
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O UN IVERS I TY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

F A C U L T Y O F INFORMAT ION T E C H N O L O G Y

D E P A R T M E N T O F INFORMAT ION S Y S T E M S

MODELLING NEW NETWORK ARCHITECTURES IN
OMNET++

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE TOMÁŠ HYKEL
AUTHOR

B R N O 2015

VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

F A C U L T Y O F INFORMAT ION T E C H N O L O G Y

D E P A R T M E N T O F INFORMAT ION S Y S T E M S

MODELOVANÍ NOVÝCH SÍTOVÝCH ARCHITEKTUR
V OMNET++
MODELLING NEW NETWORK ARCHITECTURES IN OMNET++

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE TOMÁŠ HYKEL
AUTHOR

VEDOUCÍ PRÁCE Ing. MARCEL MAREK
SUPERVISOR

B R N O 2015

Abstrakt
V t é t o p rác i jsou p o p s á n y principy a stav implementace v y b r a n ý c h nových síťových ar
chitektur. Dá le je d o k u m e n t o v á n a implementace modulu Relaying and Mul t i p l ex ing Task
síťové architektury Recursive InterNetwork Archi tecture (R I N A) pro s imulačn í framework
O M N e T + + . Cí lem p r á c e je dop lněn í funkcionality j iž existující s imulačn í knihovny pro
zaj iš tění p l n o h o d n o t n é h o mode lován í sítí R I N A .

Abstract
This thesis describes principles and state of implementat ion of selected new network archi
tectures. It also documents implementat ion of the Relaying and Mul t i p l ex ing Task module
of one of the presented architectures, Recursive InterNetwork Archi tecture (R I N A) , for the
O M N e T + + simulation framework. The main goal of this thesis is to extend functionality of
an existing simulat ion l ibrary to provide a full-fledged means for modell ing R I N A networks.

Klíčová slova
O M N e T + + , R I N A , poč í t ačové sí tě , síťové architektury

Keywords
O M N e T + + , R I N A , computer networks, network architectures

Citace
T o m á š Hyke l : Mode l l ing New Network Architectures i n O M N e T + + , b a k a l á ř s k á p ráce ,
Brno , F I T V U T v B r n ě , 2015

Modell ing New Network Architectures in O M N e T + +

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s á m pod v e d e n í m Ing. Marce la
M a r k a .

T o m á š Hyke l
M a y 20, 2015

Poděkování
R á d bych poděkova l svému vedouc ímu Ing. Marce lov i M a r k o v i za p o d n ě t n é rady b ě h e m
tvorby p r á c e a p o s k y t n u t í možnos t i pod í l e t se na z a j í m a v é m projektu.

© T o m á š Hyke l , 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Goals 3
1.2 Thesis Structure 3

2 Problems of T h e Current Internet 5
2.1 Incomplete Na ming Scheme 6
2.2 Lack of M u l t i h o m i n g 7
2.3 Lack of M o b i l i t y 7
2.4 Lack of Security Mechanisms 8
2.5 Rou t ing Table Size G r o w t h 8

3 Alternative Network Architectures 10
3.1 Design Approaches 10
3.2 Named D a t a Networking 10

3.2.1 Premise 10
3.2.2 Concepts 11
3.2.3 Current State of Implementation 12

3.3 M o b i l i t y F i r s t 13
3.3.1 Premise 13
3.3.2 Concepts 13
3.3.3 Current State of Implementation 14

3.4 eXpressive Internet Architecture 14
3.4.1 Premise 14
3.4.2 Concepts 14
3.4.3 Current State of Implementation 15

3.5 Recursive Inter Net work Architecture 15
3.5.1 Premise 16
3.5.2 Concepts 16
3.5.3 Current State of Implementation 19

3.6 Eva lua t ion 20
3.6.1 Named D a t a Networking 20
3.6.2 M o b i l i t y F i r s t 20
3.6.3 eXpressive Internet Archi tecture 20
3.6.4 Recursive InterNetwork Archi tecture 20

1

4 Forwarding In R I N A 22
4.1 Dis t inc t ion of Forwarding A n d Rou t ing 22
4.2 Relaying and Mul t i p l ex ing Task 22

4.2.1 Formal description 22
4.2.2 Policies 24

5 Implementation of Relaying and Mult ip lex ing Task 25
5.1 O M N e T + + 25
5.2 R I N A S i m 25
5.3 Implementation Design 25

5.3.1 Modu le Structure 26
5.3.2 Modu le Parameters 27
5.3.3 Modu le Workflow 27
5.3.4 Modu le Management 29
5.3.5 Statistics Col lec t ion 30

5.4 Sample policy implementations 31

6 Testing and Evaluat ion 32
6.1 Basic Mul t i p l ex ing 32

6.1.1 Topology 32
6.1.2 Scenario 33
6.1.3 Simulat ion 33
6.1.4 Eva lua t ion 34

6.2 Basic Relaying 34
6.2.1 Topology 35
6.2.2 Scenario 35
6.2.3 Simulat ion 35
6.2.4 Eva lua t ion 36

6.3 Advanced examples 36

7 Conclusion 37
7.1 O w n Contr ibut ions 37

7.2 Future Development 38

A C D Contents 41

B Class D iagram 42

2

Chapter 1

Introduction

Today's field of computer networking and its research is heavily centered around the un
derlying architecture of the Internet and its protocol suite, which is known as T C P / I P
for its two most prominent protocols Transmission Con t ro l P ro toco l (T C P) and Internet
Pro toco l (IP) . W h i l e T C P / I P remains i n use for several decades and seems to work as
intended, there has been a growing trend in the research community of introducing new
network architectures. Th is thesis aims to analyze several examples of such architectures
and contribute to implementat ion of one of them.

Network simulat ion is an ideal approach for examining new network architectures since
it provides a quick and efficient way of setting up test scenarios and observing al l aspects
of their behavior. The discrete event network simulat ion framework O M N e T + H - 1 has been
chosen as the target implementat ion platform.

1.1 Goals

The theoretical part of this thesis aims to describe some alternatives to the currently preva
lent network architectures. Since the Internet is by far the largest and most important
example of an internetwork, its underlying architecture shall be used as a base for com
parison. This is only fitting since nearly a l l of the recent network architecture research is
directed towards improving Internet's technology stack. Descr ipt ion of each architecture
includes information about prototyping efforts, bo th i n real-life platforms and i n the field
of network simulation.

The technical report describes design and implementation of a component of one of the
presented architectures, Recursive Inter Network Archi tecture (R I N A) , for the O M N e T + +
framework.

1.2 Thesis Structure

Chapter 2 describes the shortcomings and weak parts of current Internet technology which
create the need for alternative architecture research. Th is overview serves in the next
chapter as a reference point for evaluating contributions of alternative architectures.

Chapter 3 provides a brief analysis and evaluation of several new network architectures.
It also documents their prototyping efforts, bo th in real settings and in simulation.

xhttp: / / www.omnetpp.org

3

http://www.omnetpp.org

Chapter 4 takes a closer look at parts of R I N A that are related to the implementat ion

task of this thesis.

Chapter 5 describes implementat ion of R I N A ' s Relaying and Mul t i p l ex ing Task for

O M N e T + + .

Chapter 6 presents evaluation of the implementat ion i n form of sample test scenarios

and their outputs.

4

Chapter 2

Problems of The Current Internet

The Internet could be considered one of the most important technological achievements
of the 20th century. It has brought a previously unimaginable degree of interconnection
and information access to the whole world and its importance s t i l l keeps growing decades
after its inception. Nevertheless, the very basic core of its technology was constructed
over three decades ago i n the era of first smal l experimental networks such as A R P A N E T
and C Y C L A D E S [], when the the demands on internetworking capabilities were nowhere
compared to now.

Dur ing the Internet's growth, whenever there was a problem that required a solution,
it has been usually dealt w i th i n a non-intrusive evolutionary fashion by applying a new
principle on top of the underlying technology. In another words, problems have been mostly
solved by adding a new protocol to the T C P / I P protocol stack.

The Internet's evolution can be presented on E v o A r c h [], an abstract model for s tudying
protocol stacks and their evolution. The model suggests that the Internet protocol stack
resembles an hourglass (see Figure 2.1). W h i l e the top and down layers are often expanded
wi th new protocols, the usage of the internet layer's I P protocol remains constant because
it acts as a common technology for a l l different networks interconnected by the Internet.

•

Thunderb i rd Fi re Fox curl bind MPIayer

IMAP HTTP DNS RTP

N t f
TCP UDP

ip

>

ppp Ethernet 802.11 DOCSIS

Twisted pair Optical f iber
•

Coaxia l cable CDMA TDMA

Figure 2.1: Internet's "hourglass architecture".

The evolutionary approach to improving the Internet's base technology is convenient
since each paradigm shift i n foundations of the Internet (i.e. replacing the "thin waist" of
the hourglass) can require a long and expensive transfer of existing network configurations

5

to the new technology. The most notable example is the internet layer protocol IPv6 which
requires explicit firmware support from active network components. The problem of IPv4
space exhaustion has been known of since the first half of 1990s [8] and the first formal
IPv6 specification arose i n 1998 [7], but yet, as of A p r i l 2015, four years after the top-level
IPv4 pool exhaustion [], IPv6 s t i l l represents only a miniscule fraction of the to ta l traffic
on the Internet. For example, Google IPv6 adoption statistics indicate around 6% coverage
amongst the users of its services [12].

A s such, some of the Internet's widely recognized problems are inherent because of the
base design and it is usually difficult, i f not impossible, to solve them i n a non-intrusive
and backward-compatible way. The following sections illustrate such problems.

2.1 Incomplete Naming Scheme
In 1982, Jerome Saltzer in his work " O n the N am ing and B i n d i n g of Network Destina
tions" [17] described the entities and the relationships that make a complete naming and
addressing schema in networks. Accord ing to Saltzer, there are four elements that need to
be identified: applications, nodes, points of attachment to the network (PoAs) and paths.
The relationships between them are i l lustrated i n Figure 2.2. A t the t ime, network archi
tectures such as C Y C L A D E S , X N S , D E C N E T and O S I conformed to this scheme [19].

Point of
(N-l) Attachment

Address

Directory

Route

Figure 2.2: Jerome Saltzer's view of computer networking.

T C P / I P does not follow this proposal: the layer for node naming is completely missing.
W h i l e T C P / I P does work wi th two distinct layers w i th their own address scopes - the l ink
layer w i th physical addresses and the internet layer w i th IP addresses - bo th effectively
identify the same: a host interface, i.e. a P o A address. Th is effectively means that the
IP addressing is semantically overloaded to represent both identity and location. The need
for an explicit identifier—^locator mapping was eventually recognized s t i l l i n the era of
A R P A N E T and this was solved by creating a globally available file HOSTS. TXT containing
mappings of alphabetic host names to IP addresses. Later on, this method was obsoleted
by the Doma in Name System (D N S) . However, bo th approaches move the matter of node
naming into the application layer, forcing applications to work wi th location-dependent
interface P o A addresses.

The fact that the Internet forwarding is location-based instead of identity-based has a
great impact on difficulty of mu l t i homing 1 (section 2.2) and mobi l i ty (section 2.3).

1Multihoming refers to a computer or device connected to more than one computer network. Such
computer or device generally needs a separate interface for each network.

6

2.2 Lack of Multihoming

Since IP addresses serve as points of attachment (i.e. they identify network interfaces)
and routing is done exclusively on the internet layer, there is not any inherent mechanism
for dist inguishing whether mult iple IP addresses identify a common node. Thus, i n effect,
mul t ihoming on I P alone is not feasible.

The insufficient base for mul t ihoming support is one of the oldest recognized problems
of the Internet: it became apparent back i n 1972, when Tinker A i r Force Base joined
A R P A N E T and voiced a request for redundant connections to a single node to ensure
rel iabil i ty [6]. In spite of this, the switch to a new protocol suite that happened 11 years
later (on 1.1.1983, the "flag day") d id not br ing any solution to this problem.

Since then, some attemps were made to implement mul t ihoming on top of the current
architecture.

• S C T P . Message-oriented transport protocol Stream Cont ro l Transmission Pro toco l
(S C T P) [18] provides a par t ia l support: two S C T P hosts are able to provide each other
w i t h lists of fallback I P addresses that may be used i n case of the pr imary address
going offline. However, thus far, mult iple reasons have been preventing S C T P from
becoming a widely known and used solution; the most notable disadvantage lies in the
fact that due to T C P / I P not recognizing a distinct session layer on top of its transport
layer (such as i n I S O / O S I stack), the transport protocol has to be expl ic i t ly specified
by the applicat ion using the B S D sockets App l i ca t i on Programming Interface (A P I) .
Therefore, S C T P adoption would require a rewrite of network-aware applications
themselves. Other S C T P adoption issues include unsatisfactory operating system
support (Microsoft Windows systems require a third-party kernel driver) and weak
awareness of its existence outside the networking community.

• B G P Mul t ihoming . Another implementat ion of mul t ihoming capabilities can be
seen in Border Gateway Pro toco l (B G P) [16], which provides a means for load-
balancing and fallback over mult iple l inks on T l networks. To make use of such
mul t ihoming over the Internet, a public I P address range and an Autonomous Sys
tem number are required. B G P M u l t i h o m i n g is one of the most significant causes
contr ibuting to the growth of the global Internet routing table.

• M u l t i p a t h T C P . The most recent T C P / I P mul t ihoming ini t iat ive is the T C P exten
sion M u l t i p a t h T C P (M P T C P) which is currently i n its experimental phase, although
a large scale commercial deployment has been already made by A p p l e for its S i r i net
work application in mobile operating system i O S 7 [11].

2.3 Lack of Mobility

Since nodes are identified solely by IP addresses of their interfaces (i.e. points of attachment
to the network), mobi l i ty is essentialy non-existent.

There have been three distinct approaches to solving the mobi l i ty problem [20].

• Mobi l i ty by indirection. A fixed host or device is dedicated for keeping track of
mobile devices and forwarding traffic to them. This leads to path inflation. This
approach is used by technologies such as Mob i l e IP or Locator/Identif ier Separation
Pro toco l (L I S P) .

7

• Global name resolution. The endpoint identifier is resolved to its network location
by looking up a logically centralized service. Th is approach is used by technologies
such as eXpressive Internet Archi tecture (described i n Section 3.4) or M o b i l i t y F i r s t
(described i n Section 3.3).

• Name-based routing. The network locator is not used at a l l and routing is done
on names. Th is approach is used by technologies such as Named D a t a Networking
(described i n Section 3.2).

The second and th i rd approaches require a clean-slate architectural design.

2.4 Lack of Security Mechanisms

The specifications of the fundamental protocols of T C P / I P stack - IP , T C P and D H C P -
were originally completed at the beginning of 1980s. The Internet has since then turned
into a massive world-wide internetwork connecting people of different types and agendas.
Natural ly, once the Internet began to be used for transferring sensitive data (especially
by companies), cyber crime started to emerge as well and some attention was turned to
security aspects of Internet protocol (or lack thereof).

A s the IP protocol lacks any inherent verification mechanism, the internet layer is easily
subjected to hijacking and spoofing. Th is provides opportuni ty for many types of exploits,
most notably the Man-in- the-middle attack or I P address spoofing [].

Since security is not enforced by the architecture in any way, it is s t i l l common even for
the applicat ion layer w i th its plethora of protocols to be subjected to security problems.
Protocols like T C P are s t i l l widely i n use and remain vulnerable to attacks such as T C P
sequence prediction attack []. Today, application protocol security is usually achieved by
"wrapping" protocols into other cryptographical protocols such as Transport Layer Security
(T L S) or Datagram Transport Layer Security (D T L S) .

2.5 Routing Table Size Growth

Default-free zone (D F Z) is the collection of a l l Internet autonomous systems (ASs) that do
not require a default route to forward a packet to any destination. Since they comprise the
root of Internet's routing infrastructure, their database must be complete.

W i t h the increasing number of hosts connected to the Internet, the D F Z rout ing table
sizes grow as well (see Figure 2.3).

8

800000

600000 -

0 C — 1 1 1 1 1 — ^ — 1 1 L ^ — ^ 1 1 1 1 1 ' '
94 95 96 97 93 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14

Date

Figure 2.3: G l o b a l Internet routing table size growth [5].

W h i l e the exponential growth observed during the 1990s was later mit igated by mass
deployment of Classless Inter-Domain Rou t ing (C I D R) and B G P route aggregation, the
number of items is s t i l l increasing superlinearly and the high-end router hardware needs to
keep up, especially w i th the increasing use of B G P - b a s e d mul t ihoming and IPv6 . This can
sometimes lead to scalabili ty problems, as i n August of 2014, when reaching the 512k entry
l imi t of mult iple routers caused globally observable outages [22].

A s of A p r i l 2015, the Internet routing table consists of over 560k entries []. There
are concerns about whether the technology of high-end routers w i l l keep scaling along wi th
Moore 's law to keep route management efficient [14].

9

Chapter 3

Alternative Network Architectures

This chapter provides descriptions of several new network architectures.
Due to a l imi ted scope of this thesis, the chapter describes and evaluates only a small

representative subset of new architectures. The subset consists of projects funded by the
Future Internet Archi tecture - Next Phase program [9] (Named D a t a Networking [23]
[Section 3.2], M o b i l i t y F i r s t [] [Section 3.3] and eXpressive Internet Archi tecture [15]
[Section 3.4]) and the Recursive InterNetwork Archi tecture [6] (3.5).

Special attention w i l l be given to Recursive InterNetwork Archi tecture as one of its
components is the implementat ion goal of this thesis.

3.1 Design Approaches

The networking research community has exhibited many attempts of moving the field for
ward. The undertaken research directions are often classified into one of two groups:

• Evolut ionary design. Backward-compatible solutions that are incrementally de-
ployable on top of the current Internet (e.g. L I S P or DiffServ).

• Clean slate design. Complete ly new standalone architectures that are not con
strained by Internet technology's l imitat ions.

Considering the scope of this thesis, the focus w i l l be given exclusively to "clean-slate
design" architectures.

3.2 Named Data Networking

Named D a t a Networking is one instance of a more general research direction called Information-
centric networking (ICN) [10]. I C N explores the possibilities of moving the Internet infras
tructure away from its host-centric communicat ion paradigm towards the idea of named
content.

3.2.1 P r e m i s e

Dur ing its early years, A R P A N E T was heavily influenced by telecommunication technol
ogy as the P u b l i c switched telephone network (P S T N) was the only example a large-scale

10

network. Due to this, technology of the Internet has been buil t on the paradigm of end-
to-end communicat ion based on network addresses. However, while this base paradigm has
remained constant over the decades, the way we use the Internet has considerably changed:
the Internet is now used pr imar i ly as a content d is t r ibut ion network. Since the mechanism
of data retrieval over the Internet is based on creating end-to-end communicat ion channels
and transferring data through them, the content itself is transparent to the network and
this generates an enormous amount of data redundancy.

Named D a t a Networking proposes a solution more fitting for today's needs: instead of
working wi th the source/destination addresses, the "thin waist" of the Internet should be
based on working wi th names of data chunks (as i l lustrated by Figure 3.1).

Figure 3.1: " T h i n waists" of the current Internet and N D N .

3.2.2 C o n c e p t s

T h e Bui ld ing Blocks

The N D N architecture specifies:

• two types of packets: an interest packet containing the name of desired data and a
data packet containing the requested data (shown i n Figure 3.2),

Interest packet Data packet

*s Content Name *s
r r

's Content Name 's
{ r

C Selector I
f (order preference, publisherfilter, scope,...) r

C Signature C
(digest algorithm, witness,...) r

Nonce (Signed Info I
f (publisher ID, key locator, stale time,...) f

1 Data 1

Figure 3.2: N D N packet types.

• two types of hosts: a consumer (data requester) and a producer (data provider), and

• a router maintaining three fundamental data structures:

11

— Forwarding Information Base (F IB) (forwarding table)

— Pending Interest Table (P IT) (data request management)

— Content Store (data cache)

T h e Communicat ion M o d e l

Communica t ion i n N D N is driven by the data receiver, i.e. the consumer. The steps are:

1. The consumer sends out an interest packet containing the name of the desired data.

2. W h e n a router receives the interest packet, it first consults its Content Store for
requested data.

• If the data requested by the interest packet are present, they are returned i n the

direction of the requesting interface.

• Otherwise, i t ' l l look up the P I T .

— If there's an entry present for the named data request, the entry is updated
by adding the originating interface into the list of requesting interfaces, thus
aggregating the new request together w i th an existing one.

— Otherwise, a new entry is inserted, a F I B lookup is made and the interest
packet is forwarded to interface(s) returned by the F I B .

3. A data packet is returned to the router by either the producer or another router
w i th cached data. The router finds a matching P I T entry and forwards the data to
al l interfaces listed i n the P I T entry. The P I T entry is then removed and data are
cached into the Content Store.

N a m i n g

N D N assumes data chunk names to be hierarchically structured. Consumers must be able
to deterministically construct the name for a desired piece of data without having previously
seen the name or data. Th is can be achieved by a deterministic algori thm allowing both
consumer and producer to construct the same name based on data available to both.

The management of such namespace is not defined by the architecture itself and should
be a subject of further research.

3.2.3 C u r r e n t State of I m p l e m e n t a t i o n

N D N ' s implementation efforts are open-source and available as a package called NDN Platform
1

.

The package contains a C + + l ibrary (ndn-cxx), the N D N Forwarding Daemon (NFD), client
libraries for C + + , Py thon , Java and JavaScript , N L S R routing protocol, N D N repository
and addi t ional networking tools (a ping-like application, a traffic generator and a traffic
capture tool).

ndnSIM
2

, based on ns-3
3

, is a network simulator using ndn-cxx and NFD as the archi
tecture backend. ndnSIM extends ns-3 w i th a new network-layer protocol model which
can be used atop of any available link-layer protocol, thus providing a flexible solution for
simulating various development scenarios.

xhttp: / / named-data.net / codebase / platform/
2http://ndnsim.net/2.0/
3https://www.nsnam.org/

12

http://named-data.net
http://ndnsim.net/2.0/
https://www.nsnam.org/

3.3 MobilityFirst

3.3.1 P r e m i s e

The current Internet is designed for interconnecting fixed endpoints and fails to address
dramatical ly increasing demands of mobile devices and services. M o b i l i t y F i r s t , as its name
would suggest, aims to provide a means for better mobili ty, while also introducing intrist ic
security properties and faciliating services.

3.3.2 C o n c e p t s

M o b i l i t y F i r s t is based on three basic principles: separation of locator and identifier (i.e.
node name and P o A address), intr ist ic security and global name resolution.

Locator/Identif ier Separation

Mobi l i t yF i r s t ' s " thin waist" consists of location-independent names and a global name
service for mapping them to addresses. A name is a globally unique identifier (G U I D)
that can be used to identify a variety of principals such as an interface, a node, a service,
an end-user or content. A n example of a pr inc ipal is a network address (N A) , a network
identifier resembling Internet's autonomous system.

Intristic Security

G U I D s are self-certifying, so any pr inc ipal can authenticate another pr inc ipal without re
ly ing on an external authority. Th is is achieved through bilateral challenge-response mech
anism.

e.g. P r inc ipa l X wants to verify authenticity of pr incipal Y before establishing a connec
t ion to h im.

1. X sends a random nonce n to Y

2. Y responds wi th {pubkey,privkey(nonce)}

3. i f hash(pubkey) = Y and pubkey(privkey{nonce)) = n, Y is authenticated

Name Resolution

M o b i l i t y F i r s t defines a naming service for dynamic mapping of G U I D s to network addresses
wi th real-time response latencies. Unl ike today's D N S wi th its reliance on a single root
authority (I C A N N) , the naming service is decentralized.

In addi t ion to this, a pr inc ipal can also be assigned an optional human-readable name
which is bound to its public key by a name certificate. In this case, the certificate has to
be obtained from a trusted certification authority.

The system encompassing both the name resolution service and the name certification
service is called the Global Name System (G N S) .

T h e Communicat ion M o d e l

1. To contact a G U I D , the sending endpoint queries the G N S to obtain an N A corre
sponding to a G U I D (much like it queries D N S to obtain an IP address for a domain
name).

13

2. The sending endpoint then begins sending data, using the tuple [GUID, NA] (which
is a routable destination identifier) i n packet headers.

Senders can also send a packet addressed just to a G U I D , thereby impl ic i t ly delegating
to the first-hop router the task of querying the name service for an N A .

3.3.3 C u r r e n t State of I m p l e m e n t a t i o n

The M o b i l i t y F i r s t prototype is available by request to project leaders and consists of fol
lowing components:

• msocket, an endpoint socket l ibrary extending the B S D sockets A P I .

• Auspice, a G N S implementation.

• T w o prototypes of the forwarding plane: one based on the C l i ck modular router 4 ,
other based on OpenFlow.

There is no tool available for simulation.

3.4 eXpressive Internet Architecture

3.4.1 P r e m i s e

A s presented in the previous sections, some of the future architecture research is centered
around the idea of replacing Internet's " thin waist" of end-to-end communicat ion wi th a
different pr incipal or a set of principals (e.g. N D N and its named content). eXpressive
Internet Archi tecture (X I A) takes this approach one step further and proposes a novel
principle: the "thin waist" should provide support for mult iple principals and the abil i ty
to evolve by accomodating new principals over t ime.

3.4.2 C o n c e p t s

X I A is buil t around three basic principles: evolvable th in waist (achieved by configurable
pr incipal types), intr ist ic security and flexible addressing mechanism (achieved by D A G
addressing).

Princ ipal Types

A n XIA principal is specified by the semantics of communicaton between principals of the
same type, the processing that is required to forward traffic w i th addresses of its type and a
unique XIA identifier (X I D) . The in i t i a l X I A architecture defines four basic X I A pr incipal
types:

• Host X I D (HID) . H I D s support unicast host-based communicat ion similar to I P
where the host identifier is a hash of the host's public key. H I D s define who you
communicate wi th .

• Service X I D (SID). SIDs support communicat ion w i t h (typically replicated) ser
vices and realize anycast forwarding scheme. SIDs define what entities do.

4http://www.read. cs.ucla.edu/click/click

14

http://www.read
http://cs.ucla.edu/click/click

• Content X I D (C I D) . C I D s allow hosts to retrieve content from "anywhere" i n the
network, e.g., content owners, C D N s , caches, etc. C I D s are defined as the hash of the
content, so the client can verify the correctness of the received content. C I D s define
what it is.

• Network X I D (NID) . N I D s specify a network, i.e., an autonomous domain, and
they are pr imar i ly used for scoping. They allow an entity to verify that it is commu
nicating wi th the intended network.

Apar t from the above, other basic types have been introduced and experimented wi th ,
e.g. 4IDs replicating IPv4 addresses.

Intristic Security

Security properties are included i n pr inc ipal type definitions and entity val idat ion is achieved
through use of self-certifying identifiers i n a manner similar to M o b i l i t y F i r s t (see Section
3.3.2).

D A G Address ing

Addressing in X I A is realized by using Directed A c y c l i c Graphs (D A G s) . In their simplest
form, address D A G s may be used only for specifying packet's destination ID as i n t radi t ional
network architectures (3.3a). However, in addi t ion to that, they can also contain scoping
information (e.g. target network + a service located i n the network [3.3b]) or fallback
alternatives (e.g. Network X I D to be used by forwarding when given SID is not recognized
[3.3c]).

(c) Fallback (d) Iterative Refinement

Figure 3.3: D A G - b a s e d addressing i n X I A .

3.4.3 C u r r e n t State of I m p l e m e n t a t i o n

X I A ' s prototypes are open-source and publ ic ly hosted on G i t H u b . One is a Click-based
prototype which includes the X I A protocol stack, a rout ing daemon, a nameserver and
an A P I . Another is a native L i n u x network stack implementat ion wi th attempts to port
different architectures to X I A .

There is no tool available for simulation.

3.5 Recursive InterNetwork Architecture

Recursive InterNetwork Archi tecture (R I N A) is an architecture based on a set principles
described by John Day i n his book Patterns in Network Architecture [].

15

3.5.1 P r e m i s e

R I N A introduces a new perspective on computer networking:

Computer networking is a recursively scalable set of distr ibuted
applications specialized to do inter-process communication.

3.5.2 C o n c e p t s

R I N A specifications define a r ich set of new concepts based mostly on theory of distr ibuted
computing. They are described in the following sections.

Distr ibuted Appl icat ion Facility

Distributed Application Facility (D A F) is a collection of two or more cooperating appli
cation processes i n one or more computing systems, which exchange information using
inter-process communication (IPC) and mainta in shared state.

Distr ibuted I P C Facility

Distributed IPC Facility (DIF) is a collection of two or more applicat ion processes coop
erating to provide I P C . A D I F ' s applicat ion is called an I P C process and D I F is a D A F
that does I P C . The D I F provides I P C services to application processes v i a a set of A P I
primitives that are used to init iate flow and exchange data w i th the application's peer.

Since D I F s are conceptually D A F s as well, their application processes can also exchange
information using other D I F s . Th is yields a recursive structure.

A D I F is essentially R I N A ' s equivalent of an abstraction layer. However, unlike the
t radi t ional network architectures such as the seven-layer I S O / O S I , R I N A has only one
layer which "vertically repeats". Th is also requires a different k ind of notation: instead of
using absolute layer identifiers such as Layer 2 or Layer 7, R I N A ' s D I F s are referred to in
a relative manner in relation to a specific level, e.g. (N)-DIF, (N+1)-DIF or (N-2)-DIF.

A computing system may be a member of < 0, n > D I F s and has a separate I P C process
for each D I F . Each (N) - D I F handles data coming from (N + l) - D I F s i n the same way as from
an application.

A bare m i n i m u m for a computer internetwork consists of three levels of D I F s and three
types of devices: a host, an interior router and a border router. The internetwork is shown
in Figure 3.4.

16

H c s l

Figure 3.4: A n example of a R I N A internetwork wi th 3 levels of D I F s .

A s the architecture is recursively scalable, this model can be expanded further: for
example, other D I F s can be added on top of the stack i n hosts for creating another scope
of communicat ion (e.g. for V P N - l i k e facilities).

D I F operates i n its own scope isolated from other D I F s of the same level. Therefore, D I F
maintains its own distinct namespace and configuration (such as policies related to security
and data transfer). W h e n a computing system wants to communicate w i th another system
inside a foreign D I F , it needs to go through a process of enrollment to the D I F first.

I P C Process

Each I P C process executes routing, transport, securi ty/authenticat ion and management
functions. The components of an I P C process responsible for providing these functions can
be categorized under three decoupled parts operating at separate timescales: IPC transfer,
IPC control and IPC management (see Figure 3.5). The behaviour of each part can be
configured v ia policies.

IPC IPC T D r . . „ .
- i - ü r j . I IPC Manaqement
Transfer Control J

Delimiting
Transfer

Relaying/ Muxing
PDU Protection

Applications, e.g., rout
resource allocation,
access control, etc.

Common Application
Protocol

Figure 3.5: Parts of R I N A ' s I P C process.

• I P C transfer consists of following modules:

— Delimiting. M a r k s boundaries on incoming (N + l) - S D U s .

— Error and Flow Control Protocol (E F C P) . A De l t a -T [21] based protocol
that handles ind iv idua l data flows. In general, E F C P instances exchange data
wi th each other v i a P D U s .

— Relaying and Multiplexing Task (R M T) . A stateless function that 1) re
trieves P D U s from E F C P instances and management tasks and multiplexes them

17

onto a common (N-l)- f low, and 2) takes incoming P D U s and relays them wi th in
current I P C or passes them to outgoing port(s).

• I P C control is an optional mechanism handling flow control (for example, T C P - l i k e
flow control could be implemented here v i a appropriate policies). Its functionality is
encompassed i n the E F C P module.

• I P C management handles management tasks such as routing, resource al location or
access control. It consists of following modules:

— Resource Allocator (R A) . Moni tors the resource allocation and performance
of the I P C Process and makes adjustments to its operation to keep it w i th in the
specified operational range.

— Resource Information Base daemon (RIB) . The heart of D I F manage
ment. Receives/sends management messages and notifies other submodules
about management changes.

Address ing

Since each D A F operates wi th in its own address scope, the architecture needs to provide
a means of resolving (N)-applicat ion names to addresses of (N - l) - I P C processes. Such
mappings are stored i n I P C process's Directory. Directories are managed by a decentralized
distr ibuted Name Space Manager (N S M) embedded in each D I F .

The N S M maintanence is one of the tasks of I P C management; each I P C process keeps
track of local registered applications and some of them are specialized to mainta in aggre
gated repository of non-local mapping to serve as forwarders (such processes are called
Repository IPC Processes). Th is is i l lustrated i n Figure 3.6.

N-1
Flows

[PC Processes that contain only local information: O

- IPC Processes that ate repositories for aggregate information: 0

Figure 3.6: Dis t r ibuted mapping of applications to addresses in a R I N A network.

T h e Communicat ion M o d e l

A connection between two applications i n R I N A needs to go through the in i t i a l process of
flow allocation.

W h e n an application named Appl wants to create a flow wi th other application named
App2 reachable v i a a common D I F , the Al loca te procedure proceeds as follows:

18

1. Appl requests an I P C connection to App2 w i th desired QoS requirements. Th is request
is handled by F l o w Al loca tor of the underlying I P C process w i th address IPC 1.

2. The F l o w Al loca to r validates the request. If the request is well formed and the I P C
process has enough resources to honor it , it is accepted and an E F C P instance is
created. Otherwise, an error is returned.

3. The F l o w Al loca tor asks Directory for address of the I P C Process to which App2 is
mapped. In this case, it is IPC 2.

4. The F l o w Al loca to r asks IPC l ' s Resource Al loca tor to find a suitable (N-l)-flow to
map the new flow to i t . If there is not any, R A requests an I P C connection to IPC 2.

5. The F l o w Al loca tor instructs R I B to send out an M.CREATE request to IPC 2.

6. U p o n the request receival, the IPC 2's F l o w Al loca tor delivers the Al loca te request
to App2. If App2 submits a positive response, the F low Al loca tor creates an E F C P
instance.

7. IPC 2's F l o w Al loca tor instructs R I B to send out M_CREATE_RESPONSE request back
to IPC 1.

8. IPC l ' s R I B receives the M_CREATE_RESPONSE request. If it is positive, the Allocate()
procedure is complete.

9. Appl and App2 can now use the I P C A P I to send and receive data S D U s to / f rom each
other. W h e n the communicat ion is over, bo th of them can invoke the Deallocate cal l
to release allocated resources.

Policy Separation

R I N A heavily relies on the design approach of separating mechanism and policy: parts
related to authorization of operations and allocation of resources remain constant, while
the decisions regarding how to use them are left to policies. In effect, there's only one
application protocol (C D A P) and one error and flow control protocol (E F C P) . A clear
example of the policy separation is E F C P , which is a single mechanism configurable for
both reliable and unrealiable data transfer, as opposed to T C P and U D P , which are two
distinct mechanisms.

Because of this, R I N A can serve as a platform for evaluating mult iple approaches to a
given problem just by replacing policies. A n example can be observed in R I N A ' s approach
to routing, which is a pol icy by itself, providing a platform for implementing well-known
protocols (such as those based on distance vector or link-state algorithms) as well as exper
imental new paradigms (such as hierarchical and topological routing).

3.5.3 C u r r e n t State of I m p l e m e n t a t i o n

ProtoRINA is a Boston Universi ty 's reference prototype wri t ten in Java, publ ic ly available
for download from the project's pages. IRATI Stack is an open-source attempt to port
R I N A into the L i n u x kernel network stack.

RINASim is an open-source O M N e T + + implementat ion of R I N A developed by F I T B U T
under the P R I S T I N E 5 project. It is publ ic ly hosted on G i t H u b .

5http://ict-pristine.eu

19

http://ict-pristine.eu

3.6 Evaluation

In the previous sections, I have described 4 new network architectures. Th is section puts
them into context of problems mentioned i n Chapter 2 and points out their main strengths
and weaknesses.

3.6.1 N a m e d D a t a N e t w o r k i n g

The most significant advantage of N D N is its native support for caching al l sorts of data
inside the network itself. W h i l e this should be beneficial mostly for static data such as web
pages and images, dynamic content can take advantage of this as well in case of mult icast ing
or packet retransmission on packet loss.

W i t h its named data paradigm, N D N renders the problems of node naming, mobi l i ty
and mul t ihoming irrelevant, because data names remain the same no matter the locaton.
Same case w i t h security as each data chunk is required to be cryptographical ly signed by
architecture itself.

The router table size growth presents a challenge as the N D N namespace is unbounded
and addressing of named data implies that much more identifiers need to be used for global
routing (by some estimations, the number of items it the global rout ing table might end up
even 4 orders of magnitude higher [3]).

3.6.2 M o b i l i t y F i r s t

M o b i l i t y F i r s t solves the problem of locator/identifier conflation by introducing routable
G U I D s and a service for mapping them to network addresses. Th is i n effect eliminates the
problem w i t h mul t ihoming and mobi l i ty as the traffic may be easily rerouted in case one of
the interfaces of a host becomes unavailable. The security is enforced by the architecture
due to its concept of self-certifying identifiers and bilateral challenge-response mechanism.

The concept of routing on N A s and G U I D s appears to mimic the currently used routing
on IP network prefixes and host identifiers. However, M o b i l i t y F i r s t attempts to improve
this by researching internetwork routing design based on smal l number of levels of hierarchy.

3.6.3 eXpres s ive Internet A r c h i t e c t u r e

X I A ' s answer to the locator/identifier problem (and, i n turn, the mul t ihoming/mobi l i ty
problem) are the H I D principals used to identify a node by a hash of its public key. Fur
thermore, mult iple approaches to ensuring mobi l i ty can be implemented thanks to the
flexibility of D A G addressing. Security is achieved by self-certifying principals.

The the number of pr incipal types might rise over t ime and this presents a challenge
i n regards to routing table size growth. The X I A researchers are experimenting wi th a
forwarding table scheme that should be capable of scaling to bil l ions per entries while
saturating 80 gigabytes per second [].

The novel concept of evolvable "thin waist" support ing mult iple paradigms at a time
requires a control plane capable of handling diversity and incremental deployment. This
w i l l be the main a im of further X I A research efforts.

3.6.4 R e c u r s i v e I n t e r N e t w o r k A r c h i t e c t u r e

In R I N A , the problem of mob i l i t y /mul t ihoming is solved inherently by providing a com
plete naming and addressing schema and introducing a distr ibuted service for mapping

20

application names to I P C addresses. R I N A ' s scaling by recursion promises to deliver much
greater global routing scalabili ty than the current Internet. Furthermore, the concept of
autonomous D I F s imply security by isolation.

In comparison to the other presented architectures, R I N A presents the most radical
paradigm shift by disregarding a great deal of common computer networking knowledge and
bui lding a new set of principles from the ground up. W h i l e this yields the most complete
and architecturally clean solution (all of the problems presented i n Chapter 2 are solved
inherently without a iming for them from the start), it also means that the biggest hurdle
facing adoption of R I N A might lie in unwillingness of networking community to accept its
way.

21

Chapter 4

Forwarding In RINA

This chapter takes a closer look at components of Recursive InterNetwork Architecture
that are related to the implementat ion target of this thesis. This includes a conceptual
description of the forwarding and routing principles i n R I N A and what role R M T plays in
it.

4.1 Distinction of Forwarding And Routing

Each I P C process has to solve the forwarding problem: given a set of E F C P P D U s and a
number of (N-l)-f lows leading to various destinations, to which flow(s) should each P D U
be forwarded? In R I N A , the decision is handled by the Relaying and Mul t i p l ex ing Task
and its forwarding policy. The action may consist of looking up the P D U ' s destination in
a forwarding table (resembling the forwarding mechanism i n t radi t ional T C P / I P routers),
but it is not a requirement; other experimental forwarding paradigms, such as forwarding
based on topological addressing, may not require a forwarding table at a l l .

Generating information necessary to do forwarding is one of the tasks of I P C process's
Resource Al loca tor , namely its subcomponent called P D U Forwarding Generator. For this
purpose, Resource Al loca to r generally uses pieces of information provided by other sources,
most notably the Rou t ing Policy.

The Rou t ing Po l i cy exchanges information wi th other I P C Processes in the D I F i n order
to generate a next-hop table for each P D U (usually based on the destination address and the
id of the QoS class the P D U belongs to). The next-hop table is then converted into a P D U
Forwarding Table w i t h input from the Resource Al loca tor ' s P D U Forwarding Generator,
by selecting an (N-l) - f low for each "next-hop". The Rou t ing Po l i cy may resemble distance
vector and link-state rout ing protocols used i n today's Internet, but the current research is
also aimed at other paradigms such as topological /hierarchical routing, greedy routing or
M A N E T - l i k e routing.

4.2 Relaying and Multiplexing Task

4.2.1 F o r m a l descr ip t ion

R M T has, as its name suggests, two main reponsibilities: relaying and mul t ip lexing of
P D U s . The goal of mul t ip lexing is to pass outgoing P D U s (from E F C P instances and
management tasks) to the appropriate (N-l)-f lows and pass incoming P D U s (from (N - l) -
flows) to E F C P instances and management tasks. Relaying handles incoming P D U s from

22

(N- l) -po r t s 1 that are not directed to its I P C process and forwards them to other (N - l) -
ports using information provided by its forwarding policy. A conceptual model of R M T is
presented in Figure 4.1.

PDUs from
EFCP & (N-l)-
DIF flows

Forwarding Table

& > & >

(N-l)-DIF A (N-l)-DIFB

Queues

Ports

Figure 4.1: Diagram of Relaying and Mul t i p l ex ing Task.

R M T instances i n hosts and bo t tom layers of routers usually perform only the mul t i
plexing task (Figure 4.2a), while R M T s i n top layers of interior routers (Figure 4.2b) and
border routers (Figure 4.2c) do both mul t ip lexing and relaying.

inter ior router

:
(fEFCpT) (̂ EFppT)

W RMT j ^ | RMT

border router

re lay ing and
agg regat ing

RMT

mux-on ly
RMTs

(̂ EFEPP)

RMT J RMT

a) b) c)

Figure 4.2: A simplified view of data flow direction in different types of devices.

Each (N- l) -por t handled by R M T has its own set of input and output buffers. The
number of buffers, their monitoring, their scheduling discipline and classification of traffic
into distinct buffers are a l l matter of policies.

X A handle for an (N-l)-flow, not unlike the traditional BSD socket.

23

R M T is a straightforward high-speed component. A s such, most of its management
(state configuration, forwarding pol icy input, buffer allocation, data rate regulation) is
handled by the Resource Al loca to r which makes the decisions based on observed I P C process
performance.

4.2.2 Pol ic ies

Even though the Relaying and Mul t i p l ex ing Task serves as a low-overhead component
similar to the t radi t ional view of router data plane, several policies are defined for modifying
its behavior.

• Scheduling policy. A scheduling algori thm (also commonly known as "network
scheduler algori thm" or "queueing discipline") that determines the order in which
input and output buffers are serviced. Th is policy should be invoked each t ime a
P D U needs to be taken from a queue for processing and works for both input and
output directions. Examples of possible algorithms could be F I F O , L I F O or fair
queueing.

• Moni tor ing policy. A state-keeping queue moni tor ing algori thm that is invoked
each t ime a P D U enters or leaves a queue. This pol icy should compute variables
to be used in decision process of other policies. Examples of such variables could be
average queue length or queue idle t ime, which are often used by congestion prevention
mechanisms.

• M a x Q policy. A n algori thm that is invoked each t ime the number of P D U s wait ing
in a queue exceeds the queue's threshold. Th is pol icy is used mostly for implementing
congestion avoidance mechanisms (e.g. by dropping or marking the last P D U i n a
queue).

• Forwarding policy. A n algori thm used for deciding where to forward a P D U . The
policy is given the P D U ' s Protocol Control Information (PCI) and in tu rn returns a
set of (N- l) -por ts to which the P D U has to be sent. This provides enough granularity
to implement mult iple communicat ion schemes apart from unicast (such as multicast
or load-balancing), because the decision is left to the policy. E . g . a simple forwarding
policy would return a single (N- l) -por t based on P D U ' s destination address and QoS-
id , whereas i n case of a load-spreading policy and mult iple (N- l) -por ts leading to the
same destination, the pol icy could split traffic by P D U s ' flow-ids and always return a
single (N- l) -por t from the set.

24

Chapter 5

Implementation of Relaying and
Multiplexing Task

This chapter documents the implementat ion of R I N A ' s Relaying and Mul t i p l ex ing Task for
the R I N A S i m library.

5.1 OMNeT++

O M N e T + + is an open-source discrete event simulation framework used pr imar i ly i n the
field of network simulat ion. In this context, the adjective "network" refers to the more
general meaning of the word, which means that apart from model l ing T C P / I P networks
(especially in conjecture wi th the I N E T l ibrary) , it also provides a means for model l ing other
networked systems such as on-chip networks or queuing networks. A s we are implementing
a clean-slate architecture from the ground up, this is an ideal approach.

OMNeT+-1- provides a component architecture for models. Components (simple mod
ules) are programmed in C + + , then assembled into larger components (compound models)
and interconnected using the high-level language N E D . A l l events are message-driven. In
theory, there are no scalabili ty l imits for networks modelled i n N E D and the only constraint
is given by computing platform processing power.

5.2 RINASim

R I N A S i m , developed by a networking research group at Facul ty of Information Technol
ogy of B r n o Univers i ty of Technology, is an open-source O M N e T + + l ibrary developed for
project P R I S T I N E . The purpose of the l ibrary is to provide a framework for modell ing
R I N A networks and observing their behavior. In the current stage of its development,
R I N A S i m is used pr imar i ly by other P R I S T I N E researchers to experiment w i th the archi
tecture and efficiently evaluate their working theories.

The l ibrary is open-sourced wi th the M I T licence and publ ic ly hosted on G i t H u b .

5.3 Implementation Design

In R I N A S i m , a l l functionality of R M T including a pol icy architecture is encompassed in a
single compound module named relayAndMux which is present i n every I P C process. The
module serves for (de)multiplexing, relaying and aggregating P D U s of data flows traversing

25

the I P C processes. The R I N A S i m ' s compound module for an I P C process can be seen in
Figure 5.1.

^ IP eProcess

efcp flowAllocator enrollment

Figure 5.1: R I N A S i m ' s I P C process

5.3.1 M o d u l e S t r u c t u r e

relayAndMux (an instance of compound module type RelayAndMux) consists of multiple
simple modules of various types, some of which are instantiated only dynamical ly at run
time. Types of modules start w i th a capi tal letter while instances start w i th a smal l letter.
Figure 5.2 presents state of the relayAndMux module when working w i t h two allocated
(N-l)-fiows and their queues.

S i m p l e R ^ l a / . i n t e r i o r R o u t e r . r e l a y l p c . r e l a y A n d M u x

pr. rt

Figure 5.2: Contents of relayAndMux and one of its ports.

Static modules

• rmt, the central logic of Relaying A n d Mul t i p l ex ing task that decides what should be
done wi th messages passing through the module.

• allocator, a control unit providing an A P I for adding and deleting instances of
dynamic modules (R M T Q u e u e , R M T P o r t) .

26

• schedulingPolicy, the Scheduling policy of an R M T instance.

• monitorPolicy, the Moni to r ing pol icy of an R M T instance.

• maxQueuePolicy, the M a x Q pol icy of an R M T instance.

Types of dynamic modules

• RMTPort, a representation of one endpoint of an (N-l)-f low.

• RMTQueue, a representation of either input or output queue. The number of R M T Q u e u e s
per R M T P o r t is determined by Resource Al loca to r policies.

• RMTPortWrapper, a compound module encapsulating an (N- l) -por t and its queues.

A class diagram showing implementat ion of both static and dynamic modules can be
seen in Append ix B .

5.3.2 M o d u l e P a r a m e t e r s

The R M T module contains several user-configurable parameters that can be used to alter
its behavior. These are presented in Table 5.1.

data type name function
string

string

string

string

int

int

bool

schedPolicyName

qMonitorPolicyName

maxQPolicyName

ForwardingPoli cyName

defaultMaxQLength

defaultThreshQLength

pduTracing

name of the desired Scheduling pol icy
name of the desired Moni to r ing pol icy
name of the desired M a x Q policy
name of the desired P D U Forwarding pol icy
default m a x i m u m length of instantiated queues
default threshold length of instantiated queues
a switch for turning on P D U tracefile generation

Table 5.1: R M T module parameters.

5.3.3 M o d u l e W o r k f l o w

The core function of R M T is driven by two algorithms: the decision algorithm and the
dispatcher algorithm.

The decision algori thm decides what to do wi th the incoming P D U and executes ap
propriate policies. A state diagram representation can be seen i n Figure 5.3. It is im
plemented by RMT: :handleMessage() and methods that are subsequently called from it
(RMT: :portToEFCPI(), RMT: :portToPort() etc.).

27

Figure 5.3: The R M T decision algori thm.

The dispatcher algori thm ensures continuous invocation of the Scheduling pol icy when
ever there are P D U s wait ing in queues. The decision of what queue should be processed
next is left to the policy. A petr i net representation of an algori thm used for both input
and output direction can be seen i n Figure 5.4. The algori thm is implemented by methods
onQueueArrival(), postQueueDeparture(), writeToPort() and readToPort().

28

b u f f e r PDU p r o c e s s i n g

Figure 5.4: A petr i net representation of the R M T dispatcher algori thm.

PDUs arrive at rate x into port's queues. Each time the port is ready to read/write, the
scheduling policy is invoked to choose which queue should be processed, then a P D U is

transmitted for time interval t. For output, t is determined by the PDU' s size and characteristics
of the medium; for input, it is configurable. A port block/unblock may be requested by R M T (for
input) or by (N - l) - E F C P I (for output); in such case, the first ever request has to be for blocking

and there cannot be multiple consecutive calls of only block requests or only unblock requests.

5.3.4 M o d u l e M a n a g e m e n t

R M T ' s purpose in an I P C process is fairly straightforward: providing a stateless function
for relaying P D U s to their predetermined destinations and mul t ip lexing P D U s of multiple
data flows onto a common predetermined medium. The entire management of the R M T is
decoupled and exercised by the Resource Al loca tor .

A s Resource Al loca tor lacked any concrete specifications at the t ime of implementation,
I have designed a set of management mechanisms, some of which are customizable by
policies.

Initial R M T M o d e Setup

W h e n a R M T instance is located inside a bottommost I P C process that does not work wi th
any further (N-l) - I P C processes, the R M T is switched to an onWire mode that functions
over a single serializing medium instead of an I P C connection.

If a R M T instance is located inside an I P C process that has the relay configuration pa
rameter configured as true, the R M T ' s Relaying Task is enabled by cal l ing enableRelay ().
The default value of the relay parameter is true i n top layers of routers, false everywhere
else.

29

Forwarding Table Management

The content of the P D U forwarding table is generated by the P D U Forwarding Generator
policy module which generally accepts input from other sources such as the Rou t ing policy
module.

Queue Al locat ion

P D U s traversing an (N- l) -por t may be momentari ly buffered i n input or output queues;
the number of input and output queues per (N- l) -por t and assignment of traffic classes to
queues (e.g. all-in-one or fair queuing) is determined by two Resource Al loca to r policies.

• QueueAl loc . The (N- l) -por t queue allocation strategy. The interface contains a set
of event hook methods (onPolicylnit, onNMlPortlnit, onNFlowAlloc, onNFlowDealloc)
that allow the user to specify how many queues should be allocated or deallocated in
response to which events.

• Q u e u e l D G e n . A companion classification policy to QueueAl loc which generates a
queue I D for given P D U . This pol icy is used by R M T when it needs to determine
which of the port 's queue should a P D U be placed in .

(N- l) -port Contro l

Since Resource Al loca tor manages (N-l)-f lows leading to other I P C processes, it also pro
vides (N- l) -por ts (or handles) for R M T .

In some scenarios, it may be required for an (N- l) -por t to cease/slow down sending or
providing more data because of congestion. Resource Al loca to r can momentari ly disable or
slow down data rate on distinct ports i f this is required by E F C P instances.

5.3.5 Stat ist ics C o l l e c t i o n

O M N e T + + modules provide a means for declaring scalar or vector N E D variables used
for statistics collection. Processing of such statist ical data (e.g. generating summaries and
graphs) is decoupled from the act of data collection itself, so it is up to the user to pick out
which data he wants to work wi th .

Since the Relaying and Mul t i p l ex ing Task is the shared point of data flow traversal in
the I P C process, it is well-suited for moni tor ing data flow performance. Several statist ical
variables have been defined for this very purpose:

• (N- l) -port P D U traversal count. Two scalar variables for both input and output
containing the number of P D U s transferred through the port i n each direction.

• R M T queue length. A vector variable documenting number of P D U s i n a queue
over time.

• R M T queue drop count. A scalar variable providing the number of P D U s dropped
by a queue.

The R M T module also supports ns2-style tracefile generation. This can be enabled by
setting the tracing parameter of relayAndMux to true.

30

5.4 Sample policy implementations

A s Relaying A n d Mul t i p l ex ing follows the design principle of separation of mechanism and
policy, most of its complexity lies in the policies. Hence, to demonstrate the use of R M T ' s
pol icy framework, I have implemented a diverse set of simple R M T policies.

• Scheduling policy

— LongestQFirst. P i c k the queue which contains the most P D U s .

• Moni tor ing policy

— REDMonitor. Used i n conjecture wi th R E D D r o p p e r ; R a n d o m E a r l y Detect ion
implement ation.

• M a x Q policy

— ECNMarker. If queue size > threshold, apply E C N marking on new P D U s ; i f
size > max, drop.

— ReadRateReducer. If queue size > allowed max imum, stop receiving data from
input ports.

— REDDropper. Used in conjecture wi th R E D M o n i t o r ; R a n d o m E a r l y Detect ion
implement ation.

— TailDrop. If queue size > allowed maximum, drop new P D U s .

— UpstreamNotifier. If queue size > allowed max imum, send a notification to the
P D U sender.

• P D U Forwarding policy

— SimpleTable. A table w i th {(ds tAddr , QoS) —>• port} mappings.

To demonstrate the abilities of Resource Al loca tor ' s R M T management, I have also
implemented an addi t ional set of management policies (introduced i n Section 5.3.4).

• QueueAl loc

— QueuePerNFlow. M a i n t a i n a queue for each (N)-flow.

— QueuePerNQoS. M a i n t a i n a queue for each (N)-QoS cube.

• Q u e u e l D G e n

— IDPerNFlow. Companion pol icy for QueueAlloc: :QueuePerNFlow.

— IDPerNQoS. Companion pol icy for QueueAlloc: :QueuePerNQoS.

31

Chapter 6

Testing and Evaluation

I have created a set of basic network topologies to demonstrate the implementation's fea
tures. The following tests put them into use. E a c h test case contains a description of
R M T - r e l a t e d events that happen during simulat ion. Each type of event is described only
once to prevent needless repetition.

For purposes of testing, R I N A S i m contains a ping-like application called AEPing that can
serve as both sender and receiver of a ping-like data frame. E a c h of the following scenarios
consists of a N E D topology and two instances of AEPing on different hosts. The first
instance wi th application name Appl allocates a flow to the other instance wi th application
name App2, pings the other instance mult iple times i n sucession and then deallocates the
flow. The simulat ion times of flow allocation, ping send events and flow deallocation are
configurable v i a the AEPing N E D module.

Addi t ional ly , each channel connecting two hosts is configurable to simulate postponed
message delivery based on its bandwidth or fixed delay. To keep the format of timestamps
simple, channels in the following examples operate wi th a fixed delay i n seconds.

6.1 Basic Multiplexing

This example presents the mul t ip lexing function of R M T i n a simple scenario. Coinciden-
tally, it also presents R I N A S i m ' s implementat ion of the Al loca te algori thm described in
Section 3.5.2.

6.1.1 T o p o l o g y

The T w o C S topology is the most basic example of a computer network. It consists of two
interconnected hosts, each w i t h a single application and two levels of I P C processes. Details
are depicted on Figure 6.1.

32

T w o C S s h o s t l

^ ~ ^ a p N a m e : A p p l

a p p l i c a t i o n P r o c e s s l a i f A l l o ca to r
O

o
p c R e s o u r c e M a n a g e r

Idress: 1 1
DIF: L a y e r l

ipc P r o c e s s i

A d d r e s s : 1
DIF: Laye rO

i p c P r c c e s s u

T w o C S s

5 -
h o s t l

h o s t 2

T w o C S s . h o s t 2

^ " ^ a p N a m e : A p p 2

a p p l i c a t i o n P r o c e s s l d i f A l l o c a t o r
O

o
i p c R e s o u r c e M a n a g e r

ipcPr f c e s s l

d r e s s : 2 2
IDIF: L a y e r l

j a
i p c P r i ces sO

[Addres s : 2
|DIF: LayerO

Figure 6.1: T w o C S simulat ion scenario

6.1.2 Scenar io

The configuration of this s imulat ion scenario is described i n Table 6.1.

module configuration directive value
hostl ' s AEPing flow allocation 10 s
hostl ' s AEPing first ping 35 s
hostl ' s AEPing flow deallocation 200 s
hostl ' s AEPing number of pings 10

hostl—>host2 channel delay 2 s

Table 6.1: Configuration for Basic Mul t ip l ex ing .

6.1.3 S i m u l a t i o n

W h a t follows is a simplified description of events related to R M T instances.

• t=0: The R M T instances undergo their in i t i a l setup. For the bot tom I P C processes
in bo th hosts, this consists of creating a R M T P o r t instance named PHY and its queues.
Since the QueueAl loc policy is set to SingleQueue, the following queues are created:
outQ_M (management output), inQ_M (management input) , outQ_0 (data output) and
inQ_0 (management input) .

• t=10: A p p l invokes Allocate(App2). Th is in tu rn causes I P C l l ' s Resource Al loca tor
to invoke Allocate(22).

The R I B i n I P C 1 sends out an M_CREATE request addressed to I P C 2. R M T stores
the P D U to the PHY's queue outQ_M.

33

The arr ival of P D U into the queue causes invocation of the active Moni to r ing policy
and M a x Q policy. If the M a x Q pol icy has not caused the P D U to be dropped, the
Scheduling pol icy is invoked.

The Scheduling policy decides to release the P D U from outQ_M. The P D U traverses
through the port and gets sent to the other host v ia the medium.

• t=12: I P C 2's R M T receives the P D U on port PHY. A s this is a management P D U ,
it is stored into the management input queue inQ_M.

The arr ival of P D U into the queue causes invocation of the active Moni to r ing policy
and M a x Q policy. If the M a x Q pol icy has not caused the P D U to be dropped, the
Scheduling pol icy is invoked by the dispatcher algori thm.

The Scheduling policy decides to release the P D U from inQ_M. The P D U travels into
the dispatcher which relays the P D U to the R I B daemon.

The R I B daemon sends out an M_CREATE_RESPONSE reply to I P C 1.

• t=14: The I P C l ' s R I B daemon receives the M_CREATE_RESPONSE reply and the Al-
locate(22) procedure is sucesfully completed. The new connection is mapped to a
newly instantiated R M T P o r t called pO and the previously suspended AUocate(App2)
procedure is triggered to continue and carry out the same series of events, only one
level higher and using I P C I I ' s port pO and its data queues.

• t=18: The Allocate(App2) procedure is sucessfully completed and Appl is now con
nected to App2.

• t=35: In hostl, Appl sends out the first ping. The ping traverses R M T s i n I P C
11 and I P C 1 and then it is sent to the medium. This is repeated nine times i n the
following 9 seconds.

• t=37: In host2, I P C 2's port PHY receives the first ping. The ping traverses R M T s
in I P C 2 and I P C 22 and then it is handed to A p p 2 . This is repeated nine times in
the following 9 seconds.

• t=200: A p p l invokes Deallocate(App2).

• t=204: The connection between Appl and App2 is deallocated.

6.1.4 E v a l u a t i o n

The implementat ion reflects the behavior expected from R I N A specifications. The proce
dures of the basic communicat ion model described in Section 3.5.2 are executed properly
and R M T ' s mul t ip lexing functionality correctly handles traversing P D U s .

6.2 Basic Relaying

This example presents the relaying function of R M T in a simple scenario.

34

6.2.1 T o p o l o g y

The SimpleRelay topology is the most basic example of a computer network wi th a relaying
device. It consists of two hosts interconnected by a router w i th three I P C processes. More
on Figure 6.2.

S i m p l e R e l a y h o s t l

a p N a m e : A p p

a p p l i c a t i o n P r o c e s s l d i f A l l o c a t o r

o
i p c R e s o u r c e M a n a g e r

^ A d d r e s s : 1 1
D IF : L a y e r l 1

ipcPrr. c e s s l

lpcPr(CMSO

d r e s s : 1
IDIF: L a y e r O l

S i m p l e R e l a y

c
h o s t l i n t e r i o r R o u t e r h o s t 2

S i m p l e R e l a y . i n t e r i o r R o u t e r

a p p l i c a t i o n P r o c e s s l d i f A l l o c a t o r

IK

A d d r e s s : 3
D IF : L a y e r O l

A d d r e s s : 4
DIF : L a y e r 0 2

i p c P n ce s sO i p c P n c e s s l

5 i m p l e R e l a y . h o 5 t 2

a p N a m e : A p p 2 ^ " ^ a p N a m e : A p p 2 (f^^

s s l

o
i p c R e i O j r c e M a n a g e r

A d d r e s s : 2 2
DIF : L a y e r l l

p c P r t c e s s l

Idress: 2
IF: L a y e r 0 2

p c P r t c e s sO

Figure 6.2: T w o C S s network topology.

6.2.2 Scenar io

The configuration of this s imulat ion scenario is described i n Table 6.2.

module configuration directive value
hostl ' s AEPing flow allocation 10 s
hostl ' s AEPing first ping 35 s
hostl ' s AEPing flow deallocation 200 s
hostl ' s AEPing number of pings 10

hostl—^interiorRouter channel delay 2 s
interiorRouter—^host2 channel delay 2 s

Table 6.2: Configuration for Basic Relaying.

6.2.3 S i m u l a t i o n

• t=10: Appl invokes AUocate(App2). Th is in tu rn causes I P C l l ' s Resource Al loca tor
to invoke Allocate(33).

• t=14: The I P C l ' s R I B daemon receives the M_CREATE_RESPONSE reply and the Allo-
cate(IPC 33) procedure is sucesfully completed. The new connection is mapped to a
newly instantiated R M T P o r t called pO and the previously suspended AUocate(App2)
procedure is triggered to continue. The M_CREATE sent by I P C l l ' s R I B daemon is
directed to I P C 33's R I B daemon.

35

• t=16: The I P C 33's R I B daemon sees that the M_CREATE requires acces to App2,
which is not a local aplication, so the request has to be forwarded to I P C 22. It holds
the request and waits for Resource Al loca tor to process Allocate(22).

• t=20: The I P C 4's R I B daemon receives the M_CREATE_RESPONSE reply and the Al-
locate(IPC 22) procedure is sucesfully completed. The new connection is mapped to
a newly instantiated R M T P o r t called p i .

The M.CREATE which was withheld i n t=16 then continues forward to I P C 22.

• t=22: The I P C 22's R I B daemon receives the M_CREATE request and responds wi th
a M_CREATE_RESPONSE reply, this t ime directed directly to I P C 11.

• t=26: The Allocate(App2) procedure is sucessfully completed and Appl is now con
nected to App2 v ia interiorRouter.

• t=35: In hostl, Appl sends out the first ping.

• t=37: In I P C 33, the R M T receives the ping P D U from port pO. It discovers the
P D U ' s address does not equal I P C 33, so it looks up the P D U Forwarding Pol icy for
an i tem wi th P D U ' s destination (I P C 22) and P D U ' s QoS- ID (l).

The Forwarding pol icy returns a single R M T P o r t , p i . The Q u e u e l D G e n policy is
given the P D U as a parameter and returns outQ_0.

The dispatcher directs the P D U to pi ' s queue outQ_0, where it is immediately pro
cessed by policies and sent.

• t=39: In host2, App2 receives the ping and sends back an acknowledgment message.

• t=41: In I P C 33, the R M T dispatcher receives the ping reply P D U from port p i . It
looks up the Forwarding Po l i cy again and then sends out the P D U through pO.

• t=200: Appl invokes Deallocate(App2).

• t=208: The connection between Appl and App2 is deallocated.

6.2.4 E v a l u a t i o n

The implementat ion reflects the behavior expected from R I N A specifications. The proce
dures of the basic communicat ion model described in Section 3.5.2 are executed properly
and R M T ' s relaying functionality correctly forwards P D U s .

6.3 Advanced examples

The medium attached to this thesis contains more example s imulat ion scenarios. They are
mostly aimed at demonstrating the use of the default pol icy set described i n Section 5.4
and more advanced network topologies.

36

Chapter 7

Conclusion

In this thesis, I have taken a brief look into the field of network architecture research.
I have described the motivations behind research efforts and analyzed several new network
architectures.

The implementat ion goal of this thesis was to contribute to prototyping attempts of one
of the presented network architectures, R I N A . This task has been sucessfully completed by
implementing R I N A ' s Relaying and Mul t i p l ex ing Task into an existing l ibrary for s imulat ion
tool O M N e T + + . The resulting solution is currently in use by mult iple research groups for
modell ing R I N A networks and experimenting w i t h various policies.

7.1 Own Contributions

To be able to describe the principles of new network architectures, I have studied research
articles that have been wri t ten about them. However, to analyze their usefulness to the
Internet, I needed to gain understanding of the dr iv ing factors behind their inception. Th is
has been achieved by s tudying the Internet and its history to learn about choices that
led to its current state, including its present problems. I have noticed that some of the
problematic design choices of its architectural design have been recognized right at the
early beginning of its deployment, but they were eventually chosen as foundations for other
then technological reasons.

To understand R I N A , I had to learn about its design principles and adapt to its paradigm
shift which abandons most of today's widely recognized principles of computer networking.
This required extensive s tudying of John Day 's book Patterns in Network Architecture [6]

and bleeding-edge architectural specifications.
The implementat ion part of this thesis required me to learn about the O M N e T + +

programming framework and the R I N A S i m library. A s R M T ' s specifications were only
brief and its other implementations provided only a l imi ted set of functionality, I needed to
put some ini t iat ive into coming up wi th the implementat ion design. This usually involved
discussing architectural matters w i th R I N A researchers. In the later phase of development,
several of the researchers have raised mult iple functionality requests; a l l of them were
eventually implemented.

37

7.2 Future Development

The implementation of Relaying and Mul t i p l ex ing Task provides users wi th a pol icy frame
work that allows them to experiment w i th v i r tua l ly unl imi ted number of approaches to the
problems of forwarding and congestion avoidance i n R I N A . Therefore, potential for future
development lies mainly i n expansion of the policy set.

Several examples of such new policies wri t ten by R I N A researchers are already available
in the G i t H u b source code repository at the t ime of wr i t ing this thesis. Such examples
usually explore new directions in the areas of congestion avoidance, routing and distr ibuted
resource allocation.

38

Bibliography

[1] Saamer Akhshab i and Constantine Dovrol is . "The evolution of layered protocol
stacks leads to an hourglass-shaped architecture". In: ACM SIGCOMM Computer
Communication Review. V o l . 41. 4. A C M . 2011, pp. 206-217.

[2] Available Pool of Unallocated IPv4 Internet Addresses Now Completely Emptied.
h t t p s : / / w w w . i c a n n . o r g / r e s o u r c e s / p r e s s - m a t e r i a l / r e l e a s e - 2 0 1 1 - 0 2 - 0 3 - e n .
[Online; accessed Ol-Apri l-2015].

[3] A k a s h B a i d , Tarn V u , and Dipankar Raychaudhur i . "Compar ing alternative
approaches for networking of named objects in the future internet". In: (2012),
pp. 298-303.

[4] S. Be l lov in . Defending Against Sequence Number Attacks. R F C 1948
(Informational). Obsoleted by R F C 6528. Internet Engineering Task Force, M a y
1996. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c l 9 4 8 . t x t .

[5] BGP Routing Table Analysis Reports, h t t p : / / b g p . p o t a r o o . n e t / . [Online; accessed
Ol-Apri l -2015] .

[6] John Day . Patterns in Network Architecture: A Return to Fundamentals. Prentice
H a l l Pearson Educa t ion distr ibutor, 2008.

[7] S. Deering and R . Hinden . Internet Protocol, Version 6 (IPv6) Specification. R F C
2460 (Draft Standard). Upda ted by R F C s 5095, 5722, 5871, 6437, 6564, 6935, 6946,
7045, 7112. Internet Engineering Task Force, Dec. 1998. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c 2 4 6 0 . t x t .

[8] K . Egevang and P . Francis. The IP Network Address Translator (NAT). R F C 1631
(Informational). Obsoleted by R F C 3022. Internet Engineering Task Force, M a y
1994. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c l 6 3 1 . t x t .

[9] Future Internet Architectures - Next Phase (FIA-NP).
h t t p s : / /www.ns f .gov/funding/pgm_summ. j sp?p ims_id=504882 . [Online; accessed
12-May-2015].

[10] A l i Ghods i et a l . "Information-centric networking: seeing the forest for the trees".
In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks. A C M . 2011,
p. 1.

[11] iOS: Multipath TCP Support in iOS 7.
h t t p s : / / s u p p o r t . a p p l e . c o m / e n - u s / H T 2 0 1 3 7 3 . [Online; accessed 12-May-2015].

[12] IPv6 Adoption, h t t p s : / / w w w . g o o g l e . c o m / i n t l / e n / i p v 6 / s t a t i s t i c s . h t m l .
[Online; accessed Ol-Apri l-2015].

[13] James Kurose . Computer networking : a top-down approach featuring the Internet.
Boston: Addison-Wesley, 2003. I S B N : 978-0201976991.

39

https://www.icann.org/resources/press-material/release-2011-02-03-en
http://www.ietf.org/rfc/rfcl948.txt
http://bgp.potaroo.net/
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfcl631.txt
http://www.nsf
https://support.apple.com/en-us/HT201373
https://www.google.com/intl/en/ipv6/statistics.html

D . Meyer, L . Zhang, and K . F a l l . Report from the IAB Workshop on Routing and
Addressing. R F C 4984 (Informational). Internet Engineering Task Force, Sept. 2007.
U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 9 8 4 . t x t .

D a v i d Naylor et al . " X I A : architecting a more trustworthy and evolvable internet".
In: ACM SIGCOMM Computer Communication Review 44.3 (2014), pp. 50-57.

Y . Rekhter, T . L i , and S. Hares. A Border Gateway Protocol 4 (BGP-4). R F C 4271
(Draft Standard). Upda ted by R F C s 6286, 6608, 6793. Internet Engineering Task
Force, Jan. 2006. U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 2 7 1 . t x t .

J . Saltzer. On the Naming and Binding of Network Destinations. R F C 1498
(Informational). Internet Engineering Task Force, A u g . 1993. U R L :
h t t p : / / w w w . i e t f . o r g / r f c / r f c l 4 9 8 . t x t .

R . Stewart. Stream Control Transmission Protocol. R F C 4960 (Proposed Standard).
Upda ted by R F C s 6096, 6335, 7053. Internet Engineering Task Force, Sept. 2007.
U R L : h t t p : / / w w w . i e t f . o r g / r f c / r f c 4 9 6 0 . t x t .

E len i Trouva et a l . "IS T H E I N T E R N E T A N U N F I N I S H E D D E M O ? M E E T
R I N A ! " In: (2010).

A r u n Venkataramani et a l . "Mob i l i t yF i r s t : a mobil i ty-centric and trustworthy
internet architecture". In: ACM SIGCOMM Computer Communication Review 44.3
(2014), pp. 74-80.

R ichard W Watson. "The De l t a -T transport protocol: Features and experience". In:
Local Computer Networks, 1989., Proceedings 14th Conference on. I E E E . 1989,
pp. 399-407.

What caused today's Internet hiccup.
h t t p s : / / w w w . b g p m o n . n e t / w h a t - c a u s e d - t o d a y s - i n t e r n e t - h i c c u p / . [Online;
accessed 12-May-2015].

L i x i a Zhang et a l . "Named data networking (ndn) project". In: Relatdrio Tecnico
NDN-0001, Xerox Palo Alto Research Center-PARC (2010).

40

http://www.ietf.org/rfc/rfc4984.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfcl498.txt
http://www.ietf.org/rfc/rfc4960.txt
https://www.bgpmon.net/what-caused-todays-internet-hiccup/

Appendix A

CD Contents

The attached C D contains the following files and folders:

• README, basic instructions for s imulat ion i n O M N e T + + wi th R I N A S i m library.

• thesis.pdf, the electronic version of this thesis.

• doc/ containing the Doxygen-generated documentation of R I N A S i m .

• examples/ containing the set of examples used i n Chapter 6 along wi th more advanced
ones.

• omnetpp/ containing the O M N e T + + framework i n release 4.6.

• src/ containing the A p r i l release of the R I N A S i m library.

- src/DIF/RMT/ containing the R M T source codes.

— src/DIF/RA/ containing the R A source codes.

• tex/ containing the DT£]X source codes of this thesis.

41

Appendix B

Class Diag

! § 5 I ! Ml
8 j"Sto"l i E S =

5 * s s •• S P a s « s -s
1 o f s • •»;•• IE •• i : s> c S • ? & ^ ^ g ^ . j - . c g a s = o a . o s • s a * a s i s

i o l l l f l l f l l i s l l - -
- - - - - } o » S | s ! ! s S ! g g S
H f H i l i i f s I l I | -

9 ^ ^ = ^ ^ i i . s i t t I I I n 8 l ? S | s 8 + •+ + + + + + + + + + + + fhfi€S^ ^ ^ ̂ ^ T

sift!

l l j l f l l l j i l

i f i i i j I
v Is

II -
III

f f 5

s o-

i si I

a ° | < i 8

1 1 1 • ! 8 t*

2 S 8 9 S 1
* * * « £ *

1 a

- b - b
2 «

f ? l i i

fE?'=ffjIlI^lIi,S

i l l 1 Iltllf
i 6 ? T 7 ? ? ? T ^

Figure B . l : R M T class diagram.

43

