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PREFACE 

The selected publications presented in this thesis were compiled as part of my research activities 

between 2018 and 2022. All the studies are interconnected to the subject matter, digital soil 

mapping of soil properties and nutrients. The studies were conducted in Nigeria, the Czech 

Republic, and Morocco, characterized by different climatic conditions, land use, and geological 

forms. 

All the research was performed at the Department of Soil Science and Soil Protection at the Czech 

University of Life Sciences in Prague in cooperation with the Department of Soil Science, 

University of Calabar, Nigeria, National Institute of Agricultural Research (INRA), Morocco, and, 

as part of various grant obligations, independent research, or part of the thesis work. Grant 

providers and co-authors are acknowledged within the respective publications. During the doctoral 

study, a central team evolved. Members were responsible for significant contributions to the 

conceptualization, consultation, and development of the research and the practical aspects such as 

sampling and analysis. Consistent primary contributors to the listed research papers are Prof. 

Chengzhi Qin, Ndiye Michael Kebonye, Ph.D., Ing. Prince Chapman Agyeman, and Isong 

Abraham Isong, Ph.D., with a project overview and thesis supervision by doc. Ing. Vít Penížek 

and RNDr. Tereza Zadorova, Ph.D. 

Digital soil mapping introduction into Soil Science is still significantly evolving from the research 

phase into the global development and creation of soil maps. Approaches and methods to improve 

digital soil mapping of soil properties to ensure the accurate representation of the reality of the soil 

situation still border around financial budget, optimum sample size, available soil data, and expert 

knowledge. Therefore, this current research work reveals pragmatic models in predicting soil 

properties with few samples and ways to improve modelling by simulating sample ratios with 

different predictive models to cover individual needs where necessary. The present doctoral thesis 

applied a few sample ratios from existing databases to model some selected soil nutrients in low 

relief using a more pragmatic kriging model (John et al., 2020). We compared kriging and inverse 

weighting distance interpolations (John et al., 2020) and tested the combination of cokriging and 

Gaussian process regression in modelling soil sulphur (John et al., 2021). We also attempted 

different multiple linear model functions in estimating soil organic matter via some selected soil 

physical properties (Ofem et al., 2020). Furthermore, we evaluated the sample ratio and sampling 

schemes for predicting soil nutrient elements (John et al., 2022).  



The research initiation and development approach considers the workability of digital soil mapping 

models with few samples, improvement of machine learning model, variability of sampling 

strategies and sample ratios, and the influence of different linear functions on soil modelling. And 

while focusing on these challenges allowed for the synergizing of a compilation of holistic study 

during the Ph.D research. 

John, K., S. M. Afu, I. A. Isong, E. E. Aki, N. M. Kebonye, E. O. Ayito, P. A. Chapman, M. O. 

Eyong, and V. Penížek. "Mapping soil properties with soil-environmental covariates using 

geostatistics and multivariate statistics." International Journal of Environmental Science and 

Technology (2021): 1-16. 

John, K., Afu, S. M., Isong, I. A., Chapman, P. A., Kebonye, N. M., & Ayito, E. O. "Estimation 
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1. LITERATURE REVIEW 

1.1 Background of the study 

Soil nutrients are vital for soil fertility and the development of crops (Lal, 2015). Therefore, 

investigating, modelling, and mapping the spatial distribution of soil nutrients is essential for 

practical farming and sustainable land management (Ma et al., 2017). And to further improve soil 

nutrient levels, soil management with an appropriate understanding of soil properties variability is 

required. Soil properties are the characteristics of a given soil and are considered crucial in the 

availability and mobility of soil nutrients (Bardgett and Wardle, 2010). Besides that, farming 

management techniques, such as irrigation and fertilization, and soil formation variables, such as 

soil parent materials, impact soil properties and nutrient spatial variability (Davatgar et al., 2012). 

As a result, managing agricultural areas as a single unit may cause soil deterioration by treating 

regions with high nutrient content with an excess of inputs and those with low nutrient content 

with insufficient input materials (Ferguson et al., 2002).  

In some parts of the world and sub-Saharan Africa, there is a shortage of understanding of the 

spatial variability of different soil fertility conditions, such as soil acidity and nutrient deficits, 

which is a crucial impediment to establishing appropriate liming and fertilizer recommendations. 

Furthermore, the variability of soil nutrients is a significant constraint for sustainable crop 

production due to the resulting non-uniformity of output across different field sections. Soil 

nutrient is more nature-driven compared to, e.g. western Europe, where intensive agriculture is 

carried out, so it may also vary due to natural processes and soil management types. Spatial 

variation in soil nutrients on crop yields is evident in cultivated sloping fields. However, there is 

currently a paucity of information about the spatial variation of soil nutrients (Ge et al., 2007). By 

utilizing appropriate soil management techniques, it will be feasible to reduce the detrimental 

impacts of soil nutrient spatial variation on agricultural productivity. 

Soil mapping has traditionally been based on time-consuming data collection, field surveys, 

interpretation, field verification, demarcation, and mapping (Scull et al., 2003). The fast change in 

climate, land surface and eco-hydrological modelling in the last 20 years necessitates maps of soil 

attributes with high resolution and low uncertainty. This requirement can no longer be met by 

traditional soil mapping. Soil scientists worldwide have employed digital soil mapping (DSM) 

approaches to tackle this problem by constructing statistical models based on soil measurements, 

environmental factors, and statistical models (Lagacherie and McBratney, 2006; Minasny and 
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McBratney, 2016). And this approach has been employed to map soil nutrients spatially and 

properties within a field, relying upon using soil environmental covariates such as soil properties 

(from existing soil information), remote sensing data, digital elevation model (DEM), micro-

climatic data, and geology (Zeraatpisheh et al., 2020; Mosleh et al., 2016).  

Digital mapping of soil attributes is required to inform soil and land use management. Since the 

idea of digital soil mapping (McBratney et al., 2003), many studies have been conducted to 

increase and deepen our understanding of accurate soil spatial prediction (Minasny and 

McBratney, 2016). This is because digital soil mapping will be demand-driven rather than supply-

driven for land management applications, with operational uses of digital soil maps for land use 

planning (Kidd et al., 2020; Searle et al., 2021). However, local and regional knowledge and 

assessment of soil maps are required for both theoretical and practical uses (Arrouays et al., 2017; 

Pásztor et al., 2020). 

When generating maps of soil properties and nutrients for specific land management issues, one 

of the associated challenges is the high number of sampling points necessary to produce accurate 

maps of soil physical and chemical properties, which intensely adds to the expense of the mapping 

process. One of the methods to solve this problem is by developing methods that require a lower 

number of sampling points to produce accurate maps. This new approach should be flexible 

enough to use inexpensive covariates sampled at high density, for example, crop yield, vegetation 

index, apparent soil electrical conductivity, etc. Machine learning (ML) has recently proved to be 

an efficient technique for predicting and mapping soil attributes (Khaledian and Miller, 2020; 

Nabiollahi et al., 2021; Nyéki et al., 2021). ML can be understood as the automated process of 

learning by algorithms based on large datasets. These algorithms are efficient for working with 

large volumes of data. Thus, an ML model can be used in data mining, pattern recognition, 

regression, and classification (Heung et al., 2016; Khaledian and Miller, 2020; Liakos et al., 2018; 

Parmley et al., 2019). Several ML studies have been employed in predicting and spatial distribution 

analysis of soil properties (Chen et al., 2019; Nyéki et al., 2021; Shaddad et al., 2016). Most of 

these ML studies involved mapping large areas with high attribute variations. On the other hand, 

hybrid methods have also been introduced, which include the combination of geostatistical 

techniques and machine learning (e.g., linear regression residual kriging, linear regression residual 

inverse distance weighting), and the interpolation accuracy can be further improved by correcting 

the residuals in the global interpolation method). Therefore, this thesis aims to investigate whether 
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geostatistic techniques, ML, or the combination of the two approaches are relevant and useful in 

mapping soil properties and nutrients at the field scale used with varied sample ratios. 

1.2 Conventional mapping technique 

The conventional mapping technique is one of the significant sources of soil spatial information 

via topographical details. Traditional soil maps are generally produced using a free survey 

(Kempen et al., 2012). In this survey, the soil surveyor uses a soil-landscape model to select 

suitable observation locations via a landscape equation or concept (Bregt, 1992; Hudson, 1992). 

In obtaining soil information from a given area, the soil mapper first delineates the site through 

ground-truthing to establish a soil-landscape model (Zhu, 2000). The soil-landscape model 

encapsulates the relationship between soils in the location and the different land positions or units. 

Next, the soil surveyor manually sketches the map spatial extents of different soils or combinations 

of soils through photo-image analysis. And the output results of the soil units are then represented 

using polygons. The individual areas on the maps are then referred to as map units (Lark and 

Beckett, 1998) and each formed with a polygon depicts the spatial arrangement thereof. It is an 

effort to map units as much as possible to match one classification unit, which is then used in the 

map legend. When a given land is included in a map or classification unit, it is said that it is a 

typical representative. That's why the polygonal approach often limits an accurate description of 

soil cover (Zhu, 2000) and reduces the possibility of capturing continuous changes in soil 

properties. The polygon-based mapping practice is based on the discrete conceptual model (Zhu, 

1997), limiting the soil mapper's ability to produce accurate soil maps. Traditional soil maps are 

all-purpose maps: they yield information on the three-dimensional spatial distribution of a wide 

range of soil properties that are interpreted from representative soil profile descriptions associated 

with the map units. 

The problems associated with conventional soil mapping are that the size of the soil body can be 

represented as a polygon is limited on paper (Kempen et al., 2012). The polygons represent only 

the distribution of a set of prescribed soil classes and limit the ability to update soil surveys rapidly 

and accurately. In addition, the conventional process involves detecting different soil formation 

processes, i.e., information on the map unit composition, soil profile descriptions, and map unit 

interpretations (Soil Survey Staff 2014; Beaudette and O'Geen, 2009). 

 



4 
 

1.3 Digital soil mapping 

1.3.1 Digital soil mapping approaches 

Digital soil mapping involves generating and populating soil information systems via 

mathematical models to infer soil types and properties' spatial and temporal variability from 

observed soil data and knowledge developed from environmental covariates (Lagacherie and 

McBratney, 2007). The DSM technique is centred on the SCORPAN model proposed by 

Mcbratney et al. (2003). The model allows incorporating soil information as a covariate via the 

soil-forming factors represented by S (McBratney et al., 2003). SCORPAN approach involves 

incorporating a limited number of field measurement data to a large geographical area and 

estimating the targeted soil properties over the whole study area. SCORPAN model is a 

modification of Jenny's soil-forming equation (Jenny, 1941),  

S = f ( cl,o,r,p,t)        Equation (1) 

where S = soil, cl = climate, o = organisms (including humans), r = relief, p = parent materiál and 

t = time of formation. Jenny's equation was modified to describe the impact of the environment on 

soil formation and development and quantify the process by applying the mathematical concepts 

through digital mapping (McBratney et al., 2003). The SCORPAN model, which captures the 

current approaches of DSM, is described as follows, 

Sc,p = f (s, c, o, r, p, a, n) + e        Equation (2)  

where s = soil, other properties or prior knowledge of the soil at a point; c = climate, climatic 

properties of the environment at a point; o = organisms, vegetation or fauna or human activity; r = 

topography, landscape attributes; p = parent material, lithology; a = age, the time factor; n: space, 

relative spatial position; e = autocorrelated random spatial variation, Sc = is the soil classification 

unit (e.g., soil type), and Sp is the soil property. The land value represents, for example, from 

previous work or remote sensing data. Other factors are represented by continuous variables, such 

as the average annual temperature, rainfall, etc. Henderson et al. (2005) exemplified this by using 

existing legacy soil class mapping for predicting many soil properties across the Australian 

continent without kriging the residuals. McBratney et al. (2003) outlined that the success of the 

SCORPAN models is dependent on (a) a sufficient number of additional data (in terms of the 

number of variables and the number of sampled points), (b) a sufficient amount of data on the soil, 
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(c) the existence of a function that can describe the relationship of the soil and the additional data, 

and (d) a good correlation between the soil (or its properties) and the environment. 

Digital soil mapping models include a wide range of methods, such as geostatistical models (Lark 

et al., 2006; Goovaerts, 2011), tree models (Bui et al., 2006; Connolly et al., 2007), neural networks 

(Behrens et al., 2010), fuzzy systems (Zhu et al., 2000; Odgers et al., 2011; Yang et al., 2013) and 

ensemble machine learning models (Hengl et al., 2021; Sylvain et al., 2021; Brungard et al., 2021). 

Furthermore, most DSM applications are research-oriented and have regional specifics (Kempen 

et al., 2010; Kempen et al., 2012). As a result, the active engagement of DSM is still limited 

(MacMillan et al., 2007; Lilburne et al., 2012; Grunwald, 2009; Grunwald et al., 2011). The 

challenges of DSM techniques border around larger spatial extents, data availability of important 

soil information and large datasets. For example, if the sample size and the number of prediction 

locations are wide, geostatistical models are computationally intensive (Cressie and Johannesson, 

2008). Also, in geostatistics, modelling the non-linear relationship between a soil attribute and 

many cross-correlated variables is complex and presents new obstacles (e.g. many parameters have 

to be estimated). However, Lark et al. (2006) showed that the combined fixed and random effects 

by residual maximum likelihood estimation deal with the non-stationary variance. At the same 

time, the machine learning models can establish a non-linear relationship between soil property 

and auxiliary attributes. The model requires high-resolution environmental covariates and readily 

available environmental covariates for a good prediction of a targeted soil property. However, in 

the case of machine learning models, it is worth noting that developing a specific data 

infrastructure is recommended to obtain a robust prediction output. Besides that, DSM studies have 

shown the potential to provide better and more accurate information on the spatial variability of a 

targeted soil (Scull et al., 2003) 

1.3.2 Predictive models in DSM 

The various predictive models adopted in this project were used to meet the specific needs of the 

area under investigation. For example, little is known about predictive models employed in digital 

soil mapping in Nigeria, especially in the southeastern part. Therefore, we attempted to test widely 

used interpolation models with corresponding soil points available to demonstrate the importance 

of these tools in accurate soil studies, which can also be used for educational purposes. In the 

Czech Republic, the model applied for the study was to add to the existing work of literature on 

digital soil mapping by introducing hybrid machine learning models. While for Morocco, we 
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attempted to establish a more robust ML approach to provide an optimum sample ratio to avoid 

unnecessarily wasting resources as soil databases grow in the region. 

Some of the following models have been employed in developing DSM techniques in serving site-

specifics, regional, national, and global issues and were used in our study: 

1.3.3 Geostatistics and deterministic interpolation  

The geostatistical methods, which essentially involve the kriging methods, are the earliest DSM 

methods applied to model soil properties (Odeh et al., 1995; Gessler et al., 1995; Mckenzie and 

Ryan, 1999). One of the drawbacks of kriging in soil mapping is that it ignores environmental 

variables that are known or expected to be connected with target soil variables, such as Jenny's 

conceptual equation's soil-forming components or the modified model (i.e., SCORPAN). This 

approach involves the quantitative description of the spatial variation of soils. However, the means 

of incorporating the knowledge from the soil-forming model to accurately estimate soil properties 

was lacking. The challenge resulted in the development of universal kriging   (Matheron, 1969), 

which has a significant problem; one needed the variogram of the random residuals from the drift, 

and one could not obtain those residuals without knowing the variogram. Nonetheless, a rough-

and-ready empirical approach appeared to be fitting the target variable on values of the covariates 

using ordinary least-squares regression, geostatistically analyzing the residuals, and then adding 

back the regression predictions to the kriged prediction of the residuals. The regression kriging 

model has been extended in many ways, including three-dimensional and space-time mapping 

(Gasch et al., 2015; Cappello et al., 2021) and Bayesian and generalized linear modelling  

(Steinbuch et al., 2022). Geostatistics has proven effective for measuring spatial variability of soil 

characteristics, and soil scientists and agricultural engineers have increasingly used it (Webster 

and Oliver, 2001). Semivariograms and cross-semivariograms have been used to define and model 

spatial variation of data to analyze how data points are connected to separation distances. In 

contrast, kriging employs modelled variance to estimate values across samples (Journel and 

Huijbregts, 1978). The application of the geostatistical interpolation method help reduces the costs 

of field sampling and laboratory analysis, given that a set of soil observation points sufficiently 

represents the study area. There are different geostatistical methods such as kriging (e.g., ordinary 

kriging, simple kriging, universal kriging, cokriging, empirical Bayesian kriging, and others) and 

hybrid kriging model (regression kriging). Kriging interpolation yields the best linear unbiased 

estimates and information on the estimation error distribution and shows solid statistical 
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advantages. Cokriging (Cok), simple kriging (SK), and regression kriging (RK) are a few of the 

advanced and hybrid geostatistical tools which consider the relationship between primary and 

secondary variables. The difference between SK and OK is that the global mean in OK is unknown, 

while it is known in SK (however, it is unrealistic). As a result, when residuals have been 

computed, the known mean (m) is added back to the data using SK. Estimating the values as a 

departure from the global mean is more suitable since we know a random variable's deterministic 

component. Other significant distinctions between SK and OK are based on the global mean 

assumptions of known and unknown. Cok is an extension of kriging that may be used when two 

or more variables are spatially linked. The following generalization uses just one co-variable for 

ease of understanding (e.g. Heisel et al., 1999). The primary variable (the variable of immediate 

interest, such as soil qualities) and the co-variable are weighted and averaged in Cok. Odeh et al. 

(1995) claimed that in the RK type, the regression residuals indicate uncertainty and are considered 

by the kriging systems. And to get at a target variable, a regression must be run first, and only then 

may kriging be applied with the injection of regression errors as prediction uncertainty. The idea 

is that kriging after regression may enhance prediction performance in contrast to when regression 

or kriging are done separately (by introducing the uncertainty due to regression mistakes into 

kriging equations). For example, Bangroo et al. (2020) applied RK and OK to predict SOC and 

total nitrogen (TN), revealing that RK has better prediction accuracy. Some scientific works have 

also shown the efficacy of Cok over other methods and found Cok outperforms other methods due 

to the inclusion of environmental covariates (Hooshmand et al., 2011; Singh et al., 2016; Tziachris 

et al., 2017). Besides, the novel empirical Bayesian kriging (EBK) has proven more robust and 

pragmatic in making an accurate prediction. Empirical Bayesian kriging (EBK) is an advanced 

geostatistical prediction technique that combines kriging and linear mixed model to evaluate 

precise models at a local scale (Schabenberger and Gotway, 2017). EBK differs from other kriging 

interpolations because it considers the uncertainties related to variogram plotting. Also, it 

automates the most challenging aspects of composing an adequate kriging model (Krivoruchko 

and Gribov, 2019). It can represent the stochastic spatial process locally as a stationary or non-

stationary random field, where the parameters of the locally defined random field vary across 

space. In Bayesian Kriging, Bayes' theorem is adopted to integrate prior knowledge to produce 

posterior distribution taking into account the uncertainty in covariance function parameters. EBK 

is efficient in other fields of land and terrestrial science in spatial prediction (Giustini et al., 2019; 

Li et al., 2020; Lima et al., 2021). EBK does not require specification of the prior distribution for 
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model parameters; it allows moderate local and large global data non-stationarity, locally 

transforms data to Gaussian distribution if needed, works reasonably fast, and produces reliable 

outputs with default parameters (Krivoruchko and Gribov, 2019). In addition, this geostatistical 

model potentially outperforms other classical geostatistical models and is advantageous, 

particularly when common geostatistical modelling assumptions are violated (Gribov and 

Krivoruchko, 2020; Pilz and Spöck, 2008). Mirzaei and Sakizadeh (2015) reported that the EBK 

model performed better in predicting groundwater contamination than OK and IDW, respectively. 

Also, Hussain et al. (2014) opined that EBK is the most suitable geostatistical method for spatial 

prediction of total dissolved solids in drinking water.  

Another interpolation method incorporated in the DSM approach is the deterministic model (e.g., 

inverse distance weighting). This interpolation method creates surfaces from observation points 

based on the extent of similarity  (inverse distance weighting)  or the degree of smoothing  (Radial  

Basis  Functions). A value for an attribute at an unsampled location is assumed to be a linearly 

weighted average of known data points occurring in the unsampled location's general 

neighbourhood. It is an accurate interpolator, and it is said that the sample density should be high 

in comparison to the local variance in the data for it to produce the best results (Burrough and 

McDonnell, 1998). Also, this is one of the easiest interpolation methods to be applied and has been 

shown to generate good predictions for unsampled values (Wong, 2017). For example, Gotway et 

al. (1996) obtained better results with inverse distance weighting  (IDW) to kriging predicting soil 

organic matter and nitrogen contents. Also, IDW performed slightly better than the OK model in 

the spatial prediction of pH and soil organic matter in Western Australia (Robinson & Metternicht 

2003).  

1.3.4 Machine learning (ML) models 

According to Hartemink et al. (2008), machine learning (ML) approaches are a broad category of 

non-linear data-driven algorithms initially used for data mining and pattern recognition. Still, they 

are now widely applied to regression and classification applications across many scientific 

disciplines. Unlike geostatistical approaches, where alteration of the original observations is 

frequently necessary to meet the assumptions, ML algorithms do not assume the distribution of 

the observations. ML models can also handle large numbers of cross-correlated variables as 

predictors.  
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ML  incorporated into the DSM approach could either be supervised or unsupervised. According 

to Sathya and Abraham (2013), supervised machine learning is based on training a data sample 

from a data source that has previously been classified correctly. In contrast, unsupervised machine 

learning can learn and organize information without receiving an error signal to evaluate a potential 

solution. In DSM, most models are centred on supervised learning (Russell and Norvig, 1995): 

understanding the associations between the targeted soil property and independent variables based 

on training samples and their environmental covariates. Large training samples are always required 

for supervised ML models. However, the labour-intensive field sampling campaign often limits 

the number of samples (Zhang et al., 2021). Inadequate sample data may limit the ability of 

supervised learning algorithms to learn. Supervised machine learning has been widely applied in 

DSM, and these models include random forest (RF) (Breiman, 2001; Heung et al., 2014; Hengl et 

al., 2015), multiple linear regression (MLR) (Forkuor et al., 2017; Chen et al., 2020), cubist 

(Quinlan, 1992), Gaussian process regression (GPR) (Xue et al., 2020), support vector machine 

(e.g. Were et al., 2015),  and artificial neural networks (e.g. Behrens et al., 2005). These ML 

models have been used in mapping specific soil properties (Giasson et al., 2015; Minansny and 

Mcbratney, 2006; Bui and Moran, 2003; Henderson et al., 2005; Bui et al., 2021). The vastly 

applied ML in DSM are cubist and random forest (Breiman, 2001; Quinlan, 1992). This is because 

both models approach subsets data by rules related to the predictor variables and fit a linear 

regression model to each subset (Appelhans et al., 2015). Also, RF, as well as cubist, can be easily 

interpreted based on the relative importance of the modelling procedure (Walton, 2008). Both 

models have been successfully applied to map continuous and categorical soil properties on both 

a regional and national scale of map (Grimm et al., 2008; Guo et al., 2015; Rossel et al., 2015; 

Mulder et al., 2016; Liang et al., 2019). 

The cubist model is developed as an extension of the M5 tree model (Quinlan, 1992). According 

to Kuhn (2008), the model structure consists of a conditional component—or piecewise function—

acting as a decision tree coupled with multiple linear regression models. The Cubist method’s main 

benefit is to add multiple training committees and boosting to make the weights more balanced. 

The Cubist model adds boosting with training committees (usually greater than one) which is 

similar to the method of “boosting” by sequentially developing a series of trees with adjusted 

weights. The number of neighbours in the Cubist model is applied to amend the rule-based 

prediction (Kuhn, 2008). The “cubist” function in the CARET package in R software can be 

implemented to perform the model (R Core Team, 2019). 
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Random forests (RF) is a decision tree ensemble classifier built on regression trees with random 

inputs that partition sub-datasets and predict variables (Breiman, 2001). It can handle both 

continuous and categorical variables. According to Heung et al. (2014), RF is accurate as or better 

than adaptive boosting yet computationally faster. Also, the RF algorithm is robust to noise in 

predictors and thus does not require a pre-selection of variables (Díaz-Uriarte et al., 2006). In RF, 

the input response variables are randomly split into many small datasets in order to grow trees, and 

the input explained variables are randomly divided into each small dataset. No tree in RF uses the 

entire dataset and all predictive variables to fit each regression tree so that the tree can grow as 

deep as possible without pruning. The function 'randomForest' in the R package 'randomForest' 

can fit either a classification or a regression tree using Breiman's technique (Breiman, 2001). Three 

variables can determine the goodness of the model fitting: mtry (splits number), nz (node size), 

and ntree (tree number). 'mtry'. Different combinations of these three items can be used to find the 

best model. 

Multiple linear regression (MLR) models aim to explain the spatial distribution of a dependent 

variable (e.g. targeted soil property) through a linear combination of predictors (independent 

variables such as environmental covariates) (Forkuor et al., 2017). The R basic package 'stats' 

offers a function 'lm' to fit linear models. Also, MLR can be performed via a cross-validation 

function in R (e.g., leaps and stepAIC functions) available in R's leaps and MASS packages. The 

leaps package in R is composed of "leapBackward", which fits a linear regression with backward 

selection, and "leapForward", with fittings for linear regression with forward selection. The 

"leapSeq" fits a linear regression with stepwise selection, while in stepAIC (also referred to as 

direction) (James et al. 2014). The leaps package is new in R and has been rarely applied in soil 

studies. The most frequent method for soil data modelling is the stepAIC linear regression model. 

On the other hand, the link between soil and auxiliary factors isn't always linear, and it's often 

unknowable and noisy (Hengl et al., 2004). Also, the challenge in applying regression models is 

the problem of multicollinearity, which happens when there is a significant correlation between 

the predictors (environmental covariates) (Forkuor et al., 2017). 

Gaussian process regression (GPR) is a powerful tool in digital soil mapping when multiple 

explanatory variables are available (Xue et al., 2020). The model can be used for classification, 

regression, and fit models and requires no tuning parameter (Kuhn, 2008). Compared to other ML 

models, GPR yields well-defined confidence intervals, which are very important for soil scientists 

to evaluate the robustness of a model. GPR allows spatial interpolation and ancillary features to 
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create a model (Xue et al., 2020). Gaussian process regression (GPR) can be an efficient model 

for DSM mapping continuous soil properties. However, there is still a research gap in exploiting 

the model potentials, especially in contrast to geostatistical models and assessing their 

uncertainties. The GPR model, a novel ML model, can handle uncertainties in given measurement 

and unevenly spaced and correlated training samples through a user-specified covariance kernel. 

Above all, the main challenge in ML techniques is that the predicted value at each point is derived 

based on the predictor variables without considering the spatial autocorrelation of the data (Takata 

et al., 2007). Also, when there are few covariates, available environmental variables are only 

weakly correlated to the target variable, and insufficient data for calibration, ML models confront 

a hurdle. It's also important to remember that training a model solely on a regression matrix of 

paired observations of dependent and independent variables while neglecting their spatial 

interrelations is inherently suboptimal. Hence, it is essential to note that samples with spatial 

intelligence of a given field may improve the prediction accuracy of a targeted soil property or soil 

nutrients. Metcalfe et al. (2016) demonstrated how scale-dependent relations between weed 

density and soil properties could be examined with appropriate sampling and analysis. This may 

be achieved through an optimal sampling scheme and sampling ratios showing spatial variability 

in a given field. Because soil spatial variation is the product of multiple processes functioning at 

multiple geographical scales, changes in some soil properties can be patchy. Besides that, hybrid 

predictive models could be adopted for accurate prediction. However, these models do seem not 

data specific, but their models are. Therefore, the best model should be developed according to an 

individual situation based on the output obtained from the different models. It is possible to create 

hybrid models by combining different predictive models to improve the modelling performances. 

Further details on the framework for the other rules for the combination of classifiers were reported 

by Kittler et al. (1998). 
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1.4 Environmental covariates 

Machine learning models are used to create digital representations of spatial soil distribution 

utilizing point soil measurements and spatially comprehensive environmental covariates in digital 

soil mapping (McBratney et al., 2003, Scull et al., 2003, Florinsky, 1998). Soil point measurements 

are response variables, and environmental covariates are predictors; both are available and can be 

employed in the digital soil mapping approach. Environmental covariates include terrain properties 

(obtained from digital elevation models) (Mueller and Pierce, 2003), remote sensing imagery (Wu 

et al., 2009), climatic data (Mishra et al., 2010) and soil data (Nussbaum et al., 2014; John et al., 

2020). The digital elevation model (DEM) provides many data attributes to help soil scientists map 

and quantify landforms and soil variability (Wilson and Gallant, 2000). The source of the elevation 

data includes the techniques for measuring elevation either on the ground or remotely, the locations 

of samples and the density of samples, and the algorithms used to calculate different terrain 

attributes (Theobald, 1989; Chang and Tsai, 1991; Bolstad and Stowe, 1994; Florinsky, 1998; 

McKenzie et al., 2000). In addition, other remotely sensed data contain extractable soil 

information, e.g., spectral reflectance. These data produce reliable spatial-temporal information 

and offer possibilities of supplementing or reducing conventional soil sampling in soil mapping 

(Forkuor et al., 2017; Forkuor et al., 2017; Malone et al., 2016). RS data are readily available and 

are free of charge (e.g., Landsat, SRTM, Sentinel-1, -2) (Mulder et al., 2011). 

Besides that, other secondary/auxiliary data can be found. For example, portable X-ray 

fluorescence spectroscopy (pXRF) and Inductively Coupled Plasma Optical Emission 

Spectroscopy (ICP-OES) have been employed to predict different response variables. For instance, 

Kebonye et al. (2021) used data sourced from portable X-ray fluorescence spectroscopy (pXRF) 

to map arsenic via regularized linear models. Their findings showed pXRF as a promising tool for 

estimating arsenic in the floodplain area of Příbram (Czech Republic). Also, John et al. (2021) 

revealed that the pXRF dataset could be promising in estimating soil organic carbon in the 

floodplain area of Příbram. At the same time, Agyeman et al. (2022) estimated nickel concentration 

via the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) dataset using 

empirical Bayesian kriging and support vector machine regression models.  

Nevertheless, there are significant flaws in applying the machine learning model to estimate soil 

spatial variability via different environmental covariates. First, adequate and evenly dispersed 

point soil data throughout the mapped region is required (Carré et al., 2007). Second, unlike soil-
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landscape process models, the model structure looks at the empirical link between environmental 

covariates and soil parameters (Grunwald, 2009). Lastly, the variables are rough estimates of the 

natural environmental condition that shaped the soil. And where these challenges exist, soil 

researchers use the available observation points with readily accessible environmental covariates 

combined with robust predictive models in creating or updating soil property maps for different 

uses. 

In general, mapping soil properties via environmental correlation involves the iterative 

development of predictive models for the location under investigation. Geology and pedologic soil 

formation may also serve as environmental covariates as they help explain the spatial variability 

of soil properties within or among agricultural fields. Besides this, soil variability may also be 

generated by tillage, and soil management activities may serve as factors employed in a DSM 

model to explain the variability of a targeted soil property. Nevertheless, these variables interact 

at different geographical and temporal scales, being locally influenced by erosion and deposition 

processes (Iqbal et al., 2005). The extraordinary complexity and range of spatial and temporal 

scales over which soil-forming processes operate make developing models for quantitative, 

mechanical, and mathematical spatial prediction an almost impossible task in routine soil surveys. 

However, there have been some notable attempts (Dietrich et al., 1995). Despite the complexity, a 

simplifying hypothesis is necessary, and reliance must be placed on approximate local models of 

pedogenesis with varying levels of empiricism. McSweeney et al. (1994) reported that soil-terrain 

modelling techniques had been developed as a quantitative method for predicting soil variability 

using observed patterns in environmental variables known to influence soil property variabilities, 

such as topography, hydrology, or geology. DSM techniques have been used to model the spatial 

distribution of specific soil properties, including A-horizon thickness, organic matter content, 

extractable P, pH, and sand and silt content (John et al., 2021; John et al., 2020; Moore et al., 

1993), A-horizon thickness and depth to carbonates (Bell et al., 1994) and A-horizon thickness 

and solum depth (Gessler et al., 1995). Bell et al. (1992) predicted and mapped soil drainage class 

using topographic information derived from DEM, a perennial stream, ephemeral surface drainage 

paths, and geology. Penížek and Borůvka  (2006) examined the influence of terrain derivatives on 

soil depth via cokriging and regression kriging methods. Their study reported that slope, aspect, 

and elevation influenced soil depth distribution. Similarly, Penížek et al. (2016) examined the 

influence of different terrain model resolutions on colluvial soils. 
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1.5 Soil nutrient and soil properties variabilities 

In space and time, soil nutrients and properties display a high degree of variability (Fanuel et al., 

2018). Because soil properties and nutrients result from the simultaneous interplay of biological, 

chemical, and physical processes working at many scales, such variability is continuous across the 

landscape and scale-dependent (Haileselassie et al., 2011; Panday et al., 2018). In most tropical, 

Mediterranean and temperate intensive farming systems, it is increasingly concerned that if the 

nutrient and soil organic matter (SOM) supplies continue to decline, the land's ability to support 

agriculture will be jeopardized (Lal, 2015). As a result, it is vital to comprehend the controllable 

physical characteristics and the related soil nutrient cycle mechanisms. For example, recent studies 

have found falling trends in primary productivity and SOM in Malawi owing to continuous use 

(Li et al., 2017; Messina et al., 2017; Mpeketula, 2016), as well as low nitrogen and soil organic 

carbon levels in Nigeria (Nafiu et al., 2012; John et al., 2019). On the other hand, these and other 

studies serve as pointers since they were done at national or point sizes and are not typical of soil 

conditions across and within farming landscapes (Forkuor et al., 2017).  

Soil nutrient elements such as total soil nitrogen, available phosphorus, and exchangeable bases in 

western Africa, the central European region, and north-western Africa have been well-studied 

(John et al., 2020; Žížala et al., 2021; Al Masmoudi et al., 2021). In the western African region, 

for example, Nigeria, soil properties such as particle sizes, organic carbon, and pH are regularly 

studied via the conventional soil mapping approach (Esu, 2005). The north-western, for example, 

Morocco region, is currently developing its soil fertility map via DSM. On the other hand, the 

DSM approach is already established in the central European area (e.g., the Czech Republic) owing 

to its large-scale soil legacy data (Zádorová et al., 2020).  

The spatial variability of soil properties and nutrients across different areas is influenced by 

environmental factors such as soil type, climate, vegetation, etc. For example, in Nigeria, 

according to Esu (2005), total nitrogen is generally low, ranging from 0.03 to 0.24 %. In southern 

Nigeria, which is predominantly rainforest, the total nitrogen content in soil is higher than in the 

Northern part of Nigeria (i.e., savannah). Conversely, due to the vegetation variation, available 

phosphorus is higher in the savannah region (i.e., northern Nigeria) than in the rainforest area 

(southern Nigeria). The available phosphorus ranges from 3 to 20 mg/kg. The current situation of 

the country current situation is due to natural ecosystem degradation following deforestation, 

overgrazing, nutrient mining, soil erosion, loss of biodiversity, and lack of up-to-date soil property 

map for accurate soil management decisions. 
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According to the National Institute of Agricultural Research (INRA), in Morocco, soil organic 

matter (SOM) ranges from 1.5 to 3.5 % in all the regions. The predominant SOM value ranged 

from 1.5 to 2.5%. The part with the dominant high SOM (2.5 to 3.5 %) is the Taounante, 

characterized by a temperate climate and stable slope. The high SOM values correspond to the 

slightly acid-to-alkaline reaction (5.5 to 8.5) and relatively high soil available phosphorus (10 to 

40 %) obtained in the country. It is worth noting that the spatial distribution of soil organic matter 

corresponds to low to high soil total nitrogen, available phosphorus, soil pH, exchangeable bases, 

etc. According to Žížala et al. (2021), the SOC of the Czech Republic ranged from 0.08 to 3.99 % 

at 0–30 cm. However, the dominant SOC content in the country ranged from 1–1.5 %. The value 

is higher than what is obtained in Nigeria but similar to Morocco because of comparable climatic 

characteristics. Similarly, the pH value of the country ranged from 2.9 to 7.5 at a depth of 0–30 

cm. 

Soil organic carbon (SOC) accumulation is sensitive to land use, farming practices, and 

environmental factors (Xie et al., 2021). However, Hengl et al. (2015) reported elevation as the 

most critical influence in the spatial prediction of SOC in topsoil Africa. Similarly, Wang et al. 

(2012) observed that elevation, slope, soil clay, and water contents explained the variability of 

SOC and N in Western Australia. Conversely, Žížala et al. (2021) reported that terrain attributes 

explain SOC variability at a coarser resolution than a more detailed resolution. Terrain and 

bioclimatic variables were reported to control the spatial distribution of soil water status, dynamics 

of plant litter mineralization, as well as erosion and deposition processes (Hengl et al., 2015). 

Furthermore, the function of elevation in explaining spatial variability of SOC and N, for instance, 

can be linked to corresponding differences in soil temperature and the intensity of cultivation, 

which is stronger in lower locations due to accessibility than in higher positions. 

1.6 Sampling strategies and sampling ratio 

The purpose of soil sampling is to evaluate a field's soil nutrient status and properties as accurately 

as possible while considering the associated financial budget (Dinkins and Jones, 2008). Also, soil 

sampling strategies assess the soil nutrient status from which fertilization, liming and other soil 

management recommendations can be given (Flowers et al., 2005). In addition, the spatial 

variability of soil nutrients between and within regions can result in surplus and limited 

fertilization. Soil sampling could be traditional or more detailed (Dawson and Knowles, 2018). 

Traditional soil sampling considers sites as homogenous areas of similar soil nutrients and 
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properties distribution (Flowers et al., 2005). In contrast, detailed sampling strategies such as grid 

or directed soil sampling aim to look at soil nutrients and properties spatially to improve soil 

production through a proper soil management approach. Sampling is the most expensive part of a 

survey since it involves principles like survey intensity, geographic variability, and mapping scale 

(Webster and Oliver, 1992).  

Numerous farming operations still use traditional sampling strategies as the best way to sample 

fields. In this sampling strategy, a composite soil sample is obtained by randomly probing various 

locations across the sampling region and then combining them into one sample. Although the 

method may be inexpensive, it has the substantial drawback of inadequately characterizing field 

variability, resulting in coarse maps with clear, defined borders separating sampled regions 

(Crozier and Heiniger, 2001). 

Detailed sampling strategies (e.g., regular systematic sampling) (called cell centre sampling) 

involve taking one sample from the centre of each grid cell (Flowers et al., 2005). Studies have 

shown that the closer the sample point distance, the more accurate the assumptions and predictive 

models between the soil nutrients and the sites under investigation (Wollenhaupt, 1994). However, 

Franzen and Peck (1995) recommended that grid sampling points be decided by the uniformity of 

the field, soil types, past management and financial budget. Besides that soil sampling strategies, 

some studies have focused on estimating the variogram of soil properties (Minasny and 

McBratney, 2006; Vašát et al., 2010). Nevertheless, sampling on a point grid (square, triangular, 

or hexagonal) is generally advised for consistently shaped regions when no auxiliary information 

is provided. In these cases, the equilateral triangular grid offers the most accurate assessment of 

the desired attribute (Yfantis et al., 1987). According to Webster and Oliver (1992), at least 150 

observations are required to estimate the variogram correctly. 

On the other hand, many regions of interest are irregularly shaped, necessitating a more complex 

sampling strategies optimization approach. One optimization method provides an ideal distribution 

of sample locations in a geographical area via environmental attributes. The space-filling or spatial 

coverage sample is the term for this approach (Royle and Nychka, 1998). It makes the distance 

between each sample place as short as possible. However, determining the appropriate sampling 

strategies for mapping with machine learning models has not yet been considered in detail in digital 

soil mapping research. 

According to Boettinger et al. (2010), simple random, stratified random, and regular sampling 

strategies are most suitable for statistical inference since they introduce randomness at the early 
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stage of the sampling strategy. Apart from the sampling strategies mentioned above, other soil 

sampling strategies, model-based sampling strategies, and conditioned Latin hypercube sampling 

(cLHS) exist (Boettinger et al., 2010). In model-based sampling procedures, the spatial properties 

of the soil samples and the auxiliary factors that impact pedogenesis are considered (Sun et al., 

2017; Thomas et al., 2015). Meanwhile, cLHS incorporates continuous and categorical 

environmental covariates into the sampling strategy (Minasny and McBratney, 2006). Thanks to 

advances in remote sensing technology, soil covariate factors, such as vegetation maps, geology 

maps, and their derivatives, may now be employed as auxiliary variables for digital soil mapping 

(Higo et al., 2015; Brus and De Gruijter, 1997; Brungard and  Boettinger, 2010). In addition, these 

datasets are essential in influencing the spatial distribution of soil parameters, and representative 

ancillary variables can be selected for model-based soil sampling to determine the best 

geographical areas for soil samples (Viscarra Rossel et al., 2010). Minasny and McBratney (2006) 

employed a cLHS sampling approach to building one optimal and efficient soil sample plan using 

a digital elevation model, slope, compound topographic index, and normalized difference 

vegetation index as supplementary data. Qin et al. (2011) used cluster analysis of soil 

environmental variables to find representative sample spots and then developed a sampling design 

approach. These researchers quickly created a realistic and appropriate sampling strategy by 

obtaining extensive ancillary information. As a result, environmental variables, particularly in a 

field or local regions, cannot provide correct supplemental information for the spatial unbiasedness 

of soil attributes (Ciampalini et al., 2015). 

Soil sample ratio or size is the number of observations that reflects the spatial variability of a target 

soil property in a given space (McBratney and Webster, 1983; Adetunji, 1994). By maximizing 

the sample ratio and recognizing representative sampling areas, field sampling, a significant 

problem in soil surveys, helps acquire reliable soil mapping data (Wang et al., 2012). Sampling 

strategy and sample ratio are the most vital criteria to consider in predicting soil parameters that 

vary spatially based on the vast heterogeneity of soil environments (McBratney and Webster, 

1983). In DSM, appropriate sampling strategies and sample ratios remain challenging (Lai et al., 

2021). Both sampling strategy and sample ratio limit most modelling regime accuracy. Some 

sampling schemes may require many observation points to make accurate soil nutrient 

recommendations in highly complex sites (for example, grid neural sampling scheme). 

Unfortunately, even though this method may present the reality of the soil condition, it is labour-
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intensive (for instance, the time taken to collect soil at a large scale) and involves enormous 

financial implications for laboratory analysis (Higo et al., 2015).  

Soil sampling and sample ratio are the initial step in obtaining site-specific information to make 

liming, fertilization, and other soil management decisions. Choosing the right sampling strategy 

ensures that the soil in a field is gathered in a way that yields the most accurate and dependable 

soil test findings. Wang et al. (2019) proposed a sampling strategy with good spatial coverage and 

feature space coverage for precise farm field-level soil mapping for a limited sample ratio. Use a 

sampling approach that best captures that variance since soils in agricultural fields might vary 

greatly (Pal et al., 2009). When using a site-specific management method, proper sampling is very 

critical. However, where financial limitations exist, soil samples are collected to represent 

important agricultural soils, essential geology information, toposequence order, pedological soil 

information, and mineral weathering sequence. In addition, a sequence of soil types is recognized 

to isolate the effects of a single factor as far as possible. These approaches have been adopted at 

local, regional, and national scales (Pal et al., 2009). Besides that, the ideal sample size varies 

greatly depending on the soil type, sampling depth, and nutrient type (Adetunji, 1994). According 

to Adetunji (1994), 25 to 30 and 30 to 40 core samples are advised in the tropical region for newly 

opened ground and highly farmed land, respectively. Conversely, Minasny and McBratney (2006) 

opined that optimal sample size accurately represents the variability in the environmental 

covariates and provides enough samples for predictive models. 
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2. AREAS OF STUDY 

The research presented in this thesis was conducted in three different countries with diverse 

environmental and soil conditions. The studies were conducted in Nigeria, Morocco and Czech 

Republic (Figure 1).  

Nigeria, with a land area of 923,768 km², is in West Africa, between longitudes 3° and 14° and 

latitudes 3 ° and 14° (Awala et al., 2019). Nigeria has three different climatic zones: a tropical 

monsoon climate in the south, a tropical savannah climate in the centre and northern areas, and a 

Sahelian hot and semi-arid climate in the north (Amanchukwu et al., 2015). Soil conditions are 

characterized by low inherent soil fertility, as evidenced by low soil organic matter, base saturation 

and low CEC (Esu, 2005). The country is actively engaged in agriculture with high agriculture 

production and intensity. 

Morocco is surrounded by the North Atlantic Ocean and the Mediterranean Sea in the northwest 

corner of Africa, with a total land area of 446,550 km² (Schilling et al., 2012). The Atlantic Ocean 

to the west, the Mediterranean Sea to the north, and the Sahara Desert to the south and southeast 

significantly impact rainfall and temperature. Between October and May, the country receives 

most of its rain with an average annual rainfall of 1,200 mm, with temperatures ranging from 18°C 

to 28°C in the summer and 8°C to 17°C in the winter (Tuel et al., 2021). Soil conditions of the 

country are characterized by high pH value, high potassium content and relatively high soil organic 

matter (Lahmar et al., 2020). 

The Czech Republic is a landlocked country in the middle region of Europe. The country has a 

total of 78,864 km² of land area, with agricultural lands representing more than 50% of the total 

area of the Czech Republic (Sklenicka,  2006). The country is in a transition zone, with a climate 

influenced by maritime and continental air masses (Hradecký and Brázdil, 2016). The soil profile 

of the Czech Republic consists of some rich, black chernozems and good-quality brown soils in 

the drier and lower areas.  
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Figure 1. Map of the countries where the studies were conducted showing the specific regions of 

sampling. 
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2.1 Cross River State, Nigeria 

Figure 1 is the map of the Cross River State in the southeastern region of Nigeria, showing the 

study area of some parts of the thesis. In the research work conducted in Calabar, Akamkpa, Yakurr 

and Ogoja Local Government Areas, soil sampling was conducted using a simple sampling 

strategy. This is due to the field having similar variability due to natural soil qualities (e.g., soil 

texture and drainage) and soil management history (e.g., drainage and previous land use).  

Calabar extends from latitudes 4°51'45.86"N and longitude 8°19'50.69"E and spreads over an area 

of approximately 200 km2 with an elevation of about 44 m above sea level (John et al., 2018). It 

is under the humid tropical rainforest zones, marked by two distinct seasons (rainy and dry). The 

area receives the mean annual rainfall above 3500 mm with a temperature range between 22°C 

and 30°C and relative humidity of 83 % (John et al., 2018). The mainland uses include rain-fed 

cultivation of tree crops and arable crops. The dominant landscape units in the study area are 

relatively flat terrain. The soils of the study area are developed from a coastal plain sand parent 

material (Akpan-Idiok et al., 2012; Afu et al., 2019). They are characterized by udic moisture and 

isohyperthemic temperature regimes, respectively (Soil Survey Staff, 2014). In addition, according 

to USDA soil taxonomic classification, the soil order of the region is overwhelmingly Ultisols, 

and the soil is classified as Typic Kandiudults (Soil Survey Staff, 2014). In the area, unconsolidated 

materials occurred with high sand and silt content (Akpan-Idiok et al., 2012; Afu et al., 2019). Due 

to the lithological homogeneity observed by the high sand content, the soil class distribution in the 

landscape is similar, with a high occurrence of Inceptisols and Ultisols (Esu，2005). 

The Ogoja area is covered by the southern guinea savannah and cultivated for oil palm, teak, maize, 

sugar cane, cassava, groundnut, oil palm, vegetable crops and paddy rice. At the same time, 

tropical rainforests surround the Yakurr and Akamkpa areas. Yakurr and Akamkpa have similar 

climates and vegetation and often experience slight temperature variations. Temperature varies 

from 23 to 34 °C in the Ogoja area and 23 to 32 °C in Yakurr and Akamkpa areas (Sambo et al., 

2016). A sub-humid tropical climate with distinct wet and dry seasons characterizes the region. 

Rainfall is between 1500 and 2500 mm per year, and relative humidity is between 80 and 90 %. 

They are characterized by udic moisture and isohyperthemic temperature regimes, respectively 

(Soil Survey Staff 2014).  
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Figure 2. Shows the map of Cross River State in southeastern Nigeria with different study areas. 

Calabar Municipal Area is closer to the coastal zone; Akamkpa Local Government Area is 

predominantly the forested area of the state; Yakurr and Ogoja Local Government Areas are 

composed of grassland and forest areas. 
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2.2 Frýdek-Místek district, Czech Republic 

The research was conducted in the Moravian-Silesian Region's foothills, Frýdek-Místek district in 

the Czech Republic (Figure 3), to study soil sulphur variability. The site is an active agricultural 

site situated at geographical coordinates of latitude 49° 41′ 0″ N and longitude 18° 20′ 0″ E and 

the elevation of 225–327 m above sea level. Meanwhile, according to the Koppen classification 

system, the area's climate is classified as Cfb = Temperate oceanic climate with high rainfall even 

in dry months. The study area is approximately 889.8 km2 designated for agricultural activities 

with scattered trees. The area's soils are characterized by a cambic diagnostic horizon that 

distinguishes them with a fine sandy loam texture. The soil contains more than 4% clay 

concentration and a lithic discontinuity with reduced carbonate content (Kozak et al., 2010). 

 

Figure 3. Map of Frydek Mistek situated in the Moravian-Silesian Region's foothills of the Czech 

Republic 
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2.3 Taounate province, Morocco 

We also conducted some studies in Morocco, testing sample ratios and sampling schemes in 

predicting soil phosphorus and potassium. The systematic method was applied by subdividing the 

study area using a regular 1 km square grid to select sampling points while ensuring complete 

coverage of the study area (Figure 4). A total of (n = 1470) samples were collected to a depth of 

0–40 cm over two months (November and December 2013). Figure 3, the selected area for the 

study belonging to Taounate province in the north of Morocco (34° 47′N, 4° 4.4′W and 34° 05′N, 

5° 10.3′W), is displayed as a rectangle of 7979 km2 (101 km x 79 km) (Fig. 1). Jbel Oudka is the 

most important mountain of the Taounate region, with an elevation that reaches 1587 m and is 

characterized by significant vegetation cover. The area covered by this study contains a part of the 

Atlas Mountains in the northwest. In general, the altitude ranges from 78 to 1969 m. A 

Mediterranean climate and irregular rainfall characterize this region. According to the Köppen-

Geiger classification, the study area is in the CSA class with a mean annual temperature of 17.8 

°C and mean precipitation of 549 mm. As a result, the average maximum temperature of the hottest 

month is approximately 34.2°C and the average minimum of the coldest month is 0.5°C (Allali et 

al., 2020; Rezouki et al., 2021). Geological formations of the Taounate wrinkle consist of a 

Jurassic-Cretaceous series of marl overcome molassic formations composed of sandstone and 

conglomerates (Mesrar et al., 2017). 
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Figure 4. Map of study area showing training and testing sample points at a depth of 0–40 cm. The 

study area is by the coast of the Mediterranean. 
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3. AIMS AND HYPOTHESES 

Testing the DSM approach's performance for site-specific management necessitated this study. 

Crop and underlying soil management occur at a smaller scale than the whole field. Therefore, it 

is essential to test the workability of the DSM technique for site-specific management using few 

samples, variation of sample ratios and sampling strategies, and environmental covariates. These 

investigations may lead to the administration of soil fertilizer and lime rates depending on soil 

laboratory analysis results, and plant demands particular to that location, maximizing total field 

production—site-specific management results in a variable rate of applied amendments. The 

quantity of amendments needed in a field varies depending on the soil nutrient status (soil testing), 

the crop produced, soil texture, drainage, and landscape position. 

The study's general aim is to test different DSM methods, sampling strategies and ratios to estimate 

soil nutrients and properties. Digital soil mapping technique is still developing in Nigeria and 

Morocco. Therefore, it is essential to test and show the technique's usefulness in developing 

updated soil spatial variability of soil nutrients and properties.   

3.1 Aims 

1. Testing different geostatistics and machine learning models to estimate soil nutrients and 

properties with different environmental covariates. 

This objective was achieved in the following research articles:   

Article 1: John, K., S. M. Afu, I. A. Isong, E. E. Aki, N. M. Kebonye, E. O. Ayito, P. A. Chapman, 

M. O. Eyong, and V. Penížek. "Mapping soil properties with soil-environmental covariates using 

geostatistics and multivariate statistics." International Journal of Environmental Science and 

Technology (2021): 1-16. 

Article 2: John, K., Afu, S. M., Isong, I. A., Chapman, P. A., Kebonye, N. M., & Ayito, E. O. 

"Estimation of soil organic carbon distribution by geostatistical and deterministic interpolation 

methods: a case study of the Southeastern soils of Nigeria." Environmental Engineering & 

Management Journal (EEMJ), 20(7). 

Article 3: John, K., Agyeman, P. C., Kebonye, N. M., Isong, I. A., Ayito, E. O., Ofem, K. I., & 

Qin, C. Z. "Hybridization of cokriging and gaussian process regression modelling techniques in 

mapping soil sulphur." Catena, 206, 105534. 

2. Testing different multiple linear modelling approaches in estimating soil organic matter 

with some selected soil physical properties. 

This objective was achieved in the research article below:   



27 
 

Paper 4: Ofem, K.I., John, K., Pawlett, M., Eyong, M.O., Awaogu, C.E., Umeugokwe, P., 

Ambrose-Igho, G., Ezeaku, P.I. and Asadu, C.L.A., 2021. Estimating Soil Organic Matter: A Case 

Study of Soil Physical Properties for Environment-Related Issues in Southeast Nigeria. Earth 

Systems and Environment, 5(4), 899-908. 

3. Evaluating the role of sampling and sample ratios in a digital soil mapping approach of soil 

nutrients. 

This objective was achieved in the article below: 

Article 5: John, K., Bouslihim, Y., Bouasria, A., Razouk, R., Hssaini, L., Isong, I. A., Ayito, E. 

O., Ambrose-Igho, G. (2022). Assessing the impact of sampling strategy in Random Forest-based 

predicting of soil nutrients: a study case from Northern Morocco Geocarto International (2022): 

1-14. 

 

3.2 Hypotheses 

The hypotheses of the study are as follows:  

1. Applying more robust geostatistics and machine learning models may be helpful in 

mapping soil properties and soil nutrients. 

2. Sampling strategies and sample ratios may contribute to accurately mapping soil nutrients. 
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4. SYNTHESIS AND CONCLUDING REMARKS 

4.1 Synthesis of key findings  

In summary, the present thesis work is a compilation of published articles. The thesis synthesized 

different findings on digital soil mapping techniques of soil properties and nutrients performed 

under other sampling strategies with varying sample ratios.  

In the studies conducted in Nigeria, under a similar sampling approach (e.g., simple random 

sampling strategies), we tested different predictive models (e.g., empirical Bayesian kriging-EBK, 

MLR, ordinary kriging-OK, cokriging-Cok and inverse distance weighting-IDW). These simple 

models were employed to demonstrate their performance and how they could be improved with 

an increase in soil sample ratios and sampling strategies. 

Firstly, in the Calabar Municipal region of Nigeria, we tested a novel geostatistic model [e.g., 

empirical Bayesian kriging (EBK)] with a few samples obtained on a plain surface and the results 

compared with the simple multiple regression model. In exploring the dataset, we observed via 

principal component analysis (PCA) that soil properties and environmental covariates (terrain 

derivatives) explained 78.1 % of the variability in the dataset. After then, we applied the EBK 

model, which is more robust than OK and uses the autocorrelation function by simulating the few 

samples obtained. The interpolation output presented good predictions for Mg, K, P, pH, and TN 

(R2 ≥ 0.5). At the same time, the linear regression model performed poorly except in the case of 

Mg, where a good prediction was obtained only. In addition, in this particular area where this study 

was conducted, although characterized by relative plain relief, we observed that soil properties 

variability might not be explained more accurately with the terrain derivatives at a field scale. 

However, the study proved that EBK is more robust, utilizing a few sample points to explain the 

spatial distribution of soil properties and nutrients. 

Further in the study, in the Akamkpa region of Nigeria, SOC was mapped only using ordinary 

kriging (OK,) cokriging (Cok) and inverse distance weighting (IDW) models. A slightly 

undulating landscape characterizes the area where this study was carried out. With the different 

models applied in the study, SOC demonstrated a moderate spatial dependence and explained the 

importance of estimating SOC spatial variability. Using the Cok model, terrain derivatives were 

incorporated to improve the spatial structure of the SOC variability. We observed that the Cok 

produced a smaller mean error due to adding terrain derivatives. Cok prediction via the 

significantly correlated terrain attributes (elevation, LS factor, and profile curvature) improved the 
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map structure compared to OK and IDW. The Cok map was more detailed, showing the capability 

of terrain attributes to be robust ancillary variables for improving detailed spatial SOC maps. 

Since the Cok model showed prospects in mapping SOC, we further applied it to develop a more 

robust hybrid model for mapping soil sulphur, a vital soil nutrient, with samples collected via grid 

sampling schemes. The study tested cokriging (Cok) and the ML technique (Gaussian process 

regression; GPR) and then compared their performance with a hybrid machine learning model 

called a cokriging-Gaussian process regression (Cok-GPR) model under grid sampling strategies. 

The hybrid method used the Cok matrices to predict soil sulphur via GPR. All parameters, sulphur 

(S), calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), and vanadium 

(V), were estimated via inductively coupled plasma optical emission spectroscopy (ICP-OES) 

equipment. 80% of the datasets were used for calibration, while the remaining 20% were used for 

validation. In Cok, we used all the data for cross-validation, and the results showed that Cok1 (Ca, 

K, Na) performed better than Cok2 (P and Mg) and Cok3 (V). In the GPR models, GPR1 (Ca, K, 

Na) performed better than GPR2 and GPR3. However, in the Cok-GPR models, all models were 

generally improved and were within acceptable model criteria—using a Taylor diagram, Cok1-

GPR outperformed Cok and GPR models, respectively. 

The fourth article in the study set out to test different linear model functions to minimize variables' 

collinearity in soil organic matter (SOM) prediction in southeastern Nigeria in randomly collected 

samples. This study pioneered a novel technique to understand SOM variation in soils across 

different sedimentary lithologies (e.g., limestone, Shale–limestone-sandstone intercalation, 

alluvium and sandstone-limestone intercalation). This study tested various multiple linear 

regression functions on soils developed on different sedimentary lithologies to explain the inter-

relationship between SOM and bulk density (BD), saturated hydraulic conductivity (Ksat), total 

(Total P), air-filled (Air P), and capillary porosities (Cap P). The study revealed a strong 

relationship between SOM and Ksat, BD in soils developed on limestone. After then, we applied 

the different linear regression functions in the leap package in R for SOM estimation, and the best 

linear regression function was leapbackward  (RMSE = 11.50 %, R2 = 0.58, MAE = 8.48 %), 

which produced a smaller error when compared with leapforward, leapseq, and lmStepAIC 

functions.  

The study fifthly set out to explain the spatial sensitivity of sample ratios with sampling strategies 

in soil nutrient prediction. The findings obtained in the study revealed that random sampling was 

suitable for predicting phosphorus, whereas the conditioned Latin hypercube sampling (cLHS) 
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was suitable for predicting potassium. Furthermore, model accuracy improved when the sample 

ratio increased in both random sampling and cLHS for phosphorus and potassium prediction. This 

is because an increase in sample ratio may improve the predicting accuracy and somewhat offset the 

influence of inappropriate sampling strategies. This finding may be attributed to the fact that 

sampling strategies largely depend on the understanding, knowledge, and experience of the spatial 

variation of soil nutrients and properties. And similar findings were obtained in sampling strategies 

studies by Zhao et al. (2016).  

4.2 Concluding remarks  

The findings in the thesis revealed the pragmatic nature of EBK as a model able to maximize a 

small sample ratio via a simple sampling strategy to produce high accuracy compared to 

multivariate statistics. The multivariate statistics (e.g., PCA) revealed that selected study soil 

properties and nutrients exhibit a strong relationship compared to the terrain derivatives in a low 

relief condition.  

Comparing the performance of the OK model with Cok and IDW in the mapping of SOC (article 

2), we observed that even with a 50 % increase in samples (compared to article 1), Cok and IDW 

outperformed OK as the samples were not sufficient to establish a strong autocorrelation function 

with OK via a simple sampling strategy (article 2). Generally, the study showed that the EBK 

model has higher accuracy and lower uncertainty with fewer samples (article 1). However, it would 

be interesting to learn whether increasing the samples may improve the accuracy of EBK, as in the 

case of Cok for SOC mapping (article 2).  

On the other hand, applying a novel Cok-GPR model showed some prospects in accurately 

estimating soil sulphur. Hence, it is inferred that combining geostatistics and ML could be an 

exciting aspect of exploring soil nutrient mapping (article 3). 

In this thesis, we pointed out that increasing the sample ratio with corresponding random or 

conditioned LHS sampling strategies in a random forest model can also provide more insight into 

accurately estimating soil nutrients in a given landscape (article 5).  

Specific conclusions of the different studies are presented below: 

Under a simple random sampling strategy, comparing the performance of geostatistic and 

deterministic models in SOC prediction, Cok and IDW performed well. Therefore, soil and land 

users could adopt SOC maps by Cok and IDW, as the maps revealed low SOC in the study area. 

These maps will be a vital tool in planning the different nutrient needs of crops for adequate 

agricultural production productivity. In addition, the created maps could be used as a reference 
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point for various soil purposes, ranging from sampling optimization to updating soil maps with 

more ancillary variables. The research sets a precedent for future digital soil mapping in Nigeria. 

Therefore, future studies should include other auxiliary data with a more robust model and cover 

a broader range of soil types to improve model performance. 

Under the grid sampling scheme, we mapped soil sulphur via a proposed cokriging-Gaussian 

process regression. The model more precisely showed the spatial distribution of soil sulphur (S) 

levels in the actively cultivated agricultural soil. The Cok-GPR model had higher fitting accuracy 

and robustness than Cok and GPR models. Even though Cok-GPR has a higher computational 

cost, it yielded the best prediction. Therefore, the proposed Cok-GPR model may be applied to 

efficiently predict soil nutrient element levels, the products used for proper soil fertilization 

calculations, and precise soil management practices. 

The thesis found that using some selected soil physical parameters and parent material to predict 

soil organic matter (SOM) via different linear functions could be helpful in understanding soil 

interaction. The best-performing model function in the study was leapbackward, which yielded a 

lesser error when compared to the other linear functions. Furthermore, all models identified bulk 

density and hydraulic conductivity as the most critical variables in explaining SOM variation 

across different sedimentary geologies. 

Under two different sampling schemes (e.g., random and cLHS) and two sample ratios, we 

predicted potassium and phosphorus via a random forest model. The adopted approach showed 

some prospects for precisely and accurately predicting soil nutrients in the Mediterranean region. 

The conditioned Latin hypercubes and random sampling techniques in predicting soil nutrient 

levels exhibited success and robustness. For phosphorus prediction, random sampling worked 

well, while conditioned Latin hypercubes sampling worked well for potassium. According to the 

findings, both sampling schemes are susceptible to increased sample ratios. 

In conclusion, the thesis presented relevant and specific strategies to develop accurate estimates of 

different soil properties ranging from site situation, sample ratio, predictive models, and sampling 

strategies. We concluded that while digital soil mapping is rapidly approaching the point where it 

can meet various soil information demands, challenges such as new theories, techniques, and 

applications of digital soil mapping still exist. And this must be addressed in the future, particularly 

for highly plain and heterogeneous relief and human-affected environments, optimum sample 

ratios and sampling strategies. Therefore, we recommend that attention be given to the sample 
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strategies and sampling ratio with corresponding more robust models for accurately estimating soil 

properties and nutrients. 
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Abstract
The spatial modelling of soil properties provides us with essential and useful information relevant to soil fertility management 
and environmental protection. The study aims to investigate the ability of empirical Bayesian kriging and principal component 
analysis, multiple linear regressions with environmental covariates in the modelling of soil properties distribution. For this 
study, thirty (n = 30) soil samples were obtained at 0–30 cm depth and nine (9) soil-environmental covariates derived from 
the digital elevation model (Shutter Radar Topography Mission at 30 m resolution) in southeastern Nigeria. The summary 
statistics revealed high sand content (> 70%) which revealed that the soils of the humid tropics developed on the coastal 
plain parent material are coarse-textured. Pearson correlation matrix revealed a significant but weak correlation between 
soil properties and soil-environmental variables. Using empirical Bayesian kriging interpolation, the cross-validation results 
revealed an acceptable prediction for magnesium, potassium, phosphorus, pH and total nitrogen (R2 > 0.5 with RMSE closer 
to 0). The principal component analysis reveals that principal component 1 to principal component 5 could interpret 78.1% 
of the total variability of soil properties. Modelling each soil property using multiple linear regression with the derived soil-
environmental covariates, the study noted that only magnesium gave the best model fit with 50.9% of the soil-environmental 
covariates explaining its variability, while other soil properties presented unacceptable models. Therefore, to improve soil 
property prediction through multiple linear regression, more observation points are recommended to interpret better the 
performance of multiple linear regression over flat terrain system.

Keywords Empirical Bayesian kriging · Humid tropical soils · Multiple linear regression · Principal component analysis · 
Terrain attributes

Introduction

The soils of humid tropical Africa are highly weathered soils 
and are similar to those in the Amazon, dominated by Alfi-
sols, Ultisols, Oxisol and Inceptisols soil orders (Soil Sur-
vey Staff 2014). These soils are exposed to high weathering 

conditions. For example, the soils in South-East Nigeria 
receive excessive amounts of precipitation which amount to 
over 3500 mm per annum (Esu 2005). In the humid tropics, 
precipitation exceeds evaporation in the condition that the 
soils are developed. The soils are generally characterized 
by low inherent fertility which is an indication of low soil 
organic carbon, total nitrogen content, activity clays and 
exchangeable cations (Sanchez 1977; Akpan-Idiok 2012; 
Delarmelinda et al. 2017; John et al. 2018, 2019). These soil 
properties are conditioned by rainfall patterns, vegetation 
distribution, parent material, topography, vegetation, time 
(Jenny 1941) and other soil-environmental covariates which 
Bishop and McBratney (2001) and Zhang et al. (2017) refer 
to it as a subset of the soil-forming factors.

The application of the soil-environmental covariates 
over the years in soil mapping has been successful. Climate 
and terrain derivatives are amongst the most widely used 
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environment covariates in soil property modelling (Zhang 
et al. 2017). Climatic data are obtained from the interpola-
tion of temperature and precipitation from meteorological 
stations to more advanced remote sensing data acquisition, 
surface soil moisture, temperature and evapotranspiration 
(Boettinger et al. 2008; Petropoulos et al. 2015), while ter-
rain derivatives are obtained either from topogrid maps or 
open-source digital elevation model satellite platforms. 
Other covariates such as normalized difference vegetation 
index (NDVI), soil maps and landcover maps have also been 
successfully employed in soil property modelling (Zhu et al. 
2010; Qin et al. 2012).

In soil property mapping, different multivariate statistics 
such as generalized linear model (GLM), principal com-
ponent analysis (PCA), structural equation models (SEM), 
generalized additive models (GAM), random forest (RF), 
support vector machine (SVM), artificial neural network 
(ANN) in conjunction with different interpolation tech-
niques such as ordinary kriging (OK), regression kriging 
(RK), inverse distance weighting (IDW) and most recently, 
the empirical Bayesian kriging (EBK) have been used and 
are yielding good results (Bishop and McBratney 2001; Esu 
et al. 2014; Odeh et al. 2006; Beguería et al. 2013; de Car-
valho Junior et al. 2014; Zeraatpisheh et al. 2019; Gribov 
and Krivoruchko 2020). These methods of modelling have 
been adopted to evaluate the accurate spatial distribution of 
soil property with soil-environment covariates. However, the 
combinations of different statistical and interpolation meth-
ods have led to the progress made in advanced soil map-
ping. Zeraatpisheh et al. (2019) reported the combination 
of inverse distance weighting interpolation and clustered 
analysis in the study of soils in the semi-arid region of Iran. 
According to their studies, soil organic carbon distribution 
was spatially explained by vegetation index covariate using 
the clustered analysis and principal components. These 
advanced methods of mapping try to explain the relation-
ship between soil properties and environmental covariates 
(Beguería et al. 2013; Park and Vlek 2002; de Carvalho Jun-
ior et al. 2014; Akpa et al. 2014).

In as much as progress has been made in soil property 
mapping, little or no effort has been made in the application 
of multivariate statistics and geostatistics in the mapping of 
soil properties formed on a relatively flat terrain condition in 
the humid tropical rainforest. Therefore, the study hypothe-
sizes that in relatively flat terrain system, soil-environmental 
covariates may contribute little or nothing in soil properties 
variability.

This present study tries to model soil properties distri-
bution at the local scale level using a probability kriging 
method called EBK. The EBK was applied because it is a 
very robust and reliable interpolation for both automatic and 
interactive data interpolation. EBK comprises of two geosta-
tistical models: the intrinsic random function kriging (Chilès 

and Delfiner 1999; Gribov and Krivoruchko 2020) and linear 
mixed model that is called kriging with an external trend in 
digital soil mapping researches (Varentsov et al. 2020). EBK 
exemplifies a logical and viable statistical technique that 
could be applied to explain soil property distribution as a 
method to expose soil nutrient-deficiency, limiting crop pro-
ductivity in the region. Further details on EBK are presented 
by Gribov and Krivoruchko (2020). According to Hussain 
et al. (2014), EBK is most suitable for spatial prediction of 
total dissolved solids (TSD) in drinking water. Also, Mirzaei 
and Sakizadeh (2016) reported that EBK model was more 
superior to other interpolation techniques such as OK and 
IDW for estimation of groundwater contamination. More 
so, since the area experiences seasonal flooding due to the 
high amount of rainfall and poor drainage condition, it was 
necessary to adopt the EBK model for the study. Therefore, 
this study aims to investigate the ability of EBK and PCA, 
multiple linear regression (MLR) with environmental covar-
iates in the modelling of soil properties distribution in flat 
terrain system.

This research is carried out at the Department of Soil 
Science, University of Calabar, Nigeria and Department of 
Soil Science and Soil Protection of Czech University of Life 
Sciences, Prague, Czech Republic from January to Septem-
ber 2019.

Materials and methods

Basic idea

First step

The EBK technique, which is a geostatistical technique 
available in ArcGIS Desktop (Release 10.7 Redlands, CA: 
Environmental Systems Research Institute) was used to map 
soil property distribution in the study. The EBK method is 
a more practical geostatistical technique compared to other 
forms of kriging methods (Krivoruchko and Gribov 2014). 
This technique accommodates related uncertainties in plot-
ting the semivariogram and automates the most difficult 
aspects of composing an adequate kriging model (Sam-
sonova et al. 2017). The principles governing the technique 
includes the interpolation of a mapped property to any spe-
cific point (pixel), the variogram model is estimated from the 
data, and at each of the input data locations, a new value is 
simulated which then generates a new semivariogram model 
estimated from the simulated data using the Bayesian rule 
(Eq. 1),

(1)P(X, Y) = P(X|Y)P(Y) = P(Y ,X) = P(Y|X)P(X)



3329International Journal of Environmental Science and Technology (2021) 18:3327–3342 

1 3

P(X, Y) is known as the posterior, parameter to be estimated. 
P(Y|X) is referred to as the likelihood of an event. P(X) is 
referred to as the prior. P(Y) is called the marginal likeli-
hood, and in most cases, they are ignored.

According to Samsonova et al. (2017), the interpolation 
at some point is performed using only its subpopulation of 
available observations which makes the method independent 
of trends and then offers hope for a significant expansion of 
the application areas. Also, it is notable that the summary 
of the EBK algorithm is a heuristic algorithm at present.

This method is recent but has been employed in the map-
ping of the distribution of organic carbon in agricultural 
lands (Samsonova et al. 2017), for determination of radia-
tion contamination levels after the Fukushima nuclear power 
plant (NPP) accident (Gribov and Krivoruchko 2012) and 
also for benthos mapping (Mulcan et al. 2015). However, 
there are demerits in using the method such as slow process-
ing than other kriging methods when generating the interpo-
lated raster. Also, processing time rapidly increases as the 
number of input points, the subset size or the overlap factor 
increase and log transformation are only sensitive to outliers.

Generally, the semivariogram model was employed to 
estimate the spatial autocorrelation of the prediction (Web-
ster and Oliver 2007), and the equation expresses it,

where γ (h) is the semi-variance, N(h) is the point group 
number at distance h, Z(xi) is the numerical value at position 
xi and Z (xi + h) is the numerical value at a distance (xi + h).

Second step

Multivariate statistics The two multivariate statistics 
adopted in this study are PCA and MLR.

Principal component analysis The PCA allows the group-
ing of similar variables into dimensions or principal com-
ponents, without differentiating independent and depend-
ent variables (Borůvka et  al. 2005). Before implementing 
these multivariate statistics, a simple Pearson’s correlation 
analysis was carried out using R software to check the cor-
relations among soil properties and the selected soil-envi-
ronmental covariates. For the PCA, only principal compo-
nents (PCs), factors with eigenvalues > 1 were considered 
to be contributing in explaining to the variability in the soil 
properties. In the present study, in the closest possible way, 
the research evaluated variables that should express in the 
details the variability observed between soil properties and 
soil-environmental covariates, revealing how significant 
soil-environmental covariates are in predicting soil property 
distribution in a given geographical position (Malinowski 

(2)�(h) =
1

2N(h)

n∑

i=1

[Z(Xi − Z
(
Xi + h

)
]2

2002; Shukla et al. 2006). In PCA, variables with high fac-
tor loading (Eigen > 1) can be used to suggest the relation-
ship between variables under each factor (Zeraatpisheh et al. 
2019).

Multiple linear regression MLR technique uses several 
explanatory variables to predict the outcome of a response 
variable. The main reason behind this model is that the 
model tries to explain the spatial distribution of a dependent 
variable through a linear relationship between the explana-
tory variables (soil-environmental covariates) and the 
response variable (soil property) (Eq. 3).

where for n number of predictors, y dependent variable 
(soil properties), xi explanatory variables, independent vari-
ables or predictors (soil-environmental covariates), a inter-
cept (constant term), bi partial regression coefficients and ei 
the model’s error term (also known as the residuals).

This regression equation is used to model the spatial dis-
tribution of the variable of interest-based on the independent 
variables. Also, one soil property was modelled at a time as 
the response (dependent) variable with the generated matrix 
values of the soil-environment covariates from SAGA-GIS. 
For each model in MLR, the coefficient of determination 
(R-squared) is used to explain the extent of variation in the 
soil-environmental covariates. In this study, all the soil-envi-
ronmental covariates were applied to each targeted soil prop-
erty, and the predictor(s) that were significant at a 5% and 
10% significance level were noted. The “lm” function imple-
mented in the R software was used in the MLR analysis.

Final step

The EBK interpolation method was compared with MLR 
using the coefficient of determination (R-squared) to evalu-
ate the model with the best fit for each targeted soil property.

Case study

The study area

The present research was carried out in Calabar, Cross 
River State, in the southeastern region of Nigeria. This area 
extends from latitude 4° 51′ 45.86″ N and longitude 8° 19′ 
50.69″ E (Fig. 1) and spreads over an area of approximately 
200 km2 with an elevation of about 44 m above sea level 
(John et al. 2018). It is under the humid tropical rainforest 
zones, marked with two distinct seasons (rainy and dry sea-
sons). The area receives the mean annual rainfall of above 
3500 mm with a temperature range between 22 and 30 °C, 

(3)y = a +

n∑

i−1

bi ∗ xi ± �i
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and relative humidity of 83% (John et al. 2018). The main 
land-uses include rain-fed cultivation of tree crops and ara-
ble crops. The predominant crops are oil palm trees, banana, 
maize, sugar cane, cassava, groundnut and vegetable crops. 
The central landscape units in the study area are relatively 
flat terrain.

The soils of the study area are developed from a coastal 
plain sand parent material (Akpan-Idiok 2012; John et al. 
2018; Afu et  al. 2019). They are characterized by udic 
moisture regime and isohyperthemic temperature regimes, 
respectively (Soil Survey Staff 2014). In the area, to a great 
extent, unconsolidated materials occurred with high sand 
and silt consistency (Akpan-Idiok 2012; John et al. 2018; 
Afu et al. 2019). The coarse-texture and the low activity 
clays of the distribution of the soil places the soil order into 
Inceptisols and Ultisols, respectively (Esu 2005).

Soil sampling

In the present study, the sampling regime was done in the 
year 2018. The total of thirty (n = 30) composite samples 
was collected through stratified random sampling at a depth 
of 0–30 cm with the aid of a soil auger and a hand-held 
global positioning system (GPS), packaged into a Ziploc bag 
and transported to the laboratory for analysis.

Laboratory analysis

For laboratory analysis, the soil samples were air-dried and 
sieved through a 2-mm sieve before being analyzed. For 
particle size analysis, the hydrometer method described by 
Bouyoucos (1962) was used. Soil pH in water was performed 
by the method outlined by Udo et al. (2009) at the ratio of 
1 g of soil to 2.5 ml of water mixture. Organic carbon, avail-
able phosphorus, total nitrogen, exchangeable bases  (Ca2+, 
 Mg2+and  K+), exchangeable acidity and base saturation were 
determined by the methods outlined by Okalebo et al. (2002) 
and Udo et al. (2009).

Environmental covariates

To model soil properties variation, nine (9) different sets 
of soil-environmental covariates were derived (Table 1; 
Fig. 2a, b). These covariates were derived from the digital 
elevation model (DEM) obtained at the spatial resolution 
of 30 m from Shuttle Radar Topography Mission (SRTM) 
data (U.S Geological Survey 2020) and processed using 
SAGA-GIS free software terrain analysis toolbox. The 
derivatives are elevation (El), slope (Slp), aspect (As), 
analytical hillshading (Ah), plan curvature (PlCur), pro-
file curvature (PrCur), topographic wetness index (TWI), 
convergence index (CI) and LS-factor (Ls) were derived 

Fig. 1  Map of the study area showing sampling points
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using SAGA-GIS software (Olaya 2004). These soil-envi-
ronmental covariates were selected due to their proven 
correlation with soil properties (Bishop and McBratney 
2001; Penížek and Boruvka 2006).

Cross‑validation

In the cross-validation of the predicted map, 50% of 
the data to estimate the trend and autocorrelation of the 
models were used. The subsetting of the data was car-
ried out in the geostatistic tool option in the Arcgis 10.7 
software (Gribov and Krivoruchko 2012). The model 
was then evaluated using the coefficient of determina-
tion (R2) and root-mean-square error (RMSE). The R2 was 
estimated by plotting the predicted against the observed, 
while the RMSE was automatically calculated from EBK 
interpolation method and they are both expressed in these 
equations,

where pi = predicted values, oi = observed values

Interpretatively, a good model fit for R2 is equal or 
close to 1 while for RMSE, close to 0. Furthermore, Li 
et al. (2016) proposed a classification criterion for R2 val-
ues: R2 < 0.50 (unacceptable prediction), 0.50 < R2 < 0.75 
(acceptable prediction) and R2 > 0.75 (good prediction). 
This classification was considered for this study.

(4)R2 = 1 −

∑n

i=1
(pi − oi)2

∑n

i=1
(pi − oi)2

(5)RMSE =

√
1

n

n∑

i=1

pi − oi)2

Statistical analysis

Descriptive statistics (mean, minimum, maximum, standard 
deviation, skewness and kurtosis) of soil properties and soil-
environmental covariates were determined. Pearson corre-
lation, PCA and MLR were determined to identify the soil 
property distribution and relationships between soil proper-
ties and soil-environmental factors. All statistical analysis 
was done using the R software (R Core Team 2019; Version 
4.0).

Results and discussion

Descriptive statistics

Descriptive statistics of the soil properties and soil-envi-
ronmental covariates are presented in Table 2. The sand 
content ranged from 60 to 83%; silt content ranged from 17 
to 27%; and clay content ranged from 2.7 to 29%. The soil 
pH ranged from 5.5 to 5.9, with a mean of 5.5. While soil 
organic carbon content ranged from 0.6 to 3.1%. The fre-
quency distributions of the soil properties showed that par-
ticle size distribution (sand, silt and clay) and organic carbon 
are positively skewed, while pH is negatively skewed. The 
result presented a pH with the highest skewness and kurtosis 
among all soil properties. The result obtained in the study 
is similar to the report by John et al. (2019). The variability 
obtained in all the soil properties may be attributed to the 
soil’s inherent property associated with the parent material 
from which soils are developed.

Among all soil properties, sand, silt and clay contents 
gave a high standard deviation, which indicates a wide range 
of distribution values across the study area. The average sand 

Table 1  Soil-environmental covariates used in the study

Data source Soil-environmental covariates Type Significance

Terrain Elevation El Climate, vegetation and energy potential
Slope Slp Surface and subsurface flows, flow speed and erosion rate, precipitation, vegetation, geo-

morphology, soil water content and land use capacity
Profile curvature PrCur Profile curvature is the rate of change of slope in a downslope direction. It character-

izes changes in flow acceleration that may differentiate erosion and deposition zones in 
landscapes

Plan curvature PlCur Convergent/divergent flows, soil water content, soil characteristics, flow acceleration, ero-
sion rate/deposition and geomorphology

Aspect As Solar radiation, evapotranspiration, flora and fauna distribution and abundance
LS-factor Ls Surface flow volume
Topographic wetness index TWI A measure of the topographic control on soil wetness
Analytical hillshading Ah Hillshading is a technique for visualizing terrain determined by a light source and the slope 

and aspect of the elevation surface
Convergence index CI Is used to distinguish flow convergent areas from divergent ones in the DTM at initial 

spatial resolution
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content of 70.8% suggests that the soils of the study area 
are coarse-textured as they possess sand content ≥ 70%. The 
result corroborates with the report by Akpan-Idiok (2012), 
Akpan et al. (2017) and Afu et al. (2019). Furthermore, this 
type of soil cannot retain water and essential plant nutrients 
(Akpan-Idiok 2012). The soil is acidic with a pH of 5.5, 
and this may have been contributed by high annual rain-
fall above 3500 mm and excessive usage of NPK fertiliz-
ers (Wallace 1994; Wei et al. 2020). More so, studies have 
revealed that temperature and precipitation are essential fac-
tors that control soil pH (Cheng-Jim et al. 2014; Zhang et al. 
2019; Dharumarajan et al. 2017). Other soil properties such 

as OC, TN and the basic cations  (Ca2+,  Mg2+ and  K+) were 
all low when compared to their standard rating (Adaikwu 
and Ali 2013). While P content was moderate in the soil as it 
ranges between 8 and 20 mg/kg. This because in the topsoil, 
the P content is always high and most P fertilizer applied 
by the farmers is insoluble. The exchangeable acidity was 
low (< 2.52 cmol/kg) and effective cation exchange capacity 
value was moderate (range > 5.52 cmol/kg) compared to rat-
ing established for productive soils (Adaikwu and Ali 2013). 
Furthermore, the mean of base saturation = 76.2% may refer 
to the fact that essential nutrients must have prevailed in 
available forms in the soil solution despite the low cation 

Fig. 2  Soil-environmental covariates derived from digital elevation model at 30 m spatial resolution
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reserves (Akpan-Idiok 2012). This present result may also 
be attributed to the discriminate use of soil input materials 
(e.g. fertilizers and herbicides) for crop production by the 
active land users in the region and resulting to leaching of 
these basic cations (Sharu et al. 2013). The results obtained 
here corroborate with other works in the region on a similar 
type of soils (Akpan-Idiok 2012; John et al. 2018; Afu et al. 
2019; Akpan et al. 2017). The study further explains that the 
farmers intensively use the soils in the regions without good 
soil management programme.

Empirical Bayesian kriging

The EBK interpolated soil property maps are presented in 
(Fig. 3a–c). The map revealed that the highest sand content 
was observed in the south direction, while the lowest sand 
fraction was observed at the north angle and down towards 
the central region (Fig. 3a, I). The silt fraction was highest 
in the northern direction and the northern-west direction for 
clay (Fig. 3a, II–III). The result obtained here may be attrib-
uted to gradual transportation and deposition of sediments 
(Akpan-Idiok 2012).

The highest pH value in the study area was observed in 
the east direction (Fig. 3a, IV). Furthermore, the highest 
organic carbon contents were predominantly seen in the 
southern direction (Fig. 3b, V). The result obtained here 
followed a similar pattern with that of Zeraatpisheh et al. 
(2019). They reported high organic carbon from the centre 
to the southwestern direction in the semi-arid region of Iran 
using inverse distance weighting interpolation. Other soil 
properties maps revealed their respective distribution over 
the study area (Fig. 3b, c).

Cross‑validation

The results of the cross-validation are presented in 
Table 3. With the use of EBK maps, the study affirmed 
that the interpolation technique was best to understand 
the spatial distribution of the soil properties in the stud-
ied area (Li and Heap 2011). The interpolation method 
that yielded the highest R2 with the corresponding low-
est RMSE values are Mg (R2 = 0.778, RMSE = 0.866), K 
(R2 = 0.637, RMSE = 0.017), P (R2 = 0.629, RMSE = 0.06), 
pH (R2 = 0.675, RMSE = 0.267) and TN (R2 = 0.721, 
RMSE = 0.755). The good model fit obtained in the study 

Table 2  Descriptive statistics 
of soil properties and soil-
environmental covariates

OC organic carbon, Mg magnesium, deg degrees, TN total nitrogen, K potassium, m metres, P phosphorus, 
Na sodium, rad radians, Ca calcium, exch. acidity active acidity, ECEC effective cation exchange capacity 
and BS base saturation

Mean Minimum Maximum SD Skewness Kurtosis

Sand (%) 70.8 60 83 7.1 0.3 − 1.1
Silt (%) 17 10 27 4.6 0.3 − 0.9
Clay (%) 12.3 2.7 29 8.6 0.8 − 0.7
pH 5.5 4.5 5.9 0.3 − 1.8 5.5
OC (%) 1.8 0.6 3.1 0.8 0.3 − 1.5
TN (%) 0.2 0.1 0.3 0.1 0.2 − 1.4
P (mg/kg) 11 4.7 23.3 4.2 1.4 2.5
Ca2+ (cmol/kg) 4.5 0.6 12.8 3.0 1.2 1.3
Mg2+ (cmol/kg) 1.4 0.2 4 1.0 1.1 0.8
K+ (cmol/kg) 0.1 0.1 0.2 0.1 0.5 − 0.5
Na+ (cmol/kg) 0.1 0.1 0.2 0.1 0.4 − 0.9
Exch. acidity (cmol/kg) 1.7 0.3 5.2 1.5 1.1 − 0.1
ECEC (cmol/kg) 7.6 4.7 14.6 2.3 1.6 2.7
BS (cmol/kg) 76.2 27.3 96 22.1 − 0.9 − 0.9
El (m) 7.1 3.2 10.2 1.9 − 0.34 − 0.87
Ah (deg) 1.4 0.8 2.3 0.5 0.5 − 1.2
S (deg) 1.1 0.1 1.6 0.6 − 0.6 − 1.4
As (rad) 2.9 1.0 5.5 1.5 0.6 − 1.4
PlCurv 592,522.5 − 9,228,767 6,253,365 3,680,354.8 − 0.7 0.3
PrCur − 342,838.2 − 9,365,311.7 5,524,231.4 3,610,322.3 − 0.6 0.4
CI 2.3 − 33.3 40.1 15.8 − 0.1 0.5
TWI − 10.2 − 17.2 1.4 6.4 0.5 − 1.5
Ls 1.6 0.1 4.4 1.0 0.5 1.6
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explained how the EBK interpolation method analyzed 
different uncertainties that are influenced by several fac-
tors such as edaphic activities, various soil management 
methods, fertilizer application rates, tillage systems and 
others (Samsonova et al. 2017). This was the case in the 
present study site. The good outputs observed in EBK have 

confirmed the works of Adhikary et al. (2011), Fabijańczyk 
et al. (2017), Beguin et al. (2017) and Yan et al. (2019), 
respectively on EBK being more effective compared to 
other kriging methods. The result also revealed that EBK 
interpolation model could effectively predict soil properties 
variation in a relatively flat terrain condition.

Fig. 3  Empirical interpolated soil property maps
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Correlation matrix

Presented in Fig. 4 is the correlation matrix plot between 
soil properties and soil-environmental covariates. Sand 
showed a weak negative correlation with plan curvature, 
profile curvature and convergence index. Silt presented a 
positive but significant correlation with Ah, Slp and PlCur 

but negatively correlated with As and TWI. The result 
obtained here is in contrast with the report obtained by 
Kokulan et al. (2018) who reported a strong negative cor-
relation between soil texture (sand, silt and clay) and El, 
PlCur and PrCur in a gently undulating topography but 
in support with the works by Mosleh et al. (2016) on low 
relief condition. OC, TN, P,  Ca2+,  Mg2+,  K+, exch. acidity 

Fig. 3  (continued)
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and ECEC all weak to no significant correlation with the 
soil-environmental covariates. Magnesium showed a nega-
tive but significant correlation with all the nine environ-
mental attributes at a significant level of 5%. This is in 
contrast with the study conducted by Kokulan et al. (2018) 
on a heterogeneous landscape position.

Principal component analysis

In Fig. 5 and, the factor analysis is also known as PCA, 
presents five important PCs to interpret the variability in the 
observations. The analysis showed that PC1 and PC2 could 
explain 52.6% of the total variance (Figs. 5, 6). Then, when 
adding the other four PCs, a total of 78.1% is described. 
Figure 6 presented the obtained PCs, but only five PCs were 
selected.

Principal component (PC1) explained 30.1% of the total 
variation in the observations, and it is majorly contributed 
by all the soil properties (sand, silt, clay, pH, OC, TN,  Ca2+, 
 K+, exch. acidity, ECEC and BS). PC2 explained 22.5% 

Table 3  Cross-validation criteria for empirical Bayesian kriging 
(EBK) interpolation method among soil properties

R2, coefficient of determination; RMSE, root-mean-square error

Soil properties R2 RMSE

Sand (%) 0.797 5.270
Silt (%) 0.573 4.410
Clay (%) 0.533 7.400
pH 0.675 0.267
Total nitrogen (%) 0.721 0.755
Phosphorus (mg/kg) 0.629 0.060
Organic carbon (%) 0.604 3.497
Calcium (cmol/kg) 0.740 2.520
Magnesium (cmol/kg) 0.778 0.866
Potassium (cmol/kg) 0.637 0.017
Exchangeable acidity (cmol/kg) 0.696 1.260
Effective cation exchange capacity (cmol/

kg)
0.549 2.310

Base saturation (%) 0.626 16.40

Fig. 4  Correlation matrix plot 
(p < 0.05) (n = 30), significance 
level of α = 0.05
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of the total variance, with significant contributions from 
soil-environmental covariates (El, Ah, PlCur, PrCur, CI and 
TWI) and sand content. PC3 explains about 10.5% of the 
total variability in the observations, being highly contrib-
uted to by the clay content and elevation. PC4 described 
approximately 8.8% of the total variability, which is con-
tributed by Slp and Ls. Furthermore, PC5 yielded approxi-
mately 6.2% of the overall variability, with major influence 
from As.

Soil properties that dominated PC1 explained the high 
correlation observed between soil properties (Fig. 4). Simi-
larly, PC2 was seen to be dominated by soil-environmental 
covariates. The weak to no correlation between some soil 
properties and soil-environmental covariates obtained in 

the correlation matrix plot (Fig. 4) was reconfirmed in the 
PCA (Fig. 5). This result may be attributed to lack of influ-
ence of the flat terrain (e.g. slope gradient = 0.1–1.6) to 
contribute on the spatial variability of soils in the region. 
More so, in a relatively stable topography, soil properties 
are actively influenced by their properties rather than the 
topographic condition. The result obtained here is in har-
mony with the works done by Zeraatpisheh et al. (2019) 
and Mosleh et  al. (2016) done elsewhere. The present 
research, therefore, inferred that additional soil-environ-
mental covariates such as geology, land use, precipita-
tion and evapotranspiration variables being introduced 
could improve the modelling soil properties in low relief 
conditions.

Fig. 5  Principal component analysis of the variables
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Multiple linear regression (MLR)

The result of the MLR is presented in Table 4. All the soil-
environmental covariates were applied to each soil property 
one at a time. Thirteen models were obtained. An accept-
able prediction (0.50 < R2 < 0.75) was observed for  Mg2+, 
while for other soil properties yielded unacceptable predic-
tion (R2 < 0.5) was observed. The output observed for  Mg2+ 
may be attributed to its high mobility through the action of 
mass flow and water imbalance (Gransee and Führs 2013). 
On the other hands, the low R2 value answered the hypotheti-
cal questions, i.e. the expectation that little or no influence of 
terrain attributes on soil properties distribution in relatively 
flat topography. This was true for the other soil properties 
except for  Mg2+. The results obtained here corroborate with 
the poor performance of MLR in similar study elsewhere 
(Mosleh et al. 2016).

The results in this present study demonstrated that the 
coastal plain parent material reflects on the properties of 
the soil and consequently, a good indicator of soil fertility 
status. Furthermore, in a flat terrain system, soil-environ-
mental covariates contribute little or no variability in the 

soil properties distribution. However, the results obtained 
in the PCA are in corroboration with those of Khaledian 
et al. (2017), who used PCA to discriminate soil indicators 
taking into account spatial variables and that of Zeraat-
pisheh et al. (2019) who combined PCA and inverse dis-
tance weighting interpolation in predicting soil properties 
in the dry arid region of Iran. Also, the result of the PCA 
corresponds with the work of Souza et al. (2018) who also 
used it in dataset reduction and for soil properties model-
ling in Ultisols.

Comparison between empirical Bayesian kriging (EBK) 
and multiple linear regression (MLR)

In comparing the best models between empirical Bayesian 
kriging and the multiple linear regression for estimating the 
soil properties distribution, the study adopted the Li et al. 
(2016) classification criterion for R2 (Table 5). The basis for 
the comparison between EBK and MLR was to answer the 
hypothetical questions that low relief condition contributes 
little or no amount in soil properties variable and that the 
intrinsic properties of the soils better explain itself. Besides 

Fig. 6  A scree plot showing 
the percentage of variances 
explained by each principal 
component
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that, the study did not consider modelling with variables that 
have only a significant correlation with soil-environmental 
variables; preferably, all the nine soil-environmental vari-
ables were applied as a response variable to predict each tar-
geted soil property. The reason is that according to the PCA, 
PC1–PC5, the soil-environmental variables made significant 
contributions to their PCs hence the reason to engage them 
in the modelling regime. The low R2 value obtained in MLR 
answered the hypothetical questions. The poor performance 
of MLR in the study is similar to that of Mosleh et al. (2016) 
in low relief condition. Furthermore, the study revealing that 
EBK performed better than MLR only explained geologi-
cal factors which are an intrinsic mechanism explains more 
of soil properties variation than terrain derivatives in the 
region.

Conversely, MLR gave a an acceptable prediction for only 
 Mg2+ (2.2 − 0.0856 × El − 0.00595 × Ah +3.47 × Slp − 0.37 

Table 4  Best multiple linear equations between soil parameters and soil-environmental covariates

Bold R2 gave a good model fit; p < 0.1; *p < 0.05; **p < 0.01, ***p < 0.001

Soil properties Regression equation Soil-environmental 
variable of impor-
tance

R2

Sand 51.3 + 0.5 × El + 0.6 × Ah + 20.2 × Slp + 0.94 × As − 2.3 × 10−6×PlCur − 2.55 × 10−8 × PrCur + 0.0
9 × CI + 0.95 × TWI − 6.6 × Ls

PlCur* 0.305

Silt 10.2 − 0.46 × El − 1.47 × Ah + 5.97 × Slp − 1.16 × As + 5.08 × 10−7×PlCur − 2.7 × 10−7×PrCur − 
0.0092 × CI − 0.397 × TWI +0.62 × Ls

Slp* 0.315

Clay 38.5 − 0.0362 × El − 5.25 × Ah − 2.62 × Slp + 0.22 × As + 1.8 × 10−7×PlCur + 310−6×PrCur − 0.08
1 × CI − 0.55 × TWI + 5.96 × Ls

0.180

pH 6.10 + 0.0015 × El − 0.236 × Ah + 0.063 × Slp − 0.125 × As + 6.67 × 10−8×PlCur − 1.63 × 10−9×Pr
Cur + 0.014 × CI + 0.014 × TWI + 0.095 × Ls

Ah*, As* 0.219

OC 2.1 − 0.057 × El + 0.72 × Ah + 0.64 × Slp − 0.071 × As − 1.58 × 10−7×PlCur + 4.2 × 10−8×PrCur + 
0.0030 × CI − 0.028 × TWI + 0.031 × Ls

0.154

TN 0.0025 − 0.0025 × El + 0.048 × Ah + 0.056 × Slp + 0.0049 × As − 1.2 × 10−7×PlCur − 7.1 × 10−9×P
rCur + 0.00053 × CI − 0.0032 × TWI − 0.024 × Ls

0.126

P 8.2 − 0.22 × El − 0.058 × Ah + 1.66 × Slp − 1.21 × As − 3.75 × 10−7×PlCur + 5.51 × 10−7 × PrCur − 
0.0061 × CI − 0.258 × TWI +1.03 × Ls

As 0.211

Ca 8.2 − 0.782 × El − 0.461 × Ah − 7.75 × Slp − 0.37 × As + 1.8 × 10−7×PlCur + 2.3 × 10−7×PrCur + 0
.017 × CI − 0.583 × TWI +3.43 × Ls

TWI* 0.290

Mg 2.2 − 0.0856 × El − 0.00595 × Ah + 3.47 × Slp − 0.37 × As + 1.8 × 10−7× PlCur + 2.3 × 10−7× P
rCur + 0.017 × CI − 0.583 × TWI + 3.43 × Ls

Slp*, As*, PlCur 0.509

K 0.12 − 0.0035 × El − 0.00091 × Ah − 0.029 × Slp − 0.0042 × As + 8 × 10−10 × PlCur + 2.1 × 10−10 × 
PrCur + 0.00021 × CI − 0.00184 × TWI − 0.0128 × Ls

PrCur* 0.359

Exch. acidity 6.34 − 0.070 × El − 0.0437 × Ah − 3.02 × Slp − 0.153 × As + 2.72 × 10−8×PlCur + 3.16 × 10−9×PrC
ur − 0.00241 × CI + 0.034*TWI − 0.031 × Ls

Slp* 0.217

ECEC 16.7 − 0.624 × El − 0.0826 Ah − 7.22 × Slp − 0.249 × As + 2.8 × 10−7×PlCur + 1.73 × 10−7×PrCur 
− 0.00179 × CI − 0.30 × TWI − 1.88 × Ls

PlCur, El 0.220

BS 46.8 − 2.09 × El + 4.11 × Ah + 21.4 × Slp − 3.12 × As − 2.2 × 10−6×PlCur − 6 × 10−8×PrCur − 0.00
179 × CI − 0.30 × TWI − 1.88 × Ls

El, As 0.153

Table 5  Comparison the best model between EBK and MLR

Soil properties R2

EBK MLR

Sand (%) 0.797 0.305
Silt (%) 0.573 0.315
Clay (%) 0.533 0.180
pH 0.675 0.219
Total nitrogen (%) 0.721 0.154
Phosphorus (mg/kg) 0.629 0.126
Organic carbon (%) 0.604 0.211
Calcium (cmol/kg) 0.740 0.290
Magnesium (cmol/kg) 0.778 0.509
Potassium (cmol/kg) 0.637 0.359
Active acidity (cmol/kg) 0.696 0.217
Effective cation exchange capacity 

(cmol/kg)
0.549 0.220

Base saturation (%) 0.626 0.153
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× As + 1.8 × 10−7×PlCur + 2.3 × 10−7×PrCur + 0.017 × CI − 
0.583 × TWI + 3.43 × Ls, R2 = 0.509) with Slp, As and PlCur 
as the only soil-environmental factors as the only relatively 
important variables. These may be attributed to the dynamic 
ecological environment, contrasting land use and low relief 
condition.

Conclusion

In conclusion, this research aims to evaluate the capability 
of EBK using multivariate statistical analysis, in combina-
tion with soil-environmental covariates, to identify the spa-
tial distribution of soil properties. General spatial patterns 
of soil properties (sand, silt, clay, pH, TN, OC, P,  Ca2+, 
 Mg2+, exch. acidity, ECEC and BS) can be predicted easily 
by using digital soil mapping techniques. The soils under 
study are coarse-textured with low natural fertility status. 
The EBK interpolation presented acceptable and good pre-
dictions for all the soil properties. However,  Mg2+,  K+, P, pH 
and TN with lower RMSE, closer to 0 is said to be suitably 
predicted by EBK technique.

The PCA results showed that PC1 to PC5 could describe 
approximately 78.1% of the total variability in the soil 
properties. The result corresponds to the correlation matrix 
result. Furthermore, in MLR, each targeted property was 
predicted using the nine selected soil-environmental covari-
ates in a low relief condition. The result showed that 50.9% 
of the soil-environmental covariates could largely explain 
the variability in  Mg2+, while for other soil properties, an 
unacceptable model fit was obtained.

Consequently, the study concludes that  Mg2+ can be the 
best-predicted soil property because it follows a definite 
spatial pattern in flat terrain conditioned by Slp, As and 
PlCur. This finding is paramount because  Mg2+ is an essen-
tial nutrient element required in the tree crops grown in the 
study location. More so, for other soil properties, EBK was 
best in estimating their distribution.

Recommendation for further research, it should be fas-
cinating to test different interpolation approaches such as 
regression kriging, ordinary kriging, radial basal functions 
and other machine learning algorithms with more soil-envi-
ronmental factor aside from the ones generated from DEM 
to note if other soil properties do or do not correspond with 
 Mg2+ and other soil properties as the best soil property pre-
dictor using multivariate statistical analysis. Furthermore, 
to improve the accuracy of the estimations through MLR, 
more observation points are recommended to interpret bet-
ter the performance of the spatial mapping technique over 
low-relief areas.
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Abstract 
 
Soil organic carbon (SOC) plays a significant role in ecosystem protection and sustainable agriculture. The present study aims to 
estimate the spatial distribution of SOC using three different interpolation methods: ordinary kriging (OK), cokriging (COK), and 
inverse distance weighting (IDW). Sixty (n = 60) soil samples were collected from the depth of 0–30 cm and analyzed for SOC. 
The digital elevation model of the site was obtained from USGS explorer at 30 m spatial resolution and processed. Ten (10) terrain 
attributes were obtained, and a correlation matrix was conducted between SOC and terrain derivatives. The whole dataset was used 
to evaluate the model accuracy; root mean square error (RMSE) and mean error (ME) were the criteria adopted. Mean value of the 
SOC of the study area was generally low when compared to the standard rating for tropical soils (< 2%). SOC was significantly (p 
< 0.01) correlated with LS-factor (r = 0.34*), negatively correlated with elevation (r = –0.30*) and profile curvature (r = –0.30*). 
IDW performed better (RMSE = 0.75, ME = –0.004) followed by OK (RMSE= 0.78, ME = –0.004) and then COK (RMSE = 0.94, 
ME = –0.067). Conversely, COK produced the model with the smallest ME with terrain attributes (elevation, LS-factor, and profile 
curvature). The findings in the study showed that IDW is superior in SOC estimation. COK with the terrain attributes proved to 
have the capacity as a useful ancillary variable for improving the spatial structure of SOC maps of southeastern Nigeria. 
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1. Introduction 
 

The importance of estimating spatial soil 
organic carbon in the biosphere ranges from 
agricultural productivity to environmental 
sustainability (Forkuor et al., 2017; Wiesmeier et al., 
2014). SOC plays a vital role in sustainable soil 
fertility, soil quality and wellbeing (Gregorich et al., 
1994). SOC controls most soil properties such as 
porosity, aggregations of particle sizes, moisture 
retention, and retaining the basic cations in the soil 

∗ Author to whom all correspondence should be addressed: e-mail: johnk@af.czu.cz; Phone:+420777871317 

solution (USDA-NRCS, 1995). The SOC stock of the 
soils of southeastern Nigeria contributes about 0.2 to 
30.8 Mg C ha−1 to Nigeria's SOC stock (Akpa et al., 
2014). The southeastern regions of Nigeria are 
dominated by agroforestry production, and this 
agricultural production system can increase carbon 
stock in the soils through tree biomass under the 
humid tropical climatic condition. However, there is 
the challenge of SOC loss which is induced by the 
adverse effect of climate change (Wiesmeier et al., 
2014). SOC content spatially varies over different 

                                                           



 
Kingsley et al./Environmental Engineering and Management Journal 20 (2021), 7, 1077-1085 

 
agricultural and climatic zones, and there is a need to 
produce SOC maps for each zone for sustainable 
agricultural productivity (Liu et al., 2014). More so, 
quantifying the spatial variability of soil carbon will 
explain the land ecosystem and establish a baseline for 
others to calculate the rates of SOC change imposed 
by management practices (Sanderman and Baldock, 
2010). 

However, quantifying SOC stocks at a point 
location is difficult due to the high spatial variability 
in a given soil unit (Cerri et al., 2000), caused by 
several soil-forming factors and environmental 
covariates (Fang et al., 2012). This place demands on 
the spatial representation of soil organic carbon 
through regional studies that aids in refining global 
assessments obtained through regional data (Wang et 
al., 2010), which is aided through geostatistical and 
GIS representation (Piccini et al., 2014). This 
advanced technique emphasizes the benefits of digital 
soil mapping, which is cost-effective compared to 
conventional soil mapping in providing soil inventory 
in formats usable by different soil users. This approach 
in soil science is referred to as Pedometrics, which is 
a branch of soil science that applies geostatistics, 
fuzzy membership, pedotransfter functions, and 
classification trees in soil studies (Mcbratney et al., 
2003; Zhu et al., 2010). 

Various geostatistical and machine learning 
techniques have been utilized in the previous to model 
the spatial distribution of SOC (Kumar et al., 2013). 
Traditional measures might not make out the spatial 
allotment of soil properties in the unsampled areas. On 
the other hand, geostatistics with deterministic models 
are productive techniques used for examining the 
spatial differences of soil properties and their 
irregularity by lessening the fluctuation of evaluation 
mistake and execution costs (Bhunia et al., 2016). Past 
studies have utilized geospatial procedures to assess 
spatial affiliation in soils and to assess soil properties' 
environmental variability. Besides, more researchers 
have assessed the expectation exactness of SOC by 
comparing different modelling approach such as 
multiple linear regression, random forest, cubist, 
kriging, inverse distance weighted, empirical 
Bayesian kriging and so on (Mondal et al., 2016). 
Mohammad et al. (2010), in their prediction study, 
stated that ordinary kriging (OK) and cokriging 
techniques gave better prediction results when 
compared to the deterministic method [e.g. inverse 
distance weighting (IDW)] technique for the 
prediction of the spatial distribution of soil properties. 
Also, Pang et al. (2011) stated that OK is the foremost 
common sort of geostatistical technique used in 
evaluating and modelling surface maps of soil 
properties. 

In spite of the broadly utilized approach in 
mapping soil properties over the final decades (Zhang 
et al., 2017), the use of geostatistics techniques and 
other predictive models to carry soil inventory in 
Nigeria is constrained (John et al., 2019b). Too, there's 
small to no evaluated nearby maps in Nigeria. Thus 
the soaring request for this research for proper soil 

management and policymaking. The strategies 
embraced in this study is due to the reality, there's no 
particular method that predicts SOC with the leading 
precision (Mondal et al., 2016). 

Southeastern Nigeria's is situated in the humid 
tropical agro-ecological zone of the country.  Soils of 
the region are highly weathered, dominated by 
massive sand mixed with low silt and clays fractions 
(John et al., 2018). Furthermore, in Nigeria, land 
evaluation and soil nutrient assessment are quite old 
and outdated. And regardless of the progress in the 
usage of digital soil mapping (DSM) techniques in 
regions of the world, little to no research has 
considered the use of DSM to explain soil nutrient 
variability in southeastern Nigeria. However, the 
conventional soil quality assessment method depends 
on a random soil sampling procedure to acquire an 
approximated soil fertility status value for a farmer's 
field (Ayito et al., 2018; Yang et al., 2014). This 
approach overlooks spatial variability, and the 
conventional soil laboratory analysis results do not 
provide randomness of variations obtained from 
different sampling points. Therefore, some parts of the 
field may receive excess fertilizer, while others may 
lack nutrients and experience insufficient productivity 
levels. 

The objective of this study was to estimate 
SOC distribution using three modelling techniques 
such as OK and COK and IDW interpolations in soils 
of southeastern Nigeria. 
 
2. Material and methods 
 
2.1. Description of the study location 
 

The research was conducted in a consistently 
steady landscape of Awi in the Akamkpa Area of 
Cross River State, Nigeria. The research area is 
situated on 5°22'27.26"N and 8°26'28.39"E for 
latitude and longitude, respectively (Fig. 1). The site's 
size is approximately 71.9 hectares on about 180 m 
high terrain above mean sea level (AMSL). "The 
area's rainfall and relative humidity ranged between 
1500 to 3500 mm and 80 to 90% per year, while the 
mean annual temperature ranged from 25.4 to 27.5°C 
(NiMet, 2015)". "The vegetation of the study area is 
predominantly secondary forest re-growth. 
Lithologically, the Awi area is underlain by about 40% 
of the sedimentary basins, occupying roughly 10,000 
km2 of Southeast States (Ekwueme et al., 1990)". 
According to John et al. (2019), the soils of the area 
are high in sand, but low in silts and clay contents. 
"Taxonomically, the soil order of the site is 
predominantly Ultisols, and the soil classified as 
Typic paleudults (Aki et al., 2014; John et al., 2019b). 
 
2.2. Soil sampling and laboratory analysis 

 
A total of sixty (n = 60) composite samples 

were collected through stratified random sampling. 
Samples were collected at a depth of 0 – 30 cm with 
the aid of a soil auger. 

 1078 



 
Estimation of soil organic carbon distribution by geostatistical and deterministic interpolation methods  

 
 

 
 

Fig. 1. Map of  Awi study site showing the different auger points (n = 60) 
 

Each sample location was labelled and 
recorded with a hand-held global positioning system 
(GPS).The samples were taken to the laboratory, air-
dried, ground, and sieved with a 0.5 mm mesh. SOC 
was determined by the standard Walkley-Black wet 
oxidation method using acid dichromate (K2Cr2O7) 
solution, as outlined in (Udo et al., 2009). This 
analysis was carried out at the University of Calabar 
Soil Science Laboratory, as presented in (Eq. 1). 

 
( )% 1 2 0.3SOC N V V f w= −  (1) 

 
where: N = Normality of K2Cr2O7 solution; V1 = ml 
ferrous ammonium sulphate required for the blank; V2 
= ml ferrous ammonium sulphate needed for the 
sample; w = sample in 1 gram. 

 
2.3. Terrain model 

 
Digital elevation model (DEM) was obtained 

from Shuttle Radar Topography Mission (SRTM) at 
the resolution of 30 x 30 m from and processed in 

SAGA-GIS (Olaya, 2004). "The following terrain 
attributes were obtained, analytical hillshadding (Ah), 
slope (S), aspect (As), plan curvature (Plan C), profile 
curvature (Profile C), convergence index (CI), 
topographic wetness index (TWI), LS factor (LS-F), 
channel network base level, channel network distance 
(CND), valley depth (VD) and relative slope position 
(RSP). 

 
2.4. Correlation between SOC and terrain attributes 
 

The Pearson correlation coefficient (PCC ) is 
one of the most established effect-size indicators, in 
part because of its role as a validity coefficient 
(Morris, 2007). It takes values between the range of 
−1 to +1, all-encompassing, and yields a measure of 
the strength of the linear relationship that exists 
between two variables. Furthermore, for the purpose 
of this current study, we only considered terrain 
attributes that showed a significant correlation (p 
<0.001, 0.01, 0.1) with SOC and observed to influence 
its variability in the study location. These terrain 
attributes were incorporated into the COK model. 
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2.5. Spatial modelling for estimating soil organic 
carbon 

 
2.5.1. Geostatistical technique 

The geostatistical method uses unbiased 
predictions with minimum variance for the targeted 
soil property (Stein and Corsten, 1991). OK, and COK 
is among the various types of geostatistical methods. 
The OK process uses an estimated mean of a particular 
soil property at a known location to predict the value 
at an unsampled location (Bishop and McBratney, 
2001; Goovaerts, 1997; Grunwald et al., 2008) (Eq. 2), 
whereas COK uses information on several variable 
types to predict a particular target variable (in this case 
SOC). And these variables must exhibit a strong 
relationship with the targeted property (Bivand et al., 
2008; Tziachris et al., 2017). 

 

( ) ( )0 1
' .n

ii
Z x Z xλ

=
=∑  (2) 

 

where: Z'(𝓍𝓍0) is the predicted/interpolated value for 
point 𝓍𝓍0, Z(𝓍𝓍i) is the known value, and λi is the kriging 
weight for the Z(𝓍𝓍i) values. It can be calculated by the 
semi-variance function of the variables on the 
condition that the estimated value is unbiased and 
optimal (Eq. 3). 

 

( ) ( )
2

1
( ) 1 2 ( ) n

i ii
h N h Z x Z x hγ

=
= − +  ∑  (3) 

 

where: γ (h) is the semi-variance, N(h) is the point 
group number at distance h, Z(xi) is the numerical 
value at position xi, and Z (xi + h) is the numerical 
value at a distance (xi + h)." 
 
2.5.2. Deterministic technique 

IDW is a deterministic predictive tool that 
determines cell values using a linearly weighted 
combination of a set of sample points and where the 
weight is a function of inverse distance (Philip and 
Watson, 1982; Bhunia et al., 2016; Liu et al., 2017). 
Estimated values were interpolated based on the data 
from surrounding locations using the Eqs. (4-5). 

 

1
( ) ( )n

o i ii
Z x w Z x

−
=∑  (4) 

 

where: Z(x0) is the estimated value, wi is the weight 
assigned to the value at each location Z (χi), n is the 
number of close neighbouring sampled data points 
used for estimation. 

The weights were estimated using Eq. (5): 

1
1 1

n
p p

i i i
i

w d d
=

= ∑
 (5) 

 

where: di is the distance between the estimated point 
and the sample point, p is an exponent parameter. 

 
2.6. Model validation of the spatial soil organic 
carbon estimation 

 
In the evaluation of our spatial estimation, we 

used the total data to estimate the trend and 

autocorrelation of our models. "The interpolated result 
was then extracted to the whole data points. Root mean 
square error (RMSE) and mean error (ME). The 
RMSE gives an estimate of the standard deviation of 
the residuals (prediction errors)." While mean error 
(ME) is taken as the mean of residuals, it calculates 
the deviation of the predicted value Eqs. (6-7) 
expresses them as: 
 

( )2
1

1
n

i i
i

RMSE n p o
=

= −∑
 (6) 

 

( )2

1
1

n

i i
i

ME n p o
=

= −∑
 (7) 

 
where: pi = predicted values, oi = observed values, n 
= the number of validation points. Interpretatively, a 
good model should have a low RMSE and ME close 
to 0 if the predicted results are unbiased (Robinson and 
Metternicht, 2006). 

 
2.7. Data analysis 

 
SOC spatial maps were produced via 

ArcGIS.Terrain attributes were derived through 
System for Automated Geoscientific Geographical 
Information System (SAGA-GIS) software. At the 
same time, discrete statistics and estimate the 
correlation matrix between SOC and terrain attributes 
processed via R studio. 
 
3. Results and discussion 
 
3.1. Descriptive statistics 
 

The samples summary statistics of SOC and 
terrain attributes are presented in Tables 1-2, 
respectively. The result revealed that the SOC value of 
the area ranged from 0.7–3.2%, with a mean of 1.77%. 
SOC was very low when compared with Landon 
(1991) rating for tropical soils. The result obtained 
here is similar to the report of John and Akpan-Idiok 
(2019b) and in contrast with that Abua and Eyo (2013) 
and Aki et al. (2014). They rated moderate SOC in 
similar soils. Furthermore, the low SOC obtained in 
this study may be attributed to surface runoff (Larsen 
et al., 2014), high temperature and precipitation 
(Bolliger et al., 2006), increased soil acidity (John et 
al., 2019a) and intensive cropping without adequate 
nutrient management (Ayito et al., 2018). The 
measured SOC expressed a normal distribution with 
high variability (CV=37.8), a positive skewness of 
0.39, and a kurtosis of 2.15. On the other hand, the 
terrain attributes showed a normal distribution and 
were not transformed as well. However, LS-F, Profile 
C, CND and VD produced high variability with CV 
values of 37.8, 38, 928.9, 37.62 and 37.56, 
respectively, compared to the standard rating outlined 
by Gubiani et al. (2011). Simultaneously, RSP and 
Elev yielded moderate and low variability with CV 
values of 22.85 and 3.3, respectively.  
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Table 1. Descriptive statistics of SOC 
 

Variables Mean Min Max SD CV Skewness Kurtosis Data Transformation 
SOC (%) 1.77 0.7 3.2 0.67 37.8 0.39 2.15 None 

 
Table 2. Descriptive statistics of some selected terrain attributes 

 
 Elev (m) LS-F RSP Profile C CND VD 

Mean 165.9 2.10 0.50 651383.04 13.37 13.26 
Standard Deviation 5.46 0.48 0.19 6050954.93 5.03 4.98 

Kurtosis 2.30 4.55 -0.51 -0.49 -0.45 -0.53 
Skewness 0.19 1.99 0.32 0.02 0.35 -0.31 
Minimum 155.20 1.55 0.10 -14546609.78 2.68 1.54 
Maximum 178.41 3.91 0.94 14363443.95 25.40 23.87 

CV 0.19 22.85 38 928.90 37.62 37.56 
Confidence Level(95%) 1.41 0.12 0.05 1563127.41 1.30 1.29 

Data Transformation None None None None None None 
Elev = Elevation; LS-F = LS-factor; RSP = Relative Slope Position Profile C= Profile Curvature; CND = Channel Network Distance; VD = 

Valley Depth 
 

Generally, the variables were employed 
untransformed for the modelling purpose. 
 
3.2. Correlation between SOC and terrain attributes 
 

A Pearson correlation analysis was estimated 
to explain the relationship between SOC with the 
terrain attributes (Fig. 2). The result revealed that SOC 
was negative and significantly (p < 0.01) correlated 
with Elev (r = –0.30*), RSP (r = –0.29*), CND (r = –
0.29*), Profile C (r = –0.30*) but positively and 
significantly correlated with LS-factor (r = 0.34*). The 
result further revealed that LS-factor was the highest 
terrain attributes that yielded the highest correlation 
with SOC compared to other terrain attributes. The 
negative and significant (p < 0.01) correlation 
obtained between SOC and Elev is similar to the report 
by Kozłowski and Komisarek (2018).  

Also, the same report was not consistent with 
the result obtained for SOC and Profile C in our study. 
Furthermore, the result of our study corroborates with 
that of Li et al. (2018), who observed significant 
correlations between SOC and LS-factor, Profile C, 
and other terrain derivatives. In this study, the Pearson 
correlation   coefficient   presented   the   relationship  

 
between SOC and terrain attributes. It revealed the 
capability of estimating SOC variability via terrain 
attributes. In the COK modelling, terrain attributes 
with relatively high correlation were used. These 
terrain attributes include LS-F, Elev, and Profile C as 
they could improve the prediction of SOC OC in the 
local landscape of southeastern Nigeria. 
 
3.3. Spatial estimation of SOC 
 

In this present study, OK, COK and IDW 
methods were used to estimate the spatial variability 
of SOC. Discrete statistics of the interpolation output 
is presented in Table 2, while the fitted 
semivariograms for the OK and COK model are 
shown (Fig. 3a -b). The Semivariogram model 
revealed that OK and COK produced a stable model. 
OK was fitted with nugget = 0.19, sill = 0.42 and range 
= 1.998 while COK was fitted with nugget = 0.28, sill 
= 0.30 and range = 1.997. On the other hand, COK 
presented a high nugget effect (0.28) compared to OK 
(0.19). Elev, LS-F, and Profile C may have 
contributed to this variation as they have been reported 
to influence SOC spatial variability (Wu et al., 2009; 
Tsui et al., 2013).  

 

 
Fig. 2. Correlation matrix of SOC and terrain derivatives 
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(a) (b) 

 
Fig. 3. (a) OK semivariogram (b) COK semivariogram 

 
The spatial autocorrelation for OK and COK 

was 31.1% and 48.2%, respectively. Spatial 
autocorrelation is the nugget to sill ratio as defined by 
Cambardella et al. (1994). The values obtained for OK 
and COK showed that the models gave a moderate 
spatial autocorrelation as they fell within (> 25% < 
75%), a criterion by Cambardella et al. (1994). The 
variation of SOC seen in the site may be associated 
with the accumulation of mineral and organic material 
from relative slope positions, as suggested by Brodsky 
et al. (2013). 
 
3.4. Comparison of OK, COK and IDW interpolation 

 
In evaluating the model with the best 

performance, the whole dataset was employed. The 
criteria for the best model was a low RMSE and ME 
value (Yang et al., 2009). As shown in Table 3, OK 
(RMSE = 0.78, ME = –0.004), COK (RMSE = 0.94, 
ME = –0.067) and IDW (RMSE = 0.75, ME = -0.004). 
The results revealed that the ME values of the three 
methods were close to 0, indicating that predicted 
values were unbiased. Furthermore, the cross-
validation result presented in Table 2 revealed that 
IDW was more accurate than both OK and COK 
having the lowest RMSE value. The OK model 
followed the IDW as the next model with a low 
RMSE. IDW as the best model agrees with Li and 
Heap (2008) and contrasts with Bhunia et al. (2016). 
COK, on the other hand, yielded a smaller mean error 
compared to OK and IDW. The narrow mean error 
obtained may be attributed to the added terrain 
attributes (Elev, LS-factor and profile C). 

COK model also suggests that terrain attributes 
could serve as excellent auxiliary variables for 
improving the reliability of spatial SOC prediction. 

The result obtained here is similar to the report by 
Yang et al. (2014), who reported the importance of 
elevation and slope in estimating SOC variability in 
Southwest China. Also, Triantafilis et al. (2001), Wu 
et al. (2009), Tziachris et al. (2017), and Saleh (2018) 
reported a low mean error for COK. Besides that, 
Chabala et al. (2017) and Bhunia et al. (2016) reported 
OK as the best model for SOC prediction in their 
studies. Nevertheless, comparative interpolation 
studies of SOC prediction have always shown mixed 
results, often associated with available data and the 
type of interpolation technique (Chabala et al., 2017). 

 
3.5. Prediction maps of SOC by the different 
interpolation methods 

 
SOC predicted maps using OK, COK and IDW 

models are presented in Fig. 4. The maps structures 
showed significant differences, revealing a high 
spatial variability in SOC. The map developed from 
OK was smoother than that produced from COK and 
IDW, respectively.  

COK, as well as IDW, revealed more details in 
local areas as compared. The result obtained in the 
predicted map of OK corroborates with the report by 
Wu et al., (2009), who reported a smooth trend in the 
OK map of soil organic matter.  

The predicted SOC map by OK was less 
spatially detailed (i.e. evenly distributed) than that by 
COK and IDW in some local regions, such as the 
central part in the study site, as shown in the SOC 
prediction maps (Fig. 4 (a-c)). SOC ranged from 0.98-
2.64%, 1.18–2.32% and 0.70–3.2% in OK, COK and 
IDW maps, respectively. Generally, the predicted 
SOC maps revealed that SOC was relatively high in 
the central part of the research area. 

 
Table 3. Comparison of the interpolation methods to map SOC distribution 

 
Interpolation methods RMSE (%) ME 

OK 0.78 -0.004 
COK 0.94 -0.067 
IDW 0.75 -0.004 

OK: Ordinary kriging; COK: Cokriging; IDW: Inverse distance weighting 
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Fig. 4. SOC(%) prediction maps via (a) OK model (b) COK model (c) IDW model 
 
3.6. Descriptive statistics of predicted soil organic 
carbon (SOC) 
 

The summary statistics of the predicted SOC 
by the three different models are presented in Table 4. 
The predicted SOC values also presented a normal 
distribution for the interpolation methods. SOC 
predicted value was 1.68% for OK, COK, and IDW, 
respectively. Also, the measure SOC minimum and 
maximum value were the same as that of IDW 
prediction.  

The descriptive statistics of the predicted SOC 
values showed a normal distribution like the measured 
SOC. The result is supported by the report of Chabala 
et al. (2017). Despite that, the work revealed that SOC 
predicted was lower than SOC measured value. And 
when compared to Landon (1991) ratings, predicted 
SOC was observed to be very low (< 2 %). This shows 
that this level of SOC cannot sustain an intensive 
cropping system in the area. The result obtained here 
may be attributed to lumbering activities often carried 
out in the area. 
 

Table 4. Predicted SOC using OK, COK and IDW 
 

 Mean Min Max SD CV skewness kurtosis 
OK 1.68 0.98 2.64 0.27 16.1 0.54 -0.05 

COK 1.68 1.18 2.32 0.37 22 0.33 -0.33 
IDW 1.68 0.7 3.2 0.52 31 0.88 0.91 

 
This action results in significant losses of SOC, 

which tend to reduce further crop yields under 
continuous cultivation. This act of deforestation would 
further lead to the decline in soil fertility through 
increased soil erosion, reduction of litter influx after 
canopy removal and boosted decomposition and 
nutrient mineralization rates after forest clearance. 
 
4. Conclusions 
 

In this present study, OK, COK and IDW 
interpolations were performed and compared to 
evaluate the accuracy of our prediction of the 
geographical variability SOC.  

The study revealed that SOC was generally low 
in the research site. SOC demonstrated a moderate 
spatial dependence and explained the essence of 
estimating SOC spatial variability in southeastern 
Nigeria. Among the three interpolations, IDW was the 
best performing model. At the same time, the COK 
model gave the smallest mean error, which was 
observed to have occurred due to terrain attributes. 
The predicted SOC map by COK with Elev, LS-F and 
profile C covariates improved the OK and IDW maps, 
respectively. The COK map was more detailed, 
showing the capability of terrain attributes being 
robust ancillary variables for improving detailed 
spatial SOC maps. 

In conclusion, the SOC created maps by COK 
and IDW of the study area could be adopted by both 
soil and land users to help grow different crops 
concerning their different nutrient needs for adequate 
agricultural production management. Besides that, the 
created maps could be used as a reference point for 
various soil purposes, ranging from sampling 
optimization to updating soil maps with more ancillary 
variables. Furthermore, for future studies, it is 
recommended that different auxiliary covariates be 
introduced and an increase in sample density to 
improve the accuracy of the models in estimating 
SOC. 
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A B S T R A C T   

As a widely used soil mapping method, the kriging method involves a high sampling point to generate quality 
and accurate maps. Combining kriging and machine learning (ML) can produce soil maps with fewer number 
sampling points. This study’s objective was to implement a hybrid approach based on the Cokriging (Cok) and an 
ML technique [i.e., Gaussian process regression (GPR)]. The hybrid method (called the Cok-GPR method) uses 
the Cok (Coki, i = 1 to n) as a predictor method of the soil sulphur and then uses GPR to improve the prediction 
accuracy. The proposed method was compared with the Cok and the GPR models, respectively, in a case study. 
Soil samples (n = 115) were collected from the topsoil (0–20) at the agricultural site of approximately 889.8 km2 

size. S, Ca, K, Mg, Na, P, and V were estimated via Inductively Coupled Plasma Optical Emission Spectroscopy 
(ICP-OES) equipment and presented as S_ICP-OES (response variable), and predictors (Ca_ICP-OES, K_ICP-OES, 
Mg_ICP-OES, Na_ICP-OES, P_ICP-OES, and V_ICP-OES), respectively. For GPR and Cok-GPR, an 80% (calibra-
tion) to 20% (validation) random dataset split was performed. The calibration dataset was implemented under k 
= 10-fold cross-validation, repeated five times. All the models were evaluated by MAE, RMSE and R2 criteria. 
According to the model and map performances. Cok1 model via Ca_ICP-OES, K_ICP-OES, Mg_ICP-OES gave the 
best model (MAE = − 1.28 mg/kg RMSE = 164.42 mg/kg, R2 = 0.85). Its corresponding GPR1 approach, 
modelled with the same predictors produced the best (MAE = 85.43 mg/kg, RMSE = 137.59 mg/kg, R2 = 0.83). 
While the hybrid Cok1-GPR model produced MAE = 76.84 mg/kg, RMSE = 102.11 mg/kg, and R2 = 0.91. The 
model outperformed both the Cok and GPR models, respectively. The proposed Cok-GPR model can be applied to 
efficiently predict soil nutrient element levels at the regional level and be useful during policymaking.   

1. Introduction 

Sulphur (S) is essential for the growth and development of crops. For 
more than a century, the essentiality of S has been recognized (Sager, 
2012), and recently, it has received more attention compared with the 
primary soil nutrients, N, P, and K (Sager, 2012). This is due to its role in 
good crop production and plant nutrition. Plants require S to synthesize 
essential amino acids and proteins (e.g. methionine and cysteine), vi-
tamins and coenzymes, glucoside oils, structurally and physiologically 
important disulfide linkages and sulfhydryl groups, as well as in the 
activation of certain enzymes (Lucheta and Lambais, 2012). Sulphur is 

present in all soils and could be derived from parent rock materials, 
atmospheric deposition, marine aerosols, industrial gases, gases/par-
ticulates, volcanic eruptions and fertilizer formulations (Sager, 2012). 
Stevenson (1986) reported that total S content of soils varies over a wide 
range, from as little as 20 mg kg− 1 in highly weathered soils in humid 
regions to over 50,000 mg/kg in calcareous and saline soils of arid 
semiarid areas. For example, Olson and Englestad (1972) provided an 
excellent summary of average topsoil values for total S in the temperate 
zone: 500 mg/kg for Mollisols, 400 mg/kg for Alfisols and 200 mg/kg for 
Ultisols. Similarly, a Eutrudand from Hawaii contained 1280 mg/kg S in 
its topsoil (Fox et al. 1971). In Brazil, a clayey Oxisol under native 
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savannah had 251 mg/kg S and a sandy Ultisol only 40 mg/kg S 
(McClung et al. 1959). 

In precision agriculture (PA), digital soil mapping (DSM) has become 
a crucial step towards accurate and proper soil and crop management 
procedure and policymaking. Digital soil mapping involves applying 
mathematical and statistical techniques to estimate a targeted soil 
property via environmental variables (e.g. covariates) known to influ-
ence the targeted properties spatial distribution (McBratney et al., 
2003). In the past, the approach involved applying geostatistics and 
other interpolations, interpolating unknown values from neighbouring 
points sampled (Hengl et al., 2004; Hedge et al., 2017). There are several 
interpolation methods to predict values at unsampled positions. Inverse 
Distance Weighting (IDW), Ordinary Kriging (OK), Universal kriging 
(UK), Cokriging (Cok) as well as others, have been widely applied in PA 
as spatial interpolation techniques used (Zhu et al., 1997; Qin et al., 
2021; Hengl et al., 2004; Valente et al., 2012; Coelho et al., 2018; 
Agyeman et al., 2020; Pei et al., 2010). OK has been reported to be 
excessive data-dependent, requiring many regularly spaced data points, 
assuming significant spatial autocorrelation trends (Scull et al.,2003; 
Sekulić et al., 2020). And it is also applicable to Cok, a stochastic 
interpolator (Setiyoko et al., 2019). It requires high sampling density 
and user knowledge to model the semivariogram (Giacomin et al., 2014; 
Webster and Oliver, 1992). Webster and Oliver, 2001; Pouladi et al., 
2019 reported that sample points between 30 and 140 have an excellent 
semivariance estimation for each specific distance. And collecting larger 
samples where relative larger areas are concerned may be costly, 
tedious, and time-consuming, while fewer samples may yield high un-
certainty in the prediction. Considering the application of only geo-
statistics to assess plant needs for S and estimate the S-supplying power 
of soils, it is imperatives to consider its spatial distribution over a large 

geographical extent (e.g. regional scale) concerning the representative 
samples. Therefore, this would not provide sufficient detailed informa-
tion about the S variability levels required for sustainable cropping. 
Hence, S’s spatial distribution can be studied using the combination of 
kriging and machine learning (ML) as done elsewhere (e.g., regression 
kriging). 

Among the several challenges of creating quality and accurate maps, 
many sampling points are the most prevalent ones necessary to produce 
accurate maps of targeted soil property. And one approach to solving 
this problem is proposing techniques that require fewer sampling points 
to create accurate maps. These innovative proposed approaches should 
be flexible to use covariates with available high-density observations, 
such as digital elevation model (DEM) and remote sensing data. 

Machine learning (ML) algorithm has recently proved to be an effi-
cient technique in predicting and mapping soil property (Khaledian and 
Miller, 2020; Kebonye et al., 2020; Kebonye et al., 2021; John et al., 
2020). ML is an automated process of learning by algorithms based on 
data size. ML can accommodate non-linearity and multicollinearity, and 
they can overcome overfitting with limited soil sample points and 
environmental covariates and can recognize data patterns (Drake et al., 
2006; Gautam et al.,2011; Heung et al., 2016; Liakos et al., 2018; 
Parmley et al., 2019; Khaledian and Miller, 2020). Several ML kinds of 
research have been carried out in the modelling of the spatial distribu-
tion analysis of soil properties and heavy metals (Guo et al., 2015; 
Heung et al., 2016; Hengl et al., 2018; Pouladi et al., 2019; Kebonye 
et al., 2020; Kebonye et al., 2021). Yet, there are still limitations in 
different ML. For example, the widely used random forest (RF) is posed 
with challenge that it requires enormous computational power and re-
sources to build numerous trees and combine their outputs. Also, RF 
outputs are difficult to interpret. Also, the RF limitation is similar to the 
cubist model as they are both tree-based models (Zhou et al., 2019). 

Gaussian process regression (GPR) is new and rarely applied in soil 
mapping among different ML methods. Gaussian process regression is a 
generic supervised learning method designed to solve regression and 
probabilistic classification problems (Rasmussen and Williams 2006). Its 
prediction advantages are computing empirical confidence intervals and 
deciding based on whether one should refit (online fitting, adaptive 
fitting) the prediction in some region of interest. GPR does not need a 
semivariogram model, and it can accommodate several covariates and 
automate their implementation. It can also be combined with other 
interpolation methods, creating a hybrid method to improve its pre-
diction efficiency. The merit of GPR over other machine learning tech-
niques is that the algorithms models both the expectation and the 
variance of the random variable, thus permitting mapping the prediction 
uncertainty Ballabio et al.(2019). Also, GPR allows the specification of 
the input data noise, so if prior knowledge about it is known, it can be 
used to avoid overfitting the data. Ballabio et al.(2019) adopted GPR to 
map LUCAS topsoil chemical properties because of its capability to 
produce uncertainty maps and prediction variance. In the shallow 
landslide susceptibility mapping conducted by Colkesen et al. (2016), 
GPR outperformed logistic regression to predict landslides. 

Meanwhile, Gonzalez agreed that GPR is an excellent technique in 
creating low-cost digital soil maps. Besides that, Kumar et al. (2012) and 
Mirzaee et al. (2016) reported that a hybrid model could incorporate the 
spatial autocorrelation of measured variables to achieve better pre-
dictions and lower errors. Similarly, Li et al. (2011) stated that hybrid 
models produced 30% more accurate predictions than any other 
method. According to Shadrin et al. (2021), their proposed hybrid 
model, GPR- Bayesian Information Criterion (BIC) approach, showed 
better performance on average with a 15% higher R2 score than other 
geostatistical models. 

Therefore, this present study tries to show GPR and GPR hybrid 
model excellent performances rather than comparing them with other 
machine learning models. The GPR hybrid model proposed in this study 
is new and have not been applied before and, as such, contributes to the 
growing works of literature. 

Fig. 1. Map of the study area showing sampling points.  
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Therefore, how good is a hybrid method’s performance for interpo-
lating S levels compared to only GPR or Cok interpolation for soil S? 
Thus, this work’s objective was to propose a hybrid method based on the 
cokriging (Cok) and ML technique [i.e. Gaussian process regression 
(GPR)]. The proposed hybrid method was compared with the Cok and 
GPR modelling methods. 

2. Materials and methods 

2.1. Research location 

The research site is situated in Moravian-Silesian Region’s foothills, 
Frýdek-Místek district in the Czech Republic (Fig. 1). It is an active 
agricultural site situated at geographical coordinates of latitude 
49◦41′0′′N and longitude 18◦20′0′′E and the elevation of 225–327 m 
above sea level (Agyeman et al., 2020b). Meanwhile, according to the 
Koppen classification system, the area’s climate is classified as Cfb =
Temperate oceanic climate with a high rainfall even in dry months. The 
study area is approximately 889.8 km2 designated for agricultural ac-
tivities with scattered trees. 

The regions’ soils are predominantly Cambisols and occupy 
approximately 56.7% of the Czech Republic agricultural land (Vacek 
et al. 2020). They are characterized by fine-textured materials derived 
from a wide range of rocks, primarily colluvial and alluvial (Němeček & 
Kozák 2003). 

2.2. Soil sampling 

Soil samples were collected through a grid sampling technique with a 
stainless steel bucket auger. Composite soil samples were collected (n =
115) from the topsoil at a depth of 0–20 cm into a well-labelled Ziploc 
bag and transported to the Soil Science and Soil Protection Department’s 
laboratory at the Czech University Life Sciences, Prague for analysis. 

2.3. Laboratory studies 

Soil samples were air-dried under laboratory conditions and pul-
verized to achieve a fine powder between 3 and 4 μm size via an auto-
matic mill (Hanchen Soil Crusher with 220 V pattern name). Soil 
samples were treated with Aqua regia reagent (a mixture of HCl and 
HNO3 in the ratio of 3:1). The mixture was used to extract the soil 
pseudo-total concentration of elements according to Tejnecký et al. 
(2015) and Cools and De Vos (2016). The pseudo-total elements were 
measured via Inductively Coupled Plasma Optical Emission Spectros-
copy (ICP-OES) model iCAP 7000. Soil analysis with ICP-OES was per-
formed in duplicates and later averaged, and a blank sample was also 
intermittently measured via ICP-OES. Furthermore, in this present 
study, S, Ca, K, Mg, Na, P, and V were selected and presented as S_ICP- 
OES, Ca_ICP-OES, K_ICP-OES, Mg_ICP-OES, Na_ICP-OES, P_ICP-OES, and 
V_ICP-OES, respectively. These elements represent some of the essential 
constituents of soils. 

2.4. Cokriging (Cok) interpolation 

Cokriging employs several variable types to predict a particular 
target variable (in this case, soil sulphur). These variables must also 
exhibit a strong relationship with the targeted property (Bivand, 2008; 
Tziachris et al., 2019). A simple Cok equation is presented in equation 
(2). 

Z’(x 0) =
∑n

i=1
λi.Z(x i) (1)  

where Z’(x0) is the predicted/interpolated value for point x0, Z(x i) is the 
known value, and λi is the kriging weight for the Z(x i) values. It can be 
calculated by the semivariance function of the variables on the condition 
that the estimated value is unbiased and optimal (Equation (3)). 

γ(h) =
1

2N(h)
∑n

i=1
[Z(Xi) − Z(Xi + h)]2 (2) 

Fig. 2. Workflow of the study.  
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where γ (h) is the semivariance, N(h) is the point group number at 
distance h, Z(xi) is the numerical value at position xi, and Z (xi + h) is the 
numerical value at a distance (xi + h). 

For Cok, we selected the best model based on how small MAE and 
RMSE (closer to 0) are and how large R2 (closer to 1) is. 

2.5. Gaussian process regression (GPR) 

The Gaussian Process (GPR) is a non-parametric modelling approach 
(Vasudevan et al., 2009; Wang et al., 2020; Zhang and Xu, 2020). This is 
generally a supervised learning method designed to solve regression and 
probabilistic classification problems. The current study estimated the 
relationship between S_ICP-OES levels and some selected soil elements 
(Ca_ICP-OES, K_ICP-OES, Mg_ICP-OES, Na_ICP-OES, P_ICP-OES, and 
V_ICP-OES), respectively. The GPR is useful because of its simplicity and 
reasonable accuracy, credited by Wang et al. (2020). Moreover, GPR can 
help lower data overfitting (Ballabio et al., 2019). To describe GPR, both 

the mean [m(x)] and covariance/kernel [k(xi, xj)] functions are used 
(Seeger, 2004). In expression form, this is given as: 

f(x) GP
[
m(x),k

(
xi, xj

) ]
(3) 

The x in equation (4) represents each input vector. Mean and 
covariance functions can be further expressed as equations (5) and (6), 
separately. 

m(x) = E[f(x) ] (4)  

k
(
xi, xj

)
= cov

[
f(xi), f

(
xj
) ]

(5) 

Similar to Wang et al. (2020), “The squared exponential (SE) 
covariance function with a discrete length scale for each predictor is 
used to fit the GPR model”: 

k
(
xi, xj|θ

)
= σ2

f exp

[

−
1
2
∑d

m=1

(
xim − xjm

)2

σ2
m

]

(6) 

Table 1 
Cokriging matrice prediction.  

Table 2 
Summary statistics of the response and predictors variables.   

Response Predictors  

S_ICP-OES Ca_ICP-OES K_ICP-OES Mg_ICP-OES Na_ICP-OES P_ICP-OES V_ICP-OES  

mg/kg 

Mean 403.7 ± 22.0 3624.8 ± 743.2 1289.7 ± 41.7 1981.9 ± 62.2 150.7 ± 15.4 682.0 ± 33.5 31.4 ± 0.9 
Standard Deviation 236.3 7969.7 446.9 666.7 165.3 358.8 9.4 
Kurtosis 16.7 54.2 4.8 11.7 15.0 13.8 8.7 
CV 58.5 219.9 34.6 33.6 109.6 52.6 29.8 
Skewness 3.4 7.2 1.5 2.5 2.9 3.1 2.1 
Minimum 131.0 538.7 497.5 685.7 7.1 294.6 15.6 
Maximum 1815.4 69161.8 3535.7 5970.1 1202.9 2903.1 81.9 
Confidence Level (95.0%) 43.7 1472.2 82.5 123.2 30.5 66.3 1.7  
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The σm represents the length scale for each predictor variable m (m 
= 1, 2, …, d), σf denotes the signal standard deviation (Zhang and Xu, 
2020). The θ is such that: 

θm = logσm (7) 

Further explanations regarding GPR are presented in Vasudevan 
et al. (2009) and Ballabio et al. (2019). The ’caret’ package was used 
with set method value gaussprLinear executed through the kernlab li-
brary in the R environment. 

2.6. Cokriging-Gaussian process regression (Cok-GPR) interpolation 

In order to establish the interpolation technique via the proposed 
hybrid model (Cok-GPR), a training matrix was defined as obtained via 
the Cok method. The workflow is presented in Fig. 2. In the X matrix, the 
coordinates (coordinates X and coordinates Y) of the point and the 
predicted value of the target soil variable obtained by using the Cok 
method (i.e., Coki, i = 1 to n), estimated based on the highest to a 
moderately significant correlation observed between S_ICP-OES and 

each of the predictors (p < 0.05, 0.01, 0.1), were considered as inde-
pendent variables (features). Different X matrix (coordinates X, co-
ordinates Y and Cok, i = 1 to n) via the Cok model were obtained based 
on the different levels of correlation. The known value at the point itself 
was not considered in the calculation of the Cok attribute. Thus, the 
matrix generated, in which the n rows represented the n sampling 
points, and three columns were the independent variables (coordinates 
X, coordinates Y, with Coki, i = i = 1 to n). The known value of the soil 
attribute at the sampled point (S_ICP-OES) was considered the model’s 
dependent variable (y). Fig. 1 represents the COK-GPR method’s 
training set divided into independent variables (matrix X) and depen-
dent variable (vector y) (Table 1). 

Furthermore, using ML for predictive mapping of targeted soil 
properties, georeferenced coordinates, soil properties, reflectance values 
obtained by satellite images, sensor data, among other data, can also be 
used to construct an ML model. Similarly, after obtaining X, Y and Coki, 
i = i = 1 to n (Table 1) via Cok, they were then applied to the model for 
S_ICP-OES via the COK-GPR model. The dependent variable represents 
the measured soil S (S_ICP-OES), whose values are predicted at 
unsampled locations in the COK-GPR model. The matrix X and the 
vector y were the inputs of the training set of the Cok-GPR method. 

2.7. Design of the evaluation experiment 

The proposed hybrid method was compared with CoK and GPR, 
respectively. For GPR and Cok-GPR, 80% of the datasets were used for 
calibration, while the remaining 20% was used for validation. The 
calibration parameters of the models were tuned using repeated k-fold 
cross-validation, with k = 10, to avoid overfitting. 

The mean absolute error (MAE), root mean square error (RMSE) and 
the coefficient of determination (R2) was used to evaluate the model as 
well as map performances (John et al., 2020; Kebonye et al., 2021). For 
MAE and RMSE, a lower value is preferred, while for R2, a larger value is 
always expected. Based on Li et al. (2016), R2 ≥ 0.75 is considered a 
good prediction. 

Fig. 3. Correlation matrix showing the percentage of the relationship between the response and predictors (p < 0.05).  

Table 3 
spatial dependency of the three models.  

Models Nugget Sill Range Model 
fitness 

Spatial 
dependency 

Cok1 40167.19 74,539.97 3724.364 Gaussian 0.54 
Cok2 34581.19 67,030.74 3724.364 Gaussian 0.51 
Cok3 32719.34 66,190.23 3351.042 Gaussian 0.49  

Table 4 
Cokriging model accuracy estimation.  

Models Cokriging prediction  

MAE RMSE R2    

mg/kg mg/kg    
Cok1 − 1.28 164.42 0.85   
Cok2 2.26 223.77 0.79   
Cok3 1.24 241.51 0.80    
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3. Results and discussion 

3.1. Samples descriptive statistics 

The response variable (S_ICP-OES) ranged from 131.0 to 1815.4 mg/ 
kg, with a mean of 403.7 ± 22.0 mg/kg (Table 2). S_ICP-OES showed a 
strong coefficient of variation with positively skewed sample points. The 
soil sulphur content obtained in the present cultivated land is higher 
than 114–373 mg/kg reported by Kopittke et al. (2019) and 241 to 391 
mg/kg by Srinivasarao et al. (2004) in Indian soils. Meanwhile, the high 
amount of S_ICP-OES obtained in the area may be attributed to the type 
of fertilizer and cultivation period (Srinivasarao et al., 2004; Wang et al., 
2007; Kopittke et al., 2019). Kopittke et al. (2019) emphasized that 
increase P fertilizers and soil cultivation without adequate replenish-
ment results in the loss of total sulphur. Therefore, the high amount of 
S_ICP-OES may be attributed to the decrease in P rich fertilizers and hard 

coal deposition from the steel site nearby (Sager, 2012; Agyeman et al., 
2020b). The higher S levels may also be attributed to the top reached 
value (484 kg S/ha) experienced in 1991 in North Bohemia (Balík et al., 
2009). 

Also presented in Table 2 is the summary statistics of the predictors. 
The means of the predictors are 3624.8 ± 743.2 mg/kg, 1289.7 ± 41.7 
mg/kg, 1981.9 ± 62.2 mg/kg, 150.7 ± 15.4 mg/kg, 682.0 ± 33.5 mg/kg 
and 31.4 ± 0.9 mg/kg for Ca_ICP-OES, K_ICP-OES, Mg_ICP-OES, Na_ICP- 
OES, P_ICP-OES and V_ICP-OES, respectively. All the predictors showed 
a strong coefficient variation (>26%) and a positive skewness. In this 
study, the values obtained for Ca_ICP-OES and Mg_ICP-OES were 
generally higher than that of Jodral-Segado et al. (2006). They reported 
total calcium and magnesium content of 34.09 ± 7.80 mg/kg and 14.23 
± 2.25 mg/kg, respectively, in Spain’s agricultural soil. Ca_ICP-OES 
value obtained here was lower than of the soils of Albania (Shallari 
et al. 1998) but higher than of Belgium (De Temmerman et al. 2003) and 

Fig. 4. (A) Semivariance fitted by Gaussian model, y-axis (semivariance) and x-axis (distance) are presented in standard forms, respectively, (B) Prediction map by 
Cok1, estimated via highly correlated predictors (C) Fitness curve, y-axis (predicted values in mg/kg) and x-axis (observed values in mg/kg) are expressed in standard 
forms, respectively (D) Error plot, y-axis (error values in mg/kg) and x-axis (observed values in mg/kg) are presented in standard forms. 
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Italy (De Nicola et al. 2003). Similarly, K_ICP-OES was higher than 
extracted K of Norway soils (65–155 mg/kg) as reported by Løes and 
Øgaard (2003), and Na_ICP-OES was found to be within the recom-
mended range of 20–250 mg/kg of the agricultural soils of Kenya 
(Akenga et al., 2014). P_ICP-OES content was way higher than the 105 
± 1.29 mg/kg reported by Akenga et al. (2014) in Kenya’s soils, and 20 
mg/kg threshold recommended for optimal plant growth by Li et al. 
(2014). On the other hand, V_ICP-OES was the only selected trace 
element observed to be lower than the average world value of 129 mg/ 
kg reported by Кabata-Pendias (2011). The result suggested that V_ICP- 
OES did not enrich the soils of the cultivated land. In general, all the 
predictors were within optimal cropping levels, as indicated by Imran 
et al. (2010). The decreasing sequence abundance of predictors in the 
studied soils, as observed in Table 1 was Ca_ICP-OES > Mg_ICP-OES >
K_ICP-OES > P_ICP-OES > Na_ICP-OES > V_ICP-OES. 

3.2. Correlation of sulphur with other variables 

The result of the correlation between S_ICP-OES and the predictors is 
presented in Fig. 3. The correlation was significant at p < 0.05 with the 
predictors being ranked, showing how strong, moderate, weak or very 
weak the relationship between them and the response variable is. This 
result was fundamental in building our Cok model, which is then piped 
into the COK-GPR model. All the relationships between S_ICP-OES and 
the predictors were positive. However, S_ICP-OES showed a strong 
correlation with Ca_ICP-OES (r = 80.3%, p < 0.05), a moderate corre-
lation with K_ICP-OES (r = 58.9%, p < 0.05) and Na_ICP-OES (r = 51%, 
p < 0.05), a weak correlation with P_ICP-OES (r = 47.6%, p < 0.05) and 
Mg_ICP-OES (37.9%, p < 0.05) and then a very weak correlation with 
V_ICP-OES (r = 25.2%, p < 0.05). 

Ca_ICP-OES strong correlation output with S_ICP-OES showed a 

Fig. 5. (A) Semivariance fitted by Gaussian model, y-axis (semivariance) and x-axis (distance) are presented in standard forms, respectively, (B) Prediction map by 
Cok2, estimated via moderately correlated predictors (C) Fitness curve, y-axis (predicted values in mg/kg) and x-axis (observed values in mg/kg) are expressed in 
standard forms, respectively (D) Error plot, y-axis (error values in mg/kg) and x-axis (observed values in mg/kg) are presented in standard forms. 
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strong linear relationship between them as reported by Aulakh and Dev 
(1976) and Srinivasarao et al. (2004). Deficiency in Ca_ICP-OES could 
result in S_ICP-OES deficiency and vice versa; however, they are prin-
cipal gypsum constituents (Argani, 1968). The moderate correlation 
output obtained between S_ICP-OES and K_ICP-OES, and Na_ICP-OES, 
respectively, was supported by Saha et al. (2013). They observed a 
significant increase in sulphur when soils were amended by potassium 

fertilizer. In the case of V_ICP-OES, the output is supported by the works 
of Zhang et al. (2018). They stated that S_ICP-OES could serve as bio- 
oxidation in the removal of V_ICP-OES. 

Furthermore, the considered nutrient elements (except for K_ICP- 
OES), Ca_ICP-OES, Mg_ICP-OES, and Na_ICP-OES are generally absor-
bed in lesser amounts than P_ICP-OES and S_ICP-OES, but much more 
than the V_ICP-OES. Mg_ICP-OES deficiency is more common than 
Ca_ICP-OES deficiency but much less common than K_ICP-OES. Na_ICP- 
OES is not essential to plant growth. Agricultural soils are tested for 
Na_ICP-OES to diagnose sodic, saline-sodic problems and potential 
irrigation challenge (Di Meo et al., 2003). 

3.3. Cokriging modelling 

In Fig. 2, S_ICP-OES was interpolated via the highly correlated pre-
dictors (Ca_ICP-OES, Na_ICP-OES and K_ICP-OES), represented as Cok1. 
S_ICP-OES interpolation was also performed via moderately correlated 
predictors (P_ICP-OES and Mg_ICP-OES), expressed as Cok2 and then via 

Fig. 6. (A) Semivariance fitted by Gaussian model, y-axis (semivariance) and x-axis (distance) are presented in standard forms, respectively, (B) Prediction map by 
Cok3, estimated via weakly correlated predictors (C) Fitness curve, y-axis (predicted values in mg/kg) and x-axis (observed values in mg/kg) are expressed in 
standard forms, respectively (D) Error plot, y-axis (error values in mg/kg) and x-axis (observed values in mg/kg) are presented in standard forms. 

Table 5 
Comparison of model prediction accuracy via GPR.  

Models Gaussian process regression prediction   

Calibration  Validation   
MAE RMSE R2 MAE RMSE R2  

mg/kg mg/kg  mg/kg mg/kg  
GPR1 77.50 108.09 0.67 85.43 137.59 0.83 
GPR2 171.20 171.20 0.31 180.50 303.51 0.18 
GPR3 119.30 171.86 0.23 187.87 326.30 0.05  
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 (A) GPR2 map  

(B) Fitness curve

Fig. 7. GPR1 prediction map and fitness curve.  
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(A) GPR2 map  

(B) Fitness curve

Fig. 8. GPR2 prediction map and fitness curve.  
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(A) GPR3 map

(B) Fitness curve

Fig. 9. GPR3 prediction map and fitness curve.  
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the weakly correlated predictor (V_ICP-OES), described as Cok3. This 
approach was supported by Yao et al. (2012) and Shi et al. (2012). Cok1, 
Cok2 and Cok3 were all fitted by a Gusssain model and yielded a 
moderate spatial dependency (SPD) (0.25 < SPD ≤ 0.75) (Table 3). 

Furthermore, the result of the cokriging model accuracy estimation is 
presented in Table 4. All the data were implemented to assess the 
quantitative mapping accuracy of S_ICP-OES. Cok1, Cok2 and Cok3 
prediction outputs were compared using MAE, RMSE and R2 criteria. An 
MAE value close to zero indicates a lack of bias, RMSE should be as small 
as possible, and R2 should close to 1. Compared to Cok1 and Cok2 
predictions, Cok1 had the smallest ME and RMSE, which indicates a 
better prediction of S_ICP-OES is achieved via highly significantly 
correlated auxiliary variables. Cok2 had a smaller RMSE than Cok3, 
while Cok3 had a smaller MAE than Cok2. The R2 (>0.75) values were 
within the acceptable predictions for Cok1, Cok2 and Cok3, respec-
tively. However, the overall best performing model is Cok1, which 
applied highly significantly correlated auxiliary variables. The result 
obtained here is similar to the report by Song et al. (2014). 

The semivariogram, maps, and fitness curves results are presented in 
Figs. 4, 5 and 6. Sulphur in the present soils exhibited high spatial 
variability. The result obtained showed that the soils in the western 
region of the study area had high contents of S (>1000 mg/kg) when the 
prediction was done using the three approaches (Cok1, Cok2 and Cok3). 
However, S_ICP-OES contents in the eastern part of the study area were 
low (≤421 mg/kg) except for the South-east and northeast, where S_ICP- 
OES’s values were 410 mg/kg < S_ICP-OES ≤ 540 mg/kg. Nevertheless, 
the values obtained for the study do not indicate any S_ICP-OES defi-
ciency. The result obtained from the present investigation is comparable 
to the report of Olson and Englestad (1972), where Mollisols (S_ICP-OES 
= 500 mg/kg), Alfisols (S_ICP-OES = 400 mg/kg) had values similar to 
those reported in this study. However, a Eutrudand from Hawaii (S_ICP- 
OES = 1280 mg/kg) recorded higher S_ICP-OES than those reported in 
this study’s eastern soils. 

3.4. Gaussian process regression (GPR) modelling 

The comparison of the three models’ results is presented in Table 5, 
while the interpolated maps and fitness curve are presented in Figs. 6, 7 
and 8, respectively. During calibration, GPR1 presented an accepted 
calibrated model output (MAE = 77.50 mg/kg, RMSE = 108.09 mg/kg 
and R2 = 0.67) while GPR2 and GPR3, gave a poor calibration. In the 
validation process, GPR1 dominated as the best performing model 
(MAE = 85.43 mg/kg, RMSE = 137.59 mg/kg and R2 = 0.83). Generally, 
all the models were far from having a perfect regression value (R2 = 0.05 
– 0.83 relative to R2 = 1.00) and the dissimilarities between the models 
are evident from the visual assessment (Figs. 7–9). GPR1 (using Ca_ICP- 
OES, Na_ICP-OES and K_ICP-OES as predictors) was completely different 
from GPR2 (using P_ICP-OES and Mg_ICP-OES as predictors). Overall, 
GPR1 models (using Ca_ICP-OES, Na_ICP-OES and K_ICP-OES pre-
dictors) could better predict total soil S content in the study area. GPR 
has shown to be advantageous as it can handle hidden non-linear re-
lationships between variables, confirming why it might have performed 
better than each of the GPR2 and GPR3. 

Sulphur prediction using Gaussian process regression showed nar-
rower ranges of S_ICP-OES compared with cokriging. Sulphur’s high 

values mainly were observed in the western part of the study area, while 
low prediction values were observed in the eastern part of the study area 
(<350 mg/kg) when the prediction was made using GPR1. However, 
utilizing GPR2 showed high S values in the Northern and North-eastern 
parts of the study area. Low values mainly were observed in the western 
and South-eastern parts of the study area. When the GPR3 approach was 
used, only soils around the northern and southern part of the study area 
had high S values, and other regions had low values. 

3.5. Cokriging-Gaussian process regression (Cok-GPR) modelling 

Presented in Table 6 is the accuracy and comparison of Cok-GPR 
modelling and maps presented in Figs. 10–12. The tuning parameters 
of the dataset incorporated the k = 10-fold cross-validation, repeated 
five times. Cok1-GPR yield a good calibration model (MAE = 62.22 mg/ 
kg, RMSE = 79.83 mg/kg and R2 = 0.78) compared to Cok2-GPR and 
Cok3-GPR, respectively. In the model validation, Cok1-GPR still stood 
out as the best model (MAE = 76.84 mg/kg, RMSE = 102.11 mg/kg and 
R2 = 0.91) when compared with Cok2-GPR and Cok3-GPR. The hybrid 
model (Cok-GPR) showed an improvement in the S_ICP-OES prediction 
in the agricultural soils of Frydek Mistek. The difference presented by 
Cok-GPR models when compared to GPR is obvious. For example, MAE 
and RMSE were reduced by a greater percentage by reducing the vari-
ation between the observed values and the predicted values. Generally, 
all the Cok-GPR models were within the range of good models (R2 >

0.75). Like Gaussian process regression, S prediction using Cok-GPR 
showed narrower ranges of S_ICP-OES contrary to Cok. S_ICP-OES ’s 
high values were mostly observed in the western part of the study area, 
while low prediction values were observed in the eastern part of the 
study area (<386 mg/kg) when the prediction was performed using 
Cok1. However, utilizing Cok2 and Cok3, the result showed high S 
values around the West, South-east and Northern part of the study. Low 
values were mostly observed in the eastern part of the study area. Also, 
to make up for uncertainty in the prediction maps of the hybrid model, 
the standard deviation maps are presented in the supplement list (S1). 
Furthermore, this predictive method has not been applied before, and 
the result obtained here cannot be compared with any results. However, 
the high performance of the hybrid model followed a similar output 
pattern obtained in the GPR-BIC model by Shadrin et al. (2021). Cok1- 
GPR, Cok2-GPR, and Cok3-GPR produced approximately R2 of 7%, 
6%, and 9% higher than Cok1, Cok2 and Cok3. 

3.6. Selecting the best model 

We further evaluated the performance of all the models via the 
Taylor diagram using the software provided by Agrimesoft (Taylor, 
2005). Fig. 13 shows the Taylor diagram plot. The result revealed that all 
the models produced similar normalized standard deviation values (i.e., 
between 0.75 and 1). However, the ratio (i.e. ratio of the model standard 
deviation to the reference value standard deviation) and the model ac-
curacy value (Table 7) presented the differences in the models. Overall, 
our hybrid model (Cok-GPR) produced the best performing model. 

4. Conclusion 

In conclusion, in this presented study, different covariates that 
showed a significant correlation with soil S were used for modelling. 
This approach was seen to improve the prediction of soil S via GPR using 
Ca, Na and K as predictors. 

Furthermore, in this work, the hybrid model (Cok-GPR), which 
combines cokriging and Gaussian process regression, improved both Cok 
and GPR models’ fitting accuracy, respectively. The model was able to 
naturally take care of uncertainty that might have been originated from 
the cokriging models. Cok-GPR was also able to handle the unevenly 
spaced but correlated training datasets provided by the different Cok (i. 
e. Cok1, Cok2 and Cok3) models. 

Table 6 
Comparison of model prediction accuracy via COK-GPR modelling.  

Models Cokriging-Gaussian process prediction   

Calibration  Validation   
MAE RMSE R2 MAE RMSE R2  

mg/kg mg/kg  mg/kg mg/kg  
Cok1-GPR 62.22 79.83 0.78 76.84 102.11 0.91 
Cok2-GPR 70.24 94.45 0.75 87.65 138.35 0.84 
Cok3-GPR 68.75 93.69 0.78 83.31 126.18 0.87  
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 (A) Cok1-GPR map 

(B) Fitness curve

Fig. 10. Cok1-GPR prediction map and fitness curve.  
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(A) Cok2-GPR map 

(B) Fitness curve

Fig. 11. Cok2-GPR prediction map and fitness curve.  
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(A) Cok3-GPR map 

(B) Fitness curve

Fig. 12. Cok3-GPR prediction map and fitness curve.  

K. John et al.                                                                                                                                                                                                                                    



Catena 206 (2021) 105534

16

The study demonstrated that the proposed Cok-GPR model was able 
to show more precisely the soil S levels spatial distribution in the 
actively cultivated agricultural soil. The models showed that the Cok- 
GPR model had higher fitting accuracy and robustness than COK and 
GPR models. Nevertheless, Cok-GPR computational cost is significantly 
higher. Moreover, Cok1-GPR (using coordinate x, coordinate y and 
predicted cokriging soil Sulphur matrix as predictors) provided the best 
model. The proposed Cok-GPR model can potentially be applied to 
predict soil nutrient element levels efficiently, do proper soil fertiliza-
tion calculations, and apply to do more precise soil management 
practices. 
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Vacek, O., Vašát, R., Geoderma, L.B., 2020. Quantifying the pedodiversity-elevation 
relations. Geoderma 373, 114441. 

Valente, D.S.M., Queiroz, D.M., Pinto, F. de A. de C., Santos, N.T., Santos, F.L., 2012. 
Definition of management zones in coffee production fields based on apparent soil 
electrical conductivity. Sci. Agric. 69, 173–179. 

Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H., 2009. Gaussian process 
modeling of large-scale terrain. J. Field Rob. 26 (10), 812–840. 

Wang, S., Zhu, L., Fuh, J.Y.H., Zhang, H., Yan, W., 2020. Multi-physics modeling and 
Gaussian process regression analysis of cladding track geometry for direct energy 
deposition. Opt. Lasers Eng. 127, 105950. 

Wang, X.B., Hoogmoed, W.B., Cai, D.X., Perdok, U.D., Oenema, O., 2007. Crop residue, 
manure and fertilizer in dryland maize under reduced tillage in Northern China: II 
Nutrient balances and soil fertility. Nutr. Cycling Agroecosys. 79, 17–34. 

Webster, R., Oliver, M., 2001. Geostatistics for Environmental Scientists. John Wiley & 
Sons, Chichester.  

Webster, R., Oliver, M.A., 1992. Sample adequately to estimate variograms of soil 
properties. J. Soil Sci. 43, 177–192. 

Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar 
amendment on sorption and leaching of nitrate, ammonium, and phosphate in a 
sandy soil. Chemosphere 89 (11), 1467–1471. 

Zhang, Y., Xu, X., 2020. Fe-based superconducting transition temperature modeling 
through Gaussian process regression. J. Low Temp. Phys. 1–14. 

Zhang, B., Qiu, R., Lu, L., Chen, X., He, C., Lu, J., Ren, Z.J., 2018. Autotrophic vanadium 
(V) bioreduction in groundwater by elemental sulfur and zerovalent iron. Environ. 
Sci. Technol. 52 (13), 7434–7442. 

Zhu, A.X., Band, L., Vertessy, R., Dutton, B., 1997. Derivation of soil properties using a 
soil land inference model (SoLIM). Soil Sci. Soc. Am. J. 61, 523–533. 

Zhou, J., Li, E., Wei, H., Li, C., Qiao, Q., Armaghani, D.J., 2019. Random forests and 
cubist algorithms for predicting shear strengths of rockfill materials. Appl. Sci. 9 (8), 
1621. 

K. John et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0341-8162(21)00392-1/h0300
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0300
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0300
http://refhub.elsevier.com/S0341-8162(21)00392-1/h9020
http://refhub.elsevier.com/S0341-8162(21)00392-1/h9020
http://refhub.elsevier.com/S0341-8162(21)00392-1/h9020
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0310
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0310
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0315
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0315
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0315
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0320
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0320
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0325
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0325
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0325
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0330
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0330
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0330
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0335
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0335
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0340
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0340
http://refhub.elsevier.com/S0341-8162(21)00392-1/h9035
http://refhub.elsevier.com/S0341-8162(21)00392-1/h9035
http://refhub.elsevier.com/S0341-8162(21)00392-1/h9035
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0350
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0350
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0355
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0355
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0355
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0360
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0360
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0365
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0365
http://refhub.elsevier.com/S0341-8162(21)00392-1/h0365


Vol.:(0123456789)1 3

Earth Systems and Environment (2021) 5:899–908 
https://doi.org/10.1007/s41748-021-00263-0

ORIGINAL ARTICLE

Estimating Soil Organic Matter: A Case Study of Soil Physical 
Properties for Environment‑Related Issues in Southeast Nigeria

Kokei Ikpi Ofem1 · Kingsley John2  · Mark Pawlett3 · Michael Otu Eyong1 · Chukwuebuka Edwin Awaogu4 · 
Pascal Umeugokwe4 · Gare Ambrose‑Igho5 · Peter Ikemefuna Ezeaku4 · Charles Livinus Anija Asadu4

Received: 15 August 2021 / Revised: 2 October 2021 / Accepted: 4 October 2021 / Published online: 17 October 2021 
© King Abdulaziz University and Springer Nature Switzerland AG 2021

Abstract
The different deposition periods in sedimentary geological environment have made the build-up and estimation of soil 
organic matter ambiguous to study. Soil organic matter has received global attention in the ambience of international policy 
regarding environmental health and safety. This research was to understand the inter-relationship between soil organic matter 
and bulk density, saturated hydraulic conductivity (Ksat), total, air-filled and capillary porosities for organic matter estima-
tion, via different multiple linear regression functions (i.e., leapbackward, leap forward, leapseq and lmStepAIC), in soils 
developed over the sedimentary geological environment. Eight mapping units were obtained in Ishibori, Agoi Ibami and 
Mfamosing via digital elevation model. Two pits were sited within each mapping unit, and 53 soil samples were used for the 
study. In soils over shale–limestone–sandstone, two pits were sited, six in alluvium, four in sandstone–limestone and four 
in limestone. Overall correlation between SOM with Ksat (r = 0.626) and BD (r = − 0.588) was significant (p < 0.001). The 
strongest correlation was obtained for SOM with BD (r = − 0.783) and Ksat (r = 0.790) in soils over limestone. In contrast, 
soils over shale–limestone and sandstone geological environment gave the weakest relationship (r < 0.6). Linear regression 
gave a similar prediction output. The best performing was leapbackward (RMSE = 11.50%, R2 = 0.58, MAE = 8.48%), which 
produced a smaller error when compared with leap forward, leapseq and lmStepAIC functions in organic matter estimation. 
Therefore, we recommend applying leapback linear regression when estimating soil organic variation with physical soil 
properties for solving soil–environmental issues towards sustainable crop production in southeast Nigeria.

Keywords Agriculture · Environment · Multivariate statistics · Soil health · Humid tropics

1 Introduction

Soil organic matter (SOM) is an essential component of the 
soil. It is pivotal for maintaining multiple soil-derived eco-
system services, such as the production of food and materials 

for shelter, fuel and clothing, the maintenance of biodiver-
sity, and critically mitigating effects of global climate change 
(Li et al. 2017). In addition, it positively impacts soil fertil-
ity. It contains an unknown number of compounds derived 
from living and non-living organic substances, varying from 
easily decomposable simple organic materials to complex 
recalcitrant compounds and organisms (Kogel-Knabner 
2002).

Besides sequestering or acting as a source or sink of 
atmospheric carbon, SOM storage in arable soils influ-
ences soil physical, chemical and biological properties 
(Saint-Laurent et al. 2017; Blanco-Canqui et al. 2013). 
These properties are exposed to more risks in cultivated 
soils. Land degradation occurs globally due to poor land 
management strategies, such as inappropriate land uses 
like bush burning, continuous cultivation and tillage 
(Blanco-Canqui et al. 2013). This results in a decline in 
SOM and concurrent impacts on soil physical parameters 
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such as porosity, increased bulk density (BD) (Tisdall 
and Oades 1982) and reduced infiltration (Li et al. 2007) 
as they are functions of SOM (Jiao et al. 2020). Organic 
matter reduces soil BD and increases the porosity of com-
pacted soil layers (Boni et al. 1994; Bonini and Alves, 
2010), while its mineralization may lead to increased BD 
(Oliveira et al. 2018). In addition, researchers in North-
ern Karakoram (Ali et al. 2017) and Nepal (Ghimire et al. 
2018) identified negative correlations between organic C 
and BD. In contrast and surprisingly, Lei et al. (2019) 
reported positive correlations between soil organic carbon 
(SOC) and BD in subsurface soils, while Masri and Ryan 
(2006) reported decreasing hydraulic conductivity with 
reduced SOM.

Several factors have been reported to affect the build-up 
of SOM. They include topography (Cardinael et al. 2017), 
climate (Munoz-Rojas et al. 2017), soil type (Zhao et al. 
2016), soil depth, land use (Kafle, 2019), texture (Lei et al. 
2019), soil microorganisms (Komarov et al. 2017) and soil 
pH (Zhou et al. 2020). When wholly considered, these fac-
tors make studies related to SOC complex and make its 
measurement and inter-relationship with other soil proper-
ties difficult. However, SOM is important in soil studies and 
maybe a sole indicator of fertile and healthy soil.

There have been several studies on the horizontal spatial 
distribution of SOM using various mathematical models as 
influenced by topography, vegetation and land use (Takata 
et al. 2007; Liu et al. 2015). Applying different machine 
learning (ML) in predicting soil properties is recent in soil 
science and precision agriculture (for example, random 
forest, support vector machine, artificial neural network 
and others) (John et al. 2020). Multiple linear regression 
(MLR) has been applied in modeling and predicting SOC via 
environmental variables and soil nutrient indicators (John 
et al. 2020), arsenic estimation via XRF and ICP-OES data 
(Kebonye et al. 2020), and the mapping of soils of Minas 
Gerais, Brazil via XRF data using the stepwise multiple 
linear regression techniques (Silva et al. 2017). However, 
the stepwise variable selection is automatic and has many 
statistical problems that could worsen if the covariates are 
collinear. Therefore, this study attempts to reduce covari-
ates collinearity. Currently, no published studies compare 
the different stepwise linear regression functions in the mod-
eling of SOM under diverse sedimentary geological environ-
ments; hence, this research introduces a new approach in 
explaining the variability of SOM in soils over the different 
sedimentary geological environments. We hypothesize that 
SOM will vary in its inter-relationship with soil physical 
properties in different sedimentary geological environments, 
and subsequently, SOM can be predicted by soil physical 
properties. Consequently, this research studied the inter-rela-
tionships between SOM and BD, saturated hydraulic con-
ductivity (Ksat) and porosity, and applied various multiple 

linear regression functions to predict SOM accumulation 
via some selected soil physical properties dominating the 
different geological environments.

2  Materials and Methods

2.1  Location and Land Use, Geology, and Climate 
of the Study Area

The study sites were located in Ishibori area (679 ha) of 
Ogoja  (06o39′17'' N,  08o47′51'' E), Agoi Ibami (280 ha) 
in Yakurr  (05o43′27"N,  08o10′37.2" E) and Mfamosing 
(2202 ha) in Akamkpa (05°04′41.8''N, 08° 27′49.8''E), all 
in the Cross River State of Nigeria. The Ogoja area is cov-
ered by the southern guinea savannah and cultivated to oil 
palm, teak and paddy rice, while the Yakurr and Akamkpa 
areas are covered by tropical rainforest. Common crops in 
the Yakurr and Akamkpa areas are oil palm, cassava and 
plantain.

Basement Complexes and Sedimentary Basins dominate 
the geology of Cross River State (Ekwueme 1987). The Sed-
imentary Basins, containing sediment fill of Cretaceous to 
Tertiary ages, dominate the Niger Delta region (Fatoye and 
Gideon 2013), with alluvium found in the low lying coastal 
areas. The limestone of the Cretaceous and Tertiary ages 
is often intercalated with shale, siltstone, and fine-grained 
sandstone (Ofem et al. 2020a).

Cross River State has a humid tropical climate, which 
varies from the southern guinea savannah in the Ogoja area 
to the tropical rainforest of Yakurr and Akamkpa. Conse-
quently, rainfall fluctuates from 1251–3348 mm/year in the 
Ogoja area to 1760–2684 mm/year and 2109–3771 mm/year 
in Yakurr and Akamkpa, respectively (Sambo et al. 2016). 
Temperature varies from 23 to 34 °C in the Ogoja area and 
23 to 32 °C in Yakurr and Akamkpa areas (Sambo et al. 
2016). Yakurr and Akamkpa have similar climates and veg-
etation and often experience slight temperature variation.

2.2  Field and Laboratory Procedures

Digital elevation models (DEM) of the study locations were 
acquired from USGS Explorer SRTM 1 arc-second Global 
at a resolution of 30 m. The DEM was employed to generate 
slope maps in ArcGIS (ESRI, US) environment. The elevation 
ranges created in the slope maps were used to delineate slope 
transition (Ofem et al. 2020a). Each of the eight slope transi-
tions (IH1, IH2, AI1, AI2, AI3, MF1, MF2, MF3) represented 
a soil mapping unit (MU). Two soil pits were randomly sited 
in each MU and dug to represent the soils (2 m by 1.5 m by X 
m). Where X m represents variable depth to the water table or 
consolidated rock layer, this gave rise to sixteen pits in total, 
two in shale–limestone–sandstone (SLM) (IH1P1, IH1P2), six 
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in alluvium (IH2P1, IH2P2, AI3P1, AI3P2, MF3P1, MF3P2), 
four in sandstone–limestone (AI1P1, AI1P2, MF1P2, MF2P2) 
and four in limestone (AI2P1, AI2P2, MF1P1, MF2P1). 
Thereby, a total of 53 soil samples were collected from pedo-
genic horizons and subjected to laboratory analyses. In addi-
tion, undisturbed core soil samples were vertically collected 
from pedogenic horizons for the determination of saturated 
hydraulic conductivity (Ksat), total porosity (Total_P), air-
filled porosity (Air_P) and capillary porosity (CAP_P). Ksat 
was determined by the direct application of Darcy's equation to 
a saturated soil column of uniform cross-sectional area (SSS, 
2014), such that:

where V = volume of water that flows through the sample of 
cross-sectional area (A) in time (t);

(H2-H1) = Hydraulic head difference;
L = Length of sample.
Core soil samples were then drained at 60 cm of tension to 

determine Total_P, Air_P, and CAP_P. Total porosity, Air_P, 
and CAP_P were determined by dividing the volume of water 
in the soil at saturation, the volume of water drained at 60 cm 
of tension, and the volume of water retained at 60 cm of ten-
sion by the volume of the cylinder (Obi 2000).

Soil for organic carbon determination was air dried under 
room temperature in the laboratory at 29–30 °C for three days, 
ground with a wooden pestle to break peds and passed through 
a 2 mm sieve. Soil organic carbon (Walkley–Black modified 
acid-dichromate) was determined using standard procedures 
outlined in Soil Survey Staff (SSS 2014). SOM was calculated 
from SOC by multiplying by a factor of 1.72 to obtain SOM. 
Soil samples were analyzed in the Department of Soil Science, 
University of Nigeria, Nsukka. The field study was carried out 
between December 2018 and February 2019.

2.3  Correlation Matrix

A simple correlation analysis was performed with categorical 
data (e.g., geological environment). This analysis explained 
the intra- and inter-relationships between the SOM and the 
selected physical properties and how the individual geologi-
cal environment contribute to the relationship between SOM 
and the physical properties. The output of the correlation was 
reconfirmed through the application of a Principal Component 
Analysis (PCA).

2.4  Principal Components Analysis

PCA enabled the grouping of the selected soil properties 
into the different geological environments. It enabled the 
extraction of principal factors accounting for the sources 

(1)Ksat =
VL

At
(

H2 − H1

) ,

of variation in the data (Belkhiri and Narany 2015) and to 
identify the geological material influencing SOM and other 
properties. Such litho-material would require further assess-
ment as they may help explain certain SOM variability relat-
ing to the selected soil properties within the area.

2.5  Modeling Approach of SOM

Four (n = 4) stepwise multiple linear regression (MLR) func-
tions were applied in this study. The forward, backward, 
both direction, and the regsubsets are available in the leap 
function.

This study presented four functions available in R soft-
ware for stepwise linear regression in estimating SOM using 
six predictors (BD, Ksat, Total_P, Air_P, CAP, geological 
material). The stepwise regression applied leaps and ste-
pAIC functions available in R's leaps and MASS packages. 
The leaps package in R is composed of "leapBackward", 
which fits a linear regression with backward selection, and 
"leapForward", with fittings for linear regression with for-
ward selection. The "leapSeq" fits a linear regression with 
stepwise selection, while in stepAIC (also referred to as 
direction), we applied the "lmStepAIC" (James et al. 2014). 
The approach was adopted to exhaustively establish that the 
intended selected model is suitable for SOM prediction in 
the soils overlying sedimentary geological environment in 
the region.

The simple linear model used to predict SOM (%) via the 
selected soil properties is expressed as, thus:

where β0 is the y-intercept and or bias in the field of machine 
learning (Hastie et al. 2008). The Xj represents the predictor 
variable, while βj is the slope coefficient of the predictor. An 
error term is also included and is denoted by ∊ j.

2.6  Model Accuracy and Assessment

The entire data were subjected to modeling. Mean abso-
lute error (MAE), and root mean square error (RMSE), and 
coefficient of determination (R2) were adopted as criteria 
in evaluating the models' performance. In the case of MAE 
and RMSE, a lower value is preferred. For R2, values closer 
to 1 (Li et al. 2016),

2.7  Statistical Analysis

The R software performed all statistical analyses and model 
computations (R Core Team 2019).

(2)SOM(%) = �0 +

p
∑

j=1

Xj�j + ∈j,
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3  Results and Discussion

The summary of descriptive statistics for the soils, grouped 
by the geological environment, is presented in Table 1. At 
the same time, the results of the interaction between SOM 
and physical properties are shown in Fig. 1.

3.1  Inter‑relationships Between SOM and BD, Ksat 
and Porosity in the Sedimentary Geological 
Environment

3.1.1  Soil Organic Matter Versus Bulk Density

SOM correlated moderately and negatively with BD 
(r = − 0.588, p < 0.01) (Fig. 1) in the studied soils and indi-
cated an increase in SOM with decreasing BD values. The 

highest mean value of SOM and the lowest mean value of 
BD were obtained in soils over alluvium (Table 1) and fur-
ther revealed that poorly drained alluvial soils are better 
accumulators of SOM. High SOM values are most likely 
to result in low BD values. Similar positive relationships 
were reported by Tisdall and Oades (1982) and Rawls et al. 
(2005) and contradict findings by Oliveira et al. (2018) that 
BD is unaffected by green manure. Others argue that organic 
matter does affect BD (Heuscher et al. 2005). An increase 
in organic matter oxidation rate is most likely to increase 
soil BD; for instance, poorly drained soils rich in accumu-
lated organic matter have low BD compared to well-drained 
soils located in the upland. Conversely, an increase in green 
manure or SOM reduces BD (Boni et al. 1994; Parihar et al. 
2016). However, this negative relationship was strongest 
in soils over limestone with higher r values (> 0.70); espe-
cially those with Vertic properties as reported in Ofem et al. 

Table 1  Summary of 
descriptive statistics for the soils 
studied

SOC soil organic carbon, SOM soil organic matter, BD bulk density, Ksat Saturated hydraulic conductivity, 
total P total porosity, Air_P Air-filled porosity, Cap_P capillary porosity, IH1, IH2, AI1, AI2, AI3, MF1, 
MF2, MF3 soil mapping units

Statistics SOC SOM BD Ksat Total P Air_P CAP_P
g/kg g/cm3 cm/h %

Shale–limestone and sandstone intercalation (SLM) (IH1P1, IH1P2)
 Mean 9.86 16.94 1.57 34.99 51.41 8.97 42.41
 Std 13.59 23.39 0.08 42.12 7.23 6.7 4.15
 SE 5.14 8.84 0.031 15.92 2.73 2.53 1.57
 Min 1.37 2.36 1.45 0.61 44.4 2.3 35
 Max 40.3 69.32 1.66 106.28 65 21 47.8
 CV 1.38 1.38 0.05 1.2 0.14 0.75 0.1

Alluvium (IH2P1, IH2P2, AI3P1, AI3P2, MF3P1, MF3P2)
 Mean 18.12 31.16 1.19 49.55 57.76 6.63 51.13
 Std 23.24 39.98 0.32 85.44 10.01 5.67 10.49
 SE 5.81 9.99 0.08 21.36 2.5 1.42 2.62
 Min 1.03 1.77 0.53 0.49 45.1 2 38.1
 Max 86.64 149.02 1.63 256.54 80.2 23.9 76.5
 CV 1.28 1.28 0.27 1.72 0.17 0.86 0.21

Sandstone–limestone (SS) (AI1P1, AI1P2, MF1P2, MF2P2)
 Mean 7.01 12.06 1.43 43.67 48.8 4.71 45.07
 Std 6.17 10.61 0.17 39.27 6.32 2.56 8.23
 SE 1.54 2.65 0.043 9.82 1.58 0.64 2.06
 Min 1.72 2.96 0.99 1.22 40.5 2.3 34.6
 Max 21.96 37.77 1.66 126.67 63.4 11.3 60.7
 CV 0.88 0.88 0.12 0.9 0.13 0.54 0.18

Limestone (LS) (AI2P1, AI2P2, MF1P1, MF2P1)
 Mean 7.72 13.28 1.35 16.67 49.56 5.3 44.13
 Std 11.73 20.17 0.19 20.19 7.2 5.54 7.06
 SE 3.13 5.39 0.051 5.4 1.92 1.48 1.89
 Min 0.69 1.19 0.9 0.49 37.1 0.9 31.6
 Max 46.34 79.7 1.6 75.52 62.2 23.5 59
 CV 1.52 1.52 0.14 1.21 0.15 1.05 0.16
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(2020a), and alluvium (r = 0.578), which had Loamic and 
Humic properties in the WRB system (Ofem et al. 2020a), 
and weakest in soils over SLM lithology.

3.1.2  Soil Organic Matter Versus Saturated Hydraulic 
Conductivity

Soil organic matter correlated moderately and positively 
with Ksat (r = 0.626) (p < 0.001) in the studied soils. 
Greater SOM results in higher Ksat because soil aggre-
gate formation is linked to organic matter content (Beare 
et al. 1994). The presence of a considerable amount of 
organic matter ensures good aggregate and soil struc-
tural formation. This facilitates the movement of water 
through the soil. The highest value of SOM in soils over 
alluvium, which coincides with the highest value of Ksat, 
may further affirm their correlation. The soils over allu-
vium have either Aquic or Gleyic properties (Ofem et al. 
2020a) expresses poorly drained soil conditions. Such 
conditions tend to encourage SOM deposition. Similar 
results have been reported, such that increased Ksat was 

obtained through an increase in dairy manure applica-
tion (Jiao et al. 2006; Eghball, 2002), and SOM in the 
Mediterranean region (Masri and Ryan 2006). However, 
the relationship is not always a straight positive correla-
tion for any soil (Nemes et al. 2005). This indicates that 
SOM is most likely to increase if soil conditions that favor 
increased Ksat are created. Masri and Ryan (2006) recom-
mended a legume rotation for improved Ksat. Generally, 
significant amounts of readily decomposed organic matter 
and enhanced nutrient release from such materials may 
improve physical soil conditions (Sanchez et al. 1989). A 
high positive correlation (r > 0.70) was obtained between 
Ksat and SOM for soils over alluvium and LS, indicat-
ing greater certainty for the relationship than soils over 
SLM lithology. According to Saxton and Rawls (2006) and 
Yao et al. (2015), SOM is an important predictor of Ksat 
but strongly influenced by vegetations in the subtropics 
(Hao et al. 2019). For instance, irrespective of lithology, 
a higher mean value of 16.9 g/kg for SOM was obtained in 
the well-drained soils of the southern guinea savannah area 
compared to 12.06 and 13.28 g/kg obtained in the tropical 

Fig. 1  Correlation between SOM and soil physical properties at p < 0.1, 1 and 5%. Bulk density (BD); saturated hydraulic conductivity (Ksat); 
total (Total_P); air-filled (Air_P); capillary porosities (Cap_P)
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rainforest. This variation may be connected to the huge 
accumulation of litter in the oil palm and teak plantations.

3.1.3  Soil Organic Matter and Porosity

The correlation of SOM versus Total_P resulted in a mod-
erate positive correlation (r = 0.44) (p < 0.01) in the stud-
ied soils and implies increased SOM with an increase in 
Total_P, but with moderate certainty in the positive rela-
tionship between SOM and Total_P within sedimentary 
formations. Tisdall and Oades (1982). Nemes et al. (2005) 
obtained similar relationships as reported in this study. 
Boni et al. (1994), Whalen and Chang (2002), and Alves 
and Suzuki (2004) reported an increase in Total_P by the 
use of green manure, dairy manure and successional cover 
crops. Similarly, Li et al. (2007) opinionated that a decrease 
in SOM will decrease porosity, reduced water and air stor-
age. In soils over SS, the relationship was weak and posi-
tive. Soils over SS are high in the sand (Souza et al. 2019; 
Ofem et al. 2020b) and most likely to be well drained and 
more porous with a good supply of oxygen, and thus will 
most likely facilitate oxidation of organic matter (Bohn et al. 
2001). This results in a high decomposition rate and low 
SOM accumulation.

Soil organic matter was very weakly correlated with 
Air_P. This may suggest the indirect involvement of Air_P 
in soil organic matter decay in the humid tropical region of 
southeast Nigeria. On the other hand, CAP_P was positively 
moderately correlated (p < 0.01) with SOM (r = 0.41) in the 
studied soils. Total_P and CAP_P are highly correlated 
(r = 0.80), with each also positively correlated with SOM 
and both having the highest values in soils over alluvium. 
Soils over alluvium, therefore, exert a similar influence on 
SOM, Total_P and CAP_P. This implies that SOM increases 
with an increase in soil wetness conditions.

3.2  Principal Component Analysis

Principal Component Analysis (PCA) (Tables 2 and 3; 
Fig. 2) revealed that PC1 explained 54% of the variability 
in the dataset, while PC2 explained 22% of the variance 
between soils of diverse geological environments. PC1 was 
presented by the contribution of SOM, BD, Kstat, Total P, 
and CAP_P, while PC2 was described by the contribution 
of Ksat, Air_P and CAP_P to their loadings (Table 3). The 

points outside the ellipses are outliers of each of the geologi-
cal environments.

All the soil properties were significantly influenced by 
SOM (p < 0.01, 0.001) under alluvial deposits except Air_P. 
Similarly, BD (r = −  0.783), Ksat, Total_P and Cap_P 
(r > 0.54) were affected by SOM under LS. SOM was report-
edly positively inter-related with Ksat and inversely with BD 
in soils formed over SS, while SOM had no influence on the 
properties for soils over SLM. The PCA result reconfirmed 
the correlation matrix output (Fig. 1).

3.3  SOM Prediction

Presented in Table 4 is the result of the four stepwise linear 
regression models for SOM prediction. Leapforward yield 
(RMSE = 12.51%, R2 = 0.53, MAE = 8.68%), Leapbackward 
gave (RMSE = 11.50%, R2 = 0.58, MAE = 8.48%), leapseq 
yielded (RMSE = 12.51%, R2 = 0.53, MAE = 8.68%) and 
lmStepAIC function produced (RMSE = 13.24%, R2 = 0.54, 
MAE = 9.56%). The results revealed that the best performing 
function for SOM prediction is the leapbackward function 
since it produced the lowest error with a high coefficient 
of determination value. However, all the model functions 
were within the acceptable prediction range (R2 ≥ 0.50–0.75) 
as proposed by Li et al. (2016). These results suggest that 
prediction of SOM may vary depending on the method/func-
tions adopted. The backward elimination (leapbackward) 
likewise, the rest functions procedure identified the best 
model as having BD** and Ksat***, respectively.

According to Sakin (2012), BD is closely related to SOC 
by storing large amounts of SOM. Compacted soil may con-
tain more SOM, as it will occupy less space and more SOM 
per volume of soil, and the SOM in compacted soil is essen-
tially "locked away". In contrast, soils that are not compacted 
have more contact with the air in the soil pores and so can be 
mineralized more efficiently and used as plant nutrients or 
leached. This relationship has been reported to aid the esti-
mation of BD from SOM and vice versa (Perie and Ouimet, 
2008). The study by Adams (1973) revealed that SOM had 

Table 2  Principal component contributions

Importance of components PC1 PC2

Standard deviation 1.802 1.155
Proportion of variance 0.541 0.223
Cumulative proportion 0.541 0.764

Table 3  Principal components correlation with variables 

NB: Bolded values showed the variables contributing more to each 
PC
*Contribution to each PC

PC1 PC2

SOM 0.4091* 0.1613
BD − 0.5119* 0.1312
Ksat 0.3486 0.4455*
Total_P 0.4872* 0.0134
Air_P 0.0485 0.7559*
CAP_P 0.4569* − 0.4321*
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a dominant effect on both bulk and actual densities of soil 
in podzolic soil's organic and eluvial horizons.

Similarly, as shown in the correlation matrix, Ksat gave 
a higher correlation with SOM than BD; this was captured 
in all the four linear regression functions used in this study. 
The regression result confirms that an increase in SOM in 
the soil will result in a proportional increase in Ksat. This 
is because Ksat describes the capability of the bulk soil to 
transmit water when subjected to a hydraulic gradient. This 
is expressed by the volume of water flowing per unit area 
of bulk soil per unit time (Kosugi et al. 2002). Also, the 
result in this study is similar to the report of Ankenbauer 
and Loheide (2017). They reported an R2 = 0.625 in predict-
ing SOM via volumetric water content at saturation in the 
meadow of the Sierra Nevada.

Generally, organic matter has been reported to signifi-
cantly influence soil water retention and BD (Rawls et al. 

2003; Olness and Archer, 2005; Saxton and Rawls, 2006). In 
contrast, other studies have reported that SOM is not neces-
sary to estimate soil water retention properties accurately 
(Zhuang et al. 2001). However, in a dissimilar geological 
environment like this study, where the soils are predomi-
nantly similar in texture (Ofem et al. 2020a) and SOM con-
tent from 12.06 to 31.6 g/kg, SOM can easily be estimated 
via BD and Kstat. This is because SOM exerts a substantial 
control on surface water retention and BD variability.

4  Conclusions

Soil organic matter is most likely to increase when favora-
ble conditions for increased Ksat and porosity except Air_P, 
which did not influence SOM. Irrespective of geological 
material, BD decreases when SOM increases. The Ksat of 

Fig. 2  Principal component 
analysis of the variables 
grouped by geological environ-
ment. Bulk density (BD); 
saturated hydraulic conductivity 
(Ksat); total (Total_P); air-filled 
(Air_P); capillary porosities 
(Cap_P)

Table 4  Prediction of soil 
organic matter (SOM) via 
various stepwise linear 
functions

p = 0.001 '***'; 0.01 '**', Bold gave a good model fit

LM Functions RMSE (%) R2 MAE (%) Equations Variable of importance

LeapForward 12.51 0.53 8.68 SOM = 38.2–23.6BD + 0.13Ksat BD**, Ksat***
LeapBackward 11.50 0.58 8.48 SOM = 38.2–23.6BD + 0.13Ksat BD**, Ksat***
LeapSeq 12.51 0.53 8.68 SOM = 38.2–23.6BD + 0.13Ksat BD**, Ksat***
LmStepAIC 13.24 0.54 9.56 SOM = 38.2–23.6BD + 0.13Ksat BD**, Ksat***
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soils over limestone (LS) and alluvium and BD of soils over 
LS had the strongest relationships with SOM with r > 0.70. 
However, air-filled (Air_P) porosity had no significant asso-
ciation with SOM and is most likely to have little effect on 
its decomposition in sedimentary geological environments. 
Farmers must put in place measures to regulate soil mois-
ture (mulching and drainage), particularly in the sedimentary 
geological environment, which affects SOM. PC1 and PC2 
contributed 74.38% of the total variance in the dataset of 
soils over diverse geological environments. The grouping 
pattern in the PCA explained that alluvial deposits influence 
most soil characteristics in this present study.

All the selected stepwise linear regression functions in 
the R environment performed the same as they fell within 
acceptable prediction criteria (R2 = 0.50–0.75). However, the 
best performing model function was leapbackward, which 
produced a smaller error when compared with others. The 
models selected BD and Ksat as the most important vari-
ables to explain the SOM variability in diverse sedimentary 
geology. The reason behind this result could not be presented 
at the time of this study; however, it could be interesting to 
access these functions with more variables and large sample 
densities. Therefore, we propose an increase in sample den-
sity per lithological make-up and the incorporation of soil 
properties known in works of literature to be influenced by 
SOM. This is to verify the performance of the leapbackward 
function over other functions, including the conventional 
lmStepAIC algorithm.
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ABSTRACT
In this work, we tested different combinations of sampling strat-
egies, random sampling and conditioned Latin Hypercube sam-
pling (cLHS)] and sample ratios (10% ¼ 147 and 25% ¼ 368) to
predict soil phosphorus and potassium contents, previously esti-
mated using standard laboratory protocols. Other environmental
covariates, used as input data for prediction, were obtained from
different sources (multispectral Landsat-OLI 8 image, WorldClim
database, ISRIC soil database, and ASTER-GDEM). Our findings
showed that random sampling was suitable for predicting phos-
phorus, while the conditioned Latin Hypercube sampling was suit-
able for predicting potassium. Furthermore, we observed that
when the sample ratio increased from 10 to 25%, model accuracy
improved in random sampling and cLHS for phosphorus and
potassium prediction. However, before generalizing these find-
ings, we recommend that further studies be conducted under dif-
ferent conditions (climate, soil types and parent materials) and
testing other sample ratios to determine the best sampling strat-
egy with the optimum ratio to predict soil nutrients better.
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1. Introduction

Phosphorus and potassium are essential macronutrients for plant growth and nitrogen
(Morgan and Connolly 2013). Phosphorus is released into the soil solution by decompos-
ing rock fragments and mineralizing organic matter (Gumiere et al. 2019). Potassium is
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made available in the soil solution through exchangeable K (€Oborn et al. 2005). Thus,
plants regularly take them up from the soil solution. Soil, phosphorus, and potassium
regulate plant cell processes such as energy, photosynthesis, and sugar transformation
(Ramaekers et al. 2010; Kadarwati 2020). Potassium plays a vital role in yield and quality
improvement (Marschner and Dell 1994; Oosterhuis et al. 2014), while phosphorus plays
a significant role in root development, nutrient uptake and crops growth (Abbasi et al.
2008). They are both required in large amounts for any crop development. Therefore, any
soil and land management leading to their low availability may result in unhealthy crops,
low yield, or even the death of crops.

Soil nutrient maps provide the spatial distribution of essential nutrients for precision
agriculture and identify areas for intervention. Furthermore, the accuracy and quality of
these essential soil nutrient maps (such as phosphorus and potassium) generally depend
on the sampling point distribution, size and the model adopted for mapping. For this
purpose and to develop reliable predictions of a targeted soil nutrient efficiently and cost-
effectively, the minimum sample size and the most appropriate sampling strategy must
first be evaluated.

Different sampling strategies have been proposed in predicting various targeted soil
properties. For example, Wollenhaupt et al. (1994) suggested two-dimensional grid sampling
strategies for mapping phosphorus and potassium for site-specific recommendations.
However, this sampling strategy is limited since it requires large observation points to make
accurate soil nutrient recommendations, especially in highly complex sites. Unfortunately,
the extensive labor needed in soil sample collection and laboratory analysis costs makes this
grid sampling strategy unfeasible on a large scale (Varvel et al. 1999; Kozar et al. 2002;
Higo et al. 2015). Other sampling strategies used in soil nutrients prediction include clas-
sical random sampling, stratified random sampling (Brus and De Gruijter 1997), and condi-
tioned Latin Hypercube Sampling (cLHS) (Brungard and Boettinger 2010).

In a simple random sampling strategy, a pre-determined number of sample positions are
randomly selected from the area, and the selection probabilities are equal and independent
of each other. This is done by obtaining the geographic coordinates of each sample location
from a random number generator or random number table. In stratified random sampling,
the area is first divided into several sub-areas, called layers, and then simple random sam-
pling is used for each layer (Brus and De Gruijter 1997). Furthermore, Brus and De
Gruijter (1997) outlined that the choice of sampling depends on many factors, proposing
more comparative research on sampling strategies. On the other hand, the conditioned
Latin conditioned Hypercube sampling is a stratified random sampling, which accurately
represents the variability of environmental covariates in the feature space (Brungard and
Boettinger 2010). This sampling strategy has been used extensively in digital soil mapping
(DSM) projects around the world, as recently reported in the last five years by Sun et al.
(2017) in China, Jeong et al. (2017) in South Korea, Scarpone et al. (2016) in Canada and
Thomas et al. (2015) in Australia. In addition, Minasny and McBratney (2006) outlined
that cLHS was most effective in replicating the distribution of the variables.

Sampling design and sample size are the most vital criteria to consider in predicting
soil parameters that vary spatially based on the vast heterogeneity of the soil environ-
ments. Also, prediction accuracy is partly influenced by the sample size and spatial posi-
tions of the sampling points with weights of the target property used to build the model.
Besides that, little has been investigated on optimal sampling strategies for mapping using
the random forest to the best of our knowledge. Therefore, this paper compared two dif-
ferent sampling strategies, random sampling and conditioned Latin hypercube sampling,
each with two different sample sizes to achieve the optimum prediction of soil nutrients
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based on a random forest model for proper soil fertilizer and application of other soil
input materials in the Mediterranean region of Morocco.

2. Materials and methods

2.1. Site description

The study area is located in the province of Taounate in northern Morocco (34�47’N,
4�4.4’W and 34�05’N, 5�10.3’W), displayed as 7700 square kilometers (100� 77 km)
(Figure 1). It mainly belongs to the mountainous region of the central Rif. In addition, it
includes a part of the Atlas Mountains in the northwest. Generally, the area covered by
this study varies from 78 to 1969 meters. Its geological formations consist of a Jurassic-
Cretaceous series of marl overcome molassic formations composed of sandstone and con-
glomerates (Mesrar et al. 2017). According to World Reference Base for Soil Resources
(FAO Classification System), the region’s soils are moderately weathered and classified
within Xeralfs and Luvisols. They consist of very deep, somewhat poorly drained soils
formed in sandy outwash, glaciolacustrine, or eolian deposits on outwash plains, lake
plains, and dunes (FAO/ISRIC/ISSS 2006).

The region’s climate is of Mediterranean type, with rainy winter and dry summer.
Rainfall is irregular throughout the year, with an annual average of about 650mm, mostly
occurring from October to February. The average yearly temperature is 17 �C. The average
maximum temperature of the hottest month (July) is about 34.2 �C, while the average
minimum temperature of the coldest month (January) is 0.5 �C (Allali et al. 2020;
Rezouki et al. 2020).

The area is characterized by diversified vegetation cover, mainly including cereals
(wheat and barley), fruit trees (olive, almond, fig), legumes (beans, chickpeas, lentils), and
fodder crops. Recently, the area’s development has encountered problems with cannabis
cultivation, of which 3,000 hectares have been razed, and a massive plan to plant
drought-tolerant trees, such as olive and carob, have been launched (Kradi 2012).

Figure 1. Map of the study area showing the location of the sampling points, using conditioned Latin sampling
(cLHS) with A: cLHS_10 (n¼ 147), B: cLHS_25 (n¼ 368), C: rand_10 (n¼ 147) and D: rand_25 (n¼ 368).
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2.2. Sampling strategies, sample size and laboratory protocol

In total, 1470 points were collected to a 0–40 cm depth over two months (November and
December 2013), using a 1 km grid to cover the entire study area. During the sampling
campaigns, all sampling and transport standards were respected. Available K and P were
analyzed by extraction method using ammonium acetate (1:10) and molybdate ammo-
nium (1:20), respectively.

The 1470 samples were used to extract a set of parameters (topography, remote sensing
indices, climate, soil, section 2.3) for each point. This final database, containing all the
sampling points and all environmental covariates values, adopted two different sampling
strategies with different sizes (10% ¼ 147 samples and 25% ¼ 368 samples). The first is
the random sampling method, and the second is conditioned Latin hypercube sampling
(cLHS). The first set of sample sizes with sampling strategies is represented as clhs_10
and rand_10 (n¼ 147 samples). At the same time, the set of the second set of sample
sizes and sampling strategies are defined as clhs_25 and rand_25 (n¼ 368 samples)
(Figure 1).

Both methods were conducted in python using Google Collab and other libraries such
as pandas, numpy and clhs. We used 10,000 iterations to perform the functions of both
sampling strategies, as recommended by Malone et al. (2019). Furthermore, for the cLHS,
which requires auxiliary data for execution, the samples were subset using the following
auxiliary covariates: slope, elevation, Normalized Difference Vegetation Index (NDVI),
and Soil Adjusted Vegetation Index (SAVI).

2.3. Auxiliary covariates sources and preparation

In this study, the covariates used can influence the spatial distribution of phosphorus and
potassium content in soils. We obtained soil properties such as clay, silt, and sand, cation
exchange capacity (CEC) and bulk density (BD) from the ISRIC soil database. In addition,
four bioclimatic parameters representing temperature variation [annual mean temperature
(bio_1), max temperature of warmest month (bio_5) and min temperature of coldest
month (bio_6)] and precipitation [annual precipitation (bio_12)] were obtained from the
WorldClim database version 2 (Fick and Hijmans 2017). These data are available in
GeoTiff (.tif) format with a resolution of 10minutes (� 340 km2). Also, from Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-Global Digital
Elevation Model (GDEM) with a resolution of 30m, terrain attributes such as elevation,
slope, profile curvature, plan curvature, Multi-resolution Valley Bottom Flatness (MrVBF),
Multi-resolution Ridge Top Flatness (MrRTF), Topographic Wetness Index (TWI), con-
vergence index and aspect were extracted. Vegetation indices have shown their import-
ance in predicting different soil parameters (Mirzaee et al. 2016; Bouslihim et al. 2021).
For this reason, the Landsat-8 OLI/TIRS image with a spatial resolution of 30m was used
to extract the six parameters based on the equations presented in Table 1. The calculated
indices are as follows: Normalized Difference Vegetation Index (NDVI), Transformed
Normalized Difference Vegetation Index (TNDVI), Soil Adjusted Vegetation Index
(SAVI), Ratio Vegetation Index (RVI), Difference Vegetation Index (DVI), and
Chlorophyll Vegetation Index (CVI). Since the study area is within two scenes’ limits
(path ¼ 200/201 and row ¼ 36), two Landsat 8 images were used to calculate all required
parameters. Furthermore, to estimate the various parameters, the pre-processing of all
used bands, treatment, and analysis were done in the ArcGIS program. All the covariates
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with coarser resolution were downscaled to 30m pixel size using the nearest neighbor
function in the ArcGIS program.

2.4. Experimental design

Figure 2 gives a general idea of the methodology adopted in the present study, starting
from the preparation of the independent variables, passing through the sampling strategies
for the sample points selection; the method adopted for the implementation, the uncer-
tainty evaluation and the model performance and finishing with the nutrient mapping.

2.4.1. Random forest (RF) regression model
RF is a classification and regression tree (CART)-based machine learning technique
(Breiman 2001). It uses the bootstrap resampling method to extract multiple samples
from the original samples. It then models each bootstrap sample decision tree and com-
bines multiple decision trees for classification and regression during the training process.
The turning parameters was implemented under mtry ¼ p/3 (i.e., 30/3¼ 9), where p is
the total number of variables and ntree¼ 1000. The final prediction is the average of all
tree prediction results. This was performed in an R environment.

2.4. Dataset partitioning and model assessment

As earlier stated in section 2.2, we obtained two sets of samples, N¼ 147 and 368, via dif-
ferent sampling regimes. Therefore, for modelling, we randomly partitioned the data into
two separate datasets (i.e., a calibration dataset and a validation dataset), with a ratio of

Table 1. Auxiliary covariates applied in the modelling regime.

Covariates Sources Resolution
Resample
resolution

Soil properties
Particle size fractions (clay, silt, sand)
Cation exchange capacity (CEC)
Bulk density (BD)

ISRIC soil
database

250 m 30 m

Bioclimatic parameters
Annual mean temperature (bio_1)
Max temperature of the warmest month (bio_5)
Min temperature of the coldest month (bio_6)
Annual precipitation (bio_12)

WorldClim
database
version 2

10minutes
(� 340 km2)

30 m

Terrain attributes
Elevation; slope; profile curvature; plan curvature,
Multi-resolution Valley Bottom Flatness (MrVBF);
Multi-resolution Ridge Top Flatness (MrRTF);
Topographic Wetness Index (Topographi);
convergence index and aspect

ASTER-GDEM 30 m 30 m

Remote sensing indices
Normalized Difference Vegetation Index (NDVI)
Transformed Normalized Difference Vegetation
Index (TNDVI)
Soil Adjusted Vegetation Index (SAVI)
Ratio Vegetation Index (RVI) Difference
Vegetation Index (DVI)
Chlorophyll Vegetation Index (CVI)

Landsat OLI 8 30m m

Coordinates
x
y

30 m 30 m
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70% to 30%. As a result, the calibration dataset for cLHS_10 and rand_10 was composed
of 104 and 43 soil samples for calibration and validation, respectively. While for cLHS_25
and rand_25, the calibration dataset was composed of 260 soil samples, and the validation
set 108 soil samples. This was performed in an R environment with the function
createDataPartition in the caret package (Hyndman and Athanasopoulos 2018).

Model accuracy and performance were evaluated using root mean square error
(RMSE), coefficient of determination (R2), and mean absolute error (MAE).

3. Results and discussion

3.1. Summary statistics

The summary statistics of sampling strategy and sample size in predicting soil phosphorus
(P2O5) and potassium (K2O) are reported in Tables 2 and 3. With an emphasis on cali-
bration dataset, the mean P2O5 was found to decrease from 51.68mg/kg to 46.74mg/kg
with increasing sampling size when conditioned Latin Hypercube sampling (cLHS) was
used, while it increased with increasing sampling size from 45.78mg/kg to 47.55mg/kg
for random sampling. In a similar sequence, minimum and maximum P2O5 except for
random sampling design using 260 points decreased with increasing sampling size for
both sampling strategies. However, the coefficients of variations (CVs) of P2O5 were noted
to increase with increasing sampling size for both sampling strategies. This implies that
fewer points may be required for smaller uncertainty of P2O5 prediction in the study area
regardless of the sampling design to be utilized.

With an emphasis on the calibration dataset, the mean K2O increased from 337.13mg/
kg to 348mg/kg, increasing sampling size when cLHS was utilized. At the same time, it
decreases with increasing sampling size from 357.33mg/kg to 350.48mg/kg with a ran-
dom sampling design. Similarly, the maximum observed K2O was also found to follow a
similar trend. This implies that both sampling design and density could affect the spatial
distribution of K2O. Conversely, the coefficient of variation (CV) decreases from 81% to
78.15% with increasing sampling size when the cLHS strategy was utilized. The result

Figure 2. Research methodology flowchart.
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obtained in this study is in line with what was observed by Yu et al. (2011) in their
results. They also noted the coefficients of variation (CVs) of SOC to decrease gradually
from 62.8% to 47.4% with the increase in soil sampling densities. However, when using a
random sampling strategy, CV was observed to increase from 79.73 to 80.15. Yu et al.
(2011) established that larger CVs of the nutrient indicator are associated with more sam-
pling points. Phosphorus showed high variability in all sample sizes and strategies in the
studied soils. The result of the study implies that the detection of the variability of K2O
in the study area was closely related to the sampling density and design. For instance,
with the conditioned Hypercube Latin Square sampling design, the more points there are
the lower level of uncertainty in the K2O spatial information acquired.

Nevertheless, the mean K2O observed in the study area was rated high, whereas P2O5

was moderate. Having available soil P2O5 and K2O levels adequately provides the oppor-
tunity for excellent crop yields when growing conditions are favorable. Phosphorus
(P2O5) and potassium (K2O) are essential nutrients for a healthy crop. Their determin-
ation is, however, necessary when conducting soil testing.

The correlation result (Table 4) revealed that the potassium was significantly and nega-
tively correlated with phosphorus for sampling strategies and sizes. Furthermore, the rela-
tionship was more negatively higher (r ¼ � 0.57) with cLHS using 147 sampling points.
This suggests that by increasing soil potassium, phosphorus is expected to decrease pro-
gressively and vice-versa, especially for minimum datasets. The results obtained herein are
in line with previous studies. Notably, Bogunovic et al. (2017) obtained a significant and
negative correlation (r ¼ � 0.395) between phosphorus and potassium in an organic farm
in Croatia. Similarly, in their studies, Hossain et al. (2014) assessed the relationship
between soil pH and macronutrients in Western Nepal. They obtained a negative

Table 2. Summary statistics of calibration and validation dataset P2O5 (mg/kg).

Samp. Design Dataset Dataset Mean p-value Min Max Variance Std.Dev. Coef.Var. Skewness Kurtosis

cLHS_10 Calibration 104 51.68 0.04 7.43 262.80 3765.20 61.36 118.74 1.92 2.61
Validation 43 56.77 0.10 8.40 272.40 5551.83 74.51 131.25 2.09 3.37

Rand_10 Calibration 104 45.78 0.02 7.37 241.20 2892.14 53.78 117.48 2.19 4.11
Validation 43 52.38 0.02 6.42 260.40 4096.53 64.00 122.18 1.91 2.74

cLHS_25 Calibration 260 46.74 0.07 1.65 258.00 3409.91 58.39 124.94 2.04 2.95
Validation 108 46.16 0.01 5.91 270.00 3260.36 57.10 123.71 2.15 4.00

Rand_25 Calibration 260 47.55 0.02 3.42 271.20 3337.56 57.77 121.50 2.00 3.01
Validation 108 42.88 0.07 5.09 217.20 2745.15 52.39 122.18 2.41 4.78

NB: Random sampling design, cLHS: conditioned Latin Hypercube sampling design, min: minimum value, max: max-
imum value, Std.Dev: standard deviation, Coef.Var: coefficient of variation, p-value: probability significant value for
Kolmogorov–Smirnov normality test

Table 3. Summary statistics of calibration and validation dataset K2O (mg/kg).

Sampling design Dataset Dataset Mean p-value Min Max Variance Std.Dev. Coef.Var. Skewness Kurtosis

cLHS_10 Calibration 104 337.13 0.51 0.95 1093.20 74569.51 273.07 81.00 0.45 �0.32
Validation 43 321.49 1.00 1.83 800.40 71778.63 267.92 83.34 0.72 0.33

Rand_10 Calibration 104 357.33 0.44 1.00 1158.00 81160.17 284.89 79.73 0.45 �0.42
Validation 43 374.02 0.37 0.89 1189.20 103550.52 321.79 86.04 0.82 0.27

cLHS_25 Calibration 260 348.00 0.35 0.89 1212.00 73965.25 271.97 78.15 0.72 0.46
Validation 108 340.86 1.00 1.11 992.40 70143.57 264.85 77.70 0.41 �0.66

Rand_25 Calibration 260 350.48 0.54 1.11 1208.40 78917.47 280.92 80.15 0.72 0.33
Validation 108 332.65 0.49 1.67 1030.80 62488.14 249.98 75.15 0.31 �0.52

NB: Random sampling design, cLHS: conditioned Latin Hypercube sampling design, min: minimum value, max: max-
imum value, Std.Dev: standard deviation, Coef.Var: coefficient of variation, p-value: probability significant value for
Kolmogorov–Smirnov normality test

GEOCARTO INTERNATIONAL 7



correlation coefficient (r ¼ � 0.028) between phosphorus and potassium in the soils of
Jarul forest.

3.2. Relative variable importance

While applying the RF models, P2O5 prediction using 10 and 25% sample ratios via cLHS
yielded ‘y’ as the relative most important variable. On the other hand, profile_Cu was the
second important variable with 10% cLHS, and bio_12 was the second important variable
with 10% cLHS. The least important variables include NDVI>TNDVI for clhs_10 and
bio_6> bio_1 for clhs_25.

Inspecting the random sampling strategies in predicting P2O5, rand_10, and rand_25
yielded bio_12 and ‘y’ as the top two most important variables, respectively. However, in
rand_10, bio_12 was the most important variable, while in rand_25, ‘y’ was the most rele-
vant variable. The result obtained here is different from that of Sahabiev et al. (2018) and
Suleymanov et al. (2021), respectively. Their respective studies reported elevation, slope,
and MMRTF (multiresolution ridge top flatness) index as the most important variables
via random sampling strategy. Furthermore, the least important variable observed in
rand_10 is LRVI and TNDVI, while in rand_25, LRVI and bio_6 are the least import-
ant variables.

In K2O modelling, y and bio_12 were the top two most important variables using
clhs_10 and clhs_25, respectively. However, the least important variables varied between
clhs_10 and clhs_25. Clhs_10 yielded bio_6 and clay15 as the least important variables,
while clhs_25 yielded TNDVI and RVI as the least important variables.

On the other hand, rand_10 and rand_25 yielded y and bio_12 as the most important
variables, respectively, while TNDV and NDVI were the least important attributes in the
prediction of K2O (Figures 3 and 4).

3.3. Model evaluation and accuracy

Table 5 presents the model evaluation and accuracy. The RMSE ranged between
42.94� 60.74mg/kg for P2O5 prediction, R2 ranged from 0.19� 0.30, and MAE 28.87–
42.59mg/kg in the calibration dataset. Similarly, RMSE values between 29.93� 54.88mg/
kg for phosphorus model validation, R2 ranged from 0.33� 0.82, and MAE 17.97–
31.01mg/kg for P2O5 validation.

In the case of K2O prediction, when we trained our model using the calibration data-
set, the model metrics, for example, RMSE, ranged from 206.64 to 252.02mg/kg, R2

(0.22–0.47), and MAE (0.35–0.0.47mg/kg). However, RMSE values were between 137.77
and 181.77mg/kg, R2 (0.61–0.79), and MAE (102.46–133.38mg/kg) in the model valid-
ation. Thus, R2 values obtained in this study were within the same values obtained in
other research for different soil properties (Costa et al. 2020; John et al. 2020; Lagacherie
et al. 2020). In general, from these results, we can see that our model, based on most

Table 4. Relationship between P2O5 and K2O, measured in mg/kg.

Sampling design and sample ratio K2O P2O5

clhs_10 �0.57���
rand_10 �0.55���
clhs_10 �0.55���
rand_25 �0.54���
NB: ��� Significant at p< 0.001
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Figure 3. Variable importance in P2O5 (mg/kg): conditioned Latin sampling 10% sample ratio (clhs_10) (n¼ 147),) :
conditioned Latin sampling 25% sample ratio (cLHS_25) (n¼ 368), Random sampling 10% sample ratio (rand_10)
(n¼ 147) and D: Random sampling 25% sample ratio (rand_25) (n¼ 368).
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Figure 4. Variable importance in K2O prediction (mg/kg): conditioned Latin sampling 10% sample ratio (clhs_10)
(n¼ 147),) : conditioned Latin sampling 25% sample ratio (cLHS_25) (n¼ 368), Random sampling 10% sample ratio
(rand_10) (n¼ 147) and D: Random sampling 25% sample ratio ((rand_25) (n¼ 368).
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sampling strategies, gave a satisfactory performance in predicting soil nutrients (P2O5

and K2O).

3.4. Role of sampling strategies in modelling phosphorus and potassium

As shown in Table 6, the accuracy metrics (RMSE, R2, and MAE) differed regarding dif-
ferent applied sampling strategies. For example, in cLHS, RMSE ranged from
43.34� 153.36mg/kg, R2 ranged from 0.55� 0.70, and MAE ranged from
25.61� 117.92mg/kg. In contrast, RMSE values were between 36.61 and 159.77mg/kg in
random sampling strategies, R2 was from 0.58 to 0.68, and MAE was from 21.03 to
116.86mg/kg. Furthermore, in estimating the soil nutrient elements, the random sampling
strategies (i.e., rand) were more accurate in predicting P2O5 (RMSE ¼ 36.61mg/kg, R2 ¼
0.58 MAE ¼ 21.03mg/kg) than cLHS. In contrast, in the estimation of K2O, cLHS
(RMSE ¼ 153.36mg/kg, R2 ¼ 0.70, MAE ¼ 117.92mg/kg) performed better than random
sampling strategies. In general, accuracy metrics were better in K2O than in P2O5 predic-
tion. Also, the excellent performance of cLHS was reported by Taghizadeh–Mehrjardi
et al. (2015) and Minasny and McBratney (2006). In addition, Schmidt et al. 2014 and
Contreras et al. 2019 revealed that using RF in combination with cLHS gives the most
accurate prediction. However, we showed that in our case, cLHS performed worse than
random sampling designs in P2O5 and performed better in K2O, exploiting covariates for
mapping with RF.

3.5. Combination of sampling strategies and sample size in modelling phosphorus
and potassium

Combining both sampling strategies and sample size in the spatial distribution of phos-
phorus and potassium for proper nutrient recommendations, rand_25 (i,e n¼ 368 sample

Table 5. Model evaluation and accuracy.

Soil nutrients Dataset
Sampling design and

sample ratio RMSE R2 MAE

P2O5 Calibration-P2O5

Calibration clhs_10 60.74 0.27 42.59
Calibration clhs_25 52.48 0.19 35.16
Calibration rand_10 42.94 0.32 28.87
Calibration rand_25 46.95 0.31 31.42
Validation -P2O5

Validation clhs_10 54.88 0.48 31.01
Validation clhs_25 31.79 0.62 20.20
Validation rand_10 43.29 0.33 24.09
Validation rand_25 29.93 0.82 17.97

K2O Calibration-K2O
Calibration clhs_10 206.64 0.47 170.53
Calibration clhs_25 246.27 0.22 198.72
Calibration rand_10 252.02 0.34 207.45
Calibration rand_25 239.54 0.28 194.16
Validation-K2O
Validation clhs_10 168.69 0.61 133.38
Validation clhs_25 138.02 0.79 102.46
Validation rand_10 181.77 0.61 128.29
Validation rand_25 137.77 0.74 105.42

NB: conditioned Latin sampling 10% sample ratio (clhs_10) (n¼ 147): conditioned Latin sampling 25% sample ratio
(cLHS_25) (n¼ 368), Random sampling 10% sample ratio (rand_10) (n¼ 147) and D: Random sampling 25% sample
ratio (rand_25) (n¼ 368)
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size) was effective in estimating the spatial distribution of P2O5 (RMSE ¼ 29.93mg/kg, R2

¼ 0.82, and MAE ¼ 17.97mg/kg), while clhs_25 (i.e., n¼ 368 sample size) gave a better
K2O prediction (RMSE ¼ 138.02mg/kg, R2 ¼ 0.79, MAE ¼ 102.46mg/kg). In addition,
we observed, sampling strategies with proportion increase in sample ratio gave a better
prediction of the soil nutrient elements. Therefore, we can infer from the model accuracy
metrics that sampling strategies with an increased sample ratio could better predict soil
nutrient elements. Also, we observed that sampling strategies in prediction accuracy are
susceptible to an increase in sample ratio. For example, in P2O5, RMSE decreased from
54.88 to 31.79mg/kg, R2 increased from 0.42 to 0.62, while MAE decreased from 31.01 to
20.2 in cLHS with 15% increased sample ratios. This trend was observed in both P2O5

and K2O estimations, respectively. Besides that, this observation is vital for soil nutrient
evaluation, and recommendation as improved soil nutrient estimates at sub-field scales
are crucial for precision farming (Kozar et al. 2002).

4. Conclusions

This research considered two sampling strategies and two sample ratios mapping of phos-
phorus and potassium, essential soil nutrients. It investigated if specific sampling strategies
and sample ratios could help make precise nutrient management recommendations. The
study was conducted because there was no history on the sampling strategy and sample
ratios for the soil nutrient elements in the area.

The findings in the study showed that,

a. Sampling strategies with increased sample ratios improved the prediction of phos-
phorus and potassium.

b. Random sampling was suitable for phosphorus prediction, while conditioned Latin
hypercubes sampling was suitable for potassium.

c. Conditioned Latin hypercubes sampling was the overall best sampling strategy

In conclusion, the adopted approach showed the prospect of precisely and accurately
predicting soil nutrients in the Mediterranean region. Furthermore, the conditioned Latin
hypercubes sampling strategy shows success and robustness in predicting soil nutrients.
The above findings are not only relevant for the investigated area. However, similar inves-
tigations remain needed in other fields, agroecosystems, and climatic conditions before
their generalization. Nevertheless, it is highly recommended that conditioned Latin hyper-
cubes sampling with increased sample size be adopted for further soil nutrient evaluation
studies and to support management decision-making.

Disclosure statement

No potential conflict of interest was reported by the authors.

Table 6. Mean of metrics of the accuracy of the studied sampling strategies (validation dataset).

Sampling strategy Soil nutrient RMSE R2 MAE

cLHS P2O5 43.34 0.55 25.61
rand 36.61 0.58 21.03
cLHS K2O 153.36 0.70 117.92
rand 159.77 0.68 116.855

NB: cLHS: mean of the conditioned Latin sampling with 10% and 25% sample sizes, while rand: is Random sampling
with 10% and 25% sample sizes.
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