
T
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

L A R G E L A N G U A G E M O D E L S
I N S P E E C H R E C O G N I T I O N

VELKÉ PŘEDTRÉNOVANÉ JAZYKOVÉ MODELY V ROZPOZNÁVÁNÍ ŘEČI

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MARTIN TOMASOVIC
AUTOR PRÁCE

SUPERVISOR Ing. KAREL BENEŠ
VEDOUCÍ PRÁCE

BRNO 2024

T BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Bachelor's Thesis Assignment ||||||||||||||||||
Institut: Department of Computer Graphics and Multimedia (DCGM) 153477
Student: Tomasovic Martin
Programme: Information Technology
Title: Large Language Models in Speech Recognit ion
Category: Speech and Natural Language Processing
Academic year: 2023/24

Assignment:

1. Get acquainted with statistical language modeling and its application to speech recognition
2. Get acquainted with large pretrained langauge models (LLM)
3. Using a suitable dataset evaluate, how do LLMs improve transcriptions from publicly available ASR

systems
4. Analyse under what conditions are these improvements achieved and how important is the size of

the LLM

Literature:
• Zeping Min, Jinbo Wang: Exploring the Integration of Large Language Models into Automatic

Speech Recognition Systems: An Empirical Study, 2023, https://arxiv.org/abs/2307.06530

Requirements for the semestral defence:
1, 2, progress on 3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Beneš Karel, Ing.
Černocký Jan, prof. Dr. Ing.
1.11.2023
9.5.2024
3.5.2024

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://arxiv.org/abs/2307.06530
https://www.fit.vut.cz/study/theses/

Abstract
This thesis explores the conditions under which a Large Language Model (LLM) improves
Automatic Speech Recognition (ASR) transcription.

Specifically, the thesis focuses on n-best rescoring with masked and autoregressive lan
guage models. The n-best hypotheses are scored using L L M and then this score is interpo
lated with the scores from A S R . This approach is tested across different A S R settings and
datasets.

Results demonstrate that rescoring hypotheses from Wav2Vec 2.0 and Jasper A S R sys
tems reduces the error rate. L L M fine-tuning proves to be very beneficial. Smaller fine-
tuned models can surpass larger non-fine-tuned ones.

The findings of this thesis broaden the knowledge of the conditions for L L M (autoregres
sive, masked) utilization in A S R rescoring. The thesis observes the influence of fine-tuning,
normalization and separating scores from a C T C decoder on the decrease of word error
rate.

Abstrakt
Táto práca má za cieľ preskúmať, v akých podmienkach veľké jazykové modely vylepšujú
prepisy automatického rozpoznávania reči.

Konkrétne sa zameriava na preskórovanie n-najlepších hypotéz pomocou maskovaných
aj autoregresívnych jazykových modelov. Pomocou nich sa každej hypotéze priradí skóre,
ktoré sa následne interpoluje so skórami získanými zo systému prepisu reči. Tento postup
som testoval naprieč datasetmi a rôznymi systémami pre prepis reči s rôznym nastavením.

Výsledky vykazujú, že preskórovanie znižuje mieru chybovosti hypotéz získaných z mod
elov Wav2Vec 2.0 a Jasper. Dotrénovanie modelov sa overilo byť veľmi prospešné pri danej
úlohe. Menšie dotrénované modely prekonali väčšie nedotrénované pri preskórovaní.

Výsledky tejto práce prispievajú k lepšiemu porozumeniu, v akých podmienkach použiť
jazykový model (autoregresívny, maskovaný) pri preskórovaní prepisov reči. Táto práca
skúma vplyv dotrénovania, normalizácie a rozdelenia skóre z C T C dekodéra, na zníženie
miery chybovosti slov.

Keywords
automatic speech recognition, n-best rescoring, large language model, masked language
modeling, autoregressive language modeling

Kľúčové slová
automatické rozpoznávanie reči, preskórovnaie n-najlepších hypotéz, veľký jazykový model,
maskované modelovanie jazyka, autoregresívne modelovanie jazyka

Reference
T O M A S O V l C , Martin. Large language models in speech recognition. Brno, 2024. Bache
lor's thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Karel Beneš

Rozšírený abstrakt
Veľké predtrénované jazykové modely sa dnes používajú hlavne v rôznych úlohách spra
covania prirodzeného jazyka. Otázne je, či sa dá použitím veľkých jazykových modelov v
automatickom prepise reči dosiahnuť zlepšenie kvality prepisov.

Veľké jazykové modely sú natrénované na obrovskom množstve textu. Sú naučené, ako
by mal korektný text vyzerať. Systémy automatického prepisu reči posielajú na výstup
hypotézy s určitou pravdepodobnosťou. Predpoklad je, že veľké jazykové modely môžu
vybrať lepšiu hypotézu, než tú, s najväčším skóre od systému pre prepis reči. Výskumy v
danej oblasti sú nejednoznačné a preto sa oplatí dané viac preskúmať.

V práci skúmam prístup preskórovania n-najlepších hypotéz. Vyskúšal som rôzne jazykové
modely, v kombinácii s tromi rôznymi systémami prepisov reči a tromi datasetmi. Medzi
vybranými sú zástupcovia maskovaných a autoregresívnych jazykových modelov podobných
veľkostí, aby sa ich dalo porovnať. Okrem iného, som testoval vplyv dotrénovania jazykový
modelov na výsledok preskórovania.

Výsledné zistenia poskytujú informácie o efektivite konkrétnych nastavení jazykových
modelov a systémov pre prepis reči. Tieto poznatky môžu pomôcť k implementácii preskórova
nia pomocou veľkých jazykových modelov v iných systémoch.

Proces prepisu nahrávky zvuku je nasledovný. Vstupom do systému je súbor so zvukom
(typicky vo formáte WAV) . Ten je vzorkovaný na 16 kHz. Zvukové nahrávky v experimen
toch sú prevzaté z anglických datasetov, menovite: LibriSpeech, GigaSpeech a T E D - L I U M .
Tieto zahŕňajú čítanú aj spontánnu reč z rôznych tém.

Pre prepis reči z datasetov na hypotézy som použil nasledovné End-to-end systémy
prepisu reči: Wav2Vec 2.0 Base 960h, Whisper Medium a STT E n Jasperl0x5dr. Všetky
využívajú beam search pre vytvorenie viacerých hypotéz. Wav2vec a Jasper fungujú s C T C
dekodérmi a malými n-gram jazykovými modelmi. Ja som počas dekódovania použil 4-gram
K e n L M model natrénovaný na LibriSpeech.

Upravil som C T C dekodér pre Wav2Vec, aby na výstup posielal skóre akustického mod
elu, skóre K e n L M , a počet slov oddelene. Ďalej som upravil dekodér pre Whisper, aby
na výstup posielal viacero hypotéz. Model Jasper a jeho dekodér som použil bez zmien v
zdrojovom kóde programu.

Hypotézy zo systému prepisu reči som oskóroval pomocou maskovaných a autoregresívnych
jazykových modelov. Skórovanie bolo uskutočnené súčtom pravdepodobností pre každý to-
ken v danej hypotéze. Maskované modely pri jednom vstupe predikujú jediný token pre
danú hypotézu. Predikovaný token je token pod takzvanou maskou označený [MASK]. Aby
sa oskóroval text, musí sa viackrát spustiť predikcia tokenu pod maskou, konkrétne x krát,
kde x je počet tokenov v texte. Autoregresívne modely spracúvajú text zľava doprava. Text
stačí prejsť raz. Ich nevýhoda je, že nemajú prístup k nasledovným tokenom.

Boli vykonané experimenty s Wav2Vec 2.0 s K e n L M a lexikónom, iba s lexikónom a
bez K e n L M a lexikónu. P r i experimentoch s modelom Jasper bol jeho výstup dekódovaný
s využitím K e n L M . Najlepšie namerané zlepšenie W E R je 4% absolútne.

V experimentoch som použil tieto maskované jazykové modely: B E R T uncased vo
veľkosti Base 110M a Large 340M, RoBERTa vo veľkostiach Base 125M a Large 355M.
A tieto autoregresívne modely: GPT-2 s veľkosťami Base 137M a Medium 380M, TinyL-
lama 1.1B, Falcon 7B, Mistral 7B, M P T 7B, Llama2 o veľkostiach 7B a 13B.

Pre ďalšie ešte väčšie vylepšenie preskórovania, som dotrénoval modely B E R T Base
uncased a GPT-2 na texte z LibriSpeech datasetu. Modely sa po dotrénovaní zlepšili najmä
pri preskórovaní LibriSpeech datasetu. Okrem týchto som dotrénoval model Llama2 7B s
využitím L o R A na texte z datasetu GigaSpeech X L . Vyskúšal som tri rôzne nastavenia:

r = 8 , r = 3 2 a r = 128. Tieto tri dotrénované Llama modely vykazujú konzistentné
zlepšenie naprieč datasetmi.

Preskórovanie prebieha v poslednej časti spracovania zvuku. Pre skóre získané z aku
stického modelu, veľkého jazykového modelu, počet slov a v niektorých prípadoch skóre n-
gramu, sa musia nájsť vhodné váhy. Po prenásobení jednotlivých skóre príslušnými váhami
sa výsledky sčítajú. Daný súčet nazývam nové skóre textu a vyberá sa hypotéza s najlepším
novým skóre.

V popísaných experimentoch som pre hyperparametre každého dekodéra a pre všetky
váhy našiel najlepšie hodnoty. Váhy som hľadal najskôr prehľadávaním mriežky a následným
polením intervalu okolo najlepšieho výsledku z prvej časti hľadania.

Zistil som, že daný postup bol v dvoch z troch (pre modely Whisper nie) systémov
úspešný. Bola nájdená korelácia medzi veľkosťou jazykového modelu a zlepšením v prepisoch
reči s drobnými výnimkami - GPT-2 a GPT-2 Medium. Okrem toho som našiel aj výnimky
v prípade relatívne malého modelu TinyLlama, ktorý dosahoval podobné zlepšenie ako
násobne väčšie modely.

L a r g e l a n g u a g e m o d e l s i n s p e e c h r e c o g n i t i o n

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Karel Benes. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

Martin Tomasovic
May 9, 2024

Acknowledgements
I would like to sincerely thank my supervisor Ing. Karel Benes for his mentoring and help.

Computational resources were provided by the e-INFRA CZ project (ID:90254), sup
ported by the Ministry of Education, Youth and Sports of the Czech Republic.

Contents

1 Introduction 3

2 Automatic speech recognition 4
2.1 End-to-End systems 4
2.2 A S R evaluation metrics 4
2.3 Feature extraction 5
2.4 Connectionist temporal classification 5
2.5 Beam search 6
2.6 Patience 6

3 Language modeling 10
3.1 Statistical language model 10
3.2 Metric 11
3.3 Text standardization 11
3.4 Tokenization and indexing 12
3.5 Encoding and embedding 12
3.6 Large Language Models 13
3.7 Transformer architecture 13
3.8 Positional encoding 15
3.9 Attention 16
3.10 Activation function 20
3.11 Residuals and Layer Normalization 21
3.12 Low-Rank Adaptation 22
3.13 Dropout 23
3.14 Language models in automatic speech recognition 23
3.15 Sentence scoring 24

4 Pre-trained models 26
4.1 Byte Pair Encoding tokenizer 26
4.2 Wav2Vec 2.0 27
4.3 Whisper 28
4.4 Jasper 30
4.5 Autoregressive Large Language models 32
4.6 Masked Language Models 35

5 Experiments 37
5.1 Datasets 38
5.2 Fine-tuning 40

1

5.3 C T C decoder edit 4 2

5.4 Wav2Vec 2.0 experiments 4 2

5.5 Jasper experiments 45
5.6 Whisper experiments 47

5.7 Experiments summary 48

6 Conclusion 5 0

Bibliography 51

A Wav2Vec measurements 56

B Jasper measurements 62

C Whisper measurements 65

D Difference in insertions, deletions and substitutions 72

2

Chapter 1

Introduction

Automatic speech recognition (ASR) finds applications across various domains and indus
tries. From simple internet browsing by saying "Hey Google" or "Hey Siri", through writing
court reports to emergency hot-line robots. The improvement is very welcome. One way
to improve it is using language models that know what correct text should look like.

Generative artificial intelligence is one of the most groundbreaking innovations in the
field of artificial intelligence in the last few years. It encompasses large language models.
Which achieves state-of-the-art in multiple natural language processing tasks. These great
results inspired research in applying large language models in other areas. One of them is
automatic speech recognition.

The studies about improving speech transcriptions using large language models show
varying results [19, 52, 29]. In this thesis, I joined this effort to improve automatic speech
recognition systems using large language models. More precisely, by setting A S R systems
to produce more than one possible transcription of a speech from an audio file and then
using L L M to help A S R systems choose the best speech transcription.

This thesis aims to test how large language models influence A S R transcriptions. Find
how important is the size of the large language model. Compare the performance of masked
and autoregressive models in this task. Observe factors influencing the result of rescoring.

In chapter 2, A S R systems are described. The chapter 3 aims to explain how language
models work and how they can be used with A S R systems from the previous chapter.
Transformer architecture is also described here. Following chapter 4 is more practical,
all A S R models and large language models used in experiments are described here. The
experiments and datasets description is in chapter 5. It specifies experiments and describes
the results. There is a summary of findings, and further steps are proposed, in the last
chapter 6.

3

Chapter 2

Automatic speech recognition

Automatic speech recognition (ASR) is the process of transcribing speech from audio to
text form using computer software. In the past, statistical models were used for ASR, in
recent years they have been replaced with deep learning-based end-to-end systems [33].

2.1 End-to-End systems

End-to-end (E2E) models are composed of these parts: encoder, alignment and decoder.
The encoder maps the input acoustic frame sequence into a higher-level representation. To
encode the input recurrent neural networks (uni-directional or bi-directional), convolutional
networks, or transformers can be utilized.

Captured signal usually contains noise. Noises may cause waveforms of two different
words to be indistinguishable, therefore it would be difficult in further steps to correctly
transcribe these words. The pre-processing aim is to reduce noise in the signal. Many
different methods are used to do it. Some of them are normalization, pre-emphasis and
other [27].

To find alignment between the acoustic frame sequence and the corresponding label
sequence, in E2E there are multiple approaches: explicit alignment, implicit alignment,
and attention-based E2E with alignment modeling. Connectionist temporal classification
belongs to the explicit alignment finding approaches and is described further in this chapter.

A l l A S R models I used have an autoregressive decoder utilizing beam search. Autore-
gressive means, it predicts an output token based on the previous prediction.

To validate how well an A S R model is, there exist multiple metrics I focused on word
error rate described in the following section.

2.2 A S R evaluation metrics

In A S R word error rate (WER) and sometimes character error rate (CER) are used to
measure how good the speech transcriptions are. Mandarin or Japanese transcriptions are
typically evaluated using C E R .

WER = I + D + S

 x ioo (2.1)
N

W E R computation is in Equation 2.1, where / is the number of insertions, D deletions,
S substitutions and N is the number of words. The numerator in the equation is Levenshtein

4

distance. Levenshtein distance between two sequences is the minimum number of single-
word edits - insertions, deletions or substitutions - required to change one word. C E R
has a similar definition, but Levenshtein distance is counted over characters and iV is the
number of characters [13].

2.3 Feature extraction

Some A S R systems need to preprocess audio into mel frequency. It works like the hu
man ear's perception of sound. The lower frequencies have better resolution than higher
frequencies.

In general, the frequency content of a speech signal over time is described by the power
spectrum of the signal. Usually, the peaks in a spectrum relate to the formant frequencies.
Formants are frequency peaks in the spectrum which have a high degree of energy. They
are especially prominent in vowels. Each formant corresponds to a resonance in the vocal
tract - the spectrum has a formant approximately every 1000 Hz. [2, 6].

Mel-Frequency Cepstral Coefficients (MFCC) extraction is depicted in Figure 2.1 in
spired by [1]. It is done in the phase of feature extraction, which is a process of extracting
hidden information from a raw data signal. It minimises discontinuities of the signal. In
Equation 2.2 for M F C C , / denotes frequency and mel(f) is the mel frequency [6].

Pre-emphasis Framing and
Windowing DFT Mel-Frequqncy

filter bank Logarithm DCT MFCC feature

Figure 2.1: M F C C extraction process. The result is Mel-Frequency Cepstral Coefficients
(M F C C) . M F C C extraction is depicted in (Figure 2.1) taken from [1]. Hamming window
is applied, to the input signal. Then Discrete Fourier Transform (DFT) is performed over
the signal. In this step, the power spectrum is computed. The next step is mel frequency
warping, where the numbers of coefficients are obtained. After that, the logarithm of
the power spectrum is taken. In the end, the cepstral coefficients are then computed by
transforming the log spectrum to the cepstral domain using an inverse Discrete Fourier
Transform (IDFT).

mel(f) = 2595 • log10 j (2.2)

2.4 Connectionist temporal classification

Finding alignment between input and output letters or words is a very time-consuming
task. To address this, a neural network sequence-to-sequence model with Connectionist
temporal classification (CTC) [15] is utilized. The model finds alignment between input
and output sequences of variable lengths.

The basic idea is that based on an input sequence, the model's outputs are interpreted
as a probability distribution over label sequences. A n objective function can be derived
from this distribution. The objective function directly maximises the probabilities of the
correct labellings. The network can be trained with backpropagation through time because
the objective function is differentiable [15].

C T C works over frames, a single character may be in multiple frames, which causes
character repetition in the output. This could be solved by merging characters that repeat.

5

However, words where characters repeat for example in words "hello" or "running". To
handle repeating characters in the output, there is a special token called a blank token.
Tokens between two blank tokens are being merged [16].

2.5 Beam search

Search is the last step in A S R . For an observed source sequence, the search algorithm gen
erates the most likely target sentence of unknown length. To get words and sentences from
a sequence of probabilities obtained from previous steps, the decoder is needed. Common
decoder choices are greedy search and beam search.

Beam search [33, 12] serves to select the best subset of hypotheses C from all possible
combinations of output sequences.

The inputs for beam search are symbols (characters and a blank symbol) and their
corresponding log probabilities. The output from the algorithm is a list of transcriptions
and their scores. The basic beam search works as follows. The best hypotheses set is
constructed by processing input symbols from left to right and at each step retaining a fixed
number (beam) of the candidates with the highest log probability. How many candidates
to keep in each step is determined by the beam size parameter. When the end-of-sequence
symbol occurs within the highest-scoring candidates and the transcription is added to the
final transcription list, the beam size is reduced. The search stops when the beam size is
equal to zero. Then the best transcription is chosen according to the highest normalized
log probability.

The greedy search does not consider alternative hypotheses. This imposes degradation
in decoding with longer target sequences. But the degradation is not big, in well-trained
models it is minimal.

2.6 Patience

Widely used implementations of beam search - fairseq, Hugging Face's Transformers -
follow the first come, first served (FCFS) heuristic.

F C F S heuristic returns the best candidate when k finished candidates are found, where
k is the beam size. In that moment it also discards all current, unfinished sequences. So
breadth and depth of the beam search depend on beam size k. To separate the breadth and
depth control the patience factor can be used. The patience factor modifies the stopping
criterion and thereby changes the depth of the search. It controls how many finished
candidates have to be found before terminating the decoding [22].

6

Algorithm 1 F C F S beam decoding with controlled patience factor p [22]. The common
implementation can be considered in cases where p = 1. Line 17 shows where is the patience
factor used in the algorithm. Ft: already completed sequences; Bt: beam of continuing
sequences. Ht: expanded hypotheses before the top-k operation. The input sequence to
score is omitted.
k: beam size, M : maximum length, V: Vocabulary, score(-): scoring function, p: patience
factor

' £ o < - { < O , B O S > } , F o < - 0
for t € {1, . . . , M- 1} do

for (s,y) £ -Bt-i do > Expansion,
for y G V do

s <— score(y o y), iJ.add((s, y o y))
end for

end for

while \Bt\ < k do > Find top k w/o EOS from H.
(s> y) <— H.maxQ
if y.lastQ = EOS then

Ft.add((s, y)) > Finished hypotheses,
else

S t . a d d « a , y))
end if
if |-Ft | > k • p then > Originally, p = 1.

return Fj.maxQ
end if
H.iemove((s, y))

end while
end for
return i^.maxQ

Research has shown that adjusting patience significantly improves the generation per
formance on text summarization, with an insignificant slowdown in generation [22]. M y
hypothesis is that adjusting patience could be beneficial in generating transcription hy
potheses and thus improve the final transcription after rescoring the hypotheses with a
large language model. Before rescoring experiments, I did measurements on 100 randomly
selected samples from the GigaSpeech dev subset with various beam sizes and patience
values.

In Figure 2.2, it can be seen that patience greater than one influences how many final
hypotheses the algorithm outputs. The greater the patience, the more the final hypotheses.
The dependency between the patience factor greater than one and the number of outputted
hypotheses is linear. Also the bigger the beam size, the steeper the increase in hypotheses
count. This effect is caused by patience's influence on the stopping criterion. The patience
factor which is greater than one, moves the stopping condition, so the search finds more
final candidates.

7

1.0 1.5 2.0 2.5 3.0
Patience

Figure 2.2: Graph showing average output hypotheses count depending on patience factor
and beam size, using adjusted Whisper medium beam search decoder outputting multiple
hypotheses.

Furthermore, with a higher patience value, generated hypotheses have more words and
characters on average (Figure 5.1).

(a) words (b) characters

Figure 2.3: Graphs showing the average number of words (left) and characters (right) in a
hypothesis depending on patience factor and beam size, using adjusted Whisper medium
beam search decoder outputting multiple hypotheses.

The patience factor also influences W E R . Figure 2.4 shows that the best possible W E R
is decreasing with a greater patience factor. The best possible W E R is obtained by selecting
the transcription with the lowest W E R for each audio recording.

8

1.0 1.5 2.0 2.5 3.0
Patience

Figure 2.4: Graph showing best W E R dependence on patience factor and beam size, using
adjusted Whisper medium beam search decoder outputting multiple hypotheses.

The average time of transcription in seconds is shown in Figure 2.5. The transcription
time is the time of inference and decoding, using the Whisper medium model. There is
a slight increase in average transcription time with an increasing patience factor. Also,
beam size increases the transcription time and this increase is more significant than the one
caused by patience.

1.0 1.5 2.0 2.5 3.0
Patience

Figure 2.5: Graph showing average time of transcription (inference + decoding) in seconds.
The transcription time depends on the patience factor and beam size. Measured using
adjusted Whisper medium beam search decoder outputting multiple hypotheses.

Based on previous measurements, I assume setting a big enough patience factor in n-best
rescoring can improve W E R and save time. Increasing the patience factor may compensate
for a small beam size.

9

Chapter 3

Language modeling

Language modeling captures regularities of natural language to improve the performance
of various natural language applications. Language modeling amounts to estimating the
probability distribution of various linguistic units, such as words, sentences, and whole
documents [39].

Language modeling is crucial for a large variety of language technology applications.
These include speech recognition, machine translation, document classification, optical
character recognition, email spam detection, information retrieval, handwriting recogni
tion, spelling correction, and many more. Speech recognition is where language modeling
started.

Language modeling employs statistical estimation techniques using text as language
training data. Because of the categorical nature of language and the large vocabularies
commonly used in speech, statistical techniques must estimate a large number of parameters
and consequently depend critically on the availability of large amounts of training data.

After large amounts of text became available online, it offered large training data, which
led to a dramatic increase in the quality of language models.

3.1 Statistical language model

A statistical language model is a probability distribution P(s) over all possible sentences s
or spoken utterances, documents, or any other linguistic unit [39].

Statistical language models are usually used in the context of a Bayes' classifier, where
they can play the role of either the prior or the likelihood function. For example, in ASR,
given an acoustic signal a, the goal is to find the sentence that is most likely to have been
spoken. The solution is in Equation 3.1, where the language model P(s) plays the role of
the prior.

s* = argmaxP(sja) = argmaxP(ajs) • P(s) (3-1)
s s

N-grams [39] are statistical language models, that are widely used in ASR.

P(wi\hi)P(wi\wi-n+i,..., Wi-i) (3.2)

The n-gram language model can be described by an Equation 3.2, where Wi represents
the word at the i th position in a given input and h = u>i,u>2,... ,Wi-i represents history.
They can model probability distribution over characters or words. In a word n-gram model,
the probability of the next word depends on the n — 1 previous words. For example in a

10

sentence "I will do it tomorrow", is the word "tomorrow" conditioned on "do it", represented
as P(tomorrow\doit).

Perplexity is the most often used metric for evaluating language model performance [39, 26].

Perplexity can be interpreted as the geometric average branching factor of the language
according to the model. It is a function of the language and the model. When considered
a function of the model, it measures how good the model is. The better the model, the
lower the perplexity. When considered a function of the language, perplexity estimates the
entropy, or complexity, of that language. In the end, the quality of a language model must
be measured by its effect on the specific application for which it was designed. Perplexity
is calculated as shown in Equation 3.3, where W = (u>o, u>i,..., wt) represents a tokenized
sequence comprising of t tokens. In the equation, logpQ(wi\w<i) is the log-likelihood of a
token Wi conditioned on the preceding tokens.

3.3 Text standardization

Text standardization [9] is a basic form of feature engineering that aims to erase encoding
differences that the text processing model does not need. The standardization techniques
improve model generalization, and the model will require less training data. For example,
the model won't need abundant examples of the word „Sunset" when it knows „sunset".
The disadvantage of text standardization is the loss of information. The choice of text
standardization schema must not conflict with the specific task that the model is meant
for, for example, standardization schema removing the symbol „?" used with the model
extracting questions from the text.

3.2 Metr ic

(3.3)

11

A: Sunset came. I stared at the Mexico sky, eating jalapeno. Isn't nature splendid?
B: sunset came i stared at the mexico sky eating jalapeno isnt nature splendid
C: sunset came i stared at the mexico sky eating jalapeno isnt nature splendid
D: sunset came i [s t a r e] at the mexico sky [e a t] jalapeno isnt nature splendid

Figure 3.1: Standardization schemes. One popular text standardization scheme is to con
vert text to lowercase and remove punctuation characters. Consider text A , applying the
standardization scheme, the standardized text would be text B . Another common stan
dardization scheme is to convert special characters to a standard form. That means to
replace character „e" with e, „h" with „n", „se" with „ae", etc. When the two standard
ization schemes are applied to the text, the result is text C. A n example of an advanced
standardization pattern that is more rarely used is stemming. Stemming means converting
variations of a term into a single shared representation. Examples of stemming are turning
„caught" and „been catching" into „[catch]", „was staring" and „stared" into „[stare]" or
„cats" into „[cat]". The resulting sentence after applying all three standardization schemes
looks like text D.

There are many text standardization schemes. Three popular ones are depicted in
Figure 3.1. In the context of ASR, text standardization is influenced by the A S R model
and in the case of my experiments by the chosen dataset format.

3.4 Tokenization and indexing

Tokenization [9] means splitting text. To tokenize standardized text, three methods can be
applied:

• Word-level tokenization - text is divided into words or smaller subword units for
example „going" can be split into „go" + „ing"

• N-gram tokenization - tokens create groups of N consecutive words e.g. sentence „He
is going to the train station" would be tokenized into 2-gram tokens: „He is", „is
going", „going to", „to the", „the train", „train station".

• Character-level tokenization - a token is a character e.g. „going" is tokenized as „g"
o" i " n" g"

Word-level tokenization is used in sequence models. Sequence models are text-processing
models that take into consideration the order of words.

When a token is not included in the model vocabulary, it is called an out-of-vocabulary
(OOV) token. Many tokenizers have a special marking for O O V tokens.

3.5 Encoding and embedding

Encoding [9] is the conversion of an index into a vector that can be processed by a neural
network. A commonly used encoding is one-hot encoding. This assigns a vector of all zeros
and a single one at the index number position. For example, 3 is encoded to 0000 1000.
The disadvantage of this approach is that it creates sparse vectors. The created vectors

12

are orthogonal to each other - there is no relationship encoded in vectors representing the
encoded words. The created vectors are high-dimensional, so they take too much memory.
This is the reason why vocabularies mentioned in Section 3.4 are restricted to 20k or 30k
most common words in the training dataset. This means 20k or 30k dimensions - the same
amount of dimensions as the number of encoded words.

Embedding [9, 53] refers to a vector representation of words that encodes information
about semantic relationships. Sequence of length I is converted to a matrix W G M.lxd,
where d is the embedding dimension.

Two vectors representing two words should be close to each other when they have the
same meaning, for example happy and delighted. On the other hand, vectors representing
words with different meanings should lie far away from each other. A n example of such real-
world transformation is a plural vector which can be added to other vectors. For example,
a „potato" vector, resulting in „potatoes". The advantage of the embedding vectors is that
they are dense. They have typically 256, 512 or 1024 dimensions.

3.6 Large Language Models

Large Language Model (LLM) [31] is a deep learning model pre-trained on a vast amount
of data. The L L M s in the experiments are built upon the Transformer architecture.

The historical evolution of L L M s can be traced back to statistical language models.
Neural language modeling evolved from statistical language modeling. Initially, supervised
task-specific language models were trained. Later self-supervised language models were
developed to learn a generic representation for various N L P tasks. These models are called
pre-trained language models. Subsequently, L L M s emerged from pre-trained language mod
els, by increasing the number of model parameters.

3.7 Transformer architecture

Transformer architecture [54] proposes an innovative approach to sequence transduction
tasks. The advantage of transformer architecture is that it does not use recurrence. The
core of transformer architecture is attention (Section 3.9).

13

Output
Probabilities

T I Softmax I
t

L Linear

Add & Norm

Feed
Forward

Nx Add & Norm

Multi-Head
Attention

[Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

i J. /
i , }

Nx

I Add & Norm

Masked
Vlulti-Head
Attention

Positional O v i
Encoding V j / V

Input
Embedding

f© Positional
Encoding

Output
Embedding

I
Inputs Outputs

(shifted right)

Figure 3.2: Transformer schema. Inputs to the transformer are positionally encoded. These
positionally encoded inputs are processed by stacks of N encoder blocks (on the left) and
iV decoder blocks (on the right). Each block consists of multiple layers of self-attention and
point-wise, fully connected layers.

The architecture is depicted in Figure 3.2 from [54]. At first, the input sequences are
tokenized (Section 3.4) and converted to embeddings (Section 3.5) using the embedding
layer. In the next step, the embeddings are positionally encoded. Positional encoding
(Section 3.8) is used to incorporate information about the absolute position of the tokens
in the sequence.

Matrices of word embeddings W and positional encodings P are summed to generate
the input representation X = W + P G M.lxd.

The transformer consists of 2 main blocks: an encoder and a decoder. The input for
transformer is sequence xi, x<i... xn, encoder transforms the sequence to z\, zi... zn and
decoder transforms sequence of zs to y\, y 2 • • • yn, while previously generated output y tokens
are fed to the model.

The transformer blocks are composed of multiple layers. Each of the layers in the
encoder and decoder contains a fully connected feed-forward network, which is applied to
each position separately and identically. For each position, linear transformation defined in
Equation 3.4 is performed.

FFN(x) = max(0, x W i + & i) W 2 + 62 (3.4)

The transformations are consistent at different positions, but they differ at the layer
level [54, 53].

14

The main advantage of attention layers against recurrent is that they reduce path
lengths, and reduce the amount of computational steps that information has to go through
from one point of the network to the other. Another advantage is that more computation
can be parallelized.

3.8 Positional encoding

Positional encoding carries information about word order [53, 9]. Requirements for posi
tional encodings are:

• Unique value at each time-step.

• Consistent distance between two time-steps across sentences of various lengths.

• Encoding results are generalized independent of the length of the sentence.

• The encoding is deterministic.

Absolute positional encoding

Absolute positional encoding passes information about the absolute position to be used
during the attention weight calculation. It is used in the original Transformer [54], where
sine and cosine functions of different frequencies are used to encode position. Positional
encoding is represented by P G M I ' x r f where L is the maximum sequence length and d is
the embedding dimension. Each row pt of P contains the positional encoding for the token
at position i.

PiM = s in (i /1000 2 i / d) (3.5)

Pi,2j+i = cos(i /1000 2 i / d) (3.6)

In Equations 3.5 and 3.6, i is the position and j is the dimension.

Relative positional encoding

Relative positional encoding [42, 53] leverages distance between two positions in a sequence.
The relative distance between query and key k, vectors is incorporated in attention
weight calculation, biasing the attention mechanism to consider the distance i — j as the
important quantity.

Rotary positional encoding

Rotary positional encoding (RoPE) [47] differs from previous approaches by not adding a
positional vector. Instead, it encodes position using rotation.

q m = fq(xm,m) (3.7)

k„ = /fc(x„,n) (3.8)

, , , / c o s m » -smme\ (^{q% W{$}\ (xft}
W m ' m) ~ W n ^ <x»rn6){w™ W™}) [a®) ^

15

Positions m and n are incorporated into values of query q m and key k„ through fq and
fk as depicted in Equations 3.7 and 3.8, where x m and x„ are word embeddings. Then,
the query and key values are used to compute the attention weight (Section 3.9). A matrix
for 2D rotation is depicted in Equation 3.9, where {x$,x$) is xm expressed in the 2D
coordinates.

3.9 Attention

The attention mechanism [53] can be viewed as a memory comprising of keys, values and
a layer that produces output when queried. The output is generated from the value whose
keys map the input. The query serves as the input for the attention layer. The values
represent a body of knowledge from which information is extracted. Each value is assigned
a key, which is in a format that can be easily compared to a query.

Formally, the memory unit consists of n key-value pairs (ki, v i) , (k „ , v„) with k G
M.dk, v G M.dv. The attention layer receives input as query q and returns an output o with
the same shape as the value v: q G M.di, o G M.dv.

The attention layer measures the similarity between the query and the key using a score
function a (Equation 3.10). The a returns scores ai,...,an for keys k i , . . . ,k„ . Attention
weights are computed by applying softmax to the values from a (Equation 3.11). Each
element of b is computed as displayed by Equation 3.12. Equation 3.13 shows the calculation
of the output o.

aj = a(q,kj) (3.10)

b = softmax (a) (3.11)

= v ^ - T (3-12) ^ i e x p (a i)
n

o = Y,biVi (3.13)
i=i

According to the score function a, there are different types of score-based attention.
Dot product attention is multiplicative and simple. It has no parameters to tune. Equation
3.14 displays the score function.

a (q , k) = q k (3.14)

Scaled dot product attention is multiplicative, too. Equation 3.15 shows the scoring
function, that divides the dot product by to remove the influence of dimension d^. As
the dimension increases, the dot products grow larger, which pushes the softmax function
into regions with extreme gradients.

a(q,k) = ^=S (3.15)

Linear attention is additive. The query and keys are projected to a hidden layer of
dimension h. The weights (W&, W 9) are combined with values using a sigmoid function as
given by Equation 3.16.

a(q, k) = v T tanh W f c k + W g q (3.16)

Additive scoring mechanisms are slower and less memory efficient than dot product or
scaled dot product scoring.

16

Self-attention

The basic idea of self-attention is to convert input vectors, Xj, to output vectors Zj, using
an attention matrix generated from the input vector. The attention matrix is used to
produce a weighted average of the input feature. To generate the attention matrix, the
similarity between two locations is measured by the dot product between the features at
those two locations and then a softmax function is applied to handle the normalisation. This
approach entangles information about the similarity between locations in the sequence with
the content of the sequence itself [51].

The self-attention used in transformer architecture uses trainable matrices to produce
query, key and value. Each input vector x j generates three different vectors: query, key and
value (qj,kj,Vj). These vectors are obtained by projecting the input vector, Xj, at time
i on the learnable weight matrices W g , W „ to get qj, kj and Vj, respectively. The
weights in the weight matrices are trainable parameters of the model.

The query, key and value vectors are not combined by vector computation for each
token i. The input matrix X £ M.lxd where I is the maximum length of the sequence and d
is the dimension of the inputs, combines with each of the query, key and value matrices as
a single computation (Equation 3.17).

attention(Q, K , V) = softmax (3.17)

Query, key and value vectors have the following roles in self-attention. The role of
the query vector of token i, q^, is to combine with every other key vectors z2j=o Qi^-j to
influence the weights for its own output, Zj. The role of the value vector of token i, Vj,
is extracting information by combining with the output of the query-key scores to get the
output vector Zj.

Multi-head attention

There are h self-attention heads that are parallel in the multi-head attention (MHA) [54].
The purpose of using multi-head attention is that more heads learn different types of de
pendencies in the input sequence by providing different subspace representations instead
of just a single representation for the input. For example in the sentence „Einstein was a
genius, he revolutionized physics.", one attention head may not be enough to capture all
connections to the word "revolutionized", such as "Einstein", "he", "physics". Using more
heads increases the chances of finding all related words to "revolutionized".

In M H A each set of query, key and value weight matrices produces different query, key
and value matrices for the inputs, eventually generating output matrices Zj. The output
matrices are concatenated. The final matrix, Z, with vectors Zj as output for each Xj is
obtained by multiplying the concatenated output matrix with an additional weight matrix,
W o (Equation 3.19). The headi from Equation 3.19 is defined in Equation 3.18.

headi = attention(WjQ, W J . K , W * V) (3.18)

MHA(Q, K , V) = concat(headi,headh)W0 (3.19)

Masked attention

Masked attention [53] is an attention in which some tokens are masked. This is utilized by
the decoder.

17

The decoder is autoregressive, it predicts the next token based on the sequence that has
been seen by the model. To prevent it from seeing the future tokens, they are masked.

The decoder block of the transformer network uses the masked multi-head attention.
Only previous tokens are considered, and future input tokens are masked. The masking is
implemented using a masking weight matrix M that has — oo for future tokens and 0 for
the previous tokens. The matrix M is added to the multiplication of Q and K T (Equation
3.20). Then the softmax results in the actual scaled values for previous tokens and the
value 0 for the future tokens.

masked Attention^, K , V) = softmax (——^=t—) V (3.20)
\ Vdk

Mult i -Query attention

Multi-Query Attention (MQA) [43] is a variation of M H A . It consists of multiple attention
heads. The difference against the M H A is that the heads share a single set of keys and
values. M Q A does not change the number of query heads.

Autoregressive decoder inference is a bottleneck for L L M models because of memory
consumption at every decoding step. The main advantage of M Q A addresses this problem,
it reduces memory bandwidth from loading keys and values, and it lowers the ratio of
memory access to arithmetic operations. However, it has the disadvantage that it can
cause the training to be unstable and model quality to degrade [43, 3].

Grouped-Query Attention

In Grouped-Query Attention (GQA) [3], query heads are divided into G groups. A single
key and value head is shared by each group of query heads. M H A and M Q A can be
considered as the edge cases of G Q A . M H A is the G Q A with the same number of groups
as the number of query heads. On the other side, M Q A is equal to G Q A with one group
G = 1 of query heads. The comparison of M H A , G Q A and M Q A is displayed in Figure 3.3
taken from research paper [3].

G Q A is not used in the encoder, only in the decoder self-attention layers. The reason for
this is that memory bandwidth is not the main bottleneck in the encoder because encoder
representations are computed in parallel.

Multi-head Grouped -que ry

Values

Keys

" • f f l o f f i o dbdbdbdb DQDDDDDD
Figure 3.3: Comparison of Multi-head Attention M H A , Grouped-Query Attention G Q A
and Multi-Query Attention M Q A . M H A has H query, key, and value heads. Single key
and value heads are shared across all query heads in M Q A . G Q A is interpolating between
multi-head and multi-query attention, single key and value heads for each group G of query
heads are shared in G Q A .

Multi-query

D

18

Sliding-Window Attention

Let W be the size of an attention window - the number of tokens each token can attend
to. Sliding-Window Attention uses the stacked layers of a transformer model to extend its
attention beyond the fixed window size W.

For a model with k layers, consider hi to be the hidden state in position i of the layer
k. The hidden stated hi attends to all hidden states from the previous layer with positions
between i — W and i, maximally at a distance of W x k tokens. A theoretical attention
span of approximately 131K tokens can be achieved using a window size of W = 4096, as
in Mistral (Section 4.5). A n example demonstrating Sliding-Window Attention is depicted
in Figure 3.4, taken from [20].

The cat sat on the The cat sat on the window size

Vanilla Attention Sliding Window Attention Effective Context Length

Figure 3.4: Sliding-Window Attention. In vanilla attention, the memory increases lin
early with the number of tokens. During inference, this causes higher latency and smaller
throughput because of reduced cache availability. Sliding window attention reduces this
issue. Each token can attend to at most W tokens from the previous layer (in the picture,
W = 3). The tokens outside the sliding window still influence next-word prediction. Infor
mation can move forward by W tokens at each attention layer. That means information
can move forward maximally by k x W tokens, after k attention layers.

Attention with Linear Biases

Attention with Linear Biases (AliBi) [34] can accelerate training. Models with A l i B i can
extrapolate, they achieve smaller perplexity when a larger sequence is fed. A l i B i tests
have shown P P L = 19.73 when processing 512 token sequences, and P P L = 18.4 when fed
sequences of 3072.

softmax (qjK T + m • [- (t - 1) , . . . , - 2 , - 1 , 0]) (3.21)

In A l i B i , positional embeddings are not incorporated in any position within the network.
Instead a static, non-learned bias is added after the query-key dot product, as defined in
Equation 3.21, where m is a scalar, a head-specific slope fixed before training. The set of

- 8 - 8

slopes is a geometric sequence, which starts at 2 » and it has a ratio of 2 « , where n is the
number of heads. The values are static and don't need to be adjusted across models. To
demonstrate for 16 heads, the slopes are: 3̂, ft: jr3' 2̂5 > • " >

19

3.10 Activation function

Many L L M models (Section 4.5) differ in the activation function they use. The activation
function is used to compute the output of a neuron in a neural network based on the
weighted sum of the neuron inputs.

Softmax

Introduced to neural networks in [7]. Defined by Equation 1 3.22.

Softmax is an element-wise function typically applied to the output of a neural network.
It moves output elements to the range (0,1) and the sum of the scaled output elements is
1. The output of the softmax activation function represents probability distribution over
classes given by input.

Rectified Linear Unit

Rectified Linear Unit function (ReLU) was introduced in neural networks in [30].

<?(Zi) for i = 1,2,... K (3.22)

(3.23)

The function is defined by Equation 3.23.
x

https://blmoistawinde.github.io/ml_equations_latex/#softmax

20

https://blmoistawinde.github.io/ml_equations_latex/%23softmax

(a) ReLU (b) GELU

(c) Swish

Figure 3.5: Graphs of ReLU, G E L U and Swish functions.

ReLU introduces non-linearity to the neural network, which enables the network to
produce richer hypotheses. It is displayed in Figure 5.5a.

S w i G L U

SwiGLU (x,W,V,b,c,P) = Swishp(xW + b) ® (xV + c) (3.24)

SwiGLU [44] is a combination of Swish [38] (Figure 5.5c) and Gated Linear Unit
(GLU) [10]. SwiGLU and Gaussian Error Linear Unit (GELU) are the best performing
G L U variants for text-to-text transformers [44].

3.11 Residuals and Layer Normalization

The inputs, X , are short circuited to the output, Z, and both are added and passed through
layer normalization 7Vorm(X + Z) [17]. Layer normalization ensures each layer has 0 mean
and a unit variance. For each hidden unit, hi, can be computed

hi = ^(hi - fi) (3.25)
a

where g is the gain variable, \x is the mean given by Ylf-i hi a n d cr is the standard

deviation given by \Jjj{hi — /x) 2. The purpose of layer normalization is to improve the
stability of the network during training and to better generalize.

21

Residual connection

r
Block F(x)

nput x

Residual
connection

Figure 3.6: Residual connection. The input and output of the neural network block are
summed.

When information goes through a function, the function adds noise to it. In neural net
works, data goes through multiple functions. The noise accumulates and it can eventually
overwhelm gradient information. It is called gradient vanishing. Residual connection [17]
addresses this issue.

y = F(x) + x (3.26)

Residual connection works the way that the original input of a neural network processing
block is added to the output of the block (Equation 3.26).

3.12 Low-Rank Adaptation

Figure 3.7: L o R A reparametrization. Only A and B are being trained. The figure is taken
from [18]

22

It is very resource-intensive to fine-tune L L M . However, workarounds exist. One such
is Low-Rank Adaptation (LoRA) [18]. In this approach, the pre-trained model weights
are frozen and trainable rank decomposition matrices are injected into each layer of the
Transformer architecture. It dramatically reduces the number of trainable parameters,
thus it makes fine-tuning less resource-consuming. The reparametrization is depicted in
Figure 3.7.

h = W0x + AWx = W0x + BAx (3.27)

This method modifies forward pass, where WQ G M.DXK is the pre-trained weight matrix.
The A G WXK and B G M.DXR contain trainable parameters, rank r <C d,k. At the beginning
of training AW = BA = 0, then it scaled by where a is a constant in r, usually it is set
to a = 2r. So there are two main parameters be to set before training: rank and a.

3.13 Dropout

Dropout [9] was developed by students of Geoff Hinton, it is a regularization technique.
When dropout is applied to a layer, some features are randomly dropped out during training.
In practice, some values of the layer are set to zero during training. For example (0.2, 0.5,
0.7, 0.4, 0.3) after applying dropout would be (0.2, 0, 0.7, 0.4, 0). The rate of dropout
represents the fraction of features that will be dropped out. In general dropout rate is
usually between 0.2 and 0.5.

3.14 Language models in automatic speech recognition

While language models are used in A S R systems, the impact of incorporating L L M is not
sufficiently explored. There are more approaches to incorporate a language model in ASR:
shallow fusion, n-best and lattice rescoring, prompting, etc.

y* = argmax[logp(y|x) + 5\ogpLM{y)] (3.28)
v

Shallow fusion

Shallow fusion incorporates the language model into the decoding phase. At each decoding
step, the E2E model score is combined with the language model score Equation 3.28, where
x is the input speech sequence, p(y\x) is the posterior probability from E2E model, PLM(U)
is the language model score and 5 is scaling factor of the language model's score. Smaller
language models like n-grams are typically utilized in shallow fusion, however, it is possible
to use larger language models for example 1.9B-parameter G L a M (during inference used
only 145M parameters), as demonstrated in experiments [19].

N-best rescoring

Calling several billion parameter language models at each decoding step, as in shallow fu
sion, would be very resource-extensive. Alternative to the shallow fusion is n-best rescoring.
In the first step, A S R produces n hypotheses (transcriptions of speech in the audio) with
their scores. Each hypothesis is scored by L L M which is described in Section 3.15. The
scores are together. The hypothesis with the best new score is chosen.

23

Rescoring experiments Jasper hypotheses by Transformer-XL found a correlation be
tween the quality of the L L M and W E R [23]. Another research showing L L M reduce W E R
in A S R rescoring is [52].

Promting

L L M s fine-tuned for question-answering tasks can be prompted to improve A S R transcripts.
In this approach, W E R reduction was not observed [29].

3.15 Sentence scoring

In the experiments, there are two types of transformer models: masked language models
(MLM) and autoregressive language models. They process input in different ways, however,
the processing has common steps: conversion of a sequence of characters into a sequence
of tokens, at the end of processing the output is one number which represents the score of
the input sequence.

(a) autoregressive (b) masked

Figure 3.8: Comparison of autoregressive (left) and masked (right) language models struc
tures. Figure taken from [24].

In an autoregressive model, the n-th token can only attend to the tokens at positions
0, . . . , n — 1. On the other side, a masked language model can capture the contextual
information from tokens on positions 0 , . . . , n — 1 and also n + 1,.. . , m, where m is the
position of the last token [24].

Masked language model scoring

Scoring a text using masked language modeling is depicted in Algorithm 2, which is inspired
by article [45]. At first, x copies of a sentence are needed, where x is the number of tokens
in the tokenized sentence. In each sentence, one token is masked. The masked language
model predicts the probability matrix. Then the probability of the token that is in the
original hypothesis (the token under the mask) is found. This probability is added to the
sum of probabilities in the sequence, the final sum is the score of this sequence.

To make the process faster, the hypotheses are processed in batches and the algorithm
is changed. I solved the problem of various length sentences in the batch by multiplying

24

the matrix with obtained scores for each token by the attentionMask of the original non-
masked batch.

Algorithm 2 Masked language model scoring
Input: String sentence Output: Float score
1: score = 0
2: for maskPosition=l,2,... ,tokenCnt(sentence) do
3: sentenceCopy = copy(sentence)
4: tokenizedSentence = tokenize(sentenceCopy, at=maskPosition)
5: maskedSentence = mask(tokenizedS entence, &t=maskPosition)
6: logitsMatrix = model(maskedS entence)
7: softmaxedLogitsMatrix = softmaxLayei(logitsM atrix)
8: tokenProbability = geWalue(softmaxedLogitsMatrix,
9: oiigmalToken=tokenizedSentence[maskPosition])
10: score += tokenProbability
11: end for
12: return score

Autoregresive language model scoring

The autoregressive scoring algorithm is simpler. Input sentences are tokenized and fed to
the language model. Autoregressive models return the probability of all tokens in the given
sentence at once. Then softmax is applied to the language model's output. Finally, the
probabilities of all tokens in a sentence are summed together to form the sentence score.
Scoring a text by an autoregressive model is depicted in Algorithm 3. The implementation
of the autoregressive scoring algorithm was inspired by discussion.2

Algorithm 3 Autoregressive language model scoring
Inputs: String sentences, Integer iV Output: Float score
1: sentencesTokens = tokemze(sentences, &t=maskPosition)
2: logitsMatrix = model(sentencesTokens)
3: softmaxedLogitsMatrix = softmaxLayei(logitsMatrix)
4: attentionM ask = sentences, get AttentionMask()
5: masked!"ensor = attentionM ask • softmaxedLogitsMatrix
6: sentences cores = swoa(maskedTensor) return sentences cores

2

https: //discuss.huggingf ace.co/t/announcement-generation-get-probabilities-f or-

generated-output/30075/17

25

Chapter 4

Pre-trained models

In this chapter, I describe acoustic and language models, as well as the tools I employed
in the A S R pipeline. For acoustic models, I used Wav2Vec 2.0 with a C T C decoder from
the flashlight library, Jasper with a C T C decoder from the NeMo library 1 and the Whisper
model. The Masked L L M s utilized in experiments are B E R T and RoBERTa. On the other
side, autoregressive L L M s include GPT-2 , Falcon, Mistral, M P T , TinyLlama and Llama2.

When the speech transcription is passed from A S R to L L M , the text undergoes tok-
enization. Many L L M tokenizers employ Byte Pair Encoding, which is explained in the
following section.

4.1 Byte Pair Encoding tokenizer

Byte Pair Encoding (BPE) [41] is a compression algorithm used for word segmentation.
B P E allows the representation of an open vocabulary through a fixed-size vocabulary of
variable-length character sequences.

The B P E algorithm has one hyperparameter, which is the number of merge operations.
The algorithm can work over characters or bytes. There is a vocabulary, consisting of words
represented as a sequence of characters with the end-of-word symbol at the end ' • '. Then
the algorithm iteratively counts all symbol pairs and replaces the most frequent pair with a
new symbol, for example A ' , ' B ' pair is replaced by a single symbol A B ' . Eventually, each
sequence is merged into a word.

A n example of how it would work on vocabulary, with word occurrence frequency indi
cated after a colon

s p a c e • :10, k e y - : 7, a c c e l e r a t e d - : 4, h o c k e y - :6

with the number of merges set to three:

Step 1) pair: (a, c)
vocabulary: s p a c e - : 10, k e y - : 7 , a c c e l e r a t e d - : 4,
h o c k e y - : 6

Step 2) pair: (k, e)
vocabulary: s p a c e - : 10, ke y • : 7 , a c c e l e r a t e d - : 4,
h o c ke y • : 6

x

https: //github.com/NVIDIA/NeMo

26

Step 3) pair: (ke, y)
vocabulary: s p ac e • : 10, key • : 7, a c c e l e r a t e d - : 4 ,
h o c key • : 6

The B P E tokenizer, as used in GPT-2 for example, was originally built to operate
over byte sequences. A byte-level B P E tokenizer can represent any Unicode string using a
vocabulary of only 256 bytes, but it is not employed by GPT-2 and most models due to
byte-level models showed poor performance on word-level [37]. This issue was addressed
with the introduction of the ByT5 [56] model.

There is another challenge with applying B P E to byte sequences, it results in the inclu
sion of multiple versions of common words in the vocabulary. For instance, the word 'dog'
occurs as 'dog.', 'dog!' and 'dog?' which wastes limited vocabulary slots. To mitigate this
problem, B P E was forbidden to merge across character categories for any byte sequence,
with an exception for spaces. This modification improves the compression efficiency and
adds minimal fragmentation of words across multiple vocabulary tokens.

GPT-2 and similar models utilize a B P E tokenizer, which works with a vocabulary
consisting of subwords. This allows to represent any word by multiple subword tokens.
GPT-2 vocabulary size is 50k tokens.

4.2 Wav2Vec 2.0

Contrastive loss

Figure 4.1: Wav2Vec 2.0 framework. This framework jointly learns contextualized speech
representations and an inventory of discretized speech units. The Figure is taken from [5].

Wav2Vec 2.0 [5] is a self-supervised speech encoder, which needs to be fine-tuned with C T C -
loss to be used in speech recognition. Wav2Vec 2.0 uses a multi-layer convolutional feature
encoder to convert the input speech audio X into a sequence of latent speech representations,
(Z I , . . . , Z T) . Then a Transformer builds context representations C I , . . . , C T from zs. The
context representations cs capture information from the entire sequence. The length of the
sequence, T, is the number of time-steps in the audio [53].

The purpose of the feature encoder is to reduce the dimensionality of the audio data.
The feature encoder consists of blocks containing temporal convolution followed by layer
normalization (Section 3.11) and a G E L U activation function (Section 3.10). The raw

27

waveform input is normalized to zero mean and unit variance. The total stride of the
encoder determines the number of time-steps T.

The output of the feature encoder is fed to a context network of the Transformer archi
tecture. A convolutional layer that acts as relative positional embedding, is used instead
of fixed positional embeddings which encode absolute positional information. The out
put of the convolution is followed by a G E L U . This is added to the inputs. Then layer
normalization is applied.

Using product quantization [21], the output of the feature encoder z is discretized
to a finite set of speech representations. Product quantization is equivalent to choosing
quantized representations from multiple codebooks and concatenating them. Consider G
codebooks - groups, with V entries e £ M ^ X G . One entry is chosen from each codebook.
Then resulting vectors e\,..., ea are concatenated. Then a linear transformation W1 —>
is applied to obtain q € .

The training process combines unsupervised and self-supervised pre-training. During
the pre-training, the model learns diverse features of natural language. After pre-training,
the model needs relatively little labelled data for fine-tuning.

I used the WAV2VEC2_ASR_BASE_960H2 model. The model has the BASE architecture
(12 Transformer blocks) with an extra linear module. The model is pre-trained on 960
hours of unlabeled audio from the LibriSpeech dataset described in Section 5.1 specifically
on the combination of train-clean-100, train-clean-360, and train-other-500. Af
ter the pre-training, the model was fine-tuned for A S R on the same audio data with the
corresponding transcriptions.

4.3 Whisper

The Whisper model [36] is based on encoder-decoder transformer architecture (Section 3.7).
The encoder learns representations of speech and the decoder generates the transcription.
The Whisper models were trained on data from the internet. The architecture is displayed
in Figure 4.2.

Audio input to the model has to be resampled to 16 kHz. A n 80-channel log-magnitude
Mel spectrogram representation is computed on 25-millisecond windows with a stride of
10 milliseconds [36]. The input is scaled to be between -1 and 1. Across the pre-training
dataset, the input has approximately zero mean.

2

https://pytor ch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html

28

https://pytor
http://ch.org/audio/stable/generated/torchaudio

Transformer
Encoder Blocks

Sinusoidal
Positional
Encoding

| MLP

[self attention

EN TRANS
CRIBE 0.0 The quick brown

1 next-token
prediction

f \

2«Conv1D+GELU

C •
cross attention

self attention

(MLP |

cross attention

self attention
\

cross attention

self attention

Log-Mel Spectrogram

(X-

Transformer
Decoder Blocks

Learned
Positional
Encoding

SOT EN TRANS
CRIBE 0.0 The quick

Tokens in Multitask Training Format

Figure 4.2: Whisper. The audio is processed by a stem of two ID convolution layers and
the G E L U activation function. Then it is processed by the Transformer Encoder block.
Finally, speech transcription is produced by the Transformer Decoder Block. The figure is
taken from [36].

In the first part of the encoder, there is a small stem, that processes the input repre
sentation. The stem consists of two ID convolution layers with a filter width of 3 and the
G E L U activation function (Section 3.10) where the second convolution layer has a stride of
two. This means that the second convolutional layer moves by two items in the sequence.
The ConvlD relies on the ID window, the window slides across the input. Whisper uses
sinusoidal position embeddings, which are added to the output of the stem.

Then the encoder Transformer blocks are applied. The transformer uses pre-activation
residual blocks [8], and a final layer normalization is applied to the encoder output.

The decoder has the same number of transformer blocks and the same width. The
decoder uses learned position embeddings and tied input-output token representations [35].

Whisper uses a byte-level B P E text tokenizer (Section 4.1). It is the same tokenizer
that is used in GPT-2 Section 4.5 for English-only models. For multilingual models, the
vocabulary is changed, while the size of the tokenizer stays the same.

There are five Whisper models of different sizes. A l l of them are in Table 4.1. Ex
cept for Large, all model sizes have English and multilingual variants. The Large is only
multilingual.

29

Table 4.1: Architecture details of the Whisper model family from paper [36] and G P U
inference requirements from site 3

Model Layers Width Heads Parameters (M) G P U V R A M [GB]

Tiny 4 384 6 39 1
Base 6 512 8 74 1
Small 12 768 12 244 2
Medium 24 1024 16 769 5
Large 32 1280 20 1550 10

Except for predicting spoken words from audio, Whisper can perform other tasks. The
tasks are multilingual speech recognition, speech translation, spoken language identification,
and voice activity detection. A sequence of input tokens to the decoder is used to specify
the tasks. The beginning of the prediction is indicated with a <|startoftranscript|> token.
At the beginning of audio prediction, the language of the speech in the audio is predicted.
Each language is indicated by a unique token. In Whisper's training dataset, there are
99 unique language tokens. <|transcribe|> or <|translate|> tokens specify the task -
transcription or translation respectively. In the audio segments without speech, the model
predicts <|nospeech|> token.

It is recommended to normalize the output from the model to evaluate W E R and other
metrics. To follow all the rules from the authors, I decided to use tool whisper-normalizer
0.0.8.4 Here £1X6 cl few examples of rules that are applied during normalization: remove
phrases between matching brackets and parenthesis, and remove commas between digits
and periods not followed by numbers.

In the experiments, I used the multilingual Medium Whisper model. The decoder pro
duces just one hypothesis, even though it supports not only greedy search but even beam
search. I adjusted the decoder'' to return all final hypotheses. The number of output
hypotheses depends on the beam size and patience.

4.4 Jasper

Jasper [23] ("Just Another Speech Recognizer") is a family of end-to-end neural A S R mod
els. Opposed to previous A S R models, Jasper doesn't contain a stack of attention blocks,
it is a deep time-delay neural network (TDNN).

Jasper uses mel-filterbank (Section 2.3) features calculated from 20 ms windows, with
10 ms overlap. Jasper models are trained with a C T C decoder to generate an audio tran
scription.

4

https: //pypi.org/project/whisper-normalizer/
5

https: //github.com/Martin-Toma/Whisper-Multi-Hyp

30

CTC

Figure 4.3: Jasper architecture. Block input is directly connected to the last sub-block.
This connection is first projected through a 1 x 1 convolution. This residual projection
handles different numbers of input and output channels. Then the connection is projected
through a batch norm layer. The output of this batch norm layer is added to the batch norm
layer output in the last sub-block. The block output is created by passing the sum through
the activation function and dropout. There are four additional convolutional blocks in the
Jasper models. One pre-processing block with stride 2 and three post-processing blocks.
The figure is taken from [23].

The Jasper model has a block architecture (Figure 4.4). Blocks are composed of 1D-
convolutional layers. A l l models are named by schema Jasper B x R model, where B is
the number of blocks and R is the number of sub-blocks within each block. Each sub-
block performs the following operations: a ID-convolution, batch normalization, ReLU,
and dropout. The sub-blocks in a block have the same number of output channels.

31

CTC

Figure 4.4: Jasper with Dense Residual. The figure is taken from [23].

The creators of Jasper tested DenseNet, DenseRNet and Dense Residual Jasper variants.
The DenseNet and DenseRNet use concatenation to combine residual connections, they have
a growth factor, which requires tuning for deeper models. The growth factor represents the
number of filters in a Dense block of DenseNet and DenseRNet. The Dense Residual variant
uses addition instead of concatenation, which means it has no growth factor to be tuned.

I used STT En Jasperl0x5dr6 model. It is a model with Dense Residual, with ten
blocks, each with five subblocks. Input for this model must be in 16kHz Mono-channel
audio.The model was trained on 7000 hours of English speech. The training data are from
LibriSpeech, Wall Street Journal, Fisher English Training Speech, Switchboard, Mozilla
Common Voice and NSC Singapore English (Part 1) datasets.

4.5 Autoregressive Large Language models

In the following part, I pinpoint the main characteristics of autoregressive (Section 3.15)
L L M models. A l l of the models are based on the transformer architecture (Section 3.7).

6

https: //catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_jasperl0x5dr

32

http://alog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_jasperl0x5dr

G P T - 2

GPT-2 [37] layer normalization (Section 3.11) is positioned at the input of each sub-block
- before the M H A and the position-wise feed forward. To handle the accumulation on the
residual path with model depth, the weights of residual layers are scaled at initialization,
by a factor of ^ 7 = where iV is the number of residual layers. GPT-2 has a context size of
1024 tokens.

The model uses the B P E tokenizer (Section 4.1) with a vocabulary of 50257 tokens.
There are four models of different sizes. I used 137M and 380M parameter GPT-2

models because they can be compared to B E R T and RoBERTa models (Section 4.6) of
approximately the same size.

Llama 2

Llama 2 [50]. Pre-normalization is applied using RMSNorm [57]. The SwiGLU activa
tion function (Section 3.10) and R o P E (Section 3.8) are used. The primary architectural
differences from Llama 1 [49] include increased context length and G Q A (Section 3.9).

I used 7B and 13B parameter models of Llama 2.

TinyLlama

TinyLlama [58] was designed to explore the limits of small L L M saturation and to challenge
the scaling rule.

TinyLlama is trained on around a trillion tokens. The training dataset is a mixture of
natural language data from SlimPajama' and code data from StarCoderData. 8

TinyLlama uses a tokenizer adopted from Llama 1 [49]. The architecture is based
on the transformer architecture and is similar to Llama2's architecture (Section 4.5). To
inject positional information into the model, R o P E (Section 3.8) is used for positional
embedding. The input is normalized before each transformer sub-layer in pre-normalization.
This normalization stabilizes training. To improve training efficiency, RMSNorm [57] is
applied as a normalization technique. The activation function in TinyLlama (as in Llama2)
is SwiGLU. TinyLlama uses G Q A (Section 3.9), there are 32 heads for query attention and
4 groups of key-value heads.

Falcon

Falcon [4] models are released in three sizes: 7B, 40B and 180B. They are trained on diverse
datasets obtained from web data.

Falcon uses G Q A (Section 3.9) for scalability of inference,rotary embeddings (Section
3.8), parallel attention [28] and M L P blocks introduced in [55]. The biases from linear layers
are removed to improve stability. GeLU (Section 3.10) serves as an activation function.

I used the 7B parameter version of the model. 9

7

https: //www. cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-vers ion-

of-redpajama
8

https: //huggingf ace. co/datasets/bigcode/starcoderdat a
9

https: //huggingf ace. co/tiiuae/falcon-7b

33

http://cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-

M P T

M P T [48] does not use positional embeddings, it employs A L i B i (Section 3.9) and B P E
tokenizer. 1 0 In contrast with the GPT-2 tokenizer, this tokenizer applies consistent space
delimitation (ignores the prefix spaces and treats spaces as delimiters). The GPT-2 tok
enizer tokenizes depending on the presence of prefix spaces. The M P T ' s tokenizer vocab
ulary has a size of 50257 tokens, but the model vocabulary is set to 50432 tokens. 50432
is a multiple of 128 which improves model F L O P utilization and there are tokens left for
further training.

In the experiments, I utilized the 7B (more precisely 6.7B) parameter M P T model. 1 1

Mistral
Mistral [20] uses Grouped-Query Attention (Section 3.9), Sliding-Window Attention (Sec
tion 3.9), Rolling Buffer Cache, Pre-fill and Chunking. The Mistral's vocabulary size is
32k.

Mistral 7B outperforms larger LLama2 13B parameters across all tested benchmarks [20].
I used the Mistral-7B-v0.1 1 2 model with a Byte-fallback B P E tokenizer. The Byte-

fallback B P E tokenizer ensures that no character is mapped to O O V by casting unknown
tokens into their byte representations.

K V caching

In autoregressive models, there is a problem in computing key and value vectors in attention
from all previous steps again. This recalculation slows down inference. A mechanism called
K V Cache [14] is used to mitigate this problem.

Key and value vectors from previous attention calculations are stored in the K V cache.
Then they are reused to generate the next token.

The K V cache advantage is, that it makes inference faster. However, using it, a little
more G P U V R A M or C P U R A M is needed for inference. Furthermore, memory con
sumption increases with context length and model size. The reason behind the memory
consumption is that for each layer, projected k,v state stored in the memory. 1 3

In the transformers library models use caching by default.

Rolling Buffer Cache

Rolling Buffer Cache [20] significantly reduces cache memory usage. It limits the size of
the cache, which has a fixed size of W . Keys and values for timestep i are stored in the
cache at position i mod W. Former values are overwritten when i is larger than W. Also,
memory size is not increasing after i > W. A n example of how rolling buffer cache works
is depicted in Figure 4.5.

1 0

https: //huggingf ace.co/EleutherAI/gpt-neox-20b
n

https: //huggingf ace.co/mosaicml/mpt-7b
1 2

https: //huggingf ace. co/mistralai/Mistral-7B-v0.1
1 3

https: //discus s.huggingf ace. co/t/generate-using-k-v-cache-is-fast er-but-no-diff erence-

to-memory-usage/31272/2

34

Timestep i Timestep i + 1 Timestep i+ 2

This is an example o f . . . This is an This
1 1

is an example of is an example

Mistra l is a good ... Mistral is Mistral is a Mistral is a good

The cat sat on t h e mat ... The cat sat on the cat sat on the mat sat on

Figure 4.5: Rolling buffer cache. The fixed cache size is W = 4. When the position i > W,
past values in the cache are overwritten. The hidden state corresponding to the latest
generated tokens is in orange colour. The figure is taken from [20].

Pre-fill and Chunking

During scoring a sequence, each token is conditioned on the previous tokens, meaning the
tokens need to be predicted one by one. But k, v cache can be pre-filled because the input
tokens are known beforehand.

When the input is very large, the input can be chunked into smaller pieces. Then the
cache is pre-filled with each chunk. The window size W determines the size of a chunk. For
each chunk, the attention needs to be computed over the cache and the chunk.

4.6 Masked Language Models

In this section, I present additional transformer-based models. Specifically masked language
models (Section 3.15): B E R T and RoBERTa.

B E R T

B E R T [11] stands for Bidirectional Encoder Representations from Transformers. BERT ' s
architecture is a multi-layer Transformer encoder based on the original Transformer (Section
3.7).

There are two sizes of the B E R T model released. The smaller one called BASE of 110M
parameters, 12 layers, 12 self-attention heads and 768 hidden size (number of features
that are used to compute a hidden state) and LARGE of 340M parameters, 24 layers, 16
self-attention heads and 1024 hidden size.

Input for B E R T can be a single sentence or a pair of question-answer separated by a
special token [SEP]. The pair of sentences is also separated by adding a learned embedding
to every token. It indicates to which sentence (the first or the second) the token belongs.
Every input sequence of tokens starts with a special [CLS] token.

It is trained in two steps: pre-training and fine-tuning. Pre-training is performed by
randomly masking some percentage of the input tokens - in the original B E R T 15 % tokens
were masked. Then during pre-training, the model tries to predict the masked tokens.
During fine-tuning, [MASK] is not used. Because of this mismatch, not all masked tokens
are replaced with [MASK]. In the training data, 15 % of the tokens are masked. Among
these, 10% are replaced with random token, 10% are left unchanged and the remaining
80% are replaced with [MASK] token. The decision of which masked token is changed,
replaced with [MASK] or another token is random. The masking is static and it is done
during data preprocessing, before training [25].

After pre-training, the model is fine-tuned for one downstream task. In fine-tuning all
parameters are fine-tuned on labeled data.

35

R o B E R T a

RoBERTa [25] stands for Robustly optimized B E R T approach. RoBERTa is similar to
B E R T but was trained differently.

RoBERTa is trained with dynamic masking, full-sentences without Next Sentence Pre
diction (NSP) loss, large mini-batches and a larger byte-level B P E .

B E R T uses static masking, the masks can repeat across epochs. RoBERTa used dynamic
masking. It means the masking pattern is created every time a sequence is fed to the
model. The advantage of dynamic masking is visible in pre-training with more steps or
larger datasets.

The original B E R T model batch size was small. Training with large mini-batches im
proves speed and end-task performance. Therefore, RoBERTa was trained with larger
batches, consisting of 8K tokens.

Full-sentences mean inputs are packed with full sentences sampled contiguously from one
or more documents. The total length of an input is 512 tokens. When document boundaries
are crossed, a separator token is added between documents, but sampling continues without
ending at the end of the document. The NSP loss, which is a binary classification loss used
to predict whether two segments follow each other in the original sequence, is removed.

B E R T uses a 30K token character-level B P E vocabulary, and RoBERTa uses bigger 50K
tokens byte-level B P E vocabulary. This uses bytes instead of Unicode characters as the base
subword units. Input text can be encoded without unknown tokens. For comparison, this
change added 15M extra parameters to B E R T BASE and 20M to LARGE. The byte-level B P E
can worsen end-task performance.

36

Chapter 5

Experiments

N - g r a m L M

A c o u s t i c M o d e l C T C D e c o d e r A c o u s t i c M o d e l • C T C D e c o d e r •

h y p l
•hyp2
h y p 3

L L M >Text

W h i s p e r
h y p l
h y p 2
h y p 3

L L M • L L M >Text

Figure 5.1: Standard pipelines shared by all experiments. The upper pipeline is the back
bone of the Wav2Vec 2.0 and Jasper experiments. The lower pipeline is used in Whisper
experiments, where the decoder does not use the n-gram language model. (The waveform
representing audio input is genuine, it is plotted from the T E D - L I U M dataset.)

The experiments share a common audio pipeline. At the start of the pipeline, there is an
audio stored in a W A V file or in an array. The audio is obtained from datasets described
in Section 5.1. The audio is fed to the A S R model, Whisper needs the audio to be pre-
processed to mel frequency. Using a decoder with beam search, multiple transcription
hypotheses are obtained. In research papers, it is a common practice to work with a
hundred best hypotheses [52, 45], so I set the decoders accordingly. The transcription text
is then extracted from the hypotheses, and fed to L L M (Section 3.15) to score.

Scorehyp = a • Scoreacoustic + ft • ScoreLLM + 7 • Scoreword + S • Scoren-gram (5.1)

The Equation 5.1 describes rescoring, where a is the weight of the score obtained from
the A S R model, (3 is the weight of the L L M model, 7 is the weight of word insertion
bonus, and 5 is the weight of a small n-gram language model. Each score is multiplied
by the corresponding weight, then the weighted scores are summed. The sum is the new
hypothesis score. In the end, the hypothesis with the best (highest) new score is chosen

37

to be the best transcription. For each experiment, I found the best weights. The weight
search is depicted in Figure 5.6.

The process of finding weights has two steps. At first, grid search is applied, and then
the interval halving method is applied to obtain the best weights.

The L L M models in experiments are from huggingface transformers library. 1

5.1 Datasets

I used LibriSpeech, GigaSpeech and T E D - L I U M datasets in my experiments. These datasets
contain audio of different difficulties, topics and sizes.

LibriSpeech

LibriSpeech [32] is a dataset derived from audiobooks. It contains 1000 hours of read speech.
The audio is sampled at 16 kHz. A l l data is in English.

The dataset is divided into seven splits. There is no speaker overlap between training,
development and test dataset splits. Audio in the train clean sets is of higher recording
quality and speakers accents are closer to US English. To divide the data into subsets, the
LibriSpeech authors trained an acoustic model on the Wall Street Journal's (WSJ) si-84
data subset and used it to recognize the audio in the dataset, using a bigram language
model estimated on the text of the respective books. Then they compared the W E R of
the automatic transcription to the transcriptions obtained from the book texts. According
to WSJ's transcriptions W E R , speakers were divided into a "clean" pool with lower W E R ,
and an "other" pool with higher W E R . From each pool, 20 speakers were selected for each
development and test subset. The rest of the "clean" audio was randomly split into training
subsets, but in the training subset, each speaker's time was limited to 25 minutes.

For "other" development and training subsets, speakers were ranked from the least to
the most difficult using W E R from WSJ's models. Test and development subsets are spoken
by speakers in the third quartile of the sorted list of speakers. A l l subsets with their sizes
in hours are displayed in Table 5.1.

Table 5.1: LibriSpeech table displaying data subsets and their sizes in hours. The table is
taken from [32]

subset size [h]

train-clean-100 100.6
train-clean-360 363.6
train-clean-500 496.7
dev-clean 5.4
test-clean 5.4
dev-other 5.3
test-other 5.1

x

https: //huggingface. co/docs/transf ormers/index

38

GigaSpeech

GigaSpeech contains audio records and their transcriptions in English. Audio data are
from different sources: audiobooks, podcasts and YouTube. This dataset consists of data
from multiple categories: Business, Crime, History, Animals, Politics, Travel, Sports, Arts,
Science, Technology, Vehicles, F i lm Health and many others.

The dataset is divided into seven subsets, five of which are training and are named XS,
S, M, L, and XL from the smallest to the largest. A larger subset contains all data from all
smaller subsets so M contains S and S contains X S data. Then there is a validation subset
called "Dev" and a testing subset "Test". The duration of each split is depicted in Table
5.2.

Table 5.2: GigaSpeech table displaying data subsets and their sizes in hours. Data in the
table are taken from github 2

subset size [h]

X S 10
S 250
M 1,000
L 2,500
X L 10,000
Dev 12
Test 40

The dataset text contains two groups of special tags. The first group of the special tags
is called "Punctuations", there are these four tags: < C O M M A > , <PERIOD>, <QUES-
T I O N M A R K > , < E X C L A M A T I O N P O I N T > . These tags are replaced and removed before
W E R evaluation. The second group of special tags consists of these four tags: <SIL>,
<MUSIC>, <NOISE>, < O T H E R > . They are called "Garbage Utterance Tags". The au
dio annotated as garbage utterance, does not contain speech. Only Dev and Test dataset
splits contain garbage utterances. The samples without text to transcribe are filtered at
the beginning of the A S R pipeline.

Spontaneous speech in the dataset contains conversational fillers such as: ' U H ' , ' U H H ' ,
' U M ' , ' E H ' , ' M M ' , ' H M ' , ' A H ' , ' H U H ' , ' H A ' , ' E R ' [46]. The conversational fillers are
recommended to be removed before W E R measurement. The reason to remove them is
that each A S R system may transcribe the conversational fillers differently and they do not
carry valuable information. So the conversational fillers are removed in text post-processing,
after rescoring.

T E D - L I U M

T E D - L I U M [40] is a dataset consisting of audio records from English T E D talks. 3 The
dataset is sampled at 16 kHz.

The T E D talks have closed captions, the captions couldn't be used for ASR, because
they are not verbatim transcriptions of the speech in the audio records. The closed captions
do not contain repetition, and hesitations and some expressions are different in the captions.
The timing is not aligned for ASR, only for humans to read it from the screen.

3https://www.ted.com/

39

https://www.ted.com/

Therefore, the T E D - L I U M dataset was created by iteratively training acoustic models
and decoding the whole dataset. The final version of the first release has 118 hours from
774 talks.

There are three releases of this dataset. I used the validation split which stays unchanged
across releases, except for a special version of the third release with speaker adaptation.
I also used the test split from the third release. The validation split I used contains 591
audio records and the test split contains 1467 audio records.

5.2 Fine-tuning

Across experiments, I test uncased B E R T BASE model fine-tuned on text from
train-clean-100 subset of LibriSpeech dataset (Section 5.1). For the purpose of fine-
tuning, the dataset was split into 85% training part and 15% validation part. The B E R T
model was fine-tuned for 8 epochs, after that evaluation loss rose. After the fine-tuning,
evaluation loss lowered to 2.67 from 3.57 and pseudo-perplexity lowered to 14.50 from the
original 35.64. The dataset has 990100 words, the number of tokens is 1083388 and the
number of records is 28539. The training parameters I used were inspired by arcticle.

3.6

3.4

3.2

3.0

2.8

2.6

0 1 2 3 4 5 6 7 8
Epoch

Figure 5.2: B E R T BASE uncased fine-tuning on train-clean-100 subset of LibriSpeech.

I fine-tuned GPT-2 on the same dataset as B E R T . I tried fine-tuning with two learning
rates: 1 0 - 3 which starts to overfit after 2 epochs and 5 • 1 0 - 4 , which starts to overfit after
3 epochs.

4

https: //t owardsdatascience.com/fine-tuning-for-domain-adapt at ion- in-nlp-c47def 356f d6

40

http://owardsdatascience.com/fine-tuning-for-domain-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epoch

Figure 5.3: GPT-2 fine-tuning on train-clean-100 subset of LibriSpeech.

I fine-tuned Llama2 7B on the text from the training XL subset of the GigaSpeech
dataset. The dataset is split into 98% training part and 2 % validation part. I used L o R A
(Section 3.12) in the fine-tuning to lower resource requirements. The model was fine-tuned
with three settings: r = 8, r = 32 and r = 128. In all settings, I used a = 16 and dropout
0.1. I fine-tuned the Llama models for one epoch. The settings were inspired by article.''

Validation Loss r=8
Validation Loss r=32
Validation Loss r=128

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Epoch

Figure 5.4: Llama 2 7B fine-tuning on XL subset of GigaSpeech.
5

https: //www.mldive.com/p/how- to-fine-tune-llama- 2-with- lor a

41

http://www.mldive.com/p/how-

5.3 C T C decoder edit

A commonly used flashlight decoder6 outputs score for a hypothesis as a sum of weighted
scores of n-gram, acoustic model score and so-called word score. I added to the flashlight de
coder' printing to a file. The adjustment is in the file Ut i l s .h in class getAHHypothesis.
The order of hypothesis, emitting score, language model score and summed score are all
output to a single line in the C S V file. From this file, the data about scores can be read
in the rescoring process. I created a variant of the CTCHypothesis class which can store
aforementioned score data and data about words and weights used during decoding.

5.4 Wav2Vec 2.0 experiments

The experiments aim to compare L L M s to rescore the n-best hypothesis obtained from
the decoded output of Wav2Vec 2.0. I used "dev" parts of datasets, from LibriSpeech
I used "dev-other". Audio from the datasets was processed by Wav2Vec 2.0. Then, the
weights for the C T C decoder had to be found. The process of finding the best weights
for each dataset is following. Approximately half records from a dataset were randomly
chosen. C T C decoder was constructed with a lower beam size set to 100 and an n-best set
to 1. Weight of K e n L M in range 0 to 4 with step 1 and word insertion score in range -2
to 2 with step 1 were searched. Then the best weights +-0.5 surrounding was searched.
For each audio sample, 100 hypothetical transcriptions with scores were generated. These
transcriptions are rescored using different language models. The final weights of scores are
depicted in Figure 5.5.

The results of the experiments with LibriSpeech are presented in Appendix A .
6

https: //github. com/flashlight/text/tree/main/flashlight/lib/text/decoder
7

https: //github.com/Martin-Toma/f lashlightSepScores2

42

LLM Weight
Insertion Bonus Weight
KenLM Weight

/ y / jf • s f / s f y ^ f s

(a) LibriSpeech
LLM Weight
Insertion Bonus weight
KenLM weight

M

#• &
xC° ^ ^ ^

(b) GigaSpeech
LLM Weight
Insertion Bonus Weight
KenLM Weight

/ </ / S * S f /

(c) TED-LIUM

Figure 5.5: Graphs of weights for rescoring Wav2Vec hypotheses on the three tested
datasets.

43

Table 5.3: Overall W E R Wav2Vec 2.0.

L L M Parameters (in B)
LibriSpeech dev other GigaSpeech dev T E D - L I U M dev

K e n L M Lex Lex No Lex K e n L M Lex Lex NoLex K e n L M Lex

baseline - 8.59 9.33 9.77 28.49 30.37 31.34 17.81

B E R T base 0.11 6.31 7.79 8.13 25.61 27.63 28.93 15.07
B E R T base trained 0.11 6.11 7.45 7.87 25.32 27.28 28.59 14.93
B E R T large 0.34 6.25 7.94 8.35 25.56 27.69 29.12 14.98
RoBERTa base 0.125 6.38 7.82 8.48 25.32 27.25 28.83 14.85
RoBERTa large 0.355 6.31 7.83 8.53 25.26 27.49 29.1 14.84

GPT-2 0.137 6.54 7.91 8.33 25.19 27.02 28.43 14.63
GPT-2 medium 0.380 6.44 7.64 8.16 25.05 26.93 28.34 14.57
TinyLlama 1.1 6.28 7.44 7.88 24.52 26.47 28.19 14.4
Falcon 7 6.12 7.22 7.77 24.44 26.58 28.09 14.13
Mistral 7 6.11 7.39 8.18 24.75 26.98 28.59 14.76
M P T 7 6.09 7.26 7.78 24.64 26.82 28.09 14.08
Llama2 7 6.07 7.16 7.58 24.59 26.62 28.06 14.02
Llama2 13 5.92 7.07 7.51 24.44 26.5 28.07 13.99

5.5 Jasper experiments

I generated 100 hypotheses using the Jasper model with NeMo beam search decoder. The
weight of n-gram language model is set by alpha, beta represents a penalty given to longer
word sequences, meaning larger beta will result in shorter sequences. I found values of
alpha and beta parameters of the decoder for each dataset by testing the W E R of the
randomly selected subset of the validation split. I used the interval halving method to find
the best values.

The results of experiments with Jasper for each dataset are in Appendix B and Table
5.4. I tested the performance of rescoring on the test subset from the third release of T E D -
L I U M . The speech recognition of the test subset was run with hyperparameters found with
the dev subset of T E D - L I U M . The data (Table B . l) shows that rescoring with L L M reduces
W E R even on audio it was not tuned on. The best absolute W E R improvement in the test
dataset is 1 % absolute.

In experiments with Jasper, I used all fine-tuned models described in Section 5.2.

1 1 1 1 1 1 1 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
LLM Weight

Figure 5.6: The relationship between W E R values and the weights of rescoring LibriSpeech
dev other using Llama2 7B with L o R A r = 32, hypotheses are obtained from Jasper. Base
W E R is 8.69%

After the W E R measurements, I compared the hypotheses with the highest score before
and after the rescoring against reference transcriptions (Table 5.5). The change in the
number of character insertions, deletions and substitutions is compared, these numbers are
used to calculate W E R (Section 2.2). The rescored hypotheses contain fewer inserted and
substituted characters and more characters are deleted than in the referential texts from
datasets compared to the non-rescored hypotheses. A l l measurements are in Appendix D.

8

https: //github.com/NVIDIA/NeMo/blob/main/nemo/collections/asr/modules/

beam_search_decoder.py

45

Table 5.4: Overall W E R Jasper.

L L M Parameters (in B)
LibriSpeech GigaSpeech T E D - L I U M

L L M
dev other dev dev test

baseline - 8.69 28.26 14.01 14.67

B E R T base 0.11 8.44 27.88 13.53 14.67
B E R T base trained 0.11 8.22 27.8 13.47 14.21
B E R T large 0.34 8.45 27.85 13.38 14.5
RoBERTa base 0.125 8.51 27.7 13.23 14.17
RoBERTa large 0.355 8.44 27.71 13.27 14.27

GPT-2 0.137 8.59 27.77 13.24 14.15
GPT-2 trained 1 0.137 8.56 27.98 13.36 14.41
GPT-2 trained 2 0.137 8.49 27.92 13.33 14.24
GPT-2 medium 0.380 8.46 27.64 13.1 14.19
TinyLlama 1.1 8.45 27.49 13.03 13.86
Falcon 7 8.26 27.35 12.91 13.96
Mistral 7 8.23 27.52 12.83 14.15
M P T 7 8.26 27.6 13.02 14.44
Llama2 7 8.24 27.46 13.01 13.81
Llama2 L o R A r8 7 7.98 27.25 12.76 13.73
Llama2 L o R A r32 7 7.92 27.26 12.75 13.62
Llama2 L o R A rl28 7 7.94 27.27 12.76 13.68
Llama2 13 8.23 27.46 12.87 13.72

Table 5.5: Experiment with Jasper and GigaSpeech dev dataset. Difference in number
of insertions, deletions and substitutions between non-rescored and rescored transcriptions
against dataset transcriptions.

L L M insertions deletions substitutions

B E R T base 1025 -1368 760
B E R T base trained 1025 -1368 760
B E R T large 996 -1361 696
RoBERTa base 1171 -1519 1037
RoBERTa large 889 -1086 992

GPT-2 1048 -1874 808
GPT-2 libri 1048 -1874 808
GPT-2 libri2 1048 -1874 808
GPT-2 medium 1261 -1951 1227
TinyLlama 1294 -1898 1428
Falcon 7B 1312 -1569 1540
Mistral 1118 -1094 1238
M P T 7B 1197 -1615 1364
Llama2 7B 1322 -1622 1491
Llama2 13B 1523 -2022 1658
Llama2 L o R A r8 1138 -1157 1510
Llama2 L o R A r32 1260 -1558 1703
Llama2 L o R A rl28 1158 -1251 1586

5.6 Whisper experiments

Experiments were designed to test my hypothesis that using patience will improve W E R .
This hypothesis is based on improvement in the best possible W E R in randomly chosen
GigaSpeech recordings (Section 2.6). However, the use of a higher patience factor p = 3 in
the rescoring experiments, slightly increased W E R .

In the first experiments, Whisper output is fed to L L M without change. But before
W E R measurement, the Whisper transcripts are normalized with Whisper normalizer.9

When the dataset is GigaSpeech or T E D - L I U M , conversational fillers, hyphens and un
necessary spaces are removed. This post-processing is performed after applying Whisper
normalization, before W E R measurement. I applied this method to all three datasets and
the results are in Appendix C, in Tables: GigaSpeech C . l , C.2, LibriSpeech C.5, C.6 and
T E D - L I U M C.3, C.4.

When I noticed the L L M rescoring does improve the W E R of Whisper hypotheses, I
decided to test if it was because of the format of the Whisper output text. So I tried four
setups with the GigaSpeech dataset. The first is described above.

The second setup is the same as the first one, but input to the L L M is converted to
lower-case (Tables C.7 and C.8). The third setup differs from the first in not applying the
Whisper normalizer before W E R measurement (Tables C.9 and C.10). The fourth setup is
the same as the first one, but the input to the L L M is normalized using Whisper normalizer
(Tables C . l l and C.12).

9

https: //pypi.org/project/whisper-normalizer/

47

In all experiments, the beam size is 40 and the patience parameter is set to 1 (without
patience) and 3 (with patience).

The best weights of L L M scores that I found are in most experiments very close to zero,
many times the weights are a small negative number. This indicates L L M scores do not
improve the W E R . In a few results, mainly in LibriSpeech experiments, I observed weights
of L L M scores higher than 0.1 indicating the rescoring might improve W E R . However, these
weights are still very close to 0 and given all other measurements I state the n-best rescoring
with L L M does not work with Whisper.

LLM Weight

Figure 5.7: The relationship between W E R values and the weights of rescoring with Llama2
13B. Hypotheses are obtained from Whisper with normalized input to L L M . Base W E R is
14.52%

5.7 Experiments summary

In the experiments, I tested three A S R models of different architectures and different set
tings, on three datasets, with multiple L L M models. I even fine-tuned a few of the L L M
models with different settings.

The influence of L L M rescoring is determined by the quality of hypotheses obtained from
A S R systems. The results of Wav2Vec experiments are depicted in Table 5.3 and Jasper
experiments in Table 5.4. Whisper experiments did not demonstrate a strong correlation
between W E R reduction and the L L M rescoring.

The rescored hypotheses contain fewer inserted and substituted characters and more
characters are deleted compared to non-rescored transcriptions, against the referential texts
from datasets.

The best W E R improvement measured is 4 % absolutely. The more parameters a model
has, the better the results of rescoring. This is indicated by the finding that the larger the
model, the bigger weight the L L M score should be multiplied with, to get the best W E R .
1 found some exceptions in measurements with models GPT-2 and GPT-2 medium.

A n interesting finding is, that after L L M in-domain fine-tuning, a smaller model (Llama
2 7B) can outperform a not fine-tuned model twice its size (Llama 2 13B). The improvement

18

relies on the fine-tuning data, with GPT-2 fine-tuned on LibriSpeech data, I observed W E R
decrease in LibriSpeech dev-other after rescoring, but W E R increase in GigaSpeech and
T E D - L I U M after rescoring.

The rescoring depends on the A S R model, rescoring does not improve the W E R of
Whisper. One possible cause may be that the Whisper model does not produce very diverse
hypotheses, many hypotheses differ only in punctuation. I even tried different processing
of L L M input, but nothing worked. The fact L L M rescoring does not work may be caused
by the Whisper hypotheses scores being very accurate.

The score separation in the C T C decoder was beneficial. Lower W E R s were achieved
with weighting separated scores.

When it comes to masked vs autoregressive models of the same size, W E R after rescoring
differs only slightly. However autoregressive (GPT-2 variants) are better for spontaneous
speech (GigaSpeech, T E D - L I U M) and masked (BERT and RoBERTa variants) are in most
cases better for read speech (LibriSpeech). This fact is influenced by the training data.
The masked models I used were trained mainly on book data. In contrast, GPT-2 models
were trained on internet data. A n important thing to consider when deciding between
autoregressive and masked models is that the autoregressive model's rescoring is faster.

A l l 7B models visibly improved W E R after rescoring. Surprisingly, a relatively small
TinyLlama 1.1B improved W E R competitively with bigger models.

49

Chapter 6

Conclusion

The thesis goal was to explore how to use L L M s in A S R and if they improve it. Additionally,
factors that influence the results were examined. The experiments focus on improving W E R
by n-best rescoring using L L M s .

At first study about ASR, and L L M models and how to use them together was con
ducted. The n-best rescoring method was investigated further. Experiments with three
A S R systems that produce multiple hypotheses, were designed. The experiments aim to
test masked and autoregressive L L M s on three datasets. The datasets cover read and spon
taneous speech. The observed metrics are W E R and C E R of the transcriptions against
reference transcriptions. Three L L M models were selected for fine-tuning, and their perfor
mance in rescoring was measured. The C T C decoder used with Wav2Vec 2.0 was edited to
output scores for hypotheses separately, and also the Whisper decoder was edited to output
more than one hypothesis.

The results demonstrated a correlation between the number of L L M parameters and
the W E R reduction after rescoring. Other findings are that fine-tuned models can surpass
non-fine-tuned ones twice their size. The n-best rescoring method depends on the quality
of the hypotheses.

Possible extensions of this work may include further changes to the Whisper decoder
to obtain more diverse hypotheses, for example by editing the temperature, because in the
current Whisper implementation, the beam search can not be set with different tempera
tures. Another extension may be merging L L M models to obtain models with an exotic
number of parameters and then testing these models' rescoring abilities.

The findings of the thesis were presented at Excel@FIT 2024.

50

Bibliography

[1] A B D U L , Z . K . and A L T A L A B A N I , A . K . Mel Frequency Cepstral Coefficient and its
Applications: A Review. IEEE Access. 2022, vol. 10, p. 122136-122158. DOI:
10.1109/ACCESS.2022.3223444.

[2] A B H A N G , P. A . , G A W A L I , B . W. and M E H R O T R A , S. C. Introduction to EEG-
and Speech-Based Emotion Recognition. 1st ed. Amsterdam: Elsevier, 2016. ISBN
9780128044902. [cit. 2024-05-06]. Available at:
https://doi.org/10.1016/C2015-0-01959-l.

[3] A I N S L I E , J . , L E E T H O R P , J . , J O N G , M . de, Z E M L Y A N S K I Y , Y . , L E B R O N , F . et al.
G Q A : Training Generalized Multi-Query Transformer Models from Multi-Head
Checkpoints. arXiv. 2023. DOI: 10.48550/ARXIV.2305.13245. Available at:
https: //arxiv.org/abs/2305.13245.

[4] A L M A Z R O U E I , E . , A L O B E I D L I , H . , A L S H A M S I , A . , C A P P E L L I , A . , C O J O C A R U , R.
et al. The Falcon Series of Open Language Models. arXiv. 2023. DOI:
10.48550/ARXIV.2311.16867. Available at: https://arxiv.org/abs/2311.16867.

[5] B A E V S K I , A . , Z H O U , Y . , M O H A M E D , A . and A U L I , M . Wav2vec 2.0: A framework for
self-supervised learning of speech representations. Advances in neural information
processing systems. 2020, vol. 33, p. 12449-12460.

[6] B O R U A H , S. and B A S I S H T H A , S. A study on HMM based speech recognition system.
I E E E , december 2013. DOI: 10.1109/iccic.2013.6724147. Available at:
http://dx.doi.org/10.1109/ICCIC.2013.6724147.

[7] B R I D L E , J . Training Stochastic Model Recognition Algorithms as Networks can Lead
to Maximum Mutual Information Estimation of Parameters. In: T O U R E T Z K Y , D.,
ed. Advances in Neural Information Processing Systems. Morgan-Kaufmann, 1989,
vol. 2. Available at: https://proceedings.neurips.cc/paper_files/paper/1989/file/

0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf.

[8] C H I L D , R., G R A Y , S., R A D F O R D , A . and S U T S K E V E R , I. Generating Long Sequences
with Sparse Transformers. arXiv. 2019. DOI: 10.48550/ARXIV. 1904.10509.
Available at: https://arxiv.org/abs/1904.10509.

[9] C H O L L E T , F . Deep Learning with Python. 2nd ed. Manning Publications Co., 2021.
ISBN 9781617296864.

[10] D A U P H I N , Y . N . , F A N , A . , A U L I , M . and G R A N G I E R , D. Language Modeling with
Gated Convolutional Networks. arXiv. 2016. DOI: 10.48550/ARXIV.1612.08083.
Available at: https://arxiv.org/abs/1612.08083.

51

https://doi.org/10.1016/C2015-0-01959-l
https://arxiv.org/abs/2311.16867
http://dx.doi.org/10.1109/ICCIC.2013.6724147
https://proceedings.neurips.cc/paper_files/paper/1989/file/
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1612.08083

[11] D E V L I N , J. , C H A N G , M. -W. , L E E , K . and T O U T A N O V A , K . B E R T : Pre-training of
Deep Bidirectional Transformers for Language Understanding. arXiv. 2018. DOI:
10.48550/ARXIV.1810.04805. Available at: https://arxiv.org/abs/1810.04805.

[12] F R E I T A G , M . and A L O N A I Z A N , Y . Beam Search Strategies for Neural Machine
Translation. Association for Computational Linguistics, 2017. DOI:
10.18653/vl/wl7-3207. Available at: http://dx.doi.org/10.18653/vl/W17-3207.

[13] G A N D H I , S., S R I V A S T A V , V . , K H A L U S O V A , M . and H O L L E M A N S , M . Evaluation
metrics for ASR - hugging face audio course. Jun 2023. Available at:
https: //huggingf ace.co/learn/audio- course/chapter5/evaluation.

[14] G E , S., Z H A N G , Y . , L I U , L . , Z H A N G , M . , H A N , J . et al. Model Tells You What to
Discard: Adaptive K V Cache Compression for L L M s . arXiv. 2023. DOI:
10.48550/ARXIV.2310.01801. Available at: https://arxiv.org/abs/2310.01801.

[15] G R A V E S , A . , F E R N A N D E Z , S., G O M E Z , F . and S C H M I D H U B E R , J . Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In: Proceedings of the 23rd International Conference on Machine Learning.
New York, N Y , USA: Association for Computing Machinery, 2006, p. 369-376. I C M L
'06. DOI: 10.1145/1143844.1143891. ISBN 1595933832. Available at:
https: //doi.org/10.1145/1143844.1143891.

[16] H A N N U N , A . Sequence Modeling with C T C . Distill. 2017. DOI:
10.23915/distill.00008. https://distill.pub/2017/ctc.

[17] H E , K . , Z H A N G , X . , R E N , S. and S U N , J . Deep Residual Learning for Image
Recognition. arXiv. 2015. DOI: 10.48550/ARXIV.1512.03385. Available at:
https: //arxiv.org/abs/1512.03385.

[18] H u , E . J. , S H E N yelong, W A L L I S , P., A L L E N Z H U , Z . , L I , Y . et al. L o R A : Low-Rank
Adaptation of Large Language Models. In: International Conference on Learning
Representations. 2022. Available at: https ://openreview.net/forum?id=nZeVKeeFYf9.

[19] H u , K . , S A I N A T H , T. N . , L I , B. , D u , N . , H U A N G , Y . et al. Massively Multilingual
Shallow Fusion with Large Language Models. 2023.

[20] J I A N G , A . Q . , S A B L A Y R O L L E S , A . , M E N S C H , A . , B A M F O R D , C , C H A P L O T , D. S.
et al. Mistral 7B. arXiv. 2023. DOI: 10.48550/ARXIV.2310.06825. Available at:
https: //arxiv.org/abs/2310.06825.

[21] J E G O U , H . , D O U Z E , M . and S C H M I D , C. Product Quantization for Nearest Neighbor
Search. Institute of Electrical and Electronics Engineers (IEEE), January 2011. DOI:
10.1109/tpami.2010.57. Available at: http://dx.doi.org/10.1109/TPAMI.2010.57.

[22] K A S A I , J. , S A K A G U C H I , K . , B R A S , R. L . , R A D E V , D., C H O I , Y . et al. A Call for
Clarity in Beam Search: How It Works and When It Stops. arXiv. 2022. DOI:
10.48550/ARXIV.2204.05424. Available at: https://arxiv.org/abs/2204.05424.

[23] L i , J. , L A V R U K H I N , V . , G I N S B U R G , B. , L E A R Y , R., K U C H A I E V , O. et al. Jasper: A n
End-to-End Convolutional Neural Acoustic Model. arXiv. 2019. DOI:
10.48550/ARXIV. 1904.03288. Available at: https://arxiv.org/abs/1904.03288.

52

https://arxiv.org/abs/1810.04805
http://dx.doi.org/10.18653/vl/W17-3207
https://arxiv.org/abs/2310.01801
https://distill.pub/2017/ctc
http://dx.doi.org/10.1109/TPAMI.2010.57
https://arxiv.org/abs/2204.05424
https://arxiv.org/abs/1904.03288

[24] LiAO, Y . , J I A N G , X . and L i u , Q. Probabilistically Masked Language Model Capable
of Autoregressive Generation in Arbitrary Word Order. In: J U R A F S K Y , D., C H A I , J. ,
S C H L Ü T E R , N . and T E T R E A U L T , J. , ed. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational
Linguistics, July 2020, p. 263-274. DOI: 10.18653/vl/2020.acl-main.24. Available at:
https: / / aclanthology.org/2020.acl-main.24.

[25] L i u , Y . , O T T , M . , G O Y A L , N . , D U , J. , J O S H I , M . et al. RoBERTa: A Robustly
Optimized B E R T Pretraining Approach. arXiv. 2019. DOI:
10.48550/ARXIV.1907.11692. Available at: https://arxiv.org/abs/1907.11692.

[26] L Y S A N D R E D E B U T , S. G . Perplexity of fixed-length models. Febraury 2024. Available
at: https : //huggingf ace.co/docs/transf ormers/perplexity#perplexity-of-f ixed-

length-models.

[27] M A L I K , M . , M A L I K , M . K . , M E H M O O D , K . and M A K H D O O M , I. Automatic speech
recognition: a survey. Springer Science and Business Media L L C , november 2020.
DOI: 10.1007/sll042-020-10073-7. Available at:
http://dx.doi.org/10.1007/sll042-020-10073-7.

[28] M E D I N A , J . R. and K A L I T A , J . Parallel Attention Mechanisms in Neural Machine
Translation. ArXiv. arXiv. 2018. DOI: 10.48550/ARXIV.1810.12427. Available at:
https: //arxiv.org/abs/1810.12427.

[29] M I N , Z. and W A N G , J . Exploring the integration of large language models into
automatic speech recognition systems: A n empirical study. In:
Springer. International Conference on Neural Information Processing. 2023, p. 69-84.

[30] N A I R , V . and H I N T O N , G . E . Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. Madison, WI, USA: Omnipress, 2010, p. 807-814.
ICML'10. ISBN 9781605589077.

[31] N A V E E D , H . , K H A N , A . U . , Qiu , S., S A Q I B , M . , A N W A R , S. et al. A Comprehensive
Overview of Large Language Models. ArXiv. 2023, abs/2307.06435. Available at:
https: / / api.semanticscholar.org/CorpusID: 259847443.

[32] P A N A Y O T O V , V . , C H E N , G. , P O V E Y , D. and K H U D A N P U R , S. Librispeech: A n A S R
corpus based on public domain audio books. In: 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2015, p. 5206-5210. DOI:
10.1109/ICASSP.2015.7178964.

[33] P R A B H A V A L K A R , R., H O R I , T., S A I N A T H , T. N . , S C H L Ü T E R , R. and W A T A N A B E , S.
End-to-End Speech Recognition: A Survey. arXiv. 2023. DOI:
10.48550/ARXIV.2303.03329. Available at: https://arxiv.org/abs/2303.03329.

[34] P R E S S , O., S M I T H , N . A . and L E W I S , M . Train Short, Test Long: Attention with
Linear Biases Enables Input Length Extrapolation. arXiv. 2021. DOI:
10.48550/ARXIV.2108.12409. Available at: https://arxiv.org/abs/2108.12409.

[35] P R E S S , O. and W O L F , L . Using the Output Embedding to Improve Language
Models. arXiv. 2016. DOI: 10.48550/ARXIV.1608.05859. Available at:
https: //arxiv.org/abs/1608.05859.

53

http://aclanthology.org/2020.acl-main.24
https://arxiv.org/abs/1907.11692
http://dx.doi.org/10.1007/sll042-020-10073-7
http://api.semanticscholar.org/
https://arxiv.org/abs/2303.03329
https://arxiv.org/abs/2108.12409

[36] R A D F O R D , A . , K I M , J . W., X u , T., B R O C K M A N , G. , M C L E A V E Y , C . et al. Robust
Speech Recognition via Large-Scale Weak Supervision. arXiv. 2022. DOI:
10.48550/ARXIV.2212.04356. Available at: https://arxiv.org/abs/2212.04356.

[37] R A D F O R D , A . , W u , J . , C H I L D , R., L U A N , D., A M O D E I , D . et al. Language models
are unsupervised multitask learners. OpenAI blog. 2019, vol. 1, no. 8, p. 9.

[38] R A M A C H A N D R A N , P., Z O P H , B . and L E , Q. V . Searching for Activation Functions.
arXiv. 2017. DOI: 10.48550/ARXIV.1710.05941. Available at:
https: //arxiv.org/abs/1710.05941.

[39] R O S E N F E L D , R. Two decades of statistical language modeling: where do we go from
here? Proceedings of the IEEE. 2000, vol. 88, no. 8, p. 1270-1278. DOI:
10.1109/5.880083.

[40] R O U S S E A U , A . , D E L E G L I S E , P. and E S T E V E , Y . T E D - L I U M : an Automatic Speech
Recognition dedicated corpus. In: C A L Z O L A R I , N . , C H O U K R I , K . , D E C L E R C K , T.,
D O G A N , M . U . , M A E G A A R D , B . et al., ed. Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC'12). Istanbul, Turkey:
European Language Resources Association (E L R A) , May 2012, p. 125-129. Available
at: http: //www.lrec-conf.org/proceedings/lrec2012/pdf/698_Paper.pdf.

[41] S E N N R I C H , R., H A D D O W , B . and B I R C H , A . Neural Machine Translation of Rare
Words with Subword Units. arXiv. 2015. DOI: 10.48550/ARXIV.1508.07909.
Available at: https://arxiv.org/abs/1508.07909.

[42] S H A W , P., U S Z K O R E I T , J . and V A S W A N I , A . Self-Attention with Relative Position
Representations. arXiv. 2018. DOI: 10.48550/ARXIV.1803.02155. Available at:
https: //arxiv.org/abs/1803.02155.

[43] S H A Z E E R , N . Fast Transformer Decoding: One Write-Head is A l l You Need. arXiv.
2019. DOI: 10.48550/ARXIV.1911.02150. Available at:
https: //arxiv.org/abs/1911.02150.

[44] S H A Z E E R , N . G L U Variants Improve Transformer. arXiv. 2020. DOI:
10.48550/ARXIV.2002.05202. Available at: https://arxiv.org/abs/2002.05202.

[45] S H I N , J . , L E E , Y . and J U N G , K . Effective Sentence Scoring Method using
Bidirectional Language Model for Speech Recognition. arXiv. 2019. DOI:
10.48550/ARXIV.1905.06655. Available at: https://arxiv.org/abs/1905.06655.

[46] S P E E C H C O L A B . SpeechColab/Gigaspeech: Large, modern dataset for speech
recognition. Available at:
https: //github. com/SpeechColab/GigaSpeech?tab=readme-ov-file.

[47] Su, J . , L u , Y . , P A N , S., M U R T A D H A , A . , W E N , B . et al. RoFormer: Enhanced
Transformer with Rotary Position Embedding. arXiv. 2021. DOI:
10.48550/ARXIV.2104.09864. Available at: https://arxiv.org/abs/2104.09864.

[48] T E A M , M . N . Introducing MPT-7B: A New Standard for Open-Source, Commercially
Usable LLMs. 2023. Accessed: 2023-05-05. Available at:
www.mosaicml.com/blog/mpt-7b.

54

https://arxiv.org/abs/2212.04356
http://www.lrec-conf.org/proceedings/lrec2012/pdf/698_Paper.pdf
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1905.06655
https://arxiv.org/abs/2104.09864
http://www.mosaicml.com/blog/mpt-7b

[49] T O U V R O N , H . , L A V R I L , T., I Z A C A R D , G . , M A R T I N E T , X . , L A C H A U X , M . - A . et al.

L L a M A : Open and Efficient Foundation Language Models. arXiv. 2023. DOI:
10.48550/ARXIV.2302.13971. Available at: https://arxiv.org/abs/2302.13971.

[50] T O U V R O N , H . , M A R T I N , L . , S T O N E , K . , A L B E R T , P., A L M A H A I R I , A . et al. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv. 2023. DOI:
10.48550/ARXIV.2307.09288. Available at: https://arxiv.org/abs/2307.09288.

[51] T U R N E R , R. E . A n Introduction to Transformers. arXiv. 2023. DOI:
10.48550/ARXIV.2304.10557. Available at: https://arxiv.org/abs/2304.10557.

[52] U D A G A W A , T., S U Z U K I , M . , K U R Á T A , G . , I T O H , N . and S A O N , G . Effect and Analysis
of Large-scale Language Model Rescoring on Competitive A S R Systems. arXiv. 2022.
DOI: 10.48550/ARXIV.2204.00212. Available at: https://arxiv.org/abs/2204.00212.

[53] U D A Y , K . , G R A H A M , K . and E M A R A , W . Transformers for Machine Learning: A
Deep Dive. Crc Pr Inc, 2022. ISBN 9780367767341.

[54] V A S W A N I , A . , S H A Z E E R , N . , P A R M A R , N . , U S Z K O R E I T , J . , J O N E S , L . et al. Attention

Is All You Need. 2023.

[55] W A N G , B . Mesh-Transformer-J AX: Model-Parallel Implementation of Transformer
Language Model with J AX
[ht tps: / /gi thub.com/kingoflolz/mesh-transformer- jax] . May 2021.

[56] X U E , L . , B A R U A , A . , C O N S T A N T , N . , A L R F O U , R., N A R A N G , S. et al. ByT5:

Towards a Token-Free Future with Pre-trained Byte-to-Byte Models. Transactions of
the Association for Computational Linguistics. Cambridge, M A : M I T Press. 2022,
vol. 10, p. 291-306. DOI: 10.1162/tacl_a_00461. Available at:
https://aclanthology.org/2022.tacl-l.17.

[57] Z H A N G , B . and S E N N R I C H , R. Root Mean Square Layer Normalization. arXiv. 2019.
DOI: 10.48550/ARXIV.1910.07467. Available at: https://arxiv.org/abs/1910.07467.

[58] Z H A N G , P., Z E N G , G . , W A N G , T. and L u , W . TinyLlama: A n Open-Source Small
Language Model. arXiv. 2024. DOI: 10.48550/ARXIV.2401.02385. Available at:
https: //arxiv.org/abs/2401.02385.

55

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2304.10557
https://arxiv.org/abs/2204.00212
http://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2022.tacl-l.17
https://arxiv.org/abs/1910.07467

Append i x A

Wav2Vec measurements

I created tables from each experiment with Wav2Vec 2.0. The following tables contain
W E R and C E R after rescoring with L L M and also weights: (3 represents the weight of
L L M score, 7 is the weight of word insertion bonus and 5 is the weight of K e n L M score.
The weight of the acoustic model is set to 1. The results of experiments with LibriSpeech
are presented in Tables A.2, A.3, A.4, GigaSpeech in Tables A.5, A.6, A.7 and T E D - L I U M
in Table A . l .

Table A . l : W E R and C E R of Wav2Vec 2.0 with K e n L M and lexicon on T E D - L I U M dev.
Decoded with K e n L M weight = 2.0, word score = 0.0. According to the hypotheses, the
best W E R is 11.84%, the worst W E R is 26.37%, the best C E R is 4.40% and the worst
C E R is 11.02%.

L L M P 7 S best WER[%] 1 best CER[%] 1

baseline 0 0 0 17.81 6.69

B E R T base 0.48 -1.88 0.62 15.07 6.25
B E R T base trained 0.66 -0.34 0.44 14.93 6.11
B E R T large 0.6 -1.0 0.5 14.98 6.25
RoBERTa base 0.6 -0.9 1.0 14.85 6.14
RoBERTa large 0.8 -2.0 0.5 14.84 6.22

GPT-2 1.46 0.16 -0.19 14.63 6.22
GPT-2 medium 1.78 0.62 -0.38 14.57 6.18
TinyLlama 1.6 1.0 0.0 14.4 6.07
Falcon 7B 1.56 -0.24 -0.06 14.13 5.97
Mistral 0.95 -1.75 0.75 14.76 5.89
M P T 7B 1.1 -0.6 0.5 14.08 5.95
Llama2 7B 1.46 -0.74 -0.06 14.02 5.89
Llama2 13B 1.38 -1.12 -0.12 13.99 5.88

56

Table A.2: Compare W E R and C E R of Wav2Vec 2.0 on Librispeech dev-other with K e n L M and lexicon. According to the hypotheses,
the best W E R = 2.99%, the worst W E R = 26.34%, the best C E R = 1.33% and the worst C E R = 10.36%. Decoded with K e n L M weight
= 2.0, word score = 0.0.

L L M parameters (B) ß 7 5 best WER[%] 1 best CER[%] 1

baseline - 0 0 0 8.59 3.39

B E R T base 0.11 0.26 0.86 2.06 6.31 2.89
B E R T base trained 0.11 0.46 0.96 1.56 6.11 2.8
B E R T large 0.34 0.26 0.66 1.94 6.25 2.87
RoBERTa base 0.125 0.2 0.7 2.0 6.38 2.94
RoBERTa large 0.355 0.3 0.0 1.5 6.31 2.87

GPT-2 0.137 0.2 -0.2 2.0 6.54 3.03
GPT-2 medium 0.38 0.24 0.64 2.06 6.44 3.0
TinyLlama 1.1 0.5 0.8 1.5 6.28 2.9
Falcon 7B 7 0.64 2.06 1.56 6.12 2.84
Mistral 7 0.5 0.4 2.0 6.11 2.8
M P T 7B 7 0.7 0.7 1.5 6.09 2.86
Llama 2 7B 7 0.7 2.0 1.5 6.07 2.8
Llama 2 13B 13 0.8 1.0 1.0 5.92 2.73

Table A.3: Compare W E R and C E R of Wav2Vec 2.0 on Librispeech dev-other with only lexicon. According to the hypotheses, the best
W E R = 4.96%, the worst W E R =27.34%, the best C E R = 1.92 %, the worst C E R = 8.61 %. Decoded with word score = -1.5.

L L M parameters (B) ß 7 5 best WER[%] 1 best CER[%] 1

baseline - 0 0 0 9.33 3.51

B E R T base 0.11 0.4 -0.7 0.0 7.79 3.2
B E R T base trained 0.11 0.44 0.54 0.0 7.45 3.11
B E R T large 0.34 0.36 -0.84 0.0 7.94 3.22
RoBERTa base 0.125 0.3 -0.2 0.0 7.82 3.21
RoBERTa large 0.355 0.4 0.3 0.0 7.83 3.19

GPT-2 0.137 0.6 -0.5 0.0 7.91 3.3
GPT-2 medium 0.380 0.64 0.06 0.0 7.64 3.2
TinyLlama 1.1 0.7 -0.3 0.0 7.44 3.15
Falcon 7B 7 0.9 0.0 0.0 7.22 3.07
Mistral 7 0.66 -0.34 0.0 7.39 3.06
M P T 7B 7 0.7 0.6 0.0 7.26 3.09
Llama 2 7B 7 0.8 -0.3 0.0 7.16 3.05
Llama 2 13B 13 0.9 -0.6 0.0 7.07 3.03

Table A.4: W E R and C E R of Wav2Vec 2.0 on LibriSpeech dev-other without lexicon. According to the hypotheses, the best W E R is
5.58%, the worst W E R is 27.84%, the best C E R is 2.11 % and the worst C E R is 8.04%.

L L M parameters (B) P 7 best WER[%] 1 best CER[%] 1

baseline - 0 0 9.77 3.68

B E R T base 0.11 0.353125 0.484375 8.13 3.29
B E R T base trained 0.11 0.446875 0.446875 7.87 3.24
B E R T large 0.34 0.33125 0.53125 8.35 3.33
RoBERTa base 0.125 0.2 0.6 8.48 3.37
RoBERTa large 0.355 0.23125 -0.63125 8.53 3.4

GPT-2 medium 0.380 0.6625 0.7625 8.16 3.3
GPT-2 0.137 0.615625 0.984375 8.33 3.38
TinyLlama 1.1 0.6 0.9 7.88 3.25
Falcon 7B 7 0.715625 0.284375 7.77 3.18
Mistral 7 0.4375 0.8625 8.18 3.27
M P T 7B 7 0.684375 -0.484375 7.78 3.19
Llama2 7B 7 0.9 1.0 7.58 3.1
Llama2 13B 13 0.984375 0.753125 7.51 3.1

Table A.5: W E R and C E R of Wav2Vec 2.0 with K e n L M and lexicon on GigaSpeech dev.
Decoded with K e n L M weight = 1.5, word score = -1.5. According to the hypotheses, the
best W E R is 18.57%, the worst W E R is 42.51%, the best C E R is 10.15% and the worst
C E R is 22.96%.

L L M ß 7 5 best WER[%] 1 best CER[%] 1

baseline 0 0 0 28.49 14.99

B E R T base 0.2 -2.0 1.0 25.61 15.0
B E R T base trained 0.4 -2.0 0.5 25.32 14.82
B E R T large 0.24 -0.86 1.06 25.56 14.81
RoBERTa base 0.3 -2.0 1.0 25.32 14.99
RoBERTa large 0.24 -2.06 1.06 25.26 14.97

GPT-2 0.64 -0.86 0.56 25.19 14.91
GPT-2 medium 0.76 -0.44 0.44 25.05 14.86
TinyLlama 0.9 -0.5 0.0 24.52 14.61
Falcon 7B 0.9 0.5 0.5 24.44 14.45
Mistral 0.82 -2.12 0.88 24.75 14.68
M P T 7B 0.7 -1.0 0.5 24.64 14.66
Llama2 7B 0.9 -1.0 0.0 24.59 14.79
Llama2 13B 0.82 -0.78 0.38 24.44 14.79

Table A.6: W E R and C E R of Wav2Vec 2.0 with only lexicon on GigaSpeech dev. Decoded
with word score = -2.5. According to the hypotheses, the best W E R is 22.89%, the worst
W E R is 43.37%, the best C E R is 11.42% and the worst C E R is 21.19%.

L L M ß 7 5 best WER[%] 1 best CER[%] 1

baseline 0 0 0 30.37 15.26

B E R T base 0.38 -2.12 -0.12 27.63 15.14
B E R T base trained 0.56 -2.06 -0.06 27.28 15.05
B E R T large 0.3 -2.0 0.0 27.69 15.08
RoBERTa base 0.38 -2.12 -0.12 27.25 14.97
RoBERTa large 0.36 -2.06 -0.06 27.49 15.06

GPT-2 0.78 -1.12 -0.12 27.02 14.92
GPT-2 medium 0.8 -1.0 0.0 26.93 14.96
TinyLlama 0.9 -1.0 0.0 26.47 14.85
Falcon 7B 0.78 -1.02 -0.12 26.58 14.7
Mistral 0.72 -2.12 -0.12 26.98 14.78
M P T 7B 0.9 -1.0 0.0 26.82 14.88
Llama2 7B 0.84 -1.94 -0.19 26.62 14.96
Llama2 13B 0.64 -1.94 -0.06 26.5 14.84

60

Table A.7: W E R and C E R of Wav2Vec 2.0 without K e n L M and lexicon on GigaSpeech
dev. According to the hypotheses, the best W E R is 24.54%, the worst W E R is 45.00%,
the best C E R is 11.90% and the worst C E R is 20.32%.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline 0 0 31.34 15.31

B E R T base 0.515625 -1.984375 28.93 15.03
B E R T base trained 0.36875 -2.03125 28.59 14.92
B E R T large 0.26875 -0.83125 29.12 15.01
RoBERTa base 0.26875 -1.96875 28.83 14.96
RoBERTa large 0.2 -2.0 29.1 14.94

GPT-2 0.7 -2.0 28.43 14.87
GPT-2 medium 0.7375 -1.9375 28.34 14.82
TinyLlama 0.646875 -0.978125 28.19 14.83
Falcon 7B 0.76875 -1.96875 28.09 14.7
Mistral 0.3375 -0.8375 28.59 14.84
M P T 7B 0.653125 -1.953125 28.09 14.68
Llama2 7B 0.8 -2.0 28.06 14.78
Llama2 13B 1.309375 -3.109375 28.07 14.77

61

Append i x B

Jasper measurements

I created tables from each experiment with Jasper. The following tables contain W E R and
C E R after rescoring with L L M and also weights: (3 represents the weight of the L L M score
and 7 is the weight of the word insertion bonus. The weight of the acoustic model is set
to 1. The results of experiments with Jasper for each dataset are Tables: T E D - L I U M B . l ,
LibriSpeech B.2 and GigaSpeech B.3.

Table B . l : Jasper with K e n L M on T E D - L I U M dev and test release 3. According to the
hypotheses, the best W E R is 10.68%, the worst W E R is 25.36%, the best C E R is 3.57%.
and the worst C E R is 8.48%. Decoder settings: alpha = 0.5, beta = 0.0.

L L M ß 7 best WER[%] 1 best CER[%] 1
dev test dev test

baseline 0 0 14.01 14.67 4.96 4.52

B E R T base 0.115625 -3.984375 13.53 14.67 4.88 4.69
B E R T base trained 0.3375 -3.9375 13.47 14.21 4.94 4.55
B E R T large 0.415625 -0.984375 13.38 14.5 4.85 4.61
RoBERTa base 0.315625 -0.784375 13.23 14.17 4.82 4.38
RoBERTa large 0.3 0.0 13.27 14.27 4.75 4.39

GPT-2 base 0.5375 -1.0625 13.24 14.15 4.84 4.49
GPT-2 l.r. 10" 3 1.03125 6.03125 13.36 14.41 4.74 4.44
GPT-2 l.r. 5 • 10" 4 0.93125 4.03125 13.33 14.24 4.76 4.38
GPT-2 medium 1.315625 1.984375 13.1 14.19 4.8 4.49
TinyLlama 0.9 -0.6 13.03 13.86 4.75 4.46
Falcon 7B 1.884375 2.015625 12.91 13.96 4.73 4.51
Mistral 7B 0.653125 -1.953125 12.83 14.15 4.58 4.45
M P T 7B 1.778125 -1.078125 13.02 14.44 4.95 4.76
Llama2 7B 1.5625 2.0625 13.01 13.81 4.71 4.45
Llama2 7B LoRa r8 1.215625 0.184375 12.76 13.73 4.61 4.32
Llama2 7B LoRa r32 1.0375 -0.8375 12.75 13.62 4.63 4.3
Llama2 7B LoRa rl28 1.7 -0.2 12.76 13.68 4.65 4.33
Llama2 13B 0.9 0.1 12.87 13.72 4.6 4.32

62

Table B.2: Jasper with K e n L M on LibriSpeech dev-other. According to the hypotheses,
the best W E R is 5.80%, the worst W E R is 28.08%, the best C E R is 2.82% and the worst
C E R is 10.18%. Decoder settings: alpha = 1.5, beta = 0.5.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline 0 0 8.69 4.22

B E R T base 0.284375 -0.815625 8.44 4.14
B E R T base trained 0.5 -1.0 8.22 4.06
B E R T large 0.175 -0.575 8.45 4.13
RoBERTa base 0.215625 -0.715625 8.51 4.16
RoBERTa large 0.3 -0.8 8.44 4.14

GPT-2 0.3 0.1 8.59 4.21
GPT-2 l.r. 10" 3 0.3 -0.7 8.56 4.21
GPT-2 l.r. 5 • 10" 4 0.4 -0.2 8.49 4.2
GPT-2 medium 0.484375 0.053125 8.46 4.18
TinyLlama 0.46875 -0.66875 8.45 4.16
Falcon 7B 0.684375 0.915625 8.26 4.07
Mistral 0.584375 -1.015625 8.23 4.06
M P T 7B 0.384375 -0.515625 8.26 4.11
Llama2 7B 0.53125 -0.43125 8.24 4.11
Llama2 L o R A r8 0.7375 0.7375 7.98 3.98
Llama2 L o R A r32 0.846875 0.846875 7.92 3.98
Llama2 L o R A rl28 0.715625 0.653125 7.94 3.98
Llama2 13B 0.6 0.3 8.23 4.08

63

Table B.3: Jasper with K e n L M on GigaSpeech. According to the hypotheses, the best
W E R is 24.49%, the worst W E R is 40.76%, the best C E R is 24.22% and the worst C E R
is 0.30294534943653106. Decoder settings: alpha = 0.5, beta = 0.5.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline 0 0 28.26 26.49

B E R T base 0.1 -2.0 27.88 26.55
B E R T base trained 0.253125 -0.715625 27.8 26.47
B E R T large 0.1 -1.0 27.85 26.48
RoBERTa base 0.246875 -1.015625 27.7 26.46
RoBERTa large 0.184375 -0.484375 27.71 26.44

GPT-2 0.4625 0.3625 27.77 26.48
GPT-2 l.r. 10" 3 0.215625 -0.984375 27.98 26.55
GPT-2 l.r. 5 • 10" 4 0.2375 -0.8375 27.92 26.52
GPT-2 medium 0.6 0.3 27.64 26.48
TinyLlama 0.6 -0.1 27.49 26.44
Falcon 7B 0.8 0.6 27.35 26.37
Mistral 0.484375 -0.915625 27.52 26.36
M P T 7B 0.33125 -0.46875 27.6 26.43
Llama2 7B 0.53125 -0.16875 27.46 26.4
Llama2 L o R A r8 0.56875 0.26875 27.25 26.31
Llama2 L o R A r32 0.7 -0.1 27.26 26.35
Llama2 L o R A rl28 0.6 0.2 27.27 26.32
Llama2 13B 0.53125 -0.73125 27.46 26.42

64

Append i x C

Whisper measurements

I created tables from each experiment with Whisper medium. The following tables contain
W E R and C E R after rescoring with L L M and also weights: (3 represents the weight of the
L L M score and 7 is the weight of the word insertion bonus. The weight of the acoustic
model is set to 1. The results of experiments in which text fed to L L M s is not normalized,
but after rescoring is normalized, are in Tables: GigaSpeech C . l , C.2, LibriSpeech C.5, C.6
and T E D - L I U M C.3, C.4. Except for the first setup described above, three other setups
were tried for the GigaSpeech dataset. The second setup is the same as the first one, but
input to the L L M is converted to lower-case (Tables C.7 and C .8). The third setup differs
from the first in not applying the Whisper normalizer before W E R measurement (Tables
C.9 and C.10). The fourth setup is the same as the first one, but the input to the L L M is
normalized using Whisper normalizer (Tables C . l l and C.12). In all experiments, the beam
size is 40 and the patience parameter is set to 1 (without patience) and 3 (with patience).

Table C . l : Whisper on GigaSpeech dev, without patience p = 1. According to the hypothe
ses, the best W E R is 9.11 %, the worst W E R is 24.70%, the best C E R is 5.60% and the
worst C E R is 18.22%.

L L M P 7 best WER[%] 1 best CER[%] 1

baseline - - 14.62 10.10

B E R T base -0.015625 0.384375 13.01 8.19
B E R T base trained -0.015625 0.384375 12.96 8.15
B E R T large -0.015625 0.384375 13.02 8.2
RoBERTa base -0.015625 0.384375 12.98 8.16
RoBERTa large 0.03125 0.43125 13.0 8.28

GPT-2 -0.1 0.0 12.99 8.07
GPT-2 medium -0.03125 0.36875 12.96 8.14
TinyLlama -0.015625 0.353125 12.98 8.18
Falcon 7B -0.015625 0.353125 12.96 8.18
Mistral -0.015625 0.353125 12.98 8.19
M P T 7B -0.015625 0.353125 12.95 8.17
Llama2 7B -0.015625 0.353125 12.97 8.18
Llama2 13B -0.015625 0.353125 12.96 8.17

65

Table C.2: Whisper on GigaSpeech dev, with patience p = 3. According to the hypotheses,
the best W E R is 8.11 %, the worst W E R is 66.99%, the best C E R is 4.81 % and the worst
C E R is 61.78%.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 14.52 9.96

B E R T base -0.0625 0.1375 12.93 8.1
B E R T base trained -0.13125 0.03125 13.01 8.01
B E R T large -0.046875 0.184375 13.05 8.23
RoBERTa base -0.015625 0.184375 13.2 8.4
RoBERTa large -0.015625 0.184375 13.19 8.42

GPT-2 -0.1 0.0 12.83 7.86
GPT-2 medium -0.084375 0.015625 12.91 7.96
TinyLlama -0.084375 0.015625 13.0 8.05
Falcon 7B -0.06875 0.03125 13.02 8.09
Mistral -0.084375 0.046875 13.09 8.14
M P T 7B -0.1 0.0 12.99 8.0
Llama2 7B -0.084375 0.046875 13.05 8.08
Llama2 13B -0.053125 0.046875 13.06 8.2

Table C.3: Whisper on T E D - L I U M dev, without patience p = 1. According to the hy
potheses, the best W E R is 4.59%, the worst W E R is 12.49%, the best C E R is 3.23% and
the worst C E R is 9.67%.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 8.78 6.89

B E R T base trained 0.246875 3.046875 5.91 4.08
B E R T base -0.015625 0.415625 5.98 4.07
B E R T large -0.015625 0.384375 5.99 4.08
RoBERTa base 0.03125 0.43125 6.0 4.12
RoBERTa large 0.03125 0.36875 5.98 4.13
GPT-2 medium -0.015625 0.384375 5.99 4.09
GPT-2 -0.078125 0.353125 5.99 4.05
Falcon 7B 0.0 0.4 6.02 4.13
Mistral -0.1 1.0 6.0 3.94
M P T 7B 0.0 0.4 6.02 4.13
Llama2 7B 0.0 0.4 6.02 4.13
Llama2 13B 0.015625 0.446875 5.99 4.1

66

Table C.4: Whisper on T E D - L I U M dev, with patience p = 3. According to the hypotheses,
the best W E R is 4.02%, the worst W E R is 40.87%, the best C E R is 2.79 and the worst
C E R is 37.25%.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 8.79 6.89

B E R T base trained -0.1 0.0 6.43 4.35
B E R T base -0.090625 0.171875 6.24 4.15
B E R T large -0.10625 0.09375 6.21 4.17
RoBERTa base -0.028125 0.171875 6.2 4.24
RoBERTa large -0.046875 0.178125 6.24 4.24

GPT-2 medium -0.115625 0.046875 5.92 3.94
GPT-2 -0.13125 0.03125 5.88 3.87
Falcon 7B -0.215625 0.015625 6.06 4.0
Mistral -0.240625 -0.109375 6.2 3.95
M P T 7B -0.2 0.0 6.15 3.98
Llama2 7B -0.2 0.0 6.02 3.92
Llama2 13B -0.16875 0.03125 6.14 4.03

Table C.5: Whisper on LibriSpeech dev-other, without patience p = 1. According to the
hypotheses, the best W E R is 5.83%, the worst W E R is 16.30%, the best C E R is 3.07%.
and the worst C E R is 9.64 %.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 9.37 5.22

B E R T base trained 0.1 0.7 8.86 4.99
B E R T base 0.084375 0.315625 8.68 4.83
B E R T large 0.084375 0.284375 8.6 4.85
RoBERTa base 0.03125 0.33125 8.96 4.87
RoBERTa large 0.1 1.0 8.94 5.01

GPT-2 medium -0.015625 0.315625 9.0 4.76
GPT-2 -0.015625 0.315625 8.98 4.75
Falcon 7B 0.1 1.0 8.99 5.05
Mistral 0.1 0.9 8.97 5.04
M P T 7B 0.115625 0.915625 8.95 5.05
Llama2 7B 0.2 2.0 8.89 4.99
Llama2 13B 0.2625 2.0625 8.8 5.01

67

Table C.6: Whisper on LibriSpeech dev-other, with patience p = 3. According to the
hypotheses, the best W E R is 5.35%, the worst W E R is 49.61%, the best C E R is 2.81%.
and the worst C E R is 43.74 %.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 9.39 5.25

B E R T base trained -0.03125 -0.06875 9.02 4.93
B E R T base 0.0 -0.1 9.08 5.16
B E R T large 0.0 -0.1 9.08 5.16
RoBERTa base 0.0 -0.1 9.08 5.16
RoBERTa large -0.015625 -0.084375 9.05 5.05

GPT-2 medium -0.0625 -0.1625 8.89 4.67
GPT-2 -0.0625 -0.1625 8.86 4.66
Falcon 7B -0.015625 -0.084375 8.93 4.97
Mistral -0.046875 -0.115625 8.96 4.79
M P T 7B -0.046875 -0.146875 9.03 4.85
Llama2 7B -0.046875 -0.115625 8.97 4.78
Llama2 13B -0.015625 -0.084375 8.98 4.99

Table C.7: Whisper on GigaSpeech dev, without patience p = 1. Lower-cased input to the
L L M . According to the hypotheses, the best W E R is 9.11%, the worst W E R is 24.70%,
the best C E R is 5.60% and the worst C E R is 18.22 %.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 14.62 10.10

B E R T base -0.015625 0.384375 13.01 8.19
B E R T base trained -0.015625 0.384375 12.96 8.15
B E R T large -0.015625 0.384375 13.02 8.2
RoBERTa base -0.015625 0.384375 12.99 8.19
RoBERTa large -0.015625 0.384375 12.99 8.19

GPT-2 -0.1 0.0 12.99 8.13
GPT-2 medium -0.03125 0.36875 12.95 8.12
TinyLlama -0.015625 0.446875 12.86 8.04
Falcon 7B -0.015625 0.353125 12.96 8.18
Mistral -0.015625 0.353125 12.99 8.21
M P T 7B -0.015625 0.353125 12.96 8.17
Llama2 7B -0.015625 0.353125 12.96 8.18
Llama2 13B -0.03125 0.36875 12.96 8.14

68

Table C.8: Whisper on GigaSpeech dev, with patience p = 3. Lower-cased input to the
L L M . According to the hypotheses, the best W E R is 8.11%, the worst W E R is 66.99%,
the best C E R is 4.81 % and the worst C E R is 61.78 %.

L L M P 7 best WER[%] 1 best CER[%] 1

baseline - - 14.52 9.96

B E R T base -0.0625 0.1375 12.93 8.1
B E R T base trained -0.13125 0.03125 13.01 8.01
B E R T large -0.046875 0.184375 13.05 8.23
RoBERTa base -0.078125 0.184375 13.1 8.19
RoBERTa large -0.015625 0.184375 13.16 8.4

GPT-2 -0.084375 0.015625 12.79 7.97
GPT-2 medium -0.084375 0.046875 12.82 7.95
TinyLlama -0.13125 0.03125 12.96 7.96
Falcon 7B -0.084375 0.015625 13.0 8.02
Mistral -0.084375 0.046875 13.06 8.08
M P T 7B -0.084375 0.046875 12.91 7.98
Llama2 7B -0.084375 0.046875 12.97 8.03
Llama2 13B -0.06875 0.09375 12.92 8.02

Table C.9: Whisper on GigaSpeech dev, without patience p = 1. Without normalization.
According to the hypotheses, the best W E R is 15.89 %, the worst W E R is 35.61 %, the best
C E R is 6.97% and the worst C E R is 20.55%.

L L M P 7 best WER[%] 1 best CER[%] 1

baseline - - 24.45 12.11

B E R T base -0.215625 0.109375 20.77 9.93
B E R T base trained 0.4 3.0 20.87 10.29
B E R T large -0.246875 0.046875 21.14 10.06
RoBERTa base -0.015625 0.384375 22.76 10.14
RoBERTa large -0.115625 0.984375 22.66 10.39

GPT-2 -0.090625 0.109375 22.61 10.1
GPT-2 medium -0.246875 -0.046875 22.49 10.17
TinyLlama -0.03125 0.36875 22.77 10.09
Falcon 7B -0.015625 0.446875 22.78 10.08
Mistral -0.253125 0.046875 21.3 10.01
M P T 7B -0.046875 0.384375 22.75 10.07
Llama2 7B -0.0625 0.3375 22.71 10.1
Llama2 13B -0.015625 0.446875 22.77 10.07

69

Table C.10: Whisper on GigaSpeech dev, with patience p = 3. Without normalization.
According to the hypotheses, the best W E R is 15.27 %, the worst W E R is 80.06 %, the best
C E R is 6.36% and the worst C E R is 68.39%.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 24.65 12.14

B E R T base -0.16875 0.09375 21.1 9.91
B E R T base trained 0.015625 0.184375 23.42 10.9
B E R T large -0.115625 0.015625 21.52 10.12
RoBERTa base -0.115625 0.046875 23.34 10.7
RoBERTa large -0.115625 0.109375 22.63 10.42

GPT-2 -0.115625 -0.015625 22.85 10.14
GPT-2 medium -0.13125 -0.09375 22.77 10.15
Falcon 7B -0.06875 0.03125 23.24 10.34
TinyLlama -0.084375 0.015625 23.23 10.32
Mistral -0.153125 0.078125 21.91 9.99
M P T 7B -0.1 0.0 23.13 10.27
Llama2 7B -0.13125 -0.03125 23.12 10.29
Llama2 13B -0.053125 0.046875 23.25 10.43

Table C . l l : Whisper on GigaSpeech dev, without patience p = 1. Input to the L L M is
normalized. According to the hypotheses, the best W E R is 9.11%, the worst W E R is
24.70%, the best C E R is 5.60% and the worst C E R is 18.22%.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 14.62 10.01

B E R T base -0.015625 0.384375 12.95 8.16
B E R T base trained -0.015625 0.384375 12.95 8.16
B E R T large -0.015625 0.384375 12.98 8.19
RoBERTa base -0.015625 0.384375 13.0 8.2
RoBERTa large -0.015625 0.384375 12.97 8.18

GPT-2 -0.084375 0.046875 12.97 8.15
GPT-2 medium -0.03125 0.36875 12.92 8.1
TinyLlama -0.015625 0.353125 12.96 8.19
Falcon 7B -0.03125 0.36875 12.97 8.14
Mistral -0.015625 0.353125 12.97 8.2
M P T 7B -0.015625 0.353125 12.95 8.18
Llama2 7B -0.03125 0.36875 12.95 8.13
Llama2 13B -0.015625 0.353125 12.97 8.19

70

Table C.12: Whisper on GigaSpeech dev, with patience p = 3. Input to the L L M normal
ized. According to the hypotheses, the best W E R is 8.11 %, the worst W E R is 66.99%, the
best C E R is 4.81 % and the worst C E R is 61.78%.

L L M ß 7 best WER[%] 1 best CER[%] 1

baseline - - 14.52 9.96

B E R T base -0.1 0.0 13.05 8.17
B E R T base trained -0.115625 0.015625 13.09 8.16
B E R T large -0.046875 0.153125 13.08 8.26
RoBERTa base -0.0625 0.1375 13.09 8.21
RoBERTa large -0.015625 0.184375 13.18 8.42

GPT-2 -0.084375 0.046875 12.76 7.93
GPT-2 medium -0.06875 0.03125 12.81 7.98
TinyLlama -0.06875 0.03125 12.94 8.09
Falcon 7B -0.084375 0.015625 13.0 8.04
Mistral -0.084375 0.015625 13.02 8.09
M P T 7B -0.084375 0.015625 12.96 8.05
Llama2 7B -0.084375 0.046875 12.98 8.05
Llama2 13B -0.053125 0.046875 13.03 8.2

71

Append i x D

Difference in insertions, deletions
and substitutions

A S R hypotheses order changes after rescoring with L L M , which changes the final speech
transcriptions from the A S R pipeline. To find out how the transcriptions change, I measured
the difference in number of insertions, deletions and substitutions between non-rescored and
rescored transcriptions against reference transcriptions.

Table D . l : Experiment with Jasper and LibriSpeech dev-other dataset. Difference in num
ber of insertions, deletions and substitutions between non-rescored and rescored transcrip
tions against dataset transcriptions.

L L M insertions deletions substitutions

B E R T base 149 -103 39
B E R T base trained 140 -92 42
B E R T large 91 -17 -18
RoBERTa base 99 -87 64
RoBERTa large 145 -91 73

GPT-2 153 -217 172
GPT-2 libri 129 -195 177
GPT-2 libri2 129 -195 177
GPT-2 medium 153 -217 172
TinyLlama 193 -184 135
Falcon 7B 218 -143 136
Mistral 153 -30 11
M P T 7B 194 -137 108
Llama2 7B 244 -170 130
Llama2 13B 222 -129 121
Llama2 L o R A r8 235 -82 91
Llama2 L o R A r32 246 -101 106
Llama2 L o R A rl28 234 -78 86

72

Table D.2: Experiment with Jasper and T E D - L I U M dev dataset. Difference in number
of insertions, deletions and substitutions between non-rescored and rescored transcriptions
against dataset transcriptions.

L L M insertions deletions substitutions

B E R T base 131 -247 32
B E R T base trained 136 -210 73
B E R T large 104 -86 70
RoBERTa base 86 -66 85
RoBERTa large 80 -6 92

GPT-2 109 -62 115
GPT-2 libri 38 45 60
GPT-2 libri2 38 45 60
GPT-2 medium 109 -62 115
TinyLlama 145 -77 136
Falcon 7B 129 -27 140
Mistral 125 -43 133
M P T 7B 157 -105 152
Llama2 7B 109 -16 136
Llama2 13B 134 -12 151
Llama2 L o R A r8 150 -26 157
Llama2 L o R A r32 148 -48 149
Llama2 L o R A r!28 158 -57 163

73

Table D.3: Experiment with Jasper and GigaSpeech dev dataset. Difference in number
of insertions, deletions and substitutions between non-rescored and rescored transcriptions
against dataset transcriptions.

L L M insertions deletions substitutions

B E R T base 1025 -1368 760
B E R T base trained 1025 -1368 760
B E R T large 996 -1361 696
RoBERTa base 1171 -1519 1037
RoBERTa large 889 -1086 992

GPT-2 1048 -1874 808
GPT-2 libri 1048 -1874 808
GPT-2 libri2 1048 -1874 808
GPT-2 medium 1261 -1951 1227
TinyLlama 1294 -1898 1428
Falcon 7B 1312 -1569 1540
Mistral 1118 -1094 1238
M P T 7B 1197 -1615 1364
Llama2 7B 1322 -1622 1491
Llama2 13B 1523 -2022 1658
Llama2 L o R A r8 1138 -1157 1510
Llama2 L o R A r32 1260 -1558 1703
Llama2 L o R A r!28 1158 -1251 1586

74

Table D.4: Experiment with Jasper and T E D - L I U M test dataset. Difference in number
of insertions, deletions and substitutions between non-rescored and rescored transcriptions
against dataset transcriptions.

L L M insertions deletions substitutions

B E R T base 244 -480 67
B E R T base trained 245 -352 83
B E R T large 174 -159 100
RoBERTa base 169 -90 108
RoBERTa large 102 -46 129

GPT-2 200 -200 157
GPT-2 libri 48 68 111
GPT-2 libri2 48 68 111
GPT-2 medium 200 -200 157
TinyLlama 241 -240 170
Falcon 7B 234 -154 200
Mistral 192 -143 177
M P T 7B 300 -327 199
Llama2 7B 194 -76 210
Llama2 13B 234 -120 189
Llama2 L o R A r8 236 -85 183
Llama2 L o R A r32 264 -126 191
Llama2 L o R A r!28 268 -150 200

75

