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Abstract 
 

This thesis focuses on the impact of agriculture on the local climate, namely differences 

in land surface temperature (LST), regarding two different types of management 

(organic or conventional), using remote sensing data (Landsat 8 satellite). Based on 

processing and calculations of the thermal images, which capture the 3-year period 

(2015, 2016 and 2017) and cover the territory of northern and central Bohemia, the 

basis for monitoring LST differences between organic and conventional fields has been 

created. For the following analysis, a computational script has been developed to 

monitor the trend of these differences and statistically test them. The output from this 

thesis shows that a certain trend of LST changes between different types of fields 

actually exists and is even periodically repeated within each tested year. Based on the 

results, it is relatively likely to say that LST is higher on organic fields in spring and 

summer (from March to August) and lower in autumn and winter (from September to 

February) in comparison to conventional ones. LST difference fluctuations at 95% 

significance are within ± 0,7°C. 
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Abstrakt 
 

Tato práce se zabývá problematikou vlivu zemědělství na lokální klima, konkrétně 

rozdíly teplot povrchu země při použití různých typů managementu (ekologického 

nebo konvenčního) a to pomocí dat satelitního snímkování (družice Landsat 8). Na 

základě zpracování a výpočtů termálních snímků, které zachycují období 3 let (roky 

2015, 2016 a 2017) a pokrývají střední a severní část Čech, byl vytvořen podklad pro 

sledování teplotních změn na povrchu ekologických a konvenčních polí. Pro následnou 

analýzu byl vyvinut výpočetní skript, pomocí něhož je možné sledovat trend těchto 

změn a statisticky je testovat. Z výstupu této práce vyplývá, že jistý trend teplotních 

změn mezi různými typy polí skutečně existuje a dokonce se pravidelně opakuje  

v rámci každého testovaného roku. Na základě výsledků lze s relativně vysokou 

pravděpodobností říci, že teplota povrchu země je u ekologických polí v porovnání  

s těmi konvenčními vyšší v období jara a léta (březen až srpen) a naopak nižší na 

podzim a v zimě (září až únor). Teplotní fluktuace se na 95% hladině významnosti 

pohybuje v rozmezí ± 0,7°C. 

 

Klíčová slova 
 

Dálkový průzkum Země, ekologické zemědělství, konvenční zemědělství, teplota 

zemského povrchu          
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1. Introduction 
 

When talking about sustainable food, fodder and bio-fuel production, differences 

between organic and conventional farming systems and its impact on both, the closest 

neighborhood and the global ecosystem, is nowadays one of the most discussed topics. 

Whereas the world´s population is rapidly rising and demand for agricultural products 

is proportionately growing, it is quite understandable that there is no doubt that these 

needs have to be ensured in a way that is economically efficient and at the same time 

has as little negative environmental and social impacts as possible. Therefore, in the 

last few decades, organic farming has been considered as the best candidate so far. 

However, it is even more necessary to explore in depth its strengths and similarly its 

weaknesses in order to make a qualified conclusion.   

 

Land management, where the type of farming also firmly belongs, affects the 

environment to a large extent. The number of effects that can be observed is countless – 

starting with the effects on the functioning of the ecosystem, animal migration, 

aesthetics (and a lot of others) to purely quantitative ones. Among those, secondly 

named, we can definitely include the Land Surface Temperature (LST). This physical 

parameter can help to clarify many questions about land surface or indicate various 

trends in land surface behavior. It is, with no doubt, essential variable for 

environmental scientists, researchers and specialists for detailed monitoring of 

landscape processes, like surface energy, water balance and drought assessment.  

 

There are few approaches how to measure LST. Especially, in regional or global scale, 

the only way how to obtain LST is by remote sensing. Current satellite imagery 

provides worldwide data of relatively high accuracy and within high repetition 

frequency. It makes satellite imaging an ideal tool for observing trends changing in 

time.  

 

In this thesis the author will describe one of the mathematical approaches of retrieving 

the LST from Landsat 8 spacecraft, as well as will make quantitative analysis of LST 

differences between similar agricultural fields under organic and conventional 

management in the territory of northern and central Bohemia, within 3 years (2015 – 

2017).  
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2. Aims 
 

The aim of this thesis is to calculate the land surface temperature (LST) from Landsat 8 

OLI/TIRS sensor by particular mathematical approach. Based on these retrieved data 

the author will make comparative numerical analysis of LST on agricultural fields 

under organic and conventional management and its possible impact on local climate. 

Analyzed dataset has been chosen within the period of 3 years (2015, 2016 and 2017) 

and the territory of central and northern Bohemia that matches the coverage of one 

particular Landsat 8 image (170 × 183 km). All the results will be statistically tested, in 

order to receive relevant outcome.    

 

The main outcome will be visualized three-year trend (if there is one) of temperature 

fluctuation during different seasons and its statistical evaluation. 

 

The main research questions of this thesis are: 

 Is there any difference in land surface temperature regarding organic and 

conventional management? 

 

 How can surface temperature on field hypothetically influence the local climate 

of the studied site?   
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3. Literature review 

3.1 Does organic farming provide healthy agricultural landscapes? 

Agriculture nowadays considerably affects the course of society, landscape and the 

world's ecosystem (Landis, 2017). This human activity is facing immense challenges – 

to provide food, fodder, materials and fuel. All of this requires a lot of energy, resources 

and effort. It is estimated that by the end of 2050, the world´s human population can 

reach over 10 billion people (Department of Economic and Social Affairs, Population 

Division, 2017). The way, in which food and energy used to support this increasing 

population will be produced, is fundamentally essential. In fact, agriculture already 

“occupies” nearly 40% of the ice-free land surface regarding farming or grazing 

(Ramankutty et al., 2008; Foley et al., 2011). As high yields are supported, the 

agricultural intensification through crop monocultures, field magnification and 

increased chemical and mechanical inputs into soil, negative environmental impacts on 

soil, water, air and biodiversity have emerged (Firbank et al., 2008; Stoate et al., 2009). 

 

Over the last two centuries, European agriculture has been slowly transforming from 

‘‘traditional organic’’ farming systems (Tello et al., 2016) based on solar, animal and 

human energy inputs, usually characterized by production for living and heterogeneous 

small scale land use, to current industrial ‘‘high-external-input’’ (Giampietro et al., 

2013) forms of agriculture based mainly on fossil inputs (fuel, artificial fertilizers, 

biocides) and advanced technologies. This current state of conventional intensive 

farming is characterized by high specialization and distant supply chains, large scale 

land use and extensive crop monocultures. Despite the argument of feeding mankind 

and making great advances in productivity, this approach is obviously not working 

(Tittonell, 2013) and moreover, the growth of industrial food production has come at  

a high environmental and social cost (Fraňková and Cattaneo, 2017). 

 

In recent years, as another, no less discussed problem is the land tenure, especially in 

Central and Eastern Europe (Sklenička et al., 2015). Managing the farmland in  

a sustainable model is directly affected by relationship between the farmer and the 

land, both economically and socially (Yami and Snyder, 2016). It seems to be that this 

issue is in direct connection with farmland ownership fragmentation. Pašakarnis et al. 

(2013) showed that farmland ownership fragmentation can significantly restrict access 

to land, or reduce the productivity of agricultural labour (Ženka et al., 2016). A high 

level of ownership fragmentation is an obstacle for individual farming by owner and 
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reduces the responsibility felt by tenants (mostly represented by medium or large 

concerns)  for land and landscape (Sklenička et al., 2017). Also thanks to that, land 

tenure can be considered as one of the main drivers of agricultural landscape changes, 

fragmentation of ownership structure and soil degradation (Krčílková and Janovská, 

2016).     

 

3.1.1 Alternative approaches towards healthy agricultural landscapes 

An alternative to a constant productivity increase under high-external input farming 

system can be considered organic farming. Implementing this system is often 

accompanied with significantly lower farmland degradation (Sklenička et al., 2015), 

increased species diversity (Kolářová et al., 2015), creation of more prosperous wild-

life habitats (Hole et al., 2005), reduction of the risk of pesticides and nitrates 

infiltration into the ground and surface water (Tuomisto et al., 2012) and last but not 

least the reduction of greenhouse gases due to its increased ability to fix carbon in the 

soil (Gomiero et al., 2011). It is commonly considered that organic farming has positive 

impact on landscape (Dytrtová et al., 2016). 

 

Agroecology is now being increasingly adopted by small and even larger scale farmers 

worldwide (Hilmi, 2012). One of the factors driving this trend, as showed Brožová and 

Beranová (2017), is that organic farms tend to be more profitable and fully competitive 

with those under conventional management. Other reasons, why organic farming starts 

to be more present are greater understanding of traditions, enthusiasm and sense of 

responsibility for healthy landscape, which are more or less common to most farmers 

(Zagata, 2010). 

 

3.1.2 What is the impact of different types of agriculture on climate? 

Despite nearly residual uncertainty, it is commonly accepted that Earth´s climate is 

changing (Karimi et al., 2018). To effectively face and adapt to ongoing climate change, 

regarding vital services provided by agriculture, organic farming is adequate choice 

(Chandra et al., 2017). Organic agricultural technologies provide numerous benefits 

such as abundant soil organic matter and nitrogen, crop yields increase, reduction of 

fossil energy inputs, soil erosion decrease and effective soil water conservation – 

exceptionally beneficial under drought conditions (Pimentel and Burgess, 2013). This is 

generally the case with regard to the impact of climate change on agriculture. But what 
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can be said from the opposite point of view? What is the impact of agriculture on 

climate? 

 

Agricultural production plays highly visible role in the context of climate change. 

Agriculture itself is a major driver of ongoing climate change, representing source of 

10% of all European greenhouse gases (GHG) emissions (EEA, 2017) and about 24% of 

global GHG emissions (IPCC, 2014). It has been demonstrated by Chiriacò et al. (2017) 

that organic farming is low-carbon approach with a lower contribution to climate 

change in terms of GHG emissions per hectare than conventional management. 

 

However, monitoring of GHG emissions is not the only way how to assess the impact of 

land management on local climate. As quite interesting indicator can be used also land 

use of monitored site as well (Verburg et al., 2009). El-Zeiny and Effat (2017) in their 

study showed that land use of specified area has significant impact on land surface 

temperature and it can directly affect the local climate. It was further demonstrated by 

López et al. (2016) that differences in land surface temperature (LST) within various 

land use are even greater with rising altitude. Unfortunately, there is lack of sufficient 

empirical research on this topic and this diploma thesis would like to participate in 

filling this gap. 

 

3.1.3 How to effectively study land surface? 

When it comes to studying the physical properties and behaviors of earth surface, it is 

possible to take into account more ways how to achieve it – from studying written 

documents, maps, printed matters up to modern high-tech approaches such as 

Geographic Information System (GIS) or remote sensing. While considering the 

monitoring of technical parameters of earth surface like LST, humidity, land use and 

many others, especially on medium or large scale, the use of satellite monitoring 

technique is the only way how to do it (Parastatidis et al., 2017). No other available 

method can deliver such a huge amount of relevant data on a global scale in relatively 

high quality and high repetition frequency within few hours or days worldwide 

(Wulder et al., 2016).  

 

Of course, the absolute accuracy (i.e. resolution) of space-born remote sensed data is 

still in the order of dozens of meters, which is usually not so suitable for site-specific 

studies. Nevertheless, for purpose of tracking ongoing dynamic natural and climatic 
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processes and trends in the atmosphere or on the earth surface, remote sensing wins 

on full line (Schowengerdt, 2007; Irons et al., 2012; USGS, 2015; Roy et al., 2014; 

Parastatidis et al., 2017).                 

 

3.2 Capabilities of remote sensing to study land surface 

“Remote sensing is defined, for our purposes, as the measurement of object properties on 

the earth's surface using data acquired from aircraft and satellites. It is therefore an 

attempt to measure something at a distance, rather than in situ” (Schowengerdt, 2007).   

 

3.2.1 Landsat Data Continuity Mission 

Landsat 8 (Figure 1), originally known as the Landsat Data Continuity Mission (LDCM), 

is the long partnership result of The National Aeronautics and Space Administration 

(NASA) and U.S. Geological Survey (USGS). It was successfully launched on February 11, 

2013 ensuring the continuity of the unparalleled Landsat record since 1972 (Irons et 

al., 2012). Following 3 months of on-orbit verification of LDCM's capabilities by NASA 

and LCDM partners, the USGS took over mission operations on May 30, 2013, renamed 

LDCM to Landsat 8, and opened Landsat 8 data access to users worldwide (USGS, 

2015). 

 

 
Figure 1: Landsat 8 satellite representation (http://www.spaceflightinsider.com/ 

organizations/nasa/orbital-atk-awarded-contract-to-extend-landsat-mission/) 
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3.2.2 Landsat 8  

Landsat 8 is a science mission and as for the previous Landsat systems, is ran without 

any operational mandate (Wulder et al., 2011). In comparison to its predecessor 

(Landsat 7) it has significantly improved imaging capacity and decreased processing 

time. More than 700 images per day on average are now being acquired and the newly 

taken images are available to users world-wide within 8 hours from acquisition 

(Wulder et al., 2016). It is possible to observe dramatic increase in daily acquisitions 

when combining both satellites (Landsat 7 and 8), which results into nearly 1200 new 

images added to Landsat archive every day. From this positive fact come scientific and 

operational benefits now and in the future. The expanded acquisitions are improving all 

related applications, especially international studies (Loveland and Irons, 2016). 

 

The Landsat 8 satellite carries onboard two sensors, the Operational Land Imager (OLI) 

and the Thermal Infrared Sensor (TIRS), which Irons et al. (2012) deeply described in 

their publication. It collects 11 bands of multispectral imagery with 30 m and 100 m 

spatial resolution respectively (Tab. 1). The OLI and TIRS spectral bands remain 

broadly comparable to the Landsat 7 Enhanced Thematic Mapper plus (ETM+) bands 

(Barsi et al., 2014).  

 

 

Geometric and geodetic accuracy is significantly better than previous Landsat missions 

(which are ~11.4 m when referenced to ground control points, and ~37 m in absolute 

Table 1: Band designation for Landsat 8 satellite (Barsi et al., 2014) 
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geodetic accuracy). Actually, Landsat 8 accuracy mostly overtakes the accuracy of 

current ground control. Development is in full swing to use Landsat 8 images to 

upgrade ground control, which should lead to significant improvement of geometric 

stability of the entire Landsat archive. The updated geometry has among other things 

great advantages for example in observations of ice movement (Fahnestock et al., 

2016), where improved geometry of the 15 m panchromatic band (band 8) in 

combination with the elimination of bright target saturation allows tracking ice sheet 

displacements with nearly 1 m precision. This illustrates the very good absolute 

accuracy of images coming from satellite Landsat 8.  

 

3.2.3 Land Surface Temperature 

Land surface temperature (LST) is very important parameter for environmental 

scientists, researches and specialists and for further studies enables the monitoring of 

landscape processes (Quattrochi and Luvall, 1999), like surface energy, water balance 

and drought assessment (Kustas and Anderson, 2009; Karnieli et al., 2010; 

Chrysoulakis et al., 2013). For better and detailed observation of such similar 

processes, there exists strong demand for frequently acquired data to get solid LST 

time series (Hansen et al., 2010). Especially at global and regional scales (Masiello et al., 

2015), the satellite remote monitoring of surface is the only way how to study as 

important parameter as land surface temperature without any doubt is (Weng et al., 

2004). 

 

While estimating LST from Landsat datasets, it is possible to use 3 different retrieval 

methods: split-window algorithm (SW), single-channel algorithm (SC) and direct 

inversions of the radiative transfer-based equation (Jiménez-Muñoz et al., 2014). 

 Split-Window Algorithm - the SW technique uses two thermal infra-red 

sensor (TIRS) bands, typically placed in the atmospheric window between 10 

and 12 µm. According to Jimenez-Munoz and Sobrino (2008), the main principle 

of the technique is that the radiance fading for atmospheric absorption is 

proportional to the radiance difference of simultaneous measurements at two 

different wavelengths (band 10 and band 11). 

 

 Single-Channel Algorithm – accurate LST determination using SC method 

requires high-quality atmospheric transmittance/radiance code to correctly 
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estimate the atmospheric features (Yu et al., 2014). The SC algorithm was 

revised by Jimenez-Munoz et al. (2009). In SC was proposed practical approach 

consisted of the approximation of the atmospheric functions versus 

atmospheric water vapor content from a second-order polynomial fit. SC 

algorithm can be applied to both of the two TIRS bands. 

 

 Radiative Transfer Equation-Based Method – in case of radiative transfer 

equation-based method, the atmospheric profile is derived from the NCEP 

(National Centers for Environmental Prediction). It uses on-line atmospheric 

correction tool – Atmospheric Correction Parameter Calculator (NASA, 2018). 

Retrieved atmospheric profile is used to imitate atmospheric transmittance, 

downwelling and upwelling radiance from computer code, called MODTRAN 

(MODerate resolution atmospheric TRANsmission) model (Barsi et al., 2005; Yu 

et al., 2014). The LST can be calculated by thermal radiance captured at sensor-

level, in synergy with obtained atmospheric parameters (Barsi et al., 2003). 

 

According to study of Yu, Guo and Wu (2014), where they compared SW, SC and 

radiative transfer equation-based method of Landsat 8 TIRS data (on 41 scenes), 

resulted that LST retrieval from the radiative transfer equation-based method using 

band 10 has the highest accuracy with RMSE (Root Mean Square Error) ≤1 K (Kelvin). 

On the other side, SW algorithm had moderate accuracy and the SC method was even 

worse – it had the lowest accuracy with all scenes. For those methods, which are using 

single band generally, LST estimated from band 10 has higher accuracy than band 11.  

 

Precise LST information from Landsat is not easily calculated and it is not directly 

provided as a standard available product. Many studies suggest methods and 

algorithms for obtaining LST from Landsat data, but it is still not too easy to implement 

these approaches. Deeper knowledge of this topic is required (Parastatidis et al., 2017).  

 

Band 11 uncertainty 

While the Landsat 8´s TIRS bands were designed to provide direct usage of Split-

Window surface temperature retrieval algorithms, it is highly recommended to users to 

avoid band 11 data in quantitative analysis. On this issue, U.S. Department of Interior 

(2013) officially says: “Since the launch of Landsat 8 in 2013, thermal energy from 
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outside the normal field of view (stray light) has affected the data collected in TIRS Bands 

10 and 11. This varies throughout each scene and depends upon radiance outside the 

instrument field of view, which users cannot correct in the Landsat Level-1 data product. 

Band 11 is significantly more contaminated by stray light than Band 10”. 

 

3.2.4 Normalized Difference Vegetation Index 

Normalized difference vegetation index (NDVI) is very useful indicator to identify long-

term variations in vegetation cover and its condition (Fu and Burgher, 2015). NDVI 

value is derived from red and near-infrared band and naturally fluctuates between -1 

and +1, depends on vegetation cover. It is positive (i.e. > 0) for green vegetation, neutral 

(i.e. between -0.1 and +0.1) within areas of little or no vegetation (e.g. urban areas and 

bare lands) and negative (i.e. < 0) usually above water surface (Fathizad et al., 2017). 

 

According to Xu et al. (2011), changes in vegetation are causing the main land surface 

temperature (LST) variations which are affiliated with vegetation density. To find  

a rational and logical interaction between vegetation and surface temperature indexes, 

extensive researches have been conducted (Agam et al., 2007; Inamdar et al., 2008; Li 

et al., 2015). It has been confirmed that such a relationship exists and moreover, it has 

been finally proven that there is a logical relation between NDVI and LST. In another 

study, Herb et al., (2008) derived the LST for 3 different areas in the United States with 

different land use and different land cover classes using heat flux. Furthermore, Jianjun 

et al., (2005) studied the effects of inadequate land use changes on LST by using the 

Landsat images. Regarding to their results, the authors pointed out that shifts in land 

use are a principal factor in LST increase. Higher temperatures were in areas with 

sparse vegetation and lower temperatures in areas with dense vegetation. 

 

 

3.2.5 Land Surface Emissivity 

Temperature is an important magnitude for many environmental models, e.g. energy 

and matter exchange between atmosphere and surface, weather prediction or climate 

change. We can obtain clear picture of this magnitude on local, regional or global scales 

from thermal data provided by satellites imagery. Its sensors directly measure the 

radiance emitted by surface – land surface emissivity (Valor and Caselles, 1996). 



20 

Emissivity of objects on the surface or surface itself can be obtained in more ways. 

According to Parastatidis et al. (2017), there are three different sources of emissivity, 

which are considered to allow more accurate LST estimates for different regions and 

conditions: 

(i) Global emissivity map derived from ASTER (Advanced Spaceborne Thermal 

Emission and Reflection radiometer) data. It refers to the period 2000–

2008 and has 100 m × 100 m spatial resolution (Hulley et al., 2015).  

 

(ii) The MODIS (MODerate resolution Imaging Spectroradiometer), which is 

daily LST and emissivity product with 1 km × 1 km spatial resolution (Wan, 

2014).  

 

(iii) Emissivity based on the vegetation fraction. This fraction is usually 

estimated from NDVI (Carlson and Ripley, 1997; Parastatidis et al., 2017). 
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4. Methodology 

4.1 Used satellite data 

For the needs of this analysis, it was necessary to find the relevant data, namely 

satellite data that would be of sufficient quality (i.e. would have appropriate sensors of 

high resolution imaging), needed to calculate the thermal images of earth surface. 

Landsat 8, established and operated by USGS (United States Geological Survey) since 

2013, was used as an appropriate satellite. It is necessary to create an account to obtain 

Landsat 8 data from USGS server. When account is created, user gets the full access to 

satellite imagery database, which works on searching engine Earth Explorer (U.S.G.S., 

2015). 

 

Regarding chosen Landsat 8 dataset, as the area of interest was determined the area 

which is covered by particular Landsat image and which mostly covers the territory of 

northern and central Bohemia.     

 

4.1.1 Earth Explorer 

As mentioned above, Earth Explorer is special searching engine for browsing and 

downloading satellite imagery data from USGS servers. User can search for particular 

image on basis of Search Criteria, Data Sets, Additional Criteria and Results.  

 In Search Criteria part, there are several options how to allocate the area of 

interest and date of execution. In case of this study the function Path/Row was 

used, where it is possible to manually determine the position of center of 

wanted image (path = 191, row = 25; equals to Lat: 50° 17´ 11´´ N, Lon: 15° 15´ 

35´´ E; territory of northern and central Bohemia). Execution date was given by 

Date Range parameter (01/01/2015 to 12/31/2017; three years in row). 

 

 Further on is the Datasets tab. There was used dataset of Landsat 8 OLI/TIRS 

(Landsat → Landsat Collection 1 Level-1 → Landsat 8 OLI/TIRS C1 Level-1). It is 

necessary to choose this specific dataset, because it contains thermal band 

(Band 10).  

 

 Next part of searching process is Additional Criteria. There are several 

parameters to assign. The only important for this work are Land Cloud Cover 
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and Scene Cloud Cover. Those are expressing the ratio of cloud cover within 

image. In both cases Less than 40% was chosen to provide good visibility of land 

surface. 

 

 Last tab is Results, where user is able to browse all images, filtered by given 

parameters. Before downloading the data, it is possible to go through image 

previews, to see suitability of obtained results. Last action is to add all chosen 

images to chart and download them. 

 

4.1.2 Landsat 8 OLI/TIRS data 

Landsat 8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) carries, 

among other units, thermal infrared radiometer and therefore its data are suitable for 

LST estimation (Parastatidis et al., 2017). It contains 11 spectral bands in TIFF format 

(Tab. 1), pre-collection quality assessment band also in TIFF format, angle coefficients 

file and metadata file, both in TXT format.   

 Spectral bands files – images consist of nine spectral bands with a spatial 

resolution of 30 meters for Bands 1 to 7 and 9. The ultra-blue Band 1 is useful 

for coastal and aerosol studies. Band 9 is useful for cirrus cloud detection. The 

resolution for Band 8 (panchromatic) is 15 meters. Thermal bands 10 and 11 

are useful in providing more accurate surface temperatures and are collected 

at 100 meters, but are resampled to 30 meter resolution in delivered data 

product. The approximate scene size is 170 km north-south by 183 km east-

west (Barsi et al., 2014). 

 

 Quality band file - Pre-Collection Quality Assessment band is an important 

addition to Landsat 8 data files. Each pixel in the QA band contains integers 

that represent bit-packed combinations of surface, atmosphere, and sensor 

conditions that can affect the overall usefulness of a given pixel (U.S.G.S., 

2013). 

 

 Angle Coefficient file - provides sensor viewing angle model coefficients that 

can be used to create angle bands, and allows users to compute the solar and 

sensor viewing angles on a per-pixel basis. Angle bands allow users to better 

understand how the sensor viewing geometry and solar illumination geometry 
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affects the object being sensed by the imaging instrument. Angle bands can be 

utilized in science algorithms to produce more accurate results over the 

current practice of using a single solar illumination value and sensor viewing 

angle based on the scene center (U.S.G.S., 2017). 

 

 Metadata file - Landsat Metadata files contain beneficial information for the 

systematic searching and archiving practices of data, and also explain the 

essential characteristics of the Level-1 data products. Metadata describe 

individual parameters used during processing of the data, including the 

processing levels of each scene. Values important for enhancing Landsat data 

(such as conversion to reflectance and radiance, date of acquisition, scene 

center coordinates, etc.) are also included in this file (U.S.G.S., 2017). 

 

4.2 Land surface temperature 

LST estimation is quite complex process, which is supported by several calculations, 

software and on-line tools. In this study, in order to retrieve the LST data, was essential 

to derive these variables: normalized difference vegetation index (NDVI), land surface 

emissivity (LSE) and finally LST itself. As software tool, used for achieving these 

objectives, was chosen ArcGIS 10.4 and Atmospheric Correction Parameter Calculator as 

an on-line tool for calculating atmospheric corrections above the scene. 

 

4.2.1 NDVI calculation 

NDVI calculation was done in ArcGIS software. However, before calculation itself, it was 

necessary to do couple of preparative steps.  

 

First, add 4 spectral bands: band 2 (blue light), band 3 (green light), band 4 (red light) 

and band 5 (near-infrared light). Then those 4 bands were combined by Composite 

Bands tool (Geoprocessing → ArcToolbox → Data Management Tools → Raster → Raster 

Processing → Composite Bands). 

 

After previous steps, NDVI calculation could be made. In ArcGIS is special tool, 

dedicated to this purpose – NDVI tool (Windows → Image Analysis → Processing → 
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NDVI), which was used. Vegetation index is generated according to following equation 

(Eq. 1): 

 

where NDVI is normalized difference vegetation index; NIR is near infra-red band; and 

RED is red band.   

 

4.2.2 LSE calculation 

Emissivity of land surface (LSE) is essential to retrieve LST. For obtaining this variable 

it is necessary to achieve few steps before. All the calculations were accomplished using 

ArcGIS Raster Calculator tool (Geoprocessing → ArcToolbox → Spatial Analyst Tools → 

Map Algebra → Raster Calculator).  

 

At the beginning it is important to obtain Top-of-Atmosphere (TOA) radiance. OLI and 

TIRS band data can be converted to TOA spectral radiance using the radiance rescaling 

factors provided in metadata file of every single image. It was done by formula (Eq. 

2)222, which is given by U.S. Department of Interior, (2013): 

 

where      is TOA spectral radiance (
     

          
);    is band-specific multiplicative 

rescaling factor from the metadata file (RADIANCE_MULT_BAND_10 = 0.0003342);    is 

band-specific additive rescaling factor from the metadata file 

(RADIANCE_ADD_BAND_10 = 0.1); and      is quantized and calibrated standard 

product pixel values (digital number of NDVI product). 

 

After calculating the TOA spectral radiance, it is possible to proceed with retrieval of 

another important variable, which is proportion of vegetation cover (Sobrino et al., 

2004). This element was calculated by following equation (Eq. 3): 

      
       

       
 Eq. (1) 

                 Eq. (2) 
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where    is proportion of vegetation cover; NDVI is normalized difference vegetation 

index (NDVI product);         is minimum value of NDVI within the scene (usually 

value of 0.2); and         is maximum value of NDVI within the scene (usually value of 

0.5).     

 

As the final step to get LSE is to use the formula (Eq. 4) proposed by Sobrino et al., 

(2004): 

 

where   is land surface emissivity (unitless);    is proportion of vegetation cover; 0.004 

and 0.986 are constants given by Sobrino et al., (2004). 

 

4.2.3 LST calculation 

Land surface temperature (LST) is critically important for agricultural field 

temperature comparison. To meet this goal correctly and with as much accurate 

absolute results as possible, it is essential to deal with the influence of the atmosphere. 

The most stable and reliable method is calculating the LST with use of web-based 

atmospheric correction tool Atmospheric Correction Parameter Calculator (ACPC), 

validated by Barsi et al. (2005). 

 

ACPC is designed on the on-line basis. It operates with NCEP atmospheric profile layers 

in-situ to about 16 km high, but MODTRAN considers atmosphere end to be at 100 km 

height. To approximate the highest layers of the atmosphere, a "standard" atmospheric 

profile is used. The ACPC has two standard atmospheric profiles available: mid-latitude 

summer and mid-latitude winter (NASA, 2018). For this study was chosen mid-latitude 

summer for warmer part of a year (scenes acquired from beginning of April till the end 

of September) and mid-latitude winter for colder part of a year (scenes acquired from 

beginning of October till the end of March). 

    (
            

               
)
 

 Eq. (3) 

                  Eq. (4) 
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The other parameters that needed to be filled were: Year (stored in metadata; 

DATE_ACQUIRED), Month (stored in metadata file; DATE_ACQUIRED), Day (stored in 

metadata file; DATE_ACQUIRED), GMT Hour (stored in metadata file; 

SCENE_CENTER_TIME), Minute (stored in metadata file; SCENE_CENTER_TIME), 

Latitude (for studied scene: +50.2864), Longitude (for studied scene: +15.2598), Use 

interpolated atmospheric profile for given lat/long, Use Landsat-8 TIRS Band 10 spectral 

response curve and e-mail address, where results should be sent. The optional part of 

ACPC interface was left empty. The resulting output from ACPS are those important 

variables: upwelling (atmospheric) path radiance, downwelling (sky) radiance and 

atmospheric transmission.  

 

Based on calculations of Barsi et al. (2005), with appropriate knowledge of the 

atmosphere and once these parameters are known, it was possible to convert the 

space-reaching radiance to a surface leaving radiance (Eq. 5): 

 

where      is TOA spectral radiance measured by the instrument (
     

          
);   is the 

atmospheric transmission (ACPC output; unitless);    is land surface emissivity 

(unitless);    is the radiance of blackbody target of kinetic temperature T (
     

          
); 

   is the upwelling or atmospheric path radiance (
     

          
); and    is the 

downwelling or sky path radiance (
     

          
). 

 

It is obvious that this formula (Eq. 5) is not sufficient, because the    value is missing. 

For that reason was used modified equation (Eg. 6), derived by (Srivastava et al., 2009): 

  

                  (   )     Eq. (5) 

    
          (   )    

   
 Eq. (6) 
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where    is land surface spectral radiance (
     

          
);      is TOA spectral radiance 

measured by the instrument (
     

          
);   is the atmospheric transmission (ACPC 

output; unitless);    is land surface emissivity (unitless);    is the upwelling or 

atmospheric path radiance (
     

          
); and    is the downwelling or sky path 

radiance (
     

          
). 

 

Last approach to obtain LST is to convert land surface radiance to temperature. It was 

made by using the Landsat specific estimate of the Planck curve (Eq. 7), derived from 

Planck equation (Barsi et al., 2005):   

 

where    is the LST in Kelvin;    is land surface spectral radiance (
     

          
);    is the 

calibration constant from the metadata file (K1_CONSTANT_BAND_10 = 774.8853); and 

   is the calibration constant from the metadata file (K2_CONSTANT_BAND_10 = 

1321.0789). 

 

For needs of this study was made optional Kelvin to Celsius temperature conversion 

(Eq. 8): 

  

where    is the temperature in Celsius;    is the temperature in Kelvin; - 273.15 is the 

Kelvin-Celsius shift constant.  

 

  

 
   

  

  (
  
  
  )

 
Eq. (7) 

              Eq. (8) 
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4.3 Land Parcel Identification System 

As a reference data frame for calculated data were used Land Parcel Identification 

System (LPIS) data. It is a vector layer, provided by Ministry of Agriculture and it is 

available on the Public Land Registry portal (LPIS, 2018) as web based browser. For the 

purpose of this thesis, the complete data covering the entire Czech Republic in  

a separate dataset was requested at Department of Land Use and Improvement in 

Czech University of Life Sciences. Obtained datasets covered three-year period (2015 – 

2017). One of its main purposes is to explore and identify agricultural production block 

attributes within whole Czech Republic.  

 

To achieve the goal of this study, it was important to be able to compare organic fields 

with conventional fields, using set of specific parameters such as management type, 

field type, location, elevation, slope, orientation, area and surface temperature. Some of 

those parameters are included in LPIS data (management type, field type, location, 

elevation, slope, area) and some had to be calculated (orientation, surface 

temperature).    

 

To obtain all named relevant data for such a comparative analysis, few following steps 

needed to be done.   

 

4.3.1 Data preparation 

Data have been available in 3 separated datasets - year 2015, 2016 and 2017. As an 

initial step, it was necessary to prepare them for purpose of this study. LPIS vector 

layer originally contains a lot of information, has its specific coordinate system and 

covers the entire territory of the Czech Republic. As in the previous steps, all processes 

were performed in the ArcGIS 10.4 program.    

 

Unification of coordinate systems 

Before any further analysis could begin, it was necessary to unify the coordinate 

systems of calculated thermal images and LPIS vector layer. All Landsat imagery is 

standardly provided in World Geodetic System (WGS 1984) coordinates and Universal 

Transverse Mercator (UTM) projection (U.S. Department of Interior, 2013). It is also 

important to count on a particular UTM zone of particular image, because every zone 
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has different distortion of projection. This information is included in metadata file of 

every single Landsat image. For images, used it this analysis, the UTM zone is 33N 

(basic meridian = 15°; northern hemisphere). On the other side, in case of LPIS vector 

data, basic coordinate system is Datum of Uniform Trigonometric Cadastral Network 

(in Czech: S-JTSK) and Krovak East North projection (basic meridian is Greenwich).  

 

As the work coordinate system was selected WGS 1984 (the one in which the satellite 

data is). To transform LPIS layer into the same system was used Project tool 

(Geoprocessing → ArcToolbox → Data Management Tools → Projections and 

Transformations → Project). As input coordinate system was selected S-

JTSK_Krovak_East_North and as output WGS_1984_UTM_Zone_33N.  

 

Defining an area of interest  

As mentioned above, the scope of this study is more or less northern and central part of 

Bohemia (Figure 2). This area is defined by position and dimension of used Landsat 

images. That is why it was needed to reduce the LPIS layer. For this purpose was 

created new polyline layer and manually drawn quadrangular vector shape which runs 

directly around the circumference of the Landsat image. Right after was used Clip tool 

(Geoprocessing → Clip) and as a clip feature was utilized this newly created polyline 

shape. 

 

Figure 2: Visualization of studied area 
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Detailed data sorting 

After defining the exact area of interest, a detailed sorting of data has come to pass. 

Firstly, the attribute table of LPIS layer has too many attributes and only few of them 

are relevant for this analysis. To simplify the dataset, useless columns were turned off 

by function Turn Field Off. Only fields OBJECTID (field identification number), VYSKA 

(field mean elevation in meters), SVAZITOST (field mean slope in %), EKO (management 

type on field), KULTURANAZ (field type), KULTURAKOD (field code), Shape_Length (field 

circumference in meters) and Shape_Area (field area in square meters) were retained. 

 

Next step was to allocate fields which do not match the required analysis parameters 

and delete them. By using Select By Attributes tool, usable fields were selected and the 

rest was deleted. As decisive parameters were chosen: 

 Minimum area – as minimum field area that can come into assessment is 

900    with respect of thermal images ground resolution. The reason is 

that the area of 1 thermal image pixel is 30 m   30 m (= 900   ). All fields 

bellow this boundary, were deleted. 

 

 Adequate shape – because some fields may meet the condition of 

minimum area, but can have completely inappropriate shape (e.g. too 

narrow), this condition was established. To determine and separate 

improper fields, the shape ratio was used. It was calculated by following 

command: “(Shape_Area / Shape_Length) < 7.5”. The reason is that one 

single thermal image pixel has the ratio 7.5 (area = 900   ; circumference 

= 120 m), so all fields which had lower ratio, were deleted. 

 

 Field type – the field type that is in scope of this study is arable land. All 

the others (e.g. grassland, pond, orchard etc.) were deleted. 

 

 Field management – in LPIS data is also included information about the 

type of management. The information is mediated by these codes: 0 - 

conventional management; 1 - organic management; 2 – transitional 

period; 3, 4, 5, 6 – uncertain status. In respect to this parameter, only 

conventional (code 0) and organic (code 1) fields are suitable. The others 

were deleted. 
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 Cloud cover – when estimating land surface temperature (LST) by use of 

satellite imagery, clouds in atmosphere cause troubles and uncertainty in 

results. For that reason it was necessary to remove fields, covered by 

clouds for every thermal image separately. As an ideal option was chosen 

Select by Polygon selection tool. Clouds were manually traced by selection 

polygon and the fields falling inside the shape, were deleted for every 

single thermal image separately.   

 

Additional parameters 

For the purposes of this analysis, it was necessary to derive even more variables that 

come into the final evaluation: aspect (i.e. field orientation), location of individual fields 

and the most important – land surface temperature (LST). 

 Aspect – this parameter is very important for matching parcels of the same 

orientation. The difference of geographical orientation of the field could 

have major impact on the resulting LST.  

As a background data, within area of interest, the Digital Terrain Model of 

the Czech Republic of the 5th generation (DMR 5G) was used. It is raster 

data layer, in which every pixel has 2 × 2 meters resolution and which is 

originally provided in S-JTSK - Krovak coordinate system (ČÚZK, 2013). For 

this reason it was convenient to resample the raster into lower resolution 

(30 × 30 meters) by using Aggregate tool (Geoprocessing → ArcToolbox → 

Spatial Analyst Tools → Generalization → Aggregate). Another approach was 

to project the model into current coordinate system 

(WGS_1984_UTM_Zone_33N) using Project tool (Geoprocessing → 

ArcToolbox → Data Management Tools → Projections and Transformations → 

Project).  

After all these preparations, the aspect value itself was calculated by Aspect 

tool (Geoprocessing → ArcToolbox → Spatial Analyst Tools → Surface → 

Aspect). 

To assign aspect value for every single field, the Zonal Statistics as Table 

tool (Geoprocessing → ArcToolbox → Spatial Analyst Tools → Zonal → Zonal 

Statistics as Table) was used with MEAN value. 

 

 Field location – polygon centroids were used to determine approximate 

location of the field. For obtaining these values was used Calculate 
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Geometry tool (Attribute Table → Add Field… → Calculate Geometry…), 

where are options to calculate X Coordinate of Centroid and Y Coordinate of 

Centroid.  

 

 Land surface temperature – land surface temperature (LST) is crucial 

variable for determining the differences between organic and conventional 

fields. So that this could be done, average LST value was calculated for 

every field from previously obtained thermal images. Same as in filed 

location part, the Calculate Geometry tool was utilized, with MEAN value 

entered into calculation. 

 

Redefined LPIS layer 

The newly modified polygonal LPIS layer was prepared for subsequent comparative 

analysis. All required parameters are calculated or derived in Attribute Table. These 

parameters are:  

 OBJECTID - parcel identification number 
 

 ELEVATION – average parcel altitude [m a.s.l.]  
 

 ASPECT – average parcel orientation towards cardinal directions [°] 
 

 SLOPE – average parcel slope [%]  
 

 AREA – area of parcel [  ]    
 

 X_CENT – X coordinate of polygon centroid 
 

 Y_CENT – Y coordinate of polygon centroid 
 

 EKO – classification of used management (0 = conventional; 1 = organic) 
 

 LST – average temperature on the parcel surface [°C] 

 

All the attribute tables were exported as TXT files to allow computational script to load 

them. 
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4.4 Pairing algorithm 

After all the previous calculations and data preparations, next step was to create 

specific dataset, where every organic parcel will be distributed with corresponding 

conventional one. In other words - for every organic field it was needed to find 

conventional field that meets the selection criteria based on specified parameters. 

To achieve this goal the MATLAB 2017a software was used and the computational 

Parcel Pairing Script (Appendix 1) was developed there. The structure of the calculation 

was created as follows (Figure 3): 

    

 

where: 

 Manual input of limit parameters – in this part the user must manually enter 

the limitations on the basis of which for every organic field (i.e. parcel) is 

searched matching conventional one. Searching parameters are: DISTANCE 

limit, ELEVATION limit, ASPECT limit, SLOPE limit and AREA limit. Another 

parameter which is manually entered by the user is Degree of polynomial 

approximation. It determines the order of used approximation polynomial. 

Manually used limits are showed in the table below (Table 2). 

 

 

MANUAL INPUT OF LIMIT PARAMETERS 
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Figure 3: The computational structure of Parcel Pairing Script 
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Table 2: Values of the searching limits that were used in the calculation in Parcel Pairing Script 

 

 

 Data import – here are all attribute tables in text format automatically 

imported into matrixes. 

 

 Parcel type sorting – as was mentioned above (Data preparation chapter), 

every parcel has its own code – “1” or “0” (1 = organic management; 0 = 

conventional management). Based on this distinction are parcels sorted and 

put into 2 different groups (organic and conventional). 

 

 Parametric calculation – within this part of the script runs the main 

calculation that is responsible for proper pairing of individual parcels. In basic 

terms, for every organic parcel is found the set of all conventional “candidates”, 

which are meeting searching limits and then it choose the closest one on the 

Distance limit basis. 

 

 Statistical evaluation – in this part the code is working only with newly 

established parcel pairs. It statistically evaluates the significance of land 

surface temperature (LST) differences, using Paired T-test. 

 

 Table of results – the first part of the script´s outcome is table of results, 

where are information such as Number of found organic parcels (ALL, USED, 

SKIPPED), Mean value of LST, Statistical evaluation (standard deviation, p-value) 

and so on. 

 

 Approximated trend plot – the second part of results is the plot, where over 

3-year period are illustrated two interconnected information: (i) mean values 

of LST differences (in the form of columns) and (ii) the trend of LST fluctuation 

in time (in the form of approximation Legendre´s polynomial). 

 

Manually entered searching limits 

DISTANCE 
limit [m] 

ELEVATION 
limit [m] 

ASPECT 
limit [°] 

SLOPE limit 
[%] 

AREA limit 
[%] 

Order of 
approximation 

polynomial 

± 2000 ± 100 ± 60 ± 1 ± 30 8 
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5. Results 
 

The outcome of this thesis is relatively diverse. For this reason, this chapter is divided 

into three related units: (i) processing of satellite images, (ii) pairing and calculations 

made by Parcel Pairing Script and (iii) statistical evaluation of results. 

 

5.1 Thermal image processing 

Entire satellite image processing (geo-referencing, calculations, cloud clearing etc.) was 

done in ArcGIS 10.4 software. Some of downloaded images were immediately discarded 

due to the high cloud cover or inappropriate cloud distribution over scene. In cases, 

where clouds were relatively compact, it was possible to remove them manually. But if 

the distribution of clouds was enormously irregular and fragmented (Fig. 4), it was 

necessary to exclude such images from analysis in order to avoid high inaccuracies in 

the subsequent calculation.  

 

After this “cleaning process” 19 images in total remained in the analysis – 7 images for 

year 2015, 4 images for year 2016 and 8 images for year 2017. On every single image 

was done several-step calculation to retrieve the land surface temperature (LST). 

Figure 4: Example of analysis-suitable image (on the left) and analysis-non-suitable image (on the 
right) 
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Final thermal images were exported into geo-TIFF format, which provides zero 

compression and information about geographical reference of image.  

 

As a next step, the LPIS vector layer, containing parcel outline and other information, 

was added. LPIS layer was transformed into the same geographical coordinate system 

as images (WGS_1984_UTM_Zone_33N) to fit the datasets (Fig. 5). 

 

 

Figure 5: Geo-referenced LPIS layer on the true color satellite image 

    

After that, the parcels covered by clouds were manually deleted from vector dataset 

over every single scene. Because there is a different level of cloud cover on every image, 

each one has different number of usable parcels in the calculation (Tab. 4). This leads to 

the fact that the number of parcels may considerably vary from image to image (Fig. 6).       
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Figure 6: Examples of 3 image pairs – true color image (on the left) and thermal image (on the 
right). Parcels are marked on thermal images (green). The difference in parcel number is clearly 
visible.   



38 

From that moment, the calculation of mean LST of each parcel could have started. This 

task was made by Zonal Statistics as Table tool. This tool takes the value of every pixel 

that falls into the parcel´s perimeter (Fig. 7) and calculate the MEAN value.  

 

 

Figure 7: Parcel vector layer over thermal image (in detail)  

 

Calculated mean LST value of each parcel was added to the Attribute Table (Tab. 3) of 

vector layer. At the end, the table was exported into text file, so the data could be 

loaded into the computational script. 

Table 3: Sample polygon Attribute Table 
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5.2 Paired parcels and final trend 

The main part of the analysis was to find pairs of parcels (organic and conventional) 

based on manually entered searching parameters (Tab. 2). For this purpose was 

developed Parcel Pairing Script (Appendix 1) in MATLAB 2017a. The outcome of this 

script is the table (Tab. 4) containing various information such as: Date (acquisition 

date of image), ALL organic parcels (number of organic parcels within each scene), 

USED organic parcels (number of parcels which met the searching criteria), SKIPPED 

organic parcels (number of parcels which didn´t meet the searching criteria), DIST. > 

lim (parcels skipped due to exceeding the distance limit), OTHER > lim (parcels skipped 

due to exceeding any other limit) and Mean LST differ. [°C] (mean LST difference, 

calculated from USED parcels, pairs respectively).   

      

 

Another outcome is the 3-year trend of LST differences fluctuation in time (Fig. 8). It is 

visible, that there exists relatively high repeating tendency of LST differences between 

organic and conventional fields.     

  

Satellite 
image ID Y

e
ar

 

Date 
ALL 

organic 
parcels 

USED 
organic 
parcels 

SKIPPED 
organic 
parcels 

DIST. 
> lim 

 OTHER    
> lim 

Mean 
LST 

differ. 
[°C] 

1 

2
0

1
5

 

06/JAN 1074 541 533 22 1052 0,2 

2 07/FEB 1992 979 1013 106 1886 0,1 

3 01/JUL 1398 634 764 83 1315 0,6 

4 17/JUL 1531 818 713 65 1466 0,4 

5 03/SEP 863 389 474 86 777 -0,1 

6 19/SEP 1861 905 956 114 1747 -0,4 

7 05/OCT 823 415 408 36 787 -0,4 

8 

2
0

1
6

 26/FEB 825 447 378 7 818 0,2 

9 30/APR 1867 915 952 152 1715 0,4 

10 04/AUG 1543 800 743 36 1507 -0,4 

11 07/OCT 280 140 140 6 274 0,2 

12 

2
0

1
7

 

27/JAN 2022 987 1035 134 1888 0,0 

13 16/MAR 1794 861 933 114 1680 0,1 

14 01/APR 2039 993 1046 135 1904 0,2 

15 19/MAY 2140 1039 1101 135 2005 0,4 

16 20/JUN 2101 1024 1077 136 1965 0,5 

17 22/JUL 1129 600 529 6 1123 0,1 

18 07/AUG 1277 594 683 120 1157 -0,4 

19 13/DEC 1437 759 678 25 1412 0,1 

Table 4: The overview table of used (i.e. successfully paired) organic parcels 
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5.3 Statistics 

In order to get higher data validity, the results were statistically tested. As suitable 

statistical assessment was used Two-sided Paired T-test, with the Confidence interval 

95%. One of the main T-test assumptions, the normality of the data, was met (Fig. 9). As 

the null (  ) and alternative (  ) hypotheses were determined: 

                           

                            

The statistical evaluation for every single image was calculated in Parcel Pairing Script 

and is illustrated in the table (Tab. 5). 

 

Sa
te

lli
te

 
im

ag
e

 ID
 

Y
e

ar
 

Date 
USED 

organic 
parcels 

H
yp

o
th

e
si

s Statistically 
significant? 
(conf. Int. 

95%) 
p

-v
al

u
e Mean LST 

difference 
[°C] 

Mean LST 
diff. 

standard 
deviation 

[°C] 

1 

2
0

1
5

 

06/JAN 541 1 YES 0,005 0,2 1,4 

2 07/FEB 979 0 NO 0,115 0,1 0,9 

3 01/JUL 634 1 YES 0,003 0,6 5,1 

4 17/JUL 818 1 YES 0,006 0,4 4,4 

5 03/SEP 389 0 NO 0,466 -0,1 3,3 

6 19/SEP 905 1 YES 0,000 -0,4 2,5 

7 05/OCT 415 1 YES 0,000 -0,4 2,1 

8 

2
0

1
6

 26/FEB 447 0 NO 0,074 0,2 2,3 

9 30/APR 915 1 YES 0,000 0,1 2,8 

10 04/AUG 800 1 YES 0,000 -0,2 2,8 

11 07/OCT 140 0 NO 0,516 0,1 3,7 

12 

2
0

1
7

 

27/JAN 987 0 NO 0,782 0,0 0,7 

13 16/MAR 861 1 YES 0,003 0,1 1,3 

14 01/APR 993 1 YES 0,000 0,1 1,8 

15 19/MAY 1039 1 YES 0,000 0,2 2,6 

16 20/JUN 1024 1 YES 0,000 0,5 3,0 

17 22/JUL 600 0 NO 0,161 0,1 1,8 

18 07/AUG 594 1 YES 0,012 -0,2 3,3 

19 13/DEC 759 1 YES 0,000 0,1 0,6 
 

Second statistical outcome, generated in Parcel Pairing Script, was the trend plot with 

mean LST differences, distinguished in terms “significant” or “non-significant” (Fig. 10). 

Table 5: Table of LST difference statistical evaluation of every image 
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Figure 9: Data distribution of LST differences in all 19 analyzed 
thermal images. At the first sight, data has relatively clear 
normal distribution.   
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6. Discussion 
 

Analyzing the earth surface with satellite imagery tends to be more widespread used 

literally day after day. A large number of parameters can be monitored by remote 

sensing. The land surface temperature (LST) is one of them. From my point of view, 

there are hardly any studies to deal with the influence of chosen agricultural 

management on LST. In my thesis, I´ve tried to find such a correlation. 

 

Based on the results it is evident that some LST differences between organic and 

conventional fields are present and even that the repetitive trend in these differences 

actually exists (Fig. 8). The final approximation shows that LST on organic fields tends 

to be higher during spring and summer (from March to August) and lower during fall 

and winter (from September to February). As usual, while monitoring any long-term 

trend, also here are some contradictions. Especially in tested year 2016 the higher 

deviation of LST differences from approximation curve is visible. The problem was 

lower number of usable images and relatively high and uneven cloud cover. So that we 

could declare the data in year 2016 as similarly valid as other years, we would need at 

least twice as many usable images and involve them into the calculation. 

 

Another thing that is needed to be taken into account is the fact that entire calculation 

of thermal images is loaded by many inaccuracies. Positive fact is that when it comes to 

differences comparison, many inaccuracies are cut off. Despite that, it is needed to pay 

special attention to land surface emissivity (LSE) estimation. Parastatidis et al. (2017) 

demonstrates that accuracy of LSE determination directly affects the LST final accuracy. 

It is clear that the level of precision, while estimating LSE, is absolutely essential. For 

my analysis I´ve chosen NDVI-based method, which is very often used and achieves 

relatively good results (Yu et al., 2014). However, it has also its own limitations. NDVI-

based method is sensitive on the amount of vegetation cover, but it can barely 

recognize specific crop type (Karnieli et al., 2010). 

 

Next calculation-based issue was finding the trend – i.e. approximation. In this thesis  

I used Lagendre´s polynomial of 8th order. Number of orders is used on the basis of 

number of expected peaks in the curve. It seemed to me as an appropriate choice, but it 

has, like any other function, its limitations. According to Gambino and Kock (2013), 

Lagendre´s polynomial is characterized by the fact that the approximation is more 
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steep at the edges of monitored trend. This is happening because of the absence of any 

value going behind both ends (left and right) of studied dataset. It can be thus assumed 

that if I would have used also data from second half of year 2014 (on the left end) and 

first half of year 2018 (on the right end), the overall course of approximation function 

would be smoother and within monitored 3-year period also more valid. 

 

In order to declare any data as relevant, it is always needed to test them by some 

statistical approach. I´ve used Two-sided Paired T-test, because the data structure was 

appropriate and also the assumption of normality of the data was met (Fig. 9). When 

looking at the statistical results, except one case (August 2016), all statistically 

significant differences confirm the trend. One might argue that there are more non-

significant results, but majority of them (4 of 6; February 2015, September 2015, 

January 2017 and July 2017) are logically not significant due to their small mean value. 

Because of they are in spots, where LST should be at minimum difference, it again 

confirms the repetitive fluctuation trend.                       

 

At the end of this work I would like add that the ever increasing importance of finding 

the solutions how to feed the world in the most sustainable way is the reason, why the 

comparison of organic and conventional farming is becoming more and more frequent. 

Organic farming has, without any question, many well studied advantages over 

conventional one (Hilmi, 2012). However, while comparing properties of these two 

agricultural systems and taking into account only physical relationship between 

agriculture and environment, absolute majority of studies done are focused on the 

impact, caused by environment (weather, global change, precipitation etc.) and 

affecting the agriculture (yield decrease, economic losses etc.). This prompts the 

question, if there are enough critical and objective researches assessing the physical 

impact of agriculture on the environment. I am afraid there are very few. Agriculture 

and the environment are two communicating vessels – healthier agriculture means 

healthier environment and vice versa. For these reasons, I hope that my thesis will help 

to equalize this disbalance at least a little and will provide the basis for further research 

on this topic.  
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7. Conclusion 
 

In this thesis I have analyzed the relationship between the type of agricultural 

management (organic and conventional) and land surface temperature using the 

remote sensing method within 3-year period (2015 – 2017) on agricultural fields in the 

territory of northern and central Bohemia. Based on available input data (Landsat 8 

satellite images; LPIS vector layer), I have processed and calculated the thermal images, 

with which I have tried to find out, if there is some repetitive trend in land surface 

temperature fluctuation on these fields. In order to achieve this, the computational 

script (Parcel Pairing Script) has been developed and properly used. All results have 

been statistically tested in order to gain outcome with relevant validity. The objectives 

of this thesis were thus accomplished.  

 

Regarding the results, it turned out that some temperature fluctuation trend, with 

relatively high probability, really exists. The temperature difference approximation, 

projected through 3 following years, showed that organic field is on its surface warmer 

during spring and summer (from March to August) and cooler during autumn and 

winter (from September to February). The surface temperature difference fluctuation 

seems to be around ± 0,7°C, depending on current season. The trend isn´t so strong in 

year 2016, but this can be probably caused due to insufficient number of suitable 

images and its questionable validity. 

 

Whereas the interest in organic farming is growing as a result of the need for 

worldwide sustainable development solutions, ongoing hand in hand with widening the 

interdisciplinary range of remote sensing technologies use, further study of agricultural 

processes and its impacts on the environment should be the concern. Also because of 

that I believe, that this thesis will help uncover another piece in puzzle.           
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9. Annexes 

9.1 Parcel Pairing Script 

 

clc 
clear 
t0 = clock(); 

  
% Dates of Measuring 
%     1 2 3 4   5 6   7  8    9    10 11 12   13   14 15   16   17   

18 19 
UM = 

[1,2,7,7.5,9,9.5,10,14.5,16.5,19,22,25.5,27.5,28,29.5,30.5,31.5,32,3

6]; 
TXT_INP = [ '01_JAN_2015.txt';  
            '02_FEB_2015.txt';   
            '03_JUL_2015.txt';  
            '04_JUL_2015.txt'; 
            '05_SEP_2015.txt';  
            '06_SEP_2015.txt';  
            '07_OCT_2015.txt';  
            '08_FEB_2016.txt'; 
            '09_APR_2016.txt';  
            '10_AUG_2016.txt';  
            '11_OCT_2016.txt';  
            '12_JAN_2017.txt'; 
            '13_MAR_2017.txt';  
            '14_APR_2017.txt';  
            '15_MAY_2017.txt';  
            '16_JUN_2017.txt'; 
            '17_JUL_2017.txt';  
            '18_AUG_2017.txt';   
            '19_DEC_2017.txt']; 

         

  
%% MANUALLY GIVEN INPUT INFORMATION 
% LIMITS 
DIS_lim = 2000;        % DISTANCE limit [m] 
ELE_lim = 100;         % ELEVATION limit [m] 
ASP_lim = 60;          % ASPECT limit [°] 
SLO_lim = 1;           % SLOPE limit [%] 
ARE_lim = 30;          % AREA limit [%] 

  
% degree of polynomical aproximation 
np = 8;  

  
% T_SD_lim is the largest allowed standard deviation of parcel     

temperature 
% (Parcels with greater deviation will be discarded) 
T_SD_lim = [ ];  % [°c]  
% T_SD_per_skip is the percentage of parcels with the highest 

standard  
% deviation that will be discarded  
T_SD_per_skip = [ ];   % [%] 
%% MAIN CALCULATION 

  
disp('Calculation in progress ..') 
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% Redefining variables  
limits = [DIS_lim, ELE_lim, ASP_lim, SLO_lim, ARE_lim]; 
T0 = 0; 
T1 = 0; 
dT_MV = 0; 
dT_SD = 0; 

  

  
% Calculation 
for inp = 1:length(TXT_INP) 

  
        clear A AA B D Di T1i T0i dTi 

  
        %% DATA IMPORT FROM TXT 
        % Reading data from TXT file 
      AA = dlmread(TXT_INP(inp,:), '',1,0);% Matrix AA contains all 

records  
        %AA = dlmread(TXT_INP(inp,:), '',[1,0,10000,9]); 

  

         
        %% SELECTING parcels  
        % Matrix A contains all parcels with Significant Deviatin of  
        % temperatures 
        % meeting the requirement of SD_lim 

  
        if isempty(T_SD_lim)==0  
            AA = sortrows(AA,10); 
            nA = length(find(AA(:,10)<=T_SD_lim)); % nA = number of 

all  
                                                   % parcels in 

matrix  
            A = AA(1:nA,:);     
            T_SD_per = round(10*(100-nA/length(AA(:,1))*100))/10; 
            T_SD_max = T_SD_lim; 
        elseif isempty(T_SD_per_skip)==0 
            AA = sortrows(AA,10); 
            nA = round((100-T_SD_per_skip)*length(AA(:,1))/100);  
                                 % nA = number of all parcels in 

matrix  
            A = AA(1:nA,:);   
            T_SD_max = round(10*A(nA,10))/10; 
            T_SD_per = T_SD_per_skip; 
        else 
            A = AA; 
            T_SD_max = 0; 
            T_SD_per = 0; 
        end 

  
        %% PARCEL TYPE SORTING 
        % Sorting parcels into 2 different matrixes A0/A1, regarding 

parcel  
        % type 0/1, CONVENTIONAL/ORGANIC respectively.  
        % Matrix A0 contains all CONVENTIONAL parcels (type 0) 
        % Matrix A1 contains all ORGANIC parcels (type 1) 
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        % Sorting 
        A = sortrows(A,8); 
        [nA,~] = size(A);  % nA = number of all parcels in matrix A 
        n1 = sum(A(:,8));  % n1 = number of ORGANIC parcels in 

matrix A1 
        n0 = nA-n1;        % n0 = number of CONVENTIONAL parcels in 

matrix A0 
        A0 = A(1:n0,:);    % A0 = matrix with all CONVENTIONAL 

parcels 
        A1 = A(n0+1:nA,:); % A1 = matrix with all ORGANIC parcels 

  

  
        %% MAIN CALCULATION 

  
        % Redefining variables   
        nB = 0;            % nB = Computing the results in matrix B 
        B = zeros(nB,4);   % B = Matrix with final pairs  
                           % [ID_parc_1, ID_parc_0, LST_parc_1, 

LST_parc_0] 

         
        % Variables usage for monitoring Nnumber of ORGANIC parcels 

Skipped  
        % because of not meeting the requirements of: 
        nSD = 0;    % DISTANCE limit 
        nSO = 0;    % OTHER limits 

  

         
        for i=1:n1  % For all ORGANIC parcels do... 
            % D_min = The smallest still found distance between the  
            % compared parcels 
            D_min = DIS_lim+1;   
            % D = Distances between i-ORGANIC parcel and all  
            % CONVENTIONAL parcels 
            D = sqrt((A1(i,6)-A0(:,6)').^2 + (A1(i,7)-A0(:,7)').^2);  
            % Di = Positinos of CON parcels that meets the 

requirements  
            % of DISTANCE 
            Di = find(D<=DIS_lim); 

  
            % Searches for CONVENTIONAL parcels, with the smallest 

distance   
            % from the just monitored ORGANIC parcel 
            for j=1:length(Di)                                    

  
                % In the case of parcel distance is still the 

smallest 
                if D(Di(j))<D_min                                   
                    % Calculation of deviations of measured 

parameters 
                    dev_calc = abs(A1(i,2:5)-A0(Di(j),2:5));  
                    % dev_calc = Calculated deviations of monitored 
                    % parametres [ELE_lim, ASP_lim, SLO_lim,ARE_lim] 
                    dev_calc(4) = dev_calc(4)/A1(i,5)*100; 

  
                    % Comparison of the calculated deviations with  
                    % the limit values 
                    dev_dif = limits(2:5)-dev_calc; 
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                    % In the case that all deviations are less than 

limits 
                    if min(dev_dif)>=0    
                        D_min = D(Di(j)); 
                        b = 

[A1(i,1),A0(Di(j),1),A1(i,9),A0(Di(j),9)]; 
                    end 
                end 
            end 

  
            % Numbers of skipped ORGANIC parcels 
            if isempty(Di)==1 
                nSD = nSD+1; 
            else 
                nSO = nSO+1; 
            end 

  
            % If a CONVENTIONAL parcel, meeting all the limits, has  
            % been found, the values are saved into matrix B 
            if D_min<=DIS_lim    
                nB = nB+1; 
                B(nB,:) = b; 
            end 

         
        end 

  

         
        %% STATISTICS 
        % Rounding of temperatures 
        B(:,3:4) = round(10*B(:,3:4))/10; 
        T1i = (B(:,3));     % Tempreatures of ORGANIC parcels 
        T0i = (B(:,4));     % Tempreatures of CONVENTIONAL parcels 
        % Temperature Diferences between ORGANIC and CONVENTIONAL 

parcels 
        dTi = T1i-T0i; 
        % Mean values of temperature 
        T0(inp) = round(100*sum(T0i)/nB)/100; 
        T1(inp) = round(100*sum(T1i)/nB)/100; 
        % Mean value of temperature difference 
        dT_MV(inp) = round(100*sum(dTi)/nB)/100; 
        % Standart deviation of mean value temperature difference 
        dT_SD(inp) = round(100*sqrt(sum((dTi-

dT_MV(inp)).^2)/(nB)))/100; 
        [H,p] = ttest(dTi); 
        Results(inp,:) = [inp,T_SD_per,T_SD_max,n1,nB,n1-

nB,nSD,nSO,H,p, 
                          dT_MV(inp),dT_SD(inp)]; 

  
        disp([TXT_INP(inp,:), ' - DONE']) 

     
end 
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%% DISPLAYING THE RESULTS 
format shortG 

  
% Used LIMITES 
disp(' ') 
disp(' Used LIMITES:') 
disp('   DIS_lim[m]     ELE_lim[m]    ASP_lim[°]   SLO_lim[%]  

ARE_lim[%]') 
disp(limits) 

  

  
disp(' ') 
disp('--------------') 
disp('  RESULTS:') 
disp('--------------') 
disp(' ') 
disp('                                                |    Number of 

ORGANIC parcels   |   |    Skiped because    |       H      p-value       

Mean value   Standar deviation') 
disp('           ID       Unused [%]   T_SD_max [°c]   ALL          

USED        SKIPED      DIST>lim     OTHER>lim                              

dT_MV [°c]  dT_SD [°c]') 
disp(Results) 

  

  

  
%% PLOTS 
Months = [1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 

3 4 5  
          6 7 8 9 10 11 12]; 

  
%% Plot with mean values of temperature differences between ORGANIC 

% and CONVENTIONAL parcels 
figure 
hold on 
title(' ') 
xlabel('Months of year') 
ylabel('Temperature difference dT [°c]') 

  
% plot(UM,dT_MV,'g--o') 
% plot(UM,dT_MV-dT_SD, 'r') 
% plot(UM,dT_MV+dT_SD, 'r') 
bar(UM,dT_MV,'g') 

  
% Polynomial aproximation 
p = polyfit(UM,dT_MV,np); 
xp = linspace(1,36,500); 
yp = polyval(p,xp); 
plot(xp,yp,'m','LineWidth',2) 

  
% Adding numbers of months to the plot 
plot([0,36],[0,0],'Color',[0 0 0]) 
for i=1:36 
    text(i,-0.1,num2str(Months(i)),'Color',[0 0 0]) 
end 

  

  

 


