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Abstract 
V i s u a l impairment is one of the most widespread physical handicaps - as much as 3 % of 

the world's populat ion suffers from visual impairment or complete blindness. V i s i o n loss 

substantially worsens one's abi l i ty to orient in the environment - without the knowledge of 

spatial arrangement, normal ly acquired predominantly by one's vision, the impaired s imply 

does not know which way to go. The most usual solution is an accompanying person; this 

service is very demanding though and the sightless have to fully rely on the accompaniment. 

This thesis explores ways to support visual ly impaired users' orientation i n space by 

employment of existing sensory technology and applicat ion of appropriate processing meth­

ods. The subject is researched through an analogy to mobile robotics, by par t i t ioning the 

subject to the separate problems of local izat ion and path planning. W h i l e the methods 

of path planning are generally existing, pedestrian local izat ion often suffers from major 

inaccuracies and complicates usage of standard navigation devices by the visual ly impaired 

users. 

A n improvement of pose estimate quali ty can be accomplished by a mult i tude of ap­

proaches studied by the analyt ical section. In the first stage, the thesis proposes data fusion 

between an ordinary G P S receiver and a pedestrian dead reckoning unit , leading to preserv­

ing local trajectory shape feature faithfully. To mitigate remaining offset errors, design of 

a globally referenced mechanism of natural landmark detection and matching is provided. 

Bu i ld ing on the existing graph search formalism, the path planning part of the thesis 

examines opt imal i ty cri teria suitable for navigating the visual ly impaired user through 

urban terrain. A human-oriented fuzzy logic driven high-level instructions generator is 

then devised together w i t h a real-time haptic feedback delivering heading directions. 

The performance of the proposed techniques was evaluated i n real-wo r id scenarios, a im­

ing to capture the particularities of the target urban environment. The outcomes have 

shown considerable improvements i n both m a x i m u m and mean posit ioning errors. 
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Abstrakt 
Poškození z raku je j e d n í m z nejčas tě jš ích tě lesných pos t i žen í - u d á v á se, že až 3 % pop­

ulace t r p í v á ž n ý m poškozen ím nebo z t r á t o u zraku. O s l e p n u t í v ý r a z n ě zhoršuje schopnost 

orientace a pohybu v oko ln ím p r o s t ř e d í - bez znalosti u s p o ř á d á n í prostoru, j inak z ískané 

p řevážně p o m o c í zraku, pos t i žený z k r á t k a neví , kudy se pohybovat ke svému cíli. Obvyk­

lým řešen ím p r o b l é m u orientace v n e z n á m ý c h p ro s t ř ed í ch je doprovod n e v i d o m é h o osobou 

se z d r a v ý m zrakem; tato s lužba je v šak velmi n á r o č n á a n e v i d o m ý se mus í p lně spolehnout 

na doprovod. 

Tato p r á c e z k o u m á možnos t i , k t e r ý m i by bylo m o ž n é p o s t i ž e n ý m ulehči t orientaci v 

prostoru, a to v y u ž i t í m existuj ících senzor ických p r o s t ř e d k ů a v h o d n é h o zpracován í jejich 

dat. T é m a je zp racováno skrze analogii s mob i ln í robotikou, v je j ímž duchu je rozdě leno na 

čás t lokalizace a p l ánován í cesty. Z a t í m c o metody p lánován í cesty jsou vesměs k dispozici , 

lokalizace chodce ča s to t r p í z n a č n ý m i n e p ř e s n o s t m i u rčen í polohy a komplikuje tak využ i t í 

s t a n d a r d n í c h nav igačn ích p ř í s t ro jů n e v i d o m ý m i uživate l i . 

Zlepšení odhadu polohy m ů ž e bý t dosaženo vícero cestami, z k o u m a n ý m i analyt ickou 

kapitolou. P ř e d l o ž e n á p r á c e p r v n ě navrhuje fúzi obvyk lého př i j ímače s y s t é m u G P S s 

chodeckou odometrickou jednotkou, což vede k zachování vě rného tvaru trajektorie na 

lokální ú rovn i . P r o zmí rněn í zbývající chyby posunu odhadu je proveden n á v r h využ i t í 

p ř i rozených v ý z n a č n ý c h b o d ů p ros t ř ed í , k t e r é jsou v z t a ž e n y ke g lobáln í referenci polohy. 

N a zák ladě existuj ících fo rmal i smů vyh ledáván í v grafu jsou z k o u m á n a k r i t é r i a opt imal-

i ty v h o d n á pro volbu cesty n e v i d o m é h o skrz měs t ské p ros t ř ed í . G e n e r á t o r vysokoúrovňových 

ins t rukc í za ložený na fuzzy logice je po tom b u d o v á n s mot ivac í už iva te lského r o z h r a n í pů­

sobícího l idsky; d o p l ň k e m je o k a m ž i t ý h a p t i c k ý v ý s t u p korigující odchylku směru . 

Chován í nav ržených p r inc ipů bylo vyhodnoceno na zák ladě rea l i s t ických e x p e r i m e n t ů 

zachycujících specifika cílového m ě s t s k é h o p ros t ř ed í . Výs ledky vykazuj í z n a č n á z lepšení jak 

max imá ln í ch , tak s t ř edn ích u k a z a t e l ů chyby u rčen í polohy. 
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Chapter 1 

Introduction 

V i s u a l impairment is one of the most widespread physical handicaps - according to W o r l d 

Heal th Organizat ion, as much as 3 % of the world's populat ion suffers from visual impair­

ment or complete blindness [1]. This number may even increase i n the long term due to 

life prolonging and development of vision defects strongly bound to o ld age wi th 81 % of 

the affected people aged 50 years and above [1] (similarly to age-induced degradation of 

the other senses). However, v isual impairment affects also people in productive or even 

pre-productive age, either due to a congenital defect, a disease or an injury. In such cases 

the handicap impacts life of the disabled incomparably more. 

Compared to deficiency i n any other of the human senses, vision loss substantially 

worsens one's abi l i ty to orient i n both known and unknown environments. The sightless 

is usually able to learn how to navigate through common spaces (home, workplace etc.), 

although any change i n spatial arrangement can cause potential ly fatal problems. The 

biggest challenge, however, is the "outer wor ld" - otherwise simple tasks (as a journey to 

a previously unvisited part of town) become difficult and even dangerous. Wi thou t the 

knowledge of spatial arrangement, normally acquired predominantly by one's vision, the 

impaired s imply does not know which way to go. 

1.1 Motivat ion 

The most usual solution to the problem of orientation i n unknown environments is an 

accompanying person that helps the handicapped to reach their goal and provides them 

wi th information compensating their handicap. This service is very demanding though and 

the sightless have to fully rely on the accompaniment (at least un t i l they safely learn the 

new route or place). A s the common outer environment is unlikely to become simple enough 

to allow independent in i t i a l navigation of the visually impaired, the only realistic option 

to facilitate self-reliance to sightless people is presumably through an electronic apparatus 

compensating for non-functionality of their vision by artificial means. 
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Technical solutions support ing pedestrian orientation and navigation through unknown 

environment are known and existing to some extent, but this research topic seems to be less 

popular in literature compared to other areas of interest w i th similar aims and techniques 

(sensory signal processing, data fusion, state space searching etc.). One of the motivations 

of this work is thus extending the published knowledge of methods usable for applicat ion 

in this field and experimental results of their employment. 

1.2 Research objectives 

The a i m of this thesis is to research, select and develop a set of methods that together form 

the core of the navigation and information system for visual ly impaired. The functionality 

enabled by these methods should allow its user to traverse through previously unknown 

outdoor terrain wi th focus on urban wi th their specifics. 

The solution can be broken down into the following par t ia l goals: 

1. localization method development that provides posit ion estimation accurate and re-

peatable enough to support robust operation of the whole system: 

2. path planning method development that is op t imal for selection of the global and local 

route of a visually impaired user mainly through urban environment, optionally wi th 

an obstacle detection subsystem as a potential white cane complement or replacement: 

3. evaluation of the proposed methods in realistic environments. 

1.3 Thesis organization 

In order to get deeper background on the topics of visual impairment, the presented thesis 

starts i n Chapter 2 w i t h an analysis of the state of the art on the subject of helping sightless 

people overcome their handicap, focusing on the technical solutions available. 

Based on the aforementioned research objectives and analogies provided by Section 2.3, 

the ma in theoretical content of the thesis is d ivided into two thematic chapters: Chapter 3 

Local iza t ion and Chapter 4 P a t h planning. E a c h of them is divided to an analyt ical and 

design part; the former provides literature research and theoretical background, while the 

latter builds on it and derives one or more potential solutions. 

Chapter 5 then provides details on the realized implementations. Proper evaluation on 

real-world experimental data and i n representative environments is an important part of 

the work and is provided i n Chapter 6, as well as discussion of the the results. F ina l ly , the 

conclusions are given i n Chapter 7. 
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Chapter 2 

State of the A r t 

Since the thesis aims to provide methods that could help relieve a medical condit ion, this 

chapter provides an overview of visual impairment consequences and existing aids related 

to spatial orientation. In the last section, a conceptual l ink to the field of autonomous 

mobile robotics is presented. 

2.1 Visual impairment and orientation in space 

The extent of visual impairment (VI) is, naturally, ind iv idua l - as is the pract ical impact 

on each impaired person. Depending on a mult i tude of factors, including both objective 

parameters as sight loss percentage or age and subjective ones as openness to information 

technology, the travel self-reliance ranges into both extremes. 

Spat ial orientation of people w i th V I has been studied mostly wi th in the fields of ge­

ography, behavioral science or sociology. The research objective usually relates to urban 

environment arrangement and mobi l i ty w i th respect to V I . For one, [2] provides commuting 

experience of V I individuals i n the San Francisco Bay A r e a categorized according to the 

three v i t a l resources: transportation, assistive technology, and mobile technology; other 

sources [3, 4] provide similar insights. For the purposes of this state of the art analysis, 

even such localized studies provide relatively generalizable outcomes, commented i n the 

following paragraphs. 

Transportat ion A n effective way to delegate the burden of spatial orientation to a differ­

ent (sighted) person, i n many cases enabling the V I passenger to cover the majority of the 

distance. Par t icu lar ly i n the case of paratransi t 1 or private car options, the impaired can be 

almost completely spared the pitfalls of outdoor environment traversal. Pub l i c transport 

systems, while imposing greater demands upon the passenger, s t i l l provide considerable 

benefits to the user. 

1A door-to-door transportation service usually provided by municipalities to physically impaired clients. 
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A l imi ta t ion of confined urban spaces is discussed i n [2] - public transport stops often 

combine several lines which makes it difficult for the impaired to choose the right vehicle. 

The solution, i f available at a l l , is highly locally dependent; i n the Czech Republ ic , for 

instance, the public transport vehicles carry an identification speaker that can be remotely 

activated by an appropriate device - see Section 2.2.2 below. 

Assistive technology Assist ive technology is by definition any technology that improves 

individuals ' functional capabilities [2] - white cane being one of the most frequent tools. 

Usage of these means can be perceived by the users in different ways - by making them 

discernibly impaired, they are l ikely to expect greater carefulness of their surrounding, 

which some reportedly do not appreciate: 

"I don't like the fact that it makes you, it brings you more attention than other 
people. 

( . . . ) Everyone says that everybody else uses the cane and a l l that stuff. B u t 
when I went to my [specialist school visit] , they say the majority of people don't 
like using one." [4] 

The above quotat ion formulates a soft requirement on the assistive tools, to be adopted 

by a broad audience: their employment should not make the user embarrassed; this aspects 

seems greatly relevant in the younger part of the V I populat ion. O n the other hand, even 

when a tool cannot be executed in an unobtrusive form, it may be s t i l l adopted i f its benefits 

clearly prevail. 

Influence of urban architecture Several of the above and below cited papers notice the 

role urban architecture plays in accessibility of ci ty centers for the V I persons. There are 

both safety and orientation aspects present on this topic; providing a dedicated pedestrian 

corridor (ideally equipped w i t h tactile pavement or other s tructural aids discussed i n the 

following section) may simplify traversal of the V I pedestrians significantly. 

Despite the generally growing public attention to disabilities, there are also recent ex­

amples of architecture t ry ing to improve public spaces, but doing so w i t h very l i t t le respect 

to impaired users. One of the widely discussed modern urban concepts, by some uncri t ical ly 

perceived as "a civil ised, communal approach to ci ty l iv ing that clearly works" [5], yet in 

fact creating chaotic environments confusing and endangering the V I pedestrians [6], are 

the shared surfaces: 

Shared surface streets (sometimes called a level surface) are where the road and 
pavement are buil t at the same level, removing the kerb so that cars, buses, cy­
clists and pedestrians share the same surface. In some cases, controlled crossings 
(pelican crossings) are also removed. 

Shared surface streets are dangerous for people wi th sight loss, who rely upon 
the presence of the kerb to know they are on the pavement and not i n the road. 
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( . . . ) Guide Dogs has been campaigning against the use of shared surface streets 
as part of our Streets Ahead campaign, supported by organisations representing 
disabled people across the disabil i ty sector, older people and other groups. [7] 

It is apparent that lack of natural spatial orientation aids needs to be compensated for 

somehow; modern technologies seem to fit this applicat ion. It is, however, shown just below 

that the existing approaches do not seem to make that much of a difference wi th regard to 

the spatial orientation. 

Mobi le technology and global navigation systems usage The functionality of the 

set of methods proposed i n this thesis has similar outcomes as the ubiquitous "satnav" 

or " G P S " devices, used by drivers on a dai ly basis. There is a fundamental difference 

though; unlike the driver, the V I user has a very l imi ted abi l i ty to validate and correct 

the generated navigation cues. The demands placed on the described system - mainly the 

localizat ion module - are for this reason quali tat ively much more stringent. W h i l e the 

mean performance under favorable conditions may be comparable, the real difference lies 

in worst-case behavior; a 10-meter local izat ion error commonly observed on "satnav" may 

cause serious problems to the b l ind user. This k ind of a frustrating experience was tell ingly 

expressed by one of the aforementioned interviews: 

"I turned on my G P S . . . and I asked Si r i to give me directions from my current 
location to [an address]. A n d that went well but it to ld me to walk to the 
route. A n d it 's like, well, I don't know where the route is. A n d so I canceled 
that. I then asked it for current location to [the address] again and that 's when 
it said to continue on [Street Name]. A n d it 's like okay, good, I know I 'm on 
[Street N a m e ] . . . I was walking and I was walking and I thought this is really 
far . . . I also knew it was a to ta l ly different route from what I 'd been t o l d . . . I 
was definitely late so I went a couple more blocks and finally my G P S said that 
I had arrived at my destination, it was on the right. Wel l , of course I couldn't 
find the entrance. So then I c a l l e d . . . and so they came out and found me." [2] 

The outcome of this experience is clear and supports motivat ion foundations of this 

thesis - even though recent technical advances have already changed life of many people 

for the better, users are s t i l l compensating many imperfections by their own perception 

and intelligence. There are, however, people, whose perception is damaged and intelligence 

itself cannot help sufficiently; the technology s t i l l needs to evolve. 

2.2 Exist ing aids for visually impaired 

For reference on the existing aids, their merits for the user and involved technology, this 

section lists bo th non-electronic and electronic means that can be ut i l ized by a V I user to 

improve their orientation in (mainly urban) space. 
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2.2.1 N o n - e l e c t r o n i c aids 

Pure ly mechanical or construct ional /s t ructural tools have played the pr imary role i n self-

reliant movement of V I individuals; this is obviously par t ia l ly given by their earlier invention 

compared to electronic aids. 

W h i t e cane Perhaps the most widely used and best-known aid; besides the obvious 

tactile-sensory role, it also serves as a distinct marker making its b l ind user immediately 

identifiable by other traffic participants and thus helps prevent situations endangering the 

user. 

There are various techniques of cane manipulat ion dependent on the traversed terrain 

or environment [8]. Its universality makes the cane a very effective tool of near-space 

exploration, covering the area of the lower part of the body. For experienced user w i th 

proper technique, even detailed features of the ground can be sensed, preventing stumbling 

or falling down. This sensitivity is very hard to achieve by other, no matter how "high-tech", 

sensory principles. 

Structural aids The white cane is very useful not only for detection of obstacles, but also 

i n u t i l iza t ion of inherent ci ty street features - bui lding walls, sidewalks and other detectable 

shapes. B y swinging their cane side-to-side, the impaired is able to follow such a feature 

very easily. 

Tactile paving, as i l lustrated in Figure 2.1, is a modern supplement to the inherent 

urban tactile features. Generally, they are intended to be sensed by one's feet even through 

shoes, for which they are very dist inctively shaped. There are the following common types 

of the pavement [9]: 

• Guidance path surface is the most interesting surface type from the point of view of 

this thesis. It is designed to directionally lead the V I pedestrians, either due to lack of 

inherent tactile features or because it is needed to guide the impaired along a specific 

path (e.g. to find an elevator or avoid fixed obstacles). 

• Blister surface acts as a delimiter of pedestrian path segments, usually as a substitu­

t ion of detectable height change where the curbs are not pronounced enough or where 

an explicit warning to the V I pedestrian needs to be given. Natural ly, this is mostly 

often the case of crosswalks. The blister surface is also used to denote guidance path 

junctions. 

• Other special types include on- and off-street platform edge warning surfaces (lozenge), 

hazard warning surface (corduroy), shared cycle track/footway delimitation strips or 

information surface. 
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Figure 2.1: Tactile pavement i n Sy lv i a Pa rk New Tra in Stat ion (yellow color) [10] 

Guide dogs Another well-known help for the impaired is provided by the specially trained 

guide dogs. Such a dog is able to lead its master safely through the urban environment 

- walk centrally along the pavement, avoid obstacles, stop at ground irregularities (curbs, 

steps) or find doors [11]. 

However, the u t i l iza t ion of a guide dog is s t i l l conditioned by the fact that its master 

at least schematically knows the arrangement of the environment and has a rough p lan of 

such environment traversal - which is a task the dog cannot help wi th on new/unknown 

routes. 

2.2.2 E l e c t r o n i c aids 

Intuitively, electronic aids have much broader functional possibilities than the mechanical 

ones; ongoing minia tur iza t ion of electronics coupled wi th advances in computat ional meth­

ods enable improvements in achievable functionality every year. Implants can be perceived 

as the notional cut t ing edge of technology - even able to supersede non-functional vision 

by s t imulat ing ret inal nerves; this thesis is rather interested in external devices though. 

M a p s There are dedicated maps for visual ly impaired, based solely on the haptic princi­

ple and allowing the users to get a reasonable level of spatial awareness. A p a r t from the 

purely paper ones, there are projects that t ry to convert the usual street map into a haptic 

presentation usable for print on the specialized embossing printers. Covering Czech Re-
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public, M a p y . c z 2 provide such service; worldwide, the Open Street Maps project launched 

" O S M for the b l i n d " 3 a iming in a similar direction. 

Acoustic beacons Acoust ic signaling methods designed to inform b l ind citizens are well 

known and beneficial: for example, pedestrian traffic lights are often equipped wi th an 

auxi l iary acoustic signal indicat ing green or red light. Furthermore, specialized signaling 

devices can be found in public transport (on-demand identification of vehicle number 4 ) , 

public service buildings and other places. A n important aspect of general adoption is 

significant local dependence; part icular implementations and suppliers of such solutions 

often differ even wi th in a single country. 

Range finders, obstacle detectors W i t h the advent of various sensors used industr ial ly 

or i n robotics, it is understandable that there have been attempts of using such technology 

for human-oriented applications as well . The employment commonly takes the form of an 

obstacle detector, t ry ing to replace or complement the white cane. Functionally, they are 

based on a single or mult iple range-finding sensors attached to one of these locations: 

• hand-held devices are designed either as an independent device or as an integral part 

of the white cane, such as the Ultracane instrument 5 ; 

• torso-mounted contraptions typical ly cover the upper half of the body height where 

the white cane is not effective - e.g. the Czech project " V e n ze t m y " 6 ; 

• head-worn gadgets provide ranging coaxial w i th one's face which, w i th proper tech­

nique, may be exploited very efficiently, such as the range-finding glasses Ambutech 

iGlasses 7 . 

Equa l ly important as sensing quali ty stands the aid's abi l i ty to convey the obstacle 

distance information to the impaired. The often impl ic i t choice of an audio interface may 

not constitute the best solution though; hearing as the remaining long-reaching sense is 

better left unburdened as much as possible. Hapt ic solutions appear as a less disturbing 

mechanism, although finding proper representation patterns for the distance value might 

be challenging, par t icular ly in the case of a sensor array. 

Specialized smart phone applications It has already been noted that general-purpose 

assisting services such as S i r i or alike are often not usable enough for a visually impaired 

used - being based on a common smart phone, they are fairly l imi ted i n sensory perception. 

2

http://hapticke.mapy.cz/ 
3

https://wiki.openstreetmap.org/wiki/OSM_for_the_blind  
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Currently, impaired user do not have many other choices of sensory augmentation though, 

so that even using a p la in GNSS-a ided smart phone is s t i l l better than no aid, even though 

it leads to unpleasant experience under poor conditions. 

Even though the sensory aspect is not easily solvable without addi t ional devices, there 

are smart phone applications at least t ry ing to provide navigation instructions tailored for 

V I users, no matter how flimsy the G N S S "undercarriage" may be. A s an example, the 

app Dot W a l k e r 8 implements a blind-friendly point-to-point navigation wi th user interface 

based on voice synthesis and recognition. 

2.3 Mobile robotics as a related field 

A s indicated in the introductory chapter, this thesis explores ways to support visually 

impaired users' orientation i n space through use of existing sensory technology and ap­

plicat ion of appropriate processing methods. Coincidentally, localization, navigation and 

obstacle avoidance are probably the most important topics addressed i n the field of (au­

tonomous) mobile robotics. Th is fact leads to interesting analogies, thoroughly elaborated 

in analyt ical sections of the next chapters; for each of the solved problems, the following 

can be summed up: 

• Localization plays s imilar ly cr i t ica l role as i n mobile robotics; poor posit ion estimate 

leads to poor performance of a l l dependent subsystems, including navigation. 

• Navigation shares core algori thmizat ion techniques, but differs significantly in the 

action step. W h i l e robot chassis only understands low-level commands (e.g. angular 

speed of each wheel), the human user can perform a variety of high-level operations: 

go along a wal l , cross a street etc. 

• Obstacle avoidance is v i t a l i n mobile robotics - at least some pr imit ive form of it is 

present i n majority of applications. The V I user can be, however, expected to operate 

their white cane - obstacle detection can thus be left as an optional , non-cri t ical 

subsystem. 

In literature, this subject is not covered par t icular ly widely; the following papers are 

known to the author which approach the subject i n a comparable manner. In [12], R F I D 

tags are proposed for pedestrian localization; [13] concentrates pr imar i ly on stereo vision 

usage for local izat ion by comparing the scene to a 3D model of urban environment. [14] 

proposes feature extraction from camera image; [15] then exploits space topology to bui ld 

a probabil ist ic mot ion model. 
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Chapter 3 

Localization 

Very often, the local izat ion subsystem serves as foundation for a mult i tude of higher layers, 

ranging from navigation and obstacle avoidance to specific mission execution tasks - their 

performance then usually strongly depends on quali ty of the pose estimates. N o matter how 

advanced the navigation algorithms are, they cannot perform well w i th a flawed estimate. 

This chapter w i l l progress from foundation principles of representing a pose, through 

an overview of technologies and suitable data processing methods, finally to an essential, 

implementation-independent description of the proposed local izat ion arrangement. 

3.1 Analysis 

The goal of this section is to introduce the range of methods and technologies that lie wi th in 

the fields of interest. Br ie f characteristics, strong and weak points are given to prepare for 

the part icular employment proposals in Section 3.2. 

3.1.1 U s e d no ta t ion conventions 

The notat ion of important quantities varies widely i n the literature - for example, among 

the authoritative sources on applicat ion of probabil ist ic principles i n robotics, there is even 

no uni ty i n notat ion of as fundamental quantity as covariance matr ix : while T h r u n et a l . 

in [16] and Siegwart & Nourbakhsh in [17] use E , Choset et a l . i n [18] use P for the same 

purpose. Indiv idual papers then often introduce further custom conventions. 

This thesis follows the conventions used wi th in the mobile robotics team at Facul ty of 

Mechanica l Engineering of Brno Universi ty of Technology; the following table sums up the 

major ones. 

10 



Xfc state vector at a discrete t ime step k 

xe

k 9 component of the state vector at a discrete t ime step k 

Xfc+i|fc estimate of state vector at t ime step k + 1 based on state from step k 

X sigma points generated around state x 

A T transpose of mat r ix A 

P covariance mat r ix 

•px,z cross-covariance matr ix between system state and system output 

3.1.2 Representa t ions of a t t i tude 

W i t h respect to the mot ion of humans, only direct or proper m o t i o n 1 can be safely assumed. 

A s such, proper motion in Eucl idean space consists of two components: translation and 

rotation. The state quanti ty resulting from motion is the pose of a body - its posit ion 

information combined w i t h attitude. 

W h i l e change i n posit ion can be unambiguously represented by a translat ion vector, 

rotat ion is inherently more complex. Fi rs t ly , at t i tude as an angular posit ion is a cyclic 

quantity and when normalized to the usual range of (—TT; TT) or (0; 2TT) it evinces a discon­

t inui ty complicat ing computat ional operations. Secondly, rotations i n three-dimensional 

space are generally not commutative and the order of applying ind iv idua l rotations is im­

portant. 

A great reference and comparison of the att i tude representations is given in [19]. In the 

paper [20], a thorough discussion of various operations on the group of rotations is given. 

Euler angles, Tait—Bryan angles The most intuit ive approach to express atti tude 

i n three dimensions is a sequence of consecutive elemental rotations about three axes. 

Depending on the axes selection, the sequences can be divided into two groups, as i l lustrated 

in Figure 3.1: 

• Euler angles that use the same axis for the first and last rotat ion in the sequence. 

The most common of such sequences is z-x-z and the angles are referred to as spin, 

nutation, and precession, denoted by 4>, 9 and tp respectively, or a, j3 and 7. 

• Tait-Bryan angles whose sequence is formed by rotations about a l l three axes. The 

well-known triplet of roll, pitch and yaw is again denoted by <p, 9 and tp and corre­

sponds to the sequence x-y-z. 

Despite this classification, bo th groups are sometimes commonly called Euler angles; to 

distinguish the first group, it is in such case referred to as the proper Euler angles. 

1 As opposed to indirect motions like reflection or improper rotation that invert the chirality - handedness 
- of the body. 
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Figure 3.1: Euler (3,1,3) (a) versus T a i t - B r y a n (1,2,3) (b) angles; adopted from [19] 

There is a major drawback of using any of the Euler angles sequence - the gimbal lock. 

It stands for a singularity case in which two of the axes are aligned and thence the system 

loses one degree of freedom. 

Rotat ion matrices Matr ices of dimension 3 x 3 whose mul t ip l ica t ion wi th a vector leads 

to rotat ion of the vector without change of its length are called rotat ion matrices and 

form the special orthogonal group SO(3). A rotat ion matr ix is often coined direction cosine 

matrix ( D C M ) , since its elements can be expressed as cosines of angles included between 

each axis of the body xh,yh, zh and each axis of the reference system x, y, z: 

cos(9zbx) cos(9zby) cos(# z b z ) 

A p p l y i n g the rotation from the reference to the body system to a vector x then means 

performing the following matrix-vector mult ipl icat ion: 

The D C M does not suffer from the singularity CctS6S ctS Euler angles do; it represents 

rotation redundantly, i n case of 3D using 9 coefficients to express 3 degrees of freedom. 

Performing mathematic operations on D C M introduces accumulation of numeric errors 

which, because of this redundancy, leads to deformations of the matr ix . It then no longer 

represents a rotat ion "cleanly", i.e. loses orthogonality and unit determinant. For this 

reason, re-normalization is an important step of the D C M - b a s e d algorithms [21]. 

cos(0 sb s ) cos(9xby) cos(9xbz 

(3.1) 

x b = R x (3.2) 
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Quaternions A four-dimensional hypercomplex number - extension to the concept of 

complex numbers - composed of real part and imaginary part that uses three quaternion 

units i, j, k instead of a single imaginary unit: 

q = 80 + <?ii + <?2j + <?3k (3.3) 

i 2 = j 2 = k 2 = i j k = - l (3.4) 

Similar ly to rotat ion matrices, quaternions overcome the gimbal lock problem by a 

redundancy - the one degree of freedom, superfluous to represent a 3D rotation, is removed 

by introducing unit norm [18]: 

IMI = V«o + 81+82 + 8
2

 = i (
3

-
5

) 

Such a unit quaternion is then often called a rotation quaternion or a versor; i n this 

thesis, quaternions are used solely to represent rotation, so that a l l these terms may be 

used interchangeably. 

There are equations and computat ion algorithms available for a l l operations quater­

nion usage as an orientation descriptor needs [22, 23]. There are also formulae converting 

quaternion notat ion to D C M or E u l e r / T a i t - B r y a n angles [19]: 

K(q) 

2gig 2 + 2 g 0 g 3 

,2 
4 

^xyz 

9 
>xyz 

t>xyz 

80 + 81 " 82 " 83 

2g x g 2 + 2 g 0 g 3 80 ~ 81 + 82 

2<?ig3 + 2g 0 g 2 2g 2 g 3 + 2g 0 gi 

arctan2(2g 2 g 3 + 2g 0 8 i , 83 ~ 82 ~ 81 + 80" 

- arcs in(2gig 3 - 2g 0 g 2 ) 

arctan2(2gig 2 + 2g 0 g 3 , g 2 + 81 - 82 ~ 83" 

2g ig 3 + 2g 0 g 2 

2g 2 g 3 + 2g 0 gi 

-8i
2 

82+83 

(3.6) 

(3.7) 

In many pract ical respects, quaternions can be likened to the rotat ion matrices - not 

suffering from singularity nor discontinuities, composite rotations are available, and re-

normalizat ion is needed to recover rounding errors. However, a l l these operations are sim­

pler in case of quaternions, not only due to the more compact representation, but also 

thanks to different internal structure (re-orthogonalization not needed). 

3.1.3 G l o b a l loca l i zat ion - G N S S 

Globa l Navigat ion Satellite System ( G N S S ) is a common designation for systems capable of 

output t ing Earth-referenced receiver posit ion estimate based on processing of radio signals 

t ransmit ted by a constellation of satellites (orbiting mostly roughly 20 000 k m above sea 
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level). There are four G N S S operational currently: the well-known G P S established by the 

Uni t ed States, European Gal i leo system, Russian G L O N A S S and Chinese BeiDou-2 ( B D S ) . 

A l though there are technology differences among the different G N S S networks 2 , the 

principle is similar enough on the level needed for the following evaluation. E a c h satellite 

carries precise atomic clock that is furthermore synchronized among the whole satellite 

network; it transmits the precise t ime together w i th information about the satellite's current 

orbi ta l posit ion. 

B y combining pseudorange measurements from mult iple satellites, the navigation equa­

t ion system is formed wi th four unknown parameters: receiver locat ion i n three dimensions 

and clock offset 3 [25]. To solve the system and obtain a so-called 3D fix, data from four 

satellites are needed - i n such case the system of equations has a single solution. W h e n 

there are more satellites i n view, the systems becomes overdetermined and needs to be 

solved using one of the opt imizat ion methods; it , however, generally helps compensating 

for ind iv idua l pseudorange measurement errors. 

E r r o r sources 

To evaluate the l imitat ions and consequent usabil i ty of G N S S as a pedestrian localizat ion 

sensory input, it is important to understand its error sources. The majority of them are 

inherent to operating principle, i.e. radio signals traveling from the satellite through layers 

of atmosphere of the E a r t h towards receiver, and are listed i n the following paragraphs [26]. 

Atmospheric effects Individual satellites wi th in the receiver's line of sight are generally 

visible i n different angles of elevations above horizon, i.e. their radio signals are traveling 

through various thickness of the atmosphere's layers. 

Ionospheric delay is a frequency-dependent delay caused by charged particles of higher 

layers of atmosphere. Because of this dependency, dual-frequency receivers are able to 

remove ionosphere influence almost completely. For single-frequency users, there are com­

pensation models available, predict ing the effects of ionosphere: the Klobuchar M o d e l [27] 

used i n G P S wi th roughly 50% delay reduction, and the Gal i leo N e Q u i c k - G ionospheric 

electron density model which performs slightly better [28]. 

Tropospheric delay does not depend on frequency and therefore cannot be compensated 

by dual-frequency measurements as the ionospheric delays [29]. There are two contributors: 

the predictable hydrostatic component delay and fast varying wet component delay. Whi l e 

the former one can be modeled and its error contr ibution (in the order of meters) successfully 

removed, the latter is hard to compensate and remove its delay in the range of decimeters. 

2 A great source of in-depth information on various GNSS-related topics is established by the ES A-founded 
Navipedia [24] 

3 Since the satellites synchronize their clocks, the receiver's clock offset is common to all satellites and 
can thus be distinguished in the pseudorange measurement. 
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Figure 3.2: D i l u t i o n of Precis ion i l lustrat ion; (a) favorable and (b) inferior arrangement. 

D O P In the realm of the global navigation satellite systems, the predicted posit ion esti­

mat ion quali ty is quantified using the D i l u t i o n of Precis ion ( D O P ) values [30]. The concept 

has been introduced to express the influence of various satellite posit ion configurations on 

the achievable state estimate; D O P is a scaling factor of posit ioning variance to measure­

ment variance. 

In Figure 3.2, geometric configuration influence on posit ion estimate precision is il lus­

trated on a simple 2D case. In 3.2 (a), the transmitters are i n a favorable posi t ion to the 

receiver. In 3.2 (b), bo th transmitters are oriented to the receiver i n a s imilar direction 

which leads to larger uncertainty. 

The main descriptor is the Geometric D i l u t i o n of Precis ion ( G D O P ) devised from vari­

ances of the east, north and up components of the posit ion estimate and variance of the 

receiver clock offset estimate. This figure can be broken down into Posi t ion D O P and T ime 

D O P ; P D O P is further composed of Hor izonta l D O P and Ver t ica l D O P . 

Receiver errors Mos t ly related to cost-sensitive applications, the user segment may 

play a significant role among the error sources. The apparent factors include antenna 

quali ty and receiver front-end sensitivity and noise figure; by improving these parameters 

one can expect better reception of weak satellite signals, either obstructed by foliage or in 

unfavorable orbi ta l posit ion wi th regard to the receiver. 

The other source of errors on the end of the chain is the actual computat ional processing 

of the measured pseudoranges - solution of the navigation equations. Lack of numerical 

accuracy leads to quantization errors; for instance, 8 significant figures for lati tude and 

9 for longitude of the Navi lock N L - 4 0 2 U leads to a quantization grid of 14 cm x 18 cm 

[31]. Employment of a filter w i t h kinematic model, processing the quantized G N S S data, 

is commonly able to moderate the quantization errors impact . 

Environment influence In addi t ion to l imi t ing the direct line of sight ideal for weak 

G N S S signal reception, t a l l buildings in urban areas ("urban canyons") also introduce the 

second source of signal degradation - reflections [32]. The mit igat ion techniques include 

signal quali ty aids (choke r ing antenna), signal processing techniques and behavior patterns 
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(avoiding ta l l buildings). Recently, w i th the cloud computing advance, there have been 

attempts of ray tracing techniques ut i l iza t ion in prediction of the mul t ipa th cases - using 

3D city maps and actual satellite orbi ta l positions, one can calculate path of the signal to 

an estimated receiver posit ion [33, 34] 

Usabil i ty assessment 

For the pedestrian applicat ion involving visually impaired user, the usabil i ty of a sensory 

data source is not only given by its mean performance, but rather by the worst-case behavior 

that may even relate to user's safety. 

The pedestrian applicat ion implies that only simpler wearable G N S S receivers are us­

able. Advanced techniques as Rea l -T ime Kinemat ics ( R T K ) , using a reference receiver on 

known location, real-time wireless point-to-point and considerable computat ion efforts, are 

not suitable either for their logistic inflexibil i ty and poor scalability. 

In terms of the basic service accessible to general public, there is a promise of Gal i leo 

G N S S accuracy i n the range of 1 m once the Gal i leo satellite network is finished and fully 

operational. There is, however, a legitimate doubt that this can be met i n the demanding 

urban conditions. 

G N S S localizat ion data are for these reasons safe to be regarded approximate only: 

there need to be other sensory means in the system able to improve the pose estimates and 

reduce the worst-case error magnitude. 

3.1.4 Inert ia l measurements usage 

In an ideal world, inert ial measurements could be usable for relative tracking of pose changes 

- s imply by integrating the measured quantities (acceleration and angular velocity) once 

or twice to obtain relative pose over t ime. In reality, however, measurement errors w i th 

non-zero mean value (i.e. evincing a bias) lead to divergence i n integrated quantities -

this is even amplified by the dua l integration needed to process accelerometer signals into 

translation. 

Wi thou t a compensation based on an external quantity, every inert ial measurement 

would diverge eventually. There are applications though whose requirements can be met 

w i th proper selection of sensor technology; for example, tactical-class sensors achieving gyro 

bias of < 10°/h can be a sufficient choice for an air-to-air missile w i th expected operation 

lifetime measured i n minutes. Or , a navigation-class system wi th bias < 0.01 °/h can fit 

requirements of a passenger plane or a cruise missile w i th flight times i n range of hours [35]. 

Such sensory system classes are, however, not applicable to the studied class of problems: 

both for excessive size/weight and financial exclusivity. O n l y the commercial-grade inert ial 

sensors, usually designed as M E M S 4 , are w i th in reach for this applicat ion. The i r inherent 

4 M i c r o Electro-Mechanical System 
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restrictions need to be considered design parameters and bypassed by selecting a favorable 

measurement arrangement. 

There are two basic applications a M E M S inert ial measurement unit ( I M U ) can be 

successfully employed for - A H R S and P D R . 

Att i tude and heading reference systems ( A H R S ) 

The first approach of reducing drift impact on integrated I M U data is actually l imi t ing 

integration to the bare min imum. Instead of producing pose change estimates, the A H R S 

only works wi th the angular part - attitude. 

In its simplest form, a 3D accelerometer can be used to estimate roll and pitch by 

determining the vector of local acceleration of free fall; of course, this only works faithfully 

in static scenarios, as addi t ional forces cannot be discerned from the weight vector. A d d i n g 

a gyroscope to the setup extends the usefulness to dynamic scenarios as well - it also permits 

estimation of locally-referenced yaw by integration of the measured angular velocity. Such 

I M U configuration is often referred to as 6 - D O F . 

In case the applicat ion needs to estimate yaw that is globally referenced, the sensory 

equipment needs to be augmented again; i n majority of 3D magnetometer is used, 

leading to a 9 - D O F I M U configuration [36]. Ear th ' s magnetic field is a well-known source 

of heading reference, for which the processing methodology has been, obviously, known 

for a long t ime (field strength models, magnetic declination correction etc.). In the urban 

environment, however, the conditions are not ideal for this measurement type - massive 

structures from materials influencing magnetic field are pract ical ly inevitable; similarly, 

wearable platform contains metall ic parts near to the sensor. The influence can be classified 

as a hard- or soft-iron effect; hard i ron affects the readings as a direction-independent 

additive error, while soft-iron distortions are not constant and have to be compensated by 

a complex cal ibrat ion [37]. 

The problem of A H R S data fusion is then one of the most often to be solved nowadays, 

presumably due to widespread adoption of smal l to mid-sized autonomous aerial vehicles 

(drones) - nearly a l l of them are equipped wi th flight s tabil izat ion systems depending on 

fast at t i tude estimation. For this reason, there is a mult i tude of fusion approaches, ranging 

from a simple complementary filter to advanced variants of Bayesian filters. A n excellent 

write-up comparing the different approaches can be found i n [38]. 

Pedestrian dead reckoning ( P D R ) 

The mechanism enabling drastic reduction of I M U drift is provided inherently by the human 

bipedal locomotion. Zero-Velocity Update ( Z U P T ) takes advantage of the stationary phase 

of a stride during which the foot is i n contact w i t h the ground; velocities integrated from 

I M U accelerometry data can be zeroed at such moment, l imi t ing unbounded divergence of 

biased double integration. 
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The only mount ing place providing real zero-velocity phase are feet [39, 40, 41]. A p ­

proaches of mount ing the I M U to body parts other than feet can be found i n the literature 

as well, using periodic nature of pedestrian mot ion without the real zero-velocity phase -

the average relative posit ion errors, however, tend to be an order of magnitude worse in 

case of such solutions [42, 43, 44]. The majori ty of humans also dispose of two feet, which 

can be ut i l ized to mount a couple of P D R units - the improvements achieved by dual-foot 

configuration cooperation have been described in [45]. 

The major imperfection of the step-wise P D R is residual drift in attitude; when the P D R 

system is used without correction, att i tude gradually drifts which deforms the integrated 

trajectory shape. A l though there are some infrastructure-free drift l imi t ing techniques em­

ploying constraints of human mot ion other than the zero-velocity phase [46], globally refer­

enced correction mechanisms are generally needed to prevent the errors grow unbounded in 

the long term. Usage of magnetic field has been explored by [47] w i th moderately good re­

sults i n favorable conditions, but the non-Gaussian, impulse character of the disturbances 

is hard to account for i n standard filter frameworks and can br ing more detriment than 

benefit. 

Usabil i ty assessment 

Meaningful u t i l iza t ion i n the proposed pedestrian navigation system can be expected from 

both above mentioned I M U usage paradigms: A H R S is a v i t a l component of environment-

observing subsystems, while P D R contr ibution can improve local trajectory features esti­

mation. In the urban environment, provisions need to be taken to prepare for deviations in 

AHRS-de t e rmined globally referenced yaw though: as outl ined above, the magnetic field is 

l ikely to be distorted by the environment and by the wearable platform itself. 

3.1.5 E n v i r o n m e n t a l observat ions 

Landmarks are dist inct , stationary features of the environment that can be recognized 

reliably [16]. Based on their origin they can be divided into two basic groups - natural and 

artificial landmarks, as i l lustrated in F i g . 3.3. W h i l e natural landmarks are constituted by 

the environment itself and its interaction wi th light, artificial ones see their employment 

mainly i n controlled environments; their preparation and maintenance is sensible in l imited 

scopes only. 

Natura l landmarks 

Natura l landmarks are formed by environment's inherent features - in the most strict 

form only by nature's inanimate and l iv ing objects such as rocks, trees, skyline and their 

combinations. Logically, also urban landmarks belong into a wider understanding of this 

group - distinct features of the architecture and other signs of human act ivi ty - since they 

are not pr imar i ly designated as landmarks (as opposed to artificial ones below). B o t h of 
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(a) (b) 

Figure 3.3: Examples of detected landmarks i n camera image: (a) natural and urban; (b) 
artificial [48]. 

these are of interest for outdoor local izat ion i n uncontrolled environments, i.e. without the 

need or even chance to prepare the surrounding i n a way that would simplify orientation 

i n it . 

The major perception method usable for landmark detection is obviously (computer) 

vision; there are three steps i n which the image processing progresses [49], i n principle 

applicable to a l l below mentioned methods, even to the artificial landmarks case 5: 

• Detection - finding the distinctive points of interest; usually, detectors work wi th 

high-contrast intensity patterns of gray-scale image and are based on Difference of 

Gauss ian 6 ( D o G , used by S I F T ) , Determinant of Hessian ( D o H , S U R F ) or corner 

detection ( F A S T [51]). 

• Description - assignment of a feature vector representing the part icular point. Details 

strongly vary wi th each method, but the a im is common - be able to dist inguish among 

the points w i t h as much rel iabi l i ty as possible while exhibi t ing sensible storage and 

computat ional requirements. 

• Matching - finding pairs of corresponding features i n subsequent images. 

S I F T Scale-invariant feature transform, introduced in [52], was one of the first "packages" 

of standardized feature detection and extraction functionality. It has been patented by 

the author, which makes commercial usage quite pricey and also l imits support in F O S S 

libraries. 

5 E a c h method also contains proper image preprocessing pipeline [50], so that additional preprocessing is 
normally not needed - except for rescaling the source image, which determines the physical detail level on 
which the features wi l l be extracted. 

6 M o s t l y as a resource-friendlier approximation of the Laplacian of Gaussian (LoG). The functional prin­
ciple is essentially a band-pass filter preserving only some of the spatial frequencies, usually edges. 
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The detection step is based on D o G as already noted; the descriptors are composed 

of 128 elements and determined by binning 8 major directions of feature neighborhood 

gradient samples of 4 x 4 px size in 4 x 4 descriptor arrangement [53]. 

A m o n g the real-number descriptor methods, S I F T is considered the most faithful, i.e. 

providing best feature matches. Th is is "compensated" by relatively high computat ional 

demands of the method though. 

S U R F Speeded up robust features was keyed i n [54] and is possibly the most popular 

general image feature detector nowadays. S imi lar ly to S I F T , it is scale invariant - and ad­

di t ional ly also rotat ion invariant. However, it is also patented and not cheap for commercial 

usage. 

Detection step is designed as D o H wi th second-order Gaussian derivatives approximated 

by box filters, improving the performance over S I F T [55]. E a c h feature's descriptor based on 

Haar wavelet responses i n circular neighborhood around the detected feature is composed 

of 64 items given by 4 x 4 sub-regions (denoted as S U R F - 6 4 or just S U R F since it is the 

most often case), 36 items for 3 x 3 sub-regions (SURF-36) or even 128 items for 4 x 4 

sub-regions wi th extended descriptors (SURF-128) [54]. 

Overal l , S U R F has been shown to evince a better compromise between faithful match­

ing and performance than S I F T [55], given by its order of magnitude faster execution and 

slightly lower quali ty of feature matches. In applications featuring translation-only transfor­

mat ion among the images, the Upright S U R F ( U - S U R F , not invariant to feature rotation) 

flavor may br ing further improvements i n performance and also improve match success rate 

(by reducing false match probabil i ty) . 

Other options There is quite a wide range of different solutions wi th varying parame­

ters: e.g. LoG-based detectors, corner detectors (Harris-Stephens, F A S T ) ; G L O H , H O G , 

F R E A K descriptors. Also , different descriptors can be used wi th S U R F than the S U R F 

descriptor - combinations of S U R F detector and S I F T or B R I E F descriptor can be found 

applied wi th the motivat ion of improving descriptor quali ty w i th compromise performance 

[56]. 

Recently, most promising is the binary-descriptor-based B R I S K method [57], which 

outperforms S U R F wi th roughly order of magnitude lower computat ional costs - and wi th 

comparable quali ty as S U R F ; importantly, it comes without patent restrictions. However, 

although binary descriptors may work well for in i t i a l t racking of landmarks i n the mapping 

phase, subsequent matching phase is more likely to work well w i th real-number descriptors 

as used by S I F T or S U R F . 

Feature matching For real-number descriptors, the most commonly nearest neighbor: 

given two sets of features A and B, b £ B is called the nearest neighbor of a £ A i f 

b = a r g m i n b / e B \\a — b'\\ (i.e. using Eucl idean distance) [56]. The criterion of acceptation 
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or rejection of the feature pair as matched is the relative distance to the second nearest 

neighbor; i f the second one is sufficiently worse a match than the winner, the two features are 

pronounced matched. The relative distance is then one of the parameters of the matching 

process: value of 0.8 is proposed by [53] for S I F T , discarding 90 % of false matches together 

w i th less than 5% correct matches. S U R F authors in [54] use 0.7 distance for the nearest 

neighbor method. Besides the nearest neighbor method, s imilar i ty threshold matching is 

sometimes preferred, especially for matching on larger feature databases: it only compares 

the computed distance \\a — b'\\ to a threshold and potential ly returns mult iple match pairs 

[58]. 

B ina ry descriptors, on the other hand, use H a m m i n g distance which is computat ional ly 

advantageous - consists of applying the XOR operation to descriptors and summing the 

resulting number of bits set to 1, i.e. the whole distance computat ion of two feature 

descriptors can be accomplished by two efficient steps 7 . 

Localization usage There are mult iple documented approaches on ut i l iza t ion of environ­

ment visual features for localizat ion purposes. The general direction can be seen toward the 

Simultaneous Local iza t ion A n d M a p p i n g ( S L A M ) mechanisms bui ld ing from huge quanti­

ties of identified landmarks and resulting in significantly sized data representations of even 

relatively smal l maps. 

A n indoor case is given in [59], featuring a robot w i th a stereovision system; the map 

is composed based on S I F T features detected i n the stereo images and thus inherently 

localized in space. Loop closure working w i t h sub-maps is employed to guarantee consistent 

map bui lding; map-based local izat ion is then proposed i n two approaches, either using 

Hough transform applied to candidate poses gained from landmark matches, or alternatively 

employing a R A N S A C - b a s e d opt imizat ion method to select the best pose hypothesis. 

In [60], a topological outdoor map bui ld ing process is proposed, again ut i l iz ing the S I F T 

detector/descriptor and association of extracted features w i th poses from which they are 

visible. The local izat ion is then based on weighted linear combination of nearest neighbors' 

pose determined for landmarks found i n image under investigation and matched to the map. 

B i g importance is a t t r ibuted to proper landmark selection during the mapping phase. 

A n interesting view on the topic is presented by [61], which describes map bui lding 

based on a large number of geo-tagged photos from social networks depicting the same 

object (building, statue etc.). Bundle adjustment is employed to integrate a l l snapshots of 

each object, together w i th inherent correction of the geo tags. 

Triangulat ion as a method of either landmark gathering or subsequent local izat ion is 

published in several literature sources, each dealing wi th a slightly different aspect of it [62, 

63, 64, 65]. S imi lar ly to the D O P figures introduced above for G N S S , precision d i lu t ion is 

present for such tr iangulat ion methods as well; an analysis is given i n [66]. 

7 O n SSE4-enabled C P U s , bits set to one can be counted by a specialized instruction POPCNT wi th constant 
cycle latency which is very efficient compared to Euclidean distance computation. 

21 



(a) (b) 

Figure 3.4: (a) general-purpose Q R Code tag; (b) specialized fiducial mark A p r i l T a g . 

Artif icial landmarks 

Art i f i c i a l landmarks are, as opposed to natural landmarks, placed into the environment 

specifically w i t h the intention of creating points of orientation, designed to be easily de­

tectable and distinguishable by visual or other sensors. Compared to natural landmarks 

extracted by means of S I F T / S U R F / a l i k e , the uniqueness and positive matching of an ar­

tif icial landmark can be trusted - contained error correction mechanisms and/or coding 

schemes effectively prevent misunderstanding. 

In the context of this thesis we are only interested in visual (camera sensed) fiducial 

marks. A n impl ic i t choice would be some of the wide range of 2D codes, that started 

emerging in 1990s and allowed to contain much more information than its predecessor, the 

I D barcode. A m o n g the most used types we can find the Quick Response Code ( Q R Code, 

F i g . 3.4a), SnapTag, M a x i C o d e , D a t a M a t r i x etc., each providing a slightly different set of 

features (dot resolution, data capacity, robustness etc.). These types of visual coding see its 

ut i l iza t ion i n robotics - mostly i n cases when machine identification of manufactured parts, 

supply crates or s imply other tracked items is needed. Prac t ica l ly a l l of these scenarios, 

however, typical ly rely on controlled sensing conditions - since these codes have relatively 

complex structure (to contain the information payload), they need to be sensed from rather 

shorter distance, w i th sufficient resolution etc. 

O n the other hand, there are fiducial systems created specifically for ease of detection 

at distance and extremely smal l false positive rate; we can find several packages among the 

representatives of this category - starting wi th the A R T o o l k i t [67], through A R T a g [68] or 

the most recent A p r i l T a g / A p r i l T a g 2 [48, 69]. A s can be seen from the lower complexity in 

F i g . 3.4b, robust detection at distance i n turn l imi ts the type and quanti ty of information 

contained to an integer identifier w i th a couple of thousand unique codes (for the most 

usual configuration of 6 x 6 "pixels"). 
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Usabil i ty assessment 

For the purposes of this thesis, artificial landmarks can be beneficial for creating cal ibrat ion 

scenarios or similar tasks. Outdoor ut i l iza t ion of the feature detect ion/extract ion meth­

ods and usage of the surrounding environment as the geo-reference inevi tably brings one 

question: how robust is it i n terms of short- and long-term repeatabili ty? The answer is 

severalfold: 

• Short term repeatability does not suffer from transformations of the environment: 

the only pract ical exception are cars and other transportat ion customary i n urban 

environments. Major influencing factors are l ighting conditions - varying brightness 

of part icular surfaces may change the scene significantly. 

• 24-hour cycle is a special case. Condi t ions of camera-based recognition change from 

impossible (night) through difficult (gloomy light or on the contrary sharp light b l ind­

ing the cameras) to advantageous. 

• Performance among seasons - s t r ict ly urban landscape may be affected in a lesser 

extent by spring and fall (since buildings would generate most of the extracted land­

marks), but snow changes perception of generally a l l kinds of outdoor environment. 

[49] compares S I F T , S U R F , U - S U R F and S U R F - 1 2 8 among a l l four seasons on a rep­

resentative mixed environment. Generally, the results are favorable, w i th majority of 

cases evincing 60 % and more correct matches among a l l seasons. 

Overal l , while inherently l imi ted by the dai ly light cycle, the usefulness of natural fea­

tures coupled wi th suitable processing methods is obvious. The l imi ta t ion to bright part of 

the day may seem severe; however, the wearable platform constraints discussed above do 

not permit employment of many better-equipped sensing principles. 

3.1.6 M a p ut i l i za t ion 

One of the important information sources related to the local izat ion task are obviously 

maps. The usual sense of human-readable map as a two-dimensional plot of path segments 

and other objects is a subset of the functionality a map can provide - this may range to 

capturing of complex topological structures, feature descriptors and other data resulting 

from the mapping process. In this sense, a proper feature map is necessary for the landmarks 

ut i l iza t ion discussed above. 

In terms of map as a graph structure of inter-connected path segments, there are two 

possible uses: 

• Path planning is the obvious subsystem relying on segment maps; Chapter 4 deals 

w i th this topic thoroughly. 
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Environment Sensors Fusion type Data Outcome 

E r r o r correct ion 
Reliabil ity 

Completeness 

N e w dimension 
of information 

Figure 3.5: No t ion of competitive, complementary and cooperative data fusion. 

• Localization may benefit from an information about environment arrangement that 

the pedestrian should conform to as well, see the discussion below this paragraph. 

Using a segment map to increase probabil i ty of pedestrian's posit ion situated wi th in 

sensible parts of the map (i.e. pr imar i ly sidewalks and other pedestrian-designated areas) 

may seem tempting - after a l l , s t icking to current/nearest road is the strategy most of the 

car satellite navigation devices apply to overcome the G N S S posit ion inaccuracy. However, 

there are several reasons why it may not be advisable to be used i n the pedestrian case, 

at least not restricted to sidewalks alone 8 . F i r s t and foremost, it may more often lead 

the system to a false belief that the user is s t i l l on sidewalk, while i n fact being on road 

or i n other potential ly dangerous area - which may be catastrophic i n case of a visually 

impaired user. Second, a pedestrian can inherently traverse wider range of surface types, so 

that almost a l l areas neighboring the sidewalk would have to be given enough probabili ty, 

l imi t ing impacts of the method. 

3.1.7 F u s i n g d a t a f r o m mul t ip l e sources 

The analyt ical section has so far introduced a range of sensory data sources usable for 

the pedestrian local izat ion. A n important task of creating a pose estimate based on them 

natural ly arises: i n an op t imal case, only sensible contributions converging the estimate to 

the ground t ru th would be extracted from the noisy observations. 

A basic introduct ion to data fusion is given in [70], including the overview classification 

below; the topics are also comprehensibly and in-depth elaborated in the mobile robotics 

sources as [16], [18] or [17]. 

This strategy would be otherwise elegantly implementable within the particle filter framework, by gen­
eration of new particles preferably on segment. 
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• Competitive fusion. Whenever mult iple sensors observe the same state, they w i l l in 

real-world conditions often come to different results - a competi t ion or mutual correc­

t ion based one the redundant observation may then drastically improve behavior w i t h 

corrupted signal. This thesis describes several competit ive mechanisms, including the 

cases of G N S S + P D R posit ion estimation or P D R + A H R S heading estimation. 

• Cooperative fusion. Fusion of otherwise independent observations of different features 

often brings more benefit than using the observations separately. A n example can 

be found i n fusion of G N S S + A H R S or using mult iple landmarks found in camera 

image for posit ion tr iangulation. 

• Complementary fusion. Us ing independent sensors observing different parts of the 

environment is probably the easiest of the tasks. The mult i-camera setup of the 

wearable platform, as described i n Chapter 5, is an i l lustrative case of such approach. 

K e y principle in the sensor fusion endeavor is the notion of uncertainty - accepting 

that a l l data gained from real world are inherently inaccurate due to many non-predictable 

processes occurring on the path along the observation. In the realm of mobile robotics, 

the approach of probabilistic robotics has been keyed by [16], bui ld ing on employment of 

mathematical apparatus support ing the probabil i ty theory. 

Bayes theorem can be found at the foundations of vast majority of the probabilist ic 

mechanisms ut i l ized by this thesis. It is i n its discrete form provided on the last line below 

and is based on the preceding formulas of conditional probability p{x\y) = p(X = x\Y = y) 

and total probability p(x) [18], where X is a random variable w i th value of x. The main 

notion of the Bayes theorem is its abi l i ty to express the condit ional probabil i ty p{x\y) by 

its "inverse" p{y\x) - for example, by knowing the probabil i ty of sensor reading y observing 

feature x (which can be usually determined for each sensor), we can then infer x from sensor 

data y: 

P(*\y) = ^ (3-8a) 

p(x) = ^Zp(x\v)p(y) (3-8b) 
y 

= p{y\x)p{x) = p{y\x)p{x) 

P{y) 22p(y\x')p(x') 
x' 

Normal (Gaussian) distribution is then one of the most useful probabi l i ty distributions 

that a certain class of random variables can be described wi th . In plays an important 

role i n probabil ist ic principles - according to the central limit theorem, normalized sum of 

independent random variables tends toward normal dis t r ibut ion, al though the variables may 

not be normal ly distr ibuted [71]. The consequence is then good appl icabi l i ty of statist ical 
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tools devised for normal dis t r ibut ion also to problems where the dis t r ibut ion is not well 

known or differs from the normal dis t r ibut ion. R a n d o m variable conforming to normal 

dis tr ibut ion X w i th value of x, mean \x and variance a2 is often denoted as N(x; fi, a2). Its 

probabil i ty density function ( P D F ) for one dimension is then given by the Gaussian "bel l 

curve" function: 

p(x) = p(X = x) = —= e (3.9) 
a\/2ir 

Recursive state estimation 

The two mechanisms introduced below, K a l m a n filter and Part ic le filter, bo th fall into 

the category of recursive probabil ist ic state estimators. They bui ld upon system state 

description in the following form (for a linear system): 

x f c + i = A f c x f c + B f c u f c + v f c (3.10a) 

yk = C f c x f c + D f c u f c + w f c (3.10b) 

where x& denotes state vector, u& is input vector and y& is output vector. Noise vectors 

Vfc and Wfc introduce the process and measurement noise - typically, Gaussian dis t r ibut ion 

wi th zero mean is presumed: v& ~ A/"(0, V&), ~ M(0, W&). 

Since most of the useful systems evince non-linear behavior, more pract ical (or even 

necessary) is to assume the system state model in a different form: 

X f c + i = /(xfe, u f c , k) + v f c (3.11a) 

yk = / i (x f c ,u f c , k) + w f c (3.11b) 

A frequent simplification of the description both i n linear and non-linear domain is 

removal of the direct l ink from input to output, i.e. omission of term T)k

uk of E q . 3.10b 

and parameter u& of function h from E q . 3.11b; the text below w i l l do so as well . If needed, 

such linkage can be expressed by a suitable state vector extension. 

The merit of this arrangement is that al though the state vector x^ items often cannot 

be measured directly, they may be observable from system output y& [72]. Recursive state 

estimation is a mechanism used in great many applicat ion dealing wi th uncertain inputs; 

out of the wider range of Bayesian methods, K a l m a n filter and Part ic le filter frameworks 

have been selected for a performance comparison and w i l l be briefly introduced below. Dear 

reader is encouraged to find complete derivation of the briefed methods i n the cited sources. 
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K a l m a n filtering 

Firs t presented by [73] i n 1960, the K a l m a n filter was conceived and applied to help solving 

trajectory estimation problems for the A p o l l o program. Since then, it and its non-linear fla­

vors have dominated i n various state estimation and data fusion employments in pract ical ly 

al l branches of engineering. 

The classic K a l m a n filter is introduced for linear systems wi th structure according to 

E q . 3.10 (without the term D^Ufc as discussed). Together w i th its non-linear variants 

focused on below, the whole K a l m a n filter family shares the representation of belief and 

uncertainty i n system state: normally distr ibuted variables w i th mean value \JL and variance 

a2, or, considering the whole state vector, the mean vector fi and its covariance matrix P 9 . 

This parametric arrangement means that the filter can only have a single hypothesis on the 

system state, i.e. is unimodal, which has important consequences in real-world applications. 

Generally, a l l K a l m a n filter variants work i n two stages; the linear K a l m a n filter equa­

tions are used here for i l lustrat ion purposes due to their simplicity, even though the problems 

solved by this theses need a non-linear estimator. 

Predict ion is the first step in which the dynamic model is used to progress the system 

to state x f c + 1 | f c based on previous state x f c | f c and control input u^. System covariance 

expressed by the mat r ix Pfc+i|fc is increased dur ing prediction due to process noise V&: 

Xfc+i|fc = A f c x f c | f c + B f c u f c (3.12a) 

Pfc+i|fc = A f c P f c | f c A ^ + V f c (3.12b) 

Correct ion then typical ly incorporates measurement updates y ^ + i w i th their noise ma­

t r ix W f c + 1 that allow convergence of modeled system state towards the observed system. It 

is done through measurement innovation yfc+i "transformed" by K a l m a n gain mat r ix Kfc+i; 

the system covariance Pfc+iifc+i is here decreased, confirming the intuit ive understanding 

that measurement has improved our knowledge of the true system state: 

Xfc+ i | f c+ i = x f c + i | f c + K f c + i y f c + i (3.13a) 

Pfc+i|fc+i = Pfc+i|fc _ Kfc +iCfc+iPfc+i|fc (3.13b) 

where measurement innovation yfc+i = y ^ + i — Ck+i%k+i\ki correction covariance matr ix 

S f e + i = C f c + i P f c + i | f c C j + 1 + W f c + i and finally K a l m a n gain K f c + i = PjHi | fc C fc+i S fc+i-

The covariance matrix is a square symmetric semidefinite matrix with principal diagonal elements 
expressing the respective state variable variance, while the other elements form covariances among the state 
variable. 
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Extended K a l m a n filter The straight-forward attempt to apply K a l m a n filtering to 

non-linear systems is formed by the extended form ( E K F ) - the non-linear functions / and 

h from E q . 3.11 are replaced by linearized Jacobian matrices F and H [74]: 

Of 
(3.14a) 

Ox 

Hfc+i 
dh 

c*x x=x, 
(3.14b) 

•k+l\k 

The rest of the K a l m a n filter stays identical, only using the Jacobian matrices F and H 

instead of the original linear matrices A and C . 

A m o n g advantages of E K F is the structural s imilar i ty to pla in K F ; out of the non­

linear flavors, it is also one of the most computat ional ly efficient. The imperfections may 

be prevalent though: the Jacobian matrices are often non-t r ivia l to derive and unstable in 

performance 1 0 . Divergence issues for range and bearing type of sensor data are discussed 

in [76], comparing E K F wi th U K F and other filters; it has been found that, al though being 

under circumstances also prone to divergence, U K F performs better. 

Unscented K a l m a n filter The Unscented K a l m a n F i l t e r ( U K F ) belongs to the Sigma-

point K a l m a n Fi l ters family and has been proposed to mitigate l imitat ions of the E K F 

given by its main principle, Jacobian-based l inearization. The principle responsible for 

the non-linear probabil i ty distributions processing is the Unscented Transform ( U T ) , keyed 

together wi th U K F i n [77, 78, 79]. 

The main notion of U T can be perceived as ly ing half-way between the classical K F 

(working on a l l levels w i th a mean and (co)variance) and Monte Car lo style of computat ion 

(using a big quantity of independent points to represent the probabil i ty distr ibution); U T 

deterministically selects a set of so-called sigma points to express the mean value and 

covariance of system state, which is bo th given by the points ' posi t ion in the state space. 

This elegantly enables processing of the state dis t r ibut ion by a non-linear function which 

generally transforms the dis t r ibut ion into a different one; mean and covariance measures 

are determined from the processed points afterward. 

A s i l lustrated by F i g . 3.6 working w i t h the demonstrative "banana" shape inherent to 

the distance & heading style of models, U K F / U T estimation method converges to the "true" 

mean and covariance established by Monte Car lo much better than the E K F approach. 

Initial estimate of the system state xo and its covariance Po is determined based on 

best available a-priori knowledge as the first step at the beginning of the state estimation 

process. System state representation may, besides its main "payload", contains also helper 

The performance is inferior mainly near pronounced non-linearities, where the first-order Taylor expan­
sion cannot faithfully approximate the original function. E K F variations with second-order Taylor expansion 
through Hessian matrix [75]. St i l l , U K F is found a better non-liner estimator. 
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Figure 3.6: Compar ison of mean and covariance estimation through 1000-samples Monte 
Car lo as ground t ruth, E K F and U K F mechanisms. The non-linear function is a simple 
distance/bearing beacon model given by [x; y] = [r cos(0); r sin(0)]; true covariance of the r 

and <fi inputs is P = [0.0004 0; 0 0.068]. Covariance ellipses denote 68% confidence interval. 

items - for U K F , the technique of state vector augmentation is par t icular ly suitable. In 

such case, the augmented state x j u f c holds also mean values of process and measurement 

noises and the augmented system covariance mat r ix receives the process and measurement 

noise matrices: 

x A; I A; 

p a 
A;|A; 

X

A:|A: 

[ o o _ _ o ] " 
n elements 

[00 ••• 0] 
m elements 

k\k 
0 

0 

(3.15) 

0 0 

vfc 0 

0 wk 

(3.16) 

It is apparent that the noise mean values are zero i n accordance wi th Gaussian noise 

characteristic assumptions introduced above. State augmentation then leads to two bene­

ficial consequences: 
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• the number of sigma points is increased, al lowing to approximate the state probabil i ty 

dis tr ibut ion more faithfully, 

• the sigma point "spread" around the central is driven not only by the system state 

covariance, but also by the process and measurement covariances, al lowing the esti­

mator to react to the instantaneous uncertainty levels and posit ion the sigma points 

properly. 

T h e recursive estimation runs i teratively i n steps described below: 

1. Sigma points generation is based on the in i t i a l state estimate x f c | f c and its covariance 

matr ix Pk\k which determines how far the other 2n sigma points are spread from the 

central one. A t the same time, weight constants for mean calculations and for 

covariance calculations are established: 

X A; | A; Xfc|fc, x f c | f c ± J(n + X) Pk\k (3.17) 

, , , , i I , \s when i = 0 
w(m) = I („+A)

 ( 3
_

1 8 ) 

.2fnTA) w h e n i = 1 . . .2n 

, , , i r ^ r r r + (1 - « 2 + 0) when i = 0 
W(c) = J (n+A) V (3.19) 

1 when i = 1... 2n 
. 2(n+A) 

where a , K, j3 and A = a2(n+K) — n are scaling parameters directing sigma points spread 

around the central point and y~Pk\k is a mat r ix square root obtained by Cholesky 

decomposition from matr ix Pk\k. 

2. Process function execution (motion model) / transforms the sigma points Xk\k into 

the predicted sigma points X k + 1 \ k based on the control input u^: 

X k+l\k f(xklk,uk) (3.20) 

3. Predicted state vector x f c + 1 | f c is determined as weighted sum of the sigma points. 

Computa t ion of its covariance iterates the definition formula P(Xi,Xj) = E [ ( A j — 

Hi)(Xj — fij)] over a l l sigma points and weights the contributions similarly: 

i=0 
2n T  

P

A:+1|A: = ^2 (^i,fc+l|fc ~ *k+l\k) i,k+l\k ~ *-k+l\k) +
 V

A; (3.22) 
i=0 
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Equat ion (3.22) calculates the system covariance mat r ix ~Pk+i\k after running the sigma 

points through the process function / . In cases process noise is significantly lower 

than the system state covariance, its contr ibution to the sigma points spread of the noise-

augmented state vector is not pronounced and the process noise can be s imply added to 

the covariance instead [80]. Otherwise, usage of the augmented state may be beneficial. 

4- Re-generation of sigma points i n case of the non-augmented state vector is on the 

other hand necessary to take the addi t ional process noise V& into account. 

Zk+i\k 
Xfc+i|fc> x f c + 1 | f c ± y (n + A) Pfc+i|fc (3.23) 

5. Measurement model h can be executed, resulting in the output sigma points ^^ . - j - i i ^ -

zk+i\k = h (-^fc+ilfc) (3.24) 

6. Mean and covariance of output is determined analogically to E q . 3.21 and E q . 3.22. 

Simi lar ly to Pfc+iifc, measurement noise W ^ + i is s imply added, w i t h the same reasoning. 

Addi t ional ly , the state-output cross-covariance mat r ix P̂ .̂ _̂ |̂ . is quantified: 

zk+i\k = Y , w i ^ , k + i \ k (3-25) 
i = 0 
2n

 T 

Sfc+1 = X ! (2i,k+l\k ~ ^k+l\k) {Zi,k+l\k - Zfc+l|fc) +
 W

fc+1 (3.26) 
i = 0 
2n

 T 

^*k+l\k = ^2 {Xi,k+l\k — Xfc+l|fc) (-2j,fc+l|fc _ %k+l\k) (3.27) 
i = 0 

7. Kalman gain is evaluated by using the state-output cross-covariance and output 

covariance matrices - P ^ ^ directs influence of each output to each state member, while 

Sfc+i reciprocally weighs the quali ty of each output/measurement and thus determines the 

extent of correction: 

Kfc+i - P fc+i i fcS^ (3.28) 

8. Correcting the predicted state estimate x f c + 1 | f c and its covariance Pfc+i|fc produces 

the final results of the k+l-th. i teration - K a l m a n gain K f c + i is first used to weigh mea­

surement innovation yfc+i applied to the predicted state vector and then, together w i th 

output covariance matr ix , determines decrease of the system covariance due to the applied 

measurement correction. 
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fk+1 
, * s 

Xfc+i|fc+i = x f c + i | f c + K f c + i (yfc+i - Zfc+i|fc) (3.29) 

Pfc+i|fc+i = Pfc+i|fc - K f c + i S f c + i K ^ + 1 (3.30) 

It should be noted that the process model / can be used for predict ion even if there 

is no correction measurement available at the moment - the steps 4-8 are then skipped. 

In such case, however, it is apparent that the system covariance can only grow, which is 

in agreement w i th the intuit ive understanding that without a correction, the belief i n the 

predicted state can only get weaker. 

Particle filtering 

Part icle filtering is a Bayesian non-parametric technique capable of working wi th arbi­

t rary probabil i ty dis t r ibut ion functions. The principle is t ight ly bound to the Monte Car lo 

method class, for which it is also referred to as the Monte Car lo Local iza t ion; the system 

state belief is represented by a set of discrete particles, each possessing a hypothesis on 

the system state. The main advantage over the K a l m a n filter family can be seen i n the 

abil i ty to represent multimodal distributions, which is often more faithful then assuming 

a un imodal Gaussian dis t r ibut ion. One of more contemporary formulations of the topic is 

[81]; a comprehensive overview of the principles w i th appl icat ion to robotics can be found 

in [16]. 

Ini t ia l particle set xo is again generated based on the best available a-priori knowledge. 

In the case of P F it is, however, wise to not underestimate uncertainty of newly generated 

particles - i n case of inappropriately positioned particles, the measurement model becomes 

v i r tua l ly ineffective i n converging. If there is no a-priori information, the particles need to 

be generated covering the whole state space. 

The filtering process is i l lustrated by A l g o r i t h m 1; i n each filter execution iteration, 

particles from the preceding pass x ^ i ^ are first processed by the mot ion model. Th is 

transforms them based on sampled control input uk according to its uncertainty measure 

V . The measurement model then determines the importance of each particle by formulating 

the weight w k + i \ k based on the measurement vector y k + i and its uncertainty W . 

A l g o r i t h m 1 Par t ic le filter / Monte Car lo Loca l iza t ion 

1: for i = 0 . . . N do 
2: x f c + 1 | f c <- mot ionModel (x i j f c | f c , uk, V ) 
3: Wk+i\k <~ measurementMode l (x j j f c + 1 | f c , y f c + 1 , W ) 
4: end for 
5: w,)k+1\k <- w,)k+1\k J sum(ro k + 1 | f c ) 
6: x f c + 1 | f c + 1 <r- re sampl ing (x f c + 1 | f c , y ; f c + 1 | f c ) 
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After a l l particles are processed, normalizat ion of the assigned weights is performed 

to ensure a probabil i ty dis t r ibut ion function ( P D F ) wi th a unit sum on line 5. The final 

and most important step is resampling - it allows to re-generate the particles so that 

they represent dis t r ibut ion according to the computed weights. There are many possible 

resampling methods - e.g. residual, mul t inomial , stratified or systematic resampling. 

3.2 Design 

The following text aims to gradually guide the reader along the pa th of the pedestrian 

localizat ion mechanism design. The ind iv idua l steps are closely based on information given 

in Section 3.1 and use references to the equations and algorithms introduced there. 

The overall s i tuation is outl ined i n F i g . 3.7; it illustrates the bui ld ing blocks, each of 

them providing a different type and quali ty of contr ibut ion to the localizat ion estimation. 

The blocks w i l l be described in-depth i n subsections below - here is a short summary of 

them i n the order of data fusion build-up: 

• GNSS block is a rough source of geo-referenced localizat ion data. Under good condi­

tions it can be used as a relevant contributor to global location; when the estimation 

quality is determined poor, it merely reduces the set of landmarks to be matched, 

thus vastly improving computat ional performance of the in i t i a l estimate. 

• PDR block provides high-quality step-wise posit ion difference estimates. The i r ut i ­

l izat ion is similar to any other odometry-like data source, but brings specifics such as 

sampling irregularly spaced in t ime (see below). 

• AHRS block is mechanically coupled to the camera frame and reports its att i tude 

w i t h high frequency. The yaw/heading component of att i tude can be deduced from 

the landmark subsystem, but is important dur ing the mapping phase. 

• Image block wi th subsequent landmark detection processes image streams from four 

cameras in order to find natural landmarks and extract their descriptor and angular 

position relative to the platform. 

The landmark block inherently needs a map to be capable of geo-referenced operation. 

Landmark-enhanced local izat ion then has a special mapping regime a iming to fabricate the 

landmark map; section 3.2.2 below provides a l l details. The design, however, starts without 

landmarks - by integration of the P D R step-wise pose change estimates. 

3.2.1 Step-wise P D R d a t a fusion into G N S S measurements 

The currently operational global navigation satellite systems (GNSS) provide the most 

widespread absolutely referenced posit ioning service available, even i f their performance is 

l imi ted to known extents as analyzed in section 3.1.3. A G N S S receiver can be found in 
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Figure 3.7: Overa l l structure of the natural landmark aided local izat ion mechanism. 

the majority of today's mobile communicat ion devices. W h i l e there are techniques that 

allow significant improvements of G N S S posit ion estimate dynamics by t ight ly coupling the 

pseudo-range navigation equations to I M U measurements [82, 83, 84], the necessary raw 

G N S S data output is only rarely available on wearable consumer-level devices. 

The approach of the first step of G N S S posit ion estimate improvement, necessary for 

successful pedestrian application, is focused on local behavior of the estimated pose. G N S S 

estimates without further processing are known to often deform the shape of the estimated 

trajectory; locally, they also tend to deviate significantly under a tree canopy or near 

buildings where satellite signal deterioration occurs. The fusion mechanism G N S S - P D R 

has been thus established, a iming to discipline the G N S S i n short to m i d term. 

The global-level results w i l l s t i l l largely depend on quali ty of the G N S S posit ion esti­

mates. Th is is, however, expectable and cannot be reliably rectified without addi t ional use 

of a n o n - G N S S globally referenced posit ioning mechanism, to which the section 3.2.2 tries 

to find answers. 
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System state representation 

In this first step of bui ld ing the complete localizat ion mechanism, system state x is com­

prised of only the pedestrian's pose p: 

x 

P = y 

e 

(3.31a) 

x = p (3.31b) 

Two-dimensional representation not considering alt i tude is sufficient i n this application: 

the local izat ion subsystem is only the first layer of knowledge, and addi t ional informa­

t ion, necessary e.g. i n case of traversal of mult i- level pedestrian bridges/crossings, w i l l be 

provided mainly by the high-level navigation subsystem's segment map. Also , faithful esti­

mat ion of the th i rd dimension - alt i tude - is nothing short of a technical challenge. 

Unscented K a i m a n filter and Part ic le filter frameworks have both been used to assess 

and compare their performance on the G N S S - P D R fusion problem; refer to Chapter 6 for 

detailed results. 

Unscented K a i m a n filter approach 

Ini t ia l estimate of the system state xo is chosen as the first val id G N S S fix - and its 

covariance becomes the in i t i a l estimate of the system covariance P o • 

The P D R step-wise estimates are fused inside the motion model (process function) / 

which transforms sigma points Xk\k into the predicted sigma points X k + 1 i k . This technique 

is commonly used [16] to incorporate odometry data (intuit ively belonging rather to the 

measurement model) . The control input uk is the P D R - r e p o r t e d step-wise pose difference 

- it consists of positions increments Axk, Ayk and yaw increment A9k relative to the 

start pose of the current step. In order to integrate these increments into the k-th state's 

coordinate frame, the control vector uk needs to be first rotated into the k-th. state heading 

direction Xk>k using the transformation matr ix R(6): 

u f c = [Axk Ayk A9k] 

cos(6>) — sin(0) 0 

(3.32a) 

R ( 0 ) = sin(0) cos(0) 

0 0 

0 (3.32b) 

1 

(3.32c) 
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G N S S directly estimates posit ion component of the system state (pose), which makes 

the measurement model h very simple - just selecting the relevant part of the sigma points: 

Zk+i\k ~ h [Zk+1\kJ - Z x

k ^ k (3.33) 

Particle filter approach 

Ini t ia l particle set xo is generated around the first val id G N S S fix. In each filter execution 

iteration, particles from the preceding pass are processed by the mot ion model which, 

s imilar ly to the U K F approach above, integrates the P D R data. A l g o r i t h m 2 lists the 

model steps that are executed on each particle: first, the control vector is sampled wi th 

mean value uk and covariance V given by the P D R data. The state is then extended wi th 

the control vector transformed into the fc-th state's coordinate frame by the already familiar 

transformation matr ix R{9) defined i n E q . 3.32b. 

A l g o r i t h m 2 P F / M C L motion model 

1: function M O T I O N M O D E L ( X j f c | f c , U F C , V ) 
2: uk <— uk + sample(V) 

3: Xj,fc+l|fc <~ x«,fc|fc + ^(xi,fc|fc) U A ; 

4: re turn x i ) f c + 1 | f c 

5: end function 

The second system-dependent part of the P F is the measurement model (Algor i thm 3) 

that produces a probabil i ty dis t r ibut ion function based on sensory information other than 

P D F , i n our case G N S S . 

A l g o r i t h m 3 P F / M C L measurement model 

1: function M E A S U R E M E N T M O D E L ( X j f c + 1 | f c , y f c + 1 , W ) 
2: wk+1\k <- gauss ian2D(x^ + 1 | f c - y f c + 1 , W ) 
3: return wk+i\k 

4: end function 

Particle deprivation avoidance One of the pitfalls of the particle filter is deprivation -

i.e. excessive reduction of particles spread wi th in the state space. Th is leads to underesti­

mat ion of the state uncertainty and effectively prevents measurement model from correcting 

the state dis tr ibut ion. Generally, deprivation is more l ikely to happen when the particle 

set is l imi ted. 

There are several options for particle deprivation prevention, ranging from simple to 

elaborate [16] - however, a l l of them i n principle generate addi t ional random particles 

to "inflate" the particle spread and allow the measurement corrections and resampling 

process to work. The easiest option is to s imply exaggerate the process noise; this option 

may, however, unnecessarily distrust the state. A smarter way, often called jittering or 
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X 

Figure 3.8: P D R data retrospective interpolation principle i l lustrated on two successive 
states xo and x i , where the latter is given by applying P D R control input u i n the reference 
frame of xo. Interpolated predictions for G P S and camera measurement integration are 
positioned between the two state l inearly depending on time. 

roughening, is to generate a fraction of the particle populat ion randomly independently on 

resampling results. The amount of random particles can be then controlled by system's 

trust represented dis t r ibut ion health. 

Systematic resampling has been selected - it performs well i n terms of covering the 

particles weights uniformly, also helping prevent particle deprivation. 

Mult i -rate data sources integration 

A l l sensor types intended for the local izat ion subsystem are by their nature non-continuous, 

periodic - they publ ish measurement updates wi th either a fixed rate ( G N S S , A H R S , cam­

eras) or even irregularly ( P D R ) . B o t h considered recursive state estimators, U K F and P F , 

however, need to apply the measurement update at the same time mot ion model has been 

predicted. W i t h P D R used in the role of the prediction mechanism, the filter loses its 

flexibili ty of computing the mot ion model at any instant, whenever sensory data arrive and 

are to be fused into the state estimate. 

In literature, there are various takes on the multi-rate / asynchronous sensors problem. 

In [85] and s imilar ly also i n [86], the authors propose usage of mult iple filters from which 

the final estimate is then fused; [87] uses a two-stage filter for a dual sensor configuration. 

Final ly , the solution described i n [88] proposes a Bezier-curve based filling of gaps between 

precise, low-frequency measurements. 
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There are i n principle two ways how this multi-rate synchronization problem can be 

solved in the realm of this thesis: 

• PDR extrapolation at t ime of G P S arr ival seems natural since P D R plays the role of 

prediction - this approach is often used when raw I M U data are to be fused [89]. 

• PDR retrospective interpolation to get A u for any t ime instant between the last and 

the current P D R occurrence. 

The second way has been chosen for the following reasons: first and foremost, P D R 

carries valuable information on the step-wise progress of pose; it would not be wise to 

compromise it by extrapolation. Second, a faithful dynamic mot ion model would be needed 

for the extrapolation, which is a complex task i n case of the hardly-predictable human 

locomotion. 

A s i l lustrated by F i g . 3.8, the interpolat ion is driven by P D R data reception: state xo 

is a result of P D R increment applicat ion at t ime to, state x i w i l l be predicted based on 

P D R data u that arrived at t ime t\. In between, measurements are buffered together w i th 

their respective t ime stamps (i.e. t G P S or £ C A M ) and processed in a batch upon P D R data 

arrival . The to ta l P D R pose increment u, applied to state xo i n its reference frame, it then 

part i t ioned into mult iple contributions A U J proport ional ly according to the t ime stamps of 

each measurement. 

3.2.2 N a t u r a l l a n d m a r k s for loca l i zat ion refinement 

B u i l d i n g on the G N S S - P D R fusion mechanism described above, natural landmarks ut i l iza­

t ion adds an addi t ional geo-referenced mechanism able to correct G N S S outages. Since 

there are no landmark maps readily available (as it is w i th the standard segment path 

maps), the landmark subsystem is divided into two phases, as i l lustrated i n F i g . 3.7: 

• Mapping phase happens typical ly once and is needed to be done for each part of 

the environment where the landmark augmentation should be available. It is done 

retrospectively off-line based on logged data and its output is a feature map allowing 

subsequent local izat ion against it . 

• Localization phase is than the real use of the landmark feature map to improve pose 

estimates - and is performed on-line wi th in the recursive state estimation framework 

of choice. 

B o t h the detector and descriptor based on S U R F has been selected for the natural 

landmark aided localizat ion applicat ion - providing the best compromise between feature 

matching and computat ional performance; patent l imitat ions are not restricting the aca­

demic, non-commercial employment. 
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M a p p i n g phase 

The mapping phase is designed to be executed retrospectively on logged data to allow 

global ly-optimal estimates to be established - opposed to real-time estimation working 

only wi th data known up to the specific instant. The structure si i l lustrated i n the left part 

of F i g . 3.7; the process progressively goes through stages described below. 

Firs t , reference route trajectory is established as a posit ion ground t ru th (T). The 

source of the reference data are coordinates of a path segment extracted from the segment 

map; local Cartesian coordinate system is assumed for a l l position-related operations. The 

representation is s imply a vector of coordinates without heading or t ime information: 

x route 
XQ Xl XN 

_VN_ 

- I - I T 

(3.34) 

This point-wise trajectory is then used to bu i ld a t ime-driven interpolation function 

producing continuous position reference based on log time (2). F i t t i n g of reference posi­

tions to t ime axis is accomplished using the P D R data - the cumulative sum of distance 

increments is taken as progress measure wi th in the reference trajectory, assuming the start 

and end positions are corresponding between the P D R and the reference route: 

. P D R 

jref 

j P D R 

ircf 

N 

E I I A X ; 

M 

P D R 

E ll ref „ref 
l l x i i-l\ 

i=l 

[do d\ ... (IN] where dk = ^ || P D R /ref 

i=0 
A; 

DPDR 

[do d\ . . . d/v] where dk = ^ | | x I e f ~~ x i - i 
i=0 

l P D R . P D R ^ K ( t ) = i n t e r p ( t ^ t t , d c u m 

x r e f ( t ) = i n t e r p ( d - f

m , x r e f , d ™ R ( t ) ) 

(3.35a) 

(3.35b) 

(3.35c) 

(3.35d) 

(3.35e) 

(3.35f) 

Firs t , the cumulative sum of P D R posit ion increments dcor is computed, assigning each 

P D R log time t P D R a distance; correction based on tota l length of summed P D R and 

reference path is applied in E q . 3.35c. A time-continuous distance function is buil t by a 

simple linear interpolation over points of d^J^-. This distance is then used as input i n the 

second interpolation - "converting" reference distance to the final posi t ion reference x r e f . 

Similarly, reference of roll, pitch and yaw angles £ r e f (£ ) , where £ = [4> 9 tp], is determined 

to provide time-continuous waveform (3). The same mechanism involving cumulated P D R 

posit ion increments as in E q . 3.35 is used; instead of using d ^ f

m and x r e f for the second 
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interpolation, A H R S - d r i v e n reference positions and att i tude information are employed. De­

pending on the used A H R S sensor and its drivers, a conversion to E u l e r / T a i t - B r y a n angles 

according to E q . 3.7 may be needed. 

Landmark detection in camera image is then the next step to be performed (4). The 

aim is to find regions of interest i n subsequent images that correspond to observations of 

the same natural landmark and group these into sequences for further processing. The pro­

cess encapsulated wi th in function de tec tLandmarks is captured in A l g o r i t h m 4; executing 

r u n D e t e c t i o n twice adds robustness by allowing up to one missing observation. 

A l g o r i t h m 4 Na tu ra l landmark detection and grouping 

1: function D E T E C T L A N D M A R K S ( i m a g e s ) 
2: for each camera image do 
3: landmarks <— runDetect ion (previous img, current img, landmarks) 
4: landmarks <— runDetect ion (2 n r f previous img, current img, landmarks) 
5: end for 

6: for each landmark do t> prune landmarks wi th too few observations 
7: if landmark observations num < threshold then 
8: remove landmark 
9: end if 

10: end for 

11: return landmarks 
12: end function 

13: function R U N D E T E C T l O N ( i m g l , img2, landmarks) 
14: f l <- de tec tSURFFeatures ( imgl ) 
15: f2 <- detectSURFFeatures ( img2) 
16: matches <— matchFeatures(f l , f2, numBest) 

17: for each match do 
18: landmarks [match] (feature, location, imagelD) 
19: end for 
20: end function 

The final and most important step is localization of detected landmarks w i th in a 2D 

map (5). The processing is done for each landmark observation sequence independently: 

operations for a single sequence are given by E q . 3.37. Observations are formed by pixel 

posit ion of the identified feature i n part icular i m a g e 1 1 - so that the first task is to convert 

the pixel posi t ion x to angular deviat ion from camera opt ical axis Aip\, using idealized 

pinhole camera model w i th focal length / expressed in pixels by E q . 3.36a from camera 

horizontal resolution w and field of view (fiw: 

1 1 This section assumes the image distortions have already been rectified by intrinsic calibration chain 
described in section 5.1.3. Also, the camera images need to be corrected according to current roll or pitch 
estimate, depending on the camera placement. 
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(3.36a) 

(3.36b) 

(3.36c) 

(3.36d) 

(3.36e) 

where vector c connects focal point and center of image plane and vector x points from 

focal point to the landmark's projection to x axis. The angular deviat ion Atp\ expression is 

based on definition of dot product a -b= | | a | | | | 6 | | cos6>, where 9 is the angle between a and 

b. F inal ly , the globally-referenced yaw angular posi t ion ip\ of the landmark is determined 

by using the current yaw of the camera p l a t f o r m 1 2 £f e f (£), relative heading of the part icular 

c amera 1 3 Atpc and the landmark angular deviat ion from the camera image a x i s 1 4 . 

After yaw has been determined for each landmark, a measurement vector is assembled 

containing a l l observations and respective reference pos i t ions 1 5 from which the observation 

was made; refer to F i g . 3.9 for an example si tuation. In a real-world application, the 

observations w i l l not be exact and the landmark posit ion needs to be found by non-linear 

least-squares opt imizat ion - generally, this corresponds to the problem of finding the point 

x of configuration space 9\n, corresponding to the residual point r ( x ) i n observation space 

9V1 closest to the origin [90]. In our case, posit ion of landmark in 2D map is sought 

for, i.e. n = 2; the observation space dimension m is driven by the part icular number of 

each landmark observations. The following equations lay foundations for the opt imizat ion 

process: 

y 
rj(xi) = - tan(V>i,j) (3.37a) 

X j Xi 

r (x i ) = [ r i (xi ) r 2 ( x i ) . . . rm(xi)]T (3.37b) 

x i = argmin || r ( x i ) | | 2 (3.37c) 

Determined using corrected A H R S data, see the implementation chapter for details. 
1 3 Intuitively, front camera has zero relative heading, left camera is positioned at right at — -| and rear 

at TV radians. Consult section 5.1.3 for details on determining exact relative headings through the process 
of extrinsic calibration. 

1 4 T h e term A ^ i needs to be subtracted since the image coordinate system is defined counter to the 
oriented angle direction. 

1 5 Cameras are in fact positioned off the pedestrian's longitudinal axis, so that a time-invariant camera 
position compensation A x c needs to be added to the reference position x r e f (£) for each camera separately. 
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Figure 3.9: A n example of three slightly inaccurate observations of a landmark denoted by 
the sign + , a l l using left camera so that Atpc = § for a l l points. Dash-and-dot lines are 
camera image axes, solid lines represent determined observation direction of the landmark. 

where 5q = [x\ y\] is the estimated landmark posit ion and residuals rj(xi) corresponding 

to each observation are assembled into the residual vector r(xi). Important for successful 

convergence is the choice of the in i t i a l estimate; a simple yet robust solution has been chosen 

by intersecting the outermost observation directions - the resulting point is then used as 

the in i t i a l estimate. After the argmin search is done, the resulting value of the objective 

function /(xi) = || r(xi) | | 2 is evaluated as a measure of observation quali ty - i n case of too 

high a value, the landmark is completely discarded. 

After determining the landmark posit ion for each of the observation sequences, a map 

is assembled from the "surviv ing" ones; each landmark is represented i n the map by its 

estimated position xi, the estimation quality /(xi) and a set of the SURF features for 

future m a t c h i n g 1 6 . 

Localization phase 

Blocks of the "forward" use of natural landmarks identified i n camera images constitute 

right part of F i g . 3.7 - it can be seen that sensory data sources are ut i l ized to s imilar benefit 

in this phase, however, by using on-line recursive state estimation rather than retrospective 

evaluation. 

Each feature is accompanied by the position from which is was observed - this helps to filter visible 
landmarks in the localization phase, see below. 
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The first task is to extract natural landmarks from the current camera image and match 

them to the feature map (6). A l g o r i t h m 5 lists the operations needed; the line 3 is worth 

noting - a filtering of the map's features to be matched is performed, preferring near-

observed ones. The result of function e x t r a c t L a n d m a r k s is then a subset of the map wi th 

visible landmarks, and also a metric of how each match is believed to. 

A l g o r i t h m 5 Na tu ra l landmark extraction and matching w i t h map 
l : function E X T R A C T L A N D M A R K S (image, map) 
2: f l detectSURFFeatures ( image) 
3: f2 observable map features near current posit ion 
4: matches <— matchFeatures(f l , f2, numBest) 

5: return map matches, match scale 
6: end function 

Once the landmarks have been matched to the map, relative observation angles towards 

them are determined s imilar ly to the process described by E q . 4 (7). The difference lies 

in the last step E q . 3.36e - the term ^f e f(t) is not used since only the bearing wi th in 

pedestrian-centric coordinate system is needed: 

A i / f = AV>C - A i / f (3.38) 

Integration into the recursive state estimation framework is done intui t ively through 

the measurement vector and appropriate measurement vector (8). The landmarks are con­

sidered independent, bearing-only and wi th known correspondence [16]; [74] describes a 

similar scenario wi th bearing-only infrared beacons fused into pose estimates by means of 

E K F framework. For further work wi th the landmarks, U K F approach has been selected -

its simpler representation and deterministic behavior proved easier to design wi th . 

The measurement vector is formed s imply by stacking as many relative observation 

angles A I / J J ^ as there are matched landmarks wi th in the current camera image. Since the 

landmarks are considered independent, the respective covariance mat r ix is diagonal, w i th 

non-zero items based on inverse value of the map match scale: 

A V f t AV>°i 

l 

W = A 
scaleo 

1 
scaleQ • 

(3.39a) 

(3.39b) 

where o is the number of matched observations and A is a scalar constant needed to 

scale the range of inverse match scale to the measurement uncertainty. 
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The last step is preparation of the measurement model - the non-linear function h 

that transforms the state into the output vector. In terms of U K F framework we need to 

transform the re-generated state sigma points Zk+i\k hito the output sigma points -2fc+i|fc; 

compared to E q . 3.24, a new parameter is the current map of matched landmarks corre­

sponding to the measurement vector y. The modeled relative observation angle to each 

visible landmark Ai/>™ is computed from the current system state's posit ion components 

and the landmark posit ion gained from the map. 

i j = arctan2(xj / 
cry A i ?x 

'fc + l | f c ' A l fc + l|fcJ 

fe+l|fe: X l 1.0 1,0 

(3.40a) 

(3.40b) 

where X j is a matr ix consisting of the landmark positions 5q for each of the o matched 

landmarks. Note that a l l operations working w i t h sigma points -2fc+i|fc a r e 1 1 1 f a c t doing 

the operation on the 1 + 2n set of sigma points. 
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Chapter 4 

Path Planning 

The path planning and obstacle avoidance topic is rendered according to the very same 

principles as the local izat ion subject was presented i n the preceding chapter. Bu i ld ing on 

the overview given by an analyt ical introduction, part icular solutions are proposed i n the 

design section. 

4.1 Analysis 

Similar ly to the appl icat ion in mobile robotics, navigation subsystem is responsible for gen­

eration of motion instructions op t imal for reaching the goal. Specialization to the "human 

chassis" means both drawbacks and advantages: al though the human can only process a 

l imi ted amount of data, is i n return able to understand much more complex and meaningful 

instructions. 

Information mediated to the user can be divided into two layers, alongside w i t h the 

planner responsibili ty divis ion introduced below: 

• High-level data. Richer meaning issued at lower frequency - an output generated 

based on the global path plan and complex features of the map. Such is e.g. an 

instruction to cross a junct ion, go 100 m straight or follow tactile paving. 

• Low-level data. Commands that need urgent reaction but do not carry complex infor­

mation. The local path execution outputs fall into this category and are comprised 

of such primitives as straight motion, left or right turn. 

The goal of this responsibility division is important : to convey enough instructions for 

successful and safe path plan execution, while leaving the V I users' senses as free as possible. 

Th is is greatly important i n the case of the only long-range sense available to the sightless 

- the hearing - since it is their only mechanism of danger prediction. 
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4.1.1 G l o b a l p a t h p l a n n i n g 

The first task of the developed system requested by the user is an assessment of the route 

to be traversed. Based on the actual locat ion and the chosen target to be reached, the path 

planning mechanisms are responsible for assembly of a path plan - an ordered sequence 

of pa th segments that connects the start and destination, chosen according to suitable 

opt imal i ty criteria. This k ind of functionality is often referred to as discrete planning (the 

state space is not continuous). 

The main input of global planning layer is intui t ively a map - and, unlike the feature map 

introduces for landmark localizat ion, this map is in essence very similar to what cartography 

deals w i t h - a system of roads, sidewalks or generally path segments interconnected by 

junctions. Secondly, global planner may take advantage of other k ind of information as 

well, which are l ikely to improve the path plan according to defined metrics, e.g. public 

transport timetables, list of road closures and so forth. 

M a p as a weighted graph 

One of the objects of study in the field of discrete mathematics is the graph theory, which 

provides a useful formalism for topological map representation and work wi th . Computer 

science then builds on this foundation wi th the focus on graph-driven state space search, 

which is already direct ly applicable to path planning problems. Let us introduce necessary 

primitives first. 

A graph G = (N, E) is an ordered pair constituted by a set of nodes N and a set of 

edges E. Individual edges are then two-element subsets of N; i n case the graph is defined 

as directed (edges have orientation, arrows) then the subsets are ordered, which is the usual 

case of map representations. In our case, a weighted graph is of part icular interest: such 

graph introduces a numeric value w: E —>• M + to denote a certain quali ty of each edge: 

graph search methods then use the weights to find the op t imal path. 

Basic operations on a graph In terms of graph search, there is an in i t i a l node where the 

path starts and a target node which we want to reach; they are interconnected by a directed 

weighted graph. A t the beginning, only the in i t i a l node has been visited; gradually, certain 

neighboring nodes (i.e. those direct ly connected through edges) are explored by expanding 

the nodes, i.e. extending the path to them. 

To keep track on which node has already been rejected and which is s t i l l to be visited, 

two mechanisms are commonly used: first, priority queue is suitable for storing nodes that 

should be expanded next; second, sets without order information are used to store graph 

nodes that have already been evaluated to some extent. 
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G r a p h search algorithms 

Graph or state space search has l ikely been one of the most popular algori thmic topics 

among CS / IT- r e l a t ed syl labi . Because of this omnipresence, the description hereinafter 

w i l l be restricted to a few paragraphs only without reprinting complete algorithms; dear 

reader is k ind ly asked to find details i n the cited sources. 

Generally, the methods can be divided to uninformed and informed - the former group 

traversing the graph without any "navigation" towards the target node; such algorithms 

are of l i t t le interest to this thesis. The latter group of informed methods then generally 

work by evaluating cost function f{n) on the last node n of each generated path which, 

depending on the part icular algori thm, helps to find path close to op t imal as efficiently as 

possible (expanding m i n i m u m number of nodes). 

A * Introduced by [91], A * algorithms is the most flexible from the " t radi t ional" deter­

minist ic informed methods - its cost function f(n) that is minimized dur ing path search is 

composed of the up-to-now price g{n) and estimated cost h(n) from node n to target. Th is 

arrangement allows to vary the proport ion between path opt imal i ty and search efficiency, 

just by changing the proport ion between the two components: 

f(n) = g(n) + h(n) (4.1) 

The first part is deterministic - since we have already expanded the path from start 

to node n , we know the cost exactly. O n the other hand, the second part is heuristic and 

needs to be estimated based on each part icular application; in map planning, Eucl idean 

or Manha t t an metric from node n to target are typical ly used. A n important aspect here 

is admissibility of the heuristic h(n), meaning that it does not overestimate the cost - i f 

satisfied, A * w i l l always return opt imal path. 

Dijkstra, Greedy Best First Search These two algorithms can be perceived as a 

simplification of A * ; the Dijkstra 's a lgori thm [92] only uses the cost function g{n) and thus 

always finds the opt imal path, al though wi th a big overhead of many expanded nodes. 

Greedy B F S by contrast works only w i t h the heuristic h{n) which pushes it aggressively 

towards the target, but it may lead to a sub-optimal path. 

High-level navigation instructions 

Once a path plan is prepared, the pedestrian needs to be properly instructed to be able 

to follow i t . W i t h respect to the common sat-nav devices, t iming and contents of the 

instructions determine usabil i ty and safety substantially more — the V I person does not 

have means to correct potential shortcomings of the instructions. 
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Human-oriented design is an apt candidate for soft computing methods ut i l izat ion, 

including fuzzy logic [93], neural networks [94] or probabil ist ic logic [95], mostly sharing 

their roots i n the Dempster-Shafer theory [96, 97]. Fuzzy logic [98, 99] has been known 

to be able to achieve a "human-like" experience of the navigation subsystem instructions. 

In [100] and [101], examples of fuzzy-powered applications are given wi th the a i m of being 

human friendly. 

Types of announced information In the relevant literature, an abundance of proposed 

instructions for a visually impaired user can be found. Representatively, [102] and [103] 

introduce 13 different types of guidance functions based on various arrangements of the 

path segments and junctions and situations the V I pedestrian may encounter. Inventing a 

custom instruct ion methodology would be an interesting but exhausting research topic on 

its own - for the implementation, a subset of the referenced studies is to be used. 

4.1.2 L o c a l p a t h p l a n n i n g 

W h i l e the high-level global path planner works discretely wi th a segment-granularity, an­

other layer is needed to perform continuous navigation wi th in each segment. The global 

planner also i n principle does not need a precise pose information from the underlaying 

localizat ion subsystem: immediate motion corrections are commanded by the local planner 

to keep the user on route. 

The field of autonomous mobile robotics offers many inspirat ional approaches on this 

subject - local planning is a necessary part of robot control routines i n nearly a l l cases 

(which, for example, does not hold true for segment-like planning). A n overview of such 

methods can be obtained by s tudying any of the cited robotic "Bib les" [16, 17, 18]; let us 

consider only those conforming to requirements given by the pedestrian applicat ion. 

To establish a reference of local planning functionality, let us consider the potential fields 

method - in essence gradient maps or vector fields that define a direction of mot ion for each 

point of a certain neighborhood around the current posit ion [104]. The gradient is chosen 

in a form of potential function U : W71 —>• M by adding attractive (target) and repulsive 

(obstacle) potentials [18]. The direction is then generated by means of the gradient descent 

method, i.e. following — VJ7 . A significant benefit of this method is its flexibili ty - an 

arbitrary number of potentials can be used to express obstacles or preferred segment shape. 

The human who interprets instructions of the local planner is obviously intelligent in 

the sense that the instructions do not need to be as exhaustive compared to the applicat ion 

i n robot ics 1 . The human user is also able to solve unexpected situations. The output of the 

local planner is thus expected to mainly indicate the direction to follow the segment shape. 

1 I n robotics, the chassis typically does not possess any decisive authority, so that al l control must come 
from the local planner - motion speed and turn radius as the very minimum. 
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A simpler arrangement can be then considered, expressing only the segment course, 

which is sufficient especially when obstacle avoidance is solved by the pedestrian themself 

(see below). In such case, a simple yet effective direction instruction engine can be obtained 

by point ing to a point ly ing on the segment slightly ahead (typically a few meters [14]). 

Low-level navigation stimuli 

Similar ly to the global planner, also the local one needs a proper user interface channel able 

of conveying directions to the user. A s pointed out at the beginning of the chapter, these 

low-level data are simple but frequent - while segment length can be announced once per 

tens or hundreds meters, the pedestrian's heading may need step-wise corrections. 

This topic has been discussed i n relevant literature. The authors of [105] compared 

haptic and auditory bearing-only indicators, working wi th a tolerance of ± 1 0 ° for on-

course or off-course signals; haptic and audio signals are rated on par w i th the remark 

that the haptic mechanism can be used even by deaf-blind users. The study [106] results 

in preference of the haptic interface and strongly argument against overuse of the audio 

channel. 

Investigating the haptic interface further, single- or double-transducer arrangement is 

commonly proposed and evaluated; the cited papers differ i n complexity of information 

expressed. Star t ing wi th [105] which only indicates "wi th in ± 1 0 °" or "outside ± 1 0 °" binary 

information and ending wi th [107] conveying side and magnitude of heading deviation, bo th 

solutions use single vibratory channel. A simplified scheme is proposed by [108], inspired by 

a notional radar screen and also able to express both the side and magnitude components. 

4.1.3 Obs tac l e avoidance 

The task of obstacle avoidance is composed of two stages: first, the obstacle needs to 

be detected, which is par t ia l ly responsibility of proper sensory equipment and suitable 

data processing. Second, detected obstacles need to be registered by the path planning 

subsystem; usually, only the local planner deals directly w i t h obstacles - when avoidance 

is not possible, the responsibili ty is shifted to the high-level navigation layer which marks 

the segment as non-traversable and finds an alternative route. 

W h i l e the second task can be, w i th some intentional simplification, considered just a 

matter of proper algori thmizat ion, sensing an obstacle is not always straightforward. Let 

us begin by defining what actually is an obstacle for a V I pedestrian: intuitively, any 

object i n the trajectory that the pedestrian can collide w i t h can be considered an obstacle. 

However, the collision may not only occur as a frontal crash - equally problematic are 

smaller environment features like curbs, sewers, drains and even unexpected pavement 

unevenness; a l l these elements are l ikely to make the pedestrian stumble. W h a t is worse, 

however, is that such features are often very hard to sense and distinguish from sensor 

noise. 
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It is not the objective of this thesis to enumerate a l l possible sensory principles that 

could detect some k ind of an obstacle; obstacle detectors l ikely constitute vast majori ty of 

sensors used i n robotics. Nevertheless, no robust wearable sensory technology was found 

which would reliably detect even smal l terrain irregularities, that may yet lead to a stumble 

and potential injury. For this reason, it was decided to suspend design and development 

efforts on this topic and assume further employment of the white cane for obstacle detection. 

Otherwise, an inherently unsafe subsystem for a user would be designed which is not worth 

the efforts. 

4.2 Design 

B u i l d i n g on the path planning analysis, this section explains part icular design principles 

applied to solving the path planning problems; it is again divided along the g lobal / loca l 

borderline. 

4.2.1 G l o b a l p a t h p l a n n i n g 

The responsibili ty covered on the global level is twofold: first, an op t imal segment path 

plan needs to be found, and second, the user needs to be instructed properly to execute 

this plan. 

Cri ter ia for pedestrian path planning 

The analyt ical section has introduced three applicable algorithms commonly ut i l ized i n map 

search applications. The first design decision is the following choice: the A * algori thm has 

been selected, since it forms a superset of both Di jks t ra and greedy B F S , and can easily 

descend to both these forms just by zeroing proper part of the cost function. Because the A * 

algori thm is well known, the description here w i l l be l imi ted to what is application-specific: 

the cost function. 

Cost representation A n important realization is that the path planning in scope of this 

thesis is focused on, to certain extent, soft and subjective matter - easiest path for the V I 

pedestrian - rather then well quantifiable problems of shortest or fastest route. Weight of 

an edge in map/graph has to, however, correspond to a numerical measure; quantification 

is thus inevitable. 

The essential decision is to base the costs on distance rather than t ime of traversal 

(which is the common default path opt imal i ty metric of consumer "sat-nav" systems). The 

rationale is that the pr imary a im is to make the route as safe and easy as possible, which 

is intui t ively related to total distance the pedestrian has to cover; t ime demands can be 

perceived as secondary [109]. 
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Cost from start The exact part g(n) of the cost function is evaluated determinist ically 

and influences opt imal i ty of the resulting path plan. 

g{n) = g{n — 1) + w(E(n — 1, n)) 

w ( e ) = n ^ f c ™o(e) + ^2 6k 

(4.2) 

(4.3) 
r / A 

w0(e) = < 

A p t | e 

A s I e| 

when e is public transport 

when e is sidewalk 
(4.4) 

A s t |e when e is staircase 

when e is intersection wi th k lanes 

Apt < A s < A s t < < A; (4.5) 

where E{n — 1, n) selects edge e leading from node n — 1 to node n, \e\ stands for length 

of edge e and A coefficients allow tuning of the rules i n terms of their impact on the planned 

path. Addi t ional ly , there is the set T of mult ipl icat ive and set A of additive coefficients to 

express supplementary knowledge types that influence resulting cost of the edge, i n case 

they are found tagged on the edge: 

• dangerous spots are penalized addit ively for each such spot by contributions 6d 

• tactile pavement is rewarded mult ipl icat ively by coefficient 7 t , in proport ion to its 

relative length against current edge length 

• acoustic signal at intersection is rewarded mult ipl icat ively by coefficient 7 a 

Mult ip l i ca t ive reward here means decreasing the cost, satisfied when 7$ < 1. 

Heuristic The estimated cost of t ransi t ion from the current node to the target cannot 

be determined based on such deterministic rules as introduced above; at the t ime of node 

n expansion, the details on the route continuation are natural ly not yet known. The main 

criterion here is admissibility of the chosen heuristic, to not jeopardize solution optimality. 

Eucl idean distance from the current node n to the target node t: 

The tuning coefficient Ah has been introduced to facilitate adjustment of mutua l im­

portance between g{n) and h{n) - or, how important the heuristically dictated direction 

towards target node is, compared to the exact cost of the current node. In the t r iv ia l case 

of Ah = 0, the A * algori thm degrades to Di jks t ra . 

h{n) = Ah | | i — n (4.6) 
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High-level instructions generation 

Based on the reasoning stated i n the analysis above, fuzzy logic mechanisms have been 

selected to support the high-level message generation mechanism intended to inform and 

instruct the user about complex eventualities, mostly related to the segment map: shape 

of the actual segment, where to go on a junct ion, whether and which potential s tructural 

aids are currently usable (see Chapter 1 for overview) and so forth. 

Fuzzy logic mechanisms have been applied to these aspects of the generation process: 

• Suitable instructions selection. Instructions are selected from the database based on 

evaluation of the activation conditions i n the form of fuzzy if-then rules [110]. 

• Proper timing of the selected instructions. Dr iven by a set of fuzzy conditions, par­

t icular instruct ion execution can be planned wi th respect to distance or t ime point 

wi th in the current path segment. 

• Determination of instruction priority. A g a i n , based on if-then rules, the instruction 

can be priori t ized according to any of the defined linguistic variables. 

• Evaluation of linguistic variables inside the instruction. Variable placeholders inside 

the predefined instructions can be replaced by a linguistic or defuzzified value. 

A similar approach of fuzzy act ivation conditions has been ut i l ized i n [111] for high-level 

behavior control of an autonomous mobile robot. 

Linguistic variables Cent ra l to the idea of fuzzy instructions generation is ut i l iza t ion 

of l inguistic variables - i.e. variables whose values are formed by words in natural language 

[112, 113] - to enable human-readable instruction rule database establishment. The basic 

linguistic variables defined for the instruct ion generator purposes are listed i n Table 4.1. 

A m o n g the most important LVs is the current segment length (segmentLength) and 

user's posit ion wi th in the segment (distance walked from its start point, expressed by 

variables dis tanceOnSegment and d i s tanceOnSegmentRel ) . The membership functions of 

these two selected linguistic variables are shown in F i g . 4.1. It can be seen that the segment 

length is introduced in a "logari thmic" manner that corresponds to usual b inning of urban 

segment lengths (function "large" continues to infinity). O n the other hand, the relative 

version of the user's distance on segment (d is tanceOnSegmentRel) part i t ioned uniformly 

allows one to plan execution of an instruct ion based on user's advance on the segment 

independently on segment length. 

If-then rules and inference Instructions hold three different rule sets: act ivat ion con­

ditions, t iming and priority. The syntax of each condit ion is fixed to the following format: 

if LV1 is <hedge> MF1 [and/or LV2 is <hedge> MF2 ...] then LVN is <hedge> MFN 
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where LVx and MFx is l inguistic variable w i th its respective membership function name, 

<hedge> is a placeholder for potential hedge modifier and the part i n square brackets 

contains the second to N - t h sub-expression. The below excerpt from a segment length 

announcement demonstrates the inherent clar i ty of fuzzy-based linguistic formulation: 

if segmentLength is zero or segmentLength is small then activation is denied 

if segmentLength is not zero and segmentLength is not small then activation is allowed 

Mamdani ' s inference system is then used to evaluate the rules and after the inference 

mechanism execution, output variables can be defuzzified and processed. In case of the 

a c t i v a t i o n result quoted above, the defuzzyfied value is thresholded to prepare it for 

Boolean logic that follows. 

T i m i n g conditions of the instructions whose activation conditions have been met are 

periodically evaluated and when also met, the instruct ion is prepared for execution and 

sent to the audio module. The preparation includes inference of the pr ior i ty value and 

evaluation of variable placeholders. 

E x a m p l e To illustrate the functionality, let us define the following instruct ion rules (ob­

viously, in implementation, the message contents need to be significantly richer) - the 

conditions have been str ipped from the i f - t h e n clause for easier orientation: 

ID Content Activation condition Instant 
1 Continue straight. headingDif f is zero distanceOnSej jment is zero 

segmentType is sidewalk 
2 Turn to {headingDiff}. headingDif f is not zero distanceOnSej jment is zero 

segmentType is sidewalk 
3 Use the crosswalk. segmentType is crosswalk distanceOnSej jment is zero 
4 Go {val(segmentLength)} segmentType is not distanceOnSej jment is small 

meters. crosswalk 

Addi t ional ly , consider the following path segments: 

• segment, segmentType = s i d e w a l k , segmentLength = 100 m (fuzzified as l a r g e ) , 

h e a d i n g = 45° 

• junct ion 

• segment, segmentType = s i d e w a l k , segmentLength = 60 m (fuzzified as medium = 0.67, 

l a r g e = 0.33), h e a d i n g = 130° 

A s soon as the user is at the beginning of the second segment, the system evaluates 

the instructions: I D 2 and 4 w i l l be activated. I D 2 synthesis w i l l be scheduled to the 

very start of the segment, and the placeholder { d i r e c t i o n } w i l l be replaced wi th the word 

"left" corresponding to the linguistic expression r i g h t (which w i l l be chosen for the heading 

difference of 90°). I D 4 w i l l be scheduled shortly after segment start, and the placeholder 

{ v a l ( s e g m e n t L e n g t h ) } w i l l receive an approximate segment length (it is not wise to flood 

the user w i t h overly exact numbers). 
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Table 4.1: Overview of basic l inguistic variables defined for the instructions generator. 

Variable name Meaning Values 
segment Type Classification of the current seg­ sidewalk, crosswalk, 

ment road, stairs, .. . 

segmentLength Total length classification binning zero, small, medium, 

large 

distanceOnSegment Current absolute distance from zero, small, medium, 

segment start large 

distanceOnSegmentRel Relative and uniform position on start, firstHalf, 

segment middle, secondHalf, 

end 

headingDiff Difference of current and last seg­ negativeLarge, 

ment orientation, indicating direc­ negativeMedium, 

tion of turn negativeSmall, zero, 

positiveSmall, 

positiveMedium, 

positiveLarge 

40 50 
segmentLength 

(a) 

G.4 0 5 G.B 
distanceOnSegmentRel 

(b) 

Figure 4.1: Visua l iza t ion example of used linguistic variables: (a) segmentLength and 
(b) d i s t anceOnSegmentRe l . Trapezoidal membership functions used. 
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[x* X*] 

Figure 4.2: O n the principle of local path planning based on heading correction. 

4.2.2 L o c a l p a t h p l a n n i n g 

Not considering the obstacle avoidance to be employed i n the system, more complex local 

path planning methods are not justified. The simpler approach determining heading cor­

rection based on current segment's waypoint ahead has been selected. A s F i g . 4.2 depicts, 

the functionality is comprised of the following steps: 

1. find point A by perpendicular projection of posit ion component of state x to the 

segment, 

2. move along the segment iV meters forward and find the point B , 

3. compute heading update to a i m to point B : A6> = a rc tan2(y B — x y , xB — x z ) — x61, 

4. send A9 to user interface for execution. 

Low-level haptic instructions 

Based on the analysis of applicable user interface mechanisms for conveying the real-time d i ­

rection commands, haptic interface consisting of a pair of v ibra t ing wristbands is proposed. 

The following instructions can be then handed over to the user: 

• continuous vibra t ion of one element - direction change command wi th v ibra t ion in­

tensity dependent on heading error magnitude, 

• continuous vibra t ion of both elements - stop instruction, 

• pulsing vibra t ion - obstacle detected on the side or i n front of the user (both elements 

pulsing). 
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Chapter 5 

Implementation 

For the research and development purposes, a two-phase experiment scheme was chosen: 

firstly, only raw sensory data are gathered without being processed on-line; the processing 

is then done off-line, outside the wearable platform. This approach is quite standard i n such 

conditions since it brings a range of advantages: the processing pipeline is not restricted 

by real-time constraints (evaluated algorithms need not be str ict ly optimized), more im­

portant ly s t i l l , a mult i tude of approaches can be exercised and compared on exactly same 

inputs. 

In this chapter, the architecture and important details of the data gathering and process­

ing mechanisms are described. Star t ing wi th the wearable platform execution, characteris­

tics of the employed sensory equipment and other specific instrumentation, the description 

continues wi th the data processing environment introduct ion. Final ly , the relevant imple­

mentation details are given on the two main topics of local izat ion and navigation. 

Figure 5.1: Sketch of the wearable platform main components; foot-mounted P D R I M U 
not visualized. 
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5.1 Wearable platform 

5.1.1 F i r s t generat ion 

In other to gather first data for the research on processing methods, the first-generation 

wearable platform ( G l ) was established. Based on a L o a d Bearing Equipment ( L B E ) sys­

tem, it featured variable fixation points making the in i t i a l experiments easily reconfigurable. 

Figure 5.2 provides front and rear view on the arrangement (without cameras mounted). 

Sensory subsystem was conceived quite generously i n terms of custom development: 

starting wi th the cr i t ica l component, inert ial measurements unit ( I M U ) . Depicted in F i g . 5.3, 

the device was boasting a 9 D O F 1 measurement setup needed for implementat ion of a P D R 

or A H R S sensor. The G N S S localizat ion source was represented by a module wi th the 

LS20031 receiver, capable of a 5 H z S B A S / E G N O S - e n h a n c e d operation. F ina l ly , four M i ­

crosoft L i f e C a m HD-3000 cameras wi th fixed-focus opt ics 2 and 1280x720 px max ima l reso­

lut ion at 30 fps. A m o n g other devices of the "webcam" consumer range, it features quite a 

wide field of view (68.5° diagonally) and advantageous 16:9 ratio. 

Computational platform was selected wi th a broad range of industr ia l communicat ion 

ports in mind; P M - P V - D 5 2 5 1 i n the P C / 1 0 4 + format includes the dual-core Intel A t o m 

D525 @1.8 G H z , 1 G B of D D R 3 memory and a robust Compac tF lash non-volatile storage 

module. The most powerful expansion interface is the on-board industr ia l P C / 1 0 4 + socket 

- at early design time, the matching n D e p t h ™ real-time stereo vision system [114] was 

foreseen as an auxi l iary sensor for obstacle detection purposes. 

Software platform was designed in a s t r ic t ly modular way, using the great L C M 3 l ibrary 

[115] as the inter-module communicat ion backbone running on the standard Debian system. 

The ma in paradigm (also shared wi th the current platform, see below) has been abstrac­

t ion of part icular data source technological details from the logical content - so that each 

component of the system can be replaced by a different type that, however, implements the 

same interface. Since a l l data were transferred over L C M channels, the l ibrary 's generic 

tool ing was heavily ut i l ized for data logging and log playing. Th is inherent data processing 

mechanism enables great flexibility i n system development and operation - modules above 

the driver layer basically do not know whether the processed data are live or played from 

a log file. 

1 Degrees of Freedom 
2 F i x e d focus is preferable to automatic focus in outdoor employment: the usual sensing distances are 

well within the always-sharp range of approx. 0.5 m to infinity common for devices wi th a small sensor and 
high depth of field. 

3 L C M : Lightweight Communications and Marshalling was originally developed by the Talos team as the 
core of their D A R P A Urban Challenge autonomous vehicle. 
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Figure 5.2: First-generation wearable platform, front and rear view, w i th the camera sup­
port frame detached. 

Figure 5.3: Cus tom Inertial Measurement U n i t developed to support the first-generation 
wearable platform. Features the A D X L 3 4 5 accelerometer, the ITG-3200 gyroscope and 
the H M C 5 8 8 3 L magnetometer, together w i th a Freescale D S C for efficient on-board data 
processing; able of operation at sampling rate of 200 H z . 
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5.1.2 Second generat ion 

The second and current generation (G2) of the wearable platform was prepared to improve 

both mechanical and computat ional parameters of the original design. 

Mechanically, the biggest difficulty of the G l r ig 

was its soft construction, w i th the camera platform 

holding to the L B E vest i n a flexible manner; this 

complicated "wilder" manipulat ion wi th the system, 

such as is needed i n order to perform magnetometer 

cal ibrat ion (performing rotations about a l l axes) or 

extrinsic camera cal ibrat ion. The second generation 

is then formed by a stiff modular plate that a l l equip­

ment is fixed to - and which then connected to the 

L B E i n an easily disassemblable manner as can be 

seen in Fig.5.4. 

A progress has been made also i n terms of the 

host computer; the original industr ia l single-board 

computer ( S B C ) was replaced by a more potent and 

recent N V I D I A Jetson T K 1 platform featuring ro­

bust on-board e M M C non-volatile storage as well 

as modern, high-throughput buses as Gigabi t E t h ­

ernet, U S B 3 . 0 or a m i n i P C I e slot. For a future real­

t ime employment, the Jetson platform disposes of 

the N V I D I A Kepler G P U w i t h 192 C U D A cores, en- Figure 5.4: Second-generation wear-

abling heavily parallelized processing. able platform, rear view. 

Sensory equipment 

Changes i n the sensory subsystem of the G2 r ig reflect not only the experience wi th G l 

performance and (un)ease of use, but also professional matur ing of the author 4 . A shift 

towards off-the-shelf sensory modules and plug-and-play connectivity of the U S B bus can 

be observed i n the architecture of G 2 platform. 

O s m i u m M I M U 2 2 B L Foot-mounted I M U sensor, a part of the OpenShoe project [116, 

117], has been employed as the pedestrian dead reckoning data source. The device is 

remarkable not only for its on-board P D R processing pipe line, but also for the M u l t i -

I M U ( M I M U ) nature. This approach builds on using mult iple M E M S sensing components 

4 After graduating from the master of engineering programme, the author had been living under the 
euphoric impression that every problem can and should be engineered from scratch; the reality, however, 
only rarely allows this approach to succeed in finite time. 
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spatially arranged i n way to compensate their offsets (mounting on opposite sides of P C B ) 

and their signals averaged to improve noise characteristics [118]. 

Navilock N L - 6 0 2 U A consumer-grade G P S receiver has been chosen for several reasons 

- first and foremost, to get representative G N S S data that are l ikely to be quali tat ively 

comparable to the data accessible on consumer-level smart devices that the system might 

be miniatur ized into; i.e. no raw pseudo-range output, single-frequency only etc. Second, 

the price point and convenient U S B connectivity made the choice only easier. 

Microsoft L i f e C a m HD-3000 The same four pieces of U S B "webcam" are used as in the 

first generation. Mounted on a stiff frame which guarantees constant relative transformation 

of their coordinate systems to the r ig, they cover a l l four major directions: front, left, 

back and right. The camera mount has certainly its l imits ; while the posit ion is defined 

precisely and permanently, the att i tude of each camera cannot be defined neither precisely 

nor permanently without designing complicated fixtures. The problem is thus solved by 

accepting att i tude deviations and compensating for it - see details i n section 5.1.3 below. 

There is a drawback in employment of mult iple cameras: U S B 2 bandwidth l i m i t 5 . A l ­

though there is a dedicated root hub for each U S B port on the Jetson T K 1 S B C , there are 

only 3 of them which is not enough for servicing 4 cameras simultaneously at full resolution 

and frame rate. Fortunately, the landmark detection functionality is not cr i t ical ly depen­

dent on high frame rate; image resolution is then often lowered even intentionally to l imi t 

the number of S U R F features detected and force the a lgori thm to work wi th larger features 

(in terms of solid angles they occupy in the image). 

A working configuration has been found, concentrating a l l cameras on a single U S B 

port through a hub - w i th image resolution of 416 x 240 px at framerate of 2fps. 

Xsens M T i - 3 F i x e d to the camera frame, the Xsens I M U [36] performs i n the A H R S role, 

important mainly during the landmark mapping phase to provide global att i tude reference 

(with reasonable dynamic response for compensation of the swinging motion, that the 

pedestrian's upper torso performs even when walking straight). 

Robot Operat ing System (ROS) 

The second-generation platform has also seen a software upgrade - al though bui ld ing on 

very similar, if not same, functional paradigms, the Robot Operat ing System framework 6 

means a serious advance in usabil i ty and extensibili ty of the platform. Hav ing gained a 

huge momentum through the recent years, the R O S environment is nowadays a de-facto 

5 One would assume that the adoption of U S B 3 improves the situation drastically; there are only two 
problems: (1) there are almost no native U S B 3 consumer-level cameras, (2) connecting multiple USB2 
devices to a U S B 3 hub does not aggregate the USB2 traffic onto the U S B 3 channel... 

6

http://www.ros.org/ 
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Table 5.1: Overview of the R O S nodes running on the wearable platform. 

Package Instances Rate Descript ion 
cam_front 2 H z Frame grabbing driver 

usb_cam 
cam_le f t 2 H z based upon Video4Linux 

usb_cam 
cam_back 2 H z that publishes s t i l l images 

cam_r igh t 2 H z from the four cameras. 
x s e n s _ d r i v e r mtnode 10 H z A H R S 

osmium_dr ive r osmium 1-2 H z P D R 
nmea_navsa t_d r ive r navsa t 1 H z G P S 

image_proc 

image_proc_f ron t 
i m a g e _ p r o c _ l e f t 
image_proc_back 

i m a g e _ p r o c _ r i g h t 

2 H z 
2 H z 
2 H z 
2 H z 

Image rectification based 
on intrinsic cal ibrat ion 
parameters. 

a p r i l t a g s _ r o s 

a p r i l t a g s _ f r o n t 
a p r i l t a g s _ l e f t 
a p r i l t a g s _ b a c k 

a p r i l t a g s _ r i g h t 

2 H z 
2 H z 
2 H z 
2 H z 

Ar t i f i c i a l landmark 
detectors for each of the 
rectified camera stream. 

standard of both stationary and mobile robotics instrumentation. Th is means that there 

are existing packages able of handling commonly used sensors; i f none is existing for the 

part icular sensor of choice, the environment is openly extensible. 

The packages employed to perform the necessary sensory data capturing are listed in 

Table 5.1 together w i t h their basic characteristics. The camera image chain starts w i th the 

generic usb_cam driver nodes and is followed by image undistort ion and debayering step 

performed by image_proc nodes based on the intrinsic cal ibrat ion (see section 5.1.3 below); 

the image is then ready for processing, either by a S U R F natural landmark detector or by 

the A p r i l T a g art if icial landmark detector. 

The only custom package that had to be programmed is the osmium_dr ive r , due to 

relative obscurity of the O s m i u m device among R O S users 7 . The package follows the cus­

tomary divis ion to l ibrary and node part and was coded i n P y t h o n which is the program­

ming language of choice for such performance-modest tasks. It makes use of the standard 

nav_msgs/Odometry message type to convey step-wise difference of posit ion and orienta­

t ion and the corresponding covariance matr ix . A unit quaternion is used to convey the 

difference att i tude to prevent gimbal lock problems. 

5.1.3 C a l i b r a t i o n of cameras 

There are two aspects to camera cal ibrat ion - intrinsic and extrinsic - divided by the 

object of interest: the former estimates parameters of the opt ical system itself (sensor + 

lens), while the latter specifies the coordinate system transformation from b a s e _ l i n k (i.e. 

T A s already mentioned at the beginning of this thesis, the pedestrian application does not attract that 
much attention compared to "traditional" wheeled/tracked/legged robotics. 
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pedestrian) to the camera. Overa l l , based on the calibrat ion, a 3D world point can be 

projected using homogeneous coordinates to 2D image plane 8 : 

K [R|t] (5.1) 

Intrinsic calibration 

Intrinsic cal ibrat ion accounts for determination of the camera mat r ix K , containing focal 

length in pixel units ax, ay, skew 7 and pr incipal image point [uo vo], and distort ion 

coefficients needed to correct any non-linear lens imperfections. 

K 
otx 7 uo 0 

0 ay vo 0 

0 0 1 0 

(5.2) 

Native R O S mechanisms were used to accomplish this task - the c a m e r a _ c a l i b r a t i o n 

package was executed for each camera separately 9 , using O p e n C V cal ibrat ion routines under 

the h o o d 1 0 , by posit ioning a checkerboard of known size to various positions w i th in the 

cameras' field of view. After gaining enough information and running the bundle adjustment 

algorithms, the resulting cal ibrat ion was produced in the form of earnera_inf o Y A M L files 

saved for each camera and subsequently automatical ly loaded by the usb_cam a published 

in each camera's camera_ in f o topic. For example, the front camera mat r ix was determined 

as, while nominal parameters of the resolution are 416 x 240: 

419.13 0 210.64 0 

0 415.51 101.91 0 

0 0 1 0 

(5.3) 

Image undistort ion and debayering performed by the image_proc package then uses the 

cal ibrat ion profiles pubslihed to camera_ info topics - based on the scenario, rectification 

can be done either i n real-time dur ing run-time or later dur ing log playback when the 

performance is not real-time cri t ical . 

8

http://wiki.ros.org/image_pipeline/CameraInio 
9

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration  
10

https://docs.opencv.org/2.4/modules/calib3d/doc/earnera_calibration_and_3d_ 

reconstruction.html 
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(c) (d) 

Figure 5.5: Ex t r ins ic cal ibrat ion images wi th A p r i l T a g fiducial marks detected i n the 
(a) front, (b) right, (c) left and (d) back camera stream. 

Extrinsic calibration 

Ext r ins ic cal ibrat ion aims at estimation of att i tude offsets that are pr imar i ly due to camera 

fixture imperfections; the result is then formalized as the rotation-translation mat r ix [R|t] 

from E q . 5.1. 

A s investigated by the analyt ical section of Chapter 3, artificial landmarks (or fiducial 

marks) offer a robust way of implementing such scenarios. Part icular ly, the A p r i l T a g l ibrary 

[48, 69] packaged under R O S 1 1 has been employed based on their superior posit ioning 

accuracy. 

The arrangement is captured by F i g . 5.5 and consists of fiducial marks suspended on 

walls i n a l l four directions of the cameras; the room-referenced exact positions are known 

as well as the posit ion of a pivot ing axis on which the wearable platform is rotated. B y 

extracting image coordinates of markers and knowing intrinsic camera parameters and 

positions of the fiducials relative to the camera frame, one is able to formulate a set of 

equations that can be solved using non-linear least squares opt imizat ion. The collection of 

scientific P y t h o n tools S c i P y wi th its method s c i p y . o p t i m i z e . l e a s t s q implementing the 

Levenberg-Marquardt a lgori thm finds a good use here. 

xl

http://wiki.ros.org/apriltags_ros 
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5.2 Localization 

Based on data logged during experiments on the wearable platform into the R O S bag files, 

the localizat ion algorithms were designed, developed and exercised i n an off-line environ­

ment, al lowing repetitive experiments w i t h varying settings and easy comparison of each 

method performance on the very same data logs - see Chapter 6. 

5.2.1 Off- l ine eva luat ion env i ronment 

M A T L A B environment was used for its wide range of available functionality, either bui l t - in 

or through add-on packages; namely, the Image Processing Toolbox was ut i l ized for general 

image manipulat ion, while the Computer V i s i o n System Toolbox provided tools for natural 

landmark processing ( S U R F ) . 

A n important part of the off-line environment was the Robot ics System Toolbox wi th its 

extensive support for R O S : particularly, the R O S bag reading support was largely exploited 

to load data from experiments executed on the wearable platform and collected in the form 

of bags. W h i l e the toolbox comes w i t h support for many standard R O S message types, 

there were custom messages logged as well . Fortunately, a Robot ics System Toolbox add­

on called "Robotics System Toolbox Interface for R O S Cus tom Messages" 1 2 is available and 

ready to import custom messages definitions. 

5.2.2 G e n e r a l pose e s t imat ion framework 

The whole recursive estimation framework has been custom implemented i n M A T L A B 

environment to have fine-grained control over the whole fusion process. The local izat ion 

is based on local Cartesian map referenced to latitude-longitude global coordinates, so 

that integration of G N S S measurements is easily possible just by converting their lat- lon 

coordinates based on map the reference. 

A l l parts of the data processing chain take R O S bags as argument which brings great 

flexibility i n extraction of t ime-stamped measurements. The filters are accessed using a 

single functional entry point below referenced geenrically as f i l t e r Step, while i n fact 

there is a separate function u k f S t e p for U K F and p a r t i c l e S t e p for P F . Employment of 

these functions is discussed together w i t h the P D R interpolation implementation. Based on 

type of the filter, visual izat ion methods have been established to help develop and illustrate 

the internal workings of the filters; Chapter 6 is largely buil t upon these. 

Generic primitives al lowing easy evaluation of the experiments were prepared as well 

- computat ion of fused trajectory errors compared to the reference route (perpendicular 

distance), error histograms plot t ing or error measures ( M A E , R M S E , M a x A E ) calculation. 

https://www.mathworks.com/matlabcentral/fileex change/49810-robotics-system-toolbox-

interface-for-ros-custom-messages 
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5.2.3 P D R d a t a in terpo la t ion 

Introduced i n section 3.2.1, the multi-rate nature of the data fusion requires proper han­

dling, i n order to not introduce addi t ional errors. The mechanism is presented i n Algo­

r i thm 6; the behavior is driven by encountering a P D R data message (transferred as R O S 

message type nav_msgs/Odometry on topic / s t e p w i s e _ p d r ) . 

The measurements are processed retrospectively - they are buffered during the step 

phase between the P D R message arrivals, bounded by the interval (tfDR; tfB^ 1^. The 

buffer then for each G N S S or landmark measurement provides the t ime of arr ival tj, mea­

surements vector yj w i th its covariance matr ix W j and appropriate map of visible land­

marks m a p J l s l b l e . 

A l g o r i t h m 6 P D R retrospective interpolation mechanism (single P D R iteration) 

1: A t P D R <- tfDR - tfB^ 1 > determine last P D R step durat ion 

2: for j <— 1 : iV do 
3: A^mterp = (tj — tj-\) / A t P D R o compute the current t ime slice 
4: A u u • A t m t e r p o assemble the measurements vector and covariance 
5: A V <- V • A t i n t e r P 

6: nlterStep(x i 5 i , P i J ; A u , y^, A V , Wj} m a p j i s i b l e ) 

7: u <— R(—Aud)(u — A u ) > prepare u for next i teration - need to rotate it back 
8: V <(— V — A V > estimate remaining process noise 
9: end for 

10: fUterStep(xj, P j , u , null, V , null, null) > apply remaining u without measurement 

Lines 3-5 form the first part of the interpolation, where the proport ion of P D R advance 

is l inearly driven by the part icular measurement's t ime distance A t m t e r p from the previous 

measurement; the delay is normalized by A t P D R so that a l l sub-steps sum up to 1. The 

interpolation is then finished on lines 7-8 which prepare the remaining measurements vector 

and covariance mat r ix for the next i teration. The only non-t r ivia l operation is on line 7; as 

described in section 3.2.1, the rest of the P D R posse difference vector needs to be rotated 

about z-axis to counter the par t ia l rotat ion done by the heading part of A u . 

Funct ion f i l t e r S t e p is the main entrypoint of the U K F or P F engine, accepting a l l 

inputs and producing an updated state vector w i th its covariance matr ix . It is called from 

two places - first, on line 6 it processes the intermediate P D R step fragments w i th their 

respective sensor measurements. F ina l ly , f i l t e r S tep is called again on line 10 to gather 

the remaining part of the P D R pose difference - this t ime, there is no measurement coupled 

to this instant, so that the filter only performs the prediction step without correction as 

analyzed i n section 3.1.7. 
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Figure 5.6: A n example of the structure of Open Street Maps . 

5.3 Global path planning 

The global planner is a module whose functionality is mainly concentrated on path planning 

- the execution is then rather simple, since the segment-wise advance is easily traceable 

(unlike local planning which is int imately close to the local izat ion subsystem). For this 

reason, only the path plan preparation was subjected to implementat ion and later exercised. 

The P y t h o n environment was preferred to M A T L A B because of a better availabil i ty of 

convenient tool ing and libraries, start ing wi th map source parsing and ending wi th graph 

search algorithms. P y t h o n is also a strategic choice in this case since it is one of the native 

languages supported by R O S . 

M a p sou rce s A m o n g possible map sources, the Open Street Maps project was chosen 

for a mult i tude of reasons - pr imar i ly the sensible level of details even providing sidewalk 

segments combined wi th the crowd-sourced nature enabling future custom additions. A 

representative example of the types of information typical ly captured in O S M can be seen 

in F i g . 5.6; not only the aforementioned sidewalks, but, impor tant ly for this thesis, bus / t r am 

stops are modeled as well . 

P a c k a g e s osmgraph & networkx W h i l e the O S M data contain an abundance of useful 

features, it was quickly discovered that its X M L representation was not selected i n a par­

t icular ly planning-friendly way - the segments have no junctions defined, public transport 

lines are hard to extract etc. O n that account, the osmgraph package 1 3 was ut i l ized to help 

process the map files into a graph-like structure. The graph can be then searched using the 

popular ne tworkx l i b r a r y 1 4 . 

'https://github.com/Mapkin/osmgraph  

https://networkx.github.io/ 
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Figure 5.7: Simplified message flow of the fuzzy-logic driven subsystem of navigation in­
structions. 

5.3.1 Instruct ions generat ion 

The instructions subsystem was implemented i n Java on the first-generation platform pow­

ered by L C M ; i n F i g . 5.7, there is a simplified diagram showing the message types relevant to 

the generation process. The design and experiments were done in simulated environment, 

replacing the localizat ion, navigation and user interface modules by their deterministic 

counterparts w i th the same inter-process communicat ion interface. 

To implement the fuzzy logic execution core, the l ibrary Fuzzy Engine for J a v a 1 5 

was ut i l ized. It provides primitives for a l l necessary parts of the inference chain: class 

L i n g u i s t i c V a r i a b l e encapsulating the l inguistic variable w i t h its values and respective 

trapezoidal membership functions; class F u z z y S t a t e that holds the context of the infer­

ence; a R u l e B l o c k containing parsed F u z z y R u l e s and the functional interface to execute 

them. The supported rule syntax was introduced i n the design section; additionally, the 

following hedges are available: not , v e r y , somewhat. 

The operation of the module then runs according to A l g o r i t h m 7. The call-back function 

segmentChanged is bound to the messaging system and launches planning of the instruc­

tions every t ime a new segment is on; the rest start ing from line 13 runs repetitively and 

gradually sends the instructions to U I layer once they are ready. 

http://fuzzyengine.sourceforge.net/ 
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A l g o r i t h m 7 High-level fuzzy logic instruct ion generation pseudocode 
1: function S E G M E N T C H A N G E D ( n e w S e g m e n t ) 
2: save segment properties, compute derived parameters 

> p lan execution of instructions: 
3: create new context wi th in F u z z y S t a t e 
4: set input values to a l l l inguistic variables and fuzzify 
5: copy a l l instructions from database local ly 
6: for each instruct ion on local list do 
7: execute fuzzy activation rules 
8: if act ivat ion denied then 
9: remove instruct ion from the list 

10: end if 
11: end for 
12: end function 

> the main execution thread: 
13: while true do 
14: create new context wi th in F u z z y S t a t e 
15: set input values to a l l l inguistic variables and fuzzify 
16: for each instruct ion on filtered list do 
17: execute fuzzy t iming rules 
18: if act ivat ion denied then 
19: remove instruct ion from the list 
20: else 
21: execute fuzzy prior i ty rules 
22: end if 
23: end for 
24: send prior i t ized instructions to user interface 
25: sleep for some time 
26: end while 
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Chapter 6 

Evaluation 

For a work concerned wi th applied research and development, experimental evaluation of 

the designed principles is an integral part of the proposed solution. 

6.1 Localization 

Performance of the designed local izat ion chain was verified by a number of experiments 

exercising the bui ld-up of local izat ion sources contribution. For a l l below presented local­

izat ion experiments, the second-generation platform was used, u t i l iz ing gradually a l l of the 

on-board sensory equipment. 

Workflow of the experiments was similar in a l l cases: sensory outputs logging during 

pedestrian execution of the test routes by means of the wearable platform; then, off-line 

processing and evaluation. The results were compared to the reference path and error of 

each estimated posit ion was determined as perpendicular distance to the reference path. 

The resulting error set was processed by the usual performance measures - Mean Absolute 

Er ro r ( M A E ) , Root-Mean-Square E r r o r ( R M S E ) and M a x i m u m Absolute Er ro r ( M a x A E ) . 

6.1.1 Test routes 

Three different test routes were established in order to emulate both specialized, rather 

worst-case scenarios and representative segments close to real-world environment. 

Test polygon Intentionally condensed space of this rectangular route leads to amplifica­

t ion of the known G N S S posit ioning mis-behavior. This path was conceived as benchmark 

case for the G N S S - P D R fusion step - its sharp corners are a good exercise for fused trajec­

tory faithfulness evaluation. 

Loop route Route start ing and ending i n one spot, par t ia l ly open, par t ia l ly covered by 

tree canopies. There are several representative situations contained wi th in this route: bo th 
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short and long range to nearest obstacles create varying conditions for landmark tracking: 

tree canopies then locally deviate G N S S estimates. 

U r b a n route The heaviest deterioration in G N S S performance is most often brought by 

the urban environment w i th its efficient reflective surfaces, introducing mult i -path signal 

travel effects. The "urban" test route was conceived to exercise the researched methods 

from this very point of view; formed by a pathway between two buildings, there are ample 

reflections, signal shields and the trajectory even features a loop around a tree to magnify 

G N S S problems. The G N S S data rendered i n section 6.1.4 show that this intention has 

indeed been fulfilled. 

6.1.2 U n p r o c e s s e d sensory d a t a 

To illustrate imperfections and l imitat ions of major sensory data sources, that were first 

outlined theoretically i n Section 3.1, F i g . 6.1 provides typica l outputs of the O s m i u m 

M I M U 2 2 B L P D R unit (steps accumulated i n F i g . 6.1a), Navi lock N L - 6 0 2 U G P S receiver 

and Xsens M T i - 3 A H R S unit (F ig . 6.1b) on the loop route. 

PDR performance has been generally found fantabulous, especially on straight or sharp-

cornered trajectories; behavior captured i n F i g . 6.1 has been observed on larger-radius 

curves. In any case, it is clear that the residual yaw drift needs to be compensated. GNSS 

usually performed wi th in 2-3 meters i n less covered terrain, while v ic in i ty of even few-

story buildings threw it out of reference path almost order of magnitude more. AHRS yaw 

estimates rendered as blue arrows show considerable drift - despite being hard- and soft-

i ron compensated for the part icular magnetic conditions of the wearable platform, absolute 

north-referenced yaw output was not stable. A two-point (offset & trend) compensation 

was adopted as a countermeasure for mapping purposes. 

6.1.3 G N S S - P D R fusion eva luat ion 

The first stage of the local izat ion mechanism is an integration of the precise step-wise posi­

t ion differences produced by P D R . The motivat ion and expected outcome are improvements 

i n estimated trajectory - reduction of local deviations and more faithful behavior during 

sharp turns. The fusion process is driven by the P D R messages; this introduces aperiodic 

behavior, which is fairly unusual i n the realm of data fusion. It does not, however, br ing 

any numerical deterioration of results. Tables 6.1 and 6.2 summarize the values for the 

GPS-on ly , U K F and P F cases. 

Test polygon experiment 

The pr imary experiment on G N S S - P D R fusion stage is the rectangular test polygon route. 

This benchmark was executed 15 times dur ing several days at random times to sample from 

varying G N S S satellite orbi ta l configurations causing varying D O P . 
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Figure 6.1: Visua l iza t ion of raw sensory data on the loop route, (a) P D R data, step­
wise increments s imply accumulated - a significant divergence i n the heading angle can be 
observed; (b) G P S data begin blue and end yellow, blue arrows denote the non-processed 
A H R S data. 
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Figure 6.2: Histograms of posit ion error on test polygon for (a) pure G P S data, (b) U K F 
fusion and (c) P F fusion. 

Table 6.1: G N S S - P D R posit ion estimation errors on test polygon related to F i g . 6.3. 

M A E [m] R M S E [m] M a x A E [m] 
G P S only 0.5667 0.6882 1.8569 

U K F fusion 0.2966 0.3900 1.1284 
P F fusion 0.3593 0.4378 1.0961 

From this set of experiments, one representative instance has been selected for a detailed 

showcase. The whole set was then analyzed to elaborate the measures on a significant 

number of executions. 

Single execution details Three full circles were logged around this path. It can be 

seen from both F i g . 6.3 and Table 6.1, that fusing P D R data wi th G N S S estimates leads 

to considerably tighter, repeatable results. U K F and P F perform here roughly on par, 

bringing down both the M A E and R M S E metrics approximately by 40%. Figure 6.4 then 

adds further information to il lustrate the data fusion: 

• Uncertainty i n the posit ion component of the system state is visualized by red ellipses 

that denote boundaries of single-sigma covariance. 

• Tracking of G N S S location estimate to the fused posit ion is given by the red arrows. 

• Es t imated heading is indicated wi th the step-wise resolution. 

It can be seen that the in i t i a l posit ion uncertainty has been chosen greater in case of the 

particle filter, because the in i t ia l ly generated particle set has to safely encompass the G N S S 

uncertainty into a grater extent - otherwise, the measurement update is not effective and 

the system is prone to particle deprivation. After that, the expressed uncertainty stabilizes 

on a comparable level as can be concluded from the size of covariance ellipses near end of 

the motion. 
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Figure 6.3: Visua l iza t ion of estimated paths of three rounds around the test polygon for 
G N S S - P D R fusion. The reference path is shown as thick cyan line; pure G P S data are blue, 
(a) U K F fusion result is plotted i n green; (b) P F fusion result is plotted in red. 
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Figure 6.4: A different view on the same results as shown in F i g . 6.3. Fused path begins 
blue and end yellow. Green arrows denote right foot direction, red arrows point from G P S 
measurement to fused posit ion. R e d ellipses represent fi±a equivalent covariance of posit ion 
part, (a) U K F fusion result, (b) P F fusion result. 
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(a) (b) (c) 

Figure 6.5: Histograms of posit ion error on loop route for (a) pure G P S data, (b) U K F 
fusion and (c) P F fusion. Deteriorat ion i n U K F is pronounced; however, as explained, only 
due to the in i t i a l convergence. 

Mult ip le passes, average behavior Processing the aforementioned 15 polygon execu­

t ion data sets, it has been found that the G N S S - P D R sensor fusion improves the worst-case 

error figures in 100% cases, i n each case to a sl ightly difference extent i n the range of 2 5 -

4 5 % . A t the same time, M A E and R M S E metrics show improvements to a s imilar degree. 

The reference path in this experiment is understood as shape standard rather an absolute 

posit ioning reference; since there is no other geo-referenced data source, the actual G N S S 

posit ioning accuracy determines offset type of error which, however, cannot be compensated 

by P D R addi t ion alone. 

Loop test route experiment 

Bring ing more real-world environment to the test, the loop route guides the pedestrian on 

a sidewalk and, s imilar ly to the other test routes, begins and ends i n out spot to clearly 

show accumulated errors. Fusion of P D R data into G N S S here brings improvements both 

in numerical error measures i n Table 6.2 and i n smoothness of the fused trajectories, while 

sharp corners are improved as well (see F i g . 6.6a). 

Part icle filtering wins according to error measures compared to U K F , based on reasons 

elaborated below. A l l in a l l , the G N S S - P D R fusion brings considerable improvements in 

M A E and R M S E metrics, again wi th up to 40% improvements. 

Initial convergence Since the in i t i a l state estimate xo is gained from the first G N S S 

fix only, the att i tude information is missing and is ini t ia l ized to zero, i.e. along x axis. 

The U K F case then suffers from slower in i t i a l convergence of the att i tude as can be seen 

in F i g . 6.6a, while the mul t imoda l character of P F allows to estimate the atti tude almost 

instantaneously (Fig . 6.6b). W h e n this in i t i a l phase is removed from the trajectory error 

evaluation, U K F results are more or less comparable to P F performance. 
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GPS: MAE=1.1431, RMSE=1.3991, MAX=3.6835 
UKF: MAE=1.0791, RMSE=1.6467, MAX=5.9734 
PF: MAE=0.74763, RMSE=0.88412, MAX=2.9574 

X [m] 

Figure 6.6: Es t imated paths on loop test route. The reference path is shown as thick cyan 
line, fused path begins blue and end yellow. Green arrows denote right foot direction, 
red arrows point from G P S measurement to fused posit ion. R e d ellipses represent fx ± 

a equivalent covariance of posit ion part, (a) Overa l l si tuation; (b) U K F fusion result, 
magnified start and end; (c) P F fusion result, magnified start and end. 
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Table 6.2: G N S S - P D R posit ion estimation errors on loop test route related to F i g . 6.6. 

M A E [m] R M S E [m] M a x A E [m] 
G P S only 1.1431 1.3991 3.6835 

U K F fusion 1.0791 1.6467 5.9734 
U K F fusion without start 0.8115 0.8765 3.8574 

P F fusion 0.7476 0.8841 2.9574 

6.1.4 L a n d m a r k s u t i l i za t ion eva luat ion 

Dur ing a l l experiments, the complete sensory system was logged for further processing -

so that the above presented experiments could be processed w i t h the landmark-augmented 

localizat ion mechanisms again and compared. Since the P F framework was not ut i l ized for 

the landmark estimation, only the U K F results w i l l be directly comparable. 

M a p p i n g phase 

The data to be examined first are results of the mapping phase. Star t ing wi th ind iv idua l 

identified landmark sequences, 6.8 showcases a typica l urban landmark correctly matched 

in 10 subsequent camera images; F i g . 6.9, on the other hand, depicts a sequence wi th 

first two mismatched features. F i g . 6.10 then shows the landmarks localized i n map using 

the generalized tr iangulat ion mechanisms described in section 3.2.2 - blue color represents 

the former one and red-colored markers belong to the latter one, w i t h two mis-identified 

features easily distinguishable. 

Figure 6.11 demonstrates features extracted and processed by the landmark mapping 

mechanism that can be categorized into the following bins: 

U r b a n Exercised i n F i g . 6.11a, urban landmarks are constituted by distinct architectural 

patterns, which makes them very stable in terms of repeatable detection. 

Natura l One of the best contrasting part of the surrounding during majority of day is the 

skyline; coincidently, the skyline contours also tend to be relatively stable landmark 

sources (Fig . 6.11b). 

M i x e d Composed typical ly by a dark tree t runk on bright art if icial background, the com­

bination produces strong features that are fairly often encountered around footpaths, 

as F i g . 6.11c shows. Together w i th the natural landmarks, the tr iangulated posit ion is 

often "v i r tua l " - the landmark is formed by projection of spatially separated objects 

and the mapped posit ion may not be coincident w i th them. 

Non-stationary Inevitably, a part of the detected features belong to objects that move 

wi th in or even disappear from the scene (mostly cars, given the target environment). 

Disappearance is the easier case - the feature w i l l s imply not be active and "just" 
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consumes resources. M o v i n g the feature bearing object is then comparable to a feature 

mismatch and needs to be mit igated by employing proper local izat ion mechanisms. 

"Shine&shadow" S U R F detector is prone to give pr ior i ty to temporary patches of light, 

especially pronounced during sunny days, when the l imi ted dynamic range of cameras 

creates distinct hot spots and deep shadows, that are very appealing for the S U R F de­

tector. 

Reproducible observability of such features is too often influenced by a part icular 

posit ion of the Sun in the sky, extent of cloudiness and such nuances. 

Discussion It has been found that landmarks closer than a few meters often do not pass 

the sequence detection conditions - the mapping pedestrian s imply passes them too quickly 

to be registered on a significant number of subsequent images. This fact was assessed a 

minor l imi ta t ion only; a change of camera frame rate may help solve it (which was not 

possible on G2 platform). Front and back cameras also often produced image sequences 

hard to process into any meaningful map; the smal l span of angles towards the landmarks 

made the subsequent landmark local izat ion diverge in many cases and l imi t the map to only 

a few hits. Variat ions in sunshine intensity had different impact on each landmark type, 

as discussed above; urban landmarks belong to the most stable ones, which is encouraging 

since urban is the target environment. 

In the mapping process as it was designed, A H R S - b a s e d yaw correction plays a major 

role - even though the mapping was performed walking deliberately calmly and t ry ing to 

minimize body swing, yaw oscillates more than ± 5 degrees which is enough to deteriorate 

the tr iangulat ion significantly. If needed, A H R S could be el iminated from the system and 

replaced by heading change estimation from front/back cameras, as shown in F i g . 6.7; 

from the data throughput and computat ional resources point of view, A H R S is much more 

economical though. 

35 40 45 50 
t[S] 

Figure 6.7: Compar ison of heading change extracted from A H R S and front/back cameras. 
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Figure 6.9: Sequence of images from left camera wi th first two landmarks mismatched to 
the rest - a clearly similar feature of the bui ld ing led to confusable S U R F descriptors. 
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-78 -76 -74 -72 -70 

Figure 6.10: Urban landmark localized from the sequence of images i n Figure 6.8 - blue 
arrows point from the place of image acquisit ion i n the extracted direction of the landmark. 
Blue cross represents the tr iangulated locat ion of the landmark i n the map. Similarly, red-
colored markers belong to landmarks shown in 6.9 w i t h the two mis-identified landmarks 
aiming more to the left. Other colors denote yet another landmarks. 
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(a) (b) 

( e ) ( f ) 

Figure 6.11: Samples of different type landmarks: (a) urban, (b) natural , (c) mixed, (d) non-
stationary and (e) "shine&shadow". Figure (f) shows a map of the localized mixed land­
marks from image (c) - a tree line next to the road. 
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Localization phase 

A s a rule during the landmark-augmented local izat ion experiments, landmark map was 

processed on one of the data sets and local izat ion pass was executed on other data sets using 

this map, so that the excessively optimist ic resubstitution case was ruled out. Otherwise, 

the execution and methodology of this batch of experiments was exactly the same as during 

the above introduced cases. 

Loop test route experiment Further exploi t ing the loop route experiment outlined 

in section 6.1.3, the existing data sets which already contained the whole sensory outputs 

logged were ut i l ized. The immediately observable improvement of the addi t ional source of 

geo-referenced information is instantaneous in i t i a l convergence of heading - the difference 

is s t r iking, comparing F i g . 6.6b and F i g . 6.12b. This gratifying result was then one of the 

reasons why the landmark augmentation mechanism was only adopted to the U K F frame­

work; w i th the major P F benefit - in i t i a l convergence - equalized by landmark employment, 

there was not that much motivat ion left for its employment 1 . 

U r b a n test route experiment Employment of G P S - P D R - l a n d m a r k fusion has reduced 

max imum deviation from 8.45 m (GPS-only) to 2.76 m as can be seen i n F i g . 6.13. A l though 

pure G P S performs well at the trajectory beginning, it worsens considerably during the loop 

in the middle, pract ical ly washing out the trajectory shape; the return path then evinces 

a complete divergence from the route. The fused trajectory preserves shape details rather 

well; its M A E of 1.52 m and R M S E of 1.63 m then improve respective G P S - o n l y figures by 

ca. 2 2 % and 37%. 

1 T h e random nature of P F made experiment evaluation uneasy in some cases, when just repeating the 
computation on exactly same data set led to slightly (and sometimes largely) different results. 

Table 6.3: G N S S - P D R - l a n d m a r k posit ion errors on loop test route related to F i g . 6.12. 

M A E [m] R M S E [m] M a x A E [m] 
G P S only 1.1431 1.3991 3.6835 

G N S S - P D R , U K F 1.0791 1.6467 5.9734 
G N S S - P D R - l a n d m a r k , U K F 0.8699 1.0043 2.6077 

Table 6.4: G P S - o n l y versus full G P S - P D R - l a n d m a r k fusion posit ion estimation errors on 
urban test route related to F i g . 6.13. 

M A E [m] R M S E [m] M a x A E [m] 
G P S only 1.9418 2.6104 8.4491 

G P S - P D R - l a n d m a r k fusion 1.5194 1.6328 2.7581 

83 



-200 -180 -160 -140 -120 -100 -80 -60 
x[m] 

(a) 

j i i i ¥ i i i i u 

-100 -95 -90 -85 -80 -75 -70 -65 -60 -55 
x[m] 

( b ) 

Figure 6.12: Result of bearing-only landmarks shown in F i g . 6.10 and F i g . 6.11 fused to­
gether w i th G P S and P D R data wi th in the U K F framework; left camera visualized only for 
understandability. (a) Overa l l situation; (b) Magnif ied start and end - dramatic improve­
ment of in i t i a l heading convergence is apparent (compare to in i t i a l convergence of U K F 
fusion without landmark a id i n F i g . 6.6b). 
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(a) 

Figure 6.13: Landmark-augmented fusion of P D R and G N S S on the urban route, (a) Ref­
erence trace is shown i n cyan; G P S - o n l y path beginning blue and ending yellow evinces 
heavy mult i -path effects; (b) Fusion result - red arrows point ing from G P S measurement 
to fused posit ion indicate how considerable the fused trajectory improvement really is. 
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Overal l experimental measures B y assessing 8 different data sets evaluated according 

to the mapping/ local iza t ion data set separation rule, it has been found that the employment 

of natural landmarks, fused together w i th G N S S and P D R sensory data, brings worst-case 

error down i n 100% cases by 4 2 % on average, compared to G N S S only case (generally 

lower improvement percentages were observed on the loop route where the G N S S is not 

obstructed to such extent). A t the same time, M A E and R M S E measures evinced decrease 

in the range of 20-40%. Compared to the G N S S - P D R fusion, the landmark augmentation 

mechanism has brought further l imi ta t ion of M a x A E metrics, especially on the urban route. 

Discussion W h e n added to the G N S S - P D R constellation, the landmark detection and 

matching mechanism significantly improves heading reference, which is dist inctively visible 

on the in i t i a l convergence of heading. It also helps l imi t larger G N S S deviations - while 

P D R disciplines the short- to mid-sized trajectory features, landmarks br ing another geo-

referenced data source which cover the long term. 

Strongly depending on the feature map, regarding which the discussion above has com­

mented on lower yield of the front and back cameras, side cameras proved more useful again. 

This aspect is perceived as the major l imi ta t ion of the described mechanism - intuitively, 

the front/back camera pair seems to be more important for keeping the pedestrian's po­

sit ion estimate accurate laterally and thus managing to navigate them wi th in the breadth 

of a sidewalk. O n the other hand, potential users are not expected to discard their white 

cane, which helps in this context substantially. 

Feature matching performance, when constrained to a reasonably near set of landmarks 

to match to, d id not evince any s t r iking number of false matches. Correct match success rate 

depended on a mult i tude of factors, including landmark type, sunshine conditions, camera 

mot ion blur and others; selecting the map reference and local izat ion pass data sets from 

different days and day times has nevertheless demonstrated a certain level of robustness. In 

this context, the upright S U R F flavor may be more efficient and less prone to false matches 

- at the expense of source image rotat ion prior to feature extraction, for which conventional 

S U R F was preferred. 

6.2 Global navigation 

6.2.1 G l o b a l p a t h p l a n n i n g exper iments 

Chapter 5 introduced the Open Street Maps as the source of the high-level segment map 

data used for experimental evaluation. A s already noted there, the structure of the map data 

representation makes it difficult for planning ut i l iza t ion wi th respect to the public transport 

integration. Nevertheless, even the data available allowed several sensible experiments to 

be executed; two of them are described below. 

Dur ing a l l mentioned experiments, the following cost coefficients were chosen i n agree­

ment w i th the foundations of section 4.2: A p t = 0.1, A s = 0.5, A s t = 3. The intersection 
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Figure 6.14: Exercise of the public transport preference (green) over sidewalk-only route. 

costs Aj were not employed i n the proposed form, since there was no reasonable way of de­

termining the lanes count. The heuristic coefficient Ah was experimented wi th as well; for 

the below described exercises it was set to Ah = 0 though, effectively disabling the heuristic 

part, to be able to assess solely the cost function optimality. 

Firs t , the chosen costs were exercised no a mixed route consisting both of sidewalk and 

public transport segments. A s F i g . 6.14 captures, two variant path plans were compared; 

the blue one was planned wi th only pedestrian motion allowed and thus min imiz ing the 

distance and risk costs. The green trace was allowed to uti l ize any blind-friendly motion 

type available, i.e. pr imar i ly public transport w i th remaining parts of the route covered by 

walking. It can be observed that the lower cost of the public transport enables selection of 

the route even though it clearly means a greater distance traversed. 

The second scenario i n F i g . 6.15 examines this mechanism even more extremely; only 

bus connections were allowed on the green route to explore the functionality of the public 

transport preference i n case of a greater difference between the viable walk-only and public 

transport-aided routes. The resulting green trace is indeed more cumbersome that i n the 

previous case, which was expected though due to the special experiment assignment. 
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Figure 6.15: Pronounced difference between a bus-only transport (green) and shortest path. 

6.2.2 H i g h - l e v e l ins truct ions generat ion eva luat ion 

A s presented i n the Implementation chapter, the fuzzy instruct ion generator was imple­

mented wi th in the G l platform, based on simulation of system events to guarantee repeata­

bi l i ty of experiments. Since high-level information understanding is a subjective matter and 

suitable exact quantification methods were not found, able to evaluate the performance nu­

merically, only human-centered experiments were performed. Moreover, since finding a 

proper technical solution to instructions generation was solved by this thesis, rather than 

finding the best set of actual instructions which is a huge topic on its own (refer e.g. to 

[102, 103]), the evaluation was focused on viabi l i ty of the design and not on the contents. 

Fuzzy logic has been found convenient for notat ion of text-based conditions and variables 

- even though some of the messages d id not actually benefit from fuzzy activation (simple 

conditions that could have been implemented by Boolean logic as well), the instruction 

engine proved to be a very flexible "smart database". Rather than the fuzzy activation, the 

deliberately inexact l inguistic expressions were found to be the benefit of the solution. 
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Chapter 7 

Conclusions 

The thesis gives a thorough description of motivat ion, approaches and results of research 

carried out on methods forming the core of a pedestrian information system wi th focus on 

visual ly impaired users. The work was divided into the two fundamental topics of localiza­

tion and path planning; this responsibility divis ion is common i n the field of autonomous 

mobile robotics which was introduced as the reference frame for the research. 

The main attention was focused on the local izat ion mechanism wi th respect to the 

pedestrian application; as discussed, global navigation satellite systems ( G N S S ) alone do not 

provide sufficient level of performance to achieve reliable pedestrian localizat ion, especially 

i n urban environments. Two stages of G N S S augmentation were proposed, using data fusion 

frameworks of the unscented K a l m a n filter and the particle filter - firstly, pedestrian dead 

reckoning ( P D R ) pose change estimates were fused to G N S S measurements to improve local 

trajectory shape faithfulness. Secondly, since addi t ion of P D R is only effective i n short-

to mid-term, a natural landmark detection engine was designed as another geo-referenced 

posit ioning mechanism complementing and competing wi th G N S S . 

P a t h planning on relatively l imited-sized maps (which a pedestrian can expectedly tra­

verse) is a task routinely solved using the formalism of graph theory and state space search 

algorithms. The methods, however, ul t imately depend on proper definition of opt imal i ty 

criteria - analyzing the specifics of pedestrian path selection wi th focus on visually impaired 

users and formulation of appropriate cost functions was then the main objective of the path 

planning chapter. In an attempt of human-oriented design, a fuzzy logic driven navigation 

instructions generator was introduced, conveying infrequent high-level information through 

speech synthesis. Based on experience i n mobile robotics, a suitable solution of local path 

planning was proposed as well; a haptic feedback mechanism was chosen to give real-time 

direction commands. 

Obstacle detection and avoidance as the opt ional topic wi th in path planning was re­

searched and potential sensing and processing instrumentat ion was evaluated i n terms of 

estimated usability. The analysis concluded that a full-fledged sensory replacement of the 

white cane is not yet available, which would be reliably capable of detection of even smal l ter-
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rain irregularities, that may, however, make the visual ly impaired person stumble. W i t h i n 

the scope of the thesis, the topic was thus suspended. 

7.1 Performance 

Proposed local izat ion mechanisms were experimentally verified on real-world data i n rep­

resentative environments containing both natural and urban features. The G N S S - P D R 

fusion alone was shown to be capable of reducing max ima l posit ion deviat ion by 20-40 % 

and R M S E by 35-45 %, compared to G N S S - o n l y performance on reference routes. Fur­

thermore, addi t ion of the landmark-based geo-referencing improved heading convergence 

and stability, being able to correct G N S S outliers caused by mul t i -path effects to large ex­

tent i n the urban-like environment. D u r i n g the described urban test route experiment, the 

employment of the G N S S - P D R - l a n d m a r k fusion reduced the m a x i m u m posit ion deviat ion 

from 8.45 m to 2.76 m while evincing M A E of 1.52 m and R M S E of 1.63m. 

P a t h planning performance was assessed on unmodified map data gained from the 

crowd-sourced Open Street M a p project. Based on the formulated opt imal i ty criteria, sev­

eral cases of path planning were examined focusing on public transport u t i l iza t ion. Since 

the opt imal i ty cannot be, i n case of the visually impaired user, evaluated str ict ly in terms 

of the shortest or fastest route, the experimental evaluation was driven by soft, human-

centric standards. W i t h i n possibilities of the available segment map data, the planning was 

assessed to perform similar ly to how a human would choose the path plan. 

7.2 Contribution 

Theoretical contribution Pedestrian local izat ion belongs to topics less frequently in ­

vestigated i n literature, compared to other localizat ion topics - this thesis helps to better 

the si tuat ion by assembling a range of relevant sources, analyzing potential contributions 

of various sensory means and formulating applicable processing methods. Part icular ly, two 

stages of sensor data fusion were elaborated; the natural landmark detection subsystem 

brings a novel approach of map bui ld ing based on spatially located visual landmarks. 

A n important mechanism enabling seamless fusion of a l l the multi-rate sensory data 

sources is the introduced notion of retrospective odometry interpolation. W h i l e s t i l l bound 

to the step-wise P D R updates, asynchronously incoming observations from other sensors 

can be processed by the prediction-correction recursive state estimation iteration without 

losing valuable precision of the P D R data. 

Theoret ical contr ibution of the path planning chapter is twofold: first, opt imal i ty criteria 

and cost function formulation for urban path selection were established, focusing on a 

visual ly impaired pedestrian w i t h u t i l iza t ion of public transport. Second, the employment 

of fuzzy logic was conceived to give the navigation instructions a human-friendly envelope. 
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Practical contribution A s the most widely applicable pract ical outcome, the thesis 

provides a thorough benchmark of the G N S S - P D R and G N S S - P D R - l a n d m a r k fusion mech­

anisms i n realistic outdoor environments; standard error metrics were used to allow com­

parison of the achieved performance to other approaches. 

The wearable platform has been established i n two generations, exploring ways to ac­

complish modular i ty and extendabil i ty by design. In the second generation, custom R O S 

drivers were implemented for the O s m i u m M I M U 2 2 B L inert ial measurement unit serving 

in the role of the P D R sensor. 

Last but not least, the local izat ion framework was implemented based on both paramet­

ric and non-parametric filters w i th advanced visualizat ion mechanisms and posit ioning error 

measures computat ion. This has allowed running comparison studies evaluating behavior 

of various data fusion schemes and quickly experimenting wi th the control parameters. 

7.3 Future work 

Albe i t having performed well in evaluation exercises, each subsystem offers certain room for 

improvements. For one, landmark detection i n local izat ion phase could be further evolved 

by adopting a model-driven matching engine - then, even the lower-quality landmarks could 

be mapped without leading to excessive false detection rates. D a t a mining from the Open 

Street Maps may be an apt candidate for further investigation as well, main ly focusing on 

the public transport routes. 

The presented improvements of worst-case posit ioning error are encouraging enough to 

th ink about next phase of the project - an evaluation of engineering efforts that would be 

necessary to transform the wearable platform into a user-friendly solution. Realist ically, 

non-t r ivia l engineering challenges are to be expected though, due to the extensive sensory 

equipment and essential ease of use requirements. 
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Append i x A 

List of Abbreviations 

A H R S Att i tude and Heading Reference System 
B R I S K B i n a r y Robust Invariant Scalable Keypoin ts 
D O F Degree of Freedom, or Dep th of F i e ld 
D o H Determinant of Hessian 
D o G Difference of Gaussian 
E K F Extended K a i m a n F i l t e r 
E S A European Space Agency 
F O S S Free and Open-Source Software 
F R E A K Fast Re t ina Keypoin ts 
F o V Fie ld of V i e w 
G L O H Gradient Loca t ion and Orientat ion His togram 
G N S S Globa l Navigat ion Satellite System 
G P S Globa l Posi t ioning System 
H O G Histogram of Oriented Gradients 
I M U Inertial Measurement Un i t 
K F K a i m a n F i l t e r 
L o G Laplac ian of Gaussian 
M E M S M i c r o Elect ro-Mechanical System 
M I M U M u l t i Inertial Measurement Un i t 
P C B Pr in ted Ci rcu i t Boa rd 
P C B A Pr in ted Ci rcu i t Boa rd Assembly 
P D F Probabi l i ty Densi ty Funct ion 
P D R Pedestrian Dead Reckoning 
P F Part ic le F i l te r 
R A N S A C R a n d o m Sample Consensus 
R O S Robot Operat ing System 
S B A S Satellite-based Augmenta t ion System 
S B C Single-Board Computer 
S I F T Scale-Invariant Feature Transform 
S L A M Simultaneous Loca l iza t ion A n d M a p p i n g 
S U R F Speeded U p Robust Features 
V I V i s u a l Impairment 
U K F Unscented K a i m a n Fi l te r 
Z U P T Zero-Velocity Update 
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