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Abstract 
This thesis explores the conditions under which a Large Language Model (LLM) improves 
Automatic Speech Recognition (ASR) transcription. 

Specifically, the thesis focuses on n-best rescoring with masked and autoregressive lan­
guage models. The n-best hypotheses are scored using L L M and then this score is interpo­
lated with the scores from A S R . This approach is tested across different A S R settings and 
datasets. 

Results demonstrate that rescoring hypotheses from Wav2Vec 2.0 and Jasper A S R sys­
tems reduces the error rate. L L M fine-tuning proves to be very beneficial. Smaller fine-
tuned models can surpass larger non-fine-tuned ones. 

The findings of this thesis broaden the knowledge of the conditions for L L M (autoregres­
sive, masked) utilization in A S R rescoring. The thesis observes the influence of fine-tuning, 
normalization and separating scores from a C T C decoder on the decrease of word error 
rate. 

Abstrakt 
Táto práca má za cieľ preskúmať, v akých podmienkach veľké jazykové modely vylepšujú 
prepisy automatického rozpoznávania reči. 

Konkrétne sa zameriava na preskórovanie n-najlepších hypotéz pomocou maskovaných 
aj autoregresívnych jazykových modelov. Pomocou nich sa každej hypotéze priradí skóre, 
ktoré sa následne interpoluje so skórami získanými zo systému prepisu reči. Tento postup 
som testoval naprieč datasetmi a rôznymi systémami pre prepis reči s rôznym nastavením. 

Výsledky vykazujú, že preskórovanie znižuje mieru chybovosti hypotéz získaných z mod­
elov Wav2Vec 2.0 a Jasper. Dotrénovanie modelov sa overilo byť veľmi prospešné pri danej 
úlohe. Menšie dotrénované modely prekonali väčšie nedotrénované pri preskórovaní. 

Výsledky tejto práce prispievajú k lepšiemu porozumeniu, v akých podmienkach použiť 
jazykový model (autoregresívny, maskovaný) pri preskórovaní prepisov reči. Táto práca 
skúma vplyv dotrénovania, normalizácie a rozdelenia skóre z C T C dekodéra, na zníženie 
miery chybovosti slov. 

Keywords 
automatic speech recognition, n-best rescoring, large language model, masked language 
modeling, autoregressive language modeling 
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Rozšírený abstrakt 
Veľké predtrénované jazykové modely sa dnes používajú hlavne v rôznych úlohách spra­
covania prirodzeného jazyka. Otázne je, či sa dá použitím veľkých jazykových modelov v 
automatickom prepise reči dosiahnuť zlepšenie kvality prepisov. 

Veľké jazykové modely sú natrénované na obrovskom množstve textu. Sú naučené, ako 
by mal korektný text vyzerať. Systémy automatického prepisu reči posielajú na výstup 
hypotézy s určitou pravdepodobnosťou. Predpoklad je, že veľké jazykové modely môžu 
vybrať lepšiu hypotézu, než tú, s najväčším skóre od systému pre prepis reči. Výskumy v 
danej oblasti sú nejednoznačné a preto sa oplatí dané viac preskúmať. 

V práci skúmam prístup preskórovania n-najlepších hypotéz. Vyskúšal som rôzne jazykové 
modely, v kombinácii s tromi rôznymi systémami prepisov reči a tromi datasetmi. Medzi 
vybranými sú zástupcovia maskovaných a autoregresívnych jazykových modelov podobných 
veľkostí, aby sa ich dalo porovnať. Okrem iného, som testoval vplyv dotrénovania jazykový 
modelov na výsledok preskórovania. 

Výsledné zistenia poskytujú informácie o efektivite konkrétnych nastavení jazykových 
modelov a systémov pre prepis reči. Tieto poznatky môžu pomôcť k implementácii preskórova­
nia pomocou veľkých jazykových modelov v iných systémoch. 

Proces prepisu nahrávky zvuku je nasledovný. Vstupom do systému je súbor so zvukom 
(typicky vo formáte WAV) . Ten je vzorkovaný na 16 kHz. Zvukové nahrávky v experimen­
toch sú prevzaté z anglických datasetov, menovite: LibriSpeech, GigaSpeech a T E D - L I U M . 
Tieto zahŕňajú čítanú aj spontánnu reč z rôznych tém. 

Pre prepis reči z datasetov na hypotézy som použil nasledovné End-to-end systémy 
prepisu reči: Wav2Vec 2.0 Base 960h, Whisper Medium a STT E n Jasperl0x5dr. Všetky 
využívajú beam search pre vytvorenie viacerých hypotéz. Wav2vec a Jasper fungujú s C T C 
dekodérmi a malými n-gram jazykovými modelmi. Ja som počas dekódovania použil 4-gram 
K e n L M model natrénovaný na LibriSpeech. 

Upravil som C T C dekodér pre Wav2Vec, aby na výstup posielal skóre akustického mod­
elu, skóre K e n L M , a počet slov oddelene. Ďalej som upravil dekodér pre Whisper, aby 
na výstup posielal viacero hypotéz. Model Jasper a jeho dekodér som použil bez zmien v 
zdrojovom kóde programu. 

Hypotézy zo systému prepisu reči som oskóroval pomocou maskovaných a autoregresívnych 
jazykových modelov. Skórovanie bolo uskutočnené súčtom pravdepodobností pre každý to-
ken v danej hypotéze. Maskované modely pri jednom vstupe predikujú jediný token pre 
danú hypotézu. Predikovaný token je token pod takzvanou maskou označený [MASK]. Aby 
sa oskóroval text, musí sa viackrát spustiť predikcia tokenu pod maskou, konkrétne x krát, 
kde x je počet tokenov v texte. Autoregresívne modely spracúvajú text zľava doprava. Text 
stačí prejsť raz. Ich nevýhoda je, že nemajú prístup k nasledovným tokenom. 

Boli vykonané experimenty s Wav2Vec 2.0 s K e n L M a lexikónom, iba s lexikónom a 
bez K e n L M a lexikónu. P r i experimentoch s modelom Jasper bol jeho výstup dekódovaný 
s využitím K e n L M . Najlepšie namerané zlepšenie W E R je 4% absolútne. 

V experimentoch som použil tieto maskované jazykové modely: B E R T uncased vo 
veľkosti Base 110M a Large 340M, RoBERTa vo veľkostiach Base 125M a Large 355M. 
A tieto autoregresívne modely: GPT-2 s veľkosťami Base 137M a Medium 380M, TinyL-
lama 1.1B, Falcon 7B, Mistral 7B, M P T 7B, Llama2 o veľkostiach 7B a 13B. 

Pre ďalšie ešte väčšie vylepšenie preskórovania, som dotrénoval modely B E R T Base 
uncased a GPT-2 na texte z LibriSpeech datasetu. Modely sa po dotrénovaní zlepšili najmä 
pri preskórovaní LibriSpeech datasetu. Okrem týchto som dotrénoval model Llama2 7B s 
využitím L o R A na texte z datasetu GigaSpeech X L . Vyskúšal som tri rôzne nastavenia: 



r = 8 , r = 3 2 a r = 128. Tieto tri dotrénované Llama modely vykazujú konzistentné 
zlepšenie naprieč datasetmi. 

Preskórovanie prebieha v poslednej časti spracovania zvuku. Pre skóre získané z aku­
stického modelu, veľkého jazykového modelu, počet slov a v niektorých prípadoch skóre n-
gramu, sa musia nájsť vhodné váhy. Po prenásobení jednotlivých skóre príslušnými váhami 
sa výsledky sčítajú. Daný súčet nazývam nové skóre textu a vyberá sa hypotéza s najlepším 
novým skóre. 

V popísaných experimentoch som pre hyperparametre každého dekodéra a pre všetky 
váhy našiel najlepšie hodnoty. Váhy som hľadal najskôr prehľadávaním mriežky a následným 
polením intervalu okolo najlepšieho výsledku z prvej časti hľadania. 

Zistil som, že daný postup bol v dvoch z troch (pre modely Whisper nie) systémov 
úspešný. Bola nájdená korelácia medzi veľkosťou jazykového modelu a zlepšením v prepisoch 
reči s drobnými výnimkami - GPT-2 a GPT-2 Medium. Okrem toho som našiel aj výnimky 
v prípade relatívne malého modelu TinyLlama, ktorý dosahoval podobné zlepšenie ako 
násobne väčšie modely. 
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Chapter 1 

Introduction 

Automatic speech recognition (ASR) finds applications across various domains and indus­
tries. From simple internet browsing by saying "Hey Google" or "Hey Siri", through writing 
court reports to emergency hot-line robots. The improvement is very welcome. One way 
to improve it is using language models that know what correct text should look like. 

Generative artificial intelligence is one of the most groundbreaking innovations in the 
field of artificial intelligence in the last few years. It encompasses large language models. 
Which achieves state-of-the-art in multiple natural language processing tasks. These great 
results inspired research in applying large language models in other areas. One of them is 
automatic speech recognition. 

The studies about improving speech transcriptions using large language models show 
varying results [19, 52, 29]. In this thesis, I joined this effort to improve automatic speech 
recognition systems using large language models. More precisely, by setting A S R systems 
to produce more than one possible transcription of a speech from an audio file and then 
using L L M to help A S R systems choose the best speech transcription. 

This thesis aims to test how large language models influence A S R transcriptions. Find 
how important is the size of the large language model. Compare the performance of masked 
and autoregressive models in this task. Observe factors influencing the result of rescoring. 

In chapter 2, A S R systems are described. The chapter 3 aims to explain how language 
models work and how they can be used with A S R systems from the previous chapter. 
Transformer architecture is also described here. Following chapter 4 is more practical, 
all A S R models and large language models used in experiments are described here. The 
experiments and datasets description is in chapter 5. It specifies experiments and describes 
the results. There is a summary of findings, and further steps are proposed, in the last 
chapter 6. 
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Chapter 2 

Automatic speech recognition 

Automatic speech recognition (ASR) is the process of transcribing speech from audio to 
text form using computer software. In the past, statistical models were used for ASR, in 
recent years they have been replaced with deep learning-based end-to-end systems [33]. 

2.1 End-to-End systems 

End-to-end (E2E) models are composed of these parts: encoder, alignment and decoder. 
The encoder maps the input acoustic frame sequence into a higher-level representation. To 
encode the input recurrent neural networks (uni-directional or bi-directional), convolutional 
networks, or transformers can be utilized. 

Captured signal usually contains noise. Noises may cause waveforms of two different 
words to be indistinguishable, therefore it would be difficult in further steps to correctly 
transcribe these words. The pre-processing aim is to reduce noise in the signal. Many 
different methods are used to do it. Some of them are normalization, pre-emphasis and 
other [27]. 

To find alignment between the acoustic frame sequence and the corresponding label 
sequence, in E2E there are multiple approaches: explicit alignment, implicit alignment, 
and attention-based E2E with alignment modeling. Connectionist temporal classification 
belongs to the explicit alignment finding approaches and is described further in this chapter. 

A l l A S R models I used have an autoregressive decoder utilizing beam search. Autore-
gressive means, it predicts an output token based on the previous prediction. 

To validate how well an A S R model is, there exist multiple metrics I focused on word 
error rate described in the following section. 

2.2 A S R evaluation metrics 

In A S R word error rate (WER) and sometimes character error rate (CER) are used to 
measure how good the speech transcriptions are. Mandarin or Japanese transcriptions are 
typically evaluated using C E R . 

WER = I + D + S

 x ioo (2.1) 
N 

W E R computation is in Equation 2.1, where / is the number of insertions, D deletions, 
S substitutions and N is the number of words. The numerator in the equation is Levenshtein 
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distance. Levenshtein distance between two sequences is the minimum number of single-
word edits - insertions, deletions or substitutions - required to change one word. C E R 
has a similar definition, but Levenshtein distance is counted over characters and iV is the 
number of characters [13]. 

2.3 Feature extraction 

Some A S R systems need to preprocess audio into mel frequency. It works like the hu­
man ear's perception of sound. The lower frequencies have better resolution than higher 
frequencies. 

In general, the frequency content of a speech signal over time is described by the power 
spectrum of the signal. Usually, the peaks in a spectrum relate to the formant frequencies. 
Formants are frequency peaks in the spectrum which have a high degree of energy. They 
are especially prominent in vowels. Each formant corresponds to a resonance in the vocal 
tract - the spectrum has a formant approximately every 1000 Hz. [2, 6]. 

Mel-Frequency Cepstral Coefficients (MFCC) extraction is depicted in Figure 2.1 in­
spired by [1]. It is done in the phase of feature extraction, which is a process of extracting 
hidden information from a raw data signal. It minimises discontinuities of the signal. In 
Equation 2.2 for M F C C , / denotes frequency and mel(f) is the mel frequency [6]. 

Pre-emphasis Framing and 
Windowing DFT Mel-Frequqncy 

filter bank Logarithm DCT MFCC feature 

Figure 2.1: M F C C extraction process. The result is Mel-Frequency Cepstral Coefficients 
( M F C C ) . M F C C extraction is depicted in (Figure 2.1) taken from [1]. Hamming window 
is applied, to the input signal. Then Discrete Fourier Transform (DFT) is performed over 
the signal. In this step, the power spectrum is computed. The next step is mel frequency 
warping, where the numbers of coefficients are obtained. After that, the logarithm of 
the power spectrum is taken. In the end, the cepstral coefficients are then computed by 
transforming the log spectrum to the cepstral domain using an inverse Discrete Fourier 
Transform (IDFT). 

mel(f) = 2595 • log10 j (2.2) 

2.4 Connectionist temporal classification 

Finding alignment between input and output letters or words is a very time-consuming 
task. To address this, a neural network sequence-to-sequence model with Connectionist 
temporal classification (CTC) [15] is utilized. The model finds alignment between input 
and output sequences of variable lengths. 

The basic idea is that based on an input sequence, the model's outputs are interpreted 
as a probability distribution over label sequences. A n objective function can be derived 
from this distribution. The objective function directly maximises the probabilities of the 
correct labellings. The network can be trained with backpropagation through time because 
the objective function is differentiable [15]. 

C T C works over frames, a single character may be in multiple frames, which causes 
character repetition in the output. This could be solved by merging characters that repeat. 
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However, words where characters repeat for example in words "hello" or "running". To 
handle repeating characters in the output, there is a special token called a blank token. 
Tokens between two blank tokens are being merged [16]. 

2.5 Beam search 

Search is the last step in A S R . For an observed source sequence, the search algorithm gen­
erates the most likely target sentence of unknown length. To get words and sentences from 
a sequence of probabilities obtained from previous steps, the decoder is needed. Common 
decoder choices are greedy search and beam search. 

Beam search [33, 12] serves to select the best subset of hypotheses C from all possible 
combinations of output sequences. 

The inputs for beam search are symbols (characters and a blank symbol) and their 
corresponding log probabilities. The output from the algorithm is a list of transcriptions 
and their scores. The basic beam search works as follows. The best hypotheses set is 
constructed by processing input symbols from left to right and at each step retaining a fixed 
number (beam) of the candidates with the highest log probability. How many candidates 
to keep in each step is determined by the beam size parameter. When the end-of-sequence 
symbol occurs within the highest-scoring candidates and the transcription is added to the 
final transcription list, the beam size is reduced. The search stops when the beam size is 
equal to zero. Then the best transcription is chosen according to the highest normalized 
log probability. 

The greedy search does not consider alternative hypotheses. This imposes degradation 
in decoding with longer target sequences. But the degradation is not big, in well-trained 
models it is minimal. 

2.6 Patience 

Widely used implementations of beam search - fairseq, Hugging Face's Transformers -
follow the first come, first served (FCFS) heuristic. 

F C F S heuristic returns the best candidate when k finished candidates are found, where 
k is the beam size. In that moment it also discards all current, unfinished sequences. So 
breadth and depth of the beam search depend on beam size k. To separate the breadth and 
depth control the patience factor can be used. The patience factor modifies the stopping 
criterion and thereby changes the depth of the search. It controls how many finished 
candidates have to be found before terminating the decoding [22]. 
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Algorithm 1 F C F S beam decoding with controlled patience factor p [22]. The common 
implementation can be considered in cases where p = 1. Line 17 shows where is the patience 
factor used in the algorithm. Ft: already completed sequences; Bt: beam of continuing 
sequences. Ht: expanded hypotheses before the top-k operation. The input sequence to 
score is omitted.  
k: beam size, M : maximum length, V: Vocabulary, score(-): scoring function, p: patience 
factor 

' £ o < - { < O , B O S > } , F o < - 0 
for t € {1, . . . , M- 1} do 

for (s,y) £ -Bt-i do > Expansion, 
for y G V do 

s <— score(y o y), iJ.add((s, y o y)) 
end for 

end for 

while \Bt\ < k do > Find top k w/o EOS from H. 
(s> y) <— H.maxQ 
if y.lastQ = EOS then 

Ft.add((s, y)) > Finished hypotheses, 
else 

S t . a d d « a , y ) ) 
end if 
if |-Ft | > k • p then > Originally, p = 1. 

return Fj.maxQ 
end if 
H.iemove((s, y)) 

end while 
end for 
return i^.maxQ 

Research has shown that adjusting patience significantly improves the generation per­
formance on text summarization, with an insignificant slowdown in generation [22]. M y 
hypothesis is that adjusting patience could be beneficial in generating transcription hy­
potheses and thus improve the final transcription after rescoring the hypotheses with a 
large language model. Before rescoring experiments, I did measurements on 100 randomly 
selected samples from the GigaSpeech dev subset with various beam sizes and patience 
values. 

In Figure 2.2, it can be seen that patience greater than one influences how many final 
hypotheses the algorithm outputs. The greater the patience, the more the final hypotheses. 
The dependency between the patience factor greater than one and the number of outputted 
hypotheses is linear. Also the bigger the beam size, the steeper the increase in hypotheses 
count. This effect is caused by patience's influence on the stopping criterion. The patience 
factor which is greater than one, moves the stopping condition, so the search finds more 
final candidates. 

7 



1.0 1.5 2.0 2.5 3.0 
Patience 

Figure 2.2: Graph showing average output hypotheses count depending on patience factor 
and beam size, using adjusted Whisper medium beam search decoder outputting multiple 
hypotheses. 

Furthermore, with a higher patience value, generated hypotheses have more words and 
characters on average (Figure 5.1). 

(a) words (b) characters 

Figure 2.3: Graphs showing the average number of words (left) and characters (right) in a 
hypothesis depending on patience factor and beam size, using adjusted Whisper medium 
beam search decoder outputting multiple hypotheses. 

The patience factor also influences W E R . Figure 2.4 shows that the best possible W E R 
is decreasing with a greater patience factor. The best possible W E R is obtained by selecting 
the transcription with the lowest W E R for each audio recording. 
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1.0 1.5 2.0 2.5 3.0 
Patience 

Figure 2.4: Graph showing best W E R dependence on patience factor and beam size, using 
adjusted Whisper medium beam search decoder outputting multiple hypotheses. 

The average time of transcription in seconds is shown in Figure 2.5. The transcription 
time is the time of inference and decoding, using the Whisper medium model. There is 
a slight increase in average transcription time with an increasing patience factor. Also, 
beam size increases the transcription time and this increase is more significant than the one 
caused by patience. 

1.0 1.5 2.0 2.5 3.0 
Patience 

Figure 2.5: Graph showing average time of transcription (inference + decoding) in seconds. 
The transcription time depends on the patience factor and beam size. Measured using 
adjusted Whisper medium beam search decoder outputting multiple hypotheses. 

Based on previous measurements, I assume setting a big enough patience factor in n-best 
rescoring can improve W E R and save time. Increasing the patience factor may compensate 
for a small beam size. 
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Chapter 3 

Language modeling 

Language modeling captures regularities of natural language to improve the performance 
of various natural language applications. Language modeling amounts to estimating the 
probability distribution of various linguistic units, such as words, sentences, and whole 
documents [39]. 

Language modeling is crucial for a large variety of language technology applications. 
These include speech recognition, machine translation, document classification, optical 
character recognition, email spam detection, information retrieval, handwriting recogni­
tion, spelling correction, and many more. Speech recognition is where language modeling 
started. 

Language modeling employs statistical estimation techniques using text as language 
training data. Because of the categorical nature of language and the large vocabularies 
commonly used in speech, statistical techniques must estimate a large number of parameters 
and consequently depend critically on the availability of large amounts of training data. 

After large amounts of text became available online, it offered large training data, which 
led to a dramatic increase in the quality of language models. 

3.1 Statistical language model 

A statistical language model is a probability distribution P(s) over all possible sentences s 
or spoken utterances, documents, or any other linguistic unit [39]. 

Statistical language models are usually used in the context of a Bayes' classifier, where 
they can play the role of either the prior or the likelihood function. For example, in ASR, 
given an acoustic signal a, the goal is to find the sentence that is most likely to have been 
spoken. The solution is in Equation 3.1, where the language model P(s) plays the role of 
the prior. 

s* = argmaxP(sja) = argmaxP(ajs) • P(s) (3-1) 
s s 

N-grams [39] are statistical language models, that are widely used in ASR. 

P(wi\hi)P(wi\wi-n+i,..., Wi-i) (3.2) 

The n-gram language model can be described by an Equation 3.2, where Wi represents 
the word at the i th position in a given input and h = u>i,u>2,... ,Wi-i represents history. 
They can model probability distribution over characters or words. In a word n-gram model, 
the probability of the next word depends on the n — 1 previous words. For example in a 
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sentence "I will do it tomorrow", is the word "tomorrow" conditioned on "do it", represented 
as P(tomorrow\doit). 

Perplexity is the most often used metric for evaluating language model performance [39, 26]. 

Perplexity can be interpreted as the geometric average branching factor of the language 
according to the model. It is a function of the language and the model. When considered 
a function of the model, it measures how good the model is. The better the model, the 
lower the perplexity. When considered a function of the language, perplexity estimates the 
entropy, or complexity, of that language. In the end, the quality of a language model must 
be measured by its effect on the specific application for which it was designed. Perplexity 
is calculated as shown in Equation 3.3, where W = (u>o, u>i,..., wt) represents a tokenized 
sequence comprising of t tokens. In the equation, logpQ(wi\w<i) is the log-likelihood of a 
token Wi conditioned on the preceding tokens. 

3.3 Text standardization 

Text standardization [9] is a basic form of feature engineering that aims to erase encoding 
differences that the text processing model does not need. The standardization techniques 
improve model generalization, and the model will require less training data. For example, 
the model won't need abundant examples of the word „Sunset" when it knows „sunset". 
The disadvantage of text standardization is the loss of information. The choice of text 
standardization schema must not conflict with the specific task that the model is meant 
for, for example, standardization schema removing the symbol „?" used with the model 
extracting questions from the text. 

3.2 Metr ic 

(3.3) 
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A: Sunset came. I stared at the Mexico sky, eating jalapeno. Isn't nature splendid? 
B: sunset came i stared at the mexico sky eating jalapeno isnt nature splendid 
C: sunset came i stared at the mexico sky eating jalapeno isnt nature splendid 
D: sunset came i [ s t a r e ] at the mexico sky [ e a t ] jalapeno isnt nature splendid 

Figure 3.1: Standardization schemes. One popular text standardization scheme is to con­
vert text to lowercase and remove punctuation characters. Consider text A , applying the 
standardization scheme, the standardized text would be text B . Another common stan­
dardization scheme is to convert special characters to a standard form. That means to 
replace character „e" with e, „h" with „n", „se" with „ae", etc. When the two standard­
ization schemes are applied to the text, the result is text C. A n example of an advanced 
standardization pattern that is more rarely used is stemming. Stemming means converting 
variations of a term into a single shared representation. Examples of stemming are turning 
„caught" and „been catching" into „[catch]", „was staring" and „stared" into „[stare]" or 
„cats" into „[cat]". The resulting sentence after applying all three standardization schemes 
looks like text D. 

There are many text standardization schemes. Three popular ones are depicted in 
Figure 3.1. In the context of ASR, text standardization is influenced by the A S R model 
and in the case of my experiments by the chosen dataset format. 

3.4 Tokenization and indexing 

Tokenization [9] means splitting text. To tokenize standardized text, three methods can be 
applied: 

• Word-level tokenization - text is divided into words or smaller subword units for 
example „going" can be split into „go" + „ing" 

• N-gram tokenization - tokens create groups of N consecutive words e.g. sentence „He 
is going to the train station" would be tokenized into 2-gram tokens: „He is", „is 
going", „going to", „to the", „the train", „train station". 

• Character-level tokenization - a token is a character e.g. „going" is tokenized as „g" 
o" i " n" g" 

Word-level tokenization is used in sequence models. Sequence models are text-processing 
models that take into consideration the order of words. 

When a token is not included in the model vocabulary, it is called an out-of-vocabulary 
(OOV) token. Many tokenizers have a special marking for O O V tokens. 

3.5 Encoding and embedding 

Encoding [9] is the conversion of an index into a vector that can be processed by a neural 
network. A commonly used encoding is one-hot encoding. This assigns a vector of all zeros 
and a single one at the index number position. For example, 3 is encoded to 0000 1000. 
The disadvantage of this approach is that it creates sparse vectors. The created vectors 
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are orthogonal to each other - there is no relationship encoded in vectors representing the 
encoded words. The created vectors are high-dimensional, so they take too much memory. 
This is the reason why vocabularies mentioned in Section 3.4 are restricted to 20k or 30k 
most common words in the training dataset. This means 20k or 30k dimensions - the same 
amount of dimensions as the number of encoded words. 

Embedding [9, 53] refers to a vector representation of words that encodes information 
about semantic relationships. Sequence of length I is converted to a matrix W G M.lxd, 
where d is the embedding dimension. 

Two vectors representing two words should be close to each other when they have the 
same meaning, for example happy and delighted. On the other hand, vectors representing 
words with different meanings should lie far away from each other. A n example of such real-
world transformation is a plural vector which can be added to other vectors. For example, 
a „potato" vector, resulting in „potatoes". The advantage of the embedding vectors is that 
they are dense. They have typically 256, 512 or 1024 dimensions. 

3.6 Large Language Models 

Large Language Model (LLM) [31] is a deep learning model pre-trained on a vast amount 
of data. The L L M s in the experiments are built upon the Transformer architecture. 

The historical evolution of L L M s can be traced back to statistical language models. 
Neural language modeling evolved from statistical language modeling. Initially, supervised 
task-specific language models were trained. Later self-supervised language models were 
developed to learn a generic representation for various N L P tasks. These models are called 
pre-trained language models. Subsequently, L L M s emerged from pre-trained language mod­
els, by increasing the number of model parameters. 

3.7 Transformer architecture 

Transformer architecture [54] proposes an innovative approach to sequence transduction 
tasks. The advantage of transformer architecture is that it does not use recurrence. The 
core of transformer architecture is attention (Section 3.9). 
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Figure 3.2: Transformer schema. Inputs to the transformer are positionally encoded. These 
positionally encoded inputs are processed by stacks of N encoder blocks (on the left) and 
iV decoder blocks (on the right). Each block consists of multiple layers of self-attention and 
point-wise, fully connected layers. 

The architecture is depicted in Figure 3.2 from [54]. At first, the input sequences are 
tokenized (Section 3.4) and converted to embeddings (Section 3.5) using the embedding 
layer. In the next step, the embeddings are positionally encoded. Positional encoding 
(Section 3.8) is used to incorporate information about the absolute position of the tokens 
in the sequence. 

Matrices of word embeddings W and positional encodings P are summed to generate 
the input representation X = W + P G M.lxd. 

The transformer consists of 2 main blocks: an encoder and a decoder. The input for 
transformer is sequence xi, x<i... xn, encoder transforms the sequence to z\, zi... zn and 
decoder transforms sequence of zs to y\, y 2 • • • yn, while previously generated output y tokens 
are fed to the model. 

The transformer blocks are composed of multiple layers. Each of the layers in the 
encoder and decoder contains a fully connected feed-forward network, which is applied to 
each position separately and identically. For each position, linear transformation defined in 
Equation 3.4 is performed. 

FFN(x) = max(0, x W i + & i ) W 2 + 62 (3.4) 

The transformations are consistent at different positions, but they differ at the layer 
level [54, 53]. 
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The main advantage of attention layers against recurrent is that they reduce path 
lengths, and reduce the amount of computational steps that information has to go through 
from one point of the network to the other. Another advantage is that more computation 
can be parallelized. 

3.8 Positional encoding 

Positional encoding carries information about word order [53, 9]. Requirements for posi­
tional encodings are: 

• Unique value at each time-step. 

• Consistent distance between two time-steps across sentences of various lengths. 

• Encoding results are generalized independent of the length of the sentence. 

• The encoding is deterministic. 

Absolute positional encoding 

Absolute positional encoding passes information about the absolute position to be used 
during the attention weight calculation. It is used in the original Transformer [54], where 
sine and cosine functions of different frequencies are used to encode position. Positional 
encoding is represented by P G M I ' x r f where L is the maximum sequence length and d is 
the embedding dimension. Each row pt of P contains the positional encoding for the token 
at position i. 

PiM = s in ( i /1000 2 i / d ) (3.5) 

Pi,2j+i = cos( i /1000 2 i / d ) (3.6) 

In Equations 3.5 and 3.6, i is the position and j is the dimension. 

Relative positional encoding 

Relative positional encoding [42, 53] leverages distance between two positions in a sequence. 
The relative distance between query and key k, vectors is incorporated in attention 
weight calculation, biasing the attention mechanism to consider the distance i — j as the 
important quantity. 

Rotary positional encoding 

Rotary positional encoding (RoPE) [47] differs from previous approaches by not adding a 
positional vector. Instead, it encodes position using rotation. 

q m = fq(xm,m) (3.7) 

k„ = /fc(x„,n) (3.8) 

, , , / c o s m » -smme\ (^{q% W{$}\ (xft} 
W m ' m ) ~ W n ^ <x»rn6){w™ W™}) [a®) ^ 
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Positions m and n are incorporated into values of query q m and key k„ through fq and 
fk as depicted in Equations 3.7 and 3.8, where x m and x„ are word embeddings. Then, 
the query and key values are used to compute the attention weight (Section 3.9). A matrix 
for 2D rotation is depicted in Equation 3.9, where {x$,x$) is xm expressed in the 2D 
coordinates. 

3.9 Attention 

The attention mechanism [53] can be viewed as a memory comprising of keys, values and 
a layer that produces output when queried. The output is generated from the value whose 
keys map the input. The query serves as the input for the attention layer. The values 
represent a body of knowledge from which information is extracted. Each value is assigned 
a key, which is in a format that can be easily compared to a query. 

Formally, the memory unit consists of n key-value pairs (ki, v i ) , ( k „ , v„) with k G 
M.dk, v G M.dv. The attention layer receives input as query q and returns an output o with 
the same shape as the value v: q G M.di, o G M.dv. 

The attention layer measures the similarity between the query and the key using a score 
function a (Equation 3.10). The a returns scores ai,...,an for keys k i , . . . ,k„ . Attention 
weights are computed by applying softmax to the values from a (Equation 3.11). Each 
element of b is computed as displayed by Equation 3.12. Equation 3.13 shows the calculation 
of the output o. 

aj = a(q,kj) (3.10) 

b = softmax (a) (3.11) 

= v ^ - T (3-12) ^ i e x p ( a i ) 
n 

o = Y,biVi (3.13) 
i=i 

According to the score function a, there are different types of score-based attention. 
Dot product attention is multiplicative and simple. It has no parameters to tune. Equation 
3.14 displays the score function. 

a ( q , k ) = q k (3.14) 

Scaled dot product attention is multiplicative, too. Equation 3.15 shows the scoring 
function, that divides the dot product by to remove the influence of dimension d^. As 
the dimension increases, the dot products grow larger, which pushes the softmax function 
into regions with extreme gradients. 

a(q,k) = ^=S (3.15) 

Linear attention is additive. The query and keys are projected to a hidden layer of 
dimension h. The weights (W&, W 9 ) are combined with values using a sigmoid function as 
given by Equation 3.16. 

a(q, k) = v T tanh W f c k + W g q (3.16) 

Additive scoring mechanisms are slower and less memory efficient than dot product or 
scaled dot product scoring. 
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Self-attention 

The basic idea of self-attention is to convert input vectors, Xj, to output vectors Zj, using 
an attention matrix generated from the input vector. The attention matrix is used to 
produce a weighted average of the input feature. To generate the attention matrix, the 
similarity between two locations is measured by the dot product between the features at 
those two locations and then a softmax function is applied to handle the normalisation. This 
approach entangles information about the similarity between locations in the sequence with 
the content of the sequence itself [51]. 

The self-attention used in transformer architecture uses trainable matrices to produce 
query, key and value. Each input vector x j generates three different vectors: query, key and 
value (qj,kj,Vj). These vectors are obtained by projecting the input vector, Xj, at time 
i on the learnable weight matrices W g , W „ to get qj, kj and Vj, respectively. The 
weights in the weight matrices are trainable parameters of the model. 

The query, key and value vectors are not combined by vector computation for each 
token i. The input matrix X £ M.lxd where I is the maximum length of the sequence and d 
is the dimension of the inputs, combines with each of the query, key and value matrices as 
a single computation (Equation 3.17). 

attention(Q, K , V ) = softmax (3.17) 

Query, key and value vectors have the following roles in self-attention. The role of 
the query vector of token i, q^, is to combine with every other key vectors z2j=o Qi^-j to 
influence the weights for its own output, Zj. The role of the value vector of token i, Vj, 
is extracting information by combining with the output of the query-key scores to get the 
output vector Zj. 

Multi-head attention 

There are h self-attention heads that are parallel in the multi-head attention (MHA) [54]. 
The purpose of using multi-head attention is that more heads learn different types of de­
pendencies in the input sequence by providing different subspace representations instead 
of just a single representation for the input. For example in the sentence „Einstein was a 
genius, he revolutionized physics.", one attention head may not be enough to capture all 
connections to the word "revolutionized", such as "Einstein", "he", "physics". Using more 
heads increases the chances of finding all related words to "revolutionized". 

In M H A each set of query, key and value weight matrices produces different query, key 
and value matrices for the inputs, eventually generating output matrices Zj. The output 
matrices are concatenated. The final matrix, Z, with vectors Zj as output for each Xj is 
obtained by multiplying the concatenated output matrix with an additional weight matrix, 
W o (Equation 3.19). The headi from Equation 3.19 is defined in Equation 3.18. 

headi = attention(WjQ, W J . K , W * V ) (3.18) 

MHA(Q, K , V ) = concat(headi,headh)W0 (3.19) 

Masked attention 

Masked attention [53] is an attention in which some tokens are masked. This is utilized by 
the decoder. 
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The decoder is autoregressive, it predicts the next token based on the sequence that has 
been seen by the model. To prevent it from seeing the future tokens, they are masked. 

The decoder block of the transformer network uses the masked multi-head attention. 
Only previous tokens are considered, and future input tokens are masked. The masking is 
implemented using a masking weight matrix M that has — oo for future tokens and 0 for 
the previous tokens. The matrix M is added to the multiplication of Q and K T (Equation 
3.20). Then the softmax results in the actual scaled values for previous tokens and the 
value 0 for the future tokens. 

masked Attention^, K , V ) = softmax ( ——^=t— ) V (3.20) 
\ Vdk 

Mult i -Query attention 

Multi-Query Attention (MQA) [43] is a variation of M H A . It consists of multiple attention 
heads. The difference against the M H A is that the heads share a single set of keys and 
values. M Q A does not change the number of query heads. 

Autoregressive decoder inference is a bottleneck for L L M models because of memory 
consumption at every decoding step. The main advantage of M Q A addresses this problem, 
it reduces memory bandwidth from loading keys and values, and it lowers the ratio of 
memory access to arithmetic operations. However, it has the disadvantage that it can 
cause the training to be unstable and model quality to degrade [43, 3]. 

Grouped-Query Attention 

In Grouped-Query Attention (GQA) [3], query heads are divided into G groups. A single 
key and value head is shared by each group of query heads. M H A and M Q A can be 
considered as the edge cases of G Q A . M H A is the G Q A with the same number of groups 
as the number of query heads. On the other side, M Q A is equal to G Q A with one group 
G = 1 of query heads. The comparison of M H A , G Q A and M Q A is displayed in Figure 3.3 
taken from research paper [3]. 

G Q A is not used in the encoder, only in the decoder self-attention layers. The reason for 
this is that memory bandwidth is not the main bottleneck in the encoder because encoder 
representations are computed in parallel. 

Multi-head Grouped -que ry 

Values 

Keys 

" • f f l o f f i o dbdbdbdb DQDDDDDD 
Figure 3.3: Comparison of Multi-head Attention M H A , Grouped-Query Attention G Q A 
and Multi-Query Attention M Q A . M H A has H query, key, and value heads. Single key 
and value heads are shared across all query heads in M Q A . G Q A is interpolating between 
multi-head and multi-query attention, single key and value heads for each group G of query 
heads are shared in G Q A . 

Multi-query 

D 
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Sliding-Window Attention 

Let W be the size of an attention window - the number of tokens each token can attend 
to. Sliding-Window Attention uses the stacked layers of a transformer model to extend its 
attention beyond the fixed window size W. 

For a model with k layers, consider hi to be the hidden state in position i of the layer 
k. The hidden stated hi attends to all hidden states from the previous layer with positions 
between i — W and i, maximally at a distance of W x k tokens. A theoretical attention 
span of approximately 131K tokens can be achieved using a window size of W = 4096, as 
in Mistral (Section 4.5). A n example demonstrating Sliding-Window Attention is depicted 
in Figure 3.4, taken from [20]. 

The cat sat on the The cat sat on the window size 

Vanilla Attention Sliding Window Attention Effective Context Length 

Figure 3.4: Sliding-Window Attention. In vanilla attention, the memory increases lin­
early with the number of tokens. During inference, this causes higher latency and smaller 
throughput because of reduced cache availability. Sliding window attention reduces this 
issue. Each token can attend to at most W tokens from the previous layer (in the picture, 
W = 3). The tokens outside the sliding window still influence next-word prediction. Infor­
mation can move forward by W tokens at each attention layer. That means information 
can move forward maximally by k x W tokens, after k attention layers. 

Attention with Linear Biases 

Attention with Linear Biases (AliBi) [34] can accelerate training. Models with A l i B i can 
extrapolate, they achieve smaller perplexity when a larger sequence is fed. A l i B i tests 
have shown P P L = 19.73 when processing 512 token sequences, and P P L = 18.4 when fed 
sequences of 3072. 

softmax (qjK T + m • [- (t - 1 ) , . . . , - 2 , - 1 , 0]) (3.21) 

In A l i B i , positional embeddings are not incorporated in any position within the network. 
Instead a static, non-learned bias is added after the query-key dot product, as defined in 
Equation 3.21, where m is a scalar, a head-specific slope fixed before training. The set of 

- 8 - 8 

slopes is a geometric sequence, which starts at 2 » and it has a ratio of 2 « , where n is the 
number of heads. The values are static and don't need to be adjusted across models. To 
demonstrate for 16 heads, the slopes are: 3̂, ft: jr3' 2̂5 > • " > 
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3.10 Activation function 

Many L L M models (Section 4.5) differ in the activation function they use. The activation 
function is used to compute the output of a neuron in a neural network based on the 
weighted sum of the neuron inputs. 

Softmax 

Introduced to neural networks in [7]. Defined by Equation 1 3.22. 

Softmax is an element-wise function typically applied to the output of a neural network. 
It moves output elements to the range (0,1) and the sum of the scaled output elements is 
1. The output of the softmax activation function represents probability distribution over 
classes given by input. 

Rectified Linear Unit 

Rectified Linear Unit function (ReLU) was introduced in neural networks in [30]. 

<?(Zi) for i = 1,2,... K (3.22) 

(3.23) 

The function is defined by Equation 3.23. 
x

https://blmoistawinde.github.io/ml_equations_latex/#softmax 
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(a) ReLU (b) GELU 

(c) Swish 

Figure 3.5: Graphs of ReLU, G E L U and Swish functions. 

ReLU introduces non-linearity to the neural network, which enables the network to 
produce richer hypotheses. It is displayed in Figure 5.5a. 

S w i G L U 

SwiGLU (x,W,V,b,c,P) = Swishp(xW + b) ® (xV + c) (3.24) 

SwiGLU [44] is a combination of Swish [38] (Figure 5.5c) and Gated Linear Unit 
(GLU) [10]. SwiGLU and Gaussian Error Linear Unit (GELU) are the best performing 
G L U variants for text-to-text transformers [44]. 

3.11 Residuals and Layer Normalization 

The inputs, X , are short circuited to the output, Z, and both are added and passed through 
layer normalization 7Vorm(X + Z) [17]. Layer normalization ensures each layer has 0 mean 
and a unit variance. For each hidden unit, hi, can be computed 

hi = ^(hi - fi) (3.25) 
a 

where g is the gain variable, \x is the mean given by Ylf-i hi a n d cr is the standard 

deviation given by \Jjj{hi — /x) 2. The purpose of layer normalization is to improve the 
stability of the network during training and to better generalize. 
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Figure 3.6: Residual connection. The input and output of the neural network block are 
summed. 

When information goes through a function, the function adds noise to it. In neural net­
works, data goes through multiple functions. The noise accumulates and it can eventually 
overwhelm gradient information. It is called gradient vanishing. Residual connection [17] 
addresses this issue. 

y = F(x) + x (3.26) 

Residual connection works the way that the original input of a neural network processing 
block is added to the output of the block (Equation 3.26). 

3.12 Low-Rank Adaptation 

Figure 3.7: L o R A reparametrization. Only A and B are being trained. The figure is taken 
from [18] 
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It is very resource-intensive to fine-tune L L M . However, workarounds exist. One such 
is Low-Rank Adaptation (LoRA) [18]. In this approach, the pre-trained model weights 
are frozen and trainable rank decomposition matrices are injected into each layer of the 
Transformer architecture. It dramatically reduces the number of trainable parameters, 
thus it makes fine-tuning less resource-consuming. The reparametrization is depicted in 
Figure 3.7. 

h = W0x + AWx = W0x + BAx (3.27) 

This method modifies forward pass, where WQ G M.DXK is the pre-trained weight matrix. 
The A G WXK and B G M.DXR contain trainable parameters, rank r <C d,k. At the beginning 
of training AW = BA = 0, then it scaled by where a is a constant in r, usually it is set 
to a = 2r. So there are two main parameters be to set before training: rank and a. 

3.13 Dropout 

Dropout [9] was developed by students of Geoff Hinton, it is a regularization technique. 
When dropout is applied to a layer, some features are randomly dropped out during training. 
In practice, some values of the layer are set to zero during training. For example (0.2, 0.5, 
0.7, 0.4, 0.3) after applying dropout would be (0.2, 0, 0.7, 0.4, 0). The rate of dropout 
represents the fraction of features that will be dropped out. In general dropout rate is 
usually between 0.2 and 0.5. 

3.14 Language models in automatic speech recognition 

While language models are used in A S R systems, the impact of incorporating L L M is not 
sufficiently explored. There are more approaches to incorporate a language model in ASR: 
shallow fusion, n-best and lattice rescoring, prompting, etc. 

y* = argmax[logp(y|x) + 5\ogpLM{y)] (3.28) 
v 

Shallow fusion 

Shallow fusion incorporates the language model into the decoding phase. At each decoding 
step, the E2E model score is combined with the language model score Equation 3.28, where 
x is the input speech sequence, p(y\x) is the posterior probability from E2E model, PLM(U) 
is the language model score and 5 is scaling factor of the language model's score. Smaller 
language models like n-grams are typically utilized in shallow fusion, however, it is possible 
to use larger language models for example 1.9B-parameter G L a M (during inference used 
only 145M parameters), as demonstrated in experiments [19]. 

N-best rescoring 

Calling several billion parameter language models at each decoding step, as in shallow fu­
sion, would be very resource-extensive. Alternative to the shallow fusion is n-best rescoring. 
In the first step, A S R produces n hypotheses (transcriptions of speech in the audio) with 
their scores. Each hypothesis is scored by L L M which is described in Section 3.15. The 
scores are together. The hypothesis with the best new score is chosen. 
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Rescoring experiments Jasper hypotheses by Transformer-XL found a correlation be­
tween the quality of the L L M and W E R [23]. Another research showing L L M reduce W E R 
in A S R rescoring is [52]. 

Promting 

L L M s fine-tuned for question-answering tasks can be prompted to improve A S R transcripts. 
In this approach, W E R reduction was not observed [29]. 

3.15 Sentence scoring 

In the experiments, there are two types of transformer models: masked language models 
(MLM) and autoregressive language models. They process input in different ways, however, 
the processing has common steps: conversion of a sequence of characters into a sequence 
of tokens, at the end of processing the output is one number which represents the score of 
the input sequence. 

(a) autoregressive (b) masked 

Figure 3.8: Comparison of autoregressive (left) and masked (right) language models struc­
tures. Figure taken from [24]. 

In an autoregressive model, the n-th token can only attend to the tokens at positions 
0, . . . , n — 1. On the other side, a masked language model can capture the contextual 
information from tokens on positions 0 , . . . , n — 1 and also n + 1,.. . , m, where m is the 
position of the last token [24]. 

Masked language model scoring 

Scoring a text using masked language modeling is depicted in Algorithm 2, which is inspired 
by article [45]. At first, x copies of a sentence are needed, where x is the number of tokens 
in the tokenized sentence. In each sentence, one token is masked. The masked language 
model predicts the probability matrix. Then the probability of the token that is in the 
original hypothesis (the token under the mask) is found. This probability is added to the 
sum of probabilities in the sequence, the final sum is the score of this sequence. 

To make the process faster, the hypotheses are processed in batches and the algorithm 
is changed. I solved the problem of various length sentences in the batch by multiplying 
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the matrix with obtained scores for each token by the attentionMask of the original non-
masked batch. 

Algorithm 2 Masked language model scoring 
Input: String sentence Output: Float score 
1: score = 0 
2: for maskPosition=l,2,... ,tokenCnt(sentence) do 
3: sentenceCopy = copy(sentence) 
4: tokenizedSentence = tokenize(sentenceCopy, at=maskPosition) 
5: maskedSentence = mask(tokenizedS entence, &t=maskPosition) 
6: logitsMatrix = model(maskedS entence) 
7: softmaxedLogitsMatrix = softmaxLayei(logitsM atrix) 
8: tokenProbability = geWalue(softmaxedLogitsMatrix, 
9: oiigmalToken=tokenizedSentence[maskPosition]) 
10: score += tokenProbability 
11: end for 
12: return score 

Autoregresive language model scoring 

The autoregressive scoring algorithm is simpler. Input sentences are tokenized and fed to 
the language model. Autoregressive models return the probability of all tokens in the given 
sentence at once. Then softmax is applied to the language model's output. Finally, the 
probabilities of all tokens in a sentence are summed together to form the sentence score. 
Scoring a text by an autoregressive model is depicted in Algorithm 3. The implementation 
of the autoregressive scoring algorithm was inspired by discussion.2 

Algorithm 3 Autoregressive language model scoring 
Inputs: String sentences, Integer iV Output: Float score 
1: sentencesTokens = tokemze(sentences, &t=maskPosition) 
2: logitsMatrix = model(sentencesTokens) 
3: softmaxedLogitsMatrix = softmaxLayei(logitsMatrix) 
4: attentionM ask = sentences, get AttentionMask() 
5: masked!"ensor = attentionM ask • softmaxedLogitsMatrix 
6: sentences cores = swoa(maskedTensor) return sentences cores 

2

https: //discuss.huggingf ace.co/t/announcement-generation-get-probabilities-f or-

generated-output/30075/17 
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Chapter 4 

Pre-trained models 

In this chapter, I describe acoustic and language models, as well as the tools I employed 
in the A S R pipeline. For acoustic models, I used Wav2Vec 2.0 with a C T C decoder from 
the flashlight library, Jasper with a C T C decoder from the NeMo library 1 and the Whisper 
model. The Masked L L M s utilized in experiments are B E R T and RoBERTa. On the other 
side, autoregressive L L M s include GPT-2 , Falcon, Mistral, M P T , TinyLlama and Llama2. 

When the speech transcription is passed from A S R to L L M , the text undergoes tok-
enization. Many L L M tokenizers employ Byte Pair Encoding, which is explained in the 
following section. 

4.1 Byte Pair Encoding tokenizer 

Byte Pair Encoding (BPE) [41] is a compression algorithm used for word segmentation. 
B P E allows the representation of an open vocabulary through a fixed-size vocabulary of 
variable-length character sequences. 

The B P E algorithm has one hyperparameter, which is the number of merge operations. 
The algorithm can work over characters or bytes. There is a vocabulary, consisting of words 
represented as a sequence of characters with the end-of-word symbol at the end ' • '. Then 
the algorithm iteratively counts all symbol pairs and replaces the most frequent pair with a 
new symbol, for example A ' , ' B ' pair is replaced by a single symbol A B ' . Eventually, each 
sequence is merged into a word. 

A n example of how it would work on vocabulary, with word occurrence frequency indi­
cated after a colon 

s p a c e • :10, k e y - : 7, a c c e l e r a t e d - : 4, h o c k e y - :6 

with the number of merges set to three: 

Step 1) pair: (a, c) 
vocabulary: s p a c e - : 10, k e y - : 7 , a c c e l e r a t e d - : 4, 
h o c k e y - : 6 

Step 2) pair: (k, e) 
vocabulary: s p a c e - : 10, ke y • : 7 , a c c e l e r a t e d - : 4, 
h o c ke y • : 6 

x

https: //github.com/NVIDIA/NeMo 
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Step 3) pair: (ke, y) 
vocabulary: s p ac e • : 10, key • : 7, a c c e l e r a t e d - : 4 , 
h o c key • : 6 

The B P E tokenizer, as used in GPT-2 for example, was originally built to operate 
over byte sequences. A byte-level B P E tokenizer can represent any Unicode string using a 
vocabulary of only 256 bytes, but it is not employed by GPT-2 and most models due to 
byte-level models showed poor performance on word-level [37]. This issue was addressed 
with the introduction of the ByT5 [56] model. 

There is another challenge with applying B P E to byte sequences, it results in the inclu­
sion of multiple versions of common words in the vocabulary. For instance, the word 'dog' 
occurs as 'dog.', 'dog!' and 'dog?' which wastes limited vocabulary slots. To mitigate this 
problem, B P E was forbidden to merge across character categories for any byte sequence, 
with an exception for spaces. This modification improves the compression efficiency and 
adds minimal fragmentation of words across multiple vocabulary tokens. 

GPT-2 and similar models utilize a B P E tokenizer, which works with a vocabulary 
consisting of subwords. This allows to represent any word by multiple subword tokens. 
GPT-2 vocabulary size is 50k tokens. 

4.2 Wav2Vec 2.0 

Contrastive loss 

Figure 4.1: Wav2Vec 2.0 framework. This framework jointly learns contextualized speech 
representations and an inventory of discretized speech units. The Figure is taken from [5]. 

Wav2Vec 2.0 [5] is a self-supervised speech encoder, which needs to be fine-tuned with C T C -
loss to be used in speech recognition. Wav2Vec 2.0 uses a multi-layer convolutional feature 
encoder to convert the input speech audio X into a sequence of latent speech representations, 
( Z I , . . . , Z T ) . Then a Transformer builds context representations C I , . . . , C T from zs. The 
context representations cs capture information from the entire sequence. The length of the 
sequence, T, is the number of time-steps in the audio [53]. 

The purpose of the feature encoder is to reduce the dimensionality of the audio data. 
The feature encoder consists of blocks containing temporal convolution followed by layer 
normalization (Section 3.11) and a G E L U activation function (Section 3.10). The raw 
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waveform input is normalized to zero mean and unit variance. The total stride of the 
encoder determines the number of time-steps T. 

The output of the feature encoder is fed to a context network of the Transformer archi­
tecture. A convolutional layer that acts as relative positional embedding, is used instead 
of fixed positional embeddings which encode absolute positional information. The out­
put of the convolution is followed by a G E L U . This is added to the inputs. Then layer 
normalization is applied. 

Using product quantization [21], the output of the feature encoder z is discretized 
to a finite set of speech representations. Product quantization is equivalent to choosing 
quantized representations from multiple codebooks and concatenating them. Consider G 
codebooks - groups, with V entries e £ M ^ X G . One entry is chosen from each codebook. 
Then resulting vectors e\,..., ea are concatenated. Then a linear transformation W1 —> 
is applied to obtain q € . 

The training process combines unsupervised and self-supervised pre-training. During 
the pre-training, the model learns diverse features of natural language. After pre-training, 
the model needs relatively little labelled data for fine-tuning. 

I used the WAV2VEC2_ASR_BASE_960H2 model. The model has the BASE architecture 
(12 Transformer blocks) with an extra linear module. The model is pre-trained on 960 
hours of unlabeled audio from the LibriSpeech dataset described in Section 5.1 specifically 
on the combination of train-clean-100, train-clean-360, and train-other-500. Af­
ter the pre-training, the model was fine-tuned for A S R on the same audio data with the 
corresponding transcriptions. 

4.3 Whisper 

The Whisper model [36] is based on encoder-decoder transformer architecture (Section 3.7). 
The encoder learns representations of speech and the decoder generates the transcription. 
The Whisper models were trained on data from the internet. The architecture is displayed 
in Figure 4.2. 

Audio input to the model has to be resampled to 16 kHz. A n 80-channel log-magnitude 
Mel spectrogram representation is computed on 25-millisecond windows with a stride of 
10 milliseconds [36]. The input is scaled to be between -1 and 1. Across the pre-training 
dataset, the input has approximately zero mean. 

2

https://pytor ch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html 
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Figure 4.2: Whisper. The audio is processed by a stem of two ID convolution layers and 
the G E L U activation function. Then it is processed by the Transformer Encoder block. 
Finally, speech transcription is produced by the Transformer Decoder Block. The figure is 
taken from [36]. 

In the first part of the encoder, there is a small stem, that processes the input repre­
sentation. The stem consists of two ID convolution layers with a filter width of 3 and the 
G E L U activation function (Section 3.10) where the second convolution layer has a stride of 
two. This means that the second convolutional layer moves by two items in the sequence. 
The ConvlD relies on the ID window, the window slides across the input. Whisper uses 
sinusoidal position embeddings, which are added to the output of the stem. 

Then the encoder Transformer blocks are applied. The transformer uses pre-activation 
residual blocks [8], and a final layer normalization is applied to the encoder output. 

The decoder has the same number of transformer blocks and the same width. The 
decoder uses learned position embeddings and tied input-output token representations [35]. 

Whisper uses a byte-level B P E text tokenizer (Section 4.1). It is the same tokenizer 
that is used in GPT-2 Section 4.5 for English-only models. For multilingual models, the 
vocabulary is changed, while the size of the tokenizer stays the same. 

There are five Whisper models of different sizes. A l l of them are in Table 4.1. Ex­
cept for Large, all model sizes have English and multilingual variants. The Large is only 
multilingual. 
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Table 4.1: Architecture details of the Whisper model family from paper [36] and G P U 
inference requirements from site 3 

Model Layers Width Heads Parameters (M) G P U V R A M [GB] 

Tiny 4 384 6 39 1 
Base 6 512 8 74 1 
Small 12 768 12 244 2 
Medium 24 1024 16 769 5 
Large 32 1280 20 1550 10 

Except for predicting spoken words from audio, Whisper can perform other tasks. The 
tasks are multilingual speech recognition, speech translation, spoken language identification, 
and voice activity detection. A sequence of input tokens to the decoder is used to specify 
the tasks. The beginning of the prediction is indicated with a <|startoftranscript|> token. 
At the beginning of audio prediction, the language of the speech in the audio is predicted. 
Each language is indicated by a unique token. In Whisper's training dataset, there are 
99 unique language tokens. <|transcribe|> or <|translate|> tokens specify the task -
transcription or translation respectively. In the audio segments without speech, the model 
predicts <|nospeech|> token. 

It is recommended to normalize the output from the model to evaluate W E R and other 
metrics. To follow all the rules from the authors, I decided to use tool whisper-normalizer 
0.0.8.4 Here £1X6 cl few examples of rules that are applied during normalization: remove 
phrases between matching brackets and parenthesis, and remove commas between digits 
and periods not followed by numbers. 

In the experiments, I used the multilingual Medium Whisper model. The decoder pro­
duces just one hypothesis, even though it supports not only greedy search but even beam 
search. I adjusted the decoder'' to return all final hypotheses. The number of output 
hypotheses depends on the beam size and patience. 

4.4 Jasper 

Jasper [23] ("Just Another Speech Recognizer") is a family of end-to-end neural A S R mod­
els. Opposed to previous A S R models, Jasper doesn't contain a stack of attention blocks, 
it is a deep time-delay neural network (TDNN). 

Jasper uses mel-filterbank (Section 2.3) features calculated from 20 ms windows, with 
10 ms overlap. Jasper models are trained with a C T C decoder to generate an audio tran­
scription. 

4

https: //pypi.org/project/whisper-normalizer/ 
5

https: //github.com/Martin-Toma/Whisper-Multi-Hyp 
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CTC 

Figure 4.3: Jasper architecture. Block input is directly connected to the last sub-block. 
This connection is first projected through a 1 x 1 convolution. This residual projection 
handles different numbers of input and output channels. Then the connection is projected 
through a batch norm layer. The output of this batch norm layer is added to the batch norm 
layer output in the last sub-block. The block output is created by passing the sum through 
the activation function and dropout. There are four additional convolutional blocks in the 
Jasper models. One pre-processing block with stride 2 and three post-processing blocks. 
The figure is taken from [23]. 

The Jasper model has a block architecture (Figure 4.4). Blocks are composed of 1D-
convolutional layers. A l l models are named by schema Jasper B x R model, where B is 
the number of blocks and R is the number of sub-blocks within each block. Each sub-
block performs the following operations: a ID-convolution, batch normalization, ReLU, 
and dropout. The sub-blocks in a block have the same number of output channels. 
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CTC 

Figure 4.4: Jasper with Dense Residual. The figure is taken from [23]. 

The creators of Jasper tested DenseNet, DenseRNet and Dense Residual Jasper variants. 
The DenseNet and DenseRNet use concatenation to combine residual connections, they have 
a growth factor, which requires tuning for deeper models. The growth factor represents the 
number of filters in a Dense block of DenseNet and DenseRNet. The Dense Residual variant 
uses addition instead of concatenation, which means it has no growth factor to be tuned. 

I used STT En Jasperl0x5dr6 model. It is a model with Dense Residual, with ten 
blocks, each with five subblocks. Input for this model must be in 16kHz Mono-channel 
audio.The model was trained on 7000 hours of English speech. The training data are from 
LibriSpeech, Wall Street Journal, Fisher English Training Speech, Switchboard, Mozilla 
Common Voice and NSC Singapore English (Part 1) datasets. 

4.5 Autoregressive Large Language models 

In the following part, I pinpoint the main characteristics of autoregressive (Section 3.15) 
L L M models. A l l of the models are based on the transformer architecture (Section 3.7). 

6

https: //catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_jasperl0x5dr 
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G P T - 2 

GPT-2 [37] layer normalization (Section 3.11) is positioned at the input of each sub-block 
- before the M H A and the position-wise feed forward. To handle the accumulation on the 
residual path with model depth, the weights of residual layers are scaled at initialization, 
by a factor of ^ 7 = where iV is the number of residual layers. GPT-2 has a context size of 
1024 tokens. 

The model uses the B P E tokenizer (Section 4.1) with a vocabulary of 50257 tokens. 
There are four models of different sizes. I used 137M and 380M parameter GPT-2 

models because they can be compared to B E R T and RoBERTa models (Section 4.6) of 
approximately the same size. 

Llama 2 

Llama 2 [50]. Pre-normalization is applied using RMSNorm [57]. The SwiGLU activa­
tion function (Section 3.10) and R o P E (Section 3.8) are used. The primary architectural 
differences from Llama 1 [49] include increased context length and G Q A (Section 3.9). 

I used 7B and 13B parameter models of Llama 2. 

TinyLlama 

TinyLlama [58] was designed to explore the limits of small L L M saturation and to challenge 
the scaling rule. 

TinyLlama is trained on around a trillion tokens. The training dataset is a mixture of 
natural language data from SlimPajama' and code data from StarCoderData. 8 

TinyLlama uses a tokenizer adopted from Llama 1 [49]. The architecture is based 
on the transformer architecture and is similar to Llama2's architecture (Section 4.5). To 
inject positional information into the model, R o P E (Section 3.8) is used for positional 
embedding. The input is normalized before each transformer sub-layer in pre-normalization. 
This normalization stabilizes training. To improve training efficiency, RMSNorm [57] is 
applied as a normalization technique. The activation function in TinyLlama (as in Llama2) 
is SwiGLU. TinyLlama uses G Q A (Section 3.9), there are 32 heads for query attention and 
4 groups of key-value heads. 

Falcon 

Falcon [4] models are released in three sizes: 7B, 40B and 180B. They are trained on diverse 
datasets obtained from web data. 

Falcon uses G Q A (Section 3.9) for scalability of inference,rotary embeddings (Section 
3.8), parallel attention [28] and M L P blocks introduced in [55]. The biases from linear layers 
are removed to improve stability. GeLU (Section 3.10) serves as an activation function. 

I used the 7B parameter version of the model. 9 

7

https: //www. cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-vers ion-

of-redpajama 
8

https: //huggingf ace. co/datasets/bigcode/starcoderdat a 
9

https: //huggingf ace. co/tiiuae/falcon-7b 
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M P T 

M P T [48] does not use positional embeddings, it employs A L i B i (Section 3.9) and B P E 
tokenizer. 1 0 In contrast with the GPT-2 tokenizer, this tokenizer applies consistent space 
delimitation (ignores the prefix spaces and treats spaces as delimiters). The GPT-2 tok­
enizer tokenizes depending on the presence of prefix spaces. The M P T ' s tokenizer vocab­
ulary has a size of 50257 tokens, but the model vocabulary is set to 50432 tokens. 50432 
is a multiple of 128 which improves model F L O P utilization and there are tokens left for 
further training. 

In the experiments, I utilized the 7B (more precisely 6.7B) parameter M P T model. 1 1 

Mistral 
Mistral [20] uses Grouped-Query Attention (Section 3.9), Sliding-Window Attention (Sec­
tion 3.9), Rolling Buffer Cache, Pre-fill and Chunking. The Mistral's vocabulary size is 
32k. 

Mistral 7B outperforms larger LLama2 13B parameters across all tested benchmarks [20]. 
I used the Mistral-7B-v0.1 1 2 model with a Byte-fallback B P E tokenizer. The Byte-

fallback B P E tokenizer ensures that no character is mapped to O O V by casting unknown 
tokens into their byte representations. 

K V caching 

In autoregressive models, there is a problem in computing key and value vectors in attention 
from all previous steps again. This recalculation slows down inference. A mechanism called 
K V Cache [14] is used to mitigate this problem. 

Key and value vectors from previous attention calculations are stored in the K V cache. 
Then they are reused to generate the next token. 

The K V cache advantage is, that it makes inference faster. However, using it, a little 
more G P U V R A M or C P U R A M is needed for inference. Furthermore, memory con­
sumption increases with context length and model size. The reason behind the memory 
consumption is that for each layer, projected k,v state stored in the memory. 1 3 

In the transformers library models use caching by default. 

Rolling Buffer Cache 

Rolling Buffer Cache [20] significantly reduces cache memory usage. It limits the size of 
the cache, which has a fixed size of W . Keys and values for timestep i are stored in the 
cache at position i mod W. Former values are overwritten when i is larger than W. Also, 
memory size is not increasing after i > W. A n example of how rolling buffer cache works 
is depicted in Figure 4.5. 

1 0

https: //huggingf ace.co/EleutherAI/gpt-neox-20b 
n

https: //huggingf ace.co/mosaicml/mpt-7b 
1 2

https: //huggingf ace. co/mistralai/Mistral-7B-v0.1 
1 3

https: //discus s.huggingf ace. co/t/generate-using-k-v-cache-is-fast er-but-no-diff erence-

to-memory-usage/31272/2 
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Timestep i Timestep i + 1 Timestep i+ 2 

This is an example o f . . . This is an This 
1 1 

is an example of is an example 

Mistra l is a good ... Mistral is Mistral is a Mistral is a good 

The cat sat on t h e mat ... The cat sat on the cat sat on the mat sat on 

Figure 4.5: Rolling buffer cache. The fixed cache size is W = 4. When the position i > W, 
past values in the cache are overwritten. The hidden state corresponding to the latest 
generated tokens is in orange colour. The figure is taken from [20]. 

Pre-fill and Chunking 

During scoring a sequence, each token is conditioned on the previous tokens, meaning the 
tokens need to be predicted one by one. But k, v cache can be pre-filled because the input 
tokens are known beforehand. 

When the input is very large, the input can be chunked into smaller pieces. Then the 
cache is pre-filled with each chunk. The window size W determines the size of a chunk. For 
each chunk, the attention needs to be computed over the cache and the chunk. 

4.6 Masked Language Models 

In this section, I present additional transformer-based models. Specifically masked language 
models (Section 3.15): B E R T and RoBERTa. 

B E R T 

B E R T [11] stands for Bidirectional Encoder Representations from Transformers. BERT ' s 
architecture is a multi-layer Transformer encoder based on the original Transformer (Section 
3.7). 

There are two sizes of the B E R T model released. The smaller one called BASE of 110M 
parameters, 12 layers, 12 self-attention heads and 768 hidden size (number of features 
that are used to compute a hidden state) and LARGE of 340M parameters, 24 layers, 16 
self-attention heads and 1024 hidden size. 

Input for B E R T can be a single sentence or a pair of question-answer separated by a 
special token [SEP]. The pair of sentences is also separated by adding a learned embedding 
to every token. It indicates to which sentence (the first or the second) the token belongs. 
Every input sequence of tokens starts with a special [CLS] token. 

It is trained in two steps: pre-training and fine-tuning. Pre-training is performed by 
randomly masking some percentage of the input tokens - in the original B E R T 15 % tokens 
were masked. Then during pre-training, the model tries to predict the masked tokens. 
During fine-tuning, [MASK] is not used. Because of this mismatch, not all masked tokens 
are replaced with [MASK]. In the training data, 15 % of the tokens are masked. Among 
these, 10% are replaced with random token, 10% are left unchanged and the remaining 
80% are replaced with [MASK] token. The decision of which masked token is changed, 
replaced with [MASK] or another token is random. The masking is static and it is done 
during data preprocessing, before training [25]. 

After pre-training, the model is fine-tuned for one downstream task. In fine-tuning all 
parameters are fine-tuned on labeled data. 
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R o B E R T a 

RoBERTa [25] stands for Robustly optimized B E R T approach. RoBERTa is similar to 
B E R T but was trained differently. 

RoBERTa is trained with dynamic masking, full-sentences without Next Sentence Pre­
diction (NSP) loss, large mini-batches and a larger byte-level B P E . 

B E R T uses static masking, the masks can repeat across epochs. RoBERTa used dynamic 
masking. It means the masking pattern is created every time a sequence is fed to the 
model. The advantage of dynamic masking is visible in pre-training with more steps or 
larger datasets. 

The original B E R T model batch size was small. Training with large mini-batches im­
proves speed and end-task performance. Therefore, RoBERTa was trained with larger 
batches, consisting of 8K tokens. 

Full-sentences mean inputs are packed with full sentences sampled contiguously from one 
or more documents. The total length of an input is 512 tokens. When document boundaries 
are crossed, a separator token is added between documents, but sampling continues without 
ending at the end of the document. The NSP loss, which is a binary classification loss used 
to predict whether two segments follow each other in the original sequence, is removed. 

B E R T uses a 30K token character-level B P E vocabulary, and RoBERTa uses bigger 50K 
tokens byte-level B P E vocabulary. This uses bytes instead of Unicode characters as the base 
subword units. Input text can be encoded without unknown tokens. For comparison, this 
change added 15M extra parameters to B E R T BASE and 20M to LARGE. The byte-level B P E 
can worsen end-task performance. 
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Chapter 5 

Experiments 

N - g r a m L M 

A c o u s t i c M o d e l C T C D e c o d e r A c o u s t i c M o d e l • C T C D e c o d e r • 

h y p l 
•hyp2 
h y p 3 

L L M >Text 

W h i s p e r 
h y p l 
h y p 2 
h y p 3 

L L M • L L M >Text 

Figure 5.1: Standard pipelines shared by all experiments. The upper pipeline is the back­
bone of the Wav2Vec 2.0 and Jasper experiments. The lower pipeline is used in Whisper 
experiments, where the decoder does not use the n-gram language model. (The waveform 
representing audio input is genuine, it is plotted from the T E D - L I U M dataset.) 

The experiments share a common audio pipeline. At the start of the pipeline, there is an 
audio stored in a W A V file or in an array. The audio is obtained from datasets described 
in Section 5.1. The audio is fed to the A S R model, Whisper needs the audio to be pre-
processed to mel frequency. Using a decoder with beam search, multiple transcription 
hypotheses are obtained. In research papers, it is a common practice to work with a 
hundred best hypotheses [52, 45], so I set the decoders accordingly. The transcription text 
is then extracted from the hypotheses, and fed to L L M (Section 3.15) to score. 

Scorehyp = a • Scoreacoustic + ft • ScoreLLM + 7 • Scoreword + S • Scoren-gram (5.1) 

The Equation 5.1 describes rescoring, where a is the weight of the score obtained from 
the A S R model, (3 is the weight of the L L M model, 7 is the weight of word insertion 
bonus, and 5 is the weight of a small n-gram language model. Each score is multiplied 
by the corresponding weight, then the weighted scores are summed. The sum is the new 
hypothesis score. In the end, the hypothesis with the best (highest) new score is chosen 
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to be the best transcription. For each experiment, I found the best weights. The weight 
search is depicted in Figure 5.6. 

The process of finding weights has two steps. At first, grid search is applied, and then 
the interval halving method is applied to obtain the best weights. 

The L L M models in experiments are from huggingface transformers library. 1 

5.1 Datasets 

I used LibriSpeech, GigaSpeech and T E D - L I U M datasets in my experiments. These datasets 
contain audio of different difficulties, topics and sizes. 

LibriSpeech 

LibriSpeech [32] is a dataset derived from audiobooks. It contains 1000 hours of read speech. 
The audio is sampled at 16 kHz. A l l data is in English. 

The dataset is divided into seven splits. There is no speaker overlap between training, 
development and test dataset splits. Audio in the train clean sets is of higher recording 
quality and speakers accents are closer to US English. To divide the data into subsets, the 
LibriSpeech authors trained an acoustic model on the Wall Street Journal's (WSJ) si-84 
data subset and used it to recognize the audio in the dataset, using a bigram language 
model estimated on the text of the respective books. Then they compared the W E R of 
the automatic transcription to the transcriptions obtained from the book texts. According 
to WSJ's transcriptions W E R , speakers were divided into a "clean" pool with lower W E R , 
and an "other" pool with higher W E R . From each pool, 20 speakers were selected for each 
development and test subset. The rest of the "clean" audio was randomly split into training 
subsets, but in the training subset, each speaker's time was limited to 25 minutes. 

For "other" development and training subsets, speakers were ranked from the least to 
the most difficult using W E R from WSJ's models. Test and development subsets are spoken 
by speakers in the third quartile of the sorted list of speakers. A l l subsets with their sizes 
in hours are displayed in Table 5.1. 

Table 5.1: LibriSpeech table displaying data subsets and their sizes in hours. The table is 
taken from [32] 

subset size [h] 

train-clean-100 100.6 
train-clean-360 363.6 
train-clean-500 496.7 
dev-clean 5.4 
test-clean 5.4 
dev-other 5.3 
test-other 5.1 

x

https: //huggingface. co/docs/transf ormers/index 
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GigaSpeech 

GigaSpeech contains audio records and their transcriptions in English. Audio data are 
from different sources: audiobooks, podcasts and YouTube. This dataset consists of data 
from multiple categories: Business, Crime, History, Animals, Politics, Travel, Sports, Arts, 
Science, Technology, Vehicles, F i lm Health and many others. 

The dataset is divided into seven subsets, five of which are training and are named XS, 
S, M, L, and XL from the smallest to the largest. A larger subset contains all data from all 
smaller subsets so M contains S and S contains X S data. Then there is a validation subset 
called "Dev" and a testing subset "Test". The duration of each split is depicted in Table 
5.2. 

Table 5.2: GigaSpeech table displaying data subsets and their sizes in hours. Data in the 
table are taken from github 2 

subset size [h] 

X S 10 
S 250 
M 1,000 
L 2,500 
X L 10,000 
Dev 12 
Test 40 

The dataset text contains two groups of special tags. The first group of the special tags 
is called "Punctuations", there are these four tags: < C O M M A > , <PERIOD>, <QUES-
T I O N M A R K > , < E X C L A M A T I O N P O I N T > . These tags are replaced and removed before 
W E R evaluation. The second group of special tags consists of these four tags: <SIL>, 
<MUSIC>, <NOISE>, < O T H E R > . They are called "Garbage Utterance Tags". The au­
dio annotated as garbage utterance, does not contain speech. Only Dev and Test dataset 
splits contain garbage utterances. The samples without text to transcribe are filtered at 
the beginning of the A S R pipeline. 

Spontaneous speech in the dataset contains conversational fillers such as: ' U H ' , ' U H H ' , 
' U M ' , ' E H ' , ' M M ' , ' H M ' , ' A H ' , ' H U H ' , ' H A ' , ' E R ' [46]. The conversational fillers are 
recommended to be removed before W E R measurement. The reason to remove them is 
that each A S R system may transcribe the conversational fillers differently and they do not 
carry valuable information. So the conversational fillers are removed in text post-processing, 
after rescoring. 

T E D - L I U M 

T E D - L I U M [40] is a dataset consisting of audio records from English T E D talks. 3 The 
dataset is sampled at 16 kHz. 

The T E D talks have closed captions, the captions couldn't be used for ASR, because 
they are not verbatim transcriptions of the speech in the audio records. The closed captions 
do not contain repetition, and hesitations and some expressions are different in the captions. 
The timing is not aligned for ASR, only for humans to read it from the screen. 

3https://www.ted.com/ 
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Therefore, the T E D - L I U M dataset was created by iteratively training acoustic models 
and decoding the whole dataset. The final version of the first release has 118 hours from 
774 talks. 

There are three releases of this dataset. I used the validation split which stays unchanged 
across releases, except for a special version of the third release with speaker adaptation. 
I also used the test split from the third release. The validation split I used contains 591 
audio records and the test split contains 1467 audio records. 

5.2 Fine-tuning 

Across experiments, I test uncased B E R T BASE model fine-tuned on text from 
train-clean-100 subset of LibriSpeech dataset (Section 5.1). For the purpose of fine-
tuning, the dataset was split into 85% training part and 15% validation part. The B E R T 
model was fine-tuned for 8 epochs, after that evaluation loss rose. After the fine-tuning, 
evaluation loss lowered to 2.67 from 3.57 and pseudo-perplexity lowered to 14.50 from the 
original 35.64. The dataset has 990100 words, the number of tokens is 1083388 and the 
number of records is 28539. The training parameters I used were inspired by arcticle. 

3.6 

3.4 

3.2 

3.0 

2.8 

2.6 

0 1 2 3 4 5 6 7 8 
Epoch 

Figure 5.2: B E R T BASE uncased fine-tuning on train-clean-100 subset of LibriSpeech. 

I fine-tuned GPT-2 on the same dataset as B E R T . I tried fine-tuning with two learning 
rates: 1 0 - 3 which starts to overfit after 2 epochs and 5 • 1 0 - 4 , which starts to overfit after 
3 epochs. 

4

https: //t owardsdatascience.com/fine-tuning-for-domain-adapt at ion- in-nlp-c47def 356f d6 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Epoch 

Figure 5.3: GPT-2 fine-tuning on train-clean-100 subset of LibriSpeech. 

I fine-tuned Llama2 7B on the text from the training XL subset of the GigaSpeech 
dataset. The dataset is split into 98% training part and 2 % validation part. I used L o R A 
(Section 3.12) in the fine-tuning to lower resource requirements. The model was fine-tuned 
with three settings: r = 8, r = 32 and r = 128. In all settings, I used a = 16 and dropout 
0.1. I fine-tuned the Llama models for one epoch. The settings were inspired by article.'' 

Validation Loss r=8 
Validation Loss r=32 
Validation Loss r=128 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Epoch 

Figure 5.4: Llama 2 7B fine-tuning on XL subset of GigaSpeech. 
5

https: //www.mldive.com/p/how- to-fine-tune-llama- 2-with- lor a 
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5.3 C T C decoder edit 

A commonly used flashlight decoder6 outputs score for a hypothesis as a sum of weighted 
scores of n-gram, acoustic model score and so-called word score. I added to the flashlight de­
coder' printing to a file. The adjustment is in the file Ut i l s .h in class getAHHypothesis. 
The order of hypothesis, emitting score, language model score and summed score are all 
output to a single line in the C S V file. From this file, the data about scores can be read 
in the rescoring process. I created a variant of the CTCHypothesis class which can store 
aforementioned score data and data about words and weights used during decoding. 

5.4 Wav2Vec 2.0 experiments 

The experiments aim to compare L L M s to rescore the n-best hypothesis obtained from 
the decoded output of Wav2Vec 2.0. I used "dev" parts of datasets, from LibriSpeech 
I used "dev-other". Audio from the datasets was processed by Wav2Vec 2.0. Then, the 
weights for the C T C decoder had to be found. The process of finding the best weights 
for each dataset is following. Approximately half records from a dataset were randomly 
chosen. C T C decoder was constructed with a lower beam size set to 100 and an n-best set 
to 1. Weight of K e n L M in range 0 to 4 with step 1 and word insertion score in range -2 
to 2 with step 1 were searched. Then the best weights +-0.5 surrounding was searched. 
For each audio sample, 100 hypothetical transcriptions with scores were generated. These 
transcriptions are rescored using different language models. The final weights of scores are 
depicted in Figure 5.5. 

The results of the experiments with LibriSpeech are presented in Appendix A . 
6

https: //github. com/flashlight/text/tree/main/flashlight/lib/text/decoder 
7

https: //github.com/Martin-Toma/f lashlightSepScores2 
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Figure 5.5: Graphs of weights for rescoring Wav2Vec hypotheses on the three tested 
datasets. 
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Table 5.3: Overall W E R Wav2Vec 2.0. 

L L M Parameters (in B) 
LibriSpeech dev other GigaSpeech dev T E D - L I U M dev 

K e n L M Lex Lex No Lex K e n L M Lex Lex NoLex K e n L M Lex 

baseline - 8.59 9.33 9.77 28.49 30.37 31.34 17.81 

B E R T base 0.11 6.31 7.79 8.13 25.61 27.63 28.93 15.07 
B E R T base trained 0.11 6.11 7.45 7.87 25.32 27.28 28.59 14.93 
B E R T large 0.34 6.25 7.94 8.35 25.56 27.69 29.12 14.98 
RoBERTa base 0.125 6.38 7.82 8.48 25.32 27.25 28.83 14.85 
RoBERTa large 0.355 6.31 7.83 8.53 25.26 27.49 29.1 14.84 

GPT-2 0.137 6.54 7.91 8.33 25.19 27.02 28.43 14.63 
GPT-2 medium 0.380 6.44 7.64 8.16 25.05 26.93 28.34 14.57 
TinyLlama 1.1 6.28 7.44 7.88 24.52 26.47 28.19 14.4 
Falcon 7 6.12 7.22 7.77 24.44 26.58 28.09 14.13 
Mistral 7 6.11 7.39 8.18 24.75 26.98 28.59 14.76 
M P T 7 6.09 7.26 7.78 24.64 26.82 28.09 14.08 
Llama2 7 6.07 7.16 7.58 24.59 26.62 28.06 14.02 
Llama2 13 5.92 7.07 7.51 24.44 26.5 28.07 13.99 



5.5 Jasper experiments 

I generated 100 hypotheses using the Jasper model with NeMo beam search decoder. The 
weight of n-gram language model is set by alpha, beta represents a penalty given to longer 
word sequences, meaning larger beta will result in shorter sequences. I found values of 
alpha and beta parameters of the decoder for each dataset by testing the W E R of the 
randomly selected subset of the validation split. I used the interval halving method to find 
the best values. 

The results of experiments with Jasper for each dataset are in Appendix B and Table 
5.4. I tested the performance of rescoring on the test subset from the third release of T E D -
L I U M . The speech recognition of the test subset was run with hyperparameters found with 
the dev subset of T E D - L I U M . The data (Table B . l ) shows that rescoring with L L M reduces 
W E R even on audio it was not tuned on. The best absolute W E R improvement in the test 
dataset is 1 % absolute. 

In experiments with Jasper, I used all fine-tuned models described in Section 5.2. 

1 1 1 1 1 1 1 1 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
LLM Weight 

Figure 5.6: The relationship between W E R values and the weights of rescoring LibriSpeech 
dev other using Llama2 7B with L o R A r = 32, hypotheses are obtained from Jasper. Base 
W E R is 8.69% 

After the W E R measurements, I compared the hypotheses with the highest score before 
and after the rescoring against reference transcriptions (Table 5.5). The change in the 
number of character insertions, deletions and substitutions is compared, these numbers are 
used to calculate W E R (Section 2.2). The rescored hypotheses contain fewer inserted and 
substituted characters and more characters are deleted than in the referential texts from 
datasets compared to the non-rescored hypotheses. A l l measurements are in Appendix D. 

8

https: //github.com/NVIDIA/NeMo/blob/main/nemo/collections/asr/modules/ 

beam_search_decoder.py 
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Table 5.4: Overall W E R Jasper. 

L L M Parameters (in B) 
LibriSpeech GigaSpeech T E D - L I U M 

L L M 
dev other dev dev test 

baseline - 8.69 28.26 14.01 14.67 

B E R T base 0.11 8.44 27.88 13.53 14.67 
B E R T base trained 0.11 8.22 27.8 13.47 14.21 
B E R T large 0.34 8.45 27.85 13.38 14.5 
RoBERTa base 0.125 8.51 27.7 13.23 14.17 
RoBERTa large 0.355 8.44 27.71 13.27 14.27 

GPT-2 0.137 8.59 27.77 13.24 14.15 
GPT-2 trained 1 0.137 8.56 27.98 13.36 14.41 
GPT-2 trained 2 0.137 8.49 27.92 13.33 14.24 
GPT-2 medium 0.380 8.46 27.64 13.1 14.19 
TinyLlama 1.1 8.45 27.49 13.03 13.86 
Falcon 7 8.26 27.35 12.91 13.96 
Mistral 7 8.23 27.52 12.83 14.15 
M P T 7 8.26 27.6 13.02 14.44 
Llama2 7 8.24 27.46 13.01 13.81 
Llama2 L o R A r8 7 7.98 27.25 12.76 13.73 
Llama2 L o R A r32 7 7.92 27.26 12.75 13.62 
Llama2 L o R A rl28 7 7.94 27.27 12.76 13.68 
Llama2 13 8.23 27.46 12.87 13.72 



Table 5.5: Experiment with Jasper and GigaSpeech dev dataset. Difference in number 
of insertions, deletions and substitutions between non-rescored and rescored transcriptions 
against dataset transcriptions. 

L L M insertions deletions substitutions 

B E R T base 1025 -1368 760 
B E R T base trained 1025 -1368 760 
B E R T large 996 -1361 696 
RoBERTa base 1171 -1519 1037 
RoBERTa large 889 -1086 992 

GPT-2 1048 -1874 808 
GPT-2 libri 1048 -1874 808 
GPT-2 libri2 1048 -1874 808 
GPT-2 medium 1261 -1951 1227 
TinyLlama 1294 -1898 1428 
Falcon 7B 1312 -1569 1540 
Mistral 1118 -1094 1238 
M P T 7B 1197 -1615 1364 
Llama2 7B 1322 -1622 1491 
Llama2 13B 1523 -2022 1658 
Llama2 L o R A r8 1138 -1157 1510 
Llama2 L o R A r32 1260 -1558 1703 
Llama2 L o R A rl28 1158 -1251 1586 

5.6 Whisper experiments 

Experiments were designed to test my hypothesis that using patience will improve W E R . 
This hypothesis is based on improvement in the best possible W E R in randomly chosen 
GigaSpeech recordings (Section 2.6). However, the use of a higher patience factor p = 3 in 
the rescoring experiments, slightly increased W E R . 

In the first experiments, Whisper output is fed to L L M without change. But before 
W E R measurement, the Whisper transcripts are normalized with Whisper normalizer.9 

When the dataset is GigaSpeech or T E D - L I U M , conversational fillers, hyphens and un­
necessary spaces are removed. This post-processing is performed after applying Whisper 
normalization, before W E R measurement. I applied this method to all three datasets and 
the results are in Appendix C, in Tables: GigaSpeech C . l , C.2, LibriSpeech C.5, C.6 and 
T E D - L I U M C.3, C.4. 

When I noticed the L L M rescoring does improve the W E R of Whisper hypotheses, I 
decided to test if it was because of the format of the Whisper output text. So I tried four 
setups with the GigaSpeech dataset. The first is described above. 

The second setup is the same as the first one, but input to the L L M is converted to 
lower-case (Tables C.7 and C.8). The third setup differs from the first in not applying the 
Whisper normalizer before W E R measurement (Tables C.9 and C.10). The fourth setup is 
the same as the first one, but the input to the L L M is normalized using Whisper normalizer 
(Tables C . l l and C.12). 

9

https: //pypi.org/project/whisper-normalizer/ 
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In all experiments, the beam size is 40 and the patience parameter is set to 1 (without 
patience) and 3 (with patience). 

The best weights of L L M scores that I found are in most experiments very close to zero, 
many times the weights are a small negative number. This indicates L L M scores do not 
improve the W E R . In a few results, mainly in LibriSpeech experiments, I observed weights 
of L L M scores higher than 0.1 indicating the rescoring might improve W E R . However, these 
weights are still very close to 0 and given all other measurements I state the n-best rescoring 
with L L M does not work with Whisper. 

LLM Weight 

Figure 5.7: The relationship between W E R values and the weights of rescoring with Llama2 
13B. Hypotheses are obtained from Whisper with normalized input to L L M . Base W E R is 
14.52% 

5.7 Experiments summary 

In the experiments, I tested three A S R models of different architectures and different set­
tings, on three datasets, with multiple L L M models. I even fine-tuned a few of the L L M 
models with different settings. 

The influence of L L M rescoring is determined by the quality of hypotheses obtained from 
A S R systems. The results of Wav2Vec experiments are depicted in Table 5.3 and Jasper 
experiments in Table 5.4. Whisper experiments did not demonstrate a strong correlation 
between W E R reduction and the L L M rescoring. 

The rescored hypotheses contain fewer inserted and substituted characters and more 
characters are deleted compared to non-rescored transcriptions, against the referential texts 
from datasets. 

The best W E R improvement measured is 4 % absolutely. The more parameters a model 
has, the better the results of rescoring. This is indicated by the finding that the larger the 
model, the bigger weight the L L M score should be multiplied with, to get the best W E R . 
1 found some exceptions in measurements with models GPT-2 and GPT-2 medium. 

A n interesting finding is, that after L L M in-domain fine-tuning, a smaller model (Llama 
2 7B) can outperform a not fine-tuned model twice its size (Llama 2 13B). The improvement 
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relies on the fine-tuning data, with GPT-2 fine-tuned on LibriSpeech data, I observed W E R 
decrease in LibriSpeech dev-other after rescoring, but W E R increase in GigaSpeech and 
T E D - L I U M after rescoring. 

The rescoring depends on the A S R model, rescoring does not improve the W E R of 
Whisper. One possible cause may be that the Whisper model does not produce very diverse 
hypotheses, many hypotheses differ only in punctuation. I even tried different processing 
of L L M input, but nothing worked. The fact L L M rescoring does not work may be caused 
by the Whisper hypotheses scores being very accurate. 

The score separation in the C T C decoder was beneficial. Lower W E R s were achieved 
with weighting separated scores. 

When it comes to masked vs autoregressive models of the same size, W E R after rescoring 
differs only slightly. However autoregressive (GPT-2 variants) are better for spontaneous 
speech (GigaSpeech, T E D - L I U M ) and masked (BERT and RoBERTa variants) are in most 
cases better for read speech (LibriSpeech). This fact is influenced by the training data. 
The masked models I used were trained mainly on book data. In contrast, GPT-2 models 
were trained on internet data. A n important thing to consider when deciding between 
autoregressive and masked models is that the autoregressive model's rescoring is faster. 

A l l 7B models visibly improved W E R after rescoring. Surprisingly, a relatively small 
TinyLlama 1.1B improved W E R competitively with bigger models. 
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Chapter 6 

Conclusion 

The thesis goal was to explore how to use L L M s in A S R and if they improve it. Additionally, 
factors that influence the results were examined. The experiments focus on improving W E R 
by n-best rescoring using L L M s . 

At first study about ASR, and L L M models and how to use them together was con­
ducted. The n-best rescoring method was investigated further. Experiments with three 
A S R systems that produce multiple hypotheses, were designed. The experiments aim to 
test masked and autoregressive L L M s on three datasets. The datasets cover read and spon­
taneous speech. The observed metrics are W E R and C E R of the transcriptions against 
reference transcriptions. Three L L M models were selected for fine-tuning, and their perfor­
mance in rescoring was measured. The C T C decoder used with Wav2Vec 2.0 was edited to 
output scores for hypotheses separately, and also the Whisper decoder was edited to output 
more than one hypothesis. 

The results demonstrated a correlation between the number of L L M parameters and 
the W E R reduction after rescoring. Other findings are that fine-tuned models can surpass 
non-fine-tuned ones twice their size. The n-best rescoring method depends on the quality 
of the hypotheses. 

Possible extensions of this work may include further changes to the Whisper decoder 
to obtain more diverse hypotheses, for example by editing the temperature, because in the 
current Whisper implementation, the beam search can not be set with different tempera­
tures. Another extension may be merging L L M models to obtain models with an exotic 
number of parameters and then testing these models' rescoring abilities. 

The findings of the thesis were presented at Excel@FIT 2024. 
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Append i x A 

Wav2Vec measurements 

I created tables from each experiment with Wav2Vec 2.0. The following tables contain 
W E R and C E R after rescoring with L L M and also weights: (3 represents the weight of 
L L M score, 7 is the weight of word insertion bonus and 5 is the weight of K e n L M score. 
The weight of the acoustic model is set to 1. The results of experiments with LibriSpeech 
are presented in Tables A.2, A.3, A.4, GigaSpeech in Tables A.5, A.6, A.7 and T E D - L I U M 
in Table A . l . 

Table A . l : W E R and C E R of Wav2Vec 2.0 with K e n L M and lexicon on T E D - L I U M dev. 
Decoded with K e n L M weight = 2.0, word score = 0.0. According to the hypotheses, the 
best W E R is 11.84%, the worst W E R is 26.37%, the best C E R is 4.40% and the worst 
C E R is 11.02%. 

L L M P 7 S best WER[%] 1 best CER[%] 1 

baseline 0 0 0 17.81 6.69 

B E R T base 0.48 -1.88 0.62 15.07 6.25 
B E R T base trained 0.66 -0.34 0.44 14.93 6.11 
B E R T large 0.6 -1.0 0.5 14.98 6.25 
RoBERTa base 0.6 -0.9 1.0 14.85 6.14 
RoBERTa large 0.8 -2.0 0.5 14.84 6.22 

GPT-2 1.46 0.16 -0.19 14.63 6.22 
GPT-2 medium 1.78 0.62 -0.38 14.57 6.18 
TinyLlama 1.6 1.0 0.0 14.4 6.07 
Falcon 7B 1.56 -0.24 -0.06 14.13 5.97 
Mistral 0.95 -1.75 0.75 14.76 5.89 
M P T 7B 1.1 -0.6 0.5 14.08 5.95 
Llama2 7B 1.46 -0.74 -0.06 14.02 5.89 
Llama2 13B 1.38 -1.12 -0.12 13.99 5.88 
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Table A.2: Compare W E R and C E R of Wav2Vec 2.0 on Librispeech dev-other with K e n L M and lexicon. According to the hypotheses, 
the best W E R = 2.99%, the worst W E R = 26.34%, the best C E R = 1.33% and the worst C E R = 10.36%. Decoded with K e n L M weight 
= 2.0, word score = 0.0. 

L L M parameters (B) ß 7 5 best WER[%] 1 best CER[%] 1 

baseline - 0 0 0 8.59 3.39 

B E R T base 0.11 0.26 0.86 2.06 6.31 2.89 
B E R T base trained 0.11 0.46 0.96 1.56 6.11 2.8 
B E R T large 0.34 0.26 0.66 1.94 6.25 2.87 
RoBERTa base 0.125 0.2 0.7 2.0 6.38 2.94 
RoBERTa large 0.355 0.3 0.0 1.5 6.31 2.87 

GPT-2 0.137 0.2 -0.2 2.0 6.54 3.03 
GPT-2 medium 0.38 0.24 0.64 2.06 6.44 3.0 
TinyLlama 1.1 0.5 0.8 1.5 6.28 2.9 
Falcon 7B 7 0.64 2.06 1.56 6.12 2.84 
Mistral 7 0.5 0.4 2.0 6.11 2.8 
M P T 7B 7 0.7 0.7 1.5 6.09 2.86 
Llama 2 7B 7 0.7 2.0 1.5 6.07 2.8 
Llama 2 13B 13 0.8 1.0 1.0 5.92 2.73 



Table A.3: Compare W E R and C E R of Wav2Vec 2.0 on Librispeech dev-other with only lexicon. According to the hypotheses, the best 
W E R = 4.96%, the worst W E R =27.34%, the best C E R = 1.92 %, the worst C E R = 8.61 %. Decoded with word score = -1.5. 

L L M parameters (B) ß 7 5 best WER[%] 1 best CER[%] 1 

baseline - 0 0 0 9.33 3.51 

B E R T base 0.11 0.4 -0.7 0.0 7.79 3.2 
B E R T base trained 0.11 0.44 0.54 0.0 7.45 3.11 
B E R T large 0.34 0.36 -0.84 0.0 7.94 3.22 
RoBERTa base 0.125 0.3 -0.2 0.0 7.82 3.21 
RoBERTa large 0.355 0.4 0.3 0.0 7.83 3.19 

GPT-2 0.137 0.6 -0.5 0.0 7.91 3.3 
GPT-2 medium 0.380 0.64 0.06 0.0 7.64 3.2 
TinyLlama 1.1 0.7 -0.3 0.0 7.44 3.15 
Falcon 7B 7 0.9 0.0 0.0 7.22 3.07 
Mistral 7 0.66 -0.34 0.0 7.39 3.06 
M P T 7B 7 0.7 0.6 0.0 7.26 3.09 
Llama 2 7B 7 0.8 -0.3 0.0 7.16 3.05 
Llama 2 13B 13 0.9 -0.6 0.0 7.07 3.03 



Table A.4: W E R and C E R of Wav2Vec 2.0 on LibriSpeech dev-other without lexicon. According to the hypotheses, the best W E R is 
5.58%, the worst W E R is 27.84%, the best C E R is 2.11 % and the worst C E R is 8.04%. 

L L M parameters (B) P 7 best WER[%] 1 best CER[%] 1 

baseline - 0 0 9.77 3.68 

B E R T base 0.11 0.353125 0.484375 8.13 3.29 
B E R T base trained 0.11 0.446875 0.446875 7.87 3.24 
B E R T large 0.34 0.33125 0.53125 8.35 3.33 
RoBERTa base 0.125 0.2 0.6 8.48 3.37 
RoBERTa large 0.355 0.23125 -0.63125 8.53 3.4 

GPT-2 medium 0.380 0.6625 0.7625 8.16 3.3 
GPT-2 0.137 0.615625 0.984375 8.33 3.38 
TinyLlama 1.1 0.6 0.9 7.88 3.25 
Falcon 7B 7 0.715625 0.284375 7.77 3.18 
Mistral 7 0.4375 0.8625 8.18 3.27 
M P T 7B 7 0.684375 -0.484375 7.78 3.19 
Llama2 7B 7 0.9 1.0 7.58 3.1 
Llama2 13B 13 0.984375 0.753125 7.51 3.1 



Table A.5: W E R and C E R of Wav2Vec 2.0 with K e n L M and lexicon on GigaSpeech dev. 
Decoded with K e n L M weight = 1.5, word score = -1.5. According to the hypotheses, the 
best W E R is 18.57%, the worst W E R is 42.51%, the best C E R is 10.15% and the worst 
C E R is 22.96%. 

L L M ß 7 5 best WER[%] 1 best CER[%] 1 

baseline 0 0 0 28.49 14.99 

B E R T base 0.2 -2.0 1.0 25.61 15.0 
B E R T base trained 0.4 -2.0 0.5 25.32 14.82 
B E R T large 0.24 -0.86 1.06 25.56 14.81 
RoBERTa base 0.3 -2.0 1.0 25.32 14.99 
RoBERTa large 0.24 -2.06 1.06 25.26 14.97 

GPT-2 0.64 -0.86 0.56 25.19 14.91 
GPT-2 medium 0.76 -0.44 0.44 25.05 14.86 
TinyLlama 0.9 -0.5 0.0 24.52 14.61 
Falcon 7B 0.9 0.5 0.5 24.44 14.45 
Mistral 0.82 -2.12 0.88 24.75 14.68 
M P T 7B 0.7 -1.0 0.5 24.64 14.66 
Llama2 7B 0.9 -1.0 0.0 24.59 14.79 
Llama2 13B 0.82 -0.78 0.38 24.44 14.79 

Table A.6: W E R and C E R of Wav2Vec 2.0 with only lexicon on GigaSpeech dev. Decoded 
with word score = -2.5. According to the hypotheses, the best W E R is 22.89%, the worst 
W E R is 43.37%, the best C E R is 11.42% and the worst C E R is 21.19%. 

L L M ß 7 5 best WER[%] 1 best CER[%] 1 

baseline 0 0 0 30.37 15.26 

B E R T base 0.38 -2.12 -0.12 27.63 15.14 
B E R T base trained 0.56 -2.06 -0.06 27.28 15.05 
B E R T large 0.3 -2.0 0.0 27.69 15.08 
RoBERTa base 0.38 -2.12 -0.12 27.25 14.97 
RoBERTa large 0.36 -2.06 -0.06 27.49 15.06 

GPT-2 0.78 -1.12 -0.12 27.02 14.92 
GPT-2 medium 0.8 -1.0 0.0 26.93 14.96 
TinyLlama 0.9 -1.0 0.0 26.47 14.85 
Falcon 7B 0.78 -1.02 -0.12 26.58 14.7 
Mistral 0.72 -2.12 -0.12 26.98 14.78 
M P T 7B 0.9 -1.0 0.0 26.82 14.88 
Llama2 7B 0.84 -1.94 -0.19 26.62 14.96 
Llama2 13B 0.64 -1.94 -0.06 26.5 14.84 
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Table A.7: W E R and C E R of Wav2Vec 2.0 without K e n L M and lexicon on GigaSpeech 
dev. According to the hypotheses, the best W E R is 24.54%, the worst W E R is 45.00%, 
the best C E R is 11.90% and the worst C E R is 20.32%. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline 0 0 31.34 15.31 

B E R T base 0.515625 -1.984375 28.93 15.03 
B E R T base trained 0.36875 -2.03125 28.59 14.92 
B E R T large 0.26875 -0.83125 29.12 15.01 
RoBERTa base 0.26875 -1.96875 28.83 14.96 
RoBERTa large 0.2 -2.0 29.1 14.94 

GPT-2 0.7 -2.0 28.43 14.87 
GPT-2 medium 0.7375 -1.9375 28.34 14.82 
TinyLlama 0.646875 -0.978125 28.19 14.83 
Falcon 7B 0.76875 -1.96875 28.09 14.7 
Mistral 0.3375 -0.8375 28.59 14.84 
M P T 7B 0.653125 -1.953125 28.09 14.68 
Llama2 7B 0.8 -2.0 28.06 14.78 
Llama2 13B 1.309375 -3.109375 28.07 14.77 
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Append i x B 

Jasper measurements 

I created tables from each experiment with Jasper. The following tables contain W E R and 
C E R after rescoring with L L M and also weights: (3 represents the weight of the L L M score 
and 7 is the weight of the word insertion bonus. The weight of the acoustic model is set 
to 1. The results of experiments with Jasper for each dataset are Tables: T E D - L I U M B . l , 
LibriSpeech B.2 and GigaSpeech B.3. 

Table B . l : Jasper with K e n L M on T E D - L I U M dev and test release 3. According to the 
hypotheses, the best W E R is 10.68%, the worst W E R is 25.36%, the best C E R is 3.57%. 
and the worst C E R is 8.48%. Decoder settings: alpha = 0.5, beta = 0.0. 

L L M ß 7 best WER[%] 1 best CER[%] 1 
dev test dev test 

baseline 0 0 14.01 14.67 4.96 4.52 

B E R T base 0.115625 -3.984375 13.53 14.67 4.88 4.69 
B E R T base trained 0.3375 -3.9375 13.47 14.21 4.94 4.55 
B E R T large 0.415625 -0.984375 13.38 14.5 4.85 4.61 
RoBERTa base 0.315625 -0.784375 13.23 14.17 4.82 4.38 
RoBERTa large 0.3 0.0 13.27 14.27 4.75 4.39 

GPT-2 base 0.5375 -1.0625 13.24 14.15 4.84 4.49 
GPT-2 l.r. 10" 3 1.03125 6.03125 13.36 14.41 4.74 4.44 
GPT-2 l.r. 5 • 10" 4 0.93125 4.03125 13.33 14.24 4.76 4.38 
GPT-2 medium 1.315625 1.984375 13.1 14.19 4.8 4.49 
TinyLlama 0.9 -0.6 13.03 13.86 4.75 4.46 
Falcon 7B 1.884375 2.015625 12.91 13.96 4.73 4.51 
Mistral 7B 0.653125 -1.953125 12.83 14.15 4.58 4.45 
M P T 7B 1.778125 -1.078125 13.02 14.44 4.95 4.76 
Llama2 7B 1.5625 2.0625 13.01 13.81 4.71 4.45 
Llama2 7B LoRa r8 1.215625 0.184375 12.76 13.73 4.61 4.32 
Llama2 7B LoRa r32 1.0375 -0.8375 12.75 13.62 4.63 4.3 
Llama2 7B LoRa rl28 1.7 -0.2 12.76 13.68 4.65 4.33 
Llama2 13B 0.9 0.1 12.87 13.72 4.6 4.32 
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Table B.2: Jasper with K e n L M on LibriSpeech dev-other. According to the hypotheses, 
the best W E R is 5.80%, the worst W E R is 28.08%, the best C E R is 2.82% and the worst 
C E R is 10.18%. Decoder settings: alpha = 1.5, beta = 0.5. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline 0 0 8.69 4.22 

B E R T base 0.284375 -0.815625 8.44 4.14 
B E R T base trained 0.5 -1.0 8.22 4.06 
B E R T large 0.175 -0.575 8.45 4.13 
RoBERTa base 0.215625 -0.715625 8.51 4.16 
RoBERTa large 0.3 -0.8 8.44 4.14 

GPT-2 0.3 0.1 8.59 4.21 
GPT-2 l.r. 10" 3 0.3 -0.7 8.56 4.21 
GPT-2 l.r. 5 • 10" 4 0.4 -0.2 8.49 4.2 
GPT-2 medium 0.484375 0.053125 8.46 4.18 
TinyLlama 0.46875 -0.66875 8.45 4.16 
Falcon 7B 0.684375 0.915625 8.26 4.07 
Mistral 0.584375 -1.015625 8.23 4.06 
M P T 7B 0.384375 -0.515625 8.26 4.11 
Llama2 7B 0.53125 -0.43125 8.24 4.11 
Llama2 L o R A r8 0.7375 0.7375 7.98 3.98 
Llama2 L o R A r32 0.846875 0.846875 7.92 3.98 
Llama2 L o R A rl28 0.715625 0.653125 7.94 3.98 
Llama2 13B 0.6 0.3 8.23 4.08 
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Table B.3: Jasper with K e n L M on GigaSpeech. According to the hypotheses, the best 
W E R is 24.49%, the worst W E R is 40.76%, the best C E R is 24.22% and the worst C E R 
is 0.30294534943653106. Decoder settings: alpha = 0.5, beta = 0.5. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline 0 0 28.26 26.49 

B E R T base 0.1 -2.0 27.88 26.55 
B E R T base trained 0.253125 -0.715625 27.8 26.47 
B E R T large 0.1 -1.0 27.85 26.48 
RoBERTa base 0.246875 -1.015625 27.7 26.46 
RoBERTa large 0.184375 -0.484375 27.71 26.44 

GPT-2 0.4625 0.3625 27.77 26.48 
GPT-2 l.r. 10" 3 0.215625 -0.984375 27.98 26.55 
GPT-2 l.r. 5 • 10" 4 0.2375 -0.8375 27.92 26.52 
GPT-2 medium 0.6 0.3 27.64 26.48 
TinyLlama 0.6 -0.1 27.49 26.44 
Falcon 7B 0.8 0.6 27.35 26.37 
Mistral 0.484375 -0.915625 27.52 26.36 
M P T 7B 0.33125 -0.46875 27.6 26.43 
Llama2 7B 0.53125 -0.16875 27.46 26.4 
Llama2 L o R A r8 0.56875 0.26875 27.25 26.31 
Llama2 L o R A r32 0.7 -0.1 27.26 26.35 
Llama2 L o R A rl28 0.6 0.2 27.27 26.32 
Llama2 13B 0.53125 -0.73125 27.46 26.42 
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Append i x C 

Whisper measurements 

I created tables from each experiment with Whisper medium. The following tables contain 
W E R and C E R after rescoring with L L M and also weights: (3 represents the weight of the 
L L M score and 7 is the weight of the word insertion bonus. The weight of the acoustic 
model is set to 1. The results of experiments in which text fed to L L M s is not normalized, 
but after rescoring is normalized, are in Tables: GigaSpeech C . l , C.2, LibriSpeech C.5, C.6 
and T E D - L I U M C.3, C.4. Except for the first setup described above, three other setups 
were tried for the GigaSpeech dataset. The second setup is the same as the first one, but 
input to the L L M is converted to lower-case (Tables C.7 and C .8). The third setup differs 
from the first in not applying the Whisper normalizer before W E R measurement (Tables 
C.9 and C.10). The fourth setup is the same as the first one, but the input to the L L M is 
normalized using Whisper normalizer (Tables C . l l and C.12). In all experiments, the beam 
size is 40 and the patience parameter is set to 1 (without patience) and 3 (with patience). 

Table C . l : Whisper on GigaSpeech dev, without patience p = 1. According to the hypothe­
ses, the best W E R is 9.11 %, the worst W E R is 24.70%, the best C E R is 5.60% and the 
worst C E R is 18.22%. 

L L M P 7 best WER[%] 1 best CER[%] 1 

baseline - - 14.62 10.10 

B E R T base -0.015625 0.384375 13.01 8.19 
B E R T base trained -0.015625 0.384375 12.96 8.15 
B E R T large -0.015625 0.384375 13.02 8.2 
RoBERTa base -0.015625 0.384375 12.98 8.16 
RoBERTa large 0.03125 0.43125 13.0 8.28 

GPT-2 -0.1 0.0 12.99 8.07 
GPT-2 medium -0.03125 0.36875 12.96 8.14 
TinyLlama -0.015625 0.353125 12.98 8.18 
Falcon 7B -0.015625 0.353125 12.96 8.18 
Mistral -0.015625 0.353125 12.98 8.19 
M P T 7B -0.015625 0.353125 12.95 8.17 
Llama2 7B -0.015625 0.353125 12.97 8.18 
Llama2 13B -0.015625 0.353125 12.96 8.17 
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Table C.2: Whisper on GigaSpeech dev, with patience p = 3. According to the hypotheses, 
the best W E R is 8.11 %, the worst W E R is 66.99%, the best C E R is 4.81 % and the worst 
C E R is 61.78%. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 14.52 9.96 

B E R T base -0.0625 0.1375 12.93 8.1 
B E R T base trained -0.13125 0.03125 13.01 8.01 
B E R T large -0.046875 0.184375 13.05 8.23 
RoBERTa base -0.015625 0.184375 13.2 8.4 
RoBERTa large -0.015625 0.184375 13.19 8.42 

GPT-2 -0.1 0.0 12.83 7.86 
GPT-2 medium -0.084375 0.015625 12.91 7.96 
TinyLlama -0.084375 0.015625 13.0 8.05 
Falcon 7B -0.06875 0.03125 13.02 8.09 
Mistral -0.084375 0.046875 13.09 8.14 
M P T 7B -0.1 0.0 12.99 8.0 
Llama2 7B -0.084375 0.046875 13.05 8.08 
Llama2 13B -0.053125 0.046875 13.06 8.2 

Table C.3: Whisper on T E D - L I U M dev, without patience p = 1. According to the hy­
potheses, the best W E R is 4.59%, the worst W E R is 12.49%, the best C E R is 3.23% and 
the worst C E R is 9.67%. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 8.78 6.89 

B E R T base trained 0.246875 3.046875 5.91 4.08 
B E R T base -0.015625 0.415625 5.98 4.07 
B E R T large -0.015625 0.384375 5.99 4.08 
RoBERTa base 0.03125 0.43125 6.0 4.12 
RoBERTa large 0.03125 0.36875 5.98 4.13 
GPT-2 medium -0.015625 0.384375 5.99 4.09 
GPT-2 -0.078125 0.353125 5.99 4.05 
Falcon 7B 0.0 0.4 6.02 4.13 
Mistral -0.1 1.0 6.0 3.94 
M P T 7B 0.0 0.4 6.02 4.13 
Llama2 7B 0.0 0.4 6.02 4.13 
Llama2 13B 0.015625 0.446875 5.99 4.1 
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Table C.4: Whisper on T E D - L I U M dev, with patience p = 3. According to the hypotheses, 
the best W E R is 4.02%, the worst W E R is 40.87%, the best C E R is 2.79 and the worst 
C E R is 37.25%. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 8.79 6.89 

B E R T base trained -0.1 0.0 6.43 4.35 
B E R T base -0.090625 0.171875 6.24 4.15 
B E R T large -0.10625 0.09375 6.21 4.17 
RoBERTa base -0.028125 0.171875 6.2 4.24 
RoBERTa large -0.046875 0.178125 6.24 4.24 

GPT-2 medium -0.115625 0.046875 5.92 3.94 
GPT-2 -0.13125 0.03125 5.88 3.87 
Falcon 7B -0.215625 0.015625 6.06 4.0 
Mistral -0.240625 -0.109375 6.2 3.95 
M P T 7B -0.2 0.0 6.15 3.98 
Llama2 7B -0.2 0.0 6.02 3.92 
Llama2 13B -0.16875 0.03125 6.14 4.03 

Table C.5: Whisper on LibriSpeech dev-other, without patience p = 1. According to the 
hypotheses, the best W E R is 5.83%, the worst W E R is 16.30%, the best C E R is 3.07%. 
and the worst C E R is 9.64 %. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 9.37 5.22 

B E R T base trained 0.1 0.7 8.86 4.99 
B E R T base 0.084375 0.315625 8.68 4.83 
B E R T large 0.084375 0.284375 8.6 4.85 
RoBERTa base 0.03125 0.33125 8.96 4.87 
RoBERTa large 0.1 1.0 8.94 5.01 

GPT-2 medium -0.015625 0.315625 9.0 4.76 
GPT-2 -0.015625 0.315625 8.98 4.75 
Falcon 7B 0.1 1.0 8.99 5.05 
Mistral 0.1 0.9 8.97 5.04 
M P T 7B 0.115625 0.915625 8.95 5.05 
Llama2 7B 0.2 2.0 8.89 4.99 
Llama2 13B 0.2625 2.0625 8.8 5.01 
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Table C.6: Whisper on LibriSpeech dev-other, with patience p = 3. According to the 
hypotheses, the best W E R is 5.35%, the worst W E R is 49.61%, the best C E R is 2.81%. 
and the worst C E R is 43.74 %. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 9.39 5.25 

B E R T base trained -0.03125 -0.06875 9.02 4.93 
B E R T base 0.0 -0.1 9.08 5.16 
B E R T large 0.0 -0.1 9.08 5.16 
RoBERTa base 0.0 -0.1 9.08 5.16 
RoBERTa large -0.015625 -0.084375 9.05 5.05 

GPT-2 medium -0.0625 -0.1625 8.89 4.67 
GPT-2 -0.0625 -0.1625 8.86 4.66 
Falcon 7B -0.015625 -0.084375 8.93 4.97 
Mistral -0.046875 -0.115625 8.96 4.79 
M P T 7B -0.046875 -0.146875 9.03 4.85 
Llama2 7B -0.046875 -0.115625 8.97 4.78 
Llama2 13B -0.015625 -0.084375 8.98 4.99 

Table C.7: Whisper on GigaSpeech dev, without patience p = 1. Lower-cased input to the 
L L M . According to the hypotheses, the best W E R is 9.11%, the worst W E R is 24.70%, 
the best C E R is 5.60% and the worst C E R is 18.22 %. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 14.62 10.10 

B E R T base -0.015625 0.384375 13.01 8.19 
B E R T base trained -0.015625 0.384375 12.96 8.15 
B E R T large -0.015625 0.384375 13.02 8.2 
RoBERTa base -0.015625 0.384375 12.99 8.19 
RoBERTa large -0.015625 0.384375 12.99 8.19 

GPT-2 -0.1 0.0 12.99 8.13 
GPT-2 medium -0.03125 0.36875 12.95 8.12 
TinyLlama -0.015625 0.446875 12.86 8.04 
Falcon 7B -0.015625 0.353125 12.96 8.18 
Mistral -0.015625 0.353125 12.99 8.21 
M P T 7B -0.015625 0.353125 12.96 8.17 
Llama2 7B -0.015625 0.353125 12.96 8.18 
Llama2 13B -0.03125 0.36875 12.96 8.14 
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Table C.8: Whisper on GigaSpeech dev, with patience p = 3. Lower-cased input to the 
L L M . According to the hypotheses, the best W E R is 8.11%, the worst W E R is 66.99%, 
the best C E R is 4.81 % and the worst C E R is 61.78 %. 

L L M P 7 best WER[%] 1 best CER[%] 1 

baseline - - 14.52 9.96 

B E R T base -0.0625 0.1375 12.93 8.1 
B E R T base trained -0.13125 0.03125 13.01 8.01 
B E R T large -0.046875 0.184375 13.05 8.23 
RoBERTa base -0.078125 0.184375 13.1 8.19 
RoBERTa large -0.015625 0.184375 13.16 8.4 

GPT-2 -0.084375 0.015625 12.79 7.97 
GPT-2 medium -0.084375 0.046875 12.82 7.95 
TinyLlama -0.13125 0.03125 12.96 7.96 
Falcon 7B -0.084375 0.015625 13.0 8.02 
Mistral -0.084375 0.046875 13.06 8.08 
M P T 7B -0.084375 0.046875 12.91 7.98 
Llama2 7B -0.084375 0.046875 12.97 8.03 
Llama2 13B -0.06875 0.09375 12.92 8.02 

Table C.9: Whisper on GigaSpeech dev, without patience p = 1. Without normalization. 
According to the hypotheses, the best W E R is 15.89 %, the worst W E R is 35.61 %, the best 
C E R is 6.97% and the worst C E R is 20.55%. 

L L M P 7 best WER[%] 1 best CER[%] 1 

baseline - - 24.45 12.11 

B E R T base -0.215625 0.109375 20.77 9.93 
B E R T base trained 0.4 3.0 20.87 10.29 
B E R T large -0.246875 0.046875 21.14 10.06 
RoBERTa base -0.015625 0.384375 22.76 10.14 
RoBERTa large -0.115625 0.984375 22.66 10.39 

GPT-2 -0.090625 0.109375 22.61 10.1 
GPT-2 medium -0.246875 -0.046875 22.49 10.17 
TinyLlama -0.03125 0.36875 22.77 10.09 
Falcon 7B -0.015625 0.446875 22.78 10.08 
Mistral -0.253125 0.046875 21.3 10.01 
M P T 7B -0.046875 0.384375 22.75 10.07 
Llama2 7B -0.0625 0.3375 22.71 10.1 
Llama2 13B -0.015625 0.446875 22.77 10.07 
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Table C.10: Whisper on GigaSpeech dev, with patience p = 3. Without normalization. 
According to the hypotheses, the best W E R is 15.27 %, the worst W E R is 80.06 %, the best 
C E R is 6.36% and the worst C E R is 68.39%. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 24.65 12.14 

B E R T base -0.16875 0.09375 21.1 9.91 
B E R T base trained 0.015625 0.184375 23.42 10.9 
B E R T large -0.115625 0.015625 21.52 10.12 
RoBERTa base -0.115625 0.046875 23.34 10.7 
RoBERTa large -0.115625 0.109375 22.63 10.42 

GPT-2 -0.115625 -0.015625 22.85 10.14 
GPT-2 medium -0.13125 -0.09375 22.77 10.15 
Falcon 7B -0.06875 0.03125 23.24 10.34 
TinyLlama -0.084375 0.015625 23.23 10.32 
Mistral -0.153125 0.078125 21.91 9.99 
M P T 7B -0.1 0.0 23.13 10.27 
Llama2 7B -0.13125 -0.03125 23.12 10.29 
Llama2 13B -0.053125 0.046875 23.25 10.43 

Table C . l l : Whisper on GigaSpeech dev, without patience p = 1. Input to the L L M is 
normalized. According to the hypotheses, the best W E R is 9.11%, the worst W E R is 
24.70%, the best C E R is 5.60% and the worst C E R is 18.22%. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 14.62 10.01 

B E R T base -0.015625 0.384375 12.95 8.16 
B E R T base trained -0.015625 0.384375 12.95 8.16 
B E R T large -0.015625 0.384375 12.98 8.19 
RoBERTa base -0.015625 0.384375 13.0 8.2 
RoBERTa large -0.015625 0.384375 12.97 8.18 

GPT-2 -0.084375 0.046875 12.97 8.15 
GPT-2 medium -0.03125 0.36875 12.92 8.1 
TinyLlama -0.015625 0.353125 12.96 8.19 
Falcon 7B -0.03125 0.36875 12.97 8.14 
Mistral -0.015625 0.353125 12.97 8.2 
M P T 7B -0.015625 0.353125 12.95 8.18 
Llama2 7B -0.03125 0.36875 12.95 8.13 
Llama2 13B -0.015625 0.353125 12.97 8.19 
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Table C.12: Whisper on GigaSpeech dev, with patience p = 3. Input to the L L M normal­
ized. According to the hypotheses, the best W E R is 8.11 %, the worst W E R is 66.99%, the 
best C E R is 4.81 % and the worst C E R is 61.78%. 

L L M ß 7 best WER[%] 1 best CER[%] 1 

baseline - - 14.52 9.96 

B E R T base -0.1 0.0 13.05 8.17 
B E R T base trained -0.115625 0.015625 13.09 8.16 
B E R T large -0.046875 0.153125 13.08 8.26 
RoBERTa base -0.0625 0.1375 13.09 8.21 
RoBERTa large -0.015625 0.184375 13.18 8.42 

GPT-2 -0.084375 0.046875 12.76 7.93 
GPT-2 medium -0.06875 0.03125 12.81 7.98 
TinyLlama -0.06875 0.03125 12.94 8.09 
Falcon 7B -0.084375 0.015625 13.0 8.04 
Mistral -0.084375 0.015625 13.02 8.09 
M P T 7B -0.084375 0.015625 12.96 8.05 
Llama2 7B -0.084375 0.046875 12.98 8.05 
Llama2 13B -0.053125 0.046875 13.03 8.2 
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Append i x D 

Difference in insertions, deletions 
and substitutions 

A S R hypotheses order changes after rescoring with L L M , which changes the final speech 
transcriptions from the A S R pipeline. To find out how the transcriptions change, I measured 
the difference in number of insertions, deletions and substitutions between non-rescored and 
rescored transcriptions against reference transcriptions. 

Table D . l : Experiment with Jasper and LibriSpeech dev-other dataset. Difference in num­
ber of insertions, deletions and substitutions between non-rescored and rescored transcrip­
tions against dataset transcriptions. 

L L M insertions deletions substitutions 

B E R T base 149 -103 39 
B E R T base trained 140 -92 42 
B E R T large 91 -17 -18 
RoBERTa base 99 -87 64 
RoBERTa large 145 -91 73 

GPT-2 153 -217 172 
GPT-2 libri 129 -195 177 
GPT-2 libri2 129 -195 177 
GPT-2 medium 153 -217 172 
TinyLlama 193 -184 135 
Falcon 7B 218 -143 136 
Mistral 153 -30 11 
M P T 7B 194 -137 108 
Llama2 7B 244 -170 130 
Llama2 13B 222 -129 121 
Llama2 L o R A r8 235 -82 91 
Llama2 L o R A r32 246 -101 106 
Llama2 L o R A rl28 234 -78 86 
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Table D.2: Experiment with Jasper and T E D - L I U M dev dataset. Difference in number 
of insertions, deletions and substitutions between non-rescored and rescored transcriptions 
against dataset transcriptions. 

L L M insertions deletions substitutions 

B E R T base 131 -247 32 
B E R T base trained 136 -210 73 
B E R T large 104 -86 70 
RoBERTa base 86 -66 85 
RoBERTa large 80 -6 92 

GPT-2 109 -62 115 
GPT-2 libri 38 45 60 
GPT-2 libri2 38 45 60 
GPT-2 medium 109 -62 115 
TinyLlama 145 -77 136 
Falcon 7B 129 -27 140 
Mistral 125 -43 133 
M P T 7B 157 -105 152 
Llama2 7B 109 -16 136 
Llama2 13B 134 -12 151 
Llama2 L o R A r8 150 -26 157 
Llama2 L o R A r32 148 -48 149 
Llama2 L o R A r!28 158 -57 163 
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Table D.3: Experiment with Jasper and GigaSpeech dev dataset. Difference in number 
of insertions, deletions and substitutions between non-rescored and rescored transcriptions 
against dataset transcriptions. 

L L M insertions deletions substitutions 

B E R T base 1025 -1368 760 
B E R T base trained 1025 -1368 760 
B E R T large 996 -1361 696 
RoBERTa base 1171 -1519 1037 
RoBERTa large 889 -1086 992 

GPT-2 1048 -1874 808 
GPT-2 libri 1048 -1874 808 
GPT-2 libri2 1048 -1874 808 
GPT-2 medium 1261 -1951 1227 
TinyLlama 1294 -1898 1428 
Falcon 7B 1312 -1569 1540 
Mistral 1118 -1094 1238 
M P T 7B 1197 -1615 1364 
Llama2 7B 1322 -1622 1491 
Llama2 13B 1523 -2022 1658 
Llama2 L o R A r8 1138 -1157 1510 
Llama2 L o R A r32 1260 -1558 1703 
Llama2 L o R A r!28 1158 -1251 1586 
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Table D.4: Experiment with Jasper and T E D - L I U M test dataset. Difference in number 
of insertions, deletions and substitutions between non-rescored and rescored transcriptions 
against dataset transcriptions. 

L L M insertions deletions substitutions 

B E R T base 244 -480 67 
B E R T base trained 245 -352 83 
B E R T large 174 -159 100 
RoBERTa base 169 -90 108 
RoBERTa large 102 -46 129 

GPT-2 200 -200 157 
GPT-2 libri 48 68 111 
GPT-2 libri2 48 68 111 
GPT-2 medium 200 -200 157 
TinyLlama 241 -240 170 
Falcon 7B 234 -154 200 
Mistral 192 -143 177 
M P T 7B 300 -327 199 
Llama2 7B 194 -76 210 
Llama2 13B 234 -120 189 
Llama2 L o R A r8 236 -85 183 
Llama2 L o R A r32 264 -126 191 
Llama2 L o R A r!28 268 -150 200 
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