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1 Abstract 

Due to the cell-type specificity of many transcription events, deep RNA sequencing (RNA-

seq) of particular cell type usually leads to identification of a number of novel non-annotated 

genes. This is particularly true for low input samples of very specific cells, such as mammalian 

oocytes and early embryos. Many recent publications show that in these datasets there is a high 

number of non-annotated genes and transcripts, predominantly long non-coding RNA 

(lncRNAs), which might perform important functions. These novel transcripts often originate 

in transposable elements (TEs) with different activity between oocytes and embryos. We 

processed RNA-seq datasets from mouse early developmental stages, performed de novo 

transcriptome assembly to identify novel transcripts, analysed their level of expression, 

examined the role of TEs as promoters of these novel transcripts and looked at their protein 

coding potential. The highest number of novel genes was identified in the oocytes, with 

majority of them being located in the intergenic regions. We demonstrated that majority of 

novel found genes in oocytes and the earliest embryonic stages (2C, 4C embryos) are specific 

for given developmental stage, with the specificity decreasing with the developmental 

progression. We further showed that TEs are associated with approximately 30-40% promoters 

in every developmental stage, with predominant class LTR-MaLR in the oocytes and classes 

LTR-EVRL and LTR-ERVK in the embryos. The coding potential of our novel genes is low 

with majority of transcripts being classified as non-coding. 

 

2 Introduction   

Mouse as one of the model organisms has its genome well annotated. But even still we see that 

when some low input or very specific samples are sequenced, as for example from early 

developmental stages, there is a considerable number of non-annotated transcripts. (Veselovska 

et al. 2015).  These novel transcripts are often classified as lncRNAs. LncRNAs exhibit a 

number of unique features and functions. They can participate in and modify some cellular 

processes like transcription (Wei et al. 2017) or even regulate the patterns of gene expression 

(Wang et al. 2011). Their evolutionary conserved patterns together with their high tissue 

specificity (Vance and Ponting 2014) can also suggest that they might provide a potential 

therapeutic value (Gomes et al. 2017).  
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For a long time, the role of transposable elements (TEs) in shaping mammalian transcriptomes 

was overlooked, but recently increasing amount of data suggests that they play an important 

role in the early developmental stages of mammals. For example, TEs can act as promoters and 

it has been shown for a number of novel transcripts, especially those falling classified as 

lncRNAs in the oocytes (Veselovska et al. 2015). 

This bachelor thesis focuses on characterisation and identification of novel found genes in 

oocytes and preimplantation embryos, analysis of their relative expression patterns, TEs 

activity as promoters of these transcripts and their protein coding potential, as a basis for future 

identification of candidate novel genes for functional analysis.   

  

3 Background 

Mouse as the most widely used mammalian model organism for science was the second 

mammal whose genome was fully sequenced after the human genome. Our knowledge of its 

genome has improved dramatically over the years, but the majority of studies rely only on 

already annotated reference genes for their analyses (Veselovska et al. 2015). This might lead 

to loss of crucial information, especially when studying very specific cell types providing only 

low input samples, and considering the cell-type specificity of some transcripts, especially 

lncRNAs. It has already been shown that there is a high number of non-annotated transcripts, 

especially in the early developmental stages such as oocytes (Veselovska et al. 2015), from 

which the majority appear to be lncRNAs, although small number of them have potential to be 

protein-coding based on bioinformatical analysis.  

 

3.1 lncRNAs 

LncRNAs are a dynamically evolving population of genes with a huge biochemical 

adaptability. It is not clear what fraction of lncRNAs carries some important functions but many 

of their features imply that a considerable number of lncRNAs emerge as opportunistic 

transcription events at random locations susceptible for transcription initiation (for example, 

due to the presence of a transcription factor binding sequence motif). They are transcribed as 

new non-functional elements whose functionality is acquired through natural selection (Ganesh 

et al. 2016). There is not one clear definition as to which transcripts are classified as lncRNA, 
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but classically the transcripts that do not code for proteins and are longer than 200 nucleotides 

are referred to as lncRNA (Cabilli et al. 2011). In comparison with the protein coding genes, 

lncRNAs are usually shorter, have fewer exons, lower expression level and higher cell-type or 

tissue specificity (Ulitsky et al. 2013, Derrien et al. 2012).   

 

3.1.1 Functionality of lncRNAs 

LncRNAs can have very diverse functions. They can exert their function as RNA molecule, or 

it can be just the effect of transcription from their locus, not the resulting RNA molecule, which 

is necessary. Determining the functions of lncRNA is a challenging task as they tend to have 

only short conserved regions across species surrounded by highly variable regions, or they 

might not be conserved at all (Ponjavic et al. 2007). They exhibit both cis and trans regulatory 

activities (Mercer and Mattick 2013). As their cis regulatory activity, they affect adjacent genes 

on the same allele. As trans regulatory activity, they affect genes on the other allele. The 

regulation of activity of other genes can be exerted for example through transcriptional 

interference (transcription of the lncRNA interferes with the transcription of the other gene), 

transcriptional stimulation (transcription of lncRNA stimulates the transcription of the other 

gene) or effects on chromatin (for example, X-chromosome coating followed by 

heterochromatinisation  by Xist lncRNA, in order to silence one of the X chromosomes in 

females). LncRNA can interact with other ncRNAs. For example, the interaction with miRNAs 

creates a network that exerts post-transcriptional regulations of expression of genes. 

(Zampetaki et al. 2018). In addition, until recently, it was thought that lncRNA is a non-coding 

RNA, but this view changed when several research groups reported that certain lncRNAs code 

for short peptides with important functions (Ruiz-Orera et al. 2014).  

Functions of RNAs associated with their structure is an emerging topic of interest. However, 

the structural domains of RNAs are not yet well defined. Concerning lncRNA, a theory 

emerged which says that the selective pressure of evolution acts rather on a structure than on 

the primary sequence, explaining the fast rate of their evolution (Wutz et al. 2002). LncRNA 

typically contains complex secondary and tertiary structure and their functions are barely 

constrained by the sequence itself (Zampetaki et al. 2018). Other than being able to control 

gene expression, new approaches are being made to connect their structure and function to 

design novel therapeutic approaches (Zampetaki et al. 2018). 
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3.1.2 Classification of lncRNA 

LncRNA can be transcribed from different genomic locations. Some are located in large areas 

between annotated genes, these lncRNAs are referred to as intergenic lncRNAs. Second 

category of lncRNAs are transcribed from introns of protein-coding genes, called intronic 

lncRNAs. LncRNA can also overlap both exons and introns of protein-coding genes on the 

same strand, or on the opposite strand, such transcripts are classified as overlapping sense and 

antisense lncRNAs, respectively. They can either overlap with the protein-coding genes or 

stretch over the entire protein-coding gene body. The last category are so-called bidirectional 

lncRNAs which originate from the same promoter region as a protein-coding gene, but on the 

opposite strand. Classification of lncRNAs is visualised on Figure 1.  

 

 

Figure 1. General classification of lncRNA (Bouckenheimer et al. 2016) 

 

3.2 Retrotransposons 

The transposable elements found in mammals can be in general characterised into two classes 

based on whether their transposition element is DNA or RNA. They are Class 1 

retrotransposons and Class 2 DNA transposons. 

Retrotransposons, also called the copy and paste elements, create copies of themselves while 

they are transcribed from the genome and then reversely transcribed into DNA and integrated 

into the genome (Finnegan et al. 1989). They are further divided based on the presence or 

absence of long terminal repeats (LTR) elements. LTRs help in retrovirus-like reverse 

transcription and integration into the genome (Finnegan et al. 1989). LTR elements range in 

their length from short ones around few hundred base pairs (bp) up to 10 000 bp. These 
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elements encode a gag and a pol protein, flanked by the long terminal repeats, hence their name 

(Finnegan et al. 1989). The non-LTR elements consist of long interspersed nuclear elements 

(LINEs) and short interspersed nuclear elements (SINEs). Classification of TEs is visualised 

on Figure 2. 

 

 

Figure 2. Classification of transposable elements (Hemalatha et al. 2012) 

 

3.2.1 Abundance of TEs in mammals 

Out of all the transposable elements, the biggest proportion of our genome is occupied by 

LINEs and SINEs. These are followed by LTR elements and DNA transposons, respectively. 

For the most part, around 75% of the repetitive portion of the mammalian genome is derived 

from non-LTR retrotransposons (Waterston and Pachter 2002). The LINE-1 family is the most 

successful family of transposable elements in mammals. The SINE family which cannot be 

mobilised by itself profits from the success of the autonomous LINE elements.  

LTR elements occupy between 4-10% of the genomes (Mikkelsen et al. 2007). DNA 

transposons compared to non-LTR elements have low copy numbers of only 3% of the 

mammalian genomes (Platt and Ray 2012). 

Even though mammalian genomes contain thousands of TEs, only a small portion of these are 

capable of mobilisation. It is mostly because of the incomplete or mutated sequences of the 

individual insertions. Looking at LINE-L1 elements as an example, their incapability to 

mobilise is primarily caused by inefficient reverse transcription which truncates most 

sequences at their 5’ end (Grimaldi et al. 1984). Additionally, new insertions of any type can 

be mutated during the process of insertion as well as be a target of transcriptional and post-
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transcriptional silencing (Platt et al. 2018). Being able to comprehend the factors that might 

increase, decrease of eliminate the activity of transposable elements is one of the key questions 

for understanding the evolution genomes. 

 

3.2.2 Effect of TEs on the genomes 

The presence of TEs in mammals and other organisms shapes the evolution of their genome in 

a remarkable way. They affect our genomes in both positive and negative ways. 

Mobile genetic elements insertions can disrupt genes, mediate chromosome rearrangements or 

provide alternative promoters (Benetzen, 2000). In addition, certain TEs contain transcription 

factor binding sites and other regulatory motifs (Bourque et al. 2008). During a mobilisation 

events of such TEs, they are spreading the sequence motifs around the genome, to the new 

integration sites. This might lead to change of the gene expression if the TEs integrates near 

the promoter region, or a novel regulatory network can appear where one TEs-associated 

transcription factor binding site links dozens or hundreds previously unrelated genes (Chuong 

et al. 2017).  

A process of evolving new functions of existing genes is called co-option. A gene can be co-

opted by changing their regulatory patterns or their function which at the end produces a novel 

gene. In the non-LTR TEs families, the frequency of their participation in co-option usually 

increases with the age of the TEs subfamily. On the contrary, the co-option of LTRs is inversely 

proportional to their age (Franke et al. 2017). LTRs can act as platforms for redesigning genes 

where the promoter of LTR element and few initial exons become a part of the novel gene. In 

one study, it was revealed that around 25% of experimentally characterised human promoters 

contain sequences derived from TEs (Jordan et al. 2003). Another study showed that many 

promoters in humans and mice are derived from TEs specific for primates and rodents 

respectively (Marino-Ramirez et al. 2005). TEs are a rich source of promoters and cis-

regulatory elements, which have the potential to regulate the transcription of neighbouring 

genes. It is believed, that this phenomenon exists because there is a constant accumulation of 

TEs in one’s organism and this accumulation creates raw sequence material from which cis-

regulatory elements arise by point mutations. Another explanation says that cis-regulatory 

elements exist within TEs and are co-opted after insertion of TEs or modification of the 

surrounding region (Feschotte 2008). 
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All of the changes happening in the genome because of TEs, like alteration of gene expression 

or reconstruction of the genomes, help populations to fully explore their potential fitness 

landscape in a shorter amount of time, which increases the so-called adaptability of the 

population (Casacuberta and González 2013). There are two hypotheses speculating about the  

roles of TEs in promoting adaptability in mammals. First hypothesis is called the epi-

transposon hypothesis (Zeh et al. 2009) which suggests that when the organism is exposed to 

environmental stress, the suppression of TEs is stopped which accounts for increased activity 

of TEs. This increased activity allows for increased changes in the genomes which 

subsequently help the population to explore their fitness landscapes (Platt et al. 2018). Second 

hypothesis is the TEs-Thrust hypotheses (Oliver and Greene 2011). It suggests that lineages 

with higher TEs activity are more fertile than those without it.  

Transposable elements are strong mutagens. Around 10% of all novel mutations in lab mice 

result from insertions of TEs (Maksakova et al. 2006). Having excessive amount of TEs in 

one’s genome may lead to accumulation of mutations causing decrease in the fitness of the 

population as well as decrease in the fecundity. 

Somatic tissues were not, until recently, a primary topic of research of TEs. But nowadays it is 

known that more than 100 diseases including a few forms of cancer are associated with 

insertions of TEs (Chénais 2013). TEs can cause cancer by altering tumor suppressor genes or 

proto-oncogenes (Morse et al. 1988). 

 

3.3 lncRNAs and TEs-derived lncRNAs in mammalian early development 

It has been suggested many times that lncRNAs may play an important role in the early 

mammalian development. The functions of most lncRNAs are still unclear but some studies 

already linked several lncRNAs with the embryo development (Huynh et al. 2003, Okamoto et 

al. 2005, Wu et al. 2018). Analysis of lncRNA in early oocytes and embryos is technically 

difficult due to lncRNA being expressed at lower levels as well as in limited amounts of cells 

(Zhang et al. 2014). 

Compared to protein coding genes, TEs are common promoters for the lncRNAs in early 

mammalian development (Franke et al. 2017). It has been shown that promoters and 5’ exons 

derived from LTRs are part of more than 800 protein coding genes and lncRNA expressed in 
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the oocyte to zygote developmental stages in rodents (Franke et al. 2017). In addition, 

expression of TEs and transcripts using TEs as promoters was shown to be an essential 

component of totipotency of 2C embryos and 2C-like embryonic stem cells (Macfarlan et al. 

2012) 

LncRNAs have therefore the potential to play important roles in early developmental stages. 

However, they are still not fully annotated. In this thesis we try to thoroughly identify and 

characterise lncRNAs and other non-annotated transcripts in the mouse oocyte and 

preimplantation embryos during major zygotic genome activation and segregation of first two 

embryonic cell lineages. 
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4 Aims 

- to identify and annotate novel transcripts from RNA-seq data in mouse oocytes and 

preimplantation embryos 

- to characterise their expression profiles (whether they are oocyte-/embryo-specific) 

- to determine which transposable elements are the most frequently acting as promoters of these 

transcripts 

- to characterise the protein coding potential of novel transcripts 
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5 Methods 
 

 

 

 

5.1 Processing and mapping of RNA-seq datasets 

RNA-seq datasets from oocytes, preimplantation embryos and somatic tissues (accession 

numbers GSE70116, GSE98150, GSE75957, respectively) were downloaded as fastq files 

from European nucleotide archive (https://www.ebi.ac.uk ) database. Complete list of datasets 

used is in the Appendix 1. To trim the adapters and low quality bases, program TrimGalore! 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) v0.4.1 was used. Quality check of 

the trimmed reads was performed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) v0.11.5 with default parameters.  

The trimmed reads were mapped on mouse GRCm38 genome using Hisat2 (Kim et al. 2019) 

v2.0.5. All of these steps were performed previously in the laboratory. 

 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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5.2 Sorting 

In order to be able to perform de novo transcription assembly with Cufflinks, the mapped data 

were sorted using the SAMtools v1.3.1 with the function samtools sort. The command for 

sorting was ‘samtools sort -o output_sorted.bam input.bam’. 

 

5.3 De novo transcriptome assembly 

De novo transcriptome assembly of individual oocyte and selected embryo datasets (not the 8C 

stage and morula embryonic datasets and datasets from somatic tissues) was performed using 

Cufflinks (http://cole-trapnell-lab.github.io/cufflinks/) v2.1.1 in the reference annotation base 

transcript (RABT) mode (specified by -g command) with default parameters where we 

specified only the strand specificity of the library with command --library-type (the options 

were fr-unstranded, fr-firststrand, fr-secondstrand). See Appendix 1 for library type parameters 

for each dataset. The reference annotation was previously downloaded from Ensembl genome 

browser (GRCm38 v94, file named as Mus_musculus.GRCm38.94.chr.gtf). The command for 

transcriptome assembly was ‘cufflinks -g Mus_musculus.GRCm38.94.chr.gtf -u --library-type 

fr-xxx -o Output_folder sorted_bam_file’. The commands were executed using Metacentrum 

computer cluster by submitting xxx.sh script (example script for transcriptome assembly is in 

the Appendix 2). 

Assembled transcriptomes from individual datasets were then merged together for each 

developmental stage, creating one final annotation for each stage - oocytes, 2-cell (2C) stage 

embryos, 4-cell (4C) stage embryos, inner cell mass (ICM) and trophoectoderm (TE). For 

oocytes, assemblies from four different oocyte developmental stages were merged (datasets 

named as d5, d10, d15 and GV), while for the embryonic stages, biological replicates of the 

same stage were merged. The merging was performed using the cuffmerge function within 

Cufflinks v2.1.1 with the command ‘cuffmerge xxx.txt’ where the text document contained the 

list of annotation files to be merged.  

 

5.4 Quantification of gene expression 

The expression of transcript isoforms and genes in the final merged assemblies from oocytes 

and embryonic developmental stages were quantified using Cufflinks v2.1.1 disabling the de 

http://cole-trapnell-lab.github.io/cufflinks/
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novo transcriptome assembly function with the -G command. The command for the 

quantification was ‘cufflinks -G xxx_merged.gtf output_folder sorted_reads.bam’. The 

quantification was performed for each merged assembly across all the datasets, including 

datasets from somatic tissues. The commands were executed using Metacentrum computer 

cluster by submitting xxx.sh script (example script for expression quantification is in the 

Appendix 3). The unit of expression is fragments per kilobase of the transcript or gene per 

million reads in the library (FPKM) for paired-end sequenced datasets, as in our case all the 

datasets were paired end). The results of quantification of each assembly resulted in two files 

– isoforms.fpkm_tracking file with the quantification of individual transcript isoforms and 

genes.fpkm_tracking file with the quantification of expression of whole genes where the 

expressions of isoforms belonging to the same gene are added together.  

 

5.5 Identification of novel genes 

For the identification of novel genes, we first created a list of all genes in each final assembly 

with their genomic coordinates. The information about gene name, chromosome, start position 

and end position was extracted from the gene expression quantification output file 

gene.fpkm_tracking described in section 5.4. To obtain information on which DNA strand the 

genes are encoded, we imported final assembly gtf files into Seqmonk 

(https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/) v1.44.0, made probes over 

assembly mRNAs (corresponding to the transcript isoforms) and exported it, as Seqmonk 

output files contain probe strand information. The exported transcript isoform strand 

information was matched with corresponding genes using the information in the 

isoforms.fpkm_tracking file described in section 5.4 which contain information about 

transcript isoform name and corresponding gene name in Microsoft Excel v16.2003 with 

functions MATCH and LOOKUP. We then removed all genes without strand information (in 

cases that originating DNA strand was not determined during de novo transcriptome assembly). 

This was performed in Microsoft Excel v16.2003 by sorting the column with strand 

information and deleting those genes that lacked the specification of their strand. To select only 

novel unannotated genes from all genes in our assemblies, we applied two criteria – the gene 

should not overlap any known annotated gene on the same strand in the region +/-5kb and 

should have <50% overlap with TEs on the same strand. This was performed using Seqmonk 

v1.44.0. For filtering genes without overlap with known genes +/-5kb, we made probes over 

https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/


13 
 

known annotated genes +/-5kb, imported them as reads, imported all genes in our assembly as 

the annotation track, quantified read count on same strand as probe and removed all probes 

except those with read count 0. Because known genes +/-5kb were imported as reads, read 

count 0 meant no overlap with known gene +/-5kb on the same strand, while read count of 1 

or more meant there was an overlap with known gene +/-5kb on the same strand and therefore 

the gene was not considered novel. For filtering genes with <50% overlap with TEs on the 

same strand, we used filtered genes from the previous step as probes, imported TEs annotations 

as reads, quantified %overlap on the same strand and removed probes with >50% overlap. TEs 

annotation was downloaded from UCSC genome browser and split into separate annotation 

files for each TEs class previously in the laboratory. The remaining genes after these filtering 

steps were classified as novel genes.  

 

5.6 ChIP-seq datasets processing and mapping, peak calling, and selection of 

high confidence novel transcripts 

Trimethylation of lysine 4 on histone 3 (H3K4me3) is a histone modification associated with 

active promoters. We used H3K4me3 data to identify which novel genes have a proper 

promoter H3K4me3 peak at their 5’ end. Processing and mapping the mouse oocyte and 

embryo H3K4me3 ChIP-seq datasets with accession numbers GSE73952 (Liu et al. 2016), 

GSE93941 (Hanna et al. 2018), GSE71434 (Zheng et al. 2016) (see Appendix 1 for detailed 

information) was done previously in the laboratory. Briefly, the datasets were downloaded 

from European nucleotide archive (https://www.ebi.ac.uk) database, trimmed using 

TrimGalore! v0.4.1 and mapped to the mouse GRCm38 genome using Bowtie2 (Langmead 

and Salzberg 2012). Novel genes identified as described in chapter 5.5 were imported into 

Seqmonk  v1.44.0 as annotation, while  ChIP-seq datasets were imported as data to identify the 

H3K4me3 peaks we used MACS peak caller within Seqmonk specifying H3K4me3 and input 

datasets with default parameters except datasets from Zheng et al. for which default p-value 

was changed to 0.001 to achieve identification of similar number of peaks as in other datasets. 

Peaks were called for each developmental stage from each publication separately. Peaks were 

then imported as annotations (commands data -> import annotation -> active probe list). To 

identify which novel genes have promoters associated with H3K4me3 peaks, we created probes 

over TSSs of novel genes +/-1000 bp (commands data ->  define probes -> feature probe 

generation -> select novel genes annotations -> uncheck the  parameter ‘remove exact 
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duplicates’ -> make probes-upstream of feature  from -1000 to 1000 bp). When creating 

annotated probe report, we overlapped novel gene promoters with individual sets of peaks for 

same developmental stage as novel genes. The resulting txt files were then imported in 

Microsoft Excel, where we combined the information of peaks overlaps from all three 

publications for each developmental stage. Novel genes with promoter overlapping H3K4me3 

peak from at least one publication were considered high confidence novel genes.  

 

5.7 Classification of high confidence novel genes 

To classify our novel high confidence genes based on their genomic location in respect to 

known genes we used Seqmonk v1.44.0 and Microsoft Excel v16.2003. The classification 

categories were intergenic (location without proximity to any known genes on either strand), 

intragenic (fully within known gene on the opposite strand), overlapping (partially within 

known gene on the opposite strand) and bidirectional (sharing a promoter with known gene, 

but coded on the opposite strand). We uploaded the novel genes into Seqmonk as annotation 

track and filtered them (based on their names) to have only the high confidence novel genes 

defined in chapter 5.6. We characterised these genes for two features – bidirectionality of 

promoters and extent of overlap with known gene on the opposite strand. Known genes except 

genes encoding short non-coding RNAs were uploaded as reads. To find out whether high 

confidence novel genes are sharing a bidirectional promoter with a known gene, we made 

probes -2kb to -1kb upstream of high confidence novel genes quantitated read count on the 

opposite strand as probe and exported the results. To assess the extent of the overlap with a 

known gene, we made probes over novel genes and quantified %coverage quantitation using 

reads on the opposite strand to probe and exported the results.  We then opened both exported 

files in Microsoft Excel, made sure there is the same number of genes in both of them and 

deleted all the columns except columns containing gene names and quantified results. The 

genes with value 1 or higher in the analysis of bidirectional promoters were classified as 

bidirectional except those with value 100 in the analysis of the overlap with known genes on 

the opposite strand. The genes with value 1 or 0 from the analysis of bidirectional promoters 

and value 100 in the analysis of overlap with known genes on the opposite strand (meaning 

that they have 100% coverage by known gene) were classified as intragenic. 

The genes with value 0 in the analysis of bidirectional promoters could be intergenic or 

overlapping. Genes with values >0 and <100 in the analysis of overlap were classified as 
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overlapping (as the overlap with a known gene is between 0-100%) and genes with value 0 

(meaning no overlap with a known gene on opposite strand) were classified as intergenic. 

  

5.8 Hierarchical clustering and gene expression analysis 

To study the expression patterns of novel genes, we used gene expression values quantified by 

Cufflinks as described in section 5.4 (from gene.fpkm_tracking output files). These files were 

filtered in Microsoft Excel v16.2003 to contain only novel high confidence genes, separately 

for each class of novel genes for each developmental stage. For each high confidence novel 

gene, we quantified the average of the expression values across replicates of each stage of 

embryonic development and for each of the somatic tissues and of four oocyte datasets. Then, 

we log transformed the values (with base 2). To be able to work with genes with expression 

level of 0, we added 0.001 to each expression value prior to log transformation. We quantified 

overall average value across all log transformed expression levels for each gene and subtracted 

these averaged values from each log transformed expression values, giving us relative 

expression values. These relative expression values together with gene names were exported 

as txt files and used for hierarchical clustering and generation of heatmap. Hierarchical 

clustering was performed and heatmap was generated in R Studio v3.6.2, the script is in 

Appendix 4.  

 

5.9 Analysis of transposable elements as promoters 

To find out which TEs and if any, are acting as a promoter for high confidence novel genes we 

used Seqmonk v1.44.0 followed by Microsoft Excel v16.2003.  In Seqmonk we imported TEs 

annotations described in section 4.5 as reads, and high confidence novel genes as annotation 

track. We made probes around transcriptional start sites (TSSs) of novel genes (-50bp to +50 

bp around TSSs) and quantitated read count on same strand as probe. This quantified if the TEs 

are overlapping the TSSs of the gene on the same strand. The exported file from Seqmonk was 

opened in Microsoft Excel where we calculated how many TSSs are associated with each class 

of TEs using the function COUNTIF (to find those that have value quantified >0). This analysis 

was performed separately for each class of novel high confidence genes (intergenic, intragenic, 

overlapping, bidirectional) for each studied developmental stage.  
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5.10 Analysis of protein coding potential 

To analyse whether the high confidence novel genes have the potential to encode proteins, we 

first obtained sequences of transcript isoforms of these genes in fasta format using two Python 

scripts (filtering_gtf.py and gettingSeq.py) which were previously developed in the laboratory.  

First, we filtered our assembled transcriptomes to contain only transcripts of novel high 

confidence genes for each developmental stage and for each class (intergenic, intragenic, 

overlapping, bidirectional). We took the genomic coordinates (chromosome, start, end) of 

novel high confidence genes, extended them by 1bp on each side and created a txt file with 

such coordinates. This txt file was used as an input file for the first python script filtering_gtf.py 

(Appendix 5) together with the original assembled transcriptome annotation (gtf file). The 

script uses the coordinates supplied in the txt file to filter the gtf file to contain only the 

transcripts within the specified regions.  

The filtered gtf file served as an input for the second Python script gettingSeq.py (Appendix 

6), which generates sequences of transcripts in the supplied gtf file. In addition to the gtf file, 

it requires together with the raw mouse GRCm38 genomic sequence split into individual 

chromosomes downloaded from Ensembl and a list with names of transcripts from the gtf file 

for which we want to obtain the sequence (in our case, it was all transcripts in the filtered gtf 

files which we obtained by importing the gtf file into Seqmonk, making probes over all mRNAs 

and exporting it). The script generated sequences of the specified transcripts in fasta format. 

These fasta sequences were then submitted into the Coding Potential Calculator 2 (CPC2) web 

interface (Kang et al. 2017) which assessed the protein coding potential of individual 

transcripts.  
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6 Results 

 

6.1 De novo transcriptome assembly 

For identification and characterisation of novel genes that were not previously annotated during 

mouse early development, we used 45 publicly available RNA-seq datasets comprising oocyte 

datasets (Veselovska et al. 2015), preimplantation embryo datasets (Wang et al. 2018) and 

datasets from adult somatic tissues (Andergassen et al. 2017). The complete list of datasets 

used including the number of replicates for each sample type is in Table 1 and Appendix 1. 

 

Table 1. Datasets used 

Sample type Sample 
Number of 

replicates 
Reference 

Oocyte 

d5 1 

Veselovska et 

al. (2015) 

d10 1 

d15 1 

GV 1 

Preimplantation 

embryo 

2C 4 

Wang et al. 

(2018) 

4C 4 

8C 3 

morula 2 

ICM 4 

TE 4 

Somatic tissue 

adult brain 4 

Andergassen et 

al. (2017) 

 

adult liver 4 

adult heart 4 

adult leg muscle 4 

adult lung 4 

 

Datasets were trimmed and mapped previously in the laboratory. After sorting the mapped 

reads, we performed de novo transcriptome assembly using Cufflinks on individual datasets 

from oocytes and preimplantation embryos. We were particularly interested in novel genes in 

the oocytes, as oocytes represent very specialised cell type and store many RNAs essential for 

successful early development after fertilisation, in 2C and 4C embryos to capture genes 

transcribed during major zygotic genome activation, and in ICM and TE, to potentially discover 

novel genes involved in segregation of first two embryonic cell lineages. Therefore, de novo 
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transcriptome assembly was performed on these datasets, and the remaining ones (8C, morula 

and somatic tissues) will be used only for quantification of expression of identified novel genes. 

The assembled transcriptomes were then merged together using Cufflinks cuffmerge 

command. All oocyte assemblies were merged together and assemblies from each embryonic 

stage replicates were merged together for each stage. The final numbers of transcripts for every 

merged transcriptome are listed in Table 2. 

 

Table 2. Number of transcripts for every merged assembly 

Merged datasets Number of transcripts 

Oocytes 971610 

2C 1005445 

4C 953043 

ICM 915142 

TE 871613 

 

6.2 Identification of high confidence novel genes 

Merged transcriptomes (gtf files) generated in section 6.1 contained only the annotation of 

transcripts, not the whole genes (each gene comprises one or more transcript isoforms which 

represent splicing variants). However, for the identification of novel genes, we needed the 

annotation of genes from de novo transcriptome assembly. To obtain the annotation of genes, 

we performed gene expression quantification on the merged gtf files using Cufflinks. The 

outputs of this quantification are two files – a file isoforms.fpkm_tracking with expression 

values of individual transcripts and a file genes.fpkm_tracking with expression values of genes, 

including their genomic location. Therefore, we obtained genomic coordinates of whole genes 

from this file, except the information about DNA strand on which the genes were encoded. To 

get the information about their strand we used Seqmonk v1.44.0 with the merged 

transcriptomes (gtf files generated in section 6.1) imported as annotation tracks. For individual 

merged transcriptomes we created annotated probe reports with mRNA isoforms as probes, 

containing information about the transcript name and the transcript strand. On the other hand, 

the isoforms.fpkm_tracking files created by Cufflinks quantification contain an information 

about transcript name and name of a gene the transcript belongs to. Therefore, using transcript 

names, we matched the strand information from the Seqmonk report with gene name from 
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Cufflinks isoforms.fpkm_tracking file. We then removed all genes without strand information, 

as they were the genes for which it was not possible to determine coding DNA strand by 

Cufflinks. Using these steps, we created annotation of all genes assembled during de novo 

transcriptome assembly.  

The next step was to identify novel genes. We defined novel genes as those genes that do not 

overlap with any known annotated gene on the same strand within the region +/-5kb to avoid 

identification of  5’ or 3’ extensions of already annotated genes with weak expression, therefore 

resulting in discontinuous annotation resembling one or an array of same strand monoexonic 

genes close to 5’ or 3’ ends of annotated genes. In addition, we required genes to have <50% 

overlap with TEs on the same strand to exclude expressed active TEs. These are in contrast 

with genes using TEs as promoters but having significant proportion of non-TEs sequence. 

This was done using the SeqMonk v1.44.0. The results showed that after each filtration step 

the number of novel genes decreased dramatically, from more than 100 000 assembled genes 

in mostly all the merged datasets to only around few thousand novel genes left at the end of the 

filtrations. In oocytes we found the smallest number of genes at first (69 202) but after all the 

steps of elimination, it showed that oocytes have the highest number of novel genes left (9902), 

followed by 2C stage (4755). Due to the lack of strand specificity of embryonic datasets, 

approximately half of genes in the embryonic datasets are without strand information. Visual 

inspection of the data showed that these genes are either short monoexonic genes in the 

intergenic regions, or arrays of short monoexonic genes in the introns of multiexonic genes 

with strand information, which are probably just a mis-annotation of reads coming from yet 

unspliced nascent mRNAs (see Table 3). 

 

Table 3. Number of novel genes after every filtration. A-number of all found genes, B-number of genes that have 

strand information, C-number of genes that have a strand information and that do not overlap with any known 

gene +/- 5kb on the same strand and have <50% overlap with TEs. 

  A B C 

Oocytes together 69202 69143 9902 

2C 111245 53233 4755 

4C 108101 51996 3377 

ICM 118718 50189 1807 

TE 90610 49181 1262 
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H3K4me3 is a histone modification generally linked to activation of transcription. It is 

associated with promoters of genes that are active or destined to be so (Kouzadires, 2007). 

Therefore, we wanted to use H3K4me3 peaks as a confirmation that promoters of our novel 

genes are true active promoters. Using this approach, we wanted to select high confidence 

novel genes (with promoter associated with H3K4me3 peak) from all identified novel genes. 

We performed peak calling with the publicly available H3K4me3 Chip-seq datasets (Zheng et 

al. 2016, Liu et al. 2016, Hanna et al. 2018) from relevant developmental stages (oocytes, 2C 

and 4C embryos, ICM and TE) which were downloaded, trimmed and mapped previously in a 

laboratory. Then, we looked for overlaps of these peaks with promoters (+/-1000bp around the 

TSS) of previously identified novel genes, i.e. strand-specific genes that do not overlap with 

any known gene +/-5kb on the same strand and have <50% overlap with TEs on the same 

strand. High confidence novel genes were defined as novel genes with promoter overlapping 

H3K4me3 peak from at least one dataset. The numbers for high confidence novel genes were 

2653 in the oocytes, 685 for 2C embryos, 1156 for 4C embryos, 602 genes for the ICM and 

411 genes for TE.  

After obtaining the high confidence novel peaks, we divided them into 4 categories: intragenic 

for those that are located completely within the genes on the opposite strand, intergenic for 

those located between the known genes without any overlap with any known gene, 

bidirectional for those that share a promoter with the known gene but are coded on the opposite 

strand and overlapping for those that overlap with a known  gene on the opposite strand. This 

categorisation helped us to see where our novel genes are located. For all the datasets, the 

majority of genes is localised in the intergenic region and the smallest number of genes is found 

in the overlapping region tightly followed by bidirectional region in 4C, ICM and TE datasets. 

(Table 4) 

 

Table 4. Number of genes for each category 

  Intragenic Intergenic Bidirectional Overlapping total 

oocytes 324 1857 317 155 2653 

2C 113 382 121 69 685 

4C 231 698 114 113 1156 

ICM 154 328 64 56 602 

TE 135 187 47 42 411 
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6.3 Heatmaps and hierarchical clustering 

In this analysis we wanted to find out what are the expression patterns of our high confidence 

novel genes and whether they are specific for certain developmental stage or rather expressed 

similarly throughout all developmental stages. From the values of gene expression obtained in 

5.8 we calculated their relative expression which we used to create heatmaps and for 

hierarchical clustering. The results showed that in oocytes, especially the genes in the 

intergenic region as it is the category with highest number of genes, the genes are very specific 

only for oocytes (see Figure 3). In 2C and 4C embryos, the genes are mostly expressed in the 

early embryos stages when all the cells in the embryo are pluripotent (2C to 8C or morula), but 

absent from ICM and TE after the first embryonic lineage segregation and from differentiated 

adult somatic tissues. ICM and TE novel genes are expressed across all embryonic datasets 

with the highest expression in their own developmental stages and lower expression in the 

earlier embryonic stages, but they are not expressed in somatic cells or oocytes (see Figure 4). 

Based on the four categories of gene location (intragenic, intergenic, overlapping, 

bidirectional) we could see that across all datasets the expression of the genes from the 

overlapping, intragenic and bidirectional was slightly less specific than in intergenic genes as 

the genes were more often expressed in other developmental stages, although still maintaining 

the highest expression in the datasets where they were identified. For all remaining heatmaps 

see Appendix 7. 
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Figure 3. Hierarchical clustering of oocyte intergenic genes 

Relative expression 
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Figure 4. Hierarchical clustering of TE intergenic genes 

Relative expression 
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After visually inspecting the heatmaps, we could see that there are groups of genes with 

different expression profiles. We decided to divide the genes into different clusters depending 

on their expression profile. For oocyte, novel genes in all 4 categories of their location were 

divided into 8 clusters, in 2C, 4C embryos, the genes were divided into 6 clusters in all 

categories. In ICM datasets, bidirectional and overlapping category were clustered into 4 

groups, intergenic and intragenic category into 8 groups. For TE dataset, bidirectional category 

was divided into 3 clusters, overlapping into 4 clusters and the remaining categories (intragenic 

and intergenic) into 6 clusters. After division into the clusters, there were few clusters that had 

only 1 gene in them. We did not take these clusters into the account for further analysis. The 

number of genes in every cluster for the intergenic category as this category has the highest 

number of novel genes overall, for all datasets, is in Table 5, the remaining clusters and their 

number of genes can be found in Appendix 8.  

The analysis of average relative expression across datasets in the individual clusters agreed 

with the results obtained by the visual inspection of the heatmaps. In oocytes we saw that 

majority of the novel genes are oocyte-specific, or at least predominantly expressed in the 

oocytes. We can observe this pattern in the expression profiles of 6 out of 8 clusters in the 

intergenic novel genes (cluster 6 has highest average relative expression in the brain tissue and 

cluster 7 has the highest average relative expression in 8C embryo). This pattern is repeated 

also for the clusters of oocyte genes in the intragenic region where 5 out of 8 clusters have the 

highest average relative expression in the oocytes (clusters 5, 7 and 8 have the highest average 

relative expression in lung tissue). In the overlapping and bidirectional regions, the oocyte 

genes have 6 out of 8 clusters with highest average relative expression in the oocytes (clusters 

7 and 8 for overlapping regions show highest average relative expression in liver and muscle 

tissues, respectively, and clusters 2 and 8 for bidirectional genes show highest average relative 

expression in lung tissue and 4C embryos). In embryo cells, the analysis of expression patterns 

corresponded with what we observed on the heatmaps of embryo datasets. The 2C novel genes 

in all 4 categories have almost all highest average relative expression in 2C cells except cluster 

6 in the bidirectional region which has highest expression in brain tissue and cluster 4 in 

overlapping region which has highest average expression in ICM. For 4C and ICM 

developmental stages,  more genes were less typical for their developmental stage with 6 out 

of 24 clusters in both 4C and ICM datasets not having the highest relative expression for that 

specific dataset. TE showed the smallest number of clusters being with the highest expression 
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in TE which agrees with the results we got from the heatmaps. Only 10 out of 19 clusters had 

the highest expression in TE.  

It should also be noted that across all datasets clusters with larger number of gene tend to follow 

the main patterns described (oocyte-specificity of oocyte novel genes, early embryonic 

expression or whole preimplantation development expression of 2C and 4C novel genes, and 

increasing expression across whole preimplantation development of TE and ICM novel genes, 

without expression in somatic tissues (Figures 5-9). However, clusters with small number of 

genes cluster genes with unusual expression patterns, for example with high expression in some 

somatic tissue (Appendix 9). 

 

Table 5. Number of genes in each 

 cluster in all intergenic datasets.                                            

 

 

 

  

 

 

 

 

 

 

  

Cluster Number of genes for 

  Oocytes 2C 4C ICM TE 

1 1055 96 56 67 31 

2 167 174 7 72 17 

3 154 48 21 127 115 

4 83 16 114 8 11 

5 289 47 471 18 2 

6 19 1 29 27 11 

7 83  n/a  n/a 8 n/a  

8 7  n/a  n/a 1 n/a  
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Figure 5. Average relative expression of a cluster with highest number of genes  from  intergenic, intragenic, bidirectional and 

overlapping ( left to right) oocyte high fidelity novel genes 

Figure 6. Average relative expression of a cluster with highest number of genes from intergenic, intragenic, bidirectional and 

overlapping (left to right) 2C high fidelity novel genes 
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Figure 7. Average relative expression of a cluster with highest number of genes from intergenic, intragenic, bidirectional and 

overlapping (left to right)  4C high fidelity novel genes 
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Figure 8. Average relative expression of a cluster with highest number of genes from intergenic, intragenic, bidirectional and 

overlapping (left to right)  ICM high fidelity novel genes 
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Figure 9. Average relative expression of a cluster with highest number of genes from intergenic, intragenic, bidirectional and 

overlapping (left to right) TE high fidelity novel genes 
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6.4 Analysis of transposable elements acting as promoters 

Transposable elements were found to be associated with some promoters in humans and 

rodents in early development. We wanted to find out how many and if any are acting as 

promoters in our high confidence novel genes. For this purpose we used these 8 transposable 

element classes, LINE L1, LINE L2, LTR ERV1, LTR ERVK, LTR ERVL, LTR MaLR, SINE 

B2, SINE B4, and we investigated whether they overlap TSS of a same strand gene. The results 

of the analysis of transposable elements acting as promoters showed that the highest number 

of TEs promoters is in oocytes (43%) and the lowest in ICM (32.2%) tightly followed by TE 

cell lineage (32.3%) (see Figure 10). In oocytes, the most common class are LTR-MaLR 

elements (27.63% of all promoters) and LTR-ERVK elements (10.55% of all promoters). In 

embryos, the most common are LTR-ERVK elements for ICM and TE (11. 3% and 9.98%, 

respectively, of all promoters) and LTR-ERVL elements for 2C and 4C (13.28% and 12.98%, 

respectively, of all promoters) (see Figure 11). Most of the TEs promoters were associated only 

with 1 transposable element. In majority of developmental stages there was around 1% of 

promoters which overlapped with 2 or more TEs, but in TE datasets we did not find any 

promoters with more than 1 transposable element (see Figure 13). 

  

Figure 10. Percentage of TEs promoters from all the promoters of individual developmental stages 

 

The results were also divided according to the 4 categories of gene location (intergenic, 

intragenic, overlapping, bidirectional) (see Table 6). This showed that the highest proportion 

of TEs promoters is in oocytes overlapping region with 53% of all novel overlapping genes 

having TEs as a promoter. In 2C developmental stage, the overlapping region was the richest 

for TEs promoters as well with 49% of all novel genes found in this region having TEs as a 
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promoter. Second most abundant category for TEs-associated promoters were intergenic genes, 

followed by intragenic, and the lowest proportion of genes with TEs promoter was observed 

for bidirectional genes. This might suggest that TEs do generally promote bidirectional 

transcription initiation (see Figure 12). 

 

Table 6. Number of TEs and non-TEs promoters for every developmental stage and every category. 

 

Oocytes 
 Intergenic Intragenic Bidirectional Overlapping all 

without TEs 976 175 274 72 1497 

with 1 TEs 860 147 43 83 1133 

with 2+ TEs 21 2 0 0 23 

2C 
 Intergenic Intragenic Bidirectional Overlapping all 

without TEs 225 71 113 35 444 

with 1 TEs 153 40 7 33 233 

with 2+ TEs 4 2 1 1 8 

4C 
 Intergenic Intragenic Bidirectional Overlapping all 

without TEs 407 142 102 69 720 

with 1 TEs 283 81 12 42 418 

with 2+ TEs 8 8 0 2 18 

ICM 

 Intergenic Intragenic Bidirectional Overlapping all 

without TEs 205 115 57 31 408 

with 1 TEs 120 38 7 25 190 

with 2+ TEs 3 1 0 0 4 

TE 
 Intergenic Intragenic Bidirectional Overlapping all 

without TEs 107 100 43 28 278 

with 1 TEs 80 35 4 14 133 

with 2+ TEs 0 0 0 0 0 
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Figure 11. Composition of different TEs classes as promoters for every developmental stage 
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6.5 Protein coding potential of high confidence novel transcripts 

We wanted to analyse whether our high confidence novel genes are primarily lncRNAs, or 

whether some could potentially be protein coding. For this, we used Coding Potential 

Calculator 2 (CPC2) through its web interface.  It takes sequence fasta files of RNA transcripts 

as an input and gives us a list of coding and non-coding RNAs as a result. To obtain the 

sequences of transcripts of high fidelity novel genes, we first filtered assembled merged gtf 

annotations to contain only transcripts belonging to the high fidelity novel genes, using a 

python script filtering_gtf.py (Appendix 5) generated previously in the laboratory. Then, we 

used another python script gettingSeq.py (Appendix 6) to extract fasta sequences of transcripts 

from the filtered gtf file.  

After division of transcripts to their corresponding genes, the results were as expected. Majority 

of genes were classified as non-coding (see Figure 14) but a small number of genes with protein 

coding potential was identified in each category of genes in each developmental stage. The 

dominant category for coding transcripts and genes is intergenic category with 497 coding 

transcripts and 332 coding genes across all the datasets and it is also the category with most 

transcripts overall with 9659 transcripts. The total number of coding and non-coding transcripts 

was 18483 from which 1236 classified as coding transcripts (see Table 7) corresponding to 780 

coding genes (see Table 8). 

Looking at the results with the relative approach, we see a different pattern. The highest 

percentage of coding transcripts has the overlapping category with 12.15% of all its transcripts 

being coding, followed by bidirectional category with 7.96%. The total percentage of coding 

transcripts from all the transcripts is 6.69% (see Figure 15). 
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Table 7. Number of coding and non-coding transcripts found for every dataset and for every category 

 

 

 

Table 8. Number of coding genes for every category 

  

  Oocytes 2C 4C ICM TE 

Intragenic 
Coding 82 19 44 19 34 

Non-coding 1021 528 1098 513 433 

Intergenic 
Coding 255 69 107 40 26 

Non-coding 4372 1062 2188 978 562 

Bidirectional 
Coding 43 24 49 10 8 

Non-coding 576 317 373 191 93 

Overlapping 
Coding 157 63 90 56 41 

Non-coding 867 472 760 595 248 

Total 
Coding 537 175 290 125 109 

Non-coding 6836 2379 4419 2277 1336 

  oocytes 2C 4C ICM TE 

Intragenic 46 16 33 16 26 

Intergenic 156 51 70 30 24 

Bidirectional 25 16 28 9 5 

Overlapping 73 36 61 33 26 

Total 300 119 192 88 81 
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Figure 14. Number of coding and non-coding novel genes for each developmental stage 
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Figure 15. Percentage of coding transcripts from all the transcripts for all categories 
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7 Discussion 

In this project, we aimed to identify novel non-annotated genes in early developmental stages 

of mouse, analyse their expression pattern across development, investigate which of them have 

TEs as a promoter and which are potentially coding proteins. In order to do this we processed 

publicly available RNA-seq datasets from mouse oocytes, preimplantation embryos and adult 

somatic tissues. We focused on oocytes, embryos at the time of major zygotic genome 

activation (2C and 4C stage) and first two cell lineages segregated in preimplantation embryos 

(ICM and TE). 

 We performed de novo transcriptome assembly with these datasets and obtained annotations 

of assembled transcriptomes. Due to having datasets with different number of reads and strand 

specificity, the assembled transcriptomes were of  different levels of quality. Specifically, 

oocyte datasets had the highest number of reads with strand specificity while embryonic 

datasets had fewer reads with strand specificity. The differences in assemblies were observed 

while visually inspecting the gtf annotation files and seeing that in the embryonic assemblies  

there were more arrays of monooexonic genes on the same strand (or unstranded) located 

closely one after another which could all be part of one misannotated genes, or we could 

observe such monoexonic genes at the proximity of 5’ or 3’ ends of genes, which could 

potentially be just misannotated extensions of 5’ and 3’ UTRs of nearby genes. In addition, in 

embryonic datasets, there was a high number of genes without strand information which had 

to be excluded from the analysis. It probably resulted in higher number of assembled transcripts 

than there are in reality, consequently leading to higher number of novel genes. We tried to 

eliminate misannotated novel genes and select only high confidence genes by analysing 

H3K4me3 datasets and looking for association of promoters of novel genes with H3K4me3 

peaks.  

After analysis of the quality of the annotation of novel genes, we proceeded to examine  their 

expression patterns. This revealed that most of the genes are specific for oocytes or 

preimplantation embryos and not expressed in the adult somatic tissues. Genes from 2C and 

4C embryos were often specific for the early preimplantation development (until 8C or morula 

stages), while genes identified in ICM or TE were often expressed throughout the whole 

preimplantation development. The expression analysis was not as precise as we would like to 

because datasets being generated by different people with different library preparation 
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protocols. Nevertheless, we assumed that all the datasets are still similar enough for meaningful 

comparison. 

We also analysed the TEs acting as promoters in our high confidence novel  genes. The results 

showed that approximately 30-40% of promoters in all analysed datasets have at least one TEs 

acting as their promoter. The most common ones were LTR-MaLR and LTR-ERVK for 

oocytes, LTR-ERVL for early preimplantation embryos and LTR-ERVK for late 

preimplantation embryos. These results were expected as genes in oocytes and embryos were 

found to have transposable elements as promoters (Gifford et al. 2013) and the most frequently 

found TEs element as a promoters in oocyte developmental cells is LTR-MaLR (Veselovska 

et al. 2015). Our discovery of LTR-ERVK as the most common TEs in late preimplantation 

embryos and LTR-ERVL as the most common TEs for early preimplantation embryos agrees 

with already existing findings of LTR-ERVK acting as promoters in extra-embryonic lineages 

like TE and ICM (Hanna et al. 2019) and early preimplantation embryos like 2C having high 

number of transcripts initiated from LTRs derived from endogenous retroviruses (Macfarlan et 

al. 2012). 

To find out how many and if any of our novel genes are potentially coding proteins we used 

CPC2 web interface. This revealed that only a small fraction of them have protein coding 

potential which was the result that we predicted as it was shown before that a majority of novel 

genes identified in the oocytes are lncRNAs (Veselovska et al. 2015). 

There are many ways how we could improve the individual analyses in order to obtain more 

precise results. The resulting transcripts from de novo transcriptome assembly could have been 

filtered according to their size keeping only the ones which are bigger than 200bp, as library 

preparation protocols selected only RNAs longer than approximately 200bp and therefore 

shorter genes should be a result of incomplete annotation. We can focus primarily on 

multiexonic genes as those might be more interesting than monoexonic genes. For the analysis 

of relative expression of genes, we can go more in depth with the bidirectional category genes 

and see whether there is some correlation between the expression of those genes and the genes 

with which they share their promoter. We also used only one web interface program for 

defining whether novel genes have protein coding potential. The use of several different 

programs would be more reliable. For the genes that were classified as protein coding we could 

further investigate if they contain a known protein domain which would further increase the 

likelihood of the gene being truly protein coding.  
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This research helped us to further explore and understand the genome of  mouse early 

developmental stages. It acts as a good base for both more bioinformatical analyses of mouse 

oocyte and embryo novel genes as well as for experimental functional analysis of selected 

novel genes. There are many ways how this research can further continue. One of them can be 

analysing and comparing how these novel genes are conserved across mammalian species. In 

addition, we can analyse the role of transposable elements as promoters of novel genes in other 

mammalian species.  Experimentally, functional analysis can be performed by downregulation 

or knockout of selected candidate genes to explore their roles in development. Candidate genes 

interesting for future studies might be either those which are specific only for certain 

developmental stage, for example oocyte or 2C embryos or for example those, when comparing 

ICM and TE genes, that are only in one of these two cell lineages. In addition, candidates for 

experimental functional testing can be selected based on their protein coding potential or high 

expression level in specific developmental stage or stages. By studying these genes, we can 

uncover their roles in oocyte and embryonic development.  
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8 Conclusion 

Identifying and characterising novel transcripts in early developmental stages is relatively 

technically difficult task. Because of that there are still thousands of non-annotated transcripts 

and genes with unknown functions. Our research helped to fill in this gap by identifying and 

characterising a number of novel transcripts and genes in early developmental stages of a 

mouse.  

We observed the decrease of stage-specificity of the expression profile with developmental 

progression and examined the TEs acting as the promoters which gave us an insight into which 

classes of TEs are the most common for certain developmental stages. We saw that only a few 

of our novel genes have protein coding potential and therefore the majority of novel genes are 

lncRNAs. 

This research will serve as a basis for future more detailed analyses of oocyte and embryo 

transcripts and genes of a mouse, better understanding of transposable elements and their role 

as the promoters as well as experimental functional characterisation of candidate novel genes 

with potential roles during mouse early development.  
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10 Appendix 

Appendix 1 - Complete list of datasets used 

Appendix 2 - Example script for transcriptome assembly 

Appendix 3 - Example script for expression quantification 

Appendix 4 - The script for generating heatmaps in rStudio 

Appendix 5 – Python script filtering_gtf.py 
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Appendix 1. Complete list of datasets used  

 

 

 

 

 

 

Publication Cell type 
Accession 

number 
Library Type Type 

Veselovska et al. 

(2015) 

d5 oocytes 

GSE70116 

fr-firststrand 

RNA-seq 

d10 oocytes fr-secondstrand 

d15 oocytes fr-secondstrand 

GV oocytes fr-firststrand 

Wang et al. (2018) 

2C embryo 

GSE98150 

fr-unstranded 

4C embryo fr-unstranded 

8C embryo fr-unstranded 

morula embryo fr-unstranded 

Inner cell mass-

ICM 
fr-unstranded 

Trophectoderm-

TE 
fr-unstranded 

Andergassen et al. 

(2017) 

Adult_brain 

GSE75957 

 

Adult_leg_muscle  

Adult_liver  

Adult_spleen  

Adult_thymus  

Adult_lung  

Adult_heart  

Zheng et al. 

(2016) 

d10 oocytes 

GSE71434 

 

ChiP-seq 

2C late  

4C embryo  

ICM  

Liu et al. (2016) 

2C embryo 

GSE73952 

 

4C embryo  

ICM  

TE  

Hanna et al. 

(2018) 

d10 oocytes 
 GSE93941 

 

d15 oocytes   
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Appendix 2. Example script for transcriptome assembly 

 

#!/bin/bash 

 

#PBS -N Wang_2C_rep3_rep4_cufflinks 

 

#PBS -l walltime=48:00:00 

 

#PBS -l select=1:ncpus=8:mem=100gb:scratch_local=50gb 

 

#PBS -m abe 

 

#PBS -M karolina.kravarikova@gmail.com 

 

DATADIR="/storage/plzen1/home/kravak01/Wang_2018" 

 

cp $DATADIR/Wang_2C_rep3-sorted.bam $SCRATCHDIR/ 

cp $DATADIR/Wang_2C_rep4-sorted.bam $SCRATCHDIR/ 

cp $DATADIR/Mus_musculus.GRCm38.94.chr.gtf $SCRATCHDIR/ 

 

 

module add cufflinks-2.2.1 

module add samtools-1.3.1 

 

 

cd $SCRATCHDIR 

 

cufflinks -g Mus_musculus.GRCm38.94.chr.gtf -u --library-type fr-unstranded -o Wang_2C_rep3a 

Wang_2C_rep3-sorted.bam 

cufflinks -g Mus_musculus.GRCm38.94.chr.gtf -u --library-type fr-unstranded -o Wang_2C_rep4a 

Wang_2C_rep4-sorted.bam 

 

 

cp $SCRATCHDIR/Wang_2C_rep3a/genes.fpkm_tracking  $DATADIR/Wang_2C_rep3a 

cp $SCRATCHDIR/Wang_2C_rep3a/isoforms.fpkm_tracking  $DATADIR/Wang_2C_rep3a 

cp $SCRATCHDIR/Wang_2C_rep3a/skipped.gtf  $DATADIR/Wang_2C_rep3a 

cp $SCRATCHDIR/Wang_2C_rep3a/transcripts.gtf  $DATADIR/Wang_2C_rep3a 

cp $SCRATCHDIR/Wang_2C_rep4a/genes.fpkm_tracking  $DATADIR/Wang_2C_rep4a 

cp $SCRATCHDIR/Wang_2C_rep4a/isoforms.fpkm_tracking  $DATADIR/Wang_2C_rep4a 

cp $SCRATCHDIR/Wang_2C_rep4a/skipped.gtf  $DATADIR/Wang_2C_rep4a 

cp $SCRATCHDIR/Wang_2C_rep4a/transcripts.gtf  $DATADIR/Wang_2C_rep4a 
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Appendix 3. Example script for expression quantification 

 

#!/bin/bash 

 

#PBS -N Wang_4C_rep2_quantification 

 

#PBS -l walltime=48:00:00 

 

#PBS -l select=1:ncpus=8:mem=200gb:scratch_local=200gb 

 

#PBS -m abe 

 

#PBS -M karolina.kravarikova@gmail.com 

 

DATADIR="/storage/plzen1/home/kravak01/Quantification" 

 

cp $DATADIR/Wang_4C_rep2-sorted.bam $SCRATCHDIR/ 

cp $DATADIR/oocytes_merged.gtf $SCRATCHDIR/ 

cp $DATADIR/2C_merged.gtf $SCRATCHDIR/ 

cp $DATADIR/4C_merged.gtf $SCRATCHDIR/ 

cp $DATADIR/8C_merged.gtf $SCRATCHDIR/ 

cp $DATADIR/morula_merged.gtf $SCRATCHDIR/ 

cp $DATADIR/ICM_merged.gtf $SCRATCHDIR/ 

cp $DATADIR/TE_merged.gtf $SCRATCHDIR/ 

cp $DATADIR/embryos_merged.gtf $SCRATCHDIR/ 

 

 

 

 

 

module add cufflinks-2.2.1 

module add samtools-1.3.1 

cd $SCRATCHDIR 

cufflinks -G oocytes_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_oocytesQ Wang_4C_rep2-

sorted.bam 

cufflinks -G 2C_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_2CQ Wang_4C_rep2-sorted.bam 

cufflinks -G 4C_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_4CQ Wang_4C_rep2-sorted.bam 

cufflinks -G 8C_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_8CQ Wang_4C_rep2-sorted.bam 

cufflinks -G morula_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_morulaQ Wang_4C_rep2-

sorted.bam  

cufflinks -G TE_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_TEQ Wang_4C_rep2-sorted.bam 

cufflinks -G ICM_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_ICMQ Wang_4C_rep2-

sorted.bam 

cufflinks -G embryos_merged.gtf -u --library-type fr-unstranded -o Wang_4C_rep2_embryosQ Wang_4C_rep2-

sorted.bam 

 

 

cp $SCRATCHDIR/Wang_4C_rep2_oocytesQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_oocytesQ 

cp $SCRATCHDIR/Wang_4C_rep2_oocytesQ/isoforms.fpkm_tracking  

$DATADIR/Wang_4C_rep2_oocytesQ 

cp $SCRATCHDIR/Wang_4C_rep2_oocytesQ/skipped.gtf  $DATADIR/Wang_4C_rep2_oocytesQ 

cp $SCRATCHDIR/Wang_4C_rep2_oocytesQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_oocytesQ 

cp $SCRATCHDIR/Wang_4C_rep2_2CQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_2CQ 

cp $SCRATCHDIR/Wang_4C_rep2_2CQ/isoforms.fpkm_tracking  $DATADIR/Wang_4C_rep2_2CQ 

cp $SCRATCHDIR/Wang_4C_rep2_2CQ/skipped.gtf  $DATADIR/Wang_4C_rep2_2CQ 

cp $SCRATCHDIR/Wang_4C_rep2_2CQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_2CQ 

cp $SCRATCHDIR/Wang_4C_rep2_4CQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_4CQ 
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cp $SCRATCHDIR/Wang_4C_rep2_4CQ/isoforms.fpkm_tracking  $DATADIR/Wang_4C_rep2_4CQ 

cp $SCRATCHDIR/Wang_4C_rep2_4CQ/skipped.gtf  $DATADIR/Wang_4C_rep2_4CQ 

cp $SCRATCHDIR/Wang_4C_rep2_4CQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_4CQ 

cp $SCRATCHDIR/Wang_4C_rep2_8CQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_8CQ 

cp $SCRATCHDIR/Wang_4C_rep2_8CQ/isoforms.fpkm_tracking  $DATADIR/Wang_4C_rep2_8CQ 

cp $SCRATCHDIR/Wang_4C_rep2_8CQ/skipped.gtf  $DATADIR/Wang_4C_rep2_8CQ 

cp $SCRATCHDIR/Wang_4C_rep2_8CQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_8CQ 

cp $SCRATCHDIR/Wang_4C_rep2_morulaQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_morulaQ 

cp $SCRATCHDIR/Wang_4C_rep2_morulaQ/isoforms.fpkm_tracking  $DATADIR/Wang_4C_rep2_morulaQ 

cp $SCRATCHDIR/Wang_4C_rep2_morulaQ/skipped.gtf  $DATADIR/Wang_4C_rep2_morulaQ 

cp $SCRATCHDIR/Wang_4C_rep2_morulaQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_morulaQ 

cp $SCRATCHDIR/Wang_4C_rep2_TEQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_TEQ 

cp $SCRATCHDIR/Wang_4C_rep2_TEQ/isoforms.fpkm_tracking  $DATADIR/Wang_4C_rep2_TEQ 

cp $SCRATCHDIR/Wang_4C_rep2_TEQ/skipped.gtf  $DATADIR/Wang_4C_rep2_TEQ 

cp $SCRATCHDIR/Wang_4C_rep2_TEQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_TEQ 

cp $SCRATCHDIR/Wang_4C_rep2_ICMQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_ICMQ 

cp $SCRATCHDIR/Wang_4C_rep2_ICMQ/isoforms.fpkm_tracking  $DATADIR/Wang_4C_rep2_ICMQ 

cp $SCRATCHDIR/Wang_4C_rep2_ICMQ/skipped.gtf  $DATADIR/Wang_4C_rep2_ICMQ 

cp $SCRATCHDIR/Wang_4C_rep2_ICMQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_ICMQ 

cp $SCRATCHDIR/Wang_4C_rep2_embryosQ/genes.fpkm_tracking  $DATADIR/Wang_4C_rep2_embryosQ 

cp $SCRATCHDIR/Wang_4C_rep2_embryosQ/isoforms.fpkm_tracking  

$DATADIR/Wang_4C_rep2_embryosQ 

cp $SCRATCHDIR/Wang_4C_rep2_embryosQ/skipped.gtf  $DATADIR/Wang_4C_rep2_embryosQ 

cp $SCRATCHDIR/Wang_4C_rep2_embryosQ/transcripts.gtf  $DATADIR/Wang_4C_rep2_embryosQ 
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Appendix 4. Script for generating heatmaps in R Studio 

 

library (gplots) 

data &lt;- read.delim (&quot;ICM_bidirectional_relative_value.txt&quot;) 

rnames &lt;- data[,1] 

mat_data &lt;- data.matrix(data[,2:ncol(data)]) 

rownames(mat_data) &lt;- rnames 

hr &lt;- hclust(as.dist(1-cor(t(mat_data), method=&quot;pearson&quot;)), method=&quot;complete&quot;) 

colorRampPalette(c(&quot;blue&quot;,&quot;yellow&quot;)) -&gt; colour.gradient 

heatmap.2(mat_data, col=colour.gradient, breaks=seq(from=-5,to=5, by=0.001), 

Rowv=as.dendrogram(hr), Colv=FALSE, scale=&quot;none&quot;, dendrogram=&quot;none&quot;, key=T, 

keysize=0.5, 

density.info=&quot;none&quot;, hclust=function(x) hclust(x,method=&quot;complete&quot;),d 

istfun=function(x) as.dist((1- 

cor(t(x)))/2), trace=&quot;none&quot;,cexCol=1.0, labRow=NA) 

data$clusternumber &lt;- cutree (hr, 4) 

write.table(data, &quot;KK_ICM_bidirectional_clusters.txt&quot;)  
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Appendix 5. Python script filtering_gtf.py 

 

Language: Python 

Description: script filtering gtf files to contain only transcripts within specified regions based 

on chromosome and start and end coordinates of the bases   

Input: raw genomic sequence of an organism, gtf annotation that we want to filter, list of 

regions with genomic coordinates in which we want to retain the transcripts 

Authors: Silvia Ramirez, Nikolas Tolar 

 

import re 

chom_start_end_file = "TE_intergenic_coordinates_for_gtf_filter.txt" #no header, 3 columns - 

choromosome,start,end (separated by tabs) 

input_filename = "TE_merged.gtf" 

 

chromosomes = [] 

bases = [] 

 

feed_file = open(chom_start_end_file,'r') 

line = feed_file.readline() 

 

while line != '': 

    line_split = line.split('\t') 

    chromosomes.append(line_split[0]) 

    bases.append([int(line_split[1]),int(line_split[2])]) 

    line = feed_file.readline() 

 

# creates output file name: input_filename + filtered.gtf 

output_filename = input_filename[:input_filename.rfind(".")] + "_exon_filtered.gtf" 

 

# opens the input file 

with open(input_filename) as f: 

 

    # reads all lines 

    lines = f.readlines() 

 

# closes input file 

f.close() 

 

# gets number of lines (used for progress) 

count_lines = len(lines) 

 

# initializes counter to 0 (used for progress) 

counter = 0 

 

# counter findings 

findings = 0 
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# opens output file 

of = open(output_filename, "w") 

 

startAt_history = {} 

def indexFrom(input_data, search_for, startAt): 

    for i in range(startAt, len(input_data)): 

        if input_data[i] == search_for: 

            return i 

 

def geneids_in_region(): 

    print("Initializing...") 

    global counter, findings, startAt_history 

 

    # if one transcript is within the region => set it to true 

    for l in lines: 

        counter += 1 

 

        # splits line by tab and creates an array 

        l_data = re.split(r'\t+', str(l)) 

        if l_data[2] == "exon": 

 

            # checks if same chromosome (string) 

            if l_data[0] in chromosomes: 

                startAt_history[l_data[0]] = 0 

 

                for x in chromosomes: 

                    if x == l_data[0]: 

                        startAt = 0 

                        if l_data[0] in startAt_history: 

                            startAt = startAt_history[l_data[0]] 

                        index = indexFrom(chromosomes, l_data[0], startAt) 

                        startAt_history[l_data[0]] = index + 1 

                        b = bases[index] 

                        l_start_base = b[0] 

                        l_end_base = b[1] 

 

                        # checks start position 

                        if l_start_base <= int(l_data[3]) <= l_end_base: 

 

                            # checks end position 

                            if l_start_base <= int(l_data[4]) <= l_end_base: 

                                of.write(str(l)) 

                                findings += 1 

 

geneids_in_region() 

# closes the output file 

of.close() 

# prints the output file 

print("Output file: " + output_filename) 
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Appendix 6. Python script gettingSeq.py 

 

Language: Python 

Description: script generating sequences of transcripts from input gtf file in fasta format 

Input: raw genomic sequence of an organism, gtf file with transcripts annotation (in our case 

filtered gtf file generated by script filtering_gtf.py) , list of names of transcripts from gtf file 

for which we want the sequences 

Author: Nikolas Tolar 

 

genes_name = 'mus.fa' 

annotation_name = 'oocytes_merged_intragenic.gtf' 

output = open('oocytes_intragenic_sequence.txt','a') 

query = open('oocyte_intragenic_names.txt') 

merge = 1 

'''  

    genes_name = files containing raw DNA sequence - file names should follow the 

                 pattern Xiiii where X is number/letter of chromosome and 

                 iiii is the actual name that is common to all other files. 

                 Variable genes_name holds the part iiii that is common 

    annotation = file containing locations of exons,transcripts, etc. (.GTF file) 

    output_file = name of the file the results will save into (if existing then results will append, otherwise new file 

will be created) 

    transcript_name = name of target transcript 

    output_header = header of output file (FASTA format) 

    merge = 1 means that the exons will be merged (connected) together 

            0 means that the exons will be separated 

''' 

def caller(value,neg,k=0): 

    ret = '' 

    if neg == 0: 

        ret = ret + '_positive_strand' 

    else: 

        ret = ret + '_negative_strand' 

    if value == 1: 

        ret = ret + '_exons_merged\n' 

    elif value == 0: 

        ret = ret + '_exon_' + str(k) + '\n' 

    return ret 

 

def translate_read_back(string): 

 

    string_new = string[len(string)-1:0:-1] + string[0] 

    string_new = string_new.replace('A','R') 

    string_new = string_new.replace('T','A') 

    string_new = string_new.replace('R','T') 

    string_new = string_new.replace('C','F') 

    string_new = string_new.replace('G','C') 

    string_new = string_new.replace('F','G') 
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    return string_new 

 

def data_extraction(text, gene_pool): 

 

    start = int(text[3]) 

    stop = int(text[4]) 

    segment = gene_pool[start-1:stop] 

    return segment 

 

def insert_newlines(string, every=60): 

    lines = [] 

    for i in range(0, len(string), every): 

        lines.append(string[i:i+every]) 

    ret = '\n'.join(lines) 

    return ret 

 

def get_exons(genes_name, annotation_name, query, merge): 

 

    transcript_name = query.readline().strip('\n') 

    while transcript_name != '': 

         

        annotation = open(annotation_name) 

        neg = 0 

        res_exons = '' 

        res_list = [] 

        while True: 

 

             

            text = annotation.readline() 

            if text == '': 

                break 

            if transcript_name in text and 'exon' in text: 

                text = text.split() 

# accesing correct chromosome file 

                genes = open(text[0]+genes_name) 

                genes.readline() 

                gene_pool = genes.read() 

                gene_pool = ''.join(gene_pool.split()) 

                genes.close() 

                 

                if text[6] == '-': 

                    neg = 1 

                     

                if merge == 1: 

                    res_exons = res_exons + data_extraction(text,gene_pool) 

 

                elif merge == 0: 

 

                    res_list.append(data_extraction(text,gene_pool)) 

 

        if merge == 1: 

            if neg == 1: 

                res_exons = translate_read_back(res_exons) 

 

            res_exons = insert_newlines(res_exons) 

 

            message = caller(merge,neg) 

         

            print('>_' + transcript_name + message + res_exons + '\n') 

            output.write('>_' + transcript_name + message + res_exons + '\n\n') 
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        else: 

            for n in range(len(res_list)): 

                message = caller(merge,neg,n) 

 

                if neg == 1: 

                    res = '>_' + transcript_name + message + insert_newlines(translate_read_back(res_list[n])) 

 

                else: 

                    res = '>_' + transcript_name + message + insert_newlines(res_list[n]) 

 

                print(res + '\n') 

                output.write(res + '\n\n') 

        annotation.close() 

        transcript_name = query.readline().strip('\n') 

get_exons(genes_name, annotation_name, query, merge) 

output.close() 

query.close() 
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Appendix 7. Heatmaps for all datasets and all 4 categories of gene location 
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Appendix 8. Number of genes in each cluster for all datasets and all  

categories of gene location 

Cluster
Number 

of genes

1 68

2 57

3 29

4 115

5 6

6 33

7 13

8 3

Cluster
Number 

of genes

1 134

2 17

3 33

4 27

5 24

6 45

7 17

8 20

Cluster
Number 

of genes

1 79

2 21

3 17

4 15

5 9

6 8

7 3

8 3

Oocyte intragenic Oocyte bidirectional Oocyte overlapping 

Cluster
Number 

of genes

1 18

2 27

3 37

4 15

5 7

6 9

Cluster
Number 

of genes

1 34

2 40

3 15

4 7

5 20

6 5

Cluster
Number 

of genes

1 26

2 27

3 14

4 2

2C intragenic 2C bidirectional 2C overlapping 

Cluster
Number 

of genes

1 12

2 51

3 68

4 79

5 10

6 12

Cluster
Number 

of genes

1 60

2 16

3 10

4 7

5 8

6 13

Cluster
Number 

of genes

1 27

2 15

3 13

4 38

5 10

6 10

4C intragenic 4C bidirectional 4C overlapping 
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Cluster
Number 

of genes

1 12

2 12

3 27

4 55

5 36

6 4

7 3

8 5

Cluster
Number 

of genes

1 29

2 21

3 7

4 7

Cluster
Number 

of genes

1 38

2 3

3 6

4 9

ICM intragenic ICM bidirectional ICM overlapping 

Cluster
Number 

of genes

1 32

2 7

3 80

4 5

5 4

6 7

Cluster
Number 

of genes

1 20

2 18

3 9

Cluster
Number 

of genes

1 26

2 3

3 12

4 1

TE intragenic TE bidirectional TE overlapping 
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Appendix 9. Relative expression for each cluster for all datasets and all 

categories  

 

Relative expression of clusters for oocyte intergenic genes 

 

  

Relative expression of clusters for oocyte intragenic genes 
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Relative expression of clusters for oocyte bidirectional genes 

 
  

 

Relative expression of clusters for oocyte overlapping genes 

 

 

 

Relative expression of clusters for 2C intergenic genes 
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  Relative expression of clusters for 2C intragenic genes 

 

     

     

Relative expression of clusters for 2C bidirectional genes 

 

    

Relative expression of clusters for 2C overlapping genes 
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Relative expression of clusters for 4C intergenic genes 

 

   

Relative expression of clusters for 4C intragenic genes 
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Relative expression of clusters for 4C bidirectional genes 

 

   

Relative expression of clusters for 4C overlapping genes 

 

  

Relative expression of clusters for ICM intergenic genes 
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Relative expression of clusters for ICM intragenic genes 

 

    

Relative expression of clusters for ICM bidirectional genes 

 

  

Relative expression of clusters for ICM overlapping genes 
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Relative expression of clusters for TE intergenic genes 

 

  

Relative expression of clusters for TE intragenic genes 
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Relative expression of clusters for TE bidirectional genes Relative expression of clusters for TE overlapping genes 


