, their
management, and tracking their progression towards resolution. Pieces of work are divided
into issues. Issue can be described by its details such as type, status, severity, assignee, date
of submission, at tempted solutions, and other relevant information. Modern issue tracking
system should be able to:

• Share the information across the team,

• have an instant overview of the state of software,

• expertly decide about releasing,

• set and update the importance of ind iv idua l fixes and adjustments,

• have a recorded history of changes. [8]

G

Chapter 3

Tools

This chapter is focused on applications that provide important data for integration. Each
application is shortly introduced, the description contains basic information about context
and characterization of its A P I . Th is chapter also defines important terms that w i l l be used
in implementat ion process.

3.1 J i ra

J i r a is an issue tracking system used by over one mi l l ion users around the world. It is
produced by At lass ian and its main goal is to support agile teams to develop their products
more efficiently.

Teams cooperate using J i r a projects []. A J i r a project is a collection of issues that is
defined according to organization's requirements. E a c h project has a name and a key.
The project key becomes the first part of that project's issue keys.

Different organizations use J i r a to track different kinds of issues []. Depending on
how organization is using J i ra , an issue could represent a software bug, a project task,
a helpdesk ticket, a leave request form, etc. Each issue is defined by many attributes like
project, key, summary, status, priority, resolution, etc. J i r a impl ic i t ly defines some issue
types, but administrators can manage issue types, modify them, or create a new type.
Implici t J i r a issue types are:

• B u g - a problem that affects functionality of the applicat ion,

• Improvement - an enhancement to an existing feature or solution,

• New feature - a request to develop a new feature of the application,

• Task - any piece of work that needs to be done,

• Cus tom issue type - a type optionally set by administrator.

W h e n commit ing a code, commit message should contain appropriate issue key. It
allows version control system to recognize, which commits belong to a specific issue.

Definitions of Done

A Defini t ion of Done (DoD) is a clear and concise list of requirements that the software must
adhere to for the team to ca l l it complete. It is the contract that binds what the Product

7

Owner (PO) wants to what the Development Team delivers []. Comple t ing the D o D list
ensures the quali ty of the product. E a c h J i r a issue should have its own D o D specifications
that are usually represented as a custom field or checklist on the view issue screen 1 . D o D
can be also global. G l o b a l D o D sets the requirements on a l l issues, bo th new and old.

J i r a Appl icat ion Links

J i r a App l i ca t i on L inks is a bundled plugin that allows l ink ing w i th other applications.
L i n k i n g two applications allows sharing information and access one application's functions
and resources from w i t h i n the other. L i n k i n g J i r a to Bitbucket allows viewing commits,
branches, and p u l l requests that correspond to specific J i r a issue [9].

3.2 SonarQube

SonarQube is an open source software that performs automatic reviews using static code
analysis to detect issues and bad practices i n programming. It supports over 20 pro
gramming languages but it is mainly used for Java, JavaScript , and C / C + + . Reviews
are completed dur ing periodical analysis of source code. Whenever any problem is found,
SonarQube creates issue that describes the problem by its specific parameters.

Quality Measurements

There is not any opt imal solution of project quali ty measurement for a l l projects. Some
projects need different rules because of stronger quali ty requirements. Qua l i ty profile [21] is
a set of rules that can be defined by project leader. Qua l i ty gate [20] is a set of boolean con
ditions that are evaluated to br ing information whether project passes quali ty requirements
or not.

3.2.1 Issues

Poor code quali ty causes a variety of issues that can negatively impact product quality:
crashes i n production, applicat ion decommissioning, security problems, etc. SonarQube
analysis automatical ly detects coding rule break and creates appropriate issue that repre
sents the problem. The issue is stored i n database and is displayed i n applicat ion, so each
project participant can check analysis results. User can also create issue manually.

Each issue is defined by its key, type, severity, status, message, assignee, project, file,
line of code, flow, t ime afford, creation date, and update date.

Issue Types

Issue type is an attribute that specifies impact that can be caused by ignoring i t . SonarQube
defines 3 different issue types:

• Bugs are the most serious rel iabil i ty issues. Th is category of issues groups everything
that might cause unexpected runtime behavior or product ion crashes.

• Vulnerabilities are security issues. This is commonly referred to as vulnerabili t ies
or flaws i n programs that can lead to use of the applicat ion i n a different way than it
was designed for [].

l rThe screen that displays information about specific issue.

8

Code smells are maintainabi l i ty findings. T h i s category of issues groups everything
that has to do wi th possible difficulties i n future updates.

Issue Severities

Severity generally means the measure of impact that could be caused by this issue and also
the probabi l i ty of this behavior. Severities [] are divided into 5 categories: blocker,
cr i t ical , major, minor, info.

• Blocker is an issue wi th a high probabil i ty to cause some serious problems such as
memory leaks.

• Cr i t ica l is an issue wi th a low probabil i ty to cause negative impact to behavior in
production or security flaw, for example badly caught exception.

• M a j o r is a quali ty flaw that can highly impact developer's productivi ty, for example
too complex method.

• M i n o r is a quali ty flaw that might impact developer productivi ty, for example naming
conventions.

• Info is an unimportant finding that warns developer about his /her bad practices.
The risk is unknown or not well defined yet.

Issue Lifecycle

Each issue flows through a lifecycle that starts after the issue is detected and created.
Through whole lifecycle, the issue can take one of the five possible statuses:

• O p e n - set by SonarQube on new issues,

• Confirmed - set manual ly to indicate that the issue is val id,

• Resolved - set manually to indicate that the next analysis should close the issue,

• Reopened - set automatical ly by SonarQube when a resolved issue has not actually
been corrected,

• Closed - set automatical ly by SonarQube for automatical ly created issues. [18]

A n issue can take "Closed" status only i n case of being resolved or rejected. Closed
issue is kept i n database for 30 days for the case of need to be reopened. There are two
possible resolutions: F i x e d or Removed. A developer can also manual ly decide whether
an issue should be fixed or not. Doubtful issues can be marked as "false positive" or "won't
be fixed" (Figure 3.1).

9

Reopen

Crea ted

Unconfirm

O p e n e d
Confirm

Comf i rmed
Resolve

False Pos i t ive *
Won' t Fix

Reso lved

Resolve

Figure 3.1: SonarQube issue lifecycle

3.2.2 S o n a r Q u b e A P I

SonarQube web A P I contains many R E S T endpoints [] that provide an information about
user, authentication, components, metrics, issues, permissions, and more.

Authentication

Authent icat ion is a process by which an applicat ion confirms user identity. SonarQube re
quires authentication details i n each request on its A P I . There are two methods of username
and password validat ion that are supported by SonarQube.

• H T T P Basic access authentication is the simplest type of authentication. User-
name and password are passed to SonarQube A P I as request parameters. Despite
its advantage i n unnecessariness of any configuration by user, its big disadvantage is
in lack of security. Credentials are not secured, they are passed i n the same form
as they were entered by a user.

• User token authentication is the recommended way. It is a safer method than basic
access authentication, because user authenticates only when s/he generates a token.
The token is a piece of data that contains encrypted credentials and information that
is used for token val idat ion. Server encrypts credentials using various complex cryp
tography techniques. Token is saved locally and is used every t ime user authenticates.

Authent ica t ion is passed to SonarQube using relevant request. SonarQube responses
whether username and password are val id authentication details or not.

Request structure
GET /api/authentication/validate -u {Username}:{Password}
GET /api/authentication/validate -u {Token}

Response
{"validate":true}
{"validate":false}

SonarQube Components

SonarQube provides R E S T endpoints that return information about a component. The com
ponent can be for example a project, a file, or a directory. O n l y one component can be

10

returned at a t ime. A user needs browse permission to view requested component.

Request structure
GET /api/components/show
GET /api/compoentns/tree

SonarQube Issues

Information about specific issues is returned by issues endpoints. Issues can be filtered by
several opt ional attributes. F i l t e r ing allows user to display issues by creation date, update
date, assignee, severity, type, and more. User needs browse permissions on the project.
Since version 3.6, user can also edit part icular issues using R E S T A P I .

Request structure
GET /api/issues

3.3 B i t bucket

Bitbucket is a web-based hosting service developed by Atlass ian. It is used for Mercur ia l
and G i t version control systems. A version control system is a tool that helps a software
team to manage source code changes that came over t ime. It keeps a track of every modifi
cation of source code i n a special k ind of database. W h e n a mistake is made, the database
enables getting the project repository to one of the previous versions to minimize disruption
of other team members' work.

3.3.1 Bitbucket A P I

Bitbucket A P I contains many R E S T endpoints [] that can provide information about
projects, repositories, commits, pull-requests, users, groups, permissions, and more.

The preferred authentication methods are H T T P Basic Authent ica t ion and O A u t h ,
supported are also H T T P Cookies and Trusted applications. W h e n using Bitbucket A P I
directly from J i ra , there is no need to require authentication details. J i r a can direct ly access
Bitbucket using applicat ion l inks.

Projects

W i t h appropriate permissions, a user can view and modify his /her projects. This R E S T
endpoint provides information about project itself, and also about project participants, per
missions, groups, repositories. User can also browse commits associated wi th the project
using part icular repository slug. W i t h modify permission, user can also create, delete
and modify his /her repositories.

Request structure
[GETIPOST] /rest/api / 1 . 0/projects
[DELETE|POST|PUT|GET] /rest/api /1 .0/projects/{projectKey>/repos

11

Commits

Bitbucket and J i r a existing integration enables searching for commits that are associated
w i t h specific J i r a issue.

Request structure
GET / r e s t / j i r a / 1 . 0 / i s s u e s

3.4 Uni ty

U n i t y provides a User Management module for easy-to-use project navigation and unified
user permissions configuration.

3.4.1 Unity A P I

U n i t y A P I contains endpoints that return associated projects by U n i t y I D or J i r a project
key. The I D is unique for every project. A l l project resources can be obtained using R E S T
endpoint called f orToolProjectldOrKey. Endpoin t returns two types of responses. W h e n
the at tr ibute crowdGroupId is included, it returns a l l projects in both remote and At las-
sian applications that are l inked to this project through Uni ty . At t r ibu te exclusion returns
U n i t y project details (Uni ty ID and project name).

Request structure
GET /rest/api/project/forToolProjectldOrKey

3.5 Integrations

Bitbucket

Jira

Unity

SonarQube

Figure 3.2: J i r a integrations

Integration between Bitbucket , Uni ty , and J i r a is already implemented. SonarQube is not
integrated wi th any of these tools (Figure 3.2).

12

Chapter 4

Application Design

This chapter contains details of given goals and a basic concept of implementation. Goals
are split into several requirements i n order to make integration interface usable for end
users. These details should guarantee that successful implementat ion w i l l fulfill defined
goals.

Integration and interface concept itself is described in section Design. This section pro
vides an overview about main steps that needs to be done to implement working integration
and create user-friendly interface.

4.1 Requirements

F i n a l p lugin should pass a set of functional and architecture requirements. Funct ional
requirements are focused on general functionality and their correct fulfillment is a guarantee
of concept quality. Archi tecture requirements include set of rules that cannot be broken
during integration implementation, for example plugin separation.

4.1.1 F u n c t i o n a l R e q u i r e m e n t s

There are several requirements on applicat ion functionality that should br ing great value
added to project participants. The value is i n important information that cannot be directly
displayed without using the integration. SonarQube panel should solve following situations:

• A user wants to display concise information about code quali ty quickly and d i
rectly i n J i r a without searching for information i n other applications like SonarQube
or Bi tbucket .

• The user already checked quali ty summary and found out that there are possibly bugs.
The user wants to see more information about finding to check whether the finding is
a serious bug or some minor finding that does not impact functionality.

User interface should display an overview about issue implementat ion problems and warn
project participants in the case of serious findings or poor code quality. It is also required to
display some part icular findings so a user does not need to open SonarQube to fix problems.
Essential plugin property is the unnecessariness of doing any setup before using the inte
gration. If there is any necessity that needs user operation, it should take as few actions as
possible and very low time cost.

13

Summary of Findings

Summary of Findings is an information that sums up a l l findings that were found i n analyses
of changed files. It contains statistics of a l l analyses related to the J i r a issue, what provides
general overview about issue quality. Th is statist ical information is displayed i n a simple
form that is visible and understandable for everyone. Findings summary section should be
the response to the questions:

• How many quali ty problems do I have i n my J i r a issue?

• How serious are the problems?

Quality Gate

Qual i ty Gate is a set of rules defined by project leader. It is represented as a short message
that displays information whether issue passes required quali ty or not. The message also
contains details that summarize what should be improved to fully pass quali ty requirements.
Qual i ty gate is a project specific property set by project leader i n admin area. Th is message
should solve the following questions:

• Does the J i r a issue pass project owner's requirements?

• C a n I close the J i r a issue?

Findings

Findings are elements that represent real issues. These elements should be able to visual
ize a l l important details that might help developer to resolve the problem without using
SonarQube applicat ion. Findings help a user w i th the following problem:

• How can I improve code quality?

4.1.2 Architecture Requirements
Architecture requirements are the requirements that are set on the general concept of in
tegration. The Integration should work on J i r a version 7.3.8 and higher and SonarQube
version 5.6 and higher.

App l i ca t ion needs to be fully separated from other J i r a features, it has to work apart
of any functionalities that are not included in J i r a core.

There is a strict requirement to do not impact view issue screen, its behavior has to be
stable, no matter whether integration is enabled or not. Integration processes cannot slow
down any processes of other panels and features.

4.2 Design

A n applicat ion design describes ind iv idua l concepts of elements from previous section. This
section is d ivided into two subsections. The first subsection is focused on integration imple
mentation. It describes implementat ion goals that need to be done to br ing important data
from SonarQube to J i r a . There are also discussed integration problems caused by miss
ing details that are very important for implementation. The second subsection suggests
possible user interface mockup that displays a l l essential data needed to help a user to fix
a problem and allows interaction between the user and integrated tools.

14

4.2.1 Integration Concept

This section discusses possible concept of integration between J i r a and SonarQube. The goal
is to find the most effective way how to acquire essential data from R E S T endpoints and how
to parse it without any negative runtime impact.

Finding Representation

SonarQube findings are represented in two different ways. One k ind of representation is
a summary of a l l findings. The summary is a part of the issue tab pane l 1 that contains
general statistic of SonarQube findings. Another representation is a table that represents
specific findings. The table of findings contains rows that are created according to data from
SonarQube. This information can be acquired using SonarQube R E S T endpoint (Section
3.2.2) that returns specified findings. Result val idi ty is ensured using parameters that are
separated wi th ampersand. V a l i d filter options are:

• componentRoots parameter is a specification of SonarQube project or complete
SonarQube path. F i le path format should correspond wi th official SonarQube for
matt ing.

• createdBefore and createdAfter specify creation date filter. Crea t ion date is
a t ime, when an issue was created i n SonarQube. This date is not corresponding
wi th part icular commit date, but w i th the t ime when SonarQube analyzer actually
found the issue. Each analysis contains a l l commits that were posted during the pe
r iod after the previous analysis. W h e n searching for specific analysis, creation date is
guaranteed by two time details: createdAfter parameter to specify the t ime of par
t icular analysis and createdBefore parameter to enclose the t ime period. These two
parameters should determine the smallest possible t ime interval. B o t h parameters
are timestamps represented in ISO 8601 [] format.

• ps and p attributes define number of results. The ps at tr ibute sets the max ima l
number of findings in returned content. W h e n searching for statistics, it is not needed
to request finding details, because J S O N header contains summary of found content.
W h e n searching for specific finding details, it is essential to get as many findings as
possible i n one response to minimal ize the number of requests. SonarQube l imi t of
finding details in one response is set to 500. If the number of responses is higher than
500, attr ibute p can be used to get other pages of response.

• severities applies a filter that selects only findings of specific severity. Accepted filter
options are basic SonarQube severities wri t ten w i t h uppercase letters and separated
by commas, for example " s e v e r i t i e s = B L O C K E R , M A J O R , I N F O " . Default setting is
searching for findings of a l l severities.

• types enables returning findings of part icular type. Th is filter accepts uppercase
comma-separated options that are appropriate SonarQube issue types. B lank spaces
are represented wi th underscore, for example " t y p e s = B U G , C O D E _ S M E L L " .

• s and asc attributes define the order of results. A t t r ibu te s defines an element that
is used as a key. The key should be relevant finding at tr ibute wri t ten wi th uppercase

l rThe panel that is reached from the tab panel menu on the view issue screen.

15

letters, for example " s = C R E A T I O N _ D A T E " . A t t r ibu te asc sets the order, value
"true" means ascending order, "false" means descending order.

The attributes severities and types depend on a user choice, which statistic s/he finds
the most valuable. Summary displaying statistic by type uses type parameter and creates 3
requests (one for each type), and leaves severities parameter empty. Statist ic that shows
counts by severity uses severities parameter and leaves type empty in every cal l . It also
sends request for each severity, 5 requests i n total . Par t icular issue objects are received
by leaving both parameters empty, the response contains a l l findings of any type and any
severity.

J i r a does not offer any information about changed files and date. Miss ing data can be
acquired from Bitbucket A P I (Section 3.3.1). Bi tbucket is already integrated wi th J i ra , so it
offers information about commits w i th J i r a issue key i n commit message. Responses contain
al l commits associated wi th the issue. This data provides information about changed files
and commit t ime, represented as t imestamp in milliseconds. The information is valuable
but not enough for getting findings. There are two problems that need to be solved, because
they might cause result inconsistency:

• Changed files are specified by filename and Bitbucket path. SonarQube R E S T end-
point accepts only SonarQube paths. Obta ined paths need to be converted.

• A l though date conversion from t imestamp i n milliseconds to ISO 8601 timestamp
is a simple task, the date is an information about commit . SonarQube issues are
not specified by commit t ime but by analysis t ime. C o m m i t t ime usage would not
probably return any findings, and large interval would return many findings that
are not associated w i t h the J i r a issue. Analys is t ime needs to be obtained from
SonarQube.

SonarQube offers R E S T endpoint that returns SonarQube paths. This endpoint can
solve the path inconsistency. The following parameters are required:

• baseComponentKey specifies SonarQube project. Th is at tr ibute accepts project key.

• q u a l i f i e r s defines a type of results. Value " F I L " selects files, " D I R " selects direc
tories.

• ps sets a l imi t of results. Value can't be more than 500. If the number of responses
is higher than 500, at tr ibute p can be used to get next pages.

• q at tr ibute defines a filename as "q={filename}" or absolute SonarQube file path
"q={project}:{subprojects}:{path}". O n l y one file can be selected at a time.

The component parameter accepts only one name at a t ime. This fact needs to be
taken into consideration because inappropriate solution might cause huge effectivity leak.
Leaving this parameter empty causes getting a l l file paths. Th is solution might be more
suitable. Despite empty parameter returns lots of data that need to be parsed, it is more
effective approach than sending a request for each changed file.

Figure 4.1 displays communicat ion of Bitbucket , J i ra , and SonarQube. W h e n search
ing for specific SonarQube issues, it is needed to select appropriate analysis that created
these issues. Analys is t imestamp is an information about analysis which was the following
one after Bitbucket commit . A l though SonarQube version 6.3 offers R E S T endpoint that

16

returns a l l analysis dates, version 5.6 does not offer appropriate R E S T endpoint that pro
vides these results. It causes difficulties in searching for required data. Possible solution is
using endpoint that returns specific finding details because finding creation date is a time
of analysis. Its big disadvantage is that it only returns analyses that found some issues so
there might be some false positives created. This might be caused by smal l commits that
changed a few files. If there is only one or several commits like that in a long t ime period,
there is a possibil i ty that it does not create any new SonarQube issue. Analyses that were
successful are not included in results from issue R E S T endpoint because analysis date is
obtained from issue creation date. Th is inconsistency is accepted and better solution for
SonarQube 6.3 is provided i n chapter Opt imiza t ion (Chapter 7).

Commit Commit
Commit time
and changed -

files

• J i r a

• B i t b u c k & t

Components

SonarQube
file paths

f •

Analysis SonarQube
file paths

f •

Analysis SonarQube
file paths

f •

Analysis

J
i f Statistic Statistic

creation time
of issues

creation time
of issues

Findings Findings

Issue statistic

Figure 4.1: Connect ion of J i ra , SonarQube, and Bitbucket

Quality gate

Qual i ty gate is a message that contains information about issue quality. It summarizes
quali ty requirements fulfillment. The requirements are set by project leader i n admin area
on the project tab pane l 2 , this feature is project specific so each project has its own quali ty
measurements. The project leader can select custom combination of severities and types
to create a new rule up to 10 rules l imi t . Each rule consists of combinat ion of severities
and types, l imi t of convenient findings and seriousness of rule. After applying the rules,
each issue is validated when a user opens SonarQube issue tab panel. Val ida t ion result
is displayed as a message that describes rule breaks and general quality. General quali ty
is calculated according to percentage of broken rules and their seriousness. There are 3
degrees of quali ty results that indicate whether issue passes requirements or not.

2The panel that is reached from the menu of particular project.

17

Authentication

Authent icat ion is the first action that needs to be done i n order to use the integration.
SonarQube credentials are validated using basic access authentication, a user enters user-
name and password, and posts them to SonarQube in the same form as they were entered.
Despite its lack of security, it is the most suitable way for users because a user does not
need to do any settings before s/he uses the plugin. W h e n a user opens SonarQube tab
panel on view issue screen, appl icat ion requests credentials to access SonarQube. After
the user enters password and username, details are validated v i a appropriate SonarQube
R E S T endpoint. If the SonarQube endpoint responds {"valid" :true>, analysis screen and
loading process can start immediately after the response is received, answer that contains
{"valid":false]- alerts user and requests h im/he r to enter the credentials again. A u
thentication details are saved in session so the user does not need to repeat authentication
because details are kept un t i l s/he logs out.

4.2.2 User Interface

User interface (UI) is a visual part of applicat ion through which a user interacts w i t h a soft
ware. U I design is usually more important than the applicat ion itself.
There are many principles that define good design practices. One of the principles is
C R A P 3 . It defines several rules that help developers to consistently deliver effective de
sign [22]:

• Contrast - The idea behind contrast is to avoid elements on the page that are merely
similar. If the elements (type, color, size, line, etc.) are not the same, then make them
very different. Contrast is often the most important visual at t ract ion on the page -
it is what makes a reader look at the page i n the first place.

• Repeti t ion - Repeat visual elements of the design throughout the piece. Y o u can
repeat colors, shapes, textures, etc.

• Al ignment - No th ing should be placed on the page arbitrari ly. Every element should
have some visual connection wi th the other elements on the page.

• Proximity - Items relating to each other should be grouped close together. W h e n
several items are in close proximi ty to each other, they become one visual rather than
several separate units.

Messages

Qual i ty gate and data status messages (Figure 4.2) are displayed at the top of the page.
Qual i ty gate message contains the information about quali ty requirements. Th is message
is the most important element on the screen, so it has to be visible and placed at the top
of the panel. D a t a status message displays an information whether results are actual or out
dated. There are 4 types of data status messages:

• Result includes the newest commit and the newest analysis.

• Result includes the newest commit , but the commit has not been analyzed i n SonarQube
yet. The result might be outdated soon.

3Contrast, Repetition, Alignment, Proximity

18

• The issue was never analyzed before.

• D a t a status is unknown. A problem occurred while contacting SonarQube or B i t bucket.

X] Issue quality gate
You dkin t p a s s quality requirements. You need to f K :

- A l l bugs

- A l l b locker and critical vulnerabilit ies

B°th commits and analyses are actual [Refresh ~|

Figure 4.2: Issue tab panel messages

Issue Quality Summary

Qual i ty Summary is an overview about issue code quality. There are two types of summaries
that can be displayed:

• Summary by severity

• Summary by type

The summary section is placed under messages on the screen. There are two types
of statistic that can be viewed. One of them is summary by severities (Figure 4.3), it dis
plays a number or findings for each severity. The other option is summary by type (Figure
4.4), it displays a number of findings for each type. A user can optionally choose the statis
tics s/he wants to display, but only one summary, according to types or severities, can be
visible at a t ime. A user can click on appropriate but ton to swap the view. Every element
is interactive. C l i ck ing on blockers displays only findings of severity "blocker", cl icking on
vulnerabilit ies selects findings of type "vulnerabi l i ty" etc.

S u m m a r y Types Severit ies

1 6 8 2 3 3 5 5 0 4 2
All Blocker Critical Ma]or Mini:'

1 8
Info

Figure 4.3: Issue tab panel summary by severities

S u m m a r y Types Severit ies

1 6 8 2 3 5 9 8 6

All Bug Vulnerability C o d e smell

Figure 4.4: Issue tab panel summary by types

19

Filters

Fi l te r ing allows result customization. Findings can be filtered by type, severity, or assignee.
Default filtering enables displaying findings of a l l types, severities, and assignees. If a user
wants to change filters, s/he can use the but ton called "Show filters" which shows filter
options and enables result customization. If the user checks for example only vulnera
bi l i ty and unchecks the other issue types, results w i l l be only of type code smell or bug.
Unchecked options are also excluded from general statistic, but they cannot be excluded
from the quali ty val idat ion message.

The upper part of filtering section contains information about filters that are actually
used. This message is visible i n both situations, when filters are showed (Figure 4.5),
and also when options are hidden (Figure 4.6).

Filters

Applied filters are:
Types: Bug. Vulnerability. Code Smell
Severities: Blocker, Critical, Major
Assignees: All, Me

Type Severity Assignee
Code smell 0 Blocker 0 All 0
Vulnerability 0 Critical 0 Me 0
Bug 0 Major 0

Minor 0

Info 0

(Apply | Hide filters

Figure 4.5: Issue tab panel filters shown

Filters

Applied filters are:
Types: Bug, Vulnerability, Code Smell
Severities: Blocker, Critical, Major
Assignees: All, Me

Show filters

Figure 4.6: Issue tab panel filters hidden

Findings

Findings are elements representing real issues.
This data is displayed as expandable table rows (Figure 4.7). Expand ing reveals more

information like issue message, assignee, creation date, and line number. There is also
a possibil i ty to see the code lines that are specified i n finding details. P l u g i n displays
highlighted issue line and two lines around the line. If there are more lines specified, screen
displays a l l lines between boundary lines. The boundaries are highlighted. O n l y one issue
can be expanded at a t ime to keep the table organized. The l imi t is set to 10 issues at
the start. If a user wants to see more issues, s/he can expand the table. Th is option is
available only when SonarQube returns more than 10 issues.

A d m i n A r e a

The plugin also contains an area that serves for integration configuration. There are two
modes of quali ty configuration project tab panel.

One of the modes is the admin mode (Figure 4.9). A d m i n mode is a view for project
administrators and enables custom settings. A n admin can select custom specification of
a rule that consists of severities, types, and a l imi t . E a c h rule also contains a but ton that
removes the rule. A n admin can add a rule by cl icking on the " A d d more" row, which

20

Findings
Type: Path: Severity:
Bug Filepath BLOCKER

T Vulnerability Filepath MAJOR

Message: Either log or rethrow this exception.
Assignee: Ingmar
Created: 9/21/2017 at 18:19 GMT
Jne 13

11. try {
12 doStuffft
13. } catch(Exception e) {}

• Code Smell Filepath MAJOR

Bug Filepath MINOR

Figure 4.7: Issue tab panel findings

is the last row of the table. Th is command generates a new unfilled row. C l i ck ing on
the "Save" but ton saves the selected rules, if the admin does not save the changes, they
disappear when the page is left or refreshed.

The other mode is a mode for users (Figure 4.8). A user cannot do any configuration
changes, s/he is only allowed to view the selected rules. A n y project participant has this
browse permission.

Issue quality configuration
Requirements are set up by your project leader.

Issue quality configuration
This section allows you to set quality requirements for your
project.

Number Severit ies Types I Limit

1 Major. Minor Bug 0
2 Major Bug 10

Number Severit ies | Types I Limit Rembve

1 [Minor, Into T] [Bug | •] HH BS
2 [Major |TJ [Bug | •] m &

Add more

Save

Figure 4.8: Configurat ion project tab panel
for a user Figure 4.9: Configuration project tab panel

for a leader

21

Chapter 5

Implementation

5.1 Technologies

The plugin was implemented using the following front-end and back-end technologies:

• Java is a object-oriented programming language used for background logic implemen
tation.

• JavaScript (JS) is a interpreted programming language. It is used to make web
pages interactive, j Q u e r y is a cross-platform JavaScript l ibrary. It is designed to
simplify working wi th elements, event handling, and creating A j a x 1 applications.

• Hypertext M a r k u p Language (H T M L) is the markup language for creating web
applications. H T M L semantically describes the structure and appearance of a web
page.

• Velocity Template is a template engine that provides a template language to ref
erence objects defined in backend. It is the main engine used for displaying pages in
Atlass ian applications [12]. The Veloci ty Template Language (V T L) provides the way
how to create macros and operate wi th Java objects directly from H T M L .

• Cascading Style Sheets (CSS) is a style sheet based language used for describing
the presentation of a web page.

• Soy Template is a templat ing system for generating re-usable H T M L elements that
can be used from JavaScript.

5.1.1 Atlassian Software Development K i t

The Software development ki t (S D K) is a tool developed by Atlass ian. Us ing S D K , de
velopers can create their own add-ons to extend basic functionality of At lass ian server
applications. A n add-on is created using command atlas-create-jira-plugin. Th is
command prompts a user to define plugin core configuration details and generates a basic
skeleton (Figure 5.1) of a new plugin. The file called pom.xml contains plugin configura
t ion details and dependencies. The atlassian-plugin.xml file describes a plugin to other
Atlass ian applications. A developer can define elements that create component modules
and visual resources.

1 Asynchronous JavaScript and XML

22

S D K also offers a possibil i ty to local ly run J i r a instance using the atlas-run or atlas-debug
command i n the plugin folder.

L I C E N S E

R E A D M E

pom.xml

java

resources <•

Java source f i les

Other source f i les (.ess, j s , .vm...),
a t lass ian-p lug in.xml

test

Java test source f i les

resources 4 Other test source f i les

Figure 5.1: At lass ian plugin architecture

5.1.2 Apache Maven

Apache Maven is a project management and comprehension tool , based on the concept
of a project object model (P O M) . The project object model is an X M L file that contains
information about project and its configuration. This file contains also dependency defini
tions. Dependencies are external source files that are locally stored i n the maven folder.
A developer can include a dependency using its I D (Lis tning 5.1). The <groupId> element
defines an I D of dependency that can be obtained from the Maven Repos i to ry 2 .

W h e n a project bu i ld is invoked, Maven finds a P O M file, reads it , and gets important
configuration information. If it is successfully obtained, only then Maven starts executing
the goal. Apache Maven can be run using mvn [options] [<goal(s)>] [<phase(s)>]
command from the plugin directory. Options can be for example package for bui ld ing only
current p lugin package, clean for cleaning the project before installat ion, test for running
tests only, etc.

<dependencies>
<dependency>

<groupId>com.atlassian.jira</groupId>
<artifactld>jira—api< / artifactld>
<version>${jira.version}</version>
<scope>provided< / scope>

</dependency>
<dependencies>

Lis t ing 5.1: Dependency definition

2Maven Repository https://mvnrepository.com/

23

https://mvnrepository.com/

5.2 Concept

Integration implementat ion consists of 5 parts:

• Issue Ana lyzer on the issue tab panel,

• SonarQube and U n i t y U R L configuration in the adminis t ra t ion area,

• SonarQube project settings on the project tab panel,

• SonarQube activation and deactivation on the project tab panel,

• Issue Code Qual i ty Targets on the project tab panel.

Each part is implemented separately and can be changed, removed, or replaced without
affecting the other parts. The only connection lies in sharing persistent data (Figure 5.2).
The data is represented as active objects (A O) .

The Act ive objects is a layer into Atlass ian products, implemented as a plugin into
Atlass ian applications. It enables easier, faster, and more scalable data access and storage.
Act ive objects has following advantages:

• Rea l database usage - A O enables accessing real database and working wi th real data.

• Database independence - A O abstracts a l l database implementat ion details.

• Sandboxing - A plugin can access only data that belongs to it.

• Backup/restore - The backup/restore mechanism takes care of backuping the plugin
data. [1]

Figure 5.2: Connect ion of plugin components

24

5.3 Integration Implementation

5.3.1 Analyzer

The Ana lyzer is the main plugin feature, implemented on the issue tab panel. The issue
tab panel is a p lugin module that allows adding new panels to the view issue screen. It is
defined i n the atlassian-plugin.xml file (Lis t ing 5.2) that was automatical ly generated
by the At lass ian S D K .

<issue—tabpanel key="act—sonarqube—Analyzer" name="SonarQube Panel"
class=" act .j ira. plugin.issuetabpanel. SonarqubelssueTabPanel" >

<description>SonarQube issue panel</description>
<order>30< / order>
<resource type="velocity" location="templates/sonarqube—panel.vm"/>
<supports—ajax—load>true</supports—ajax—load>
<label>SonarQube</label>

< / issue—tabpanel>

Lis t ing 5.2: Issue tab panel definition

The <resource> element defines the velocity template that is loaded after a user clicks on
the panel. The velocity template can access J i r a data using the interfaces IssueTabPanel
and IssueAction, both of them are provided by At lass ian i n issuetabpanel package.
JavaScript files are appended separately using <web-resource> element. Web resources
are downloadable resources that enable serving addi t ional static JavaScript and C S S files.
Each web resource contains file location and optionally other attributes, for example con
text. A context defines screen type that is enabled to use the content. Default context is
at 1. general, the resource is available everywhere except an area requiring administrat ion
privileges. Cus tom context i n unavailable anywhere as default, but can be required from
part icular velocity template using Web Resource Manager:

$webResourceManager.requireResourcesForContext('atl.sonarqube')

Analyzer Structure

The Ana lyzer consists of two main parts: J i r a endpoints (implemented i n Java) and issue tab
panel that shows the results (implemented using JavaScript , Veloci ty Templates, and Soy
Templates).

Analyzer is enabled only i f the J i r a project, that contains the part icular issue, has
any SonarQube project attached and i f the integration is allowed. Before the Analyzer
starts loading data from remote sources, it checks the status of SonarQube and B i t bucket.
If any of these servers does not respond or responses unexpected status, Ana lyzer informs
the user and successfully ends. Act ions that ensure val id start of the Ana lyzer are displayed
in Figure 5.3.

J i r a Endpoints

The Ana lyzer is implemented as J i r a endpoints (Figure 5.4) that are called from front-end
using A J A X requests:

doInitialAnalysis loads essential data into cache. The data consists of changed files
in SonarQube file pa th format and also times of analyses.

25

ISSLE tdD

• d i s i ' l a y e c

S h o w

a c s ^ o c " =:e
Tiessa-ge

frj^V-YES ^ ^) — Y E S Y E S ^ ^ ^ V y E S » f ^ \ - Y E S

Is S o n a r Q L b e D o e s t h e J i r a
i n t e g ' a t i o n o r o j e c t h a v e

a l l o w e d a i d i r n e d
S o n a r O u o e S o r a r Q j b e

U R L s e t ? p ' o j e c t ?

l a B i t b u c k e t
' u r n h g

I a S c - i a r Q u b e
r j n n i r g ?

NVALID • Iasue 1ao p a n e
= - : : = r

• IESUE 1a z- pane l
s IE z- a y e d

Figure 5.3: Analyzer ' s actions before start

The first act ion is loading commits from Bitbucket /commit endpoint. The /commit
endpoint returns a l l commits, associated wi th the J i r a issue, i n J S O N array. C o m m i t times
and changed files are parsed using G S O N 3 l ibrary into Java objects.

F i le paths are obtained using SonarQube /component endpoint that returns a l l files
related to the project. Th is approach solves the problem wi th inconsistencies between
SonarQube and Bitbucket file paths. Response data contains large amount of unused prop
erties that are removed using regular expressions. F i n a l string contains only raw file paths
separated by delimiter This approach helps to reduce data to less than one tenth of
previous size. Complete paths are then acquired using their parts that were obtained from
Bitbucket commits.

Bitbucket commit times are then passed to SonarQube using /issues endpoint. Re
sponse contains issue objects i n ascending order by creation time. Creat ion t ime of the first
issue the t ime of the first analysis after the commit .

Collected data about changed files and analysis t ime are saved into cache under the is
sue key. A l l other endpoints use this data. Whenever data is removed from cache, every
endpoint is able to invoke these actions again.

This endpoint responses also a part of issue statistics as J S O N object that contains
finding severities as attr ibute keys and their counts as values. Th is statistic is focused only
on findings by their severity. The data is collected using the SonarQube /issues endpoint
and filtering required severity to get its to ta l count. The count is included in SonarQube
response header so its not needed to return specific findings as objects. The number is
parsed from the response header using G S O N library.

statisticTypes creates appropriate requests to get complete overview of findings con
nected w i t h part icular J i r a issue. This endpoint calls SonarQube /issues endpoint once
for each finding type to collect data from response headers. The header is parsed using
G S O N only to get number of findings. Response contains J S O N object w i th attributes
representing each type and values representing number of findings. These data are used to
create Summary section by types of findings on the issue tab panel.

customStatistic is used to get statistic w i th customized values. It can ignore some
types, severities, or a combinat ion of both. Selected types and severities are passed as
request parameters. Th is endpoint is used to get new Summary values when a user filters
results.

lines returns specific source code lines. The endpoint excepts file name and boundary

3 A n open source Java library developed by Google. It is used to serialize and deserialize Java objects
to/from JSON

26

lines as request parameters. These details are passed to SonarQube /sources endpoint.
SonarQube response contains specified source code lines that are parsed using G S O N to
remove other properties. Endpoin t ' s response contains J S O N object that consists of at
tributes w i th line numbers as keys and raw source code lines as values.

findings searches for SonarQube findings, that are connected wi th part icular issue,
and collects essential data into objects that represent findings. F indings are obtained us
ing cal l to / issues SonarQube endpoint w i th analyses' times and file paths (obtained from
cache) as request parameters. SonarQube response is parsed using G S O N to remove unused
data and represent findings i n required form. Endpoint ' s response contains J S O N array of
objects representing findings wi th their essential attributes.

customFindings is used to get findings wi th customized values. It can ignore some
types, severities, or a combinat ion of both. Selected types and severities are passed as
request parameters. Th is endpoint is used to get new specific finding objects when a user
filters results.

dataStatus returns whether issue analysis is up to date, outdated, or was not ana
lyzed yet. This endpoint calls /commits Bi tbucket endpoint to get the newest commit time
and also / issues SonarQube endpoint to get the newest analysis t ime. If the commit time
is newer than the analysis time, results might be outdated because SonarQube d id not
analyze a l l commits yet. This endpoint also helps to determine whether cached data is up
to date or not.

reload empties cache record to get completely new data for current issue.
qualitylnfo verifies issue code quality. It compares statistic results w i th required qual

ity, that was set by project leader, and returns response that contains number of rule breaks
and their type. E a c h rule is evaluated separately using its specifications and SonarQube
/ issues endpoint. The number of findings i n response is compared w i t h the l imi t of ac
ceptable findings. If the count is higher than the l imi t , a report is created and attached to
the response.

doIoit ialAiialysis .

statisticTypes

c j s i o m S t i t i s r i c

l ines

findings

custom!inding.=.

quaiitylnfb

GEt= biEuc LDfannatk'ii
about the ü;ue

GEfc aiti5tic by fi^diüg

FiltEis i-ta.tii.tic by iEuarlDg
some severities o: types

GEt= F-DUICH ccdE lines

GEt; pzrt"ciJir fiDiünE^

competed vrLtt the. L= =ue

Füteri finding by ignoring
some severities o: types

Validates that daß i; up tD
date

V-=lLdat=!= =:L:C£ cod;

Test
Empty andpobit fcr tEituig

Test
(always ietamscfide 200)

Returns all commit commits

Hefiix: f.niir.j:

Returns pr-sje:tiDtDp'iiiEDCE components

Returns saures CDde LULEE süjrce

• J i r a A F I

—1 SanarQube API

• Bitbucket API

Figure 5.4: P l u g i n A P I , Bitbucket A P I and SonarQube A P I connection

27

http://i-ta.tii.tic

D a t a Caching

The Ana lyzer caches essential data i n the J i r a instance. Cache is not persistent in database,
its content is completely removed any t ime the plugin is reinstalled or the J i r a instance is
rebooted. The l imi t of stored data is set to m a x i m u m 500 items. The number of items
is controlled by recording the order of items and cache size. The removal a lgori thm is
based on F I F O system. Whenever the cache is full and another issue needs to be stored,
the Ana lyzer takes the oldest record and deletes it.

Cached data is representing SonarQube analyses that were found i n connection wi th
part icular J i r a issue. Analyses are stored because it is an information that is required in
every other operation that is performed by the Analyzer . A record is stored under the key of
specific J i r a issue. Each J i r a project member can use a data that another project participant
stored by loading the same issue.

Whenever the Ana lyzer loses cached data for its issue, it invokes completely new issue
analysis and creates a new record i n the cache. Inconsistent results are prevented by
checks before reading from cache and also using locks. A lock is a thread synchronization
mechanism [14]. In the case of cache access synchronization, it enables mult iple processes
to read and write data into cache without any collisions.

Connect ion of V i e w and Logic

After a user opens SonarQube issue tab panel and successfully authenticates, the loading
bar appears and the doInitialAnalysis endpoint is called using A J A X . W h i l e wait ing
for response, the Veloci ty Template that contains Analyzer ' s elements is parsed. These
elements are logically divided according to the endpoints that return data to complete
them. After this endpoint returns val id results, statisticTypes, findings, dataStatus,
and qualitylnfo endpoints are called asynchronously using A J A X requests. Figure 5.5
shows these actions i n graphical structure. Whenever any of these requests is responded,
it parses the J S O N response, sets values to its section i n template and displays data on
the screen. After a data is displayed on the panel, a user is able to operate w i t h them, a l l
sections are independent units.

Table rows that represent findings are parsed using Soy Template. Soy Template helps
to render elements repeatably so it is convenient solution for rendering table rows because
the Ana lyzer can display unl imi ted number of findings, it depends on the number of findings
and also how many times a user clicks on the "Show more" button.

5.3.2 Integration Administration

Adminis t ra t ion enables providing essential data to make the Ana lyzer work properly. A d
minis t ra t ion itself is d ivided into three sections:

• Configuration project tab panel enables integration activation and also offers possi
bi l i ty to select specific SonarQube projects that are connected to the J i r a project,

• SonarQube project tab panel enables issue code quali ty targets settings,

• U n i t y and SonarQube configuration items that store links to specific instances of
SonarQube and Uni ty .

Proper settings should provide SonarQube project keys and U R L , that are used during
analyses, and code quali ty targets that help to measure issue quality. Permissions are d i -

28

Get ana lyses
and bas ic

statistic
Data Data

status loaded

— J •

Figure 5.5: Ana lyzer actions i n timeline

vided into J i r a administrator, project administrator, and project participant.
Project and quali ty settings are project specific features, they are separated from the A n

alyzer, and implemented on the project tab panel. The project tab panel is a module that
allows adding new tabs to the main project menu. It is defined using the <web-item>
and the <web-panel> elements in the atlassian-plugin.xml file. The web-item ele
ment (Lis t ing 5.3) is a menu i tem that contains a l ink to the appropriate web panel.
The <web-panel> element (Lis t ing 5.4) represents panel page itself, it is the page that
appears when a user clicks on the i tem i n project menu.

<web—item section="jira.project.sidebar.plugins.navigation" weight="60"
key="sonarqube—tab—link" >

<label key="SonarQube"/>
<link>/projects/{$pathEncodedProjectKey?selectedItem}=

act. j ira. plugin: sonarqube—tab—page < /link >
<condition class="act.jira.condition.ProjectTabPanelCondition"/>

</web—item>

Lis t ing 5.3: M e n u i tem definition example

<web—panel key="sq—tab—page" location="jira.plugin:sq—tab—page">
<resource type="velocity" location="templates/tabpanel.vm"/>
<context—provider class="jira.plugin.tab.SonarContextProvider"/>
<condition class="jira.plugin.conditions.ProjectTabPanelCondition"/>

</web—panel>

Lis t ing 5.4: Project tab panel l ink definition

The <condition> element refers Java class that implements Conditions interface from
Atlass ian Web package [2]. The method shouldDisplayed returns boolean value that de-

29

cides whether the i tem should be displayed to a logged i n user or not (Figure 5.6). It
is used to check the permissions and also whether part icular J i r a project has attached
SonarQube projects. In the case that the J i r a project is not connected wi th any project in
U n i t y or the project leader d id not choose any SonarQube project to analyze, the Analyzer
and quali ty configuration sections are fully disabled to avoid plugin inconsistencies.

SonarQube and U n i t y U R L configuration is an instance specific feature. It means
that each J i r a instance has its own U R L settings for a l l J i r a projects. The configuration
area is implemented as the <web-section> (Lis t ing 5.5) plugin module, referenced by the
<web-item> (Lis t ing 5.3) in administrat ion menu.

<web—section key="sonar config" location="admin plugins menu">
<label key="SonarQube Integration Configuration"/>
<condition class="act.jira.condition.AdminCondition"/>

< / web—section>

Li s t ing 5.5: Admin is t ra t ion section

o

A
Project participant

Project admin

t

A
Jira admin

See analysis results

Customize analysis settings

See issue quality criteria

Modify issue quality criteria

Select SonarQube projects

Activate integration

Activate plugin

Set links

Set Unity credentials

<<extends>>

Figure 5.6: J i r a permissions divis ion

Configuration Project Tab Panel

Project settings are made i n configuration area. The configuration area is implemented as
a separate project tab panel that is visible only for project leaders. This behavior is reached
using Cond i t ion i n the atlassian-plugin.xml file. Th is file contains two main sections, one

30

of them is used to enable or disable SonarQube integration for whole project and the other
is used to select SonarQube project.

The new endpoints getSQProjects, getSelectedSQProjects, and postSQProjects
were implemented to manage SonarQube projects connected w i t h part icular J i r a project.
The getSQProjects endpoint is called immediately after the panel is loaded. It calls
the U n i t y endpoint forToolProjectldOrKey to get a l l projects i n other tools that are
connected to the J i r a project. The response is parsed using G S O N to get SonarQube
projects only. These projects are passed to fronted and displayed as items of dropdown
element. The getSelectedSQProjects endpoint is called to find projects that have been
selected before. These projects are represented by Act ive Objects i n data storage. If any
projects were already connected wi th the J i r a project, they are returned and these projects
are checked in project dropdown element. A n administrator can select 1-n of these projects,
when s/he clicks on the save button, checked items are passed to postSQProjects endpoint.
Th is endpoint removes a l l project Ac t ive Objects connected wi th the J i r a project and creates
a new ones according to administrator 's selection. Created Act ive Objects, representing
SonarQube projects, are then used during issue analyses.

The endpoint called changeVisibility enables and disables SonarQube integration
for J i r a projects. It keeps records as A O s that are always checked before any panel, which
is a part of SonarQube integration plugin, appears on the screen. Default state is "not
activated" for a l l J i r a projects.

SonarQube Project Tab Panel

The SonarQube project tab panel enables quali ty settings. A l t h o u g h this panel is visible for
al l project participants, only project leader permission allows to modify rules. Part icipants
that do not have required permission can display settings only as a pla in text.

Qual i ty rules are displayed as a table. E a c h row stands for one rule. A project leader
can add and delete any of rules. E a c h rule contains severities and types that should be
l imi ted and also a l imi t of these findings that is accepted. Back-end represents rules using
Act ive Objects. Communica t ion is realized using endpoints getValues, that finds required
A O s and returns them, and storeValues, that replaces A O s wi th new ones. P l u g i n auto
matical ly generates in i t i a l rules when integration is activated for the first t ime, the rules
are l imi t ing acceptable bugs and vulnerabilit ies of a l l severities to 0. W h e n the integration
is deactivated, Ac t ive Object keeps quali ty data for the project, so it can be retrieved later.

Configuration Items

The plugin provides addi t ional configuration items i n the adminis t ra t ion area. The in
tegration creates two items i n a separate configuration area. One i tem stands for Uni ty ,
and the other for SonarQube. B o t h items contain fields that are required for integration
process. SonarQube uses only field U R L and U n i t y uses fields U R L , username, and pass
word. Th is configuration is set up by a J i r a administrator. Fields are stored i n database
using Act ive Objects.

31

Chapter 6

Verification

Verification is a procedure used to check whether a product meets requirements and speci
fications. The ISO 1233 [] standard defines verification w i t h the following definition:
Verification is the process of evaluating a system or component to determine whether
the system of a given development phase satisfies the conditions imposed at the start of
that phase.

6.1 Methods

Plug in was tested and verified using one manual and two automated methods:

• M a n u a l testing,

• unit testing,

• performance testing.

Automated testing methods are running dai ly using the At lass ian Bamboo server.

Atlassian Bamboo

The At lass ian Bamboo is a server for continuous integration, deployment, and delivery.
The Bamboo is used to periodical ly run builds and tests for software projects, and provide
reports. It consists of two parts, the Bamboo server and Bamboo agents. The Bamboo
server manages whole infrastructure, its main task is to keep agents working properly,
manage the list of agents, and assign tasks based on requirements and agents' capabilities.
A Bamboo agent is a service that can run the execution of a job or a plan. There are three
types of Bamboo agents: local agent, remote agent, and elastic agent [15].

6 .1.1 Unit Tests

Uni t testing is a testing method that is focused on the behavior of ind iv idua l classes
and their methods. It should ensure a developer that the method passes its functional
i ty requirements. It also helps to reveal potential bugs caused in reaction to unexpected
input.

32

J U n i t

J U n i t is a unit testing framework for Java applications. A test class consists of set up that
is created using @Bef oreMethod and @Bef oreClass annotations, test cases that are marked
wi th ©Test annotation, and optionally tear down that is marked wi th OAfterClass and
OAfterMethod annotations. Each test case should be focused on one specific functionality
and needs to be fully independent from the other test cases.

J U n i t allows to simulate component's behavior to get required results using mocks.
A mock is a component annotated wi th @Mock that can force a component, that is not
the tested object and has complicated structure, to have specific behavior. A behavior of
a mock can be specified using doReturn({OBJECT}) .when({M0CK}) .{METHOD}.

The test result is verified using assertions. J U n i t offers many assertion methods that
can compare any variables of a pr imit ive type or whole objects.

Plugin Uni t Tests

The SonarQube plugin is covered by unit tests on 68% of Java source code lines. This
coverage is reached using 132 ind iv idua l test cases in 15 test classes. Each test class is
representing one Java class. Tests are mainly focused on A P I and managers that are
working wi th active objects, parsing server responses, or controll ing the Analyzer .

6.1.2 Performance Tests

Performance testing are methods that help to investigate, measure, and verify quali ty of
a system. It is d ivided into following five categories:

• Load testing is used to monitor a behavior of a system under an expected load.

• Stress testing is a method that is used to determine the robustness of the system.
It measures the performance under extreme load.

• Soak testing helps to detect potential memory leaks and performance degradation.

• Spike testing is a method that is done using highly increasing and decreasing number
of loads.

• Configuration testing is a testing created to determine the effects of configuration.
It monitors the performance under different conditions.

Performance tests are implemented to monitor the functionality of ind iv idua l endpoints.
The ma in goal is to measure how quickly ind iv idua l A P I endpoints react to a basic request.
The reaction is compared w i t h the t ime that SonarQube needs for one response. This
approach helps to optimize only endpoints that have some possible efficiency leaks.

Methods

P l u g i n was tested using three tools. One of them uses open source software and the other
two are parts of the plugin itself:

• The Apache JMete r is an open source software designed to load test functional be
havior and measure applicat ion performance. The JMete r is designed for both static

33

and dynamic testing, its main focus is web applications testing. It can be used for ex
ample to simulate a heavy load on a server and monitor a behavior of an applicat ion,
or to analyze overall performance.

• The Java class that monitors the t ime interval between outgoing request and incoming
response from external applications. This approach helps to determine the approx
imate t ime that SonarQube requires to return response, and that it takes to reach
SonarQube from J i r a and the other way around.

• The JavaScript console applicat ion that is started from the browser command prompt
on the p lugin configuration project tab panel. Th is script sends a request on each
integration A P I and monitors its response t ime. It requires two parameters, the first
is number of requests that should be sent on each endpoint, the second is the key of
the issue that should be measured. The script measures only endpoints w i th responses
that are changeable wi th issue specifications, not w i th configuration settings.

Test Implementation

Tests are implemented to monitor three real J i r a issues that are taken as reference issues.
The reference issues' parameters are displayed i n Table 6.1.

Issues were chosen according to J i r a project standards estimation and research to pre
pare testing data that have structure, results, and lifecycle close to typica l J i r a issues.
Non-implementat ion J i r a issue usually does not contain any commits. Smal l bug fix, rep
resented by the row wi th key "issue-3", usually contains 1-3 commits. Standard bug fix
or smal l feature, represented by the row wi th key "issue-2", usually consists of around 1-8
commits. Complex and problematic features, represented by the row wi th key "issue-1",
usually has around 20 commits.

The "Findings" column contains SonarQube unresolved findings of a l l types and sever
ities that were found by the SonarQube plugin Ana lyzer i n connection wi th the part icular
J i r a issue. The difference i n findings counts should strongly impact custom operations like
findings filtering. Th is entry should help to determine the difference i n analysis of none
and many findings, what brings the important information about the t ime spent by A n a
lyzer's operations.

The "Changed files" column refers more Analyzer ' s operations than a SonarQube end-
point response measurement. Each path of changed file needs to be parsed from a large
amount of data that is composed by cal l ing SonarQube endpoint mult iple times to get a l l
response pages. Number of these calls is always the same for part icular project. The dif
ference is i n amount of data that needs to be parsed and later composed i n the specific
structure to append it to each outgoing request.

The "Created" and "Resolved" columns specify the t ime interval between J i r a issue cre
ation and resolution. This entry is important because the more commits i n different days
issue has, the more different analyses SonarQube typical ly does. The SonarQube endpoint
that returns analyses is called only i n case that the difference between a commit and its
analysis is higher than between the commit and the analysis of the previous commit . Other
wise the result from SonarQube would be identical , so analysis would be duplicated, what
causes higher t ime cost of other operations.

34

Issue key Commits total Changed files Findings Created Resolved
issue-1 25 23 57 5/26/2017 8/1/2017
issue-2 8 15 1 8/4/2017 10/8/2017
issue-3 3 2 0 3/7/2017 20/7/2017

Table 6.1: Reference issues' parameters

Test Results

The ma in goal of these tests is to determine approximate t ime that it takes to find required
data and parse them. Tests should reveal some cr i t ica l parts and possible improvements.
Each J i r a issue from Table 6.1 was tested separately and wi th empty cache to get as exact
results as possible for each endpoint defined in Section 5.3.1.

The results are displayed in Figure 6.1. The figure displays comparison of endpoints
reaction times when taking account of issue size. Results showed that the biggest difference
is i n doInitialAnalysis endpoint and also other endpoints that calculate statistic. Issues
are highly impacted by their magnitude.

O n the other hand findings and customFindings endpoints showed that the number
of analyses is not the main problem, despite its technique of getting results is based on
the same cycle as doInitialAnalysis endpoint, its t ime cost is only around one fifth of
doInitialAnalysis endpoint's t ime cost. The most cr i t ica l part is high number of requests
that needs to be done for each of this analysis and number of analysis is mul t ip ly ing it.

The qualitylnfo, dataStatus, and validation endpoints are reaching required re
sults. The i r t ime cost is not influenced by J i r a issue properties, it works stable for every
issue.

30

1 • 1 . 1 Ill ... 1 1 ll_ ...
If j ; Initial

Analysis
-quality Info data status

custom
Findings

An (fug?
s^- 's: 'c
Types

custom
Statiitk:

Validation TESt

• issue-l 34.334 6.324 2.376 a.6 6.1Z4 15.592 24.1B71 6.4G2 2-724

• issue-2 19 564 3.446 1_744 3.312 3.453 7.37 9.752 6.253 1.436

15.142 4.762 1.702 2.363 2.22 4 6 1 6 5.914 6.274 1.393

Figure 6.1: Endpoints response times comparison

The smallest reference issue is the issue-3. The analysis of this issue showed up that
despite the issue does not contain any findings, the Analyzer is s t i l l strongly impacted by
statistic loading. T h e other point of view shows that the "findings" endpoint works well
for smal l issues. The actions that are getting statistics can be the in i t i a l point for the next

35

opt imizat ion. There might be a bui ld- in system of decision that i n a part icular part of
analysis determines which actions and parts of analysis are essential for an issue wi th zero
findings. Th i s system should be safe and wel l tested to be sure that it does not cause
ignoring any finding.

Average issue size is represented by the issue-2. The analysis of this issue showed that
the "findings" endpoint, that returns specifications of the issues, works s t i l l in acceptable
l imits . O n the other hand, the "doIni t ia lAnalys is" endpoint is perceptibly worse than
the previous issue's results.

Large issues are represented by the issue-1. Th is issue has, as expected, the most
impacted results by its size. Accord ing to the other measurements, the "doIni t ia lAnalysis"
endpoint takes only around 9 seconds to do the analysis itself, and then around 20 seconds
to get statistics. S imi lar operations are done by the "customStatist ic" endpoint.

The results of analyses were also compared from the point of view of a user. Figure 6.2
shows the results that were calculated to determine to ta l wait ing t ime and time before
the first element is loaded.

The to ta l wai t ing t ime is a period of t ime that starts when an authenticated user opens
the SonarQube tab panel and ends when the last element is loaded on screen. It takes into
consideration asynchronous processes.

The t ime period before the first element is shown is a period from the start of analysis
to the t ime when the first result is shown on screen (despite the other elements might not
be loaded yet).

SB. sua

D I D M 50 M 50 SO 7D

Time [s]
• iEEUE-3 issuE-Z •baue-1

Figure 6.2: Compar ison from the point of view of a user

M a n u a l Testing

The manual testing method was selected due to instance restrictions that currently do not
allow involving integration or behavior-driven testing. M a n u a l tests were created to cover
both configuration sections and the Ana lyzer w i th tests that verify plugin functionality.
The manual testing plan consists of 15 test cases that are focused on specific functionali
ties using different project roles w i t h distinct permissions, and under variety of conditions.
M a n u a l tests are divided into two sections.

The first part is focused on configuration testing. It consists of 7 test cases that verify

36

whether a configuration change appropriately impacts the plugin behavior according ex
ceptions. These tests are also focused on inval id plugin settings and how plugin reacts to
these conditions.

The second section tests the interface of the Ana lyzer itself. It includes 8 ind iv idua l
tests that verify the reaction of the Ana lyzer on user's input and requirements.

The test results showed following bugs and inconsistencies:

• A J i r a project without any SonarQube project attached i n U n i t y does not show
the message that informs project leader i n configuration area. The problem was
fixed, despite the data was loaded properly, the message was kept hidden.

• The issue tab panel reacts inappropriately to inval id settings. The problem is caused
because of the A P I of SonarQube, it requires credentials to get its status, so the prob
lem is to determine how to validate SonarQube status without credentials, or how to
validate credentials without knowing the status. The problem is solved by the au
thentication endpoint, it validates credentials only when server is running properly so
the val id response is also the code 401 (not authenticated).

• W h e n quali ty requirements are changed, and an issue is currently loaded, quali ty
results do not refresh when a user clicks on the "Reload" button. The problem was
created by missing invoker when an issue is refreshing.

Conclusion

The plugin was tested by three types of testing. Tests that are focused on general func
t ional i ty d id not reveal any serious bugs. O n the other hand, the performance tests showed
that there are some leaks of efficiency that should be taken into consideration i n opt imiza
t ion. The opt imizat ion task is to improve general logic that the Ana lyzer uses to get issue
statistics. Current solution requires many R E S T calls that can be potential ly replaced wi th
different logic. Th is problem is divided into following sub-tasks:

• The most of J i r a issues are not connected wi th any SonarQube finding and some J i r a
issues, usually testing tasks, do not even have any commits. The Ana lyzer should be
able to determine whether it is worth to do a l l actions despite the issue has not any
findings or commits.

• It takes a long time before the Ana lyzer returns the data from in i t i a l loading pro
cesses. Th is data brings essential information that other R E S T calls also need. The
Analyzer ' s part that does the in i t i a l loading of analyses should be divided into two
separate sections. It is required to first br ing only data that is important for a l l later
actions.

• The Ana lyzer actually searches for finding statistics using direct requests, that are
also returning very specific data. The task is to inspect the other possible ways of
getting issue statistics. There might be a way that does not return results that are
not as specific as from the previous solution, but creating own statistic can work much
more effectively itself.

37

Chapter 7

Optimization and Future Work

7.1 Latest Versions of SonarQube

The SonarQube version 6.3 offers features that are enhancement for the SonarQube and J i r a
integration. One of the problems that complicates Analyzer ' s functionality is that SonarQube
5.6 does not have any endpoint that directly returns analyses. The current solution had to
use a way that is not beneficial for the plugin's efficiency

The update to version 6.3 offers endpoint that directly returns a l l SonarQube analy
ses. It is possible to save noticeable amount of whole Analyzer ' s t ime cost only using this
endpoint instead of the current solution. Request structure is defined as following:

GET api/proj ect_analyses/search

This endpoint responses the t ime of the analysis and also the results. The most essen
t i a l property is that it requires only one or few calls for whole issue. Another advan
tage is the analysis results because it enables displaying code quali ty results directly from
SonarQube.

Branching is a new feature of SonarQube version 6.6. Standard name convention of
naming branches according to J i r a issues enables removing Bitbucket integration from this
plugin. SonarQube offers endpoint that can return a l l branches for a single project. The re
quest structure is defined:

GET api/project_branches/list

The response contains list of branches that are connected wi th the SonarQube project. Us
ing the name conventions properly, there is a possibil i ty to filter a required branch to get
essential data. Th is endpoint might enable reaching issues directly according to SonarQube
branch. Unfortunately, even the newest version 6.7 does not provide important information
that could fully replace Bitbucket and possibly also some SonarQube endpoints.

SonarQube version 6.0 offers an extension to the authentication endpoint. It is possible
to login and logout user through the endpoint. This endpoint could solve the basic au
thentication security problem because it removes the need of sending credentials in every
request. The structure is defined:

POST api/authentication/login
POST api/authentication/logout

A l l these enhancements should be taken to the consideration i n the future work because it
can improve performance and also the results.

38

7.2 Optimization Based on Test Results

The performance test results showed that the weak part of the Ana lyzer is getting statist ical
data. Because of these results, opt imizat ion was focused mainly on the solution that could
help to br ing the essential data i n the same quali ty of results but more effectively.

A t first, the d o I n i t i a l A n a l y s i s endpoint that gets information about the issue and in i
t i a l statistic was divided into two separated endpoints. The reason is that having it in
a single endpoint slows down other processes because they start after the in i t i a l loading
finishes. Because of this reason, the in i t i a l loading should be as effective and smal l as
possible. The second part of the previous d o I n i t i a l A n a l y s i s endpoint brings a part of
statist ical data, so it was merged wi th the s t a t i s t i c T y p e endpoint that returns statist ical
information findings by their type. These two endpoints work wi th the same data so there
is no need to create redundant calls. The new endpoint, created by merging a part of
d o I n i t i a l A n a l y s i s and s t a t i s t i c T y p e endpoint, is called s t a t i s t i c .

The endpoint called s t a t i s t i c obtains essential data for both statistic by severities
and types at the same t ime using a new logic that is based on getting large amount of data
in a few calls instead of getting smal l data i n many calls. The plugin was reaching statis
t ica l information by creating a request for each severity and type of findings, this solution
was refactored to create a request for a l l findings and create own statistic by parsing their
parameters locally. Th is approach allows returning up to 500 findings for one R E S T call .
The Ana lyzer is able to store up to 75% of a t ime i n total by collecting the data by itself.
The Figure 7.1 shows the results of the opt imizat ion. Test data was collected using issues
from the Table 6.1.

12

•

1 1
1 Ii • 1. II 1 II II III 1

do Initial
Analysis

quality
Info

data
Status

custom
Findings f 1 J 1£S statistic custom

Statistic Validation Test

• issue-1 11.174 6.072 2.435 5.722 5.938 5.776 6.634 6.025 1.674

• i55ue-2 B.ll 3.21+ 1.742 3.018 3.164 3.066 3.044 5.57 1.513

• issue-3 7.025 2.05S 2.013 2.122 3.392 2.562 2.216 6.142 2.114

Figure 7.1: Opt imiza t ion results

Improvement

The results showed that differences between smal l and large issues got smaller. The time
cost is now dependent more on the number of analyses and also on the number of find
ings but is able to work much more effectively. D i v i d i n g the d o I n i t i a l A n a l y s i s end-
point, that gets analysis and basic statistics from SonarQube, into two separated endpoints
d o I n i t i a l A n a l y s i s and s t a t i s t i c grants big benefit for other parts of the Ana lyzer that

39

are able to work asynchronously. The s t a t i s t i c endpoint now collects complete statistics,
not only its part "by finding type" as before.

The reference issues were analyzed again and the results were compared wi th the previ
ous statistics. Figure 7.2 displays loading t ime of the Ana lyzer i n global. Compar ison wi th
Figure 6.2 showed that t ime that is needed to load complete analysis of part icular issue was
reduced to one th i rd (Figure 7.3). The t ime period between the t ime when the first results
are shown and when whole analysis is displayed is noticeably shorter, a l l Analyzer ' s parts
load wi th in a few seconds. Another improvement is filter usage. Despite "Fi rs t result"
appears i n almost same time as before, the t ime period before filtering is completely done
was reduced to one fourth.

First Results - Filter

Filter Usage

First Results

Analyser Load

3.C1B
1 5.722

2.216
3.044

1 5.634

9.B52

11.324

13.66

0 5 10

• issue-3 issue-2 •issue-! Time [s]

| 17.246

15 20

Figure 7.2: Statist ic from the point of view of a user

First Results-Filter
0.24
0.294

• 2.37S

3.698
Fiter Usage | 6.703

1 1' .5531

6.099
First Results 1 9.712

1 20.664

Analyser Load 1 17.992
1 41.2651

C 10 20 30 40 50

issue-3 • issued aissue-1 Time saved [s]

Figure 7.3: T i m e saved using opt imizat ion

40

7.3 Optimization of Finding Operations

This type of opt imizat ion is mainly focused on data loading invoked by a user. It includes
for example issue filtering and changing result view. A l l actions, including non-t r ivia l op
erations wi th findings, are processed in back-end. A l though this approach produces correct
results i n acceptable time, it is not sufficient solution for showing many findings and doing
operations wi th them. A l l operations are impacted by number of findings, which are loaded,
so the general effectivity decreases. Because of this problem, the goal of this opt imizat ion
is to discuss finding loading possibilities and rework current solution to improve usabil i ty
of the Ana lyzer interface.

The problem might be solved by loading group of findings at the beginning and keeping
them to be able to access data direct ly from front-end without using A P I and data caching
in back-end. It is important to ensure that this approach does not negatively impact the
U I , so it should keep as smal l amount of data as possible. Es t imated appropriate data size
is one SonarQube response, so up to 500 findings i n total . The U I operations and filters are
reworked to manipulate only wi th cached data, without using plugin A P I . Th is approach is
able to load 500 findings i n several seconds and then to operate wi th them wi th negligible
t ime cost. The efficiency of operations wi th issues that contain less than 500 findings is
highly increased.

This opt imizat ion creates a new problem that needs to be solved. Issues wi th more than
500 findings always show the most serious findings, but there also needs to be a possibil i ty
of showing less important findings of severity minor or info. Pa r t i a l solution is comparing
number of loaded findings wi th the number i n statistic. Th is approach works well when
searching for findings of specific severity or type. W h e n a user filters issue property, the A n
alyzer looks into cache and searches for a l l appropriate findings and compares the number
of results w i t h the number of findings i n statistic. If the counts match, results can be
displayed, otherwise the Ana lyzer calls plugin A P I to gain required missing data (Figure
7.4). More complicated si tuation is when a user searches for a combination of severities
and types. Its harder to decide whether the results are complete, so the Ana lyzer needs to
calculate a prediction based on statistic and verify result completeness.

Initial status:

ISSUE STATISTIC:
All: 550
Bug: 300

Vulnerability: 150
Code Smell: 100

CACHE CONTENT:
All: 500

Bugi: 300
Vulnerability: 150

Code Smell: 50

• User actions

] Analyser actions

Scenario 1:

Load 40 Code
Smells

Cache contains
50 -> Load 40

from cache

Scenario 2:
t -\

Load 60 Code
Cache contains
50-> Call plugin
API to get more

API returns 100 Add 50 absent >
Cache contains
100 > Load 60

from cache Smells
•J

Cache contains
50-> Call plugin
API to get more Code Smells issues to cache

Cache contains
100 > Load 60

from cache

Figure 7.4: Analyzer ' s issue loading actions

41

Improvement

This opt imizat ion helped to minimize t ime cost of result filtering. Compared to the statistic
after implementat ion (Figure 6.2) and also the opt imized version (Figure 7.3), this opti
mizat ion helped to make whole interface more appropriate for common usage. The time
cost of managing results was reduced to negligible value. Figure 7.5 shows saved time after
the filtering opt imizat ion, chart shows plugin statistic w i th both optimizations, including
opt imizat ion of statistic calculat ion from previous section, compared to the first version of
plugin.

Before the opt imizat ion, it took up to 10 second to filter smal l issues, filtering of com
plex issues could last up to 25 seconds. Opt imiza t ion based on test results decreased the
durat ion to 2 seconds for smal l issues and around 6 seconds for large issues. Despite this
t ime cost is acceptable, caching of findings reduced the t ime cost to less than 1 second for
al l issues wi th less than 500 findings.

F i t e r Usage

First Results

Analyser Load

1 6.099
9.712

24.1E71

20.664

11.973
17.992

0 10 10 30

• issue-3 • issue-2 issje-1 Time saved [s]

41.2651

40 50

Figure 7.5: Improvement from the point of view of a user

7.4 Future Work

There are many possibilities of plugin improvement and expanding its functionality. This
section is focused on the concept of a new feature that enlarges plugin u t i l iza t ion integrat
ing function that provides overview about J i r a project version. The feature analyzes a l l
issues that are connected wi th part icular project version, visualizes the results and provides
detailed statistic.

The Version Ana lyzer uses Issue Analyzer , that was described i n previous chapters. A t
first it loads a l l versions that are connected wi th specific J i r a project. W h e n a user selects
a version and starts analysis, the Version Ana lyzer finds a l l J i r a issues that are connected
wi th required version. Because the version is usually associated wi th many issues, it is
convenient to use threads i n order to analyze as many issues at the same time as possible.
The result is calculated using shared cache that collects results from threads that analyzed
issues.

The process of version analysis can be slowed because of many threads that are running
at the same time. The negative impact of slow calculation can be solved using contin-

42

uous result delivery. W h i l e issues are analyzed, the Version Ana lyzer periodical ly sends
request to read the cache content. It returns a l l results of threads that finished their job.
Th i s approach enables visual izat ion of the results before a l l issue analyses are completed.
The Version Analyzer ' s structure is displayed in (Figure 7.6).

Version

Thread 1

Issue 1

Thread 2 Thread 3
i , , '

Issue 2 Issue 3

Issue Analyzers

Results Results Results

Cache

R H "T Results results

V 5- a ization V ; lager

Figure 7.6: Version analysis structure

43

Chapter 8

Conclusion

The SonarQube plugin was implemented on the issue tab panel that is shown on the view
issue screen. Because of a need to configure some properties, there were also implemented
two project tab panels and one configuration section.

The main part of the plugin is the Ana lyzer that allows a user to check the results
of the source code analysis, which are connected w i t h the specific issue, directly in J i ra .
The Ana lyzer consists of three main parts: quali ty summary, issue statistic, and part icular
findings. The Ana lyzer provides a l l data that are considered as essential to fix the finding.
Whole user interface is interactive, it contains tool tips to navigate user through the interface
options.

A project leader can modify project settings and also set up quali ty requirements that
are used to evaluate general issue quality. P l u g i n contains specific sections for this purpose.
The settings are project specific, so they are applied to a l l issues from a part icular project.

The plugin was tested wi th three types of software testing: unit tests, performance tests,
and manual tests. Tests revealed some minor bugs, that are connected wi th the reaction
on unexpected error status of tools, and showed efficiency leaks, which are caused by one
specific part of the Analyzer . The bugs were fixed to meet the requirements of appropriate
reaction to error states. The efficiency leaks were discussed and the solution was proposed.

The new solution completely changes the approach to statistic loading and filtering of
findings. These changes d id perceptible step to improve general efficiency of the Analyzer .
The loading t ime was noticeably reduced and operations wi th analysis results became more
user-friendly. In a l l cases it appears to be more profitable to do more operations locally
w i th large data and use cache instead of creating many R E S T calls to get required data
directly. A l t h o u g h the solution returns stisfactory results i n acceptable time, there are
several aspects that are important to keep the Ana lyzer running properly:

• Hav ing specific issues,

• having periodical analyses,

• using conventions in commit messages.

44

Bibliography

[1] At lass ian: Ac t ive Objects. December 2017. [Online; visi ted 19.3.2018].
Retrieved from: https:
/ / developer.atlassian.com/server/ framework/atlassian-sdk/active-ob j ects/

[2] At lass ian: Condit ions. August 2017. [Online; visi ted 28.3.2018].
Retrieved from:
https: / / developer.atlassian.com/cloud/ j i r a / p l a t f orm/conditions/

[3] B i t bucket: R E S T Resources Provided B y : B i t bucket Server. [Online; visited
3.4.2018].
Retrieved from: https:
//docs.at lassian.com/bitbucket-server/rest/4.5.1/bitbucket-rest.html

[4] Chess, B . ; West, J . : Secure Programming with Static Analysis. Addison-Wesley
Professional. June 2007. I S B N 0-321-42477-8.

[5] I E E E : Guide for Developing System Requirements Specifications. ISO 1233. 1998.

[6] I E E E : Systems and software engineering - Systems and software Qual i ty
Requirements and Evalua t ion (S Q u a R E) - System and software quali ty models. ISO
25010. 2011.

[7] I E E E : D a t a elements and interchange formats — Information interchange -
Representation of dates and times — Par t 1: Basic rules. ISO 8601-1. 2016.

[8] J a n á k , J . : Issue Tracking Systems. Masaryk Univers i ty Brno . 2009.

[9] J i ra : Us ing A p p L i n k s to l ink to other applications. [Online; visi ted 26.10.2017].
Retrieved from: h t t p s : / / c o n f l u e n c e . a t l a s s i a n.com / a d m i n j i r a s e r v e r 0 7 1 / u s i n g -
a p p l i n k s - t o - l i n k-to - o t h e r - a p p l i c a t i o n s-802592232.html

[10] J i ra : W h a t is a Project. [Online; visi ted 26.10.2017].
Retrieved from: h t t p s :
/ / confluence.atlassian.com/jira064/what-is-a-project-720416135.html

[11] J i ra : W h a t is an Issue. [Online; visi ted 26.10.2017].
Retrieved from:
https: //confluence.at lassian.com/jira064/what-is-an-issue-720416138.html

[12] Kohler , S.: Atlassian Confluence 5 Essentials. Packt Publ i sh ing . June 2013. I S B N
978-1849689526.

45

http://developer.atlassian.com/
http://developer.atlassian.com/
http://lassian.com/bitbucket-
http://confluence.atlassian.com/adminjiraserver071/using-
http://confluence.atlassian.com/jira064/what-is-a-project-720416135.html
http://lassian.com/jira064/what-

[13] Meyer, D . : 8 steps to a definition of done i n J i r a . October 2013. [Online; visited
26.10.2017].
Retrieved from: h t t p s : / / w w w . a t l a s s i a n . c o m / b l o g / j i r a - s o f t w a r e / 8 - s t e p s - t o - a -
d e f i n i t i o n - o f - d o n e - i n - j i r a

[14] Oracle: Interface Lock . [Online; visi ted 28.3.2018].
Retrieved from: h t t p s :
/ / d o c s . o r a c l e . c o m / j a v a s e / 7 / d o c s / a p i / j a v a / u t i l / c o n c u r r e n t / l o c k s / L o c k . h t m l

[15] Petovsky, S.: Continuous Integration and Code Quality Enhancements. Masaryk
Univers i ty Brno . 2015.

[16] SonarQube: Code Quali ty. [Online; visi ted 17.12.2017].
Retrieved from: h t t p s : / / w w w . s o n a r s o u r c e . c o m / w h y - u s / c o d e - q u a l i t y /

[17] SonarQube: Web A P I . [Online; visi ted 3.4.2018].
Retrieved from: h t t p s : / / n e x t . s o n a r q u b e . c o m / s o n a r q u b e / w e b _ a p i

[18] SonarQube: Issue Lifecycle. A p r i l 2016. [Online; visi ted 25.10.2017].
Retrieved from: h t t p s : / / docs . sona rqube .o rg /d i sp l ay/SONAR / I s sue+Li f e c y c l e

[19] SonarQube: Met r i c Definitions. January 2018. [Online; visi ted 3.4.2018].
Retrieved from:
h t t p s : / / docs . sonarqube .org /d isp lay/SONAR /Metr ic+Def i n i t i o n s

[20] SonarQube: Qua l i ty Gates. January 2018. [Online; visi ted 3.4.2018].
Retrieved from: h t t p s : / / docs . sonarqube .o rg /d i sp lay/SONAR /Qua l i ty+Gates

[21] SonarQube: Qua l i ty Profiles. M a r c h 2018. [Online; visi ted 3.4.2018].
Retrieved from: h t t p s : / / docs . sona rqube .o rg /d i sp l ay/SONAR /Qua l i t y+Pro f i l e s

[22] Wi l l i ams , R . : The Non-Designer's Type Book. Peachpit Press, second edition.
October 2005. I S B N 0-321-19385-7.

46

http://www.atlassian.com/blog/jira-sof
http://www.sonarsource.com/why-us/code-quality/
https://next.sonarqube.com/sonarqube/web_api
http://docs.sonarqube.org/
http://docs.sonarqube.org/

Appendix A

Mockups

Figure A . 2 shows complete mockup of the first plugin version that was defined i n Section
4.2.2. T h i s mockup has separated messages for quali ty results and data status. Fi l ters are
also separated from the other parts of the panel. This structure was considered to be too
complicated and unconnected, what causes negative impression. Figure A . l displays latest
mockup that was designed. It differs i n many aspects, for example messages are represented
by labels, filters are completely hidden and replaced by the configuration icon, and findings
contain direct l ink that is also reachable by cl icking on the l ink icon.

Issue code quality: PASSED Data status: UP TO DATE Refresh 1

S u m m a r y | Types Severities

168 23 35 50 42 18
All Blocker Critical Major Minor Info

Unresolved Findings O®
Type : I Patři: J. Seve r i t y : J.

> Bug Filepath BLOCKER C-3

T Vulnerability Filepath MAJOR GO
Link:sonarqube.hon ey w ell. co m/issu e#13241
Message: Either log or rethrow this exception.
Ass ignee : Ingmar
Created: 9/21/2017 at 18:19 GMT
Line: 1?

11 by{
12.. do5tuff<):
13. J catch (Exception e) { }

Code Smell Filepath MAJOR C-D

Bug Filepath MINOR C-D

Figure A . l : F i n a l mockup of the plugin

47

><] Issue quality gate
You didnt pass quality requirements. You need to fix :

- A l l bugs
- A l l blacker and critical vulnerabilities

(\?) Both commits and analyses are actual [Refresh ~|

Summary Severities

168 23 35 50 42 18
All Blocker Critical Major Minor Info

Filters

Appl ied filters are:
Types: Bug. Vulnerability. Code Smell
Severities: Blocker, Critical, Major
Ass ignees : Al l , Me

Type Severity Assignee
Code smell Q Blocker 0 Al l 0

Vulnerability \T Critical 0 Me (v)

Bug 0 Major [--J

Minor

Info Q

[Apply] Hide filters

Findings

T y p e : Path : Sever i t y :

• Bug Filepath BLOCKER

T Vulnerability Filepath MAJOR

Message: Either log or rethrow this exception.
Ass ignee : Ingmar
Created: M21/2017 at 13:19 GMT
Line: 1?

11. by{
12.. do5tuff{):
13. } catch [Exception e) { }

Code Smell Filepath MAJOR

Eue. Filepath MINOR

Figure A . 2 : Complete mockup of applicat ion design

18

Appendix B

Final Application

The final plugin (Figure B . l) was designed according to proposed and approved M o c k u p
A . l . Issue code quali ty details are showed i n Figure B .2 . They are calculated according
to the project rules. The label color, that is actually red, is changeable according to
the results. D a t a status (Figure B.3) is represented i n s imilar way as the quali ty results.
B o t h messages appear on hover over the colored label.

Issut ccc« auahtv: ITTB Data status |]JJJ7|J23

S u m m a r y : By Severities -

7 0 2 4 1 0
All Blocker Critical Major Minor Info

U n r e s o l v e d F i n d i n g s 0

Severity n File A Type A

> Major co ntou rp roj ectitem spi eke r. j s BUG

> Critical issue-descendantsjs CODE SMELL <9
> Critical •ootstrapjistenerjs CODE SMELL &
> Major co ntou rp roj ectitem spi che r. j s CODE SMELL <P
* Major co ritou rp roj ectitem spi che r.j s CODE SMELL 6>

Link: h ttps ://so n a rq U be .hon eywell.com/issu es/search#is5ues=AV4_nfV9SK_lY-sYPicb

Message : Extract the assignment of "firstOption" from this expression.

Ass ignee

Created 2017/09/01 at 10:41:38 G M T

Line: 418

417 } el3e {
416 i = 0 £t (f i r 3 t 0 p t i o n = AJS . S (htmlg [A] .textContent)) ;
419 htmlToReturn += htmLs[i].textContent;

> Major coritoLirprojectiternspicter.js I CODE SMELL I

> Minor issue-descendantsjs | CODE SMELL~| &

Figure B . l : F i n a l version of the plugin

49

Fail

Issue code quality: I7TT1 l s s l j e doesn't pass following requirements:

1. Severities: Blocker Critical. Major. Minor. Info & Types: Bug, Vulnerability, Code Smell has limit 0 but found 7

Figure B .2 : Qua l i ty details.

Data status: m j | m j ^ 3 All commits connected with this issue have been analysed.

Figure B .3 : D a t a status details

F ind ing filters are completely hidden as default. Who le section was replaced wi th
the configuration icon. W h e n a user clicks on this icon, it shows filter options (Figure B.4) .
Selection activates the new icon that removes selection and displays a l l findings again.

Severities

0 Blocker

0 Critical

Unresolved Findings <* S M a) o r

0 Minor
0 Info

Set Filter Options

Figure B.4 : F i l t e r ing options

The section that contains summary by severities or type is set to "Severities" as default.
Switching the view to "Types" displays statistic that is shown i n Figure B .5 .

Summary: By Types -

7 1 0 6
All Bug Vulnerability C o d e Smell

Figure B . 5 : Statist ic by types of findings

Types Assignee

0 Bug ® All

0 Vulnerability J Me

0 Code Smell

50

Appendix C

Installation

This appendix section contains instructions for the plugin installat ion.

Prerequisites

The SonarQube plugin requires following tools to be able to do analyses appropriately:

• J i r a version 7.3,

• SonarQube version 5.6 or higher,

• Uni ty ,

• B i t bucket version 4.14 or higher,

• SonarQube integration plugin J A R file.

Installation Steps

• G o to the J i r a in the browser.

• L o g in as a J i r a administrator.

• Navigate to the "Manage add-ons" section.

• C l i ck on the "Upload add-on" l ink.

• C l i ck on the "Choose F i l e " but ton, select the SonarQube plugin J A R file, and upload
the file.

51

Appendix D

C D Content

The attached C D contains following content:

• The text of this thesis in P D F BT_xjanco06,

• Compi led plugin as the J A R file sonarqube-integration-plugin,

• README file,

• plugin folder contains plugin implementation and unit tests,

• reports folder contains test reports,

• doc folder contains source code documentation,

• text folder contains D T ^ X source files.

52

