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Annotation 

This thesis presents a novel approach to the remote detection of chemical information by 

compressing the hyperspectral information directly during the measurement. This was enabled thanks 

to a novel technique developed on a single snapshot called coded aperture snapshot spectral imaging 

(CASSI). Using a coded aperture allows the implementation of a modern signal processing technique 

based on an algorithmic strategy – compressed sensing. This method can capture complete 

hyperspectral information in a single instance without scanning, which yields a significantly higher 

optical throughput compared to its scanning-based counterparts. Using the CASSI system, it is 

possible to retrieve the information faster than by a conventional apparatus, utilizing a relatively 

simple optical setup. In this thesis, the method was extended in order to perform hyperspectral 

imaging on a broad spectral range in the infrared region. 

Keywords: hyperspectral imaging, compressed sensing, coded aperture 

 

 

Anotace 

Tato práce představuje nový způsob získání chemické informace na dálku s kompresí hyperspektrální 

datakrychle přímo v průběhu měření. Toho je docíleno díky nové technice založené na jediném 

snímku z detektoru, tak zvané CASSI (Coded Aperture Snapshot Spectral Imaging). Kódovaná 

apertura umožňuje implementovat moderní techniku zpracování signálu s použitím algoritmu – 

komprimované snímání. Tato metoda je schopna zachytit kompletní hyperspektrální informaci v 

jediný okamžik bez nutnosti skenování a dosahuje daleko větší optické propustnosti než její 

standardní, na skenování založené protějšky. Použitím CASSI je možné získat měřenou informaci 

rychleji než pomocí tradičních systémů, s použitím relativně jednoduchého optického uspořádání. 

V této práci byla CASSI metoda vylepšena pro možnost hyperspektrálního zobrazování na širokém 

spektrálním rozsahu v oblasti infračerveného spektra.  

Klíčová slova: hyperspektrální zobrazování, komprimované snímání, kódovaná apertura 
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Introduction 

Our vision is an extraordinarily complex and astonishing system, and we depend on it as a primary 

source of gathering information about our surroundings. Nevertheless, it has limitations in imaging 

very tiny or distant objects, and we are constricted to only three spectral channels in the visible 

spectra. Observing nature and developing optical systems over the centuries taught us that there is 

always something new to discover and far more information around us than we are able to grasp with 

our senses, whether it is gravitational waves or trillions of neutrinos permeating you at this very 

second. In fact, the amount of information around us is so vast that for the human brain to process 

it, it is designed to filter even the limited visual data captured by our eyes. Seeing a broad spectral 

range, e.g., in the infrared (IR) region with a fine spectral resolution, would allow us to sense chemical 

composition remotely [1]. This is what hyperspectral imaging (HSI) does. HSI denotes methods that 

are able to capture both an image and a spectrum of light in each pixel of the scene. Such a dataset 

provides us with immense information about the measured scene, which cannot be obtained by any 

other means. Therefore, IR HSI has been a very lively topic in the last decades [1, 2, 3, 4, 5]. 

Within this field, most studies are focused on the near IR spectral region because it is possible 

to use common optical elements and germanium detectors or detectors on an InGaAs basis. 

However, the implementation of HSI in the middle and far IR spectral region is problematic due to 

the need to use “exotic” optical materials and detectors with high noise levels. Moreover, HSI is very 

demanding regarding the acquisition time, computing power, processing, and storing the information. 

A possible solution to these problems is utilizing compressed sensing (CS) [6]. CS represents 

data acquisition and processing methods that exploit the essential feature of signals present in nature 

(i.e., not artificially created) that is not obvious at first sight. Natural signals are sparse or sparse-like 

– it means that they are compressible, and it is possible to represent them by far fewer measurements 

than is required by the Nyquist-Shannon sampling theorem [7]. One of the methods that combine 

HSI with CS techniques is the so-called CASSI (Coded Aperture Snapshot Spectral Imaging) [8, 9, 

10].  The CASSI technique is the central method of this thesis. 

The two main components of the CASSI setup are a dispersive element and a coded aperture, 

which is a random pattern – typically a binary one. The random pattern, or in other words, a random 

mask, encodes the image information for every wavelength and a dispersive element shears the image 

spectrally on the detector. The resulting image is then used for reconstructing the hyperspectral 

information back. The unique advantage of CASSI is it does not need to scan the scene. All the 

hyperspectral data are captured in a single instance. However, since the CASSI method relies on one 

snapshot on a detector, the compression of the hyperspectral data is enormous. This limits the use 

of this method on a small number of spectral channels, which often implies the acquisition of a 

narrow bandwidth [9, 11]. Hence, an improvement of this method is on the spot. 
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This thesis describes our aim to improve the potential of the CASSI method by using various 

approaches to improve the compression ratio and reconstruction quality. The approaches are 

evaluated both in an experimental way and in realistic simulations, which test their utilization for the 

IR HSI. 

The first chapter is devoted to the theoretical fundamentals necessary to understand the 

experimental part of this thesis. Most notably, there is a short introduction to hyperspectral imaging, 

compressed sensing, and the CASSI method. The second chapter provides an overview of the state 

of the art and applications. Also, there are mentioned objectives of this work. From the third chapter 

onward, starts the experimental part of my work. This includes characterization of our optical system, 

data processing, and reconstruction. Chapters 4, 5, 6, and 7 describe the modifications of CASSI and 

evaluate the utilization of the method in the IR spectral region. Chapters 4-6 also give more insight 

into the articles I have written and are attached at the end of this thesis. The results in Chapter 7, 

exploring the potential of an enhanced CASSI system for IR HSI, are yet to be published. Chapter 8 

summarizes the work carried out within the thesis. 
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1 Theory: the pieces of the puzzle 

In this chapter, I am going to describe the essential aspects needed to understand the CASSI 

technique, which I have been using throughout the thesis. I will begin with a brief description of 

hyperspectral (HS) imaging with a focus on the infrared (IR) spectral region. I will continue with an 

introduction to compressed sensing and the associated method CASSI, showing the fundamentals, 

characteristics, and limitations. Finally, I will present metrics to assess the HS datacube quality.  

1.1 Hyperspectral imaging in the IR spectral region 

The primary motivation behind going down the rabbit hole of IR hyperspectral imaging is that every 

chemical compound has its specific absorption spectrum in the IR spectral region. Hence it is possible 

to distinguish subjects of different chemical compositions. Absorption of the IR radiation 

corresponds to the basic vibrational and rotational states of chemical bonds. When IR light interacts 

with a molecule, its chemical bonds start to vibrate more energetically. Thus it influences absorption 

at certain frequencies in the spectrum – i.e., wavelengths that are characteristic for each chemical 

bond. [12, 13] 

HSI, also known as chemical or spectroscopic imaging, is a technique that combines 

conventional imaging with spectroscopic systems in order to obtain both spatial and spectral 

information about the measured scene. IR spectroscopy, which is the foundation of IR-HSI, is based 

on the interaction of IR light with molecules of the investigated sample. The results of this interaction 

could be characterized by absorption, reflection, and emission. Generally, the compound-specific 

absorption in the near IR spectral region is weak [13]. Therefore, focusing rather on middle and far 

IR light is needed, i.e., 3-8 µm and 8-15 µm wavelengths, respectively. The fundamentals and 

evolution of IR spectroscopy can be found in many publications [1, 2, 14]. 

A spectrum in standard non-imaging spectroscopy represents the integral spectral 

information about the sample, which depends on the size of the illuminated area. A result of HSI is 

a three-dimensional matrix of data, the so-called datacube, where one spectrum is assigned to every 

pixel. The datacube can also be imagined as a stack of papers where each sheet constitutes an image 

of the inspected sample at a different wavelength.  

For a better understanding of how the datacube is acquired, three basic configurations of 

apparatus for the acquisition of hyperspectral information are listed below: 

1. Point mapping (also whisker-broom) – a measured sample is scanned point by point, and 

for each point, one spectrum is acquired (Figure 1A) 

2. Line scan (also push-broom) – a detector captures spectral information for a whole 

column of pixels simultaneously; a light goes through a slit, and then it is perpendicularly 

dispersed; hence it is possible to record spectral information along this whole line 

depending on the spot from which the light emerges; in this way a two-dimensional array 
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is obtained, which has one spectral dimension and one spatial dimension; in order to get 

the second spatial dimension of the datacube one must perform scanning of the sample 

in a direction perpendicular to the imaging line (Figure 1B) 

3. Plane scan (also staring configuration) – this arrangement does not need any movement 

nor spatial scanning of a sample; therefore, it is often denoted as a staring configuration; 

incoming light from the whole surface of the sample is recorded on a detector as a two-

dimensional spatial array for one wavelength at a time; this could be achieved by 

bandpass filters that are attached to a rotating disc called filter wheel or by changing the 

wavelength of light by tunable [15, 16] filters (Figure 1C) [12, 17] 

A typical hyperspectral camera consists of splitters (tunable filters, diffraction gratings, 

Fourier transform spectrometers), imaging lenses, a detector, and a device for scanning/controlling 

motion to obtain very precise spatial information. [12, 17] 

The two basic configurations mentioned above that use translation motion of the sample 

image are point mapping and line scan. These methods have both excellent spatial and spectral 

resolution. However, from its principle, the acquisition time is of considerable length – up to the 

order of tens of minutes to hours, depending on the signal level. The time is based on the size of the 

scanned area, the wavelength range, and the number of scans per pixel [18]. This problem is a huge 

limitation, especially for the whiskbroom configuration. To provide a particular example, a 256×256 

pixels HS image acquired by the point mapping needs an acquisition time of more than 54 minutes, 

even if a single spectrum is taken within 50 ms. 

On the contrary, by plane scan, it is possible to acquire the whole datacube in a matter of 

seconds or minutes, which hinges only on the number of scanned wavelengths. This can be utilized 

Figure 1 Scheme of different approaches to obtain hyperspectral information and a 
structure of resulting datacubes. (A) Point mapping. (B) Line scan. (C) Plane scan. 
Adapted from [17] 
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especially for the investigation of processes that are unstable over time. The tradeoff here is that, 

from its essence, this method has worsened spectral resolution. [12] 

1.1.1 Black-body radiation and Plancks law  

One of the important aspects of the HSI in the IR spectral region is the fact that each object with a 

non-zero temperature emits some heat as radiant energy. These emitted photons – black-body 

radiation – represent a background of the measured scene, and, unlike for the VIS optics, these are 

also emitted by the measurement apparatus itself. 

A "black body" is an idealized material with 100% emissivity, i.e., it transforms heat into 

radiant energy at the maximum rate. Real-life materials emit radiation energy based on their 

physiochemical properties – they absorb some radiation by molecular interactions. [19] The emissivity 

at a given wavelength 𝜆 is defined by the ratio of the radiance emitted by a material 𝐿(𝜆, 𝑇) and a 

blackbody 𝐵(𝜆, 𝑇) at the same temperature 𝑇: 

 𝜖(𝜆) =
𝐿(𝜆; 𝑇)

B(𝜆; 𝑇)
 Equation 1 

The spectral radiance of a black body is shown in Figure 2 and is determined by Planck’s law: 

 𝐵𝜆(𝜆, 𝑇) =
2ℎ𝑐2

𝜆5
1

exp (
ℎ𝑐
𝜆𝑘𝐵𝑇

) − 1
 Equation 2 

where  ℎ is the Planck constant, 𝑐 is the speed of light, and 𝑘𝐵 is the Boltzmann constant. 

1.2 The sky is not always the only limit 

It is worth noting that acquiring, storing, and processing the HS datacube is very demanding regarding 

time, computational power, and data storage capacity. Moreover, in conventional signal processing, 

one is limited by the Nyquist-Shannon sampling theorem, which states that in order to reconstruct a 

signal faithfully, the sampling frequency must be at least twice as large as the highest frequency in the 

signal [7]. 

Figure 2 Black-body radiation described by Planck’s law for three different temperatures.  
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Another disadvantage is that acquiring datacubes by scanning results in a loss of light 

intensity, which depends on the scanning configuration. For a datacube M×N×L, when performing 

point mapping, we lose light throughput equal to a factor of M×N [20]. Line scan diminishes light 

throughput by a factor of M or N depending on the scanning direction [21] and by a factor of L in 

the case of plane scan [22]. Note that the signal intensity is inversely proportional to the spectral and 

spatial resolution. When we evaluate the photon budget of the HSI, the total amount of light collected 

from the measured object is given by the imaging optics, and this light intensity is divided into millions 

of voxels of a datacube. For instance, when we decide to improve twice the spatial resolution of a 

line-scan HS camera, we need to use a half-width slit that, in turn, reduces the amount of incoming 

light by 50%. Likewise, for more detailed spectra during a plane scan, we need to restrict the spectral 

filter to a narrower spectral bandpass, reducing the total intensity of the transmitted light. 

1.3 Compressed sensing: going beyond the sampling theorem 

The Nyquist-Shannon theorem can be overcome by the compressed sensing (CS) method. It is 

possible to reconstruct a sparse signal sampled at a rate less than the one restricted by the Nyquist-

Shannon criterion through constrained 𝑙1 minimization [23]. This approach was used in the 1970s in 

reflection seismology for constructing images of layers within the earth [24]. CS is invaluable for cases 

where there is a need to acquire huge datasets, such as in hyperspectral imaging. An impressive 

demonstration of the acquisition of an extensive amount of data and the CS uniqueness can be found 

in [25], where the authors were able to attain as many as 70 trillion frames per second. CS relies on 

two premises which are sparsity and incoherence. 

1.3.1 Sparsity 

The vast majority of natural signals contain only a tiny percentage of important information, i.e., the 

signal is compressible or sparse – it is possible to write it down very concisely in a correctly chosen 

basis 𝛹 with a very small number of non-zero elements. A sparse-like signal denotes a similar case, 

where one can discard the nonimportant coefficients of the signal, i.e., set them to zero, without 

much perceptual loss. [7] 

In more mathematical terms, we have a vector 𝑓 from 𝑅𝑛 which could be an n-pixel image. 

We expand 𝑓 in an orthonormal basis (e.g., a wavelet basis) 𝜓 = [𝜓1𝜓2…𝜓𝑛] as follows:  

 𝑓(𝑡) =∑𝑥𝑖𝜓𝑖(𝑡)

𝑛

𝑖=1

 Equation 3 

Figure 3 Fourier transform of a signal from time domain to frequency domain. Adapted from [26] 
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where 𝑥 is the projection of 𝑓in the basis, 𝑥𝑖 = 〈𝑓, 𝜓𝑖〉. Let's express 𝑓 as 𝜓𝑥, where 𝜓 is n×n matrix 

with 𝜓1, 𝜓2, … , 𝜓𝑛 as columns. Now the sparsity implication about discarding nonimportant 

coefficients should be more obvious if we denote 𝑓𝑆(𝑡) as a vector from the expression above, 

keeping only the terms corresponding to the S largest values of (𝑥𝑖). Then from the definition – 

𝑓𝑆: = 𝜓𝑥𝑆, where 𝑥𝑆 is the vector of coefficients (𝑥𝑖) which all are set to zero except the S largest 

ones. Given that 𝜓 is an orthonormal basis, we get ‖𝑓 − 𝑓𝑆‖𝑙2 = ‖𝑥 − 𝑥𝑆‖𝑙2 and if the sorted 

magnitude of the coefficients (𝑥𝑖) decay quickly, then 𝑥𝑆 is a close approximation of 𝑥 and, 

consequently, the error of ‖𝑓 − 𝑓𝑆‖𝑙2 is negligible. [6, 7] 

In plain words, the signal can be well described only by the few largest coefficients. In Figure 

3, it can be seen that a relatively complex signal shown in the time domain (on the left) has a very 

sparse representation in the frequency domain (on the right). According to the Nyquist-Shannon 

theorem, its full description would require sampling the signal with a sampling interval below 4 ms, 

which would be 250 points each second. At the same time, the same signal can be fully described by 

two amplitudes and phases of sine oscillations. 

Analogically this also applies to an image signal. For instance, a regular camera captures a 

scene pixel by pixel. Afterward, based on the knowledge of “important wavelet components,” it 

compresses it to JPEG format, which is many times smaller than the RAW data. This is achieved 

without apparent quality loss. Typically 1 Mpx photo (Figure 4A) can be compressed to 2.5% of its 

original size and still appears sharp (Figure 4C) using only the 25000 strongest wavelet transform 

components (Figure 4B). However, the problem is that one is able to compress the scene only after 

it is captured because, in the general case, we do not know apriori which components will carry the 

vital information about the image.  

CS brings proof that for the cases where we have no information about the important 

components of the measured signal (e.g., image), the most efficient way to acquire the information is 

to sample the signal randomly or incoherently. 

Figure 4 Demonstration of image sparsity using a wavelet transform. (A) An original 
image, (B) its wavelet coefficients, and (C) a compressed image using only 2.5% of the 
strongest coefficients. Adapted from [7] 
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1.3.2 Incoherence 

The second premise for CS is incoherence. Suppose that we have a pair (𝛷,𝛹) of orthonormal bases 

of 𝑅𝑛. The first basis Φ is used for sensing the signal 𝑓(𝑡), and the second basis 𝛹 is for the 

representation of 𝑓(𝑡). The restriction to orthonormal bases is for the sole purpose of simplicity, but 

it is not necessary. Then, the coherence between the sensing basis 𝛷 and representation basis 𝛹 is 

formulated by: 

 𝜇(𝛷,𝛹) = √𝑛 ⋅ 𝑚𝑎𝑥
1≤𝑘,𝑗≤𝑛

|⟨𝜑𝑘, 𝜓𝑗⟩| Equation 4 

It can be said that the coherence expresses the largest correlation between any two elements 

of the bases 𝛷 and 𝛹 [6, 7]. The degree of coherence is set by linear algebra that 𝜇(𝛷,𝛹)  ∈  [1, √𝑛], 

where number one signifies complete incoherence and √𝑛 is maximal coherence. So, if there are any 

correlated elements contained in Φ and 𝛹, then the coherence is large; else, it is small.  

Compressed sensing is mainly focused on bases with low coherence. An example of bases 

that are incoherent, so 𝜇(𝛷,𝛹) = 1, are spikes and sinusoids, i.e., time- and frequency-sampling. 

Incoherence also expresses the idea that a signal which has a sparse representation in 𝛹 must be 

spread out in the domain in which it was recorded. In other words, a peak in the frequency domain 

is spread out in the time domain and vice versa (see Figure 3). [7]  

1.3.3 Compression ratio 

One of the essential features of CS is the degree of compression we can achieve. It is described by 

the compression ratio. However, the literature is ambiguous about the notation. We define the 

compression ratio as the number of measured points divided by the number of reconstructed points: 

 𝐶𝑅 =
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
 Equation 5 

Throughout the thesis, when speaking about compression ratio, we will use Equation 5 

expressed in percents (CR = 1 = 100 %).  

1.4 CASSI: the fastest recording of hyperspectral information there is 

The CASSI (Coded Aperture Snapshot Spectral Imaging) method is a CS technique that utilizes a 

coded aperture and a dispersive element in order to modulate the optical field of the scene, which is 

then acquired on the detector as a two-dimensional image – the so-called snapshot. A random or 

pseudo-random mask, typically a binary pattern that resembles a QR code, can be used as a coded 

aperture. An example of such a random mask can be seen in Figure 8B. The random mask blocks or 

transmits the light incident on this coded aperture in relation to its binary value.  

For randomly generated masks – the so-called Bernoulli matrices - the ratio between blocked 

and transmitted light is approaching 50%, and the columns of the mask are with a very high 

probability independent (see Chapter 1.3.2). As it was mentioned in Chapter 1.2, the signal intensity 

for the standard HSI is inversely proportional to the spectral/spatial resolution. However, the CASSI 
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method benefits from its signal intensity throughput. With higher resolution, the transmitted light 

stays constant – a higher resolution mask still blocks the same amount of light as a lower resolution 

one. 

The principle of this method could be described as follows. The light of different wavelengths 

collected by imaging optics from a measured scene is encoded by a random mask, and then it is 

spectrally sheared by a dispersive element, e.g., an optical grating. The sheared image is finally 

captured on a detector. See Figure 5 for a graphic representation of the optical flow in CASSI. As a 

result, we attain an image of the scene, which consists of randomly-encoded images for different 

wavelengths laid one over the other with a slight spatial shift dependent on the wavelength. The fact 

that columns of the random mask are independent makes it possible to distinguish a unique pattern 

in the spectrally sheared image. Suppose we would use two identical columns in the mask. We could 

interchange the location in the scene with the spectral position because we would not be able to tell 

whether the column is at the specific location because of the scene location or because of the spectral 

shearing. 

The most notable advantage of this approach is capturing the complete dataset in one 

instance – a snapshot, which could be crucial for studying rapidly-changing scenes. Moreover, there 

are no moving components, otherwise needed for scanning in conventional approaches, and thus a 

relatively simple design could be made [27].  

The reader should be aware that CASSI captures 3D information on a 2D detector – a 

hyperspectral datacube with dimensions of M×N×L results in an image on a sensor with dimensions 

of M×(N+L-1). Therefore, the original information is compressed on the detector with compression 

ratio CR=(N+L-1)/(N×L). For a 256×256 image with 100 spectral slices, this leads to the 

compression ratio of 90880/6553600 ≈ 1.4%. Compared with the compression example in Figure 4, 

the compression ratio here is much lower, and the 3D data is way more complex than the image, 

which results in problems with reconstruction. 

Figure 5 An illustration of the spectral optical flow in CASSI. Adapted from [10] 
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However, the CS concept makes it possible to retrieve the complete 3D information back by 

using a known random mask and assuming that the examined signal is sparse. So we are able to 

perform a reconstruction of the original scene thanks to a minimization algorithm calculating the 

following equation:  

 𝑓(𝐷) =  
1

2
‖𝐼 − 𝑊̂𝐷‖

2
+ 𝜏𝛷(𝐷) Equation 6 

where 𝐼 is the output of the detector; hyperspectral datacube is denoted as 𝐷(𝑥, 𝑦, 𝜆), where each 

spectral slice is transformed by an operator 𝑊̂. The operator 𝑊̂ describes the passage of the light 

through the system and includes the modulation by random mask 𝑀̂, the spectral shearing of the 

image 𝑆̂, and the transformation of the datacube 𝐷 from its sparse basis into the sensing basis 𝐻̂. In 

this thesis, the operator 𝐻̂ is used for Haar and Symlet 8 wavelet transforms, but it can generally be 

any linear transform. By taking this into account, it is possible to formulate an operator 𝑊̂ as: 

 𝑊̂ = 𝑆̂𝑀̂𝐻̂−1 Equation 7 

The second term in Equation 6 is denoted as a regularization term and can have many 

different forms.  Owing to the sparsity of common scenes in a wavelet basis, we will use throughout 

the thesis the l1-norm, i.e., 𝛷 = ‖𝐷‖1. The regularization parameter 𝜏 then emphasizes the sparsity 

of the resulting reconstructed signal.  

It is worth noting that the data compression is enormous for the CASSI method, which in 

turn negatively affects the reconstruction of complex hyperspectral datacubes. Thus, an extension of 

this method is on the spot. 

1.5 Assessing the reconstruction quality (similarity of datacubes) 

According to the International Standards Organization (ISO), “quality” can be defined as “fitness for 

use,” “customer satisfaction,” “doing things right the first time,” or “zero defects.” [28] This could 

sound relatively simple, but taking into account the human visual systems’ (HVS) peculiarities, it 

makes judging the quality of an image a challenging task. A thorough reflection on the topic with 

scientific data evaluation can be found in [29]. 

To assess the quality of reconstructed datacubes, at first, we were using the HVS. 

Nevertheless, with more data to process and more complicated scenes, the neural network behind 

the HVS was no longer satisfactory. Therefore, we created artificial data and calculated the lowest 

attainable difference between the ground truth and the reconstructed datacube by least squares. We 

denote this difference as Δ and define it as a minimum of least squares with optimization of scaling 

factor 𝑎: 

 𝛥 = min𝑐 {
1

𝑛
∑(𝑎. 𝑦𝑖 − 𝑦̅𝑖)

2

𝑛

𝑖=1

}, Equation 8 

where 𝑛 is the number of datacube voxels, 𝑦𝑖 and 𝑦̅𝑖 are original and reconstructed datacube values 

at the 𝑖th point, respectively.  
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However, with more knowledge about the field of CS and HSI, we started to evaluate the 

quality by more commonly used metrics: PSNR (peak signal-to-noise ratio), SSIM (structural 

similarity) index, and SAM (spectral angle mapper).  

PSNR. It is worth noting that in order to calculate PSNR, we scaled the whole datacube by 

a single factor, not slice-by-slice, which is sometimes used in the literature and yields higher PSNR. 

We calculated PSNR as: 

 PSNR = 10 log10(peakval
2 MSE⁄ ), Equation 9 

where peakval is the maximum value of the original datacube, and as MSE, we use 𝛥.  

SSIM. The SSIM index is a multiplicative combination of three terms – the luminance term 

𝑙, the contrast term 𝑐, and the structural term 𝑠. 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼 · [𝑐(𝑥, 𝑦)]𝛽 · [𝑠(𝑥, 𝑦)]𝛾 Equation 10 

The three terms could be written as: 

 𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 Equation 11 

 𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 Equation 12 

 𝑠(𝑥, 𝑦) =
σ𝑥𝑦 + C3

σ𝑥σ𝑦 + C3
 Equation 13 

where 𝜇𝑥, 𝜇𝑦 are the local means; 𝜎𝑥, 𝜎𝑦 are standard deviations; and 𝜎𝑥𝑦 is cross-covariance for 

images 𝑥, 𝑦. If we select 𝛼 = 𝛽 = 𝛾 = 1, and 𝐶3 = 𝐶2/2, the index simplifies to: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2μ𝑥μ𝑦 + C1)(2σ𝑥𝑦 + C2)

(μ𝑥
2 + μ𝑦

2 + C1)(σ𝑥
2 + σ𝑦

2 + C2)
 Equation 14 

SAM. SAM is the spectral similarity between the reconstructed and original spectra. The 

spectral error is calculated as: 

 𝑠𝑎𝑚 = 𝑐𝑜𝑠−1

(

 
∑ 𝑡𝑖𝑟𝑖
𝑐
𝑖=1

√∑ 𝑡𝑖
2𝑐

𝑖=1 √∑ 𝑟𝑖
2𝑐

𝑖=1 )

  Equation 15 

where 𝑡 is the reconstructed spectra in the hyperspectral data and 𝑟 is the original spectra of length 

𝐶. The final SAM score is the mean value of 𝑠𝑎𝑚. 

So to summarize the metrics, in an ideal case – meaning the reconstructed datacube would be 

identical to the original one, we would get Δ and SAM equal to zero, while SSIM would be one. In 

the case of PSNR, the higher, the better. 
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2 State of the art 

2.1 Current challenges in hyperspectral imaging 

In contrast to the standard RGB imaging, by hyperspectral imaging (HSI), we obtain spectral 

information in addition to the 2D image. The spectral information can be exploited in various ways 

– for instance, to identify the chemical composition. From the principle of this method, it is evident 

that one acquires a massive amount of information (see Chapter 1.1). This naturally affects the 

acquisition times, which could be in the order of seconds to hours to acquire the complete 

information, depending on the required spatial and spectral resolution and the method used [17]. 

An integral part of most hyperspectral instruments is the moving part required to scan the 

imaging scene, which is one aspect of the complexity of these instruments. It is also necessary to 

mention the low efficiency of radiation utilization. For example, in a line scan (Figure 1B), a large 

part of the light intensity is filtered out by the slit used, or in a plane scan (Figure 1C), the light is 

filtered out using a narrow bandpass filter. So, the better the spectral resolution one wants, the worse 

the use of light is. 

Recording, storing, and processing hyperspectral information is very demanding in terms of 

acquisition time, storage capacity, and computing power. For example, in the realm of earth remote 

sensing, there are freely accessible data from the AVIRIS instrument [30]. It is an optical sensor that 

provides calibrated images of the spectral radiance in 224 spectral channels. Typically, the file size of 

these data is several GB. Therefore, the traditional classification techniques cannot be directly applied 

to the HS data, and modification is needed [31]. In addition, the need for using complex optics, and 

thereby the high purchase price, plays a role here. 

Moreover, as we measure a scene pixel by pixel for very fast phenomena, we are limited by 

the acquisition time. A possible solution to most of these problems is the use of compressed sensing 

techniques, specifically the CASSI method (see Chapter 1.4). For example, Gao et al. [32] 

accomplished to capture events happening on the order of tens of ps – a reflection of a laser pulse 

on a mirror (Figure 6).  

 

Figure 6 Photos of a laser pulse being reflected on a mirror, scale 10 mm. Adapted from [32] 
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2.2 CASSI 

Thanks to CASSI, one does not need to scan the scene because the method is based on only one 

image from the camera, i.e., a single snapshot. It is captured in a single moment, and this image is 

much smaller in size than the entire hyperspectral datacube. Then it is possible to reconstruct the 

scene back thanks to the knowledge of the random mask and that common images are sparse. By not 

having to use a slit or narrow bandpass filters as in the standard hyperspectral approaches (see 

Chapter 1.1), the utilization of light is significantly improved, which is absolutely critical for real-

world applications. Also, naturally, there are no scanning artifacts. In Fourier-transform infrared 

spectroscopy, the optical throughput gained compared to the standard spectrometers using slits is 

called the Jacquinot advantage [33]. Similarly, using snapshot imaging in HSI, the throughput 

improvement in comparison to the scanning-based systems is referred to as the snapshot advantage 

[34]. 

However, for a wide spectral range, taking only one snapshot brings in a large compression 

between the data recorded on the detector and the hyperspectral datacube we want to reconstruct. 

This issue is typically overcome by limiting the sensing to a narrow spectral width (100-190 nm) [9, 

11], which is discretized to a relatively small number of wavelength regions (25-28 spectral slices). It 

is, in fact, very counterproductive. For example, if we are trying to detect the absorption spectrum of 

a chemical substance, we need a much finer wavelength resolution for its characterization. For 

instance, measuring on a spectral range of 8-14 µm, 28 spectral slices would provide a resolution of 

only approximately 214 nm. In this way, any sharp absorption peaks of a chemical compound would 

be undetected. The standard CASSI also exhibits limitations in image quality for complex scenes and 

the time needed for the hyperspectral datacube reconstruction, which can reach as long as 14 minutes 

[9] since the problem in Equation 6 is severely underdetermined. 

Attempts to improve the reconstruction quality and the compression ratio are usually 

implemented using multiple snapshots of the same scene [35, 36, 37, 38, 39], while some of them also 

try to optimize the coded aperture [37, 38, 39]. But then, the CASSI method loses its uniqueness in 

recording the hyperspectral data in one instance. Moreover, some advanced modulator to change the 

random mask pattern is required, or the optimized masks are spectrally selective. There was also an 

effort to use a higher-order discretization model image for reconstruction [40]. However, the used 

complex model describing the detector increases the computational demands highly, as it calculates 

with 170 spectral bands instead of 8. 

A promising way to enhance the CASSI performance is to capture a non-diffracted image of 

a scene that provides more knowledge about the measured scene [11, 41, 42, 43, 44]. Nevertheless, 

attaining the non-diffracted image requires splitting an incoming beam, and a second detector is 

needed, which makes the optical system even more complex. The light splitting can reach as much 

as 50% intensity loss in the measured spectrally sheared image [41].  
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In addition, due to the use of a random mask that encodes the image for each wavelength, 

the imaging quality of the system is critical in the whole measured spectral range. It is needed to attain 

the image without distortion or chromatic aberration to obtain good-quality reconstruction in the 

standard CASSI experiment. Otherwise, these discrepancies would lead to wrongly encoded 

information, and it would subsequently cause problems in reconstruction. It is easily feasible in the 

visible spectral region, where various complex lenses corrected for aberrations are available off-the-

shelf. However, in the IR spectral region, this is more challenging. Complex IR optical systems are 

costly, and their adjustment is highly demanding.  

Another criterion, which is essential for using CS in HSI, is the time required to reconstruct 

hyperspectral data. This information is usually intentionally not stated in the literature. An example 

of a rare case where the computational times are present is Ref. [9]. Here the authors declare that for 

100 iterations of the reconstruction algorithm, a time of 14 minutes on a desktop PC was required 

(datacube with dimensions of 128×128×28 pixels, spectral range 540-640 nm). The authors do not 

explicitly state how many iterations were needed for the overall data reconstruction. Nevertheless, 

assuming the reconstruction was restricted to 100 iterations, the time required is still not suitable for 

real-life processing. The same group in Ref. [45] demonstrated the ability to capture 248×248×33 

datacubes at video rates (30 fps). The catch is that the postprocessing took several hours of 

computing time to reproduce the video datacube sequence. 

Based on the above-listed shortcomings, Chapter 2.4 sets out the objectives of this thesis. 

2.3 Application of HSI and CS 

In this chapter, only a few selected applications of hyperspectral imaging and compressed sensing 

will be mentioned. Since these are very broad topics ranging from agriculture to medical applications, 

it highly exceeds the scope of this work. 

Thanks to the conventional HSI, it is possible to noninvasively determine the quality of food 

[5, 46] and drugs [12]. It is utilized in many applications ranging from scientific research, such as 

imaging the chiralities of single nanotubes [47] or volcanology [3], to real-world problems involving 

medical imaging [48], food analysis, and safety inspection [49, 50], forensic sciences [51, 52], 

criminology [53], art conservation [54], or agriculture [55].  

These applications typically employ the IR spectral region, as each chemical has a particular 

absorption spectrum in this region. A broad range of application fields leads to extensive research in 

IR HSI. Compared to the HSI "mainstream," the exploitation of CS in HSI is far more seldom. It 

focuses mainly on the VIS-NIR spectral region because it is easily manageable in the sense of optical 

elements and detectors' availability, alignment, etc. The VIS-NIR applications will not be mentioned 

in this brief summary since we are mainly interested in longer wavelengths.  

Our main interest lies in MIR and LWIR, which are commonly used abbreviations for the 

spectral ranges of 3-8 µm and 8-15 µm, respectively. Note that the delimitation of these ranges slightly 

varies throughout the literature. To mention a few from the MIR and LWIR spectral regions, Ref. 



 

15 
 

[56] from 2021 provides a proof-of-concept optical setup operating on 3-5 µm, which is able to 

capture a hyperspectral datacube of 64×48×100 with the acquisition time within one minute. It uses 

a digital micromirror device (DMD) for spatial encoding, which has to be modified to operate in the 

MIR spectral region. To the best of my knowledge, this is the only existing work on MIR 

hyperspectral imaging based on compressed sensing. Regarding LWIR, there are very few 

publications [57, 58, 59], but note that the list might not be exhaustive. References [57], [58], and [59] 

all present a LWIR hyperspectral imager using single-pixel detection technology, which collects all 

three dimensions on a single detection element. However, the experimental results are very limited. 

To this day, I was not able to find any work regarding LWIR CASSI. 

2.4 Objectives 

Here we will set the main objectives and goals that triggered the work in this thesis. The overall goal 

is to localize and distinguish between different chemical substances in the IR spectral region. 

Therefore, we aim to obtain HSI in a broad spectral range covered with many (up to 100) spectral 

frames. This is in contrast to previous CASSI reports, which used narrow spectral width and limited 

spectral resolution. The studied HS camera operating in the VIS spectral range served as a model 

system for testing the real-life CASSI datacube retrieval and for an outlook of IR CASSI imaging. 

This is to be done by keeping the following points: 

(1) We aim to retain only one snapshot or, to be more precise, capture all the information in 

one instance since it is the main advantage of CASSI. Also, we want to keep the optical 

system as simple as possible, i.e., not using a second detector nor any advanced light 

modulators. 

(2) The demand for reconstructing real-life complex datacubes implies that we need to improve 

the compression ratio of the measurement. 

(3) We aim at using a relatively simple optical system suffering from certain optical aberrations, 

which can potentially also be created in the IR spectral region. 

As we show in the following sections, we reached the set objectives by modifying the optical 

setup while retaining the simplicity of the system. And more importantly, it leads to a significant 

improvement in compression ratio and consequently also the retrieved datacube quality. The 

simulations of our modified setup demonstrate the feasibility of such a system in the IR spectral 

region. 
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3 Experimental part: putting it together 

After introducing the theoretical fundamentals in Chapter 1, we can now proceed to the work to 

which I have devoted the last years. First, I will describe our experimental setup, its parameters, and 

the modifications that were necessary to push the limits of the CASSI method. Then, I will discuss 

the data processing, simulations, and reconstructions that were performed using Matlab. As a 

reconstruction algorithm, we use TwIST (Two-Step Iterative Shrinkage/Thresholding) [60] for image 

restoration during the reconstruction to minimize Equation 6. The reconstruction procedure is 

described in detail in subsection 3.2.2. 

3.1 Hyperspectral detection system 

The hyperspectral (HS) camera based on compressed sensing built within this work is an extension 

of a compact and robust hyperspectral detection system (HDES) for the visible and near-IR spectral 

region [27], which was designed and manufactured in TOPTEC research center by Jan Václavík. 

HDES was built through extensive optimization, mostly based on off-the-shelf optics with three 

custom-made optical elements. It features a low f-number (F/3.9) and has a concentric 

mounting (see Figure 7). It works on the CASSI method. Hence, the system is missing any 

moving or scanning part while it is able to acquire the image and spectral information in a 

single snapshot. Moreover, the compactness of the system consists in the possibility of taking 

the apparatus outside a laboratory, contrary to the commonly used CS table-top setups.  

Figure 7 A cut through the HDES camera. Input objective elements (red) and 
transmission disperser elements (black) separated by a random mask M. OL and L 
are lenses; D denotes doublet; P and G are prism and grating, respectively. Adapted 
from [27] 



 

17 
 

The functionality was demonstrated during the initial experiments by the spectro-temporal 

reconstruction of a scene based on random matrix encoding. In Figure 8, you can see the measured 

scene of three laser spots (panel A), the used random mask (panel B), the spectrally shifted snapshot 

of the scene (panel C), and three selected reconstructed datacube slices at different wavelengths (panel 

D). We can see that for a simple scene with sharp spectral features, the standard CASSI system works 

fine. However, real-world scenes are nowhere near as simple as this tested one. Chapter 5 shows that 

a simple scene illuminated by a broadband light source is already beyond the ability of a standard 

CASSI system to perform a faithful reconstruction.   

3.1.1 The original optical system 

The optical design of this HS system was carried out mainly with a focus on the availability of the 

components and their price. Specifically for this system, custom-made lenses OL3, L2, and the prism 

P were produced – see Figure 7 or Ref. [27], where a more detailed description and a list of the optical 

elements with their specifications can be found. The construction of the optical system can be divided 

into two detachable parts separated by a coded aperture (random mask). The front part is the input 

objective imaging the scene on the random mask, while the rear part is the transmission disperser 

tracing and dispersing the encoded scene to the detector (CMOS IDS camera, UI-1495LE-M).  

The input objective is composed of five lenses, was optimized for good performance in low-

light conditions, and has a wide field of view of ±10 degrees. The transmission disperser comprises 

five commonly available optical elements – lenses and doublets, together with a transmission grating 

G (300 lines/mm) and the previously mentioned custom-made prism P and lens L7. 

The encoded image in the CASSI method is shifted for each wavelength before it hits the 

detector, which was ordinarily in previously published setups secured by a prism or a grating. Either 

way, this approach causes optical axis folding, which is linked to secondary problems with the 

adjustment of the system and its stability. Hence, a combination of the prism P and grating G is 

Figure 8 Example of a simple scene (A) reconstruction by using a random mask 
90×90 pixels (B). Detected 2D image (C) is used to reconstruct back the image for 
each spectral frame (D). Adapted from [27] 
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justified as it allows for concentric construction and enables a robust single-tube housing for the 

optics.  

3.1.2 Modification  

Our effort to make the CASSI method perform better comprises the following changes made to the 

optical system. The detector was replaced with the Manta G-507 camera (Sony IMX264, resolution 

2464×2056). The resolution of the random mask pattern, as well as its physical dimensions, was 

revised. We created two complementary random masks (64×64 px, 13.55×13.55 mm) on top of each 

other (see Figure 9). The double mask was prepared by etching a thin chromium layer on a glass BK7 

substrate via photolithography. The masks contain a set of guiding points located outside of the mask 

region, which can serve for the alignment of mask and dispersion elements. 

The input objective part was replaced with a double lens LD and a field lens DF (Thorlabs 

AC508-200-A-ML, f=200 mm, Ø2"). The double lens was created by cutting two lenses (f=100 mm) 

into a rectangular shape of size 75×50 mm and glued together (see LD in Figure 10). For the list of 

all elements and their specifications, see Supplemental information in [61].  

Figure 9 Complementary random masks prepared via photolithography and their 
implementation in the optical system – see Figure 10 for the random masks location 
denoted as M. 

Figure 10 Scheme of the modified optical setup. L denotes lens; D indicates doublet; M 
is the random mask; P and G are prism and grating, respectively. Adapted from [61] 
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More details and reasoning behind these system modifications can be found below in 

Chapters 5 and 6. 

3.1.3 Spectral efficiency 

In the system, we use a blazed diffraction grating with optimized efficiency of first-order diffraction 

for 500 nm. Therefore, we expect that the spectral efficiency differs for the FO and the ZO, i.e., the 

FO light intensity on the detector will be different from the ZO light intensity in dependence on 

wavelength. This is an important property to measure since we wanted to combine the image 

information from the FO and ZO diffraction. 

We measured the spectral efficiencies of FO and ZO diffraction – referred to as 𝜂𝐹𝑂 and 

𝜂𝑍𝑂, respectively. We used a monochromator (Chromex 250 IS) to illuminate a single spot on the 

random mask with a quasi-monochromatic light with varying wavelengths from 440 nm to 900 nm 

for 17 different wavelengths in total. Selected spectra from the monochromator can be seen in Figure 

11 on the left. Their correct FWHM (full width at half maximum) is around 4 nm, but the spectral 

shape is not entirely regular. The width of the spectral lines in the order of nanometers does not have 

any significance for determining spectral efficiency. 

For each wavelength, we obtained an image of the illuminated spot on the detector. In fact, 

for each wavelength, there are two spots on the detector – one is the FO, and another is the ZO, 

naturally. Consequently, by the ratio of the mean intensities between those two spots, we are able to 

assess the dependency 𝜂𝐹𝑍 = 𝜂𝐹𝑂/𝜂𝑍𝑂, which is plotted in Figure 11 on the right. The 𝜂𝐹𝑍 was used 

in the reconstruction algorithm for the accurate formation of the detector image in Equation 6 as 

well as for the initial guess – see Chapter 3.2.3. The largest intensity difference is around 500 nm, 

where the FO is more than 80 times stronger than the ZO, which is the result of the grating efficiency 

optimization. Then the ratio rapidly decreases up to 900 nm, where it is approximately equal to one. 

Figure 11 Selected spectra of quasi-monochromatic wavelengths used for the FO vs. the 
ZO intensity calibration (left) measured by Flame spectrometer from Ocean Optics. 
Spectral dependency of the relative FO and the ZO intensity (right) – red marks are 
measured points, blue line is a fit to the data by spline.  
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3.1.4 Analysis of aberrations  

During the estimation of the spectral efficiency of the FO and the ZO image, we illuminated a single 

spot on the random mask for different wavelengths – see Chapter 3.1.3. If we superimpose the 

detected FO images of these spots, we attain a set of distinct dots because each wavelength is 

projected onto a different position on the detector. It provides us with a convenient visualization of 

the aberrations present in our system – see Figure 12. It shows the aberrations of FO images (spots) 

of both upper and lower random masks. The wavelength of the spots decreases from left to right. 

We observed the wavelength-dependent vertical shift of spectral slices on the detector and 

changes in the size and acutance of the corresponding spectral slice. Through careful analysis, it is 

noticeable that the greatest discrepancies manifest in wavelengths below 500 nm. The images of these 

wavelengths are not horizontally aligned but are shifting on the detector upward. This shift is more 

prominent in the upper FO image – see Figure 12A. For the range of 440-500 nm, the shift was 0.5-

1 mask pixel, which would inevitably corrupt the reconstruction due to the incorrectly encoded 

information. Moreover, we found out that the second-order diffraction image for wavelengths under 

500 nm interfered with the first-order image for wavelengths above 800 nm. Therefore, to solve both 

these issues, we used the OG-515 cutoff filter to get rid of the wavelengths under 500 nm.  

Note that in the spectral range of 520-720 nm, where the light source used is the most intense, 

the change in the vertical shift is less than 0.25 mask pixels. This is not expected to disrupt the 

Figure 12 Visualization of aberrations of the system – superimposed normalized FO 
images of a single spot on the random mask illuminated by different wavelengths ranging 
from 440 to 900 nm. (A) Upper FO images. (B) Lower FO images. Images resolution 
is 100×1050 px. Adapted from [62] 



 

21 
 

reconstruction, as we excluded the border pixels between the lines of the mask during the data 

processing procedure – see Chapter 3.2.1.  

Based on this analysis, we choose suitable parameters for the random mask – 64×64 px with 

a total side length of 13.55 mm. The overall size of the mask is given by the imaging optics and the 

camera size. The fineness of the mask pattern must be kept so that the aberrations do not impose 

wrong encoding of information, as the intensity from one mask line on the detector would be mixed 

with the neighboring ones.  

3.2 Data processing and reconstruction 

The captured image by our HS camera cannot be fed to the reconstruction algorithm as such – there 

has to be some data processing preceding the datacube retrieval. The array detector used has a high 

resolution (2464×2056 pixels), so the detected image has to be downsized to match the random mask 

resolution. One mask pixel corresponds to approx. eight pixels on the detector. For the extension of 

CASSI in Ref. [62] (Chapter 5), where we used a single mask, the first-order image 64×186 px and 

64×64 px zeroth-order image have to be extracted. For the extension in Ref. [61] using two masks 

above each other (Chapter 6), a 128-line image is obtained – i.e., 128×186 px FO image and 128×64 

px ZO image. In this sense, when we take into account the space between the two random masks, a 

detector with approximately 145×275 px would be sufficient to capture the complete information. 

3.2.1 Calibration 

First, a calibration procedure was done based on homogenous illumination of the random mask by 

monochromatic light (Nd:YAG laser, 532 nm). The captured image is cropped loosely based on aim 

pointers in the mask proximity, which are vertically displaced from the mask to not interfere with the 

image. Then the precise cropping is done through correlation with the random mask. In the image, 

the illumination in the vertical axis is not homogenous. This flaw was compensated by a flat-field 

correction, where the correction curve was obtained from the image as a sum of rows. 

Secondly, the FO and ZO cropped image of the laser-illuminated mask was rescaled to 

coincide with the random mask resolution. Because of the limited acutance of the image, the pixels 

at the border of mask pixels contain information from both neighboring mask pixels. Therefore, we 

leave out those pixels during rescaling in order to enhance the contrast in the resulting image. This 

omission was applied in both directions for the ZO image but only in the horizontal direction for the 

FO image since it is the direction of spectral shearing. 

By the calibration step, we attained the positions of the FO and ZO images and their scaling 

factors with very high precision. This allowed us to rescale in a corresponding way the actual 

measured data. 
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3.2.2 Reconstruction 

The rescaled image of the detector, denoted as 𝐼, was fed to the reconstruction algorithm, whose core 

is the TwIST algorithm [60], and which minimized Equation 6. The used regularizer 𝛷(𝐷) that 

ensures sparsity of the reconstruction in the wavelet domain was, in our case, l1-norm – 𝛷(𝐷) =

∑|𝐷|. Another part of TwIST is a denoising function 𝛹(𝐷) which, as the name suggests, denoises 

the datacube 𝐷. To be more specific, we used soft thresholding as the denoising function: 

 𝑌 = 𝑠𝑖𝑔𝑛(𝑋). (|𝑋| − 𝑇)+ Equation 16 

where  

 (𝑥)+ = {
𝑥               𝑖𝑓         𝑥 ≥ 0
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 Equation 17 

In plain words, soft thresholding puts small wavelet coefficients equal to zero, i.e., getting rid 

of the wavelet components in the image, which include noise. In Equation 6, the operator 𝑊̂ 

describing the passage of the light through the system is dependent on the extension of CASSI we 

use. For the standard CASSI, it is formulated by Equation 7, where the spectral shearing operator 𝑆̂ 

can be written as: 

 𝑆̂   = ∑ [𝜂𝐹𝑂(𝜆)𝑇̂𝐹𝑂(𝜆)]
𝜆

 Equation 18 

where 𝜂𝐹𝑂(𝜆) is the spectral efficiency of the FO intensity – the ratio of the light coming to the 

detected spectrally sheared image, 𝑇̂𝐹𝑂(𝜆) is the spectrally-dependent translation of the image to the 

detector area. While for the extension by ZO image in Chapter 5, the operator 𝑆̂ changes to:  

 𝑆̂   = ∑ [𝜂𝐹𝑂(𝜆)𝑇̂𝐹𝑂(𝜆) + 𝜂𝑍𝑂(𝜆)𝑇̂𝑍𝑂]
𝜆

 Equation 19 

where 𝑇̂𝑍𝑂 represents the spectrally-independent translation of the ZO image and 𝜂𝑍𝑂(𝜆) is the 

spectral efficiency of the ZO intensity (see Chapter 3.1.3). 

Finally, for the double lens system in Chapter 6, the operator 𝑊̂ in Equation 7 changes to: 

 𝑊̂ = 𝑆̂𝑀̂𝐷̂𝐻̂−1 Equation 20 

where 𝐻̂ is a wavelet transform – Haar or Symlet 8, 𝐷̂ denotes imaging the scene with the double 

lens, 𝑀̂ is the modulation by the random double mask. The operator 𝑆̂ remains the same as in 

Equation 19.  

The operator 𝑊̂ is one of the two fundamental procedures in TwIST – it transforms the 

datacube to the detector image. The other one is 𝑊̂𝑇 which does the opposite – it transforms the 

detector image into the datacube. TwIST can function utilizing these operators as two matrices, where 

𝑊̂𝑇 is the transposition of the 𝑊̂ counterpart. Nonetheless, using matrices is unreasonable since the 

matrices would need to be immensely large with a vast majority of elements equal to zero, and the 

minimization process would be, consequently, very slow. Therefore, we define the operators as two 

functions. 
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We have comprehensively tested a number of approaches to improve image retrieval using 

both experimental and synthetic datasets. This consisted of the application of direct cosine transform 

in the spectral dimension to increase the sparsity of the HS datacube, using algorithms based on 

gradient projection for sparse reconstruction and alternative directional method of multipliers, or 

employing different types of wavelet transforms. All of the above tests exhibited better results in 

specific types of scenes while generally performing worse. We will discuss the comparison more 

closely in Chapter 6.6.    

3.2.3 Initial guess 

An important step in a datacube reconstruction, before the iterations even begin, is making an initial 

guess of the datacube, which is done based on the available data. We developed an initial guess 

procedure for the standard CASSI as well as for its extensions. It is worth noting that the initial guess 

can be relatively faithfully retrieved only for the extensions because it captures the spectrally 

integrated image of the scene. The best initial guess resemblance regarding the SSIM index exhibited 

the double projection approach Double mode (see Chapter 6, Table 2). Therefore, here we present 

how the initial guess for this mode was created in several steps. We denote a HS datacube spectral 

slice as 𝛤(𝜆) for wavelength 𝜆.  

1) The spectral slice was selected from the detected FO image 𝐼 on the corresponding 

horizontal position, and it was multiplied by the random mask: 𝛤′(𝜆) = 𝑀̂𝑇̂𝐹𝑂
−1(𝜆) 𝐼. Note 

that 𝐼 consists of an upper and lower FO image; hence 𝛤′(𝜆) consists of an upper and lower 

image, as well. We denote them as 𝛤′(𝜆)𝑢 and 𝛤′(𝜆)𝑙 , respectively. 

2) Then we summed the upper and lower spectral slice 𝛤̃(𝜆) = 𝛤′(𝜆)𝑢 + 𝛤′(𝜆)𝑙. 

3) The spectral weight of the HS slice was determined as a sum of all pixels of the slice 𝛤̃(𝜆): 

𝑤(𝜆) = ∑ 𝛤̃(𝜆)𝑥,𝑦 . 

4) The ZO image 𝑍 extracted from the detector was normalized to its mean value 𝑍̅ and applied 

to the spectral slice: 𝛤(𝜆) =
𝑍

𝑍
(𝛤̃(𝜆) + 𝑍). 

5) The resulting initial guess 𝐺(𝜆) was calculated by subsequent processing of the 𝛤(𝜆) HS 

slice with denoising 𝑁̂ via the Rudin-Osher-Fatemi denoising model. 

6) The denoised slice was multiplied by its spectral weight: 𝐺(𝜆) = 𝑤(𝜆). 𝑁̂𝛤(𝜆). 

7) The datacube guess 𝐺 was rescaled so that the mean value of the 𝑊̂𝐺 was equal to the mean 

value of the detector image 𝐼.  
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4 Evaluation of using standard coded aperture 

imaging in the IR region 

This chapter provides a short overview and more insight into the paper Evaluation of using coded 

aperture imaging in the mid- and far-infrared region [63].  

The central goal of this paper was to test the feasibility of using the standard CASSI method 

in the IR spectral region. We performed numerous reconstructions of artificial hyperspectral scenes, 

which included a spill of a chemical agent. Implementation of CASSI operating in the IR would 

enable less expensive and simpler construction of HSI devices. 

The simulations included a simple and complex scene, illumination by black-body radiation, 

and the effect of noise on the reconstruction quality. Several different sizes of the random mask 

(32x32 – 512x512 px) were evaluated as well as a different number of spectral slices (117-470) and 

varying concentrations (100-2000 ppm-m) of the chemical compound. The number of spectral slices 

reflects the spectral resolution, while varying the concentration impacts the intensity at specific 

spectral slices in proportion with the absorption spectrum of the chemical.  

Throughout Section 4, we employed the standard CASSI method. 

4.1 Data preparation 

In terms of data preparation, we multiply the 2D scene 𝑆(𝑖, 𝑗) by the 1D radiation spectrum of the 

light illuminating the scene with or without Planck's law (black-body radiation) – 𝑅(𝜆). In this sense, 

we obtain the 3D datacube 𝐷(𝑖, 𝑗, 𝜆) = 𝑆(𝑖, 𝑗). 𝑅(𝜆). The chemical compound was positioned in the 

central part of the scene. It means that we multiplied the central part of the datacube 𝐷(𝑘, 𝑙, 𝜆) by a 

transmission spectrum of the studied compound 𝐶(𝜆) for the “contaminated” scene pixels 𝑘, 𝑙: 

𝐷′(𝑘, 𝑙, 𝜆) =  𝐷(𝑘, 𝑙, 𝜆). 𝐶(𝜆). In other words, the original datacube was modified for the pixels with 

indices 𝑘 and 𝑙 with the transmission spectrum of the compound. At the same time, it stayed 

unaffected for the other pixels, as it is depicted in Figure 13C. 

 The datacube 𝐷′(𝑖, 𝑗, 𝜆) enters the CASSI system, where it is encoded by the random 

mask 𝑀(𝑖, 𝑗) for every wavelength – 𝐷′′(𝑖, 𝑗, 𝜆) = 𝐷′(𝑖, 𝑗, 𝜆).𝑀(𝑖, 𝑗). Then the final detector signal 

𝐼(𝑚, 𝑛) is created by shifting every slice of the encoded datacube 𝐷′′(𝑖, 𝑗, 𝜆) by one pixel-column 

compared to the previous slice, while the slices overlay each other. It simulates the spectral dispersion, 

and it can be written as 𝐼(𝑚, 𝑛) = ∑ 𝐷′′(𝑚, 𝑛 + 𝜆, 𝜆) + 𝑁(𝑚, 𝑛)𝜆  where 𝑁(𝑚, 𝑛) denotes noise. 

The interested reader should not be confused with the different notation used in the paper [63], as it 

was changed due to consistency in this work. 
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4.2 Reconstructions 

The reconstructions were performed using the TwIST algorithm [60], which minimizes Equation 6. 

It recovers the datacube from the fed detected image, and subsequently, we can extract the absorption 

spectrum of the chemical agent. In order to correctly determine the chemical agent and its 

concentration, the relative intensity and position of the peaks are important factors. 

4.3 Results and discussion of Chapter 4 

We obtained a reasonable agreement between the original and reconstructed spectrum – see Figure 

13A. The data shown are for a datacube dimension of 128×128×470. The reconstructed spectra were 

obtained as a mean value of the central part on the position where the chemical was originally located. 

From Figure 13D, it can be seen that the highest intensity stripe in the upper part of the original 

image in Figure 13B was partially restored. We can as well, at a very rough guess, estimate where the 

chemical compound is located – compare the dark part with Figure 13C. Yet, the resemblance is very 

coarse, and we cannot talk about any resolution of finer details. It is worth noting that the data shown 

in Figure 13A-D are without any noise, and even 1% of the noise level (approx. 43.5 dB) added to 

the detected image seriously impacts the reconstruction (Figure 13E-F). 

In other words, our results suggest that the standard CASSI could potentially determine the 

type of chemical agent and solely roughly localize it only for the ideal case, i.e., without any noise. 

Therefore, to make CASSI work in the IR spectral region, there is a necessity for an upgrade of the 

method. 

Figure 13 (A) Original (red) and reconstructed (blue) spectra of data without noise. (B) 
Original scene. (C) A slice of the original datacube with the most prominent absorption in 
the central part. (D) A slice of the reconstructed datacube without noise. (E) A slice of the 
reconstructed datacube with 1% of noise. (F) Original (red) and reconstructed (blue) spectra 
of data with 1% of noise. Adapted from [63] 
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5 Extension of CASSI by a zeroth-order image 

This chapter provides a short overview and more insight into the paper Enhancement of CASSI by 

a zero-order image employing a single detector. [62] 

In order to improve the reconstruction fidelity, there was a need to find a way to gain more 

information about the measured scene. As mentioned previously (Chapter 2), one way to improve 

the CASSI method is to capture the non-diffracted image on a second detector [11, 41, 42, 43, 44]. 

However, this modification makes the imaging system more complex, and since it typically includes 

a beam splitter, it causes a substantial loss of light intensity, which could reach as much as 50% [41].  

A significantly better approach to keep the simplicity of the system is to utilize the zeroth-

order (ZO) diffraction arising from the diffraction grating. This image is inherently present in the 

systems employing a diffraction grating, but its use has not been reported for the CASSI experiment. 

Nevertheless, for the realization of this idea, some changes to the HDES system [27] had to be made 

– see the next subsection.  

The results presented in this chapter, as well as in the paper [62], are derived from the upper 

image created by the double lens (see Chapter 6 and Figure 18).  

5.1 Modifications of the optical system for capturing the ZO 

For the sake of capturing the whole ZO image on the same detector as the first order, the physical 

dimension of the random mask had to be adjusted as well as the detection area of the used camera – 

we employed a large detector (Manta G-507, see Chapter 3.1.2). Due to using a wavelet transform in 

the reconstruction algorithm (see Chapter 3.2.2), the resolution of the mask was chosen to be 2 to 

the power of 𝑛 (2n). Another constraint of the physical mask dimensions was the aberrations present 

in the system that emerge from the combination of the simplicity of the optical setup and broad 

spectral range. 

Based on the aberration analysis – Chapter 3.1.4 – it was possible to choose suitable 

parameters for the random mask, which is 64×64 px with a side length of 13.55 mm. Figure 12 shows 

that the area around 450 nm has a large vertical shift of approximately one mask pixel. This would 

inevitably impose problems with reconstruction. For this reason, the OG-515 cut-off filter was used 

in the measurements to block the spectrum under 500 nm.  
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5.2 ZO enhanced CASSI measurements 

Using our modified CASSI system, we measured several different testing scenes illuminated by a 

monochromatic light source (Nd:YAG laser, 532 nm), a red diode, or a broadband quartz tungsten-

halogen lamp (Thorlabs). In Figure 14, on the left, there is an example of two detector images. The 

upper one is for an opaque cross illuminated by a green laser and a red diode, and the bottom one is 

for the same cross but illuminated by a broadband light source. The spectra of the used light sources 

are shown in Figure 15C-D. The FO of diffraction is on the left, while the ZO of diffraction is on 

the right. Note that in the ZO image, a random mask pattern is apparent for both scenes. Whilst in 

the FO image, it can be identified only for the scene illuminated by green laser light and a red diode 

– Figure 14A. In this case, the spectral shearing is not so prominent, contrary to a broadband light 

source – Figure 14B. 

5.3 The effect of using the ZO 

The TwIST algorithm [60] used for reconstruction enabled us to feed an initial guess (Chapter 3.2.3) 

of the datacube, so we do not have to start from a trivial guess implemented in the algorithm [62]. 

We tested the use of the ZO on the quality of the reconstruction by employing the ZO (i) in the 

initial guess only; (ii) in the reconstruction itself (in the operator 𝑊̂, Equation 6) only; (iii) in both the 

initial guess and the reconstruction; and (iv) without using the ZO at all. Acknowledging that TwIST 

is an iterative algorithm, we can say that it is beneficial to set the initial guess as similar as possible to 

the real data both in terms of reconstruction time and quality.  

Figure 14 (A) Detector image of an opaque cross illuminated by a green laser and a 
red diode, and  (B) illuminated by a broadband light source. The FO of diffraction is 
on the left, the ZO of diffraction is on the right. Images resolution is 600×2260 px 
(C) Measured spectra of the green laser and the red diode, and (D) the broadband light 
source. 
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The results summarized in Figure 15 for the cross illuminated with a broadband light show 

that capturing and utilizing the ZO has a tremendous effect on the spatial quality of the reconstructed 

datacube. Each quadrant in Figure 15 depicts selected spectral slices at different wavelengths and an 

overall spectrum of the reconstructed scene for four different approaches to using the ZO image. 

Panel A shows reconstruction by the standard CASSI method; panel B has a ZO-assisted initial guess 

along with a standard CASSI reconstruction; panel C comprises using the ZO only in the iterative 

part of the TwIST reconstruction; panel D includes the ZO knowledge in both the initial guess and 

the datacube reconstruction. 

It is noticeable that without using the ZO – Figure 15A, the CASSI method struggles to 

restore vertical features in the scene. It is caused by spectral shearing (see the FO image in Figure 

14B), which significantly diminishes the restoration of the perpendicular lines of the scene. This effect 

is more prominent for the measurements of broader spectral regions with many spectral slices where 

the compression ratio is low. Reconstructed datacube slices in Figure 15C show the significance of 

having a reliable initial guess. The algorithm was not able to restore the opaque cross correctly in all 

the slices. The use of ZO in the initial guess is highly improving the spatial quality of the reconstructed 

datacube, as can be seen in Figure 15, panels B and D.  

Figure 15 Reconstructions of the scene from Figure 14B; each selected spectral slice is 
normalized to the maximum datacube value, color bar is on the right. (A) Not using 

ZO; (B) using ZO in initial guess only; (C) using ZO in operator 𝑊̂ only; (D) using 

ZO both in initial guess and operator 𝑊̂. Adapted from [62] 
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But even for the most accurate reconstruction in Figure 15D, where ZO is used for both the 

datacube initial guess and retrieval, the overall spectrum below 500 nm does not resemble the actual 

one. In this spectral region, the intensity should be equal to zero because of the used cut-off filter. 

To some extent, the spectral similarity can be enhanced by using a higher regularization 

parameter 𝜏, which promotes sparsity (see Equation 6), as we describe in Ref. [62]. Note that in this 

case, the reconstruction quality could be further improved by limiting the reconstructed range to 500-

900 nm. Nevertheless, the area in this region is a good indicator of the retrieved datacube quality. 

5.4 Simulations  

It is very challenging to assess the reconstruction quality of the experimental data, as we do not have 

the ground truth to compare to the reconstructed datacube. It is complex to carry out reasonable 

reference measurements as each hyperspectral camera features a different field of view and spectral 

response. 

At the same time, we gained low detector residuals even for the reconstructed datacubes that 

clearly did not match the original scene. For instance, the detector residuals of the reconstruction in 

Figure 15A were comparable to the residuals of the one in Figure 15D, while the quality of the two 

reconstructions is very different. Therefore, the residuals are not a good measure to assess 

reconstruction quality in our case. Hence a further evaluation was necessary. 

 Therefore, we created synthetic detector images from known datacubes (ground truth) 

faithfully resembling the real detector images. This was possible owing to the rigorous analysis of the 

aberrations of our system mentioned in Chapter 3.1.4. In particular, we incorporated the effect of the 

wavelength-dependent vertical shift of spectral slices on the detector and wavelength-dependent 

spectral slices’ acutance. 

To quantify the impact of using the ZO, we calculated the lowest attainable difference 

between the ground truth and reconstructed datacube as a minimum of least squares with 

optimization of scaling factor a – we denote it as delta Δ, see Equation 8. 

In Table 1, we can see that ZO usage is beneficial in all cases. Nevertheless, the enhancement 

level depends on the properties of the imaged scene. It has a more significant effect for scenes with 

higher complexity, i.e., broadband light illumination, a higher number of spectral features, etc. This 

is caused by the fact that the simple scenes can be well retrieved by the standard CASSI system. 

Scene A is the simplest of the three scenes in Table 1. Hence, the effect is not as large as in 

Scene C, which is more complex (see Ref. [62]). It is worth noting that while the difference in delta 

between the standard CASSI and the ZO-assisted one might be minor, the ZO utilization provides 

us with a much more robust reconstruction regarding the change in the reconstruction parameters. 
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Table 1: Delta results of the original and reconstructed datacube for different scenes [62] 

 Scene A Scene B Scene C 

Not using the ZO 2.11e-03 1.00e-03 9.71e-04 

Using the ZO 2.06e-03 9.26e-04 6.04e-04 

5.5 Conclusion of Chapter 5 

The presented extension of the CASSI method was constructed with a limited number of optical 

elements based mainly on off-the-shelf optics. It can be employed for systems exhibiting low 

compression ratios and suffering from aberrations, especially if there is a need to preserve the 

system's simplicity. The proposed modification of CASSI is unique in the sense that it enables to 

capture a spectrally dispersed image of a scene as well as a nondispersed one on the same detector.  

We measured different scenes on a broad spectral range (500–900 nm) and observed the 

effect of including the nondispersed scene image in the reconstruction as well as optimizing the 

reconstruction parameters. For instance, the regularization parameter 𝜏 (Equation 6), which 

promotes sparsity, has a significant effect on the reconstruction quality. Low values of 𝜏 enhance 

spatial quality, while high values improve spectral similarity.  

The modification led to improved overall reconstruction quality and an approximately five-

fold reduction in computational time. Note that the improvement of results is not only because of 

the higher compression ratio but also because of obtaining more spatial information – we can set the 

initial guess very close to the original scene. These effects are more prominent for complex scenes.  

The real data findings were confirmed by simulations utilizing rigorous analysis of 

aberrations, which provided us with quantification of the quality of the results.  
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6 Extension of CASSI by double projection and 

differential coded aperture 

An important factor limiting the quality of retrieved data via compressed sensing is the so-called 

compression ratio, i.e., the number of measured data points with respect to the number of elements 

of the reconstructed dataset.  A hyperspectral datacube with dimensions of 64×64×123 px will have 

a spectrally sheared imprint of 64×186 px on the detector. The compression ratio (CR) is, in this 

case, 11904/503808 ≈ 2.4%. Using the upgrade from the previous chapter, the CR increases to 

16000/503808 ≈ 3.2% since the detector image is now extended by the 64×64 px zeroth order. A 

significant improvement in the reconstruction quality was achieved. However, the aberrations still 

limit the reconstruction of complex scenes. 

Another way to amplify the performance of CASSI is to take multiple snapshots of the same 

scene [35, 36, 37]. Yet, in this way, the CASSI system needs some advanced modulator (such as DMD 

– Digital Micromirror Device) in order to change the random mask pattern. Furthermore, it loses its 

main advantage of capturing the whole scene in a single instance. Hence, the question is: how to take 

more snapshots while keeping the simplicity of the system? 

6.1 How to take more snapshots while keeping the simplicity of the 

system? 

Let’s take the following example into account. In the case of using a DMD for light modulation, 

there are two branches corresponding to two digital states (positions) of the micromirrors. When a 

random mask is invoked by a DMD, it creates two reflections corresponding to two complementary 

random masks. Typically, only one branch is being used, which corresponds to the modulation by a 

binary mask {0,+1}. That said, there are some applications that successfully exploited both reflected 

branches, e.g., balanced detection [64].  With the use of a balanced photodetector, which corresponds 

to the subtraction of the two signals, we gain the random mask {-1,+1}. Using such types of random 

masks leads to image retrieval with a significantly higher SNR.  

Moreover, in a standard CASSI system, using a single mask with {0,+1} elements blocks 50 

% of the information at the pixels, where the random mask binary information is 0. Considering the 

extension from the previous chapter, where the FO and the ZO are missing half of the pixels in the 

image, thanks to the complementarity of the masks, we now obtain the information from all the 

pixels and, most notably, the whole nondispersed image of the scene. This would be immensely 

helpful, especially for the spatial resolution of the initial guess.  

This clearly sets our objectives. To get better datacube retrieval, we want to utilize 

complementary masks. But, at the same time, we want to retain the simplicity of the system, i.e., not 

using any advanced modulators. A solution is to project the scene in parallel with two lenses through 
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two different random masks at the same time. The proof of concept is presented in the paper 

Improving Compression Ratio in CASSI [65]. This chapter provides a short overview and more 

insight into the paper Differential Coded Aperture Single-Snapshot Spectral Imaging [61]. 

Suppose we double the information by capturing two projections of the same scene. In that 

case, we decrease the CR to 23808/503808 ≈ 4.7%, and by also using the ZO, we get 32000/503808 

≈ 6.4%, which is approximately a 2.7-fold improvement in CR compared to the standard CASSI. 

Note that by using complementary random masks, we can extract more information about the scene 

thanks to special data processing that has a further improving effect. 

6.2 Modifications of the optical system for double projection 

The detector size of our hyperspectral camera (Manta G-507, resolution 2464×2056, pixel size 3.45 

µm) was chosen so that there would be enough detector area to capture the two spectrally dispersed 

projections together with the two nondispersed ones. In our optical setup, we use a detector with 

high resolution. However, a detector with approximately 145×275 px would be sufficient. Note that 

the spatial resolution of a measured scene is restricted by the resolution of the random mask used, 

not by the detector itself.  

We acquired two complementary random masks (see Figure 9) via photolithography of a 

chromium layer on a BK7 substrate. The bottom mask is an inversion of the upper one, and both 

are 64×64 pixels. In order to correctly project the images emerging from the double lens, there is a 

space of nine pixels left between them, which translates to 1.9 mm in physical dimension. Around 

the masks, there are guiding pointers that are vertically displaced, so they do not interfere with the 

detected image. The pointers serve for calibration, cropping of the detected images, and alignment 

of the system.  

The scheme of the optical system can be seen in Figure 10. Doubling the image was achieved 

by the double lens LD. Right in front of the transmission disperser (see Chapter 3.1.2) is a field lens 

DF, which steers the rays coming from the double lens under a greater angle. For proper imaging, 

there is also an aperture in the imaging plane of the double lens. The aperture crops the height of the 

imaged scene – otherwise, the two images would be overlapping. Analogously to the previous chapter, 

the spectra were cropped by the cut-off filter for wavelengths below 500 nm. 

6.3 The effect of random mask complementarity 

As stated before, we expect that the mask's complementarity will positively affect the reconstruction 

quality. To determine the effect of the masks' complementarity also quantitatively, we performed a 

set of simulations. Clearly, the experimental realization (creating various random masks via 

photolithography, their implementation to the system, system alignment, calibration, etc.) would be 

very complex in this case.  

 For the results further discussed in this section, we considered the case when we also used 

the ZO for initial guess and datacube retrieval. Since it was proven in Chapter 5 that the ZO 



 

33 
 

significantly improves the reconstruction quality, we carried out the comparison for the best available 

configuration. 

In the case of complementary masks, the two ZO images could be directly summed, which 

provided us with a complete picture of the scene without spectral shearing. If we sum two 

noncomplementary ZOs, we get double values on the positions where the “1” pixels are concurrently 

in the upper and lower mask, while we will be missing values on the positions with 0s in both masks. 

Letting the reconstruction algorithm work with this kind of data, naturally, the results would be 

worsened because of the badly assigned values on approximately 50% of pixels, i.e., approx. 25% of 

double values, and approx. 25% of no value. We must therefore choose a different approach for 

relevant comparisons.  

It is possible to add the top and bottom noncomplementary ZO images together and then 

divide by two the pixels where there are double values and calculate the pixels with the missing values 

as an average of the eight neighboring pixels. However, this approach does not work very well due 

to system imaging imperfections that were included in simulations (blur, noise, etc.). You can see the 

inhomogeneities caused by this approach in Figure 16A. 

Figure 16 Demonstration of the ZO benefits of complementary random masks. (A) 
Summing noncomplementary ZO images for two random masks and then calculating 
missing pixels. (B) Calculating missing pixels for noncomplementary ZO images 
separately and then summing them. (C) Upper and lower complementary ZO images 
with calculated missing pixels. (D) Summed images from C. 

Figure 17 Comparison of simulated data reconstructions of (A) two random 
noncomplementary masks without calculating the missing pixels in the initial guess, (B) 
two random noncomplementary masks including calculating the missing pixels in the 
initial guess and (C) two complementary masks using their sum, Double approach – 
see Table 2. 
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Considerably better results were attained by directly calculating the missing pixels as the 

average of the adjacent pixels for each image separately, then using the mean value of these images – 

Figure 16B. In Figure 16C are the top and bottom images with calculated missing pixels for 

complementary masks and their sum in Figure 16D. Here we can clearly see that the resulting ZO 

image is far more homogeneous, and we can expect it to have a better effect on the spatial resolution 

of the retrieved datacube. 

The quality of the retrieved datacubes can be compared visually in Figure 17. At the same 

time, we can use delta – defined by Equation 8, for the quantification of the reconstruction quality 

(lower number equals better reconstruction). The values reached 7.23e-04, 6.56e-04, and 6.38e-04 for 

(i) a reconstruction of noncomplementary masks without pixel calculation (explained above), (ii) a 

reconstruction of noncomplementary masks with pixel calculation, and (iii) a reconstruction of 

complementary masks, respectively. The complementary masks featured consistently better 

properties for different simulated scenes. Even though the difference is not that prominent, we need 

to take into account also the time required for reconstruction, which is crucial for potential real-time 

imaging applications. It is notably prolonged for the case of noncomplementary masks since we need 

to perform extra calculations to obtain the complete ZO image, as opposed to complementary masks, 

which require only a simple sum of two matrices. 

To illustrate this difference, we provide the computational times required on a standard 

laptop for the initial datacube guess and reconstruction for the results in Figure 17. In the case of 

complementary masks, the initial guess took an average of 0.6 s. For noncomplementary masks with 

pixel computing, it took an average of 13.2 s, which is 22 times longer. 

Suppose we use the same principle of calculating the missing pixels directly in the 

reconstruction algorithm. In that case, we have to calculate each slice of the data cube separately, and 

in our case, for 123 slices, such an approach is very lengthy. We can, for instance, compare the time 

required for 13 iterations of the TwIST algorithm [60] for the complementary and 

noncomplementary modes. The algorithm was limited to 13 iterations since, under different initial 

conditions, the reconstruction may require a different number of iterations. The TwIST algorithm 

converged in as little as 11 s after 13 iterations using complementary masks – see Figure 17C for the 

result. For the noncomplementary mask with calculating the missing pixels, the reconstruction time 

reached 154 s - Figure 17B. The result in Figure 17A took comparable time as the one in Figure 17C 

but is visibly worse as well as it has a higher delta. From the example above, we see that complementary 

masks outperform noncomplementary ones, both in terms of reconstruction quality and, above all, 

in terms of speed. 
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6.4 Differential CASSI measurements and approaches to data 

processing  

The previous subsection showed that complementary masks are the best option for a double-mask 

CASSI system. Following these findings, the experimental implementation was carried out only for 

the complementary random masks. In particular, we used two random binary complementary masks 

of 64×64 pixels. 

An example of such a double-mask measurement can be seen in Figure 18B. It is possible to 

approach the data reconstruction in several ways compared to the standard multi-snapshot CASSI, 

owing to the mask's complementarity. We denote the standard multi-snapshot approach as Double, 

which means that the two detector images are optimized during the datacube retrieval in parallel. The 

standard single-snapshot CASSI is represented in this chapter as Single. Nevertheless, in our 

complementary measurements, we can subtract the upper and the lower image, which would 

correspond to a measurement with a mask composed of ±1s – we indicate it as Diff. It is worth noting 

that CS algorithms work better for {+1,-1} matrices than for {+1,0} matrices because of their 

compressed sensing performance [64]. 

However, by using only this differential image, we would lose the information about the 

magnitude – this occurs when one subtracts two similar datasets, which are shifted with respect to 

each other. Therefore, a better way to process the data is to calculate not only with the difference 

between the snapshots but also with their sum – the Diffsum approach. It is a combination of the 

differential character of the random mask while it preserves the information about the image intensity 

scaling. The matrix notations overview of detector images 𝐷̅ for all the approaches is in Table 2. 

Figure 18 (A) Example of a complex scene with many different spectral features. The 
red square marks the imaged area. The red circles are used for spectra comparison. (B) 
The scene from (A) detected by our CASSI system. Note that the same color bar applies 
to Figure 19, Figure 20, and Figure 22. Addapted from [61] 
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Table 2: Different approaches to data processing. 𝐷̅ denotes detector image. 𝐴 and 𝐵 are upper and lower FO images, 
respectively. 

Data processing approach  Matrix notation  

Single  𝐷̅ = [𝐴]  
Double  𝐷̅ = [𝐴; 𝐵] 
Diff  𝐷̅ = [𝐴 − 𝐵]  
Diffsum  𝐷̅ = [𝐴 − 𝐵; 𝐴 + 𝐵]  

 

The final detector image 𝐷 fed to the reconstruction algorithm is 𝐷 = [𝐷̅ 𝑍𝑂̅̅ ̅̅ ], where 𝑍𝑂̅̅ ̅̅  is 

a sum of upper and lower ZO images.  

6.5 The effect of data processing approaches 

Here, we will demonstrate the difference between the data processing approaches on two scenes – 

an opaque cross and a stained glass foil illuminated by a spectrally broad light. More examples can be 

found in Ref. [61]. Figure 19 shows selected slices of the reconstructed datacube for different data 

processing approaches. As can be seen, all approaches are able to reconstruct spatial information well 

since we employ the ZO image in all the cases. Nevertheless, the approaches differ mainly in the 

reconstructed spectrum of the light. The Single, Diff, and Double approaches face a problem with 

spectrum reconstruction below 500 nm, where the intensity should be zero due to the use of the 

yellow cut-off filter. In terms of the reconstructed spectrum, we can safely say that Diffsum is the best 

approach.  

 To show the ability of the system to retrieve more complex scenes, we performed 

measurements of a stained glass foil (see the scene in Figure 18). It is worth noting that the good 

spatial information obtained is mainly thanks to the extension of CASSI by the ZO image, which was 

described in the previous chapter. Nevertheless, we can see the improvement as we extend into the 

double mask approaches, which exhibit much better homogeneity compared to the Single approach. 

See the selected enlarged slices in Figure 20 for comparison. It shows that Diffsum exhibit more 

uniformity as opposed to Single. 

Figure 19 Reconstructed spectrally integrated image, individual spectral slices, and a 
spectrum of an opaque cross illuminated with broadband light by using four processing 
approaches (see Table 2). Adapted  from [61] 
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In Figure 21 are depicted the measured and reconstructed spectra of three points of the 

stained glass foil scene. The colors of the curves correspond to the colors of the selected points in 

the scene. The results indicate that, although obtaining a good spatial resolution was possible, the 

scene is too complex to reconstruct spectra reliably. It is worth noting that the spectra were not 

adjusted for the spectral efficiency of the system. Nevertheless, the closest similarity was achieved 

using Diffsum. 

6.6 Simulations 

The artificial data generation and simulated retrieval were carried out for the same reason and in the 

same manner as the ones in the previous chapter. However, we extended our evaluation into more 

complex metrics to evaluate various aspects of the methods – PSNR (peak signal-to-noise ratio), 

SSIM (structural similarity) index, and SAM (spectral angle mapper), since these are more commonly 

used throughout the literature.  

Table 3 Evaluation metrics – PSNR, SSIM index, and SAM error of retrieved datacubes for different scenes [61] 

Approach Scene A (cross) Scene B (filters) Scene C (feathers) 

 PSNR  SSIM  SAM PSNR  SSIM  SAM PSNR  SSIM  SAM 

Single 17.79 0.50 0.39 21.78 0.65 0.53 21.29 0.55 0.58 

Double 18.79 0.59 0.39 21.90 0.74 0.52 21.66 0.55 0.57 

Diff 16.26 0.35 0.23 21.35 0.66 0.54 19.90 0.46 0.64 

Diffsum 19.67 0.59 0.36 22.11 0.72 0.54 21.85 0.56 0.55 

Figure 20 Reconstructed spectrally integrated image and individual spectral slices of an 
stained glass foil with broadband light by using four processing approaches (see Table 
2). Two spectral slices of Single and Diffsum were enlarged for comparison. Extracted 
from [61] 

Figure 21 Measured spectra at the points marked in Figure 18A (on the left). 
Reconstructed spectra at the same points for four different reconstruction approaches (on 
the right). 
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An overview of the results is provided in Table 3. Note that we calculated PSNR by scaling 

the whole datacube by a single factor, not scaling slice-by-slice. The quantitative comparison shows 

that the double mask approaches, namely Diffsum and Double, surpass Single. As we discussed above, 

Diff lacks information about the intensity magnitude. Hence it mostly exhibits the worst results. On 

the contrary, Diffsum consistently leads to the best results for various types of scenes, and it was also 

stable with respect to the selection of the reconstruction parameters.  

As was mentioned in Chapter 3.2.2, we thoroughly tested a range of approaches, including 

different algorithms, to enhance image retrieval. Yet, for the mask resolution of 64×64 px, we were 

getting the best results using TwIST.  

To illustrate our statement, we provide a comparison of reconstructions between GPSR 

(Gradient Projection for Sparse Reconstruction) and TwIST in Figure 22. On the left are eight 

selected spectral slices and an overall spectrum of ground truth data; in the middle, there is a 

reconstruction using TwIST; and on the right, there is a reconstruction using GPSR. The presented 

results were achieved after extensive optimization of parameters for both methods. We concluded 

that the TwIST algorithm provides better or comparable results with GPSR. Hence, we can safely 

claim that the presented results cannot be easily improved just by using a different reconstruction 

algorithm. 

During the real measurements, we were confined to a 64×64 px random mask due to the 

magnitude of the aberrations present in our system. At last, we evaluated the use of different mask 

resolutions. Table 4 presents the resulting metrics of retrieved datacubes utilizing higher-dimension 

random masks. For the Diffsum approach, PSNR is improved by ~0.8 dB for 128×128 px mask and 

further ~0.8 dB for 256×256 px mask, while SAM was first worsened and then reached 

approximately the same value for the highest mask resolution tested. The improvement in PSNR for 

the Single approach was less notable, and spectral metric SAM got even inferior. 

Figure 22 Comparison of ground truth with reconstructions using different algorithms.  
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Table 4 Evaluation metrics of retrieved datacubes utilizing random masks of higher dimensions [61] 

 Approach 128×128 px – Scene C (feathers) 256×256 px – Scene C (feathers) 

  PSNR SSIM SAM PSNR SSIM SAM 

Single 21.76 0.57 0.65 22.42 0.61 0.61 

Double 22.34 0.60 0.62 23.08 0.63 0.56 

Diff 19.78 0.48 0.60 20.95 0.54 0.52 

Diffsum 22.67 0.60 0.58 23.49 0.63 0.54 

  

6.7 Conclusion of Chapter 6 

We showed that by a simple modification of the optical setup, we were able to improve the 

compression ratio in CASSI systems 2-fold and as much as 2.7-fold using also the ZO image 

compared to the standard CASSI. Simultaneously, the modification retained the CASSI’s main 

advantage – a single snapshot.  

We demonstrated the improvement in the reconstruction quality on a broad spectral range 

of 500-900 nm. Utilizing the Double approach, which is equivalent to multi-snapshot CASSI, it 

reached an increase of ~1.0 dB in PSNR. We also quantified the superiority of complementary masks 

over noncomplementary ones. With the use of the ZO image, we were able to make the initial 

estimate of the datacube very similar to the measured scene, which, on average, decreased the total 

number of reconstruction iterations needed. 

 Moreover, we proposed a new approach to data processing which we denoted as Diffsum or 

differential CASSI (D-CASSI) since it utilizes a matrix of {+1,-1} as a random mask. This was 

possible thanks to the mask's complementarity. PSNR, in this case, soared ~1.9 dB compared to 

Single.  

We backed our measurement of real scenes with rigorous simulations, which enabled us to 

quantify the results. It also allowed us to control the reconstruction parameters better, explore the 

possibility of using different reconstruction algorithms, compare our proposed approach to standard 

CASSI covering the whole double projection area, and investigate utilizing random masks of higher 

dimensions.  
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7 Evaluation of the CASSI extensions in the IR region 

The ultimate goal of the thesis was to evaluate the effectiveness of the CASSI extensions made within 

this work for hyperspectral imaging in the IR spectral region. Therefore, we created a set of artificial 

scenes and detector images as it would be produced by an IR CASSI system. As opposed to the 

visible spectral region, it is also necessary to consider the radiation of a black body, which could be 

calculated by Planck's law – see Chapter 1.1.1. Compared to Chapter 4, here we implemented both 

extensions of CASSI, which shift the abilities of the method to a different level. 

The random mask dimensions in our optical setup were constrained by the aberrations 

present in our system, as it was designed mainly on off-the-shelf optics due to the vision of building 

an analogous setup in the IR. However, the results for higher resolution masks in Ref. [61] showed 

that using a 256×256 px random mask would lead to better CASSI performance. Therefore, we 

exploited this knowledge and used it in the following simulations. There is also a practical rule 

mentioned in Ref. [66], which says that for exact recovery, it is necessary to have about four 

incoherent samples per unknown nonzero term. I.e., the number of samples is equal to 4 times the 

sparsity level. It also underlines the idea behind using a higher-resolution mask. 

7.1 Data preparation 

Hyperspectral datacubes with 256 px in spatial dimensions and 50-100 spectral frames were created 

using an arbitrarily chosen image from an IR camera (see Figure 23) [67]. The scene was contaminated 

with a chemical agent (isopropanol or acetone) of various concentrations ranging from 1000 to 8332 

ppm-m. The absorption spectra of chemicals were obtained from the National Institute of Standards 

and Technology [68]. Then, for convenience, it was transformed into transmission spectra as  

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 10−𝛼.𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛.𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ, where 𝛼 can be calculated as 𝛼 =

− 𝑙𝑜𝑔10(𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚) (𝑐0. 𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ)⁄ . The spectral range was set to 8-14 µm since it is the most 

used range to detect and characterize chemicals – they have their specific signature in this range, and 

it is also the transparency “windows” in the Earth’s atmosphere [13, 69].  

To create the hyperspectral datacube 𝐷(𝑖, 𝑗, 𝜆), the scene 𝑆(𝑖, 𝑗) is first multiplied by black-

body radiation described by Planck's law 𝑃(𝜆): 𝐷′(𝑖, 𝑗, 𝜆) = 𝑆(𝑖, 𝑗). 𝑃(𝜆). Then a part of the 

datacube 𝐷′(𝑘, 𝑙, 𝜆) for selected scene pixels 𝑘, 𝑙 is multiplied in spectral dimension by the 

transmission spectrum of a chemical compound 𝐶(𝜆): 𝐷(𝑘, 𝑙, 𝜆) = 𝐷′(𝑘, 𝑙, 𝜆). 𝐶(𝜆). The datacube 

𝐷(𝑖, 𝑗, 𝜆) enters the CASSI system, where it is doubled by the double lens 𝐷̂, modulated by the 

random mask 𝑀̂, and then divided into the diffraction orders by grating and spectrally sheared 𝑆̂ – 

see Equation 19, so it creates the detector image 𝐼(𝑚, 𝑛).  
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In the practical sense, it means doubling each slice of the datacube and then multiplying with 

the random mask – i.e., a matrix with ones and zeros. Afterward, the intensity of the encoded 

datacube is divided in a ratio that 70% of the intensity goes to the first-order (FO) diffraction, 20% 

to the zeroth order (ZO), and the rest to the other orders, i.e., 10% is lost. This would correspond to 

a real-world scenario, as diffraction gratings do not typically feature 100% efficiency. For simplicity, 

these intensities are constant throughout the spectral region. The FO detector image is constituted 

by shifting each subsequent slice of the encoded datacube by one pixel-column and summing it all 

together – the slices are overlaying each other. The ZO detector image is made by the integration of 

all the slices. Finally, Gaussian noise 𝑁(𝑚, 𝑛) is added, and the resulting detector image is: 

 𝐼(𝑚, 𝑛) = 𝑆̂𝑀̂𝐷̂𝐷(𝑖, 𝑗, 𝜆) + 𝑁(𝑚, 𝑛) Equation 21 

7.2 The new data processing approach 

Note that the detector image 𝐼 has two spectrally sheared FO images and two spectrally integrated 

ZO images. As it was previously discussed, the Diffsum approach leads to the best results regarding 

datacube retrieval. The approach uses the difference between the two detected FOs and their sum – 

the sum keeps the magnitude of the signal intensity. In contrast, the two detected ZOs are always 

utilized as a sum. Similarly, as the difference corresponds to measurement with {+1,-1} mask, the 

sum would be related to a measurement of {+1,+1} mask – it correlates with passing all the light 

without any encoding.  

Figure 23 (A) The artificial FO created from an arbitrarily chosen IR camera image 
– upper FO. (B) The artificial ZO of the same scene – upper and lower ZO images 
summed together. The rectalngle with visibly lower intensity is an area of the chemical 
absorption. (C) The differential (upper part) and sumed (lower part) detector image used 
for reconstruction by the Diffsum approach. 
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While it is important to retain the information about the absolute image intensity, using a  

{+1,+1} mask does not make sense for the CASSI method as the encoding by a random pattern is 

its core essence. Hence, we also performed datacube reconstructions in which, together with the 

difference of the detected images, we included the upper encoded image by {+1,0} mask. In this 

way, we created another approach, which we denote as Diffone. Using the matrix notation consistent 

with Table 2, the matrix representing the detector 𝐷̅ would be written as 𝐷̅ = [𝐴 − 𝐵;  𝐴], where 𝐴 

and 𝐵 are the upper and lower FO images, respectively.  

The reconstructions showed that although the idea behind encoding the image has solid 

grounds, the difference contains useful information and makes up for the sum. In other words, only 

the magnitude is needed, and the Diffone approach exhibited slightly worse results. In Figure 24 are 

plotted PSNR results of reconstructions for different regularization parameters 𝑡𝑎𝑢 (Equation 6). 

Each dot or circle represents one result of the reconstructed datacube under various reconstruction 

parameters – see Chapter 7.3. The blue circles denote the Diffsum results, while the red symbols are 

Diffone results. It is obvious that the highest PSNR values are achieved by the Diffsum approach, while 

it seems that Diffone is less dependent on the chosen reconstruction parameters. However, it is 

possible to identify the parameters that work best and utilize them further. 

A possible explanation is that Diffsum compensates better for the noise in the image. The 

noise is pronounced both in {+1,-1} and {+1,+1} mask as opposed to Diffone, where the information 

about the inhomogeneities in the lower image encoded by {0,+1} mask is missing. 

For the sake of simplicity, the data that follow are only for the Diffsum approach as it exhibits 

the best results and features the most robust datacube retrieval. 

Figure 24 PSNR of reconstructed datacubes by Diffsum (blue circles) 
and Diffone (red dots) aprroach for different reconstruction parameters.  
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7.3 Reconstruction and scene parameters testing 

First, a set of different parameters were tested on a datacube 256×256×50 with distinct properties to 

identify the major parameters to tune during the optimization of datacube retrieval. The tested 

parameters and scene properties included: 

 Noise in the detected image with a different amount of SNR in dB (23.5, 34.8, 44.8, and 

without noise) 

 The concentration of the chemical agent (isopropanol of 1000 ppm-m or 3333 ppm-m) 

 Transforming the spectral slices with various wavelet transforms (Haar and Symlet 8) 

 Option to use DCT (discrete cosine transform) of the datacube in the spectral dimension 

 Different values of regularization parameter 𝑡𝑎𝑢 (put stress on the sparsity).  

The reconstructions that showed the best PSNR results for noisy data were achieved using 

Symlet 8 wavelets together with DCT in spectral dimension. The results of noisier data were more 

prominent to be 𝑡𝑎𝑢 dependent. The maximal difference of PSNR between the best results achieved 

using different 𝑡𝑎𝑢 was 1.9 dB. The most significant reconstruction quality change was observed 

between SNR 23.5 dB and 34.8 dB. Hence, the next logical step was to create data with finer SNR 

division around those values.  

7.4 Let’s make some noise: the noise and spectral dimension size 

effect 

Figure 25 shows a plotted dependency between reconstructed data PSNR and noise level present in 

the detected snapshot, which was defined by SNR. It is obvious that the higher the noise level (lower 

SNR) there is, the worse the results are. However, for the potential future experimental setup, we 

would like to find the lowest SNR for which it is still possible to maintain a reasonable reconstruction 

quality. This is possible owing to the character of the dependence in Figure 25, which does not change 

gradually but rather features a threshold value of PSNR, under which the reconstruction quality 

rapidly deteriorates. From this point of view, SNR 29.8 dB, which translates to approximately 3.9% 

of noise in our case, was chosen as it is the inflection point from which the fitted curve becomes 

almost constant.  

Therefore, we fixed the level of noise at SNR = 29.8 dB and studied the effect of varying the 

number of spectral slices (50, 60, 70, 80, 90, 100). This simulation was created to investigate the effect 

of the datacube spectral dimension size. The results show – see Figure 26 that the PSNR is gradually 

decreasing with the number of spectral slices, but this reduction is not so prominent as for SNR. A 

higher number of spectral slices could provide better spectral resolution, which is necessary for 

distinguishing sharp spectral features. Nevertheless, it is also connected to a greater compression 

which in turn negatively affects the reconstruction quality. In the case of a datacube with dimension 
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256×256×100, the CR is 312832/6553600 ≈ 4.8%, while the same datacube with 50 spectral slices 

has CR 287232/3276800 ≈ 8.8%. 

7.5 Promoting sparse solutions via multiple regularization weights  

In the reconstruction algorithm, we can attain a sparse dataset by using discrete wavelet transform 

(DWT) in spatial dimensions and DCT in a spectral dimension. Hence, we work with a datacube that 

Figure 26 Dependence of the PSNR of the reconstructed datacube on number of spectral 
slices. The results were fitted by a spline curve. Full line – all data fitt, dashed line – 
best results for each number of spectral slices fit. 

Figure 25 Dependency between SNR of the data and reconstructed PSNR. Fitted by 
spline. Full line – all data fit, dashed line – best results for each SNR fit. Note that 
SNR 60 dB represents data without noise, as it would not make sense to put these 
values to infinity. Hence, it is only for guiding. 
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is converted by both these transforms, but the sparsity is promoted by a single regularization 

parameter 𝑡𝑎𝑢, which is common for both spectral and spatial dimensions. We investigated the 

option of putting stress on the sparsity in spectral and spatial dimensions separately, i.e., using two 

regularization parameters. In order to test this approach, a minor change in the reconstruction phase 

called soft thresholding (see Chapter 3.2.2) was made. During soft thresholding, the datacube is in 

both the above-mentioned bases and the wavelet/DCT coefficients that are lower or equal to 𝑡𝑎𝑢 

are set to zero. This promotes sparsity.  

The modification of soft thresholding consists of (i) applying inverse DCT to the datacube – 

now, the datacube is in a wavelet domain only. (ii) Using the first 𝑡𝑎𝑢 for soft thresholding in spatial 

dimensions. (iii) Performing inverse DWT and then forward DCT – now, the datacube is in the DCT 

domain only. (iv) Using the second 𝑡𝑎𝑢 for soft thresholding in spectral dimension. (v) Performing 

forward DWT – datacube is back in both transform domains.  

Numerous simulations were performed using combinations of different reconstruction 

parameters for the modified soft thresholding – we denote it as Double-tau soft thresholding. 

Datacubes of 50-100 spectral slices were considered to provide a comparison with standard soft 

thresholding. In Figure 27, we can see the PSNR results of Double-tau soft thresholding for a different 

number of slices – blue circles. The mean and the best fit of the data for standard soft thresholding 

from Figure 26 are added for comparison as red full and dashed lines, respectively.  

We did not observe a significant improvement by using the Double-tau thresholding despite 

scanning a large number of parameters for optimization. The mean fit is comparable for both 

Figure 27 Dependence of the PSNR of the reconstructed datacube on number of spectral 
slices for Double-tau soft thresholding. Blue circles are results obtained using Double-
tau soft thresholding. Blue line is mean fit of the data. Red lines are the fits using 
standard soft thresholding from Figure 26 – for comparison.  
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approaches, but the best achievable results of standard soft thresholding greatly surpass the Double-

tau one. Therefore, we kept the basic soft thresholding in the following simulations.  

7.6 Combining spectrally- and spatially-oriented reconstructions 

After many trials of improving and enhancing reconstruction quality mentioned in the chapters 

above, we ended up with two sets of datacube reconstruction parameters – one with a focus on good 

spatial information (indicated as SETspatial) and the other one with a focus on yielding correct spectra 

(indicated as SETspectral). Below we present results for three scenes denoted as Scene A – Figure 28A, 

Scene B – Figure 28B, and Scene C – Figure 28C [67, 70]. The properties of the data in this chapter 

were set as follows: datacube 256×256×50 px, the concentration of isopropanol in the scene 1000 

ppm-m, noise at the detector SNR = 29.8 dB. 

Figure 29 Reconstruction of Scene A using parameters of SETspatial. (A) Selected 
reconstructed slices. (B) Integrated reconstructed slices. (C) Original (blue) and 
reconstructed (red) spectra from the points marked in B. 

Figure 28 Original scenes used for testing in Chapter 7 denoted as (A) Scene A, (B) Scene B, and (C) Scene C. 
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One of the important points in evaluating the simulations was the assessment of spectral 

quality. We found out that the overall SAM score (see Chapter 1.5) does not necessarily reflect the 

fidelity of the reconstructed spectra of the chemical. Hence, we also considered the mean SAM score 

only from the area where the chemical is present – we denote it SAMchem. This metric reflects much 

more faithfully the quality of the retrieved spectral features in the IR region. 

This discrepancy can be seen in Table 5, providing the results of Scene A reconstructions. 

The reconstruction RecAspatial was performed using SETspatial, while RecAspectral was reconstructed 

using SETspectral. RecAspatial achieved a better SAM score than RecAspectral, but at the same time, SAMchem 

is much worse.  

The main distinction between the two abovementioned sets of parameters is the use of DCT 

in the spectral dimension. This way, DCT highly promotes correct spatial information but corrupts 

the spectra. Figure 29 and Figure 30 show the best achievable results for the two sets. In each figure, 

there are selected reconstructed spectral slices (panel A), an integrated image of all the reconstructed 

slices (panel B), and spectra from nine selected points P1-P9 of the scene (panel C). The location of 

the points can be seen in panel B. The evaluation metrics of these reconstructions are in Table 5, 

denoted as RecAspatial and RecAspectral, respectively. It can be seen that Figure 29 is superior in terms 

of spatial correctness (higher PSNR and SSIM), but the spectra in points P3-P5 are absolutely missing 

spectral features of the spilled chemical (higher spectral error SAMchem). In contrast, in Figure 30, we 

obtain more reliable spectra, but the images resemble seeing the scene with severe myopia. 

From this point of view, it is not possible to obtain accurate spatial and spectral information 

at the same time. Nevertheless, considering that our primary goal is to localize and identify a chemical 

Figure 30 Reconstruction of Scene A using parameters of SETspectral. (A) Selected 
reconstructed slices. (B) Integrated reconstructed slices. (C) Original (blue) and 
reconstructed (red) spectra from the points marked in B. 
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compound in a scene, we should prioritize the faithful spectra. Here comes into play, once again, the 

invaluable feature of our system that arises from the combination of CASSI extensions described in 

Chapters 5 and 6 – i.e., acquiring a zeroth-order image of a scene. 

We know that the ZO image has correct spatial information as it is an integral combination 

of all encoded slices of the measured datacube. Hence, by scaling each spectrum according to the 

corresponding pixel intensity in the ZO, we preserve the spectra while achieving great spatial 

resolution. It can be written as:  

 DC(𝑖, j, λ) = 𝐷𝐶𝑁𝑜𝑟𝑚(𝑖, 𝑗, 𝜆) . 𝑍𝑂(𝑖, 𝑗) Equation 22 

where 𝐷𝐶𝑁𝑜𝑟𝑚(𝑖, 𝑗, 𝜆) is the reconstructed datacube normalized on its mean value, 𝑍𝑂(𝑖, 𝑗) is the 

zeroth-order image, and DC(𝑖, j, λ) is the resulting datacube. 

Performing SETspectral reconstruction and then applying Equation 22 to the reconstructed 

datacube, we obtain results in Figure 31, which clearly outperform the reconstructions RecAspatial and 

RecAspectral – see RecAcomb in Table 5 for the evaluation metrics. 

For a better idea about the spectral error distribution in the reconstructed scene, we present 

spectral error maps for RecAspatial and RecAspectral in Figure 32, where each pixel is the calculated 

spectral error 𝑠𝑎𝑚 from Equation 15. RecAspatial in Figure 32A has much higher error values in the 

area of chemical absorption compared to RecAspectral in Figure 32B, which is in accordance with 

observations of spectra P3-P5 in Figure 29C and Figure 30C. This should serve as a demonstration 

that points P1-P9 were selected quasi-randomly beforehand. It is worth noting that the spectral error 

Figure 31 The best achievable results for Scene A using a combination of SETspectral 
and post-reconstruction utilization of zeroth-order image according to Equation 22. The 
reconstruction is denoted as RecAcomb. (A) Selected reconstructed slices. (B) Integrated 
reconstructed slices. (C) Original (blue) and reconstructed (red) spectra from the points 
marked in B. 
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map for reconstruction RecAcomb would look the same as for RecAspectral since it features the same 

spectra. 

Figure 32 also visualizes the need for characterization of the spectral fidelity by SAMchem 

metric as everywhere except the chemical absorption area is a low spectral error for RecAspatial, which 

yields lower overall SAM compared to RecAspectral.  

Table 5 The best achievable results in terms of spatial information (RecAspatial using SETspatial), spectral information 
(RecAspectral using SETspectral), and a combination of SETspectral and post-reconstruction utilization of ZO image 
according to Equation 22 (RecAcomb) for Scene A 

 PSNR SSIM SAM SAMchem 

RecAspatial 34.84 0.90 1.19 3.55 

RecAspectral 29.86 0.84 1.35 2.24 

RecAcomb 34.63 0.90 1.35 2.24 

 

In order to evaluate how the reconstruction quality would change in dependence on different 

conditions, we tested the reconstruction parameters on different scenes – see Figure 33, Table 6 for 

results of a scene with a more complicated area of chemical absorption (Scene B, Figure 28B), and 

Figure 34, Table 7 for results of a scene with a more complicated area of chemical absorption and 

more complex spatial features (Scene C, Figure 28C). 

Points with higher intensity in the original scene lead to worse quality of reconstructed spectra 

in these points – see points P7 and P8 compared to points P1 and P2 in Figure 31, Figure 33, and 

Figure 34. The fine details in the reconstructed slices deteriorated, which is caused mainly due to the 

noise. Nevertheless, the degree of retrieved details is more than satisfactory in terms of imaging a 

scene and locating a chemical substance. Joint reconstructions yielded the same SSIM as 

reconstructions using SETspatial, as well as the same SAM and SAMchem scores as SETspectral. PSNR 

slightly decreased for Scene A and improved for Scene B and Scene C. 

 

Figure 32 Spectral error map of reconstruction for (A) RecAspatial from Figure 29 and 
(B) RecAcomb from Figure 31. 
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Table 6 The best achievable results in terms of spatial information (RecBspatial using SETspatial), spectral information 
(RecBspectral using SETspectral), and a combination of SETspectral and post-reconstruction utilization of ZO image according 
to Equation 22 (RecBcomb) for Scene B 

 PSNR SSIM SAM SAMchem 

RecBspatial 33.87 0.90 1.43 3.55 

RecBspectral 29.03 0.84 1.41 2.22 

RecBcomb 34.41 0.90 1.41 2.22 

 

Table 7 The best achievable results in terms of spatial information (RecCspatial using SETspatial), spectral information 
(RecCspectral using SETspectral), and a combination of SETspectral and post-reconstruction utilization of ZO image 
according to Equation 22 (RecCcomb) for Scene C 

 PSNR SSIM SAM SAMchem 

RecCspatial 32.24 0.85 1.44 3.65 

RecCspectral 27.35 0.72 1.56 2.28 

RecCcomb 32.56 0.85 1.56 2.28 

 

 

 

Figure 33 The best achievable results for scene B using a combination of SETspectral and 
post-reconstruction utilization of zeroth-order image according to Equation 22. The 
reconstruction is denoted as RecBcomb. (A) Selected reconstructed slices. (B) Integrated 
reconstructed slices. (C) Original (blue) and reconstructed (red) spectra from the points 
marked in B. 
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7.7 Robustness against noise for the combined retrieval 

A good indication of the performance of the system would be to assess the highest amount of noise 

at which it can still achieve reliable reconstruction. For this purpose, reconstructions of data with 

varying noise were performed. The regularization parameter 𝑡𝑎𝑢 was set to 0.1 as it consistently 

provided the best results for all the scenes. Moreover, in a real scenario, tuning this parameter without 

prior knowledge of the scene would not be possible. The results are summarized in Table 8.  

Table 8 Results for Scene C achieved by using a combination of SETspectral and post-reconstruction utilization of ZO 

image according to Equation 22 with fixed regularization parameter 𝑡𝑎𝑢  for different amounts of noise 

SNR (dB) PSNR (dB) SSIM SAM (°) SAMchem (°) 

34.8 32.65 0.87 1.44 2.26 

29.8 32.34 0.86 1.55 2.33 

25 30.89 0.79 1.95 2.58 

20 28.23 0.67 2.69 3.34 

18 26.30 0.57 3.36 3.82 

15 23.38 0.43 4.45 5.23 

 

Figure 35 shows that the dependency of reconstruction quality on noise is not linear for both 

PSNR and SAMchem. From this point of view, an inflection point from which the quality deteriorates 

rather quickly is near 25 dB of SNR. Hence, the reconstructed data with the noise of 25 dB and 20 dB 

Figure 34 The best achievable results for scene C using a combination of SETspectral and 
post-reconstruction utilization of zeroth-order image according to Equation 22. The 
reconstruction is denoted as RecCcomb. (A) Selected reconstructed slices. (B) Integrated 
reconstructed slices. (C) Original (blue) and reconstructed (red) spectra from the points 
marked in B. 



 

52 
 

are presented in Figure 36A and Figure 36B, respectively. These values translate to 6.4% and 11.3%, 

respectively. It is still possible to distinguish the spatial information in Figure 36B, even though it is 

visibly noisier. However, evaluating the spectral information would be a problem as the spectra are 

severely disrupted. SAM and SAMchem, in this case, surged from 1.95 and 2.58 to 2.69 and 3.34, which 

is approximately 38% and 30% increase, respectively. We can draw a conclusion that in order to 

obtain a reliable reconstruction, the maximal SNR in the detected image needs to reach 25 dB. 

 

 

Figure 36 Results for Scene C achieved by using a combination of SETspectral and post-
reconstruction utilization of ZO image according to Equation 22 with fixed 

regularization parameter 𝑡𝑎𝑢 for noise of (A) 25 dB and (B) 20 dB. 

Figure 35 Dependency between SNR of the data and reconstructed (A) PSNR and 
(B) SAMchem. Plotted data from Table 8, fitted by spline. 



 

53 
 

8 Conclusions 

Throughout this thesis, we have seen how the compressed sensing (CS) technique CASSI relying on 

a single snapshot, is a unique aspirant in the field of hyperspectral imaging (HSI). It has enormous 

potential for obtaining chemical information remotely. Yet, the method possesses a lot of room for 

improvement. There are two main reasons for this. First, it dismantles the primary disadvantages of 

HSI, which are halting more widespread use of HS cameras – these are cost and complexity. As was 

shown in this thesis, CASSI can be constructed as a relatively simple optical setup. Second, CASSI 

allows capturing HS information at a rate not comparable to any other mean. The increasing research 

interest in snapshot HSI in recent years is a hint at the potential of these devices, but because of 

manufacturing limitations, it has not seen wider adoption in commercial use. One exception is the 

professional astronomical community, which highly benefits from the vast light throughput of a 

telescope when conducting HSI [71]. 

The main contribution of this work is that it determined the limiting factors of CASSI – 

namely, very high compression of the measured data, which is even more pronounced for datacubes 

with many spectral slices. We proposed and realized extensions needed to overcome the obstacles 

and then provided a conceptual study of CASSI operating in the LWIR spectral region, which can 

perform detection and localization of a chemical substance in noisy conditions. 

We developed a differential CASSI (D-CASSI) using two complementary binary random 

masks and, thus, two imaging paths to multiply the measured information and consequently lift the 

limits of the compression. On top of that, this system combines a diffraction grating and a prism as 

a dispersive element allowing for concentric mounting. It is designed so that it can capture both the 

first- and zeroth-order diffraction of the grating on the same detector. Utilizing the zeroth order 

improves the spatial quality of the reconstructed data dramatically. It is worth noting that thanks to 

masks’ complementarity, we were able to develop a completely new approach to data processing and 

reconstruction, which utilizes a random mask consisting of {-1,+1} pixels. The synergy of the CASSI 

extensions brought into existence gives rise to post-reconstruction processing that has a huge positive 

impact on reconstruction fidelity. 

It can be concluded that the modified CASSI system makes it, indeed, possible to perform 

HSI on a broad spectral range in the IR spectral region in order to localize a chemical substance if 

the resulting SNR on the detector is at least 25 dB. Note that the made extensions retained the 

simplicity of the optical system and the main advantage of CASSI, which is a single-snapshot 

operation regime. 
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Comment on the papers 

The publications listed below are a part of this thesis. They constitute a substantial portion of 

Chapters 4-6 and contain information about the experimental design of the presented optical system, 

altogether with additional results. An interested reader is referred to the following pages, where they 

are enclosed.  

I. HLUBUČEK, J., ŽÍDEK, K.: Evaluation of using coded aperture imaging in the 
mid- and far-infrared region. In: 5th International Workshop on Compressed Sensing 
applied to Radar, Multimodal Sensing, and Imaging (CoSeRa), Eurasip, 2018. 19. 

II. HLUBUČEK, J., et al. Improving Compression Ratio in CASSI. In: Computational 
Optical Sensing and Imaging. Optical Society of America, 2021. CTh2F.3.  

III. HLUBUČEK, J., et al. Enhancement of CASSI by a zero-order image employing a 

single detector. Applied Optics. 2021, 60(5), 1463-1469.  

IV. HLUBUČEK, J., et al. Differential coded aperture single-snapshot spectral imaging. 

Optics Letters. 2022, 47(9), 2342-2345. 

The work in Chapter 7 is yet to be published.  
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We propose a novel, to the best of our knowledge, con-
cept of the differential coded aperture snapshot spectral
imaging (D-CASSI) technique exploiting the benefits of
using a {–1,+1} random mask, which is demonstrated by
a broadband single-snapshot hyperspectral camera using
compressed sensing. To double the information, we encode
the image with two complementary random masks, which
proved to be superior to two independent patterns. We uti-
lize dispersed and non-dispersed encoded images captured
in parallel on a single detector. We explored several dif-
ferent approaches to processing the measured data, which
demonstrates significant improvement in retrieving complex
hyperspectral scenes. The experiments were completed by
simulations in order to quantify the reconstruction fidelity.
The concept of differential CASSI could be easily imple-
mented also by multi-snapshot CASSI without any need for
optical system modification. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.454729

Hyperspectral imaging (HSI) denotes imaging where a spec-
trum is recorded for each pixel of the image. It is a very useful
technique for a broad range of samples—for instance, in the
infrared (IR) spectral region, light makes it possible to remotely
sense the chemical composition owing to the specific absorp-
tion fingerprints of each chemical compound. Since the acquired
dataset is a 3D datacube consisting of many stacked 2D images,
HSI inevitably collects a large amount of data. Processing the
datacube is very demanding for computation power, acquisi-
tion times are usually very lengthy, and the HSI requires a high
intensity of light. Moreover, in the IR region, there is a need for
special optical materials and IR array detectors.

A possible solution to this problem is using a compressed
sensing method called coded aperture snapshot spectral imaging
(CASSI), which makes it possible to compress a 3D hyperspec-
tral scene in a single instant on a 2D detector and then retrieve
the 3D information back thanks to a reconstruction algorithm,
such as TwIST [1]. The core of the method lies in encoding a
measured scene with a binary random mask pattern, which is
then spectrally sheared and captured on a detector. However,
since the basic CASSI method relies on a single snapshot, the
data compression ratio is immense, making the reconstruction
of complex datacubes very problematic. Therefore, an extension
of this method is required.

In recent years there have been efforts to decrease the com-
pression ratio by numerous means [2–9]. Promising enhance-
ments are (i) acquiring multiple snapshots of the same scene
using different random mask patterns [2–4] or (ii) capturing a
non-diffracted image of a scene and using this knowledge in
the reconstruction [5–9]. However, for (i) the CASSI method
requires some advanced modulators due to the need for chang-
ing the random mask pattern, and for (ii) a second camera is
often needed.

A way to avoid using a second detector could be utilizing
a grating in the CASSI system and consequently capturing a
zero-order (ZO) of diffraction, i.e., a non-diffracted image of the
scene, next to the first-order—a spectrally sheared image of the
scene—on the same detector [10]. Nevertheless, this approach
itself does not provide sufficient reconstruction fidelity for real-
life HSI in a broad spectral range.

In this Letter, we demonstrate a novel approach to obtaining
more information about the measured scene in the CASSI tech-
nique. The scene is imaged by a double-lens and subsequently
encoded via two random binary masks. A diffraction grating
provides us with both the first-order diffraction image (standard
CASSI information) and the ZO diffraction image, i.e., the spec-
trally integrated image. We show that the doubled information
is a promising way to improve the reconstruction quality with-
out making the optical setup more complex. Moreover, by smart
design of the random mask patterns, we are able to improve the
quality even further.

The imaging of a scene is done with two lenses cut into a rect-
angular shape (size 10 mm× 50 mm, f= 100 mm), which were
glued together along their long side. The double-lens combined
with a field lens projects the measured scene into two identical
images encoded by two different random masks (64 px× 64 px).
The encoded images propagate through the system depicted in
Fig. 1(a) and are captured on the detector above each other. Here,
M denotes random mask, L refers to the lenses, P and G are the
prism and the grating, respectively, and D represents the dou-
blets. A detector with resolution 2056 px× 2464 px was used.
However, a detector with approximately 145 px× 275 px would
be sufficient regarding the mask size and resolution. It is worth
noting that our system is also able to capture a non-diffracted
image of the scene (ZO) on the same detector, which provides
us with more information about the measured scene without the
need to split an incoming light as in the standard extension of
the CASSI method [5–9].
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Fig. 1. (a) Scheme of the optical setup. M=mask, L= lens,
P= prism, G= grating, D= doublet (see Supplement 1 for more
details). (b) Photo of the measured scene. The square marks the
imaged area. (c) Double mask CASSI detector image; first-order of
diffraction on the left, zero-order of diffraction on the right. Note
that the same color bar applies to all figures.

The two random masks (patterns) encoding the scene might
be, in principle, entirely independent and random. However, our
simulations prove that it is beneficial to use two complementary
masks—see Supplement 1 for detailed information. The comple-
mentary masks approach was used previously for a color-coded
mask [11]. For a single mask in a standard CASSI system, 50%
of the information is lost at the pixels, where the random mask
binary information is 0. Therefore, using two random masks that
are complementary to each other, i.e., the positions of ones in
the first mask are zeros in the second mask and vice versa, we
are guaranteed to acquire the information from all the pixels of
the scene. It decreases the compression ratio but without the
need for the second detector as in Wang et al. [5,6,8], Rueda et
al. [7], and Yuan et al. [9].

In the optical setup, we put stress on a simple construction of
the CASSI camera using a minimal number of optical elements.
The resulting device is relatively compact and uses a concentric
mounting. This approach is retained due to the vision of using
an analogous device in the IR regime, where the optical element
fabrication and alignment are significantly more challenging
than in the VIS region. As a result, our CASSI setup suffers
from optical aberrations, which need to be overcome.

Owing to the fact that we have two complementary spectrally
sheared images, we can approach the doubled information in
several ways. The basic one would be to simply consider the two
images separately, as is done in multi-frame CASSI extensions
[2,3]. We denote this approach as Double. Another approach,
abbreviated as Diff, is to calculate a difference of the detected
images, which simulates a measurement with a random mask
pattern consisting of ±1, i.e., a differential image of the two
masks. Note that from the compressed sensing (CS) theory,
there is a qualitative difference between the {+1,–1} Bernoulli
matrices and the {+1,0} Bernoulli matrices in their compressed
sensing performance. It has been proven that CS algorithms
work better for mask {+1,–1} [12].

Finally, we also used the approach labeled as Diffsum, where
we calculated with two images, where one is a difference and
the other one is a sum of the two traces. While we seemingly

Table 1. Different Approaches to Data Processing

Approach Matrix Notation

Single D= [U]
Double D= [U; L]
Diff D= [U-L]
Diffsum D= [U – L; U+L]

gain no benefits from using Diffsum, the difference and the sum
of the two images might be beneficial. It provides us with more
information about the image intensity magnitude and improves
the reconstructions, as we discuss later.

Table 1 shows an overview of the labels. Here, U denotes the
image corresponding to the upper first-order image, L represents
the lower first-order image, D is a detector image, and the final
detector image D’= [D ZO], where ZO is a sum of the upper and
lower ZO images. Detector image D’ is fed to the reconstruction
algorithm, whose core is TwIST, which transforms it into a
datacube with 123 spectral channels. For a detailed description
of the data processing, see Supplement 1.

We measured various scenes by using our CASSI-based cam-
era and carried out the hyperspectral datacube reconstructions
to test the camera performance.

In Fig. 2, there is a reconstructed scene of an opaque
cross evenly illuminated by a white light. We present selected
spectral slices for different approaches—compare the rows.
There are also two spectral slices of the Single and Diff-
sum approaches, magnified for better comparison. It can be
seen that for such a simple scene, the approaches provide us
with a similar quality of image reconstruction. However, the
intensity distribution in reconstructed spectral slices of Sin-
gle is less homogenous. In addition, all approaches except
Diffsum leave residual intensity in the region below 500 nm,
where the incoming light was cut off by filter OG-515 (see
the corresponding spectral slices or Fig. S3 in Supplement
1). The zero spectral intensity in this spectral region is,
therefore, a useful measure of the spectral reconstruction
quality.

While the scene in Fig. 2 consists of a single spectral shape
modulated in intensity, Fig. 3 depicts the reconstruction of the
scene with four color filters illuminated by a broadband light
source. Each quadrant, therefore, featured an entirely different
spectrum. Single, Double, and Diffsum were able to accurately
recreate the original filters in corresponding quadrants, while
Diff struggles to reconstruct the green and blue filters in the
bottom two quadrants (see spectral slices 552 nm and 588 nm).
This is caused mainly by the aberrations in our system, which
are, moreover, slightly different for the upper and lower images.
Therefore, the image intensity within one line of a random mask
leaks into the neighboring line and distorts the reconstruction.
The summed image, which provides a guideline about the actual
local intensity on the detector, is then able to compensate for this
problem in the Diffsum approach. It is worth noting that Single
or Double reconstruction cannot reconstruct well the onset of
the yellow filter spectrum (see Fig. S4 in Supplement 1). Due
to the strong signal from the red filter, we can observe that the
spectrum tends to follow the red-filter spectrum in these cases,
which is even more prominent with Diff. By contrast, the Diffsum
reconstruction can distinguish between the two aforementioned
filters better (see the enlarged spectral slices in Fig. 3). While the
benefit of the Diffsum approach for the image quality is not so
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Fig. 2. Reconstructed spectrally integrated image and individual spectral slices of an opaque cross illuminated with broadband light by
using four processing approaches (see Table 1). Two spectral slices of Single and Diffsum were enlarged for comparison.

Fig. 3. Reconstructed spectrally integrated image and individual spectral slices of four color filters illuminated with broadband light by
using four processing approaches (see Table 1). Two spectral slices of Single and Diffsum were enlarged for comparison.

Fig. 4. Reconstructed spectrally integrated image and individual spectral slices of stained glass foil illuminated with broadband light by
using four processing approaches (see Table 1). Two spectral slices of Single and Diffsum were enlarged for comparison.

prominent here, the ability to discern different spectral features
is highly improved.

Finally, in Fig. 4, we depict the reconstruction of a com-
plex scene with many varying spectral regions. It is possible to
notice the improvement in the spatial quality of the reconstructed
images when we extend into the double mask approaches. Nev-
ertheless, even for the Diffsum case, we attain only qualitative
agreement between the reconstructed and measured spectral
shapes of the individual regions.

So far, we have discussed the results qualitatively. Hereafter,
we will focus on quantification of the benefits connected to
using two complementary masks. It was not possible to quantify
the reconstruction quality of the experimental data by residuals
from the detector image because we observed that we were able
to obtain low residual metrics even for a reconstruction that
clearly did not match the original scene. Hence, we created a set
of artificial datacubes and detector images faithfully simulating
the real detected images by a careful analysis of the aberrations
present in our system (see Supplement 1 for details). We also
created a few synthetic detector images using CAVE database
data [13] as a template.

Comparison between the original and reconstructed datacubes
was carried out by the peak signal-to-noise ratio (PSNR), spec-
tral angle mapper (SAM) method for finding the spectral match,
and the structural similarity (SSIM) index for measuring the
spatial similarity. The SAM and SSIM values can be found in
Supplement 1 (Table S3).

Firstly, we evaluated the effect of using two complementary
random masks. We compared it to the situation where we use two
random masks not related to each other. We consistently attained
a higher reconstruction fidelity for the complementary masks
(see the results in Table S2 in Supplement 1). We ascribe it to
the fact that we obtain a non-dispersed image without any pixels
missing for the complementary masks, which in turn improves
the reconstruction quality.

Secondly, we applied the simulations on the used complemen-
tary masks, where we used the four approaches listed in Table 1.
Table 2 provides an overview of the results achieved during the
reconstruction for each case characterized by the PSNR. We
point out that PSNR was calculated by scaling the whole dat-
acube by a single factor, i.e., not by slice-by-slice comparison.
In accordance with the real data reconstructions, it proves that
the double mask approach Diffsum surpasses Single, while it
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Table 2. Reconstruction Results for Different Scenes

Approach Scene A
(Cross)

Scene B
(Filters)

Scene C
(Feathers)

PSNR PSNR PSNR

Single 17.78 21.78 21.29
Double 18.79 21.90 21.66
Diff 16.26 21.35 19.90
Diffsum 19.67 22.11 21.85

turned out that Diff was providing the worst results for some
scenes. We ascribe this decrease in the reconstruction quality
to the huge uncertainty in magnitude, which arises when two
similar datasets, which are shifted with respect to each other,
are subtracted. However, in the case of Diffsum the information
about the magnitude is still present in sum of the snapshots.
This combines the differential characters of the random masks
while it retains the information about the image intensity
scaling.

For the experimental data, the difference between the modes
is more prominent for the complex scenes, while the simple
scenes feature a similar image quality. Yet, the fidelity of the
reconstructed spectra is improved even for the simple scenes.

In conclusion, we demonstrated a simple optical setup for a
single-snapshot double-image CASSI system in a broad range of
400–900 nm with 123 spectral slices. Our experimental results,
confirmed by a set of simulations, show that capturing two
images of the same scene encoded by different random masks
is superior to the standard approach, i.e., we gain better recon-
struction quality. Furthermore, owing to the uniqueness of our
system, where we use both ZO and first-order images, we are
able to set the initial estimate of the datacube very close to
the measured datacube, which in turn decreases the number of
iterations needed for the reconstruction.

We also performed a comparison of artificial data reconstruc-
tions between complementary and non-complementary masks,
which confirms that using two complementary masks provides
us with more information and, therefore, better reconstruction
quality. Hence, our system works like a differential CASSI (D-
CASSI) method, where we are able to utilize a random mask
consisting of {–1,+1} pixels.

From the selected approaches to the measured data, the best
one and, at the same time, the most robust is Diffsum, which
works well, particularly with the aberrated imaging system.
Note that the optical setup was not optimized for the double
mask approach and, therefore, the reconstruction quality could
be further improved by limiting the aberrations in the system.

In summary, with a simple adjustment of the system without
increasing its complexity, one can obtain more information about
the measured scene and improve the compression ratio and the

reconstructed image quality. Moreover, CASSI systems utilizing
spatial light modulators (SLMs), such as digital micromirror
devices (DMDs), for generating random mask patterns could
benefit from our proposed approach as it can be straightforwardly
implemented simply by generating complementary patterns one
after another without any need for optical system modification.
However, capturing two or possibly multiple images of the same
scene encoded by different random masks simultaneously is a
way to avoid using SLMs and retain the main advantage of
CASSI—the single snapshot.
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Coded aperture snapshot spectral imaging (CASSI) makes it possible to recover 3D hyperspectral data from a
single 2D image. However, the reconstruction problem is severely underdetermined, and efforts to improve the
compression ratio typically make the imaging system more complex and cause a significant loss of incoming light
intensity. In this paper, we propose a novel approach to CASSI that enables capturing both a spectrally sheared and
an integrated image of a scene with a single camera. We performed hyperspectral imaging of three different testing
scenes in the spectral range of 500–900 nm. We demonstrate the prominent effect of using the nondiffracted image
on the reconstruction of data from our camera. The use of the spectrally integrated image improves the reconstruc-
tion quality, and we observed an approximately fivefold reduction in reconstruction time. © 2021 Optical Society of

America

https://doi.org/10.1364/AO.414402

1. INTRODUCTION

Hyperspectral imaging (HSI) instrumentation is essential for
many applications ranging from scientific research, such as vol-
canology [1] or imaging the chiralities of single nanotubes [2],
to practical problems, including food analysis and safety inspec-
tion [3,4], medical imaging [5], quality control [6], forensic
sciences [7,8], or art conservation [9].

Besides standard methods, commonly used to acquire a
hyperspectral (HS) data cube, such as whiskbroom, pushbroom,
and plane scanning, a range of new techniques has been devel-
oped with the vision to create a single-snapshot HSI that can be
operated with a high frame rate and that does not require any
movable part [10]. One of the methods is coded aperture snap-
shot spectral imaging (CASSI), based on compressed sensing
[11,12].

CASSI can outperform the standard techniques, mainly in
the length of the acquisition time, since it captures the whole
data cube in one instance, i.e., a snapshot, eliminating the need
for scanning. This makes the system highly robust. At the same
time, the single-frame CASSI system has certain limitations,
including image quality, compression ratio, and the time needed
for the HS data cube reconstruction, since the reconstruction
problem is severely underdetermined.

It is possible to improve the reconstruction quality of CASSI,
for instance, by optimizing a coded aperture [13,14], utilizing
multiple camera shots [15–17], or using a higher-order image
reconstruction [18]. On the other hand, refining the method
often brings in certain limitations. Multiframe CASSI loses the

advantages of using a single snapshot, while more complex mod-
els for the detector description slow down the reconstruction
process. Another promising way to boost the performance of
CASSI is to capture a nondiffracted image that aids in the recon-
struction. However, this approach normally requires splitting
an incoming beam and employing two cameras [19–23], which
makes the CASSI system inconveniently complex and causes a
loss in the light intensity, which can reach as much as 50% [23].

Another limitation of the CASSI method consists in the size
of the measurable spectral range. The spectral reconstruction
can be highly improved by identifying key spectral features in
the spectrum for specific applications [24]. This is, however, not
our case, as we aim at a reconstruction of an arbitrary spectral
shape, including spectrally flat broadband sources. Acquisition
of a broader bandwidth decreases the compression ratio, which
lowers the quality of the retrieved HS information. Therefore,
the above-mentioned upgrades of CASSI typically aim at
increasing the compression ratio along with capturing a narrow
spectral range. At the same time, the CASSI reconstruction
assumes an ideal image for each wavelength, which brings in
the necessity to highly reduce optical aberrations of the CASSI
system in the case of spectrally broad light. This leads to complex
optical systems limited in their spectral range. Hence, there is a
trade-off between the ability to carry out broadband HSI and
the complexity of the setup. This is even more prominent in the
infrared (IR) spectral range, where the construction of complex
systems is costly and their precise alignment is a challenging
task.
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In this paper, we present a robust concentric HS camera based
predominantly on off-the-shelf optics, which can be used for
CASSI HSI. In contrast to previous reports, we aim at obtaining
HSI in a broad spectral range between 500 and 900 nm covered
by 123 spectral frames. In combination with the simplicity of
the camera, the broad spectral range leads to the presence of
aberrations in the system. This camera serves as a model system
for the perspective of IR CASSI imaging, where the acquisition
of a broad spectral range is needed to capture and distinguish
between different chemical agents in the IR region.

However, the uniqueness of our HS camera lies in the design
of the dispersive elements, which are able to attain both a
nondiffracted image and first-order (FO) diffraction with a
single detector. We demonstrate that by using a zero-order
(ZO) image of a diffraction grating, we can highly improve the
reconstruction quality of the system in spite of the aberrations
present. Moreover, owing to the camera construction used, we
utilize the light intensity, which is otherwise dumped in other
grating-based CASSI systems [23].

By providing measurements of three testing scenes, we show
that the use of ZO diffraction is indispensable for the aberrated
system in order to attain spatial quality of HS data cube recon-
struction. This is particularly prominent for scenes of spectrally
broad light. We compare the use of the ZO in the calculation
of an initial guess in the iterative reconstruction, as well as in
the reconstruction itself. The presented concept can serve as
an efficient approach to improving reconstruction in CASSI
systems suffering from aberrations and low compression ratio.

2. EXPERIMENTAL SETUP

The HS camera used, depicted in Fig. 1(A), was built based
on off-the-shelf optics except for elements L2 and P, which
were manufactured at our facilities. Its main features are a high
numerical aperture (NA∼ 0.35) and a telecentric object (mask)
space. In the scheme, L denotes plano–convex lenses, D denotes
doublets, M is a random mask, P is a prism, and G is a grating.
A detailed description of the system with a list of all its elements
can be found in [25]. A total of six optical elements available
from optics catalogs and a custom-made lens (L2) and prism (P)
were used for the construction. A combination of the transmis-
sion grating (G, Thorlabs, 300 lines/mm) and the custom-made
prism (P, SF11 optical glass) allows for a concentric construc-
tion of the camera, which is beneficial for calibration, and it
also enables simple mechanical housing in a single tube. Mask
M was a binary pattern, which was prepared via photolithog-
raphy on a BK7 substrate with a thin chromium layer. It has
64 pixels× 64 pixels and a side length of 13.55 mm. The result-
ing image, which consists of both FO and ZO diffraction, was

detected by using a Manta G-507 camera (Sony IMX264,
resolution 2464× 2056).

Due to the different spectral response of the optical system
for the FO and the ZO, we characterized the relative intensity
between the FO and the ZO intensities, which we denote as
ηFZ. The intensity ratio, affected dominantly by the grating
response, is depicted in Fig. 1(B). The spectral efficiency of the
FO versus the ZO was employed in the calculations to reliably
reproduce the detector image in Eq. (2). The monochromatic
light for spectral calibration was obtained using a monochroma-
tor (Chromex 250 IS) in combination with a broadband quartz
tungsten-halogen lamp (Thorlabs).

For the sake of the testing experiments, the testing scenes
described below were imaged on the mask M by a single thin
lens combined with a cutoff filter OG-515, which restricted the
measured spectral range below 500 nm, as we explain below.

3. DATA PROCESSING AND RECONSTRUCTION

HS data cube reconstruction requires a transfer of the cap-
tured detector image with a high resolution (2464 pixels×
2056 pixels) into an image of the FO and the ZO corresponding
to the resolution of the random mask (64 pixels× 64 pixels).
First, the detector image is cropped and resized to match the
pixel size of the random mask. The cropping employs cali-
bration with a diffused monochromatic light (Nd:YAG laser,
532 nm). The crude cropping is based on aim pointers. These
are transparent pixels located in the proximity of the mask,
which can be identified in the dark detector area. Owing to the
narrow spectrum of the calibration laser, the image of the dif-
fused laser light on the detector is an image of the random mask
without any spectral shear. We determined the cropping range
of both orders by searching for the best correlation between the
image and the random mask.

Since the detector has a higher resolution than the random
mask—one mask pixel corresponds to approximately eight pix-
els on the detector—it is necessary to resize the cropped image.
For the sake of contrast improvement, we avoid the border
pixels, which, in the sense of binary mask pattern, could be clas-
sified as “gray.” For the ZO image, the border pixels are avoided
in both directions, while for the FO one, the omission can be
performed only in the direction of spectral shearing. The image,
where the border pixels were nullified, is consequently rescaled
into a 64 pixel× 186 pixel FO image and a 64 pixel× 64 pixel
ZO image corresponding to the mask pixels.

The processed data are reconstructed using the TwIST
algorithm [26] minimizing the expression,

f (D)=
1

2
‖I − Ŵ D‖2

+ λ8(D), (1)

Fig. 1. (A) Scheme of our system described in the text; (B) spectral dependence of a relative intensity between FO image and ZO image ηFZ.
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where I is the detector output; Ŵ = Ŝ M̂ Ĥ−1 is an operator
describing the propagation of the incoming light through the
system, including modulation by the random mask M̂ and the
spectral slice placement Ŝ in the FO and ZO images. D(x , y , λ)
is the HS data cube, where each spectral frame is transformed
by the Haar wavelet transform Ĥ. We use l1-norm regulari-
zation 8(D)=

∑
|D|, since the common scenes are sparse

in the Haar wavelet basis. The regularization term is weighted
by a coefficient λ, which can emphasize the sparsity of the
reconstructed data cube.

The FO and the ZO can be included in the operator of spec-
tral shearing Ŝ as

Ŝ =
∑
λ

[ηFZ(λ)T̂1(λ)+ T̂0], (2)

where T1(λ) is the wavelength-dependent translation of the
image to the FO area and T0 is the wavelength-independent
translation of the image to the ZO area. The coefficient ηFZ(λ)

is the measured spectral efficiency of the FO versus the ZO
depicted in Fig. 1(B).

The TwIST algorithm uses two operators: (i) to transform
the data cube to the detector image, and (ii) to transform the
detector image into the data cube. These operators correspond,
in the compressed sensing theory, to the sensing operator Ŵ and
to its transposition ŴT , respectively. Since a matrix representa-
tion of Ŵ and ŴT would be very large and unsuitable for fast
reconstruction, we evaluate them as functions.

Since TwIST is an iterative algorithm, an important factor is
the initial guess of the HS data cube. Therefore, the ZO image
can be implemented not only in the TwIST reconstruction itself,
but also in the initial guess. It is highly favorable, in the sense
of reconstruction time and quality, to make the initial guess as
similar to the real data cube as possible.

An issue connected with the use of the ZO consists in the fact
that the ZO image has blank pixels where the binary values of
the random mask are equal to zero. We have overcome this by
approximating these pixels by the mean value of their neighbor-
ing pixels. At the same time, the reconstruction needs to take
into account that the ZO image is not evenly represented by all
wavelengths.

The initial guess was created from the detector output I for
each wavelength of a spectral slice as follows:

1) We extracted the 64 pixel× 64 pixel spectral slice 0(λ)
of the HS datacube from the detector FO image, where
the slice position corresponds to the selected wave-
length λ. We multiplied the slice with the random mask:
0(λ)= M̂T̂−1

1 (λ) I .
2) The spectral weight of the slice was calculated as a sum of all

elements of the slice0(λ):w(λ)=
∑
x ,y
0(λ).

3) The ZO image Z extracted from the detector was used to
correct the spectral slice after normalization by its mean
value Z̄: 0̃(λ)= Z

Z̄
(0(λ)+ Z).

4) The initial guess G(λ) was obtained by treating the 0̃(λ)
slice with total variation denoising N̂ corresponding
to the Rudin–Osher–Fatemi denoising model and

the denoised slice is multiplied by its spectral weight:
G(λ)=w(λ). N̂0(λ).

The resulting data cube guess G is finally rescaled by the ratio
between the original detector image intensity and the detector
image intensity obtained by applying the operator Ŵ to the data
cube guess.

4. RESULTS AND DISCUSSION

We carried out a set of experiments where we studied the HS
data cube reconstruction from our broadband-aberrated HS
camera based on the CASSI method. As we described in the
previous two sections, besides the standard CASSI method,
where the image is modulated by a mask M and spectrally
dispersed, the construction of our device makes it possible
to also capture the ZO diffraction. Hence, we exploit a part
of the light intensity that would otherwise be lost in a stand-
ard system, and we use it to gain more information about the
measured scene. The aim of the experiments was to reveal the
effect of the information about the ZO image on the data cube
reconstruction.

In order to gain a quantitative evaluation of the reconstruc-
tion quality, we created artificial data, faithfully simulating the
real detected FO images as well as the ZO image by a careful
analysis of the aberrations present in our system. Namely, we
included the effect of wavelength-dependent: (i) vertical shift of
spectral slices on the detector, and (ii) spectral slices’ acutance.
The effects were simulated by varying the size and position
of each spectral slice jointly with a wavelength-dependent
Gaussian filter. The scale of aberrations was extracted based on
the acquired images of a monochromatic source illuminating a
mask [see Fig. 2(A)], as we discuss in the next paragraphs. The
simulated data were calculated to follow the camera resolution,
and they were processed and reconstructed by using the exact
same procedure as the experimental data.

The simulations allowed us to compare the reconstructed
data cube with the ground truth and, therefore, to attain a quan-
titative measure of the reconstruction quality. We define the
difference 1 between the ground truth and the reconstructed
artificial data cube by least squares, where we optimize scaling
factor c to minimize the difference value,

Fig. 2. (A) FO images of a fixed spot on the random mask illumi-
nated by a set of monochromatic lights with wavelengths ranging from
440 to 900 nm (superimposed normalized images). Differences in
the spot vertical position, scaling, and sharpness emerge from aber-
rations in the FO image, image resolution: 80 pixels× 1050 pixels;
(B)–(D) scenes reconstructed in the article (normalized, color bar
on the right), image resolution 600 pixels× 2260 pixels; (B) quasi-
monochromatic laser sources illuminating dark cross; (C) spectrally
broad light transmitted through four color filters; (D) spectrally broad
light illuminating dark cross.
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1=minc

{
1

n

n∑
i=1

(c .y i − ȳ i )
2

}
, (3)

where residuals for the i th point are calculated as a difference
between the original data cube value y i and reconstructed data
cube value ȳ i and n is the number of data cube voxels.

The camera was constructed with a primary restriction on
the number of elements and their off-the-shelf availability and,
at the same time, we use the camera on a broad spectral range
of 500–900 nm. Due to these restraints, the resulting detector
image is aberrated.

We can visualize the aberrations present in the system [see
Fig. 2(A)] by a superposition of detected images of a single
spot on a mask illuminated by a set of quasi-monochromatic
wavelengths. The detector was consequently illuminated in
the spectral range of 440–900 nm, where the wavelength of
the imaged spot decreases from left to right on the detector.
The image for each wavelength was normalized before being
added to the overall sum. Note that, compared to the other
panels in Fig. 2, panel (A) is highly rescaled to demonstrate the
aberrations.

For wavelengths around 450–500 nm [Fig. 2(A), on the
right], the spot vertical position changes rapidly. This dis-
crepancy is around one mask pixel, which makes the correct
reconstruction impossible. Therefore, we used the OG-515
filter to block this problematic part of the spectrum. At the
same time, you can see that the image acutance changes with
wavelengths, and a sharp image is obtained only in the central
part of the spectrum. This is another source of imperfections in
the reconstruction.

Figures 2(B)–2(D) show a detector output of three different
scenes: (i) an opaque cross illuminated simultaneously by a green
laser and a red diode [Scene A, Fig. 2(B)]; (ii) four color filters
illuminated by a broadband light source [Scene B, Fig. 2(C)];
(iii) an opaque cross illuminated by a broadband light source
[Scene C, Fig. 2(D)]. On the left-hand side in the respective
pictures, you can see the FO diffraction and on the right is the
ZO diffraction. In Fig. 2(B) the intensity of the ZO diffraction
is very weak, which is caused by using only two wavelengths
and by the spectral effectivity of the FO versus the ZO. As you
can see, the FO image of the green laser is basically an image of
the random mask, since the laser spectral width is well below
the spectral resolution of our system. On the contrary, the FO
image of the red diode is a bit sheared due to the spectral width,
FWHM being 18.5 nm.

It is worth noting that the spatial resolution of reconstructed
scenes is restricted by the resolution of the mask M used, and
not by the detector. While the photolithographic process used
allows fabrication of a much finer binary mask, the resolution is
limited by the aberrations present in our system. For example, in
the spectral range where the light source used is the most intense,
i.e., 520–720 nm, the variance in the vertical shift of different
images is less than one-quarter of the mask pixel. This is still
a feasible inaccuracy, as we do not include in our calculations
the border pixels between the lines of the mask (discussed in
Section 3). However, the use of a finer mask, i.e. smaller pixels,
would inevitably lead to wrongly encoded information on the
detector, where the information from one mask line would leak
into the neighboring ones.

To study the influence of the ZO in the reconstruction, it can
be implemented in two ways: First, to improve the initial guess
of the reconstruction, and second, to be included in the operator
Ŵ in the TwIST.

Figure 3 depicts the effect of four different modes of (not)
using the ZO: panel (A) standard CASSI reconstruction with no
ZO information; panel (B) ZO-assisted initial guess calculation
followed by a standard CASSI reconstruction avoiding the ZO
inclusion; panel (C) initial guess omitting the ZO information
while using the ZO in the TwIST reconstruction; and panel
(D) using the ZO in both the initial guess estimate and the data
cube reconstruction. All calculations employed the scene with
an opaque cross illuminated by a broadband light source. In each
panel, we present eight selected spectral slices of the data cube,
together with the total spectrum in the bottom right graph,
which is a sum of all elements of each slice.

As one can see in Fig. 3(A), without the information about
the ZO, it was not possible to retrieve the vertical line of the
imaged cross. This problem was commonly encountered in
the scenes where a broadband light was included. An initial
guess promoting the vertical feature by using the ZO [panels
(B) and (D)] serves sufficiently in this case to retrieve the data
cube, irrespective of the mode of the reconstruction itself. On
the contrary, an incorrect initial guess cannot be compensated
by using the ZO information in the reconstruction routine [see
panel (C)]. It is worth noting that, even for reconstructions
ignoring the vertical features, we can attain a reconstruction
with low residuals in the detector estimate, i.e., ‖I− Ŵ D‖2

from Eq. (1). Therefore, the residuals cannot be generally taken
as a good measure to assess reconstruction quality in our system.
This was further confirmed by the simulations.

Even though the reconstructed slices of the data cube in
Figs. 3(B) and 3(D) have correct spatial information, the overall
spectra are not accurate for the wavelengths below 500 nm,
where there was no light intensity due to the use of the OG-
515 cutoff filter. Here we observe a significant effect of the
regularization weight λ. By putting stress on the sparsity of
the reconstructed signal, i.e., higher λ in Eq. (1), we obtain a
better agreement in the spectrum, but the spatial information
is impaired. (This effect can be observed in Fig. 5, presented
below.) Note that it is possible to improve the reconstruction by
restricting it to the range of 500–900 nm. However, the main
aim here was to evaluate the limitations of our system and the
reconstruction of the imperfect data.

An evaluation of the reconstructions shows that the best
results were achieved while using the ZO in both 1) and 2)
simultaneously. Hence, we will hereafter show only the com-
parison between the case of not using the ZO (i.e., the standard
CASSI approach) and using it both in the initial guess and
reconstruction.

In Fig. 4, we can see the reconstructed slices of the scene
illuminated by a green laser and a red light-emitting diode. Note
that the selected wavelengths of slices shown in Fig. 4 are dif-
ferent than in the other figures. The wavelengths were selected
to match the maximum spectral intensity of the two peaks. It is
possible for the algorithm to distinguish the cross even without
the use of ZO, compared to Fig. 3(A), because the cross is visible
in the FO image; see Fig. 2(B) (left), compared to Fig. 2(D)
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Fig. 3. Reconstruction of the scene from Fig. 2(D); each selected spectral slice is normalized to the maximum data cube value, color bar on the
right. (A) Not using ZO; (B) using ZO in initial guess only; (C) using ZO in operator Ŵ only; (D) using ZO both in initial guess and operator Ŵ .

Fig. 4. Reconstruction of the scene from Fig. 2(B) (notice that the selected wavelengths are different than in the other figures); each selected spec-
tral slice is normalized to the maximum data cube value, color bar on the right. (A) Not using ZO; (B) using ZO both in initial guess and operator Ŵ .

(left). There are only minor differences between the reconstruc-
tions in Figs. 4(A) and 4(B), and the reconstructed spectrum
has a good quality in both cases. Nevertheless, the reconstruc-
tion in Fig. 4(B) is slightly superior both in the sense of spatial
reconstruction and spectrum quality. Therefore, the spectrally
narrow features in the data cube can be well reproduced without
the inclusion of the ZO.

Finally, we focused on the scene divided by four color fil-
ters illuminated by a broadband light source (see Fig. 5). The
involvement of the broadband light causes the standard CASSI

to face a problem with reconstructing vertical lines in the
images, due to spectral shearing. This is highly improved by
using the ZO in the reconstruction, as can be seen in the border-
lines between the quadrants, i.e., the filters, which are visible in
Fig. 5(B), while in Fig. 5(A) they are merged.

We extracted the spectrum of the light transmitted through
each filter [see Figs. 6(B) and 6(C)], and we compared them
with the spectra acquired by a fiber spectrometer (Ocean Optics,
Flame), which were corrected for the grating efficiency [see
Fig. 6(A)]. The colors of the lines used (yellow, red, blue, and
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Fig. 5. Reconstruction of the scene from Fig. 2(C); each selected spectral slice is normalized to the maximum data cube value, color bar on the
right. (A) Not using ZO; (B) using ZO both in initial guess and operator Ŵ .

Fig. 6. Reconstructed normalized spectra of the individual filters of the scene from Fig. 2(C), where each line corresponds to a single filter located
on the upper left (yellow), upper right (red), lower left (blue), and lower right (green). (A) Independently measured spectra; (B) reconstructed spectra
not using ZO; (C) reconstructed spectra using ZO both in initial guess and operator Ŵ .

green), correspond to the colors of the filters placed in the
upper-left, upper-right, lower-left, and lower-right quadrant,
respectively. Owing to the fact that we used a high λ value, we
attained spectra that are cropped at 500 nm, in accordance
with the OG515 filter used. We attained reasonable agreement
between both the reconstructed and the reference spectra.
Nevertheless, the reconstruction employing the ZO image
reproduces very well—even the weak signal from the blue and
green filter. The most problematic task is the reconstruction
of the overlapping spectra of the red and yellow filters. Here,
even the ZO-assisted reconstruction fails to fully reproduce the
shape, in spite of reaching a better agreement.

We consistently observed that when the ZO is not used in the
reconstruction, the resulting spectra are very dependent on the
set parameters, and it is possible to obtain good results pictured
in Fig. 6(B) only with a very narrow set of parameters, while the
reconstruction with the ZO [Fig. 6(C)] is much more robust.
On top of that, the use of the ZO, in the case of the scene with
four color filters, greatly helps to shorten the time needed for the
reconstruction (52 s without using the ZO versus 10 s using the
ZO on a standard laptop), since it improves the initial guess and
therefore it converges faster to the results obtained.

To quantify the effect of the ZO usage, we employed the
calculations, where we simulated the aberrated detector image
and its reconstruction under various conditions. For the sake of
comparison between using the ZO and not using it, we evalu-
ated the lowest attainable difference [see Eq. (3)], between the
original and reconstructed data cube.

Table 1. Difference between the Original and
Reconstructed Data Cube for Different Scenes

Scene A Scene B Scene C

Not using
the ZO
image

2.1147e− 03 1.0002e− 03 9.7144e− 04

Using the
ZO image

2.0556e− 03 9.2579e− 04 6.0386e− 04

In Table 1, you can see that the effect of the use of the ZO
image depends on the properties of each detected scene. The
effect for scenes illuminated with narrow spectral sources is
only subtle (Scene A). In the case of broadband light, the influ-
ence could be of great importance (Scene C), especially for
the scenes, where the spectra are dominated by a single light
source. However, for specific scenes and parameter settings, the
difference might be lessened (Scene B). Nevertheless, it is worth
stressing that while the level of difference might be comparable
for both the original and the ZO-assisted CASSI methods, the
use of the ZO is much more robust with respect to change in
reconstruction parameters.

5. CONCLUSIONS

We built a broadband HS single-snapshot camera with a lim-
ited number of optical elements based mainly on off-the-shelf
optics. Our HS camera is capable of capturing a standard CASSI
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snapshot of a scene together with a nondispersed ZO image on
a single detector. Hence, we can attain more information about
the HS data cube and use the incident light more efficiently.

We carried out HSI on a broad spectral range (500–900 nm)
as well as simulations faithfully representing measured data in
order to gain more control over the reconstruction algorithm.
Due to the inevitable aberrations in the imaging system, we
observed that the resulting image highly differed from the ideal
case. Therefore, by using the standard CASSI approach, we
attained a reliable reconstruction only for simple scenes with
quasi-monochromatic light sources.

However, we have achieved a significant improvement in the
reconstruction quality by including a ZO image in the CASSI
reconstruction. We can employ the ZO image both in the initial
guess and the iterative data cube reconstruction. Data show
that capturing the ZO image and using it in the reconstruc-
tion is beneficial for reconstruction quality and time, which is
decreased approximately fivefold. An important factor is that by
using the ZO, we are able to estimate the data cube in the initial
guess very closely to the measured scene.

We observe that the weight of the regularization term in the
reconstruction algorithm has a profound effect on the spectral
reconstruction quality, where high values of the weight promote
correct spectra reconstruction, whereas low values improve the
image spatial quality.

In spite of the improvement, the aberrations across the mea-
sured broad spectral range still lead to a severe problem with
reconstruction quality. However, the results prove that using
additional information about the detected scene can partly
compensate for the image imperfections. This can be, in the
future, utilized in the design of systems for the IR spectral range,
where the reduced imaging system complexity can be of huge
importance.
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Abstract: We propose a new approach to improve the compression ratio in CASSI while 

maintaining the simplicity of the system and single-snapshot acquisition. We evaluate simulations 

of the modified method, which confirm the reconstruction quality improvement. 

1. Introduction

Coded aperture snapshot spectral imaging (CASSI) is a method combining hyperspectral imaging and compressed 

sensing. CASSI makes it possible to recover 3D hyperspectral data from a single 2D image, the so-called snapshot. 

It is worth noting that the data compression is immense. Therefore, the standard CASSI method trades off between 

the quality of recovered data and the measured spectral range as well as the spectral resolution. A way to improve 

the reconstruction quality is to acquire more data about the measured scene. However, improving CASSI often brings 

in some other limitations, e.g., higher complexity of the system – using two detectors [1], slowing down the 

reconstruction/measurement process [2], etc. A recent enhancement of CASSI has been done, which consists in 

capturing a non-diffracted image of a scene next to the spectrally sheared one on the same detector [3]. 

Here we present a possibility of doubling the CASSI information by the use of two imaging lenses while taking 

into account the improvements made in [3]. Simultaneously obtaining two measurements of the same scene allows 

for an improvement of reconstruction quality while keeping the CASSI’s main advantage – using a single snapshot. 

2. Experimental methods

Simulations and reconstructions of data were evaluated by Matlab. Two different scenes were selected for 

reconstruction – a scene with an opaque cross – Fig. 1A (Scene A), and a scene with four different color filters (red, 

yellow, green, blue) in each quadrant of the scene – Fig. 1B (Scene B), both illuminated by a broadband light source. 

In the CASSI system, the 3D datacube – a scene multiplied by a broadband light spectrum, is first encoded by a 

random binary mask pattern for every wavelength. While it propagates through the optical system, it is spectrally 

sheared by a dispersive element and consequently captured by a detector. The resulting signal on the detector (see 

Fig. 1) was created by shifting every encoded spectral slice of the datacube by one pixel-column to the right compared 

to the previous one.  

Fig. 1. Two types of scenes used in the simulations. (A) Scene A, (B) Scene B. 

In Fig. 1, you can see two spectrally sheared images encoded by different random masks and two spectrally 

integrated images for each scene. It simulates the case of using two imaging lenses and capturing a non-diffracted 

image of the scene. It is worth noting that the data were created with higher resolution (521x1517 px spectrally 

sheared images, 521x521 px spectrally integrated images) than it was used during the reconstruction (64x186 px 

spectrally sheared images, 64x64 px spectrally integrated images) in order to be able to simulate the real case 

scenario. Thus, the reconstructed datacube has dimensions 64x64x123. Moreover, we added aberrations of the 
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system from [3] to the simulations, enabling us to carry out the simulations more faithfully. The datacubes were 

retrieved from the aberrated detector image by the TwIST (Two-Step Iterative Shrinkage/Thresholding) algorithm 

[4] for data reconstruction. which minimizes the following expression:  

𝑓(𝑥) =  
1

2
‖𝑦 − 𝑊𝑥‖2 + λΦ(𝑥) ,    (1) 

where 𝑊 is the transfer matrix which includes all the processes during measurement of 3D datacube 𝑥 such as 

imaging, encoding by a random mask or spectral shearing. An image on the detector is 𝑦, Φ is a regularizer, and λ 

is a regularization parameter that puts stress on the datacube sparsity. 

3. Results 

Evaluating reconstructions of simulated data shows that capturing two images of the same scene encoded by different 

random masks is superior to the standard approach. In Fig. 2 is a comparison of the original and reconstructed 

datacubes of Scene B. Selected spectral slices are shown as well as the overall spectrum for the standard method – 

see Fig. 2B, and the double lens method – see Fig. 2C.  

Fig. 2. Selected spectral slices and overall spectrum of (A) the original datacube (Scene B), (B) the reconstructed datacube – single lens, 

(C) the reconstructed datacube – double lens. 

Visually there is not a big difference between the mentioned approaches. However, the improvement of the 

double lens method can be seen in Table 1, which shows the difference between the original and reconstructed 

datacube for both scenes. The difference was calculated using least squares related to the number of datacube voxels.  

Table 1. Difference between the original and reconstructed datacube 
 

 Scene A Scene B 

Single lens 5.81e-04 1.09e-03 

Double lens 4.76e-04 9.82e-04 

 

4. Conclusion  

Using two imaging lenses and two random binary masks in the CASSI method is a straightforward way to obtain 

more information about the measured scene and, consequently, improve the reconstruction quality.  
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Abstract— Hyperspectral imaging in the infrared spectral 

region makes it possible to identify chemical compounds and, at 

the same time, locate the compound. We provide simulations of 

using coded aperture snapshot spectral imaging (CASSI) to 

reconstruct the hyperspectral information from a single snapshot. 

We study the effect of using a complex scene, scene illumination by 

a black-body radiation, and effect of adding a noise to the synthetic 

datasets. Our results show, that the use of CASSI method with a 

simple binary mask leads to partially satisfactory results for the 

realistic scenes in the sense of determining the chemical compound 

but not for retrieving the quality of reconstructed scene. 

Keywords—hyperspectral imaging; infrared spectrum; coded 

aperture snapshot spectral imaging; compressed sensing 

I.  INTRODUCTION  

Hyperspectral imaging (HSI) denotes all methods where, in 
addition to an image, we obtain a spectrum of light at each point 
of the image. HSI in the infrared (IR) spectral region is of great 
importance, as it can provide us with large amount of 
information about the scene of interest that cannot be obtained 
in any other way. An example can be the remote sensing of 
chemical compounds. For this reason, HSI in the IR has been 
very lively topic in the recent decades. 

A number of studies focuses on HSI in the near-IR spectral 
range, which is accessible for a commonly used optics and Ge- 
or InGaAs-based detectors. However, the so-called mid- and far 
IR (λ > 2.5 µm) region is not widely utilized due to the need to 
use uncommon optical materials and array detectors.  

A possible solution to this problem can be utilization of 
compressed sensing (CS) methods. CS refers to a signal 
processing technique that uses the principle that many natural 
signals are sparse, i.e. can be described by only few components 
in a certain basis. Use of CS for sparse signals makes it possible 
to reconstruct the signals from far fewer measurements than the 
Shannon-Nyquist theorem requires. In other words, it is possible 
to reconstruct signals by finding solutions to underdetermined 
linear systems. For more details we refer reader to [1]. 

In this article we focus on the use of the so-called CASSI 
(Coded Aperture Snapshot Spectral Imaging) method in the IR 
HSI, where sharp spectral absorption peaks superimposed on the 
black body radiation represent a specific type of scenes. 
Moreover, the scene has to be recorded by using an IR detector 
with a high level of a dark noise. The main goal of this article is 

to evaluate feasibility of using the standard CASSI method for 
the IR HSI, which would allow a simpler and less expensive 
construction of HSI devices. An overview of the HSI is 
supplemented by samples of reconstructions of artificial data 
(hyperspectral scenes) where we simulate the presence of 
chemical compounds on parts of the image and subsequently we 
reconstruct the hyperspectral scene. 

II. EXPERIMENTAL METHODS 

Simulations and reconstructions of data were evaluated by 
Matlab. Two types of scenes were selected for reconstruction – 
a simple and a complex scene. The simple one was a scene with 
constant intensity in every pixel, while the more complex one 
was an image from infrared camera. Several different variations 
were simulated for every type of scene by using different sizes 
of the scene in pixels (32x32, 64x64, 128x128, ...), number of 
spectral slices (117, 235, 470, ...), and concentration of the 
chemical substance. Nevertheless, all simulations presented in 
this article were carried out by using 128x128 mask and scene 
image, resolved in 470 spectral slices, detected on a 128x597 
detector.   

As a chemical substance we chose isopropyl alcohol, if not 
stated otherwise, we employed the path-concentration of 1000 
ppm m. The IR spectrum for isopropyl alcohol was obtained 
from The National Institute of Standards and Technology 
(NIST), data was compiled by: P.M. Chu, F.R. Guenther, G.C. 
Rhoderick, and W.J. Lafferty with resolution of 0.4820 cm-1 and 
parameters IFS66V (Bruker); 3-Term B-H Apodization.  

For simulation we focused on one of the standard methods 
of compressed scanning, the so-called CASSI (Coded Aperture 
Snapshot Spectral Imaging) method. We refer reader for the 
detailed description of the CASSI method to a number of 
available articles [1, 2]. 

For image restoration during the reconstruction we used the 
TwIST (Two-Step Iterative Shrinkage/Thresholding) algorithm 
to minimize the following expression: 

𝑓(𝑥) =  
1

2
‖𝑦 − 𝐾𝑥‖2 + λΦ(𝑥)  (1) 

where K is the linear direct operator describing projection of 
a hyperspectral datacube x onto a single detector snapshot y, Φ 
is a regularizer, λ is a regularization parameter. We employed as 
a regularizing term a sum of total variations in each spectral 
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image. [3] Operator K is calculated, for the sake of simplicity, 
so, that each spectral slice (image for every wavelength) is 
shifted by one column in the resulting detected image y. 

III. HYPERSPECTRAL IMAGING 

A. Overview 

There are three basic configurations of how one can obtain 
hyperspectral information (3D datacube). (1) Whisker-broom – 
the sample is scanned point by point, and for each such point one 
spectrum is recorded (1D detector, 2D scanning). (2) Push-
broom – the detector acquires the spectral information for the 
entire line of pixels of the image simultaneously (2D detector, 
1D scanning). The light passes through a slit and it is spectrally 
sheared on the detector, thus making is possible to record the 
spectral information along the entire line depending on the 
location from which the light comes. In this way a two-
dimensional array is obtained which has one spectral dimension 
and one spatial dimension. For another spatial dimension of the 
datacube, we need to scan the sample in a direction 
perpendicular to the imaging line. (3) Staring configuration – 
(2D detector, 1D scanning) this type of configuration does not 
require any movement (or spatial scanning) of the sample or a 
slit, so it is also referred as "staring configuration". The 
incoming light is recorded on the detector as a two-dimensional 
spatial array for each wavelength. This is done by means of 
filters (band-pass filters [4] or adjustable acousto-optic filters 
[5]) which can be placed on a revolving disc or change the 
passing wavelength respectively. [1] 

Whisker-broom and push-broom scans have excellent spatial 
and spectral resolution, however, the necessity to mechanically 
scan an image implies that the acquisition times are long. 
Typically, the times are in the order of tens of minutes to hours, 
depending on the size of the scanned area, the wavelength range 
and the number of scans per pixel [6]. For processes that are not 
stable in time is favorable to use the staring configuration since 
it is possible to record a complete datacube in a matter of seconds 
or minutes, depending on the number of scanned wavelength 
intervals. 

Selection of the suitable method depends highly on the 
concrete field of application, since HSI is being used in a wide 
variety of fields, e.g. medical imaging [7], quality control and 
food analysis [8, 9], forensic sciences [10, 11], art conservation 
[12], etc. 

B. Compressed sensing  

In conventional signal processing, we are limited by the so-
called Shannon-Nyquist theorem, which imposes that for the 
correct reconstruction of the signal, the sampling frequency 
must be at least twice as high as the highest frequency present in 
the signal. This is very inconvenient for capturing rapid 
processes or for the IR region, where we are significantly limited 
by the structural elements of IR cameras and their high purchase 
prices. 

However, Shannon-Nyquist theorem can be bypassed by 
compressed sensing (CS), which is based on two assumptions – 
(i) sparsity of a signal and (ii) signal measurement by using a set 
of incoherent (often random) projections of the signal.  

CS is often employed in imaging since common images 
count to the sparse datasets in the Fourier or wavelet space. For 
example, a conventional camera captures the scene pixel by 
pixel, creating a huge amount of RAW data. However, the image 
can be compressed to few percent of the original size without 
apparent loss of the image quality by using the strongest Fourier 
transform coefficients (JPEG compression). The problem is that 
we are not able to compress the scene until we capture it because 
we do not know a-priori which Fourier components will carry 
the important information about the image. 

The so-called CASSI (Coded Aperture Snapshot Spectral 
Imaging) method employing the CS theory makes it possible to 
encode the whole hyperspectral scene (3D dataset) in a single 
instant (2D snapshot) using a random mask. The random mask 
(random pattern) serves as an incoherent measurement 
projection. By employing a spectral shearing (prism or grating) 
the random mask is shifted to different positions for different 
wavelength, thus enabling subsequent HSI reconstruction. 

Variations of the CASSI technique are used also for shearing 
the temporal information (e.g. CACTI), thus making it possible 
to capture events taking place in the order of tens of ps (CUP 
technique) [13]. 

C. Using compressed sensing in IR hyperspectral imaging 

Absorption of mid-IR light changes the fundamental 
vibrational and rotational states of the chemical bonds. When the 
molecule interacts with IR light, chemical bonds begin to vibrate 
more energetically, and thus affect absorption at certain 
wavelengths in the spectrum that are characteristic for each 
chemical bond. 

The ability to absorb near-IR is relatively small and depends 
on the harmonic and anharmonic movement of molecules, which 
is due to electronic transitions. [14] Therefore, this paper is 
focusing on mid- and far-IR region. 

There are not many articles on application of CS in mid- and 
far-IR HSI [15-17]. This could be attributed to the problematic 
connected with the need of special optic elements and detectors 
in IR region. 

IV. RESULTS AND DISCUSSION 

The CASSI technique is exploiting a coded aperture and 
dispersive element(s) to modulate the optical field from the 
scene, which is captured in one instance on the detector into the 
two-dimensional snapshot. We used a random binary mask (see 
Fig. 1, right panel) as a coded aperture to encode a scene. The 
random mask is blocking approximately ½ of the incoming light 
and the columns in the mask, owing to their randomness, are 
incoherent. We created a HS datacube 𝐻(𝑖, 𝑗, 𝜆) by using the 
same scene 𝑆(𝑖, 𝑗) in all spectral images multiplied by a radiation 
spectrum of the light illuminating the scene 𝑅(𝜆):  

𝐻(𝑖, 𝑗, 𝜆) =  𝑆(𝑖, 𝑗). 𝑅(𝜆)   (2) 

To simulate the presence of a chemical substance the central 
part of the scene was “contaminated” with isopropyl alcohol 
which caused distinguishable difference in intensity at specific 
slices of the datacube (see Fig. 1, middle panel). In other words, 
we multiplied the datacube 𝐻(𝑖, 𝑗, 𝜆) by an absorption spectrum 
of the studied compound 𝐴(𝑖, 𝑗, 𝜆) for each scene pixel i, j:  
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Fig. 1.  Complex scene (left), slice of the datacube (complex scene 128x128 

pixels) with applied chemical substance (middle), random mask 128x128 pixels 

(right) 

𝐻′(𝑖, 𝑗, 𝜆) =  𝐻(𝑖, 𝑗, 𝜆). 𝐴(𝑖, 𝑗, 𝜆)     (3) 

𝐻′(𝑖, 𝑗, 𝜆) is a datacube that is coming to a HS camera where 
it is encoded by the random mask pattern 𝑀(𝑖, 𝑗) for every 
wavelength. The encoded image E can be expressed as:  

𝐸(𝑖, 𝑗, 𝜆) =  𝐻′(𝑖, 𝑗, 𝜆). 𝑀(𝑖, 𝑗)   (4) 

We used two types of test scenes S. One was a plain scene (S 
is constant), which equals for capturing an IR image obtaining a 
constant temperature through the whole scene, i.e. same 
intensity in each pixel. The second one was an arbitrarily chosen 
image from an IR camera (Fig. 1, left pannel). 

Spectrum of the light illuminating the scene R was either left 
constant for initial experiments or set according to a black body 
radiation attribute (Planck's law) which is wavelength 
dependent. We set temperature to be 300 K for a plain scene or 
differ from 283 to 323 K for an IR image. 

A. Detector signal 

The detected IR light in a CASSI-type camera is transmitted 
through the IR optics and then is refracted by a dispersive 
element to different positions on the detector depending on the 
wavelength. Every spectral slice of the datacube (scene for each 
wavelength) was shifted on the detector by one pixel-column to 
the right compared to the previous slice, i.e. slices were 
overlaying each other, which led to the total signal on detector 
(Fig. 2, lower panel) 𝐷(𝑘, 𝑙): 

𝐷(𝑘, 𝑙) =  ∑ 𝐸(𝑘, 𝑙 + 𝜆, 𝜆) + 𝑛(𝑘, 𝑙)𝜆           (5) 

where the term 𝑛(𝑘, 𝑙) enabled us to add a certain noise level to 
the detected image. 

In Fig. 2 (upper left panel) we can see the example of one 
spectral slice of the datacube H’. For the sake of clarity, we 
selected among many slices the wavelength, at which the 
absorption was the most significant. The resulting detector 
image for this scene is provided in Fig. 2 (lower panel). 

B. Data reconstruction 

Data reconstruction was evaluated by TwIST algorithm, which 
is an improved version of a standard IST algorithm [17]. For 
each slice of original datacube we obtain one slice of 
reconstructed datacube – see Fig. 2 (upper right panel) for an 
example of a reconstructed spectral slice. We can subsequently 
also recover the absorption spectrum of the chemical compound 
from the reconstructed datacube as a sum of the central area, 
where the chemical compound was in the original image. We 
obtain a good agreement between the original and reconstructed 
spectrum (see Fig. 3). The relative intensity and position of the  

Fig. 2. Reconstruction of the simple scene. Slice of original datacube (upper 

left), detected image at the detector (lower), reconstructed slice of the datacube 

(upper right). 

peaks to each other is particularly important to successfully 
determine the chemical compound and its volume.  

The reconstructed data are satisfying in terms of recognition 
of the chemical compound and, most importantly, its 
localization. However, it is not possible to retrieve details of the 
original scene back. As you can see in Fig. 3 (small panels), there 
is not a significant difference between simple and complex scene 
in the reconstructed slices. This indicates that subtle changes in 
a scene due to absorption from a minor concentration of a 
chemical compound are likely to be suppressed by the 
reconstruction algorithm. 

When we included the black body radiation (Planck’s law) 
into the simulation, the quality of reconstructed spectrum is only 
slightly degraded (see Fig. 4), nevertheless the quality of the 
reconstructed datacube slices is notably worse in case of the 
complex scene – Fig. 4 (small panel). In this case, it would be 
very difficult to correctly localize the chemical compound. This 
is likely caused by a significant complexity of the IR spectra, 
which are sparse in terms of the image information, however, 
contain complex spectral information. 

Finally, it is also worth noting, that with an addition of up to 
5% noise the data reconstruction is still reasonable for simple  

Fig. 3. Original (red) and reconstructed (blue) spectrum of constantly 

irradiated complex scene, reconstructed slices of datacube (small panel). 
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Fig. 4. Original (red) and reconstructed (blue) spectrum of the complex scene 

with black body radiation, reconstructed slices of datacube (small panel) 

scene, however in the case of the complex scene, even 1% of 
noise level has a significant effect on the reconstruction. 

V. CONCLUSION 

In this article we provided an overview of IR hyperspectral 
imaging, with particular attention to compressed sensing. We 
also summarize results of our testing calculations, which 
evaluate the feasibility of using CASSI technique for 
hyperspectral imaging of IR absorption spectra of chemical 
compounds. 

The central goal is to provide the possibility to rapidly 
capture spill of chemical substances, enabling both their 
localization and identification. 

We came to conclusion that for complex scenes we are able 
to determine the type of chemical compound, nevertheless we 
do not achieve sufficient reconstruction quality. The CASSI 
method using binary masks cannot be therefore directly applied 
in this case. Further research will be focused on using, for 
example, several measurements of different random masks, 
rotation of spectral sweeping, improved mask design, improving 
of the reconstruction algorithm, etc. 
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