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Objectives of thesis

Cross-laminated timber (CLT) elements, consisting of several layers of lumber stacked crosswise and glued
together, are becoming increasingly popular in civil engineering. The work aims at a theoretical and ex-
perimental analysis of the reaction of a layered composite material represented as (CLT) element to stress
analysis induced by force. The theoretical study will concentrate on the numerical solution of a system of
physical equations by applying various numerical methods describing the observed process — the move-
ment of the force field in the material. The solution will implement the analytical or Finite Element Method
(FEM) for linear elastic problems in this work. The experimental analysis will verify the theoretical model in
specific selected boundary conditions. The result of the work is the application and comparison of various
theoretical and experimental analyzes. The work will also analyze the influence of material constants on
the resulting behavior of the structural element.

Methodology

Develop a numerical model based on at least two plate theories and apply it to a selected configuration of
CLT panels or other laminated timber-based materials.

1. Search for relevant scientific literature

2. Define the numerical model

a. Define displacement field by chosen theories

b. Define stress field by chosen theories

c. By applying the fundamental equations of linear elasticity, define stress
resultants

d. Define governing equations in terms of displacement for orthotropic plates
3. Define the mechanical load cases and boundary conditions for each theory

4, Specify the material used in the numerical model
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5. Apply the model to geometrical variation of CLT panels (or similar material)
6. Validate the numerical model by experimenting with a selected plate in laboratory conditions
7. Compare and evaluate the results of all theories.

8. Propose extension of stress resultants to hygro-thermal loading cases.

Schedule of work:

1. Processing the work’s conceptual solution (until October 2022).

2. Analysis of the issue with an emphasis on the topic of the work (until November 2022).
3. Methodological processing of the work (until November 2022).

4, Experimental measurements and evaluation of the obtained data (until December 2022).
5. Processing of results and discussion (until January 2023).

6. Processing of work conclusions (until March 2023).
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Bending solutions for symmetrical and non-
symmetrical generally orthotropic panels (CLT)

Abstract

This diploma thesis is focused on the development and verification of numerical models
for the solution of bending of generally orthotropic plates based on the assumptions of
CPT, FSDT, SSDT and TSDT theories. The thesis investigates the effect of material and
axial asymmetry on the laminate stiffness parameters and mechanical response in the
form of deflection and internal forces. A numerical non-stationary moisture diffusion
model has been constructed to evaluate the effect of moisture on the wetting time of the
CLT panel when exposed to rainwater. Subsequently, the effect of such moisture on the
distribution of internal forces along the thickness of the panel was evaluated. The case of
a moisture-loaded CLT panel, a panel without moisture loading and experiment
measurements were compared. The results indicate a significant influence of material
asymmetry of CLT ceiling panels caused by moisture loading of the panel lamellas in
contact with pooled rainwater.

Keywords: analytical method, numerical method, plate theories, cross-laminated timber
(CLT), layered composite material



ReSeni ohybu symetrickych a nesymetrickych obecné
ortotropnich desek (CLT)

Abstrakt

Tato diplomova prace se zabyva na sestaveni a oveéieni numerickych modeli pro feSeni
ohybu vrstvenych obecné ortotropnich desek na zékladé predpokladu teorii CPT, FSDT,
SSDT a TSDT. Prace zkouma vliv materialové a osové nesymetrie na parametry tuhosti
laminéatu a mechanickou odezvu v podobé prithybu a vnitinich sil. Pro zhodnoceni vlivu
vlhkosti byl sestaven nestacionarni model vlhkostni difize, kterym byla zhodnocena doba
navlhani CLT panelu pfi vystaveni destové vodé. Nasledn€ byl zhodnocen vliv takové
vlhkosti na podobu prabéhu vnitinich sil po tloustce desky. Byl porovnan piipad
vlhkostn¢ zatizeného CLT panelu a panelu bez vlhkostniho zatizeni. Vysledky ukazuji na
vyznamny vliv materidlové asymetrie stropnich paneldt CLT zpisobené vlhkostnim
zatizenim lamel paneli pfi kontaktu se shromazdénou destovou vodou.

Kli¢ova slova: analytickd metoda, numericka metoda, teorie desek, kiizem lepené dievo
(CLT), vrstveny kompozitni material.
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1 Introduction

The scale of timber construction and its structural technological forms in our climatic
conditions still do not correspond to European and global trends. There are certainly more
reasons for this dismal situation, but one of them is certainly the lack of knowledge and
experience of architects and designers with the aforementioned material base. New
possibilities of wood application in current construction are clearly linked to the
development of innovative wood processing technologies that support the development
of contemporary wood structures (Pavlas, 2016). Timber is a material offering an answer
to the currently discussed issue of renewable resources and energy efficiency of building
production. Life cycle assessment (LCA) of timber buildings shows significantly lower
CO2 emissions than concrete buildings, after including stored biogenic carbon. The long-
term trend towards low-energy buildings, linked to the process of technological
innovation and the arrangement of the monitored parameters in accordance with the
principles of sustainability, may be one of the most important factors (Pavlas, 2016;
Shaobo Liang et al., 2020). Multi-storey wooden buildings made of CLT panels could be
the answer to the problem of energy efficiency of building production. For these
buildings, fire resistance, rigidity and acoustics are crucial issues. In terms of production,
there is already a product standard, but technical standards need to be developed to give
designers a basis for designing structures at normal temperatures and under fire
conditions. In the Czech Republic, there is a significant increase in the number of wood-
based building projects, as well as in multi-storey residential and office buildings. The
Czech Republic can afford such an increase. Forests cover 34% of the entire territory and
the wood reserves in these forests have been increasing for a long time. The very interest
in wooden buildings can be seen in the example of family houses, where wooden
buildings already account for 15% of the total. (CSU, 2018), (Kuklik, [online]). In order
to use timber as one of the main construction materials, it is necessary to verify all the
properties of building products made from solid timber, such as cross-laminated timber
or CLT panels. One of the performance categories of buildings is durability, which in the
case of timber can be strongly affected by prolonged exposure to moisture. Because wood
is a hygroscopic material, it exchanges moisture with the surrounding environment.

In the design of CTL made buildings, the stiffness and strength of the panels are adjusted
by modification factors that take on values depending on the moisture content of the CLT
panels in the structure. However, this modification of the material values is only done in
relation to the relative humidity and situations where the material is exposed to moisture
in the liquid state are not considered (With proper construction and maintenance of the
building, such a situation will not really occur and if it does, it will only occur for a short
period of time). During the construction process, CLT ceiling panels in particular are
more exposed to weather conditions, especially rain and snow. Rainwater can therefore
remain on CLT panels for up to several weeks. CLT panel lamellas exposed to liquid
moisture for long periods of time may swell and degrade, and their modulus of elasticity
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and strength may decrease. A ceiling panel with such degraded surface lamellae does not
behave as a specially orthotropic panel due to the shifting neutral mid-plane, and the
essence of the special orthotropy for which the panel was designed is temporarily lost. At
the same time, stresses and strains may arise in the panel that are not considered in the
final structural design. This can have a significant effect on the overall spatial stiffness of
the structure or on the stiffness of connections that are not designed for such stresses.

When investigating the possibility of designing such moisture-loaded floor slabs, no
design tool was found that could be used to perform an analysis of strain and internal
stresses. Design tools for timber structures such as Dlubal, AxisVM or Stora Enso's CLT
panel design tool Calculatis are based on the design and assessment of timber structures
based on Eurocodes and for instance do not allow for the integration of swelling into the
calculation. More complex and general finite element tools such as Abaqus or Ansys
allow working with temperature and its effect on material properties, but do not work
with the effect of moisture. In this regard, my work aims to develop a tool based on a
numerical solution to analyse the effect of moisture on laminated panels (which can be
CLT ceiling panels) in any configuration.
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2 Objectives

The aim of my thesis is to develop a numerical model which allows for the analysis of
deflection, deformation and internal stresses of timber panels intended for load-bearing
structural purposes (CLT). The models are built on the basis of at least two selected shell
elasticity plate theories. These theories are the most used for the analysis of isotropic sheet
materials. One of the sub-objectives will be to define these theories so that they are
applicable to any generally orthotropic panels in the models. The numerical model must
be defined in the following terms:

e Displacement field
e Stress field

e Stress resultants

e Governing equations

Each of the models will be modified for possible symmetric and non-symmetric plate
types and compared with each other. The model results for the chosen type of symmetry
or asymmetry will be verified by experiment.

Sub-objectives of the thesis:

1. Development of a numerical model for deflection calculation according to the
selected theories.

2. Defining of relations for calculation of internal stresses according to the
mathematical theory of elasticity,

3. Experimental verification of numerical models

4. Defining relationships for integrating moisture or thermal deformations into the
numerical models,

5. Defining possible compositions of symmetric and non-symmetric plates,

6. Comparison and evaluation of the results provided by each numerical model and
the difference between them,

7. Proposed practical application of the results.
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3 Elastic properties of wood

Wood, like any other material, is made up of atoms and molecules that are randomly or
lawfully arranged in a given space. The degree of homogeneity of the arrangement of
atoms and molecules in the volume of wood and the orientation of especially covalent
and hydrogen bonds determines the magnitude and orientation of mechanical properties
at the microstructural and macrostructural level. The variation of mechanical properties
in the volume of wood and their dependence on direction is called anisotropy of
mechanical properties (Pozgaj et al., 1997). Parallel to the fibers, i.e. in the direction of
the trunk, the strength of the material is particularly high, while perpendicular to the fibers
the strength properties are low (Horacek, 2010).

Poisson’s ratio

Poisson's numbers are an important characteristic of the elasticity of wood and are mainly
used for volume changes due to mechanical tension. When a solid is subjected to
compression or tension, the solid is elongated or shortened and deformed perpendicular
to the direction of the tensile/compressive force. Such deformations are called transverse
deformations. Poisson numbers express the ratio of transverse deformation to longitudinal
deformation. We assign a positive sign to tensile deformations and a negative sign to
compressive deformations (Pozgaj et al., 1997). According to Nettles (1994) Poisson
number po1 can be derived as:

Uz1 = 7 H12 (1)

Modulus of elasticity

The modulus of elasticity expresses the internal resistance of the material to elastic
deformation. The greater the modulus of elasticity, the greater the stress required to
induce deformation. Of the basic ones, we distinguish between the elastic moduli E for
normal stresses such as tension, compression and bending and the elastic moduli G for
tangential stresses such as torsion or shear. According to Horacek (2010) the relationship
for calculating the modulus of elasticity under normal stresses is.

do
= )
where ¢ is the normal stress and ¢ is the normal strain. The relationship for calculating
the shear modulus is.
dt
G —

=% 3)

Where t is the shear stress and y is the shear strain (Horacek, 2010).
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Mechanical stress is a defined as a process in which mechanical forces or other stress
factors interact with the wood. This process results in temporary or permanent changes in
the shape of the wood. The response of wood to mechanical stresses depends not only on
the bonds of the chemical components of the wood and their interconnection (cellulose,
lignin, hemicellulose), but often to a decisive extent on the geometry of the body itself.
Therefore, each mechanical property of wood must be considered in terms of the
geometry of the test body itself, inhomogeneity, structure, and chemical composition, as
well as the resulting anisotropy of properties. The basic types of mechanical stresses are
distinguished according to the type of stress that occurs in the body as a result of an
external force. The stress in wood represents the intensity of the internal forces that occur
in the body in response to external mechanical forces. These forces acting on the body
can be oriented in different directions in space and can act on up to six mutually
perpendicular planes. An example of mechanical stress is axial tension, which acts in only
one plane of the body (Pozgaj et. al., 1997). The stress o is defined as the magnitude of
the internal force, which is related per unit area of the body according to the relation.

(4)

F
773

where F is the external force, S is the area of the body.
Compression, tension and shear

If the force pulls the cross-section and the internal forces act perpendicularly to it, we
refer to tensile stress. Stress and strain is expressed positively. If an external force is
pushing on the cross-section, compressive stresses are generated. Stress and strain is
expressed negatively. In the first case the wood fibers are stretched and in the second case
compressed. When the tensile strength is reached, the wood fibers break and are
compressed. In tension and compression, the forces act perpendicular to the cross-section.
If the resultant of external forces mutually displace fibers in their planes, tangential
stresses are generated. The cross-section shifts. The wood ruptures on shear (Pozgaj et
al., 1997).
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4 Moisture properties of wood

4.1 Wood moisture content

The presence of water in wood is called the moisture content of the wood. It is expressed
as the ratio of the weight of water to the weight of the wood in its dry state - absolute
moisture content w,, or as the ratio of the weight of water to the weight of wet wood -
relative moisture content w,,;. The absolute moisture content of wood is used to
characterize the physical and mechanical properties of wood. Relative moisture content
is used where it is necessary to know the percentage of water in the total wet weight of
the timber, e.g., when selling or buying timber (Horacek, 2008). According to Horacek
(2008), three different threshold values can be distinguished depending on the water
content of the wood in relation to the dry weight of the wood:

e Moisture content of dry wood - the steady-state ratio of the weight of water to
the weight of dry matter when the wood is dried at 103+-2 °C, i.e., there is no
bound or free water in the wood. This moisture content is expressed in absolute
dry wood (wy = 0%).

e Moisture at cell wall saturation - the microcapillary system in the cell wall is
filled with water. This moisture is expressed between the cell wall saturation Cell
wall saturation limit or hygroscopicity limit (Cell wall saturation limit =
Hygroscopicity limit = 22-35%).

e Moisture saturation of the wood - the micro and macro-capillary system is fully
saturated with water; the wood contains the maximum amount of water. This
moisture content is expressed by the maximum moisture content of the wood
(Winax = 80 — 400%).

4.2 Equilibrium wood moisture content

Wood is a hygroscopic material that has the ability to change its moisture content
according to the humidity of the surrounding environment through adsorption. Wood is
also a capillary-porous material. The average porosity of wood, depending on its density,
is around 50-60%. Adsorption of wood is then understood as the binding of a gaseous or
liquid substance on the specific internal surface of the wood. The specific internal surface
of wood is formed by the fibrillar structure of the submicroscopic cell wall. The
consequence of the considerable porosity is a large internal surface, which, depending on
the density of the wood, is around 100-300 m2.g’* dry weight or 20-300 m.cm for dry
wood. Like most porous substances, this substantial internal surface can adsorb water
vapour contained in the surrounding air and, thanks to capillary transport processes, can
take up liquids (e.g., water, impregnating agents, adhesives) with which it is in direct
contact. The internal surface of the wood is determined from the idea that the water in the
wood is evenly distributed over the entire internal surface of the wood when the sorption
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sites are hypothetically filled. According to the nature of the forces that cause adsorption,
we divide adsorption into physical and chemical. In both cases, thermodynamic
equilibrium must hold in the wood-adsorbent system. The amount of adsorbed substance
in wood depends on its chemical and physical properties (molecular weight and volume,
surface tension) and on environmental factors (pressure, temperature, relative humidity,
air velocity). The dependence of the amount of adsorbed substance on environmental
factors is expressed by adsorption isotherms. These are mathematical expressions of
sorption theories that attempt to explain adsorption in terms of its physical or chemical
nature. The moisture content of wood that will stabilize under given environmental
conditions (relative humidity and temperature) is called the equilibrium moisture content
of wood, equilibrium moisture content. The state that is reached is then called the
equilibrium moisture content. With each change in relative humidity and air temperature,
the equilibrium moisture content of the wood changes. If the moisture content of the wood
is lower than the State of moisture balance, the wood takes up (adsorption) water in the
form of water vapour from the surrounding air until it reaches the State of moisture
balance. If the moisture content of the wood is higher than the State of moisture balance,
the opposite process occurs, and the wood loses water (desorption). This process of wood
moisture content change as a function of relative humidity and ambient temperature is
reversible, but not along the same curve. For the same relative humidity and air
temperature, the wood moisture content is higher in desorption than in adsorption, by 2.5
to 3.5 % over a range of relative humidity ¢= 30-90 %. The dependence of Equilibrium
wood moisture content on relative humidity at constant temperature is called the sorption
isotherm (Horacek, 2008).
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Figure 1 — Sorption isotherm at different temperatures (Hordcek, 2008)

4.3 Dimensional changes due to changes in moisture content

If the moisture content of the wood changes within the range of bound water, the wood
undergoes dimensional changes - dimensional hygroexpansion. A reduction in the
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moisture content of wet wood to between hygroscopicity (evaporation of free water) has
no significant effect on the dimensional change. The shrinking and swelling is localized
in the cell wall, where the fibrillar structure moves away or closer. This changes the
dimensions of the individual elements and the wood as a whole. The orientation of the
fibrils in the cell wall has a major influence on the amount of shrinkage and swelling. The
longitudinal shrinkage and swelling caused by the inclination of the fibrils is insignificant.
The small dimensional changes in the longitudinal direction are explained by the fact that
molecules cannot arise between fibrils to form a valence chain in the longitudinal
junction, so there is no spacing in this direction. Hygroexpansion of dimensions can be
described as a reversible process that follows the same trajectory. The different values of
swelling and shrinkage result only from the definition and mathematical expression of the
process, not from the nature of the process itself. Desiccation and swelling are processes
in which the linear, planar or volumetric dimensions of a solid change as a result of a
change in moisture content. They are defined as the ratio of the relevant dimensional
change to the original value of the dimension (Horacek, 2008).

4.4 Swelling

Swelling a refers to the ability of wood to increase its dimensions by taking up bound
water in the moisture content range of 0% - Hygroscopicity limit (Cell wall saturation
limit). We distinguish between linear swelling (in each anatomical direction -
longitudinal, radial, and tangential), surface swelling (change in solid surface area) and
volumetric swelling (change in solid volume). The swelling of wood from the absolute
dry state to the hygroscopic limit is called total swelling (maximum). Swelling of wood
in any smaller interval is called partial swelling. Swelling is expressed as a percentage of
the change in dimension to the original value and is most often given in %. For practical
purposes, it is useful to know the percentage change in dimensions, area or volume if the
humidity changes by 1%. The calculation and use of the swelling coefficient assumes that
changes in the dimensions of solids below the hygroscopicity limit are linearly
proportional to changes in moisture content. This assumption is not entirely accurate, but
its use is sufficient for practical purposes. Swelling also has an anisotropic character.
Along the fibers the swelling is very small and does not exceed 1%. The average value of
total longitudinal swelling for our species is 0.1-0.4%. In the transverse direction the
wood swells much more, 3-6 % in the radial direction and 6-12 % in the tangential
direction. Swelling in each anatomical direction is often expressed by the ratio
a_t:o_r:a_1=20:10:1 (Horacek, 2008).

4.5 Moisture stress

During drying - evaporation of water from the wood - internal stresses are created in the
wood during uneven drying, which consist of two components - moisture and residual
stress. Moisture stresses are due to the existence of a moisture gradient. The
hygroexpansion of wood is considered to be continuous and the resulting deformations
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are directly proportional to the stresses due to Hooke's law. Moisture stresses and
deformations are considered elastic, having a temporary character and disappearing after
moisture equilibration (Horacek, 2008).

A change in moisture content is always associated with significant swelling or shrinking
of the wood. Moisture deformation is therefore only dependent on the change in moisture
inside the wood. This deformation can be defined as follows (Kollmann and Coté, 1968).

a=[a a a 0 0 0]T (5)

Where «;, a,, a; - material swelling coefficients in individual directions (Ormarsson,
1998).

4.6 Effect of moisture on the mechanical properties of wood

The laws of the influence of bound water on mechanical properties are investigated in
terms of the use of wood for structural purposes and also in terms of technological
processes in the manufacture of wood products. Structural timber can reach an
equilibrium moisture content in the range of 9-22% under our conditions. When the
moisture content changes by 1% in the water-bound range, the strength of the wood
changes by an average of 3-4%. This already shows that moisture has a great influence
on the strength of wood. The change in wood strength has a non-linear pattern depending
on the change in water content. If we take into account that a change in moisture content
of 1% in the range of bound water causes a change in wood strength of 2.5% to 3.5%, the
total decrease will be 30 to 70%. The elastic modulus of wood changes linearly due to
bound water. A 1% change in moisture content within the range of bound water causes a
change in the modulus of elasticity E of 1.5 to 2%. This means that the modulus of
elasticity E drops by 35 to 50% when the moisture content changes from, for example,
8% to cell wall saturation limit. The shear elastic moduli of wood (Gir, GLt, GrrT) in the
water-bonded range are closely related to moisture content. A 1% change in moisture
content represents a 1.5 to 2% change in shear modulus (Pozgaj et al., 1977).
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Figure 2 - Effect of moisture on wood strength in some wood species, Crushing strength =
bending strenght (Kollman, 1968)
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Conversion of the wood strength determined at any moisture content in the interval 5-
25% to the property at 12% moisture content is carried out according to the following
relation:

015 = 0, (1 + a(w — 12)) (6)

where w - wood moisture content (%), a,, - wood strength (MPa), a - correction factor
(Horacek, 2008)

Table 1 - Correction coefficients expressing the effect of moisture on a given property (Horacek, 2010)

Method of loading Correction coefficients a
Compression in the direction of the fibers 0,04
Compression perpendicular to fibers 0,035
Tension in the direction of the fibers 0,01
Tension perpendicular to fibers (R) 0,01
Tension perpendicular to fibers (T) 0,025
Static bending 0,04
Shear in fiber direction 0,04
Modulus of elasticity 0,01-0,02

4.7 Water movement in wood

Fluids (liquids and gases) move through wood in two basic ways - volume flow and
molecular flow. Volumetric flow takes place in meso- and macrocapillaries under the
influence of a static or capillary pressure gradient. Molecular flow involves the movement
of gases in the cell lumen across cell wall thinning and the movement of water bound in
the cell wall microcapillaries. The magnitude of volume flow through wood is determined
by its permeability. The application of molecular flux is the drying of the wood and the
movement of the moisture field through the wood element to reach equilibrium moisture
content. The molecular flow of substances is described by diffusion.

4.7.1 Mechanism of water movement in the cell wall

The explanation of the mechanism of movement of water bound in the cell wall is based
on the theory of sorption and the actual mechanism will be further used to describe the
diffusion of fluids in wood. The sorption theory assumes that:

e Water molecules are absorbed at sorption sites (hydroxyl groups) or due to the
polar nature of water in their proximity by chemical bonds through hydrogen
bridges and VVan der Waals forces,

e Polymolecular sorption assumes the ability of an isolated sorption site to attract
1-5 water molecules depending on the equilibrium moisture content of the wood,

e The range between monomolecular and polymolecular sorption is around 6-8%
moisture content.
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Figure 3 — Hypothetical model of the effect of moisture in the cell wall on the thermodynamics of bound water
- a non-uniform moisture distribution, b uniform moisture distribution - Hv enthalpy of water vapour, Ha enthalpy
of activated bound water, Hs enthalpy of bound water, delta Hs differential heat of sorption, delta Hv evaporative
heat of water, Es activation energy of bound water (Siau 1995)

Assume that we know the number of sorption sites in a given mass or volume unit of
wood and the number of water molecules (number of water layers) bound per sorption
site at a given moisture content of the wood. In reality, we only have some idea of the
magnitude of the binding energy of water in wood from the thermodynamics of sorption
(e.g., differential heat of sorption, heat of wetting). Let us assume, then, that there is a
moisture gradient in wood, i.e., that different numbers of water molecules are bound at
different sorption sites, as shown in Figure 3. The different sorption sites are then
separated according to the theory of isolated sorption sites via potential pits. We know
from thermodynamics that water in different states has different enthalpies. The potential
pit is then an energy barrier between two adjacent sorption sites that must be overcome if
the water molecule is to move in the direction of the moisture gradient. The size of the
potential pit varies with humidity and is already constant above hygroscopicity limit. The
size of the potential pit is expressed in terms of the activation energy Ea, which determines
the necessary magnitude of energy supplied to the water molecule to overcome the energy
barrier and move into the adjacent potential pit. The activation energy depends on the

moisture content of the wood (Horacek, 2008).

4.7.2 Diffusion of water and gases in wood

Diffusion characterizes the movement of bound water in wood. If there is an
uneven distribution of moisture in the wood, water movement - diffusion - is induced to
compensate for these differences. Diffusion refers to the molecular flux caused by a non-
zero concentration gradient where a substance tries to find an equilibrium concentration.
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No external static pressure is required for this movement, but only the concentration
gradient is the driving force. The concentration gradient can be thought of as a non-
uniformly distributed moisture in the wood, but also as a non-uniformly distributed
temperature field or chemical potential of water. Let us consider only the movement of
water bound across the fibers, e.g. in the radial direction. Water can then move in different
states through the wood in three ways - (1) across the tangential cell wall as liquid g1, (2)
across the lumen in the radial direction as water vapor g2, and (3) across the radial cell
wall as liquid gs. In the tangential direction, the movement of water can be described by
analogy to the radial flow. The conductivity of path (3) is negligible due to the need to
travel large distances and the considerable activation energy of the bound water, and the
general transverse diffusion model is based only on the conductive paths (1) and (2)

1 1 1

—=—t— 7)

gr 91 92
where gt is the conductivity of water bound in the transverse direction, gi1 is the
conductivity of water through the cell wall, g2 is the conductivity of water vapour through
the lumen and gi=Kwi (the moisture conductivity coefficient kg.m™.s?). From the
perspective of water in wood, it is necessary to consider wet wood as a continuum - an
environment with continuously changing properties. All parameters of such an
environment are then continuous functions of spatial coordinates and time. According to
its nature, diffusion is divided into isothermal and non-isothermal, stationary and non-
stationary (Horacek, 2008). The general physical notation of water diffusion in wood is:

j=—-Dvc 8)

where 7 — flux density (kg.m2s?), D — coefficient of diffusion (m2s?) a ¢ — water
concentration in wood (kg.m).

4.7.2.1 Stationary diffusion

Under stationary (steady) conditions, i.e. if the diffusion is constant in time and varies
only with distance, the process can be described according to Fick's law I:

Ac

m

where D — coefficient of diffusion (m?.s), m —weight of the diffused liquid (kg), t — time

(s), S — diffusion area (m?), Ax distance of different concentrations (m) a Ac difference in
concentration (kg.m3) (Dushman, 1962).

4.7.2.2 Non-stationary diffusion

In non-stationary diffusion, the fluid flow and its concentration are variables in time and
space, unlike in stationary diffusion, where both variables are considered constant.
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Nonstationary fluid flow occurs during heating, impingement, or drying of wood,
therefore, diffusion of water in wood is often described as a nonstationary process, which
is derived from a stationary relationship of derivatives by time and distance with a
simplification to a 1-dimensional Cartesian coordinate system. According to Horacek
(2008):

ks (dw) 10
dt " \dx/y (10)

By applying 1. Law of Thermodynamics
Ey —E, = E; (11)

where E; — energy flow into the system, E, — energy flow from the system and E; —
energy balance in the system. The equation can be written as:

. . (dm dw
Box (), = s (), (12)

. dm dw
E, & (—) — K s(—) 13
2 dt out v dx x+Ax ( )
B4 (T =spw(2) 14
3T dt gain - oprw dt Ax ( )

Substituting (12) — (14) into equation (11) and rearranging, we get:

dw K, d*w
dt  ppg dx?

(15)

Substituting relation into equation (15) gives an equation for the approximate
determination of the average diffusion coefficient of water in wood, which is assumed to
be constant:

2

=)
S

dw _
— =D
t

(16)

oy

x2

A more accurate solution can be obtained by differentiating the coefficient D by the

moisture content of the wood and equation (16) in the form:
dw d dw
——_(p= 17
dt dx (D dx) (17)

The partial differential equations (16) and (17) are called Il. Fick's law, and by solving
them partially we obtain the distribution of moisture (or concentration, osmotic pressure,
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free energy of bound water) as a function of position and time, i.e. w=f(x,t). The general
form of Fick's law Il in the Cartesian coordinate system has the form:

dw_ d(D dW)+ d(D dW)+d(D dw> (18)
dt  dx\"Fdx/) dy\ Ydy) dz\"?dz

When solving these equations, it is necessary to know the boundary conditions for the
equilibrium moisture content on the surface of the solid, the moisture distribution at the
initial moment and the target moisture content of the wood (Siau, 1995).
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5 Thermal properties of wood

The thermal properties of wood are most often of interest to us when solving practical
problems related to drying wood and using the thermal insulation properties of wood. For
example, we are interested in how much heat must be supplied to a wood-water system
to warm it to the desired temperature, and what is the temperature at a given point in the
body and at a given time. We are less concerned with questions of changes in the
dimensions of the solid associated with temperature change (Horacek, 2008).

5.1 Thermal expansion

Increasing the temperature of a body causes the energy of its molecules to increase, and
ultimately the size of the body to increase. Thermal expansion is characterized by the
coefficient of thermal expansion «;, which is defined, similarly to the coefficient of
swelling and slumping, by the ratio of the change in dimension and the dimension of the
soil body with a linear dependence on temperature:

o = lr — 1o
b LAT

(19)

where «; - coefficient of thermal expansion in i-direction (mm*.K?), I, - initial
dimension (m) and [ - dimension after temperature change AT (K).

The coefficient of thermal expansion «;, expresses the change in the unit length of wood
when heated by 1K. Due to the anisotropy of the wood, the ratios of «; in each direction
are similar to those of swelling or shrinking, a;: ag: a; = 15:10: 1, but the values are
about 4 orders smaller. Given these low values of the thermal expansion coefficient «;,
we can neglect the thermal dimensional changes in wood compared to moisture content.
The linear dimension of the body when the temperature changes by AT can be calculated
according to Eq (Horacek, 2008):

5.1.1 Effect of temperature on the mechanical properties of wood

Wood is subjected to the effects of temperature in different time modifications during
different technological processes. Taking into account these heat treatments, it is
desirable to investigate the changes in the structure of wood in order to influence its
further use. In addition to temperature, the effect of moisture content must also be taken
into account in the process of converting wood into a product. The interaction of
temperature and moisture content of the wood has a more pronounced effect on the
change in mechanical properties due to the individual action of these factors. The
torsional modulus G is sensitive to temperature change. A significant decrease in elastic
modulus due to temperature is generally described by physical and chemical changes in
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lignin, hemicelluloses or amorphous cellulose. Similar results were found when the effect
of temperature on the elastic moduli of wood E was also observed. The relationship
between temperature and tensile modulus E is linear. When observing the effect of
temperature on the shear strength of wood, there is a more pronounced decrease in
strength observed at moisture contents around cell wall saturation limit than in the dry
state. Even at this strength, moisture-temperature interactions are more pronounced. The
relationship between temperature and strength in the humidity range from 20 to 100°C is
linear. If the moisture content is greater than cell wall saturation limit, the modulus of
elasticity no longer changes. The dependence of the elastic modulus on moisture content
and temperature can be expressed according to the following relationships (Pozgaj et al.,
1997):

E; = Ejg(1+ E;p(To — T)) + Epy (Wp — wy) (21)
Ey = Epo(1+ Epr(To = T)) + Epy (W — W) (22)
E, = Eo(14 Er(To — T)) + Epy(wp — wy) (23)
Gir = Giro(1 + Gy (To = T)) + Gy (Wy — W) (24)
Gie = Gieo(1+ Grer(To — T)) + G (Wr — W) (25)
Gre = Greo(1 + Grer (To = T)) + Grow (Wy — W) (26)
where:
We=w Iif w<w (27)
We =wr if w>wy (28)
Eio-Ero, Eto) Giro) Gieg) Greo — modulus  of elasticity at 20°C  (MPa;  %);

Ewws Evw- Etw- Girws Grew- G, — COefficients describing the effect of humidity and
temperature (MPa) (Ormarsson, 1998).
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Figure 4 — Average values of the modulus of elasticity with changes in moisture content and temperature
(Sulzberger, 1953)

It is therefore obvious that temperature also has an obvious effect on the mechanical
properties, namely that the strength of the wood and its elasticity decrease with
temperature. The smallest effect of temperature can be observed in tension parallel to the
grain. On the other hand, mechanical properties perpendicular to the grain are more
sensitive to temperature changes than in the direction of the grain. This can be explained
by the fact that covalent bonds are less involved in the strength of wood than hydrogen
bonds when stressed perpendicular to the fibers (Pozgaj et al., 1997).
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6 Mechanics of plates and fiber-composite materials

Wood is a natural anisotropic material consisting of fibers of individual cells. Due to its
fibrous structure, it is considered an orthotropic material in terms of mechanical behavior.
Such materials lie between isotropic and anisotropic materials, where the degree of
isotropy depends on the number and orientation of the planes of symmetry.

The variation in these materials can be observed most clearly in their response to
different types of loads such as tensile and shear. When a rectangular material sample
made of isotropic, anisotropic, and orthotropic materials is subjected to uniaxial tensile
loading, the response will differ among them. The isotropic material sample under
uniaxial tensile loading will stretch in the loading direction and compress in the transverse
direction (as shown in the Figure 5), while the angles between the sides of the rectangle
remain unchanged. However, under pure shear, the angles between the sides will change
but there will be no elongation or compression. The deformations of an isotropic material
are thus "direction-independent,” meaning that normal deformations are determined by
normal stresses and are not affected by shear stresses, while shear deformations are
determined by shear stresses and are not affected by normal stresses. For anisotropic
materials, we can observe a correlation between the normal load components and shear
deformations and vice versa. When subjected to normal loads, the material will
experience both shortening and a change in the angle of the sides. In addition to shear
deformation, the material will elongate and shorten when subjected to pure shear
(Agarwal, 2015).

Uniaxial tension Pure shear
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Figure 5 — Uniaxial tension, pure shear (Agarwal, 2015)
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6.1 Hooke’s law for anisotropic and orthotropic materials

Normal stress is a measure of force per unit area applied perpendicular to the surface. The
corresponding displacement is defined as the elongation (or shortening) per unit length
of material in the direction of loading. In isotropic materials, the relationship between
stress and strain is direction-independent, requiring only one elastic constant to describe
the elastic behavior of the material under uniaxial loading. However, in anisotropic
materials, at least two elastic constants are required to describe the elastic behavior due
to the dependence of stress and strain on the direction of the applied force (Nettles, 1994).
When an isotropic material is subjected to normal stress o in a particular direction, only
the dimensions change, but not the shape. As a result, e = 0 and y = 0. However, in the
case of shear stress, only the shape changes, not the dimensions, so e = 0 and y # 0. On
the other hand, when an anisotropic material is subjected to normal stress ¢ in a particular
direction, there is a change in both the dimensions and the shape, resulting in € # 0 and
y # 0. The same is true when an anisotropic material is subjected to shear stress = (Vrbka,
2008).

ISOTROPIC ANISOTROPIC
o \ (9] i
i e+ 0 i e=0
1 v=e B Y
T
T >
%\ 1
i /m’/ q\ £ = 0 i f{\ € #* 0
% y#0 i y#0
» i

Figure 6 — Mechanical behavior of isotropic and anisotropic material (Vrbka, 2008)

The schematic shown Figure 6 illustrates a solid isotropic material. The material's
strength is characterized by a single value, the modulus E, which is independent of the
direction of the load. In contrast, the stiffness of an orthotropic (or anisotropic) material
requires at least two material constants to describe its properties - one for the fibers'
direction and another for the direction perpendicular to the fibers. Typically, these are EL.
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(the elastic modulus of the material in the direction of the fibers) and Er (the elastic
modulus of the material perpendicular to the fibers) (Vrbka, 2008).

For ease of notation and definition, the subscripts 1 and 2 can be used, where E1 represents
the elastic modulus in the direction of the fibers (or equivalent) and E> represents the
elastic modulus perpendicular to the fibers (or equivalent). Subscripts can also be used to
indicate stresses, strains, and other elastic moduli. In contrast, for orthotropic materials,
the directions or orientations must be explicitly specified. If external stresses are applied
perpendicular or transverse to the fibers of a material, it is considered to be orthotropic in
a specific way (Nettles, 1994).

Isotropic Plate Orthotropic Plate

1

A

1
Reinforcing fibers
‘ aligned in 1-direction

2 2
stiffness in 1-direction = stiffness in 1-direction >> stiffness in
= stiffness in 2-direction = 2-direction # stiffness in any direction

= stiffness in any direction

Figure 7 — Difference between isotropic and orthotropic material (Nettles, 1994)

6.1.1 General anisotropic material

It is the most general material model. Hooke's law can be according to Vrbka (2008)
written in the following tensor form.

0ij = Cijxin LKk 1=123 29)
possibly in a narrowed form, which we will use hereafter.
g; = CUSJ (30)

For reasons of formal simplicity, Einstein's summation symbolism was used to sum over
all indices i, j, k, I and I, j, respectively. The relation above can be expressed as a matrix.
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01 Ci1 Cp Gz Gy Cis Ciglre
02 Co1 Gy Coz Gy (s (el &
03| _|C31 C32 C33 C34 (35 (36| &3
T23|  [C41 Caz Cuz Cas Cus Cyel|V23 (31)
T31 Cs1 Csy Cs3 Cs4 Css CseffV31

Co1 Cez Cez Cea Cgs CegelV12

The shear stresses and slope were included in the previous matrix relationship as part of
the assignment to provide a clear physical interpretation.

04 =T33 ; 05=1T31 ; O = T12 (32)
€4 =VY23 ;5 & =V31 5 & =V12 (33)

In simplified matrix form, we express the relationship in symbolic form.
o=Ce (34)
In expanded matrix form for plane 12 (xy):
Ox Ci1 Ciz Cig]| &
|:O-YI = [C12 C22 626‘ lgy ‘ (35)
Txy Ci6 C6 Ceel L¥xy

For the case of transverse stresses Ty; and tx; in expanded matrix form:

[Tyz] _ [C44 C45] )/xz] (36)

Txz C4s  Css) Vyz

where [o] is the stress tensor, C is the stiffness matrix, or the matrix of stiffness material
constants, and [€] is the deformation vector. The matrix of stiffness material constants C
is therefore a symmetric matrix, which contains a total of 21 independent material
constants in the case of a general anisotropic material (Vrbka, 2008). According to Nettles
(1994) some of the matrix’s C, can be defined by known material constants:

Eiq E>,
Ci=— = 37
1 (1 — pa2p21) 22 (1 — py2121) ( )
Co = G12 ;5 C4qa = Ga3 5 Cs5 =Gz ; Cip = Ciqlp (38)

In some cases, Hooke's law is used in inverse form, which expresses the elements of the
transformation vector ¢ as a linear combination of the elements of the stress vector ¢. The
corresponding relations are obtained by multiplying Hooke's law in its basic form by the
internal stiffness matrix [C]-1 from the left, i.e. (Vrbka, 2008).
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C—1lo=C-1Ce (39)

The inverse of the stiffness matrix [C]? is called the material yield matrix with the
designation [S], written mathematically (\Vrbka, 2008).

[sT=1[c]™ (40)

After proper mathematical modifications, we obtain the relation for determining the
deformations, i.e.

& S11 S12 S13 S1a Sis Swe]por

&2 S21 S22 Saz S2a Sas Sx|| 02

€ | _|S31 Ss2 S3z3 S3a S35 Sszef| 03 (41)
V23 Sa1 Saz Saz Ssa Sas Suel||T23
ly31J Ss1 Ss2 Ssz Ssa Sss Sse [T31J

Y12 Se1 Sz Sez Sea Ses Seel'l12

The material yield matrix [S] is, like the material stiffness matrix C, a symmetric matrix,
where the following holds

6.1.2 Generally orthotropic material

In general, an orthotropic material must satisfy the condition where the load is oriented
at an angle to the material other than 0° or 90°. The body is considered generally
orthotropic, also because the load is not considered in the anatomical directions of the
material (Nettles, 1994).
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Figure 8 — Main orthotropic coordinate system (Nettles, 1994)

Stresses and strains in orthotropic material must be transformed into coordinates
corresponding to the orientation of the fibers in the body, i.e., into anatomical directions.
The orientations are illustrated in Figure 9 for the case where the forces act in the 1-
direction (Nettles, 1994):
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Figure 9 - Generally orthotropic body (Nettles, 1994)

We derive Hooke's law of general orthotropic material in the main orthotropic coordinate
system from Hooke's law of general anisotropic material considering the characteristics
of orthotropic axes (Ventsel, 2001):

01 Ci1 Ci2 (i3 0 0O &
0, Cr1 Gy Cy3 0 0 O &
o3| _|C31 (32 Cs3 0 0 0 £3 (43)
T23 0O 0 O Cyy O 0 ||V23
131 0 0 O 0 Cs5 0 [|V31
112 0 0 O 0 0 CgellVr2

Taking symmetry into account, a general orthotropic material's stiffness matrix [C]
comprises 9 independent material constants. Hooke's law for a general orthotropic
material can be obtained by modifying Hooke's law in inverse form in a similar manner
as for a general anisotropic material.

& S11 S12 Si3 0 0 O 0y
& S21 S22 Sa3 0 0 O 0,
& | _ |91 S3z S33 0 00 03
12518 0 (44)
Y31 555
V12 0
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Applying the superposition principle for loading stresses in the main orthotropic
directions 1, 2 and 3, we obtain relations for the relative strains and slope. The procedure

is similar to that for isotropic material.
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Figure 10 — Loading of an element of a general orthotropic material in the main orthotropic direction

For relative deformations and slope in the main orthotropic directions we get

01 03

03

& =E_1_M21E_2_“31E_3 (45)
& = —Mlzg_i'*'g_z—#szg_i (46)
€3 = —l3 ;_1 — Ha3 g_i g—z 47)
Y23 = (T;i; ;Y3 = 23311 ;Y12 = %122 (48)

The main orthotropic directions are indicated by the subscripts of the stress components,
while the direction of the respective stress is denoted by the first subscript of the Poisson
numbers and the direction of contraction is indicated by the second subscript. Previous

equation written in matrix form.
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L _Ha _Hm
E E E
1 . 2 3 0 0 0
U1z Uzz
- = - 0 0 O
&1 El EZ E3 0 0 O 01
& _ M1z Has i op)
& | _ E; E, E3 03
V23|~ 1 T23 (49)
V31 G_23 0 0 T31
Y12 0 0 0 1 T12
0O 0 O 0 o 0
0 0 O 31
0 0 !
G3q
Written in contracted form.
[e] = [S1[o] (50)

There are a total of 12 material parameters contained within the S yield matrix. The
material parameters are very significantly related through the symmetry condition of the
material compliance matrix S.

Hor M1z, Hs1_H1s  Hsz _ Has
E, 2 ' E; E; ' E; E, (51)

Therefore, according to material properties described in Vrbka (2008), a general
orthotropic material is characterized by 9 independent parameters, namely E1, E2, E3, ui2,

U2, Us1, G2, G2z, and Gzz, as well as three Poisson's ratios: p12, us2, and pas.
6.1.3 Planar orthotropic material

For a planar orthotropic material where the principal orthotropic axes are the coordinate
axes 1 and 2, the matrix relation for a general orthotropic material gives rise to the
following basic form of Hooke's law Vrbka (2008).

Ci1 Cip
BEEH e
Y12

As a result, a planar orthotropic material is characterized by four independent material
constants within its stiffness matrix [C]. According to the previous relations, the inverse
expression of Hooke's law can be given as follows:

S117 S12 O 01
[ ] [SZl 522 O ] [ 0-2 ] (53)
Y12 Seel LT12
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Likewise, in this case, the compliance matrix S consists of four independent elements.
When the independent elements of S are defined using material constants, the inverse
Hooke's law can be expressed in the following form:

1 B ]
c E; E, -
! U1z 1 !
S| =|—- E_ E— 0 0> (54)
Y12 1 2 1 T12
0 0 —_—
G1z

This expression involves four independent material constants, namely E1, E2, po1, and Gi2,
as described in Vrbka (2008).

6.2 Stress and strain transformations

When using wood and wood composites, situations often arise where the orientation of
the fibers in the body does not correspond to a suitable coordinate system. The orientation
of the fibers in the wood is represented by the anatomical coordinate system. This may
ideally correspond to the global coordinate system, but in a non-ideal case the fiber
deflection will be non-zero. In such cases, the directions in which the deformations due
to stresses occur do not correspond to us and we have to use a transformation. The stress-
strain properties of materials are generally discussed in relation to their non-isotropic
nature (Bodig & Jayne, 1993).

In the transformation we will denote two coordinate systems:
- Global coordinate system (global axes) ...xi
- Anatomical coordinate system (anatomical axes) ... x;

6.2.1 Stress transformation

The transformation matrix T is utilized in the form of a stress transformation. According
to Bodig&Jayne (1993):

cos? 6 sin? 0 +2(sin O cos 6)
T, = sin? @ cos? 0 —2(sin 8 cos 6) (55)
—(sinfcosB) +(sinfcosB) (cos?H —sin?h)

In this case, the goniometric functions of sine and cosine that correspond to the deflection
of fibers in anatomical axes from global axes are expressed using C and S, respectively.
6 represents the angle of fiber deflection from global axes. The equation for stress
transformation is expressed as follows:

[o] = [To][o] (56)
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where |a] is the stress matrix acting in the anatomical axes and |o] is the stress matrix
acting in the geometrical axes. Then 6 is the angle of deflection of the fibers from the
global axes. An alternative to this notation may look like the following:

01
[”2
012

where ox, oy and axy correspond to the global axes and a1, o2 and g12 correspond to the
anatomical axes. For example, for a material with a fiber offset of 60° from the geometric
coordinate axes, the notation would be as follows

Ox
= [Ta] [Jy] (57)
Oxy

oy cos? 6 sin? 6 +2(sin @ cos 0) | 0x
[Uz ] = sin 6 cos? 6 —2(sin 8 cos 6) [ Ty ] (58)
012 —(sin@cos@) +(sinfcosH) (cos?O —sin?0)| L %xy

Assumptions for stress transformation (Bodig & Jayne, 1993):

e Invariant,

e Equilibrium method,

e The goniometric relations apply,

e The general form of stress transformation is derived by incorporating goniometric
relations into the equilibrium method, particularly when all stress components act
In geometric axes,

e The components of transformation rotate in a circle (known as Mohr's circle) ,

e The transformation involves the appearance of the trigonometric functions
sin(2¢) and cos(2¢).

6.2.2 Transformation of deformations

To perform stress transformation, we utilize the transformation matrix T, which according
to Bodig&Jayne (1993) takes the following form:

cos? 6 sin? @ +(sin @ cos )
T, = sin? @ cos? 6 —(sin @ cos ) (59)
—2(sinfcos@) +2(sinfcosh) (cos?B —sin?0)

Here, C and S represent the trigonometric functions of the sine and cosine of the angle
between the fibers in the anatomical axes and the global axes. The equation for
deformation transformation is expressed in the following form:

[e] = [Te][€]

Here, |¢| refers to the deformation matrix operating in the anatomical axes, while |e] refers
to the deformation matrix operating in the geometric axes. An alternative to this notation
may appear as follows.
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& Ex
[82 = [Te] [ey ]

€12 gxy

where &x, €y and exy correspond to the global axes and €1, €2 and €12 correspond to the
anatomical axes (Bodig & Jayne, 1993).

6.2.3 Transformation of stiffness matrix

The relation for the stiffness matrix transformation is written in the forms.

Ci1, = Cy1c05* 0 + 2(Cyz + 2C46) cos? O sin® O + C,, sin* 0

Ciz; = (C11 + Cyp — 4Cg6)c0s?Osin®0 + C1(cos*O + sin*0)

Caz; = Cy15in*0 + 2(Cyp + 2C46)cos?0sin?0 + Cpc05*0

Ci6; = C11 — Ciz — 2Cg6) c0530sind + (Cqp — Czp + 2C4)cosfsin6

Ca6; = (C11 — C12 — 2Cg6)sin30c0s0 + (C1, — Czp + 2C46)sinfcos>0 (60)
Cos; = (C11 + Cap — 2Cyp — 2C46)c0s?0sin?g + Cee(cos*O + sin*6)

Cya; = Cyq * 05?6 + Cs5 * sin® 6

Cys, = (Css — C4q)sinfcost

Css;, = C55c05%6 + Cyqsin’6

Where C_iji is the transformed stiffness matrix, Css is the non-transformed stiffness

matrix, 0 is the angle expressing the fiber deflection from the longitudinal direction in the
transformed laminate layer (Bodig & Jayne, 1993).
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7 Plate theories

7.1 Kirchhoff-Love Plate Theory

Also known as Classical Plate Theory (CPT). The main assumption of Kirchhoff-Love
Plate Theory is the perpendicularity and straightness of normals to the deformed central
plane of the plate. The theory neglects shear along the thickness of the plate and works
only with shear stress in the plane of the plate. Such neglect can lead to a relatively high
error when applied to thick plates. To adopt this theory, two boundary conditions must be
satisfied. Given the fact that (as in other cases) this is a shell theory, i.e., a theory that
does not require a three-dimensional analysis, several assumptions according to Szilard
(2004) must be satisfied:
e The plate is thin in the sense that the thickness is small compared to the main
dimensions, but not so thin that the lateral buckling is comparable to the deflection
w,
e The thickness of the plate is uniform or varies to such an extent that three-
dimensional stresses are neglected,
e The applied transverse load is distributed over an area greater than the thickness
of the plate,
e The support conditions are such that there are no significant extensions of the
median plane.

Displacement field
The displacement of the plate in the x-axis direction is denoted by u. For the

displacement of the plate in the y-axis direction, we denote v and for the displacement
in the z-axis, w. The Figure 11 shows these displacements.
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Figure 11 - CPT displacement field (Nettles, 1994)
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The CPT is according to Nettles (1994) based on the following representation of the
displacement field:

u(x,y,2) = ug(x,y) + zkx (x, ) (61)
v(x,y,2) = vo(x,y) + 2K, (x,¥) (62)
W(X'V;Z) = Wo(x,y) (63)

Where u, v and w are the designations for the displacement components in the x, y and z
directions, respectively. The displacements in the midplane are denoted by uo, Vo, Wo. The
displacement components u and v are functions in the x,y plane. The overall displacement
in the plate's plane at a particular point is a combination of the normal displacements and
the displacement caused by bending. Assuming the displacements in the midplane are
denoted as uo and vo along the x and y axes, respectively, the total displacement can be
expressed as shown in the Figure 12:

U=Uy—2Z—— ; V=Vy—Z—— (64)
It is assumed that there is no strain in the direction of thickness, only displacement.

z Undeformed edge of plate
A Top surface of plate

+z
Midplane

Bottom surface of plate

e
Z  Deformed edge com?
of plate

¢ = Slope = dw/dx
For small @

\ane

MidP w

©Tension

Figure 12 — Total displacements in a plate (Nettles, 1994)

The full derivation of the relations resulting from the definition of the displacement
field are presented in the appendix 13.1.
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7.2 Mindlin-Reissner Plate Theory

Also known as “First-Order Shear deformation theory” (FSDT). Mindlin-Reissner plate
theory is a mathematical model utilized for analyzing the behavior of thin and thick plates,
which are structural components that are typically much thinner in one direction than the
others. It is a more advanced and precise model than classical plate theory, which assumes
that plates are infinitely thin. Mindlin-Reissner plate theory considers the plate's thickness
and material properties, such as its elastic modulus and Poisson's ratio, allowing for more
accurate predictions of deformation and stress within the plate under external loads.
Reissner and Mindlin developed a theory that considers shear deformation along the
thickness of a plate, overcoming the limitations of the Kirchhoff-Love Plate theory and
enabling analysis of thicker plates (Szilard, 2004). The Kirchhoff-Love Plate theory
(CPT) disregards the influence of shear deformation across the thickness of the plate,
which may lead to inaccurate results when dealing with plates of larger thicknesses. The
definition of thin and thick plates is still a matter of debate and depends on several factors,
including the stiffness of the individual laminates. Generally, plates considered as thin
under CPT are those whose length/thickness ratio falls between <5-100>, while plates
considered as thick have a ratio between <5-10>. The first-order shear deformation theory
(FSDT) considers shear deformation in the plate thickness by assuming constant shear
deformation throughout the plate's thickness, requiring the utilization of a shear correction
factor to satisfy the assumption of zero shear stress on the top and bottom planes of the
plate (Panyatong, 2015).

For this theory to be applicable, three boundary conditions must be satisfied. One of these
involves the deflection, while the other two relate to normal and tangential rotations,
respectively (Szilard, 2004).

Mindlin-Reissner Plate theory is according to Bittnar&Sejnoha (1992) based on the
following assumptions:

- The difference in displacement of the edge points of the plate in the z-axis
direction (plate compression) is negligible with respect to the absolute value of
the displacement w,

- The normals to the midplane remain straight after deformation but are no longer
perpendicular to the midplane surface of the plate. They are therefore called
pseudonormals of the plate. The Mindlin-Reissner plate theory neglects the
collapse of the transverse sections, as can be seen in the Figure 13,

- The normal stress of g, is small compared to the stresses of oy, g,,.
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Figure 13 — Assumptions about plate reshaping (Bittnar&Sejnoha, 1992)
Displacement field

The FSDT is based on the following representation of the displacement field:

u(x;y'Z) = uo(x'}’) +Z¢x(x'y) (65)
v(x,y,2) = vo(x,y) + 2, (x,¥) (66)
w(x,y,z) = wo(x,y) (67)

Where u, v and w are the designations for the displacement components in the x, y and z
directions, respectively. The displacements of points in the midplane are denoted by uo,
Vo, Wo. All displacement components (u, v, ¢y, ¢,) are functions in the X,y plane.
Compared to Kirchhoff-Love Plate theory, the assumption that there is no strain in the
thickness direction, only displacement, no longer holds. The displacement in the thickness
direction is now defined by the rotation of the perpendicular to the centerline of the neutral
axis of the plate, as shown in the Figure 14 (Kolvik, 2012).

Fspr

Figure 14 - Displacement of pseudonormals (Abbas, 2013)

The full derivation of the relations resulting from the definition of the displacement field
are presented in the appendix 13.2.
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7.3 Second-Order Shear Deformation Theory

Second-order shear deformation theory is a mathematical model that is used to describe
the behavior of thin-walled beams and plates under loading. It is an extension of first-
order shear deformation theory, which only accounts for linear deformations of a beam
or plate. In contrast, second-order shear deformation theory takes into account the
nonlinear deformations that can occur in a beam or plate, such as shear and rotation, and
is therefore more accurate in predicting the behavior of these structures under various
loads. The theory is typically used in the design of beams and plates in engineering
applications, such as bridges, buildings, and aircraft.

Displacement field

The SSDT is based on the following representation of the displacement field:

u(x'y; Z) = uO(ny) + Z(pl + Zz¢2 (68)
U(x, YV Z) = Uo(x, y) + le)l + ZZ(I)Z (69)
w(x,y,z) = wo(x,¥) (70)

Where u, v and w are the designations for the displacement components in the x, y and z
directions, respectively. The displacements of points in the midplane are denoted by uo,
v0, wo. All the displacement components uo, Vo, Wo, ¢+, 2, Y1, P, are functions in the
xy-plane (Shahrjerdi & Mustapha, 2011).

Bemoulli  Timoshenko
[ Gl

DI

Figure 15 - Various shear deformation hypotheses (Zhang, 2014)

The full derivation of the relations resulting from the definition of the displacement
field are presented in the appendix 13.3.

7.4 Third-Order Shear Deformation Theory

Third order shear deformation theory (TODT) is a mathematical model used in structural
mechanics to analyze the behavior of plates and other structural elements subject to
external loads. The theory accounts for the nonlinear shear deformations that occur in
beams due to large deflections, which can cause the plates to twist and bend out of its
original shape. This is in contrast to traditional plate theory, which assumes that the plate
remains straight and only experiences small deflections. By taking into account the
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nonlinear deformations, third order shear deformation theory can provide more accurate
predictions of a plate behavior under load, which is important for designing safe and
effective structures.

The main difference between the SODT and TODT is the level of accuracy they
provide in predicting the behavior of the beam. Second order shear deformation theory is
a simpler and less accurate model than third order shear deformation theory. It assumes
that the plate remains straight and only experiences small deflections, and therefore it
does not account for the nonlinear shear deformations that occur in the plate due to large
deflections. This means that second order shear deformation theory is only suitable for
analyzing plates that are not subject to significant loads or deformations. In contrast, third
order shear deformation theory takes into account the nonlinear shear deformations that
occur in the plate due to large deflections, which allows it to provide more accurate
predictions of the plate 's behavior under load. This is important for designing safe and
effective structures that are subject to large loads or deformations.

Displacement field

The TSDT is according to Shokrieh (2017) based on the following representation of the
displacement field:

u(x,y,2) = ug(x,y) + 2P, (x,¥) + 22, (x, y) + 232, (x,y) (71)
v(x,y,2) = vo(x,y) + 2, (x,y) + 229, (x,¥) + 231, (x, y) (72)
W(x'y'Z) = WO(x'y) (73)

Where u, v and w are the designations for the displacement components in the x, y and z
directions, respectively. The displacements in the midplane are denoted by uo, vo, wo. All
the displacement components Uo, Vo, Wo, ¢y, @y, Py, ¥y, Ay, 4, are functions in the xy
plane.

(uw)

Figure 16 — Transfer displacement of plate according to TSDT (Ghiamy, 2022)

The full derivation of the relations resulting from the definition of the displacement
field are presented in the appendix 13.4.
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8 Methodology

8.1 CLT panel swelling

One of the problems faced in this work is the possible damage to laminated cross-
laminated timber boards by the effects of rain and snow, respectively by the direct
exposure to rainwater that is in direct contact with the top lamella of the board. Damage
to the lamellas in terms of reduction in modulus of elasticity due to increased humidity
should also be investigated in terms of time. Therefore, it was decided to verify
numerically the rate of wetting of the top lamella of the plate by continuous water
exposure. The objective of the verification is to determine for how long the top lamella
of the plate must be exposed to water in order for the material used to reach the saturation
limit of the cell wall. The script that has been developed for this purpose is based on the
knowledge and relationships described in the chapter on water movement in wood.

the environment T = 20°C
the environment w = 100°% (rainwater)

€24 initial material w = 12°% 2
Cc24 initial material w = 12°% e
C24 initial material w = 12°% =

the environment T = 20°C
the environment w = 16°%

Figure 17 - Model boundary conditions

The model is based on the equation of non-stationary moisture diffusion (chapter
Non-stationary diffusion), i.e.:

dw_d(D dW)+d(D dW)+d(D dW) 74
dt  dx\ *dx/) dy\ Ydy) dz\"?dz (74)

The complete numerical script is part of the appendix 13.6.
8.2 Extension to hygrothermal stresses in laminates

We know from the chapters Moisture properties of wood and Thermal properties of wood
that a change in temperature and moisture of a material causes a change in the dimensions
of the material in the form of swelling/drying or thermal expansion. In other words,
changes in moisture content and temperature result in strains. These strains are not the
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result of an external force acting on the body and are not accompanied by a response of
the body in the form of the presence of internal forces. This is the case if the body is not
constrained in any way and can change its dimensions in the radial, tangential and
longitudinal direction, or its entire volume without limitation. Internal forces will be
present in a body which is subjected to changes in temperature or moisture content and is
restricted in any way in the directions of temperature and moisture deformations. The
reasoning in relation to laminated materials is well illustrated in Figure 18 by a simple
material consisting of two different materials with different moisture content and
temperature properties. When the environmental moisture or temperature increases, one
of the materials will react with dimensional changes before the other material. If the two
materials are not bonded together, each will deform separately with respect to the
environmental temperature and moisture conditions and no internal forces will occur in
either material.

Intial state
(moisture content = wyg)

| £"1 = ey (W-wp)
|
|
|
Unbonded layers - final | ‘

(moisture content = w) M
f
|
-
| €= g1 = M2 }—H "M o2 (W-wp)
|

| \ )—>|<—

M _ w
EM1—=EE M

(moisture content = w)

|
—
Actual final state - strains /j//
|
i
|

M _ w
| € M2=EE M2
Actual final state - stress +—— Om1
(moisture content =w) — Om2
+—— OM1

Figure 18 — Moisture change of bounded and unbounded laminate layers (Agarwal, 2015)

Since the two layers of materials form a single unit (are rigidly bonded), the actual
deformations in both layers are the same. The magnitude of this deformation will be less
than that of loose material 1 and greater than that of loose material 2 (if the modulus of
elasticity Ematerial-1>Emateria-12). The resulting deformation therefore depends on the elastic
moduli of each material. If there is no external force acting on the body, the internal forces
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from the hygrothermal loads balance each other - the net internal force is zero. Since
hygrothermal changes are linear and reversible, the relationship between dimensional
changes and moisture or temperature change can be written in the following form:

el = aAT (75)
e = pAC (76)

where AT — temperature change, AC — change in moisture content, £ thermal
deformation, £ moisture deformation, «, 8 — coefficients of temperature and moisture
changes. In the case of an orthotropic material, the coefficients of thermal and moisture
expansion, like other material properties, depend on the orientation of the fibers. The
moisture and thermal deformations in the longitudinal and transverse directions are then
written as follows:

el = q AT (77)
el = apAT (78)
el = B,AC (79)
el = BrAC (80)

Where a;, ar, B, Br are the coefficients of thermal and moisture expansion in the
longitudinal and transverse directions. These coefficients, like strain and stress, can be
transformed arbitrarily in the x and y axes as in the case of strains.

[ Ox ] O

ay | = [Te]_l ar (81)
| @y | ny

Bx (5]

'By = [Ts]_l Br (82)
By L0

Where [T,] is the transformation matrix, which is the same as the transformation matrix
given in equation (59) for the strain transformation. Therefore, hygrothermal strains can
be written in terms of strains:

(el [a, AT

ey | = | ayAT (83)
_y;y_ _axy AT_
(e ] [BAC]

&y [ =|ByAC (84)
_Vﬁ/_ _ﬁxyAC_
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Hygrothermals strains themselves do not produce internal forces or moments when the
body is not restrained against displacement, torsion or bending. When considering the
laminate as a whole, thermal and moisture changes do not affect the resulting internal
force and moment. However, the separate laminas are not free and are constrained by the
remaining laminas. The deformation of each laminate is affected by the deformation of
the other laminates. Since the hygrothermal deformations of the laminate are of the same
nature as the deformations induced by external loading, they can be written as the
resulting mechanical deformations:

¥ &y el gl
g =|o| -|4] - |4 )
Vay k Yol vy k Yy K

Mechanical stress in k" ply is then calculated by:

Ox @1 @2 g16 &r
[ay] = 912 sz Qzé 831‘/4
Byl 1Qis Q26 Qoo K Yy

(86)

k

The relationship (86) represents the solution to the combination of mechanical stresses
combined with moisture and temperature stresses.

8.3 Effect of moisture and fiber orientation on material constants

As already mentioned in the chapter dealing with moisture properties of wood and the
chapter dealing with the transformation of stiffness metric matrices, both fiber orientation
and moisture have a significant effect on the material constants of wood. It is clear from
the chapter Moisture properties of wood that a change in moisture content of wood results
in a change in dimensions, or deformation. This deformation must be included in the
calculation together with the change in material constants due to moisture.

The elastic moduli have a major dependence on the change in fiber orientation. The
modulus of elasticity in the direction of the fibers decreases by more than 90% when the
orientation of the fibers is changed by 45°, and by up to 96% when the orientation is
changed by 90°. The shear modulus decreases by approximately 50% with a 45° change
in fiber orientation. The stiffness matrix parameters C, which are defined by the elastic
moduli, are similarly dependent. Similarly, a change in wood moisture content from 12%
to 30% will reduce the stiffness matrix element C11 by more than 35%.

Graphic representations of the dependence of wood material parameters on moisture
content and grain orientation are included in the appendix 13.5.

47



8.4 Compiling a numeric models

In this chapter, the principle (workflow) of defining numerical models according to the
chosen plate theories is described in the Figure 19, This principle is the basis for the
development of the numerical models, but the models themselves may differ slightly.

The full form of the numerical models is included in the appendix 13.7 — 13.10.
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Figure 19 — Flowchart for laminate stress analysis




8.5 Experiment

8.5.1 Thin plate

The experiment was performed to verify the numerical model. Since it is well known and
verified by research that the Kirchhoff-Love Plate Theory is not reliable when applied to
thick plates and the remaining theories are based on CPT, several thin plates of 19 mm
thickness, 300 mm width and 1500 mm length (Figure 21) were constructed to verify the
numerical models. It was constructed of three layers of 6-7-6 mm of C22 strength, with
the surface layers having an orientation in the direction of the plate length L1. The plates
were placed on supports 1300 mm apart and loaded with the load-bearing arm of a loading
machine.

Q -q
HHHlHlllHiHHVHHHHHHHlHH
\ W /

L L
L1

Figure 20 — Thin plate loading model

The plate was placed on the supports and gradually loaded with the force arm Q until the
plate broke. The deflection of the plate was continuously recorded.

Figure 21 — Tested thin plate samples

The result of the experiment is the deflections of the plate under a certain load. The same
load and geometry will be applied for the numerical model of ,,Special Axis and Material
Symmetry“ and the results will be compared.
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8.5.2 Thick plate

From the point of view of mechanics, we distinguish between thin and thick plates. While
thin plates can be examined without taking into account the shear stress along the
thickness of the plate, in thick plates the shear stress is often the cause of plate failure.
Similar to the thin plates, the experiment was approached for the purpose of verifying the
numerical model. Since it is generally known and verified by research that the Kirchhoff-
Love Plate Theory is not reliable when applied to thick plates and the remaining theories
deviate from CPT, several plates manufactured by Stora Enso, Pfeifer and Naturfor were
tested for bending to verify the numerical models. The geometry of the tested plates is
given in the Table 2.

Table 2 — Selected CLT panel geometry

Plate Number | Layer Orientation . Plate
. . Plate width
of thicknesses | of layers | Material length
[mm]

layers [mm] [°] [mm]
NaturFor 3 30-30-30 |0-90-0 C24 300 1500
StoraEnso | 3 30-30-30 |0-90-0 C24 300 1500
Pfiefer 3 30-30-30 |0-90-0 C24 300 1500

As is displayed in the Figure 22 each of the plates was placed on supports and
progressively loaded with the force Q until the plate broke. The deflection of the plate
was continuously recorded. The plates were placed on supports 1200 mm apart and loaded
with the load arm of the tearing machine.

Q -q
T T T T i

L1
Figure 22 — Loading scheme of the thick plate

8.6 Model Verification

Verification of the numerical models was performed in two ways. The first way of
verification is to compare the results of the numerical models. Since the geometry, loading
and material characteristics are the same in all models and the fundamentals of the
numerical models (displacement field, strains and curvatures, equilibrium equations,
stress-strain relationships, governing plate equations) are different, the numerical models
should agree in their results when the model is correctly built.

The second way of verification is to compare the results of deflections from numerical
models and experimental measurements. Such verification will be performed only for the
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full symmetry variant, i.e. the variant in which the thickness of the layers is axially
symmetric and the orientation of the layers is 90°-0°-90° or 0°-90°-0°. Since all numerical
models are built for generally orthotropic plates, the slightest error can result in different
results by orders of magnitude.

8.6.1 Special Axis Symmetry and Material Symmetry

Special axis and material symmetry refers to the geometry and composition of the panel
in which the symmetry in the orientation of the layers at angles of 0°-90°-0° and the
material of the lamellas is maintained, with the plane of symmetry being the neutral and
geometric centre plane of the panel. Since this is a composition that is typical of
commercially produced panels, verification was performed in both ways - that is, by
comparing the deflections of the thick and thin plate experiments with the numerical
models and by comparing the results from the numerical models with each other.

A |

+hi+h2/2 ¥ T
= 0° C24 w=12°%
+h2/2 § T
: = 90— C24 Hv%zc'%—/
h2/2 ¥ il
-h1-h2/2 y = 0° C24 w=12°% \

: )

Figure 23 — Geometry of a specially axisymmetric and material-symmetric plate

8.6.2 General Axis Symmetry

Special axial and material symmetry refers to the geometry and composition of the panel
in which symmetry in the orientation of the material layers is maintained, with the plane
of symmetry being the neutral and geometric centre plane of the panel. The difference
from special axial and material symmetry is the orientation of the individual laminae,
which do not necessarily have to be oriented at 0°-90°-0°, but for example 20°-70°-20°.

+h1+h2/2 - \
< 20°  C24 w=12°%
+h2/2 T /
I8 & 70° €24 w=12°% /
-h2/2 1 {
hi-hzz g < 20°  C24 w=12°%

Figure 24 — Geometry of a generally axisymmetric plate

8.6.3 Axial Asymmetry

Axial asymmetry refers to the geometry and composition of the panel in which the
symmetry in the orientation of the lamella material layers is not maintained. The
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difference from special axial and material symmetry and general axial symmetry is the
orientation of the individual lamellae, which is not geometrically symmetrical in the panel
width. An example of a panel with axisymmetry can be a panel with a 0°-90°-30° fiber
orientation.

thithz/2 & _ '
IS 0° C24 w=12% \
+h2/2 ]
L & 90° (24 w=12%
-h2/2 Al {
hiohzzy S 30° (24 w=12%

Figure 25 — Geometry of an axially non-symmetrical plate

8.6.4 Material Asymmetry

Material asymmetry refers to the geometry and composition of the panel in which the
symmetry in the orientation of the layers of the lamella material is maintained, but the
symmetry of the materials of which the material is composed is not maintained. An
example would be a panel composed of three laminage, each of which is made of a different
wood or wood strength.

|

h1+h2/2
thh2/2 ) s 0° C24  w=30% \]
+h2/2 ‘ /
T o 90° €24  w=12"%
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/
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Figure 26 — Example of a materially unsymmetrical plate
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9 Results and Discussion

9.1 CLT panel moisture content change

In this chapter, the results of a numerical model that investigated the CLT panel moisture
content change rate are described. The solution was a numerical script constructed based
on the knowledge of non-stationary diffusion.

3
0.36-— 02
0.3+ { { . { | 0.27
025 / | | | | 024
02+
| 021
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0.45-+———=—1 —=2 — T
/ 018
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Graph 1 - Non-stationary 3D moisture diffusion over time; y- Graph 2 -Non-stacionary 3D moisture diffusion — moisture
axis — moisture content (-), x-axis time (t), a — bottom plane of ~content in Z-axis (thickness of the plate), y-axis — moisture
the plate, b — middle plane of the plate, ¢ — top plane of the plate ~ content, x-axis -thickness of the plate [m]
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] 0.18
0.+ r 0.17
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Graph 3 - Non-stacionary 3D moisture diffusion moisture distribution in the XZ plane, t = 5.18e5; x axis — length
of the plate, y axis — thickness of the plate
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Based on the findings from the Graph 1 and Graph 3, we can conclude that under the
given boundary conditions, the top lamella of the CLT panel under consideration is
soaked to the cell wall saturation limit (28% material moisture) in 143.8 hours,
respectively 5.7 days. It is important to note that although this is a non-stationary diffusion
model, it is only a simplified model that does not consider the presence of adhesive in
CLT panels, which has different diffusion properties than wood. It can be expected that
the wetting time will be longer if the glued joint is included in the calculation. The
moisture gradient along the thickness of the panel would not be linear as in Graph 2, but
the moisture profile would show large differences in moisture content at the glued joint.
An example of such a moisture gradient can be seen in the Graph 4, which represents the
moisture profile of a three-layer CLT panel with 0.1 mm glued joints. From this graph,
presented by Gereke (2009), it is clear that there is a jump in moisture content at the glued
joint. The question remains as to what effect the glued joint has on the wetting rate of a
unilaterally moisture loaded panel. The answer to this question could be the non-
stationary diffusion model involving the glued joint presented in "Combined loading of
laminated structural elements" by Valasek (2021).

30

Thickness, @ (mm)
>

10 12 14 16 18 20 22 24 26 28 30
Moisture content, ® (%)

Graph 4 - Moisture profiles along the thickness of a CLT panel involving a glued joint with constant glue diffusion
coefficients compared to measurements; 14 days (Gereke, 2009)

The numerical model is not a unified solution, and the result is influenced by a number
of factors. These factors include the thickness of the layers of the CLT panel, the thickness
of the adhesive, the type of adhesive, the wood species used to produce the CLT panel,
the diffusion properties of the adhesive, the method used to calculate the moisture
distribution, the effect of stationary or non-stationary conditions, or the chosen neglect of
the effect of temperature on the rate of wetting. The calculation itself was undertaken to
test the hypothesis that exposure of the ceiling panel to rainwater may lead to significant
degradation of the material properties of the CLT panel surface. If the construction of a
timber building using CLT ceiling panels is properly designed and constructed, such
extreme moisture loading cannot occur during the use of the building. However, what is
often not included in the calculations and considerations is the construction phase of the
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rough construction, during which entire floors may become covered with rainwater or
snow (as can be seen on Figure 27).

] W=
<

Figure 27 - CLT panel ceiling exposed to pooled water (Olsson, 2020)

Such moisture loads are examined from the perspective of protection against mold and
wood-boring fungi and are not considered from the perspective of reduction or change in
mechanical properties (Oberg, 2018). The software (AxisVM, Abaqus, Dlubal, Ansys)
used for the design of structures or joints does not allow the inclusion of moisture
deformations in the calculation (AxisVM support [online]; Abaqus Analysis [online];
Dlubal manual [online]; Ansys workbench [online]). In the design of timber-based
structures, the exposure of timber to moisture is only possible through the kger coefficient
defined by the service class, which is determined during design for the service stage of
the structure, not for the design stage (Kozelouh, 1998; Eurocode 5, 1994).
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9.2 Verification 1 — thin plate

9.2.1 Experiment1

This chapter describes the results of individual measurements and their subsequent
comparison with numerical models. Specific values of the deflection of the plates are
described. The results are valid for a plate with a temperature of 20°C and a relative
humidity of 12%. The results are described and illustrated in graphs and tables.
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Graph 5 — Results of experimental measurement of deflection of thin plates

In the Graph 5 it can be seen the deflections of individual plate samples depending on the
applied surface load [N/m?]. It can be seen from the graph that at the highest load
observed, i.e., at 6900 N/m?, the deflection ranged from 71.4 to 81.4 mm. The largest
deflection at the highest observed load occurred in sample 5. The smallest deflection was
observed in sample 7.
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Table 3 — Results of experimental measurement of deflection of a thin plate

Deformation [mm]

Load I I I I I I i i i Arithmetic
[N/m2] Sample | Sample | Sample | Sample | Sample | Sample | Sample | Sample | Sample mean
1 2 3 4 5 6 7 8 9
700 8.62 8.37 8.23 8.49 8.73 9.36 8.06 9.34 9.62 8.76

1400 | 16.46 | 16.04 | 1556 | 16.18 | 16.73 | 18.03 | 154 | 17.01 | 17.28 16.52
2100 | 24.29 | 2354 | 229 | 23.65 | 24.73 | 26.36 | 224 | 24.68 | 24.95 24.17
2800 | 31.96 | 31.04 | 30.06 | 31.2 | 33.06 | 3503 | 294 | 32.34 | 32.62 31.86
3500 | 39.79 | 38.7 37.4 39.6 | 40.73 | 43.36 | 36.4 | 40.01 | 40.28 39.59
4200 | 47.62 | 46.37 | 44.56 | 46.48 | 49.06 | 51.7 43.4 | 47.68 | 47.95 47.20
4900 | 55.62 | 54.2 51.9 | 54.33 | 57.06 | 60.03 | 50.4 | 55.34 | 55.62 54.94

5600 | 63.62 | 61.87 | 59.4 | 62.02 | 65.06 - 574 | 63.01 | 63.28 61.96
6300 | 69.98 | 69.87 | 66.9 | 69.98 | 734 - 64.4 | 70.68 | 70.95 69.52
6900 | 80.62 | 77.87 | 744 | 77.97 | 814 - 714 | 78.34 | 78.28 77.54

Table 3 shows the results of the experimental measurements together with the arithmetic
mean used in the subsequent comparison of the values from the numerical calculations.

9.2.2 Numerical models

This chapter describes the results resulting from the numerical scripts. The boundary
conditions and loads that were entered into the scripts were based on the conditions of
Experiment 1. The deflection was calculated for loads from 0 to 6900 N/m?2.

Table 4 — Results of deflection of thin plates from numerical models

Load Deformation [mm] Standard deviation
[N/m2] CPT FOSDT | SOSDT | TOSDT
700 8.71 8.39 8.42 8.45 0.13
1400 16.91 16.84 16.87 16.9 0.03
2100 24.36 24.07 24.1 24.13 0.11
2800 32.01 31.78 31.81 31.84 0.09
3500 39.84 39.47 39.5 39.53 0.15
4200 47.34 47.13 47.16 47.19 0.08
4900 55.24 54.82 54.85 54.88 0.17
5600 62.36 61.8 61.83 61.86 0.23
6300 69.77 69.4 69.43 69.46 0.15
6900 77.78 77.39 77.42 77.55 0.15

In the Table 4 we can see that the results of the numerical theories are similar. FOST,
SODT and TODT differ in their deflection results in hundredths of millimeters, while
CPT differs in tenths of millimeters. Due to the low standard deviation, the results can be
considered relevant. The smallest deflection at the maximum considered load of 6900
N/m? resulted from FODT. The highest deformation at the maximum considered load
resulted from CPT.
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9.2.3 Comparison of verification results 1

In this chapter, a comparison between experimental measurements and numerical model
results is presented.

Table 5 — Comparison of verification results 1

Deformation [mm]
Load - Standard
[N/mz) | EXPermentl = cor | eopT | SODT | TODT | deviation
average value
700 8.76 8.71 8.39 8.42 8.45 0.16
1400 16.52 16.91 | 16.84 | 16.87 | 16.9 0.15
2100 24.17 24.36 | 24.07 | 24.1 | 24.13 0.10
2800 31.86 32.01 | 31.78 | 31.81 | 31.84 0.08
3500 39.59 39.84 | 39.47 | 39.5 | 39.53 0.13
4200 47.20 47.34 | 47.13 | 47.16 | 47.19 0.07
4900 54.94 55.24 | 54.82 | 54.85 | 54.88 0.15
5600 61.96 62.36 | 61.8 | 61.83 | 61.86 0.21
6300 69.52 69.77 | 69.4 | 69.43 | 69.46 0.13
6900 77.54 77.78 | 77.39 | 77.42 | 77.55 0.14

The Table 5 shows the comparison of the results of verification 1, i.e. the comparison of
the deflection of the plate loaded experimentally measured and numerically calculated.
The differences between the numerical theories and the experimental measurements are
in the order of tenths of millimeters to hundredths of millimeters. The standard deviation
is in the interval from 0.07 to 0.21. Because the standard deviation is so low, we can
consider the results relevant.

Referring to results of experimental measurement 1 (measuring the deflection of the thin
plate) from Graph 5 and Table 3, it can be said that the mechanical response of all 9 plates
showed the same deflection values. It should be stated that since the numerical models
derived were only linear Hooke's law based, only the elastic behavior of the plates was
investigated and therefore the failure is not included in the working graphs from the
experimental measurements. Based on the results of the numerical models in Table 4, it
can be concluded that all numerical models agree in the deflection results. Based on the
findings from Table 5, it can be concluded that the deflection observed in the experimental
measurements and the deflection given by the numerical theories are in agreement and it
can be concluded that the numerical theories were correctly derived for the bending of
the thin plates.
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9.3 Verification 2 — thick plate
9.3.1 Experiment 2

This chapter describes the results of individual measurements and their subsequent
comparison with numerical models. Specific values of the deflection of the plates are
described. The results are valid for a plate with a temperature of 20°C and a relative
moisture content of 12%. The results are described and illustrated in graphs and tables.
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Graph 6 - Results of experimental measurement of deflection of thick plates

In the Graph 6 it can be seen the deflections of the individual plate samples depending on
the applied surface load [N/m?]. The graph shows that at the highest observed load, i.e.
12000 N/m?, the deflection ranged from 0.039 to 3.3 mm. The largest deflection at the
highest observed load was for NaturFor 1 and the smallest for Stora Enso 2.
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Table 6 - Results of experimental measurement of deflection of a thick plate

Deformation [mm . . Selective

Load [mm] - - Arithmetic | Standard standard
[N/m2] NaturFor | NaturFor | NaturFor | NaturFor | Stora Stora | Pfeifer | Pfeifer mean deviation 1da

1 2 3 4 Ensol | Enso?2 1 2 deviation

500 0.517 | 0.044 | 0.194 0.049 | 0.069 | 0.039 |0.214 | 0.099 0.153 0.152 0.061

1000 | 0.809 | 0.092 | 0.297 0.093 | 0.135 | 0.073 | 0.357 | 0.143 0.250 0.232 0.096

2000 | 1.192 | 0.190 | 0.470 0.185 | 0.253 | 0.155 | 0.543 | 0.285 0.409 0.323 0.130

3000 | 1.475 | 0.290 | 0.620 0.290 | 0.371 | 0.240 | 0.710 | 0.390 0.548 0.383 0.155

4000 | 1.692 | 0.384 | 0.764 0.384 | 0.489 | 0.334 | 0.856 | 0.484 0.673 0.423 0.174

5000 | 1.900 | 0.484 | 0.894 0.492 | 0.616 | 0.432 | 0.989 | 0.592 0.800 0.456 0.185

7000 | 2.292 | 0.670 1.150 0.698 | 0.864 | 0.628 | 1.253 | 0.798 1.044 0.517 0.210

9000 | 2.675 0.870 1.410 0.911 1.100 | 0.821 | 1.539 | 1.011 1.292 0.576 0.241

12000 | 3.300 1.147 1.847 1.212 1.450 | 1.112 |1.979 | 1.312 1.670 0.685 0.295

The Table 6 shows the results of the experimental measurements together with the
arithmetic mean, which is used in the subsequent comparison of the values from the
numerical calculations. The overall standard deviation takes values up to 1.67. This is
mainly due to the NaturFor 1 and NaturFor 4 samples, where partial delamination of the
panel layers occurred. This had a significant effect on the final deflection at the observed
maximum load. When these specimens are declared unsuitable and excluded from the
statistics, the sample standard deviation values are such that the results can be declared
relevant. Samples NaturFor 1 and NaturFor 4 are shown on Figure 28.

Sample NaturFor 1 Sample NaturFor 4

e

Figure 28 — Samples NaturFor 1 and NaturFor 4 excluded from statistics

9.3.2 Numerical models

This chapter describes the results resulting from the numerical scripts. The boundary
conditions and loads that were entered into the scripts were based on the conditions of
Experiment 2. Deflection was calculated for loads from 0 to 12000 N/m?.
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Table 7 - Deflection results of thick plates from numerical models

Load Deformation [mm] Standard
[N/m2] CPT | FOSDT | SOSDT | TOSDT deviation
500 0.0879 0.092 0.092 0.092 0.002
1000 0.138 0.146 0.145 0.146 0.003
2000 0.241 0.253 | 0.251 0.253 0.005
3000 0.335 0.360 | 0.337 0.360 0.012
4000 0.444 0.467 0.435 0.467 0.014
5000 0.546 0.574 | 0.531 0.574 0.019
7000 0.752 0.788 | 0.743 0.788 0.020
9000 0.96 1.050 | 0.950 1.050 0.048
12000 1.26 1.320 1.270 1.320 0.028

In the Table 7 the results of the numerical theories are very similar. The results of FOSDT,
SOSDT and TOSDT are almost identical throughout the measurement period. The CPT
results start to move away from the other models as the load increases. Due to the low
standard deviation, the results can be considered relevant. The smallest deformation at
the maximum considered load of 12000 N/m? resulted from CPT. The highest
deformation at the maximum considered load resulted identically from FOSDT and
TOSDT.

9.3.3 Comparison of verification results 2

In this chapter a comparison between experimental measurements, results of selected
finite element methods software and results of numerical models is presented.

Table 8 - Comparison of verification results 2

Deformation [mm)]
Load Experiment 2 - . Star.1d<'?1rd
[N/m2] CPT |FOSDT |SOSDT | TOSDT | AxisVM | Abaqus | deviation
Average value
500 0.086 0.0879| 0.092 | 0.092 | 0.092 0.059 0.054 0.015
1000 0.149 0.138 | 0.146 | 0.145 | 0.146 0.115 0.107 0.016
2000 0.269 0.241 | 0.253 | 0.251 | 0.253 0.233 0.213 0.016
3000 0.382 0.335 | 0.360 | 0.337 | 0.360 0.351 0.320 0.019
4000 0.488 0.444 | 0.467 | 0.435 | 0.467 0.469 0.426 0.020
5000 0.601 0.546 | 0574 | 0.531 | 0.574 0.586 0.539 0.024
7000 0.819 0.752 | 0.788 | 0.743 | 0.788 0.824 0.753 0.030
9000 1.042 096 | 1.050 | 0.950 | 1.050 1.050 0.959 0.045
12000 1.369 126 | 1320 | 1.270 | 1.320 1.390 1.279 0.046

The Table 8 shows the comparison of the results of verification 2, i.e. the comparison of
the deflection of the plate loaded in area, which was experimentally measured, solved in
finite element software and numerically calculated by the derived models. The differences
between numerical theories, experimental measurements and FEM software are in the
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order of tenths of millimeters to hundredths of millimeters. The standard deviation is in
the interval from 0.015 to 0.046.

The experimental measurement of the mechanical response of the thick plate in the form
of deflection was observed only in the elastic behavior region for the same reason as the
experimental measurement of the thin plate. Based on the findings from Table 6 and
Graph 6, it can be said that NaturFor 1 and NaturFor 3 a samples achieved significantly
higher deflection than other samples at the same stress. This significant difference in
deflection was most likely due to the slight delamination of these samples before the
experiment was conducted, which was caused by the improper storage of these samples.
The delamination of these samples is shown in Figure 28, and it can be stated that even a
small amount of delamination has a significant effect on the mechanical behavior of the
CLT panels. These samples were considered as defective and excluded from the
subsequent statistics. Based on Table 7, it can be concluded that the agreement between
the results of the numerical theories was significantly higher than that of the thin plate
results, as evidenced by the standard deviations, which reach a maximum value of 0.048
for the thick plate. For the thick plate verification case, in addition to the experiment,
modelling was proceeded with the FEM software AxisVM and Abaqus while the results
from these software served as further comparison of the results of the numerical scripts.
Based on the results from Table 8, it can be concluded that the numerical theories were
derived correctly for the thick plate model case.

9.4 Results of numerical models

Depending on the composition of the laminate, there are several types of symmetry and
non-symmetry - material and axial. Material symmetry refers to a laminate that is
geometrically symmetrical with respect to the materials used in the individual layers.
Axial symmetry refers to laminates that are symmetrical with respect to the orientation of
the fibers in the individual plies. A special case may be so-called special orthotropy, by
which we mean laminates in which the plies are oriented at 90° and 0° angles. In this
chapter, the stress results of the numerical theories are compared with respect to the
symmetric or unsymmetric plate under investigation.

The following notations is used in the following chapters:

e CPT - Classical plate theory (Kirchhoff-Love Plate Theory),
e FOSDT - First Order Shear Deformation Theory (Mindlin-Reissner Shear
Deformation Theory),

e SOSDT — Second Order Shear Deformation Theory,
e TOSDT — Third Order Shear Deformation Theory.

The notation "S1 CPT L1/2, L2/2" in graphs indicates the Classical Plate Theory stress o,
observed in a section through half the length and half the width of the plate.
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9.4.1 Special Axis Symmetry and Material Symmetry (SASMS)

This chapter describes the results of the numerical models in the form of stress
distributions and their comparison between the different numerical theories. The
geometry and material properties used in the model are derived from the plate geometry
used in Experiment 2.
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Graph 7 — (SASMS) o, across the thickness of the plate

Table 9 — (SASMS) a; stress comparison

Sl Layer 1 Layer 2 Layer 3
[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT -2,6 -1,734 | -0.867 | -0.009 0 0.009 0.867 1.734 2.600

0.006 0.864 1.729 2.593
0.006 0.864 1.729 2.593
0.006 0.864 1.729 2.593

FSDT | -2.593 | -1.729 | -0.864 | -0.006
SSDT | -2.593 | -1.729 | -0.864 | -0.006
TSDT | -2.593 | -1.729 | -0.864 | -0.006

o|Oo|Oo

Considering the findings from the Graph 7 and Table 9, it can be stated that all four
numerical models agree in their results for the specially axially and materially symmetric
plates for a; stresses (stresses in the fiber direction). The progression of the o; stress
through the thickness of the plate represents a result that corresponds in form to the stress
in its shape - that is, the pressure in the upper part of the laminate that is generated by the
compression of the fibers, and the stress in the bottom layer of the laminate represents the
tension that corresponds to the bending of the fibers. The stresses in the transversely
oriented middle layer are minimal or non-existent because there is no stress in the
direction of the fibers in this layer. Considering the form of the stress distribution o, it
can be concluded that the result corresponds to a specially orthotropic plate.
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Graph 8 - (SASMS) g, stresses across the fibers across the thickness of the plate

Table 10 - (SASMS) g, stress comparison

S2 Layer 1 Layer 2 Layer 3
[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT | -0.019 | -0.013 | -0.006 | -0.029 0 0.029 0.006 0.013 0.019
FSDT | -0.017 | -0.012 | -0.006 | -0.029 0 0.029 0.006 0.012 0.017
SSDT | -0.017 | -0.012 | -0.006 | -0.029 0 0.029 0.006 0.012 0.017
TSDT | -0.017 | -0.012 | -0.006 | -0.029 0 0.029 0.006 0.012 0.017

Considering the results shown in the Graph 8 and Table 10, it can be concluded that all
four numerical models are consistent with the results for the special axially symmetric
and material symmetric plates for o, stresses (stresses across the fibers), only the classical
plate theory shows a slight deviation from the other theories. This deviation is probably
due to the computational complexity of the numerical model of Kirchhoff's plate theory,
which, in its modification for the analysis of generally orthotropic plates, contains fourth-
order partial derivatives that must be solved in the software FlexPDE by using a
substitution that generates additional variables to allow this substitution. The inaccuracy
of the calculation is well observed in the progression of the stresses ¢; and o, along the
length of the plate, which is shown in the Graph 9 and Graph 10. The Kirchhoff-Love
plate theory derived only for specially orthotropic plates does not exhibit these deviations
(Valasek, 2021), and therefore it can be concluded that Kirchhoff-Love plate theory is not
suitable for solving general geometric and boundary conditions, and for each specific
problem it is more appropriate to derive this theory or to choose software that provides
solutions of partial derivatives of higher than third order. The progression of o, stresses
through the thickness of the plate presents a result that is consistent in form with these
stresses - i.e., minimal or no stresses are generated in the top layer of the laminate due to
the fact that this layer is not subjected to loads applied across the fibers. The increase in
stress is observed in the middle layer, which is oriented at 90° to the longitudinal axis of
the plate and is therefore subject to stresses across the fibers.
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Table 11 - (SASMS) stress o comparison
S5 Layer 1 Layer 2 Layer 3
[MPa] | TOP MID BOT  |TOP MID BOT |TOP MID BOT
CPT |- - - - - - - - -
FSDT |-0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12
SSDT |-0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13
TSDT |0 -0.085 |-0.130 |-0.130 |-0.146 |-0.130 |-0.130 |[-0.085 |0

Based on the Graph 11 and the Table 11, it can be said that in the case of o5 stresses, i.e.
shear stress xz, the first difference in the results of the stress progression through the
thickness of the plate can be seen, even though these stresses are very small. FSDT and
TSDT agree in the maximum of the o5 stress. SSDT deviates slightly from the maximum
in its value. It can also be seen that the FSDT and SSDT only give maximum stress values.
TSDT is a more advanced theory in this aspect and can plot the stress distribution from 0
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to maximum. The TSDT stress distribution is an example of a bending shear stress
distribution that is zero at the material surface and maximum in the geometric and neutral
planes. Kirchhoff's plate theory does not allow the calculation of the shear stress and is
therefore not shown in the Table 11.

9.4.2 General Axis Symmetry (GAS)

This chapter describes the results of the numerical models in the form of stress
distributions and their comparison between the different numerical theories. The
geometry and material properties used in the model are described in the methodology.
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Graph 12 - (GAS) g, across the thickness of the plate

Table 12 - (GAS) stress g; Comparison
Sl Layer 1 Layer 2 Layer 3

[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT |- - - -
FSDT |-2.83 -1.89 -0.94 -0.13
SSDT |-2.83 -1.89 -0.94 -0.13
TSDT |-2.85 -1.88 -0.94 -0.13

0.13 0.94 1.89 2.83
0.13 0.94 1.89 2.83
0.13 0.94 1.88 2.85

o|Oo|Oo

Based on the findings from the Graph 12 and Table 12 it can be concluded that all four
numerical models agree in their results for g, stresses (stresses in the fiber direction). The
progression of the g, stress through the thickness of the plate represents the result that
corresponds to the stress in its form - that is, the pressure in the top of the laminate
resulting from the compression of the fibers. The stress in the bottom layer of the laminate
is tension, which corresponds to the fibers being pulled as laminate bend. The difference
from the previous case of symmetry can be seen in the stress in the middle layer of the
laminate, which higher values by an order of magnitude. This stress is due to the
orientation of the layer itself, which is oriented at 70°, not 90°.
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Table 13 - (GAS) Stress o, comparison
S2 Layer 1 Layer 2 Layer 3
[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT |- - - - - - - - -
FSDT |-0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032
SSDT |[-0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032
TSDT |-0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032

Based on the findings from the Graph 13 and Table 13 it can be concluded that all four
numerical models match the results for o, stresses (stresses across fibers). The stress
maximums in all layers reach similar values due to their orientation, which is close to a
45° deviation from the 0°-90°-0° laminate orientation, specifically in this case a 20°
deviation of the fibers in each layer. The internal forces are therefore distributed both in
the direction of the fibers and across the fibers. The maximum compressive stress is
observed at the top surface of layer 1 and the top surface of layer 2. The maximum tensile
stress is then observed on the bottom surface of layer 2 and the bottom surface of layer 3.
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Table 14 - (GAS) Stress g, Comparison

S6 Layer 1 Layer 2 Layer 3

[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT |- - - -
FSDT |0.131 0.087 0.044 0.043
SSDT |0.131 0.087 0.044 0.043
TSDT |0.132 0.087 0.044 0.042

-0.043 |-0.044 |-0.087 |-0.131
-0.043 |-0.044 |-0.087 |-0.131
-0.042 |-0.044 |-0.087 |-0.132

o|lo|o]| !

Based on the findings from the Graph 14 and Table 14 it can be concluded that because
the geometry and composition of the laminate is different from the special axis and
material symmetry, shear stresses that result from layer orientations other than 0°-90°-0°
can be expected. The o, stress, respectively the stress in the XY plane of the plate, is
observed to be maximum at the surface of the plate and decreasing linearly towards the
neutral plane of the plate to the bottom surface of the plate where it takes a second
maximum. The numerical theories agree almost identically in their results, except for the
TSDT, which deviates in the thousands of the value of the stress in MPa.
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Graph 15 - (GAS) g, stresses by plate thickness

Table 15 - (GAS) Stress g, Comparison

S4 Layer 1 Layer 2 Layer 3

[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT |- - - - - - - - -
FSDT |-0.038 |-0.038 |-0.038 |-0.038 |-0.038 |-0.038 |-0.038 |[-0.038 -0.038
SSDT |-0.038 |-0.038 |[-0.038 |-0.038 |-0.038 |-0.038 |[-0.038 |-0.038 -0.038
TSDT |-0.002 |-0.025 |[-0.039 |-0.039 |-0.044 |-0.039 |[-0.039 |-0.025 |-0.002

Based on the findings from the Graph 15 and Table 15 it can be concluded that in contrast
to the previous type of symmetry, in this case it is possible to investigate the o, stress,
I.e., the YZ shear stress. This stress, like gy, is due to the different orientation of the fibers
in the individual layers. In this case of general symmetry, FSDT and SSDT correspond
and express only the maximum value of the stress. The TSDT is expressed by a parabolic
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progression of stresses from zero values to the maximum. At the maximum, TSDT differs
from the other theories.
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Graph 16 - (GAS) os stresses by plate thickness

Table 16 — (GAS) Stress a; Comparison

S5 Layer 1 Layer 2 Layer 3

[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT |- - - - - - - - -
FSDT |-0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13
SSDT |[-0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13
TSDT |0 -0.085 -0.131 -0.131 -0.146 -0.131 -0.131 -0.085 0

Based on the findings from the Table 16 and Graph 16 it can be concluded that in
the case of the as stress, i.e. the shear stress xz, the difference in the results of the stress
progression through the plate thickness is visible, even though these stresses are small.
FSDT and SSDT agree in the maximum of the g5 stresses. It can also be seen that FSDT
and SSDT only give maximum stress values. TSDT is the more advanced theory in this
regard and is able to plot the stress progression from zero to maximum. The TSDT stress
progression is an example of a bending shear stress progression which is zero at the
surface of the material and maximum in the geometric and neutral planes.

9.4.3 Axis Asymmetry (AA)

This chapter describes the results of the numerical models in the form of stress
distributions and their comparison between the different numerical theories. The
geometry and material properties used in the model are described in the methodology.
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Graph 17 — (AA) o; stresses by plate thickness

Table 17 - (AA) Stress o; Comparison

S1 Layer 1 Layer 2 Layer 3

[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT - - - - - - - - -
FSDT |-3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89
SSDT |-3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89
TSDT |-3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89

Based on the findings from the Graph 17 and Table 17 it can be concluded that
the o, stress (stress along the fibers) in the case of axial non-symmetry reaches
corresponding values along the thickness of the plate. The highest tensile stress is present
at the bottom of layer 3 where the fibers are pulled. The highest compressive stress is
present on the upper surface of layer 1 where the fibers are compressed. The individual

numerical models agree in their results to within hundredths.
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Graph 18 - (AA) g, stresses by plate thickness
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Table 18 - (AA) g, Stress Comparison

S2 Layer 1 Layer 2 Layer 3

[MPa] TOP MID BOT TOP MID BOT TOP MID BOT

CPT - - - - - - - - -

FSDT -0.022 -0.011 |-0.001 |[-0.004 |0.049 0.102 0.088 0.109 0.130
SSDT -0.022 -0.011 |-0.001 |-0.004 |0.049 0.102 0.088 0.109 0.130
TSDT -0.022 -0.011 |-0.001 |-0.004 |0.049 0.102 0.088 0.109 0.130

Based on the findings from the Table 18 and Graph 18 it can be concluded that
for the o, stress progression through the thickness of the plate (stress across the fibers),
the highest value of tensile stress can be observed on the bottom surface of layer 3, which
is oriented at an angle of 30° from the longitudinal x-axis. The highest compressive stress
is observed on the upper surface of layer 1. In this case of symmetry, it can be seen that
the compressive and tensile stresses do not reach the same values as in the case of special
axis and material symmetry. From the Table 18 it can be seen that the neutral plane in
which the o, stresses should reach zero values no longer matches the geometric plane.
The values of all the numerical models compared agree in the result.
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Table 19 — (AA) g, Stress Comparison

S1 Layer 1 Layer 2 Layer 3

[MPa] TOP MID BOT TOP MID BOT TOP MID BOT

CPT - - - - - - - - -

FSDT -0.252 |-0.252 |-0.253 |0.253 0.253 0.253 -0.291 |-0.376 |-0.462

SSDT -0.252 |-0.252 |-0.253 |0.253 0.253 0.253 -0.291 |-0.376 |-0.462

TSDT -0.252 |-0.252 |-0.253 |0.253 0.253 0.253 -0.291 |-0.376 |-0.462

Based on the findings from the Graph 19 and Table 19 it can be concluded that in
the case of the g, stress progression (stress in the plane of the plate), we can observe a
large difference between the XY shear stress in the individual layers. In this case of
symmetry, the stresses on the upper and lower surfaces of the laminate no longer coincide
and the zero-shear stress is no longer left in the geometric centre plane. The top layer of
the laminate, which is not rotated from the longitudinal x-axis, achieves a linear stress
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progression through the layer thickness. All numerical theories agree in the values of the
results.
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Graph 20 - (AA) g, stresses by plate thickness

Table 20 - (AA) g, Stress Comparison

S4 Layer 1 Layer 2 Layer 3

[MPa] TOP MID BOT TOP MID BOT TOP MID BOT
CPT - - - - - - - - -
FSDT 0.000 -0.007 |-0.014 |-0.014 |-0.021 |-0.029 |-0.029 |-0.036 |-0.043
SSDT 0.000 -0.007 |-0.014 |-0.014 |-0.021 |-0.029 |-0.029 |[-0.036 |-0.043
TSDT 0.000 -0.011 |-0.023 |-0.023 |-0.030 |-0.030 |-0.030 |-0.023 |-0

Based on the findings from the Table 20 and Graph 20 it can be concluded that in
the case of in the case of gy, the stress progression across the thickness of the plate is
significantly different from the previous cases. Whereas in the previous cases the shear
stress reached a maximum in the middle plane of the plate, in this type of
symmetry/unsymmetry the shear stress according to FSDT and SSDT reaches a
maximum value on the bottom surface of layer 3 and a zero value on the top surface of
layer 1. The shear stress progression was achieved by changing the fiber orientation of
the third layer by 30°. Also in this case, the results obtained from the different numerical
models agree in values.
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Table 21 - (AA) g5 Stress Comparison
S5 Layer 1 Layer 2 Layer 3
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT
CPT - - - - - - - - -
FSDT -0.150 |-0.147 |-0.143 |-0.143 -0.140 -0.137 -0.137 -0.133 -0.130
SSDT -0.143 |-0.139 |-0.134 |-0.134 -0.130 -0.126 -0.126 -0.121 -0.117
TSDT 0.000 -0.098 |-0.142 |-0.142 -0.155 -0.138 -0.138 -0.090 |0.000

Based on the findings from the Graph 21 and Table 21 it can be concluded that in

the case of the g5 stress (shear stress in the XZ plane), we can observe the first variations
in the stress evolution along the plate thickness according to the individual numerical

models. FSDT and SSDT show a linear XZ shear stress waveform, while TSDT shows a

quadratic one. According to TSDT, the minimum stress occurs on the top surface of the

first layer and on the bottom surface of the third layer. In the shear stress waveform after
the thickness of the second layer, all numerical models are in agreement. In the case of

the surface layers, the FSDT and SSDT models differ slightly.
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9.4.4 Material Asymmetry (MA)

This chapter describes the results of the numerical models in the form of stress
distributions and their comparison between the different numerical theories. The
geometry and material properties used in the model are described in the methodology.
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Graph 22 - (MA) Stress g, across the thickness of the plate

Table 22 - (MA) g, Stress Comparison
S1 Layer 1 Layer 2 Layer 3
[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT - - - - - - - - -
FSDT | -20.30 | -19.60 | -18.89 -0.05 -0.02 0.02 0.63 1.73 2.83
SSDT | -20.30 | -19.60 | -18.90 -0.05 -0.02 0.02 0.62 1.73 2.84
TSDT | -20.32 | -19.60 | -18.89 -0.05 -0.02 0.02 0.63 1.73 2.87

In the case of g, stresses (stresses in the direction of the fibers) in the case of material
asymmetry, when the elastic moduli of the first layer are reduced to the equivalent of 30%
of the moisture content of the layer, i.e. a moisture content that corresponds
approximately to the saturation limit of the fibers, a significant increase in the stresses in
the first layer of the laminate can be observed from the Graph 22. This increase is due
not only to the lower elastic moduli but also to the moisture deformations that occur
naturally when the moisture content of the wood increases (swelling/drying). The Graph
22 shows that while the stress on the bottom surface of the 3rd layer of the laminate is
around 2.83 MPa (corresponding to the tensile stress resulting from the bending and
stretching of the fibers), the stress on the top surface of the first layer reaches a
compression stress of 20.3 MPa. The table shows that the neutral plane has moved further
away from the geometric plane of the plate, and according to the stress values from the
middle plane of the 2nd layer and the bottom plane of the 2nd layer, the neutral plane of
the plate has moved from the geometric middle plane lower in laminate.
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Table 23 - (MA) g, Stress Comparison
S2 Layer 1 Layer 2 Layer 3
[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT - - - - - - - - -
FSDT | -0.733 | -0.729 | -0.724 | -0.011 | -0.003 0.004 0.004 0.012 0.019
SSDT | -0.733 | -0.729 | -0.724 | -0.011 | -0.003 0.004 0.004 0.012 0.019
TSDT | -0.733 | -0.729 | -0.724 | -0.010 | -0.003 0.004 0.004 0.012 0.019

Based on the findings from the Table 23 and Graph 23 it can be concluded that in the
case of in the case of stresses across the fibers (o, stresses), there is a significant increase
in stress due to a reduction in the elastic moduli and swelling in the transverse direction
of the plate. According to the Graph 23 and Table 23, the difference between the stress
on the bottom surface of layer 3 (0.019 MPa) and the top surface of layer 1 (-0.733 MPa)
is almost 39 times higher.
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Table 24 - (MA) g5 Stress Comparison

S5 Layer 1 Layer 2 Layer 3

[MPa] | TOP MID BOT TOP MID BOT TOP MID BOT
CPT |- - - - - - - - -
FSDT |-0.087 |-0.087 |-0.087 |-0.136 |-0.136 |-0.136 |-0.136 |-0.136 |-0.136
SSDT |-0.088 |-0.084 |-0.079 |-0.123 |-0.116 |-0.108 |-0.108 |-0.101 |-0.093
TSDT |0.000 -0.071 |-0.094 |-0.147 |-0.155 |[-0.135 |-0.135 |-0.087 |0.000

The difference between

the models based on different shear theories can be clearly
observed at Graph 24 (shear stress in the XZ plane). The first (FOSDT) and second
(SOSDT) order theories show the shear along the plate thickness in the form of linear
maximums. The third-order theory plots the shear stress along the plate thickness
parabolically and plots both maxima and minima, maintaining zero stress on the bottom

surface of layer 3 and the top surface of layer 1.
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Evaluation of numerical model results

By analyzing the stress distribution along the thickness of the plate and based on the
results, it can be stated that numerical models for the analysis of generally orthotropic
materials in any configuration, taking into account the effect of moisture, have been
successfully developed, also in terms of swelling and slumping. However, the numerical
models (which are included in the appendix 13.5 — 13.10) do not include the effect of
temperature. The influence of temperature has been neglected mainly because the stresses
and strains that occur when the temperature of the timber changes are negligible in a
stationary calculation. The incorporation of the effect of temperature would make sense
if connected to the model of non-uniform distribution of moisture and temperature
described by Valdsek (2021) in his thesis, which also deals with the principle of
mechanosorption. In such a case, the model would be extended by defining temperature
changes that would look similar to those of moisture with the difference of different
coefficients (temperature expansion coefficients) and the resulting deformations would
be added to the superposition with mechanical and moisture deformations.

Another point that can be noticed is that, apart from the special axis and material
symmetry, the results do not contain values coming from Kirchhoff's thin plate theory.
The reason for this is the computational difficulty that results from the presence of fourth
order partial differential equations and their input into the chosen software for solving
differential systems, FlexPDE. The software does not allow specifying partial terms in
fourth order and the input has to be solved by substitution as given in equation (87), where
the left side of the equation represents the mathematical notation and the right side of the
equation the syntax of the FlexPDE software.

d*wy d?w,

e dxx(wxx) ~ 9 = wxx (87)

By using the substitution term, a new variable wxx is defined in the software for which a
boundary condition needs to be defined, which was not successfully done and therefore
for the remaining symmetry/unsymmetry cases the CPT evaluation is not present. It is
necessary to add that the fourth order partial differential equations occur in the equation
in product with coupling matrices B, which take zero values in the case of special axis
and material symmetry. For such a symmetry condition, the CPT is a sufficient solution
for the analysis of thin plates. From the point of view of the results, the model based on
the Third Order Shear Deformation Theory seems to be the most suitable model for the
analysis of timber-based laminated plates.
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Comparison of SASMS and MA stress distribution

As mentioned in chapter “9./ CLT panel moisture content change” a situation where
moisture content of the top lamella of a CLT panel is high is possible and therefore a
comparison of the Special Axis and Material Symmetry (SASMS) and Material
Asymmetry (MA) cases was performed. For comparison, only the TOSDT results were
used.
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Graph 25 - Comparison of stress distribution along the laminate thickness of special material & axial symmetry (SASMS) and

material asymmetry (MA).

The results obtained from the MA are the results for the extreme case, where the cell wall
of the first layer of the CLT panel is completely saturated and therefore the largest
possible decrease in stiffness and strength of this layer occurs. As can be seen from the
Graph 25, moisture has a major effect on the stress increase. The combination of the
modulus of elasticity, which decreases by approximately 36% at cell wall saturation limit,
and the moisture stresses that occur due to the constraints on the movement of the laminae
in the width and length direction of the panel, resulted in an increase in compressive stress

78




in the fiber direction by 784% in the case of g stress (17.73 MPa in absolute value, to a
value of 20.32 MPa), which is almost the characteristic compressive strength in the fiber
direction of the C24 material (21 MPa) used for the manufacture of the laminae. In the
case of the compressive stress across the o, fibers, the change is from 0.02 MPa to 0.73
MPa. Surprisingly, for the shear stress o3, a decrease in stress in the middle and bottom
planes of the first lamella and, on the contrary, an increase in stress in the middle lamella
is observed.

Field fmk ¥m Kmod ksysy fmyd My.d Om,y.d Utilization
[N/mm?]  [-] [ -] [N/'mm? [kNm] [N/mm?]
1 24.00 125 060 110 12.67 -0.85 -2.18 17 %
Utilization
[N/mm?]  [] [ [N/mm?]  [kN] [N/mm?]
1 1.15 125 060 0.55 -2.84 0.15 26 %
Field fux ¥Ym Kmod fvd Va Tvd Utilization
[N/mm?]  [] -] [N/mm?]  [kN] [N/mm?]
1 4.00 125 060 1.92 -2.84 015 8 %

Figure 29 ULS Utilization of analyzed CLT panel (load = 12 000 Pa) according to Calculatis (Stora Enso
[online])

The internal stresses from Graph 25 are the result for an area load of 12 kN/m2,
which, according to Calculatis (STORA ENSO [online]), corresponds to 26% of the panel
load bearing capacity in ULS perspective (Figure 29) after reduction of the elastic moduli
by yu. At a load close to 100% of the load bearing capacity at the moisture limit of the
cell wall saturation limit (28-30%), the stresses in the first lamella would certainly exceed
the compressive strength in the grain direction, resulting in the compression thickening
of the wood grain and possible lamella failure or permanent reduction of the load bearing
capacity of the CLT panel.
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9.5 TOSDT Coupling Phenomenon of the ABDEFGH matrix

For the classical ABD matrix used in the numerical script based on the Kirchhoff-
Love Plate Theory, it is possible to "predict” the laminate behavior based on the
knowledge of the matrices elements of the ply stiffnesses, the elastic moduli, the ply
orientation and the Poisson's ratio, without solving higher order partial differential
equations. When constructing the script for TOSDT and then evaluating the results for
each symmetry/asymmetry condition, a similar phenomenon was observed for the
ABDEFGH matrix. This chapter is focused on describing the coupling phenomenon for
the matrix used in deriving the relations for TOSDT. Denoting matrices from the stress-
strain relation for TOSDT:

The following figure describes the behavior of the laminate when some elements of the
matrix are non-zero. The result is a description of the so-called TOSDT coupling
phenomenon. TOSDT coupling matrix is denoted on Figure 30.
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Figure 30 — Denoting matrices ABDEFGH
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10 The benefits for science and practice

Solid timber structures, especially glued CLT panels, have a great potential to
become an ideal construction material for residential and multi-storey buildings. In
order for this potential to be fulfilled at least in part, it is first necessary to study the
behavior of such material under various conditions in the greatest detail. Since
wood is a hygroscopic material, its properties are largely influenced by moisture. It
is therefore essential to find out how a given structural element will behave at a
given moisture content. In order to do this, it is necessary to determine the effect of
moisture, particularly on laminated wood-based materials, as accurately as possible.
Current practice uses software that does not go further than the building codes in
the case of moisture exposure. In the Czech Republic, to date, we do not have
standards describing the design of CLT elements or standards for the construction
of timber structures. It is during the construction phase of timber-based buildings
that most moisture-related problems arise, both in terms of the risk of mould growth
and the reduction of the mechanical properties of the timber. In fact, Sweden places
clear requirements in its Building Code to protect construction products and
construction materials from moisture during the construction phase. For large
constructions, the law requires documented inspections, measurements, and
analyses. Material specifications under the legislation require "Wood materials and
wood products to be protected from moisture during and after assembly to avoid
microbial growth and other problems™ (Olsson, 2020). If we are to take timber
construction further in the Czech Republic, we need to be inspired by similar
requirements and enforce the requirements for the protection of timber buildings
during the construction process by legislation and standards. The results of this
work provide relevant arguments for stricter protection of building materials during
construction and can be the basis for the development of suitable standards for the
implementation of timber buildings. Furthermore, the numerical models can be
used as a tool to verify the load-bearing capacity of moisture-stressed CLT panels.

From the point of view of further research, the derived numerical models can
be used in the design of new laminates made of arbitrary materials (not only wood)
and the analysis of their behavior using "TOSDT Coupling Phenomena" according
to the chosen composition and the presence of individual components of the
ABDEFGH matrix. The model can be modified and freely extended to include other
variables such as temperature or to incorporate the effect of mechanosorption. The
model can be modified quite easily for dynamic response and vibration analysis. In
general, the model offers a solid basis for investigating the behavior of laminates.
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11 Conclusions

The thesis deals with the development and validation of computational models for
the analysis of bending, deformation, and internal stresses of laminated panels
(CLT) with arbitrarily oriented layers and composed of different materials under
transverse loading. The numerical models were developed based on four plate
theories in a form for the analysis of generally orthotropic panels. It was found that:

e The model based on the Kirchhoff-Love Plate Theory, unlike the other
models, does not allow for shear stress analysis along the thickness of the
laminate. In addition to this, it is the most computationally demanding in
its general form, which places higher requirements on the differential
solver used and therefore, from this point of view, it is not suitable for the
analysis of wood-based laminates.

e The most difficult model to derive and the most suitable in terms of the
provided results is the model based on Third Order Shear Deformation
Theory. This model is suitable for the analysis of generally orthotropic
laminates.

e The behavior of an arbitrarily composed laminate can be estimated only
on the basis of the composition of the laminate matrix (in the case of
TOSDT this is the ABDEFGH matrix). Thus, the torsion, bending or shear
deformation of the laminate can be predicted without the need to solve a
system of higher order partial differential equations.

e Based on the results obtained, it can be argued that a situation where the
moisture content of the upper lamellas of the CLT panels at the cell wall
saturation limit can occur. At such a change in moisture content, internal
stresses approaching the strength of the material can be generated even at
relatively low external loads, and even at loads equivalent to 25% of the
panel load bearing capacity.

The result of this thesis may help in future efforts to further understand the effect
of moisture on CLT panels and the effect on the overall load bearing capacity.
However, it should be taken into account that the numerical models are a stationary
models and did not take into account the fact that the change and equilibration of
moisture will occur not only in one laminate but throughout the thickness of the
laminate as described by the nonstationary diffusion principle. The findings suggest
that moisture has a significant effect on the load-bearing capacity of the panel and
that this type of stress must be taken into account in the future when dimensioning
these structural elements or when carrying out construction.
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13 Appendix
13.1 Derivation of relations according to Kirchhoff-Love Plate
Theory

13.1.1 Strains and curvatures

From equations defining displacement field the strains and curvatures are defined
according to Nettles (1994) as:

du du, d*w
== 88
T T ax  Ydxe (88)
dv dv, d*w
€y=@=E—ZW (89)
du dv du, dv d*w
dy dx dy dx dxdy
Defining:
du, dv, duy, dv,
d—xoas g ; d—yoas g d_yo+d_x0 as iy (91)
To be the midplane strains and defining:
d*w d?w d?w
i  ——— N Dl 92
Tz 5Ky 07 asky ; iy as Kyy (92)

to be the plate curvatures will make notation easier. The above equations can be
expressed in matrix notation as follows:

Ex 899 Ky
ley]= e | +z Ky] (93)
Vxy V;?y Kxy
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As illustrated in the Figure 32, the plate's curvature Kx or Ky represents the change
in slope of the bending plate along the x- or y-axis, respectively. The term Ky refers
to the amount of bending in the x-direction along the y-axis, also known as twisting.

dw /dx at v,

dw/dx at 3

! 2

Rate of change of slope across y-dire ction = d%w/dxdy = K,

Slope = dw/dx at x;

Xy X1

Slope = dw/dx at x;
Rate of change of slope across x-direction = dw/dx’ = Kz

Figure 32 — Definitions of plate curvatures (Nettles, 1994)
13.1.2 Equilibrium equations

The Figure 33 illustrates the directions for all stress and moment resultants. The
double-headed arrow indicates torque in the direction determined by the right-hand
rule (i.e., point your right-hand thumb in the direction of the double-headed arrows,
and the direction of the torque's rotation is in the direction your fingers are
pointing). The My and My components will result in the board bending, while the
Mxy component will cause twisting of the board (Nettles, 1994).
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Qxt(dQx/dx)dx

M, +(dM,,/dy)dy
yx yx
Myt (dMy/ dx)dx

Detailed illustration

- (myyt..)dy
\\
¥ e gz {ix

(mx+..)dy

(my+..)dx :
(myct..)dx >r /r
(gy+..)dx
* Zw ‘/@hjoment vector

(myt..)dy
. (ax+..)dy

Schematic illustration

Figure 33 — External and internal forces on the element of the middle surface (Szilard, 2004)

Based on the Figure 33 and the strain and curvature relations (as discussed in the
previous chapter), we can derive the equilibrium equations for shell plates, which
can be expressed in the following form:

- Equilibrium equation for forces in the x-direction:

dN, AN,y
—N,dy + (Nx + 7 dx) dy — Ny, dx + | Ny, + & dy |dx =0 (94)
X

in reduced form for forces in x, y-direction:

dN, dN,, dN,, dN,
=0 ; — 24 Y- 95
dx dy 0 dx * dy 0 (%5)

- Equilibrium equation for forces in the z-direction:

dx dy
+pdxdy =0

dR,, dR,,
—R,,dy + (sz + dx) dy — Ry,dx +|R,, + —— |dx (96)
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in reduced form:
dRy, dRy,
= = 97
I & +p=0 97)

- Moment equations of equilibrium around the x-axis:

dM, dM,,
Mydx — | My, + ——dy | dx + My, dy — | My, + ———dx | dy

dy dx
R d dR
+ (Ryz + diyzdy) dxdy + 73' (sz + dx) dy (99)
d d
— Tnyzdy + Typ dxdy =0
In reduced form:
dM, dM,,
=—— = 99
dx dy R =0 (99)

Similarly, the moment equations of equilibrium about the y-axis:

dM,, dM,
dx + dy yz =0 (100)
Substituting the (moment) equation into the equilibrium equations in the z-

direction, we can derive the equilibrium equation for the plate:

d*M, _d*M,, N d*M,

dx? dxdy = dy?
These three equilibrium equations serve as the basis for establishing the governing
plate equations in terms of displacement for the Kirchhoff-Love Plate Theory,
which will be discussed in the following chapters.

13.1.3 Orthotropic plate stress-strain relationship

As previously mentioned (in the Hook's Law chapter), the stress in each lamination
can be expressed in terms of strain and curvature as follows:

Ox @1 @2 @6 £x (211 (212 (216 Ky
[Uy ] = 912 sz st 839 +z 912 sz Qze [KY ] (102)
Txy Q16 Q26 Qs Lyxy Qie Q26 Qeol '

The stresses in each layer may vary due to the thickness of the layer, thus it
is necessary to define the stresses in terms of equivalent forces acting on the
midplane of the plate. Referring to the Figure 34, we can observe that the stresses
acting on the plate can be divided into increments and then summed. The resulting
relationship in integral form is defined as the stress resultant and is denoted by Ni.
This stress resultant has a unit force per length and acts in the same direction as the
applied stress.
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N

z= h/2 ‘L

A OK A

h/2

z= -h/2

Figure 34 — Scheme of midplane notation

The figure can be rearranged to represent the components in the y-axis direction
and the in-plane shear stress as follows:

h/2

N, = f 0,dz (103)
~h/2
h/2

N, = j oy,dz (104)
~h/2
h/2

Ny, = f Tyydz (105)
~h/2

From the figure presented earlier, it is evident that the applied stress on the
plate generates a moment in the midline plane of the plate. The magnitude of this
moment is dependent on the distance z from the midplane. These moments can be
defined around all axes based on this principle.

h/2

M, = f 0,zdz (106)
~h/2
h/2

M, =J oyzdz (107)
~h/2
h/2

M,y =f Tyyzdz (108)
~h/2

These moment resultants have units of torque per unit length. The Figure 35
illustrates the directions of all stress and moment resultants (Nettles, 1994):
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Stress Resultants

Moment Resultants

Figure 35 — Stress and moment resultants (Nettles, 1994)

Equations (for Nx, Ny, Nxy) written in matrix form:

Ny h/2 [ Ox
Ny | = [ Oy ] (109)
Ny —n/2 | Tyy

Equations (for Mx, My, Myy) written in matrix form:

h/2
ay

h/2

zdz (110)

Ty

These integral notations must be applied for each individual lamination and added
together if there is a discontinuity in the stresses between the layers.
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Ply k+1 L;

Geometric midplane
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h,

hy

Ply k-1

Figure 36 — Cross section of a laminate

The equations (Nx, Ny, Nxy, My, ...) must be expressed in the form using the figure
provided above:

Nx n hk O-x
N, | = ZJ [0 ] dz

y y 11
ny k=1" k-1 1Txy k ( 1)
MX hk X
My | = [Uy] zdz (112)
Mxy k=1 hy—1 Txy k

By substituting the aforementioned equations into the equation for stress, we obtain:

Ny ke [Q11 Q12 Qi &2
Ny | = Z f Qiz Q22 Q2 839 dz
Ny k=1 ™10 Q26 Qo y)?y
" i ~ (113)
ke @11 @iz Qe[ Kx
+ f Qiz Q22 Q2 [Ky ] zdz
M1[Q16 Qa6 Qesl 'Y
Since strains and curvatures (€o0.ko) do not vary with z (their values are always 0 in
the median plane), they do not need to be included in the integration. Additionally,
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the stiffness matrix of the laminate is constant for each layer and thus will remain
constant during the integration over the thickness of the laminate. Therefore,
subtracting these constants before integrating over the thickness yields:

N n @1 glz @6 8,2 Ay
Ny | = Q12 Q22 Q2| &y dz
N - 2] 2] A 0 |Jhg—1
k=1\1Q16 Q26 Qeosllyxy
Qi1 Oz Qe (114)

+ Q12 sz Q26 [ ] f zdz
Q16 @26 Q66 Ky ] M=

n ([Q11 Q12 Qi &
My =Z 612 sz QzeH y
Mey]  k=1\[Q16 Q26 Qoel L1y hkl
Qi1 Q12 Q6
+1Q12 Q22 Q2 [ ]j dz
Q16 Q26 Qee) "yl M-

(115)

By performing a simple integration, we get:

Ny | = Oz Q2 Qa6 | & | (i — haos)
Ney|  6=1\1Q16 Q26 Qos Yy
Q11 Q12 Q6] x 11
+ 612 sz Qze [KY ] E (hlzc - hlzc—1)
Qs Q26 Qsel,, Fxy

Ny n Q11 Q12 Qlj l 0
k

(116)

M, n ([0 Q12 Qu6] [
M A A A 0 1 2 2
y|= Qiz Qa2 Q26 | E(hk_hh—l)
xy|  k=1\1Q16 Q26 Ussl, [ Vicy
911 (212 916- * 11
+[02 Q22 Qa6 [K lg(hi—hi_l)
Q6 Q26 Qssl, Fxy

(117)

Since the deformation and curvature of the shear plane are not part of the sums, the
laminate stiffness matrix and hx terms that can be seen in Figure 36 can be combined
to create new matrices.

= Z[Qij]k(hk - hk—l) (118)

n
k=1
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10
By = EZ[Qi,-]k<h,% 1) (119)
1 Tl
Dy = 5; (0], (h = k3 (120)

The extensional stiffness matrix is denoted as matrix A, the coupling stiffness
matrix as matrix B, and the bending stiffness matrix as matrix Djj. The bending
stiffness matrix relates the amount of plate curvatures with the bending moments.
In matrix notation, stress-strain relationship can be written as:

Ny 7 [A11 A1z As | Bix Bz Big[ed]

Ny, A1z Az Aze | Biz By B €9

Nyy A1 Aze Ass | Bis Bas Bes Y2
-—=l=l - -- 1 - - - e (121)

%x Biy Biz Big | Din D1z Digf| ¥x

y Biz Bz Bzs | Diz Dy Dagl| Ky

L Myy I IBis Bas Bgs | Dig Das Desllicxy.

13.1.4 Governing plate equations in terms of displacement

By substituting the plate equilibrium equations into the stress-strain relations and
then substituting the equations for strain and curvatures, we can derive the
governing plate equations in terms of displacement uo, Vo, and wo. Further
mathematical manipulations lead to:

1) Displacement ug (in the x-axis direction):

d?u, d?u, d?uq d?v, d?v,

A —— dx? +2A16d dy+A66 dy? + A6 dx +(A12 +A66)d 4y
d? Vo d3w, d3w,
3W d3w,
— (B2 +2Bss) 7—— dxdy?  D267qy8 =0
2) Displacement vo (in the y-axis direction)

d?u, d?u, d?uy d?v, d?v,

A16W + (412 +A66)m+A26d—y2 + Aeew*‘ ZAzem
+A d*vy B @wy (Byz + 2Bgg) @ wo
22 dy? 16 dx3 12 667 dx2dy (123)

96



3) Displacement wo (in the z-axis direction)

d* d*wo 4 d‘*wo d*w,
D d wo d3u, - d3u0
22 d 4, 11 d 3 16 dxzdy (124)
d3u, d3u, d3v,
— (Byz + 2366)d dy? U3 167753
d3v, d3v, d3v,
—(B1z+2366)m—3326W— zzd—y3_q

13.2 Derivation of relations according to Mindlin-Reissner Plate
Theory

13.2.1 Strains and curvatures

The linear strains associated with the displacement field in Eq. (65), (66) and (67)
are:
Ex = Ex +ZKY ; &, =€)+ ZK) ; &y = Exy + ZK7,

(125)

Eyz = y)?z o Exz = Vy?z (126)

The strain and curvature displacement equations of linear strain are given by:

do d¢ dp, d¢
0__""x . L 0__"Y . 0 _ X, 7y
e =— 5 Ky = iy Kry <dy + e (127)
du dv du dv,
o_*%0 | o_2Y0 0 0,770
R dy '’ Exy = (dy * dx) (128)
d dw
y)?z = ¢y +— y)?z = ¢y + = (129)
In matrix form:
do, duy
dx dx
Ky dd)y Ex dUO
k] =K%y | = . ; lel =& | = - (130)
Ky dy Eyx dy
Y doy , doy dg,, Y (duo . dvo)
dy dx /| [\dy dx/]
b+ dw
|7 T dy
[yl = o +dw (131)
¢X dx

97



13.2.2 Equilibrium equations

If we do not proceed from the assumptions of Kirchhoff-Love's thin plate theory
that the shear stresses Rx; and Ry; are zero over the thickness of the plate, then the
equations of equilibrium can be rewritten in the following form:

- Equilibrium equation o of forces in the x-axis direction:

dN,
dx

dN,,
—N, dy + (Nx + dx) dy — Nyydx + | Ny, + dy |dx =0 (132)

dy

in reduced form in x and y-direction:

dN, dN dN,, dN.
T+—2=0; —Z+—-2=

dx dy " dx  dy 0 (133)

- Equation of balance of forces in the z-axis direction:

dR,, dR,,
—R,,dy + (sz + dx) dy — Ry,dx +| R, + ——dy | dx

dx dy (134)
+pdxdy =0
in reduced form:
dRy, dR,,
W + d—y + p= 0 (135)

- Moment equations of equilibrium around the x-axis:

am, dM,,
Mydx — |\ M,, + d—ydy dx + Myydy — | My, + de dy

dR,,
dx

dR d
+ (Ryz + —d;/z dy) dxdy + 7}} (sz + dx) dy (136)

dy
— 7szdy +pdxdy =0

in reduced form:

dM,  dM,,
— 2 _R. =
dx T dy xz =0 (137)
- Similarly, the moment equations of equilibrium about the y-axis:
dM,, dM,
ot @ Ry, =0 (138)

These four resulting equilibrium equations are the foundation for the
establishment of governing plate equations in terms of displacement for Mindlin-
Reissner plate theory in the following chapters.
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13.2.3 Orthotropic plate stress-strain relationship

Similar to Kirchhoff-Love plate theory, the stress-strain relationship for an
orthotropic laminate with layers of different orientations can be written as:

Oy gn g12 g16 00 Ex
Uy] [Qu Q22 Q2 00 ] I&‘y
Oxy|=|Qs Q26 Q6 0 0 | [Vaxy (139)
Oyz 0 0 0 Qus Qus| |V=
L0000 Qs Qssl,

Where Ql-j is the transformed stiffness matrix. Stress-resultants for Mindlin-
Reissner can be derived, as in Kirchhoff-Love plate theory, from the relations:

h/2
(No Ny, V) = j y (02, 0y )dz (140)
—-h/2
h/2
(My, My, M,,) =fh/ (0, 0y0xy)zdz (141)
—h/2
h/2
(00.Q)) = f y (0 Oy )dz (142)
—h/2

Similar to Kirchhoff-Love plate theory, the stress-strain relationship for an
orthotropic laminate with layers of different orientations written according to Thai
(2013) as:

Ny A1 A1z Ay Bin Biz Big[ &
Ny A1p Azp Az Bz Bay Bygl| &
Niy| _|A16 Az6 Aes Bis Bas Bee || Exy (143)
M, Biy Biz Big D11 D1z Dyl ¥x
My Bi; Byy By D1z Dy Dyg Ky
My, Bi¢ Bz Bes Dis Dzs Degllixy
Where
N
Ajj = Z(éij)(k)(zk+1 = Zk) (144)
k=1
N
B _1 A 2 2
=3 (Qij)(k)(zk+1 = Zj) (145)
k=1
1 N
D;j = 52(@;’)(,()(25’“ - z}}) (146)
k=1
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In addition, according to Balogh (2013) following laminate constitutive equations:

+dW
O] _ [ s gy (147)
Qx Ays  Ass d_W
by dx
where
N
= Z(Qij)(k) (Zk+1 — Zk) (148)
k=1

13.2.4 Governing plate equations in terms of displacement

After substituting the plate equilibrium equations into the stress-strain relations and
then replacing the strain curvatures equations, we obtain the governing plate
equations in terms of displacement uo, Vo, Wo, ¢x, and ¢y. Further mathematical
modifications result in:

1) Equation for displacement uo (in the x-axis direction):

6 Ug 62170 azuo 62170 62¢x 62¢y
A — 2 b Ay [+ —2 |+ By —= + By —>
g,z thzg gt die <6x6y+ ax2 ) TP T hizg5,
0%¢p, 0%, 9%u, 02%v,
*Bug (axay * dx? ) 16 5xay 0x0y Az ay? (149)
4 0%u, L 0% 9%v, B 62¢x 0%,
66\ ay2 ' axoy 16 c’)xc’)y 26 9y2
02p, 0%,
* B66< dy? * 6x6y> -
1) Equation for displacement vo (in the y-axis direction):
9%u, 92%v, 0%uy, 9%v, 0% ¢, 0%,
A A Age | =—=— +B —
16552 T A2 5.5, F Aes (ayax ax2 ) T P1e g TP 550
62¢x 2¢y 9,
+B“( "o ) s oy 0y (150)
62u0 62170 92 qu 0%,
+ Aze axa 126 dy 22—6y2
0* ¢x 92¢y
+B26( (')x(')y
2) Equation for displacement wo (in the z-axis direction):
0 d 0
Ays 9y , 9 09x +— + Aga 9y 4
ox (')x(')y 9x @ Ox? oy c')y (151)
a2y v +p=0
45 dy  0xdy P=
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3) Equation for displacement ¢, (rotation of the perpendicular to the midplane
in the zx-plane)

9%u, 92%v, 0%u, 0%y, 0%, 0%,
B — — 4+ —2 |+ Dy —=+ Dy —>
19x2 " P12 9%y 6<6x6y+ a2 ) TP t 12 9xoy
%¢p, 0%¢, 0%u, 9%v,
+D16<axay+ ox? >+Bl6a oy TP,
152
B 62u0 62170 D 0%, N 0%, (152)
6\ 9y2 axa 16 9xdy | 26 9y2

0%, 2(,‘by ow ow
* Do (6—3/2 + 6x6y> Ass (d)y 6y> +Ass (d)x + E)

4) Equation for displacement ¢, (rotation of the perpendicular to the midplane
in the zy-plane)

0%u, 92%v, 0%u, 0%y, 0%, 0%,
Bis gz B2 55, +B66<6x6y+ 9 >+D16 ox2 T P25y
2 2 2
(,by d Uy 0 Vo
R S
T oxr | T Pgyey, T P2 g
0%y 0%y

+Dizo—= xdy + Dy, a2 (153)

= Auy (qby

62170
* 826 axay

62¢y
axay

y)+A4s (945

13.3 Derivation of relations according to Second Order Shear
Deformation Theory

13.3.1 Strains and curvatures

The linear strains associated with the displacement field in Eq. (68), (69) and (70)
are according to Khdeir (1999):

& = &¢ +zK) + Z%Ky ; &, = &) + 2K + 2%k,

(154)
Yyz = )/392 + YJ}Z S Yaz = Vaz + Vaz (155)
Exy = Exy T K3y + K3y (156)
where
du dv dug dv
0o_ "0 0o_ "0 0 0 0,770
T x & dy '’ Fxy = Vay = ( dy T ix ) (157)
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d¢q di, dp,  dy,
o_*¥1 o _%¥1 o
T YT gy 0 P T (dy+dx)
do, diy, d¢,  dy,
1_%P2 4 _%¥2 4 _ (292  Y¥2
T YT gy 0 (dy+dx)

dwy

dw,
Yyz = (lpl +W) ’ sz = (d)l +W)

Yyz = 2¢; VJ}Z = 2¢,

In matrix form:

duo
2 kg
0 %Yo 01— | 0|
[S ] Sy dy ) [K ] - Ky -
S)?y (duo n dvo) Kgy
dy dx
d;
1 dx
Kx
dy,
17 — 1| _ _rs
b= [Kly ] |y
Ky (d¢2 + dl/’z)
dy dx
dwg
[yﬂ] )| -
sz dWO) V)}z

13.3.2 Equilibrium equations

(&

dg,

dx

v,

dy
do,
dy

2]

i,
Tyl

(158)

(159)

(160)

(161)

(162)

(163)

(164)

Similar to CPT and FSDT, the equation of equilibrium is determined from the forces

and moments acting in the plane of the plate.

Stress resultant in x and y-direction:

dNy | dNgy _ o dNgy  dNy
dx dy ' dx dy
Stress resultant in z-direction:
de Qy
=0
Fra O +p(x,y) =
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(165)
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Moment resultant about x and y-axis:

dM, dM,, dM,, dM,
Fraks Oy —Q,=0; e +_dy —Qy=0 (167)
The components representing second order stress resultants in x and y-direction are

then written as:

dLy dLy, dLy, dL,
—= ~ 2R, =0 ; —2_ 2R, =0 1
dx T dy x CTax T dy Y (168)

13.3.3 Orthotropic plate stress-strain relationship

The stress-strain relations for the kth lamina in the laminate coordinates are given
by:

Oy 911 (212 (216 0 0 Ex
gy 912 922 926 0 0 &y
Oxy| =|Qis Q26 Wes Y Exy (169)
o P T B I
X2 0 0 0 Q45 QSS (k) e

Where Q; j is the transformed stiffness matrix.

Stress-resultants for SSDT are according to Khdeir (1999) defined as:

N n2
(Ny, Ny, Ny, ) = Zf (0, 0y, 04y)dz (170)
k=1""h/2
N np2
(My, My, My,,) = Z f (04, 0y, 0xy)zdz (171)
k=1""h/2
N np2
(Ly, Ly, Lyy) = 2f (0, 0y0yy)z%dz (172)
k=1""h/2
N n/2
(00.0) =Y. [ (o 0)dz (173)
k=1""h/2
N np2
(Ry, R,) = Z (ayz, Oxz)zdz (174)
k=1""h/2

Substituting equations (170) - (174) into equation (169) we obtain the following
relations:
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Ny n Ry Q11 Q12 Qi6
Ny ZZ{f l@u @22 Qze‘l ‘dz
Ney| k=1 U™ Q16 Q26 Qss
fhk -Qn (212 Q16] ]
+ Q12 Q22 Qg Ky zdz 175
11016 Q26 Qeel -Ka(gy_ (179)
Ry -QM @12 (216_ [ 12 ]
+f 912 sz Qze K311 z%dz
"1 1Q16 Q26 Qeel -Kalcy-
Q11 @2 Q16
M Q12 922 st zdz
M"y hk 1[Qi6 Q26 Qss Exy
911 (212 Q16]
o e @ | e ar
M1 1016 Q6 Qesl K2y
Ry -@1 (212 @6- [ 12 ]
+f le sz g26 K31/ z3dz
"1 1Qis Q26 Qeel Licky]
Ly n Ry Qi1 Q12 Qi6 gx_
llﬁw = Z {j léu (222 Q%‘l z%dz
Ly k=1 (e Q16 Q26 Qs
Rk _@1 912 Q16] 'K,?'
A A | AR (177)
M1 Qs Qa6 Qeel L2y
hy '@1 @2 @6- [ ;]
+f (_212 922 Qze Kjll ztdz
M1 Qs Qa6 Qeel Lty
Qy _ N { Q44 Q45] [yyz]
[Qx] ,; ks Q45 Qss] vz
Q4—4- Q45 [ygiz] Zdz} (178)
hk 1 Q45 Q55_ Yxz
R, _ N { Q44 Q45] [yyz_ d
[Rx] ; Rpeey Q45 Qss] [Vez e (179)
+ Q44 Q45] [Vyz] 24, }
Rj—1 Q45 Oss sz

Strains and curvatures (&, k) are not a function of z (these values are always 0 in
the midplane), they need not be part of the integration. At the same time, the
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laminate stiffness matrix is constant for a given layer and thus will be constant in
the laminate thickness integration. By expelling these constants before the integral
and then integrating, we obtain:

Ny n @1 @2 Q16
Ny :z Q12 sz Q26 (hi — hy—1)
N, k=1\|Q16 Q26 Qs k
Q11 Q12 Q16 K,g ] 1,
A A A 2
+ 912 922 Q26 Kg/ E(hk - hk—l) (180)
Q16 Q26 Weoly LKxy]
_@1 @2 ?16_ 3 1
+10z Q2 Que| |y |3(hi—hir)
Q16 Q26 Wesly _Kalcy_
M, n @1 (212 (216
My = z Q12 922 926 (hk hk 1)
Myy| & Q16 Q26 Qecly
_@1 (212 Q16 K,é ]
+1|Q12 Q2 Qu6| |y §(hk _hk—l) (181)

Q16 Q26 Qs Kk _Kgy_
_@1 (212 (216_ [ kx| 1

+ Q12 922 Qze Ky Z(hi - h£—1)
Q16 Q26 Weely _Kalcy_

Ly n (_211 (_212 @16
lLy ‘ = z {l@u 622 626

@16 626 Q66

lgy]3(hk hi_1)

Lyy 0

Q11 Q12 Qi6] K% ] 1
~ ~ = L4 a4

+ Q12 sz Qze Kg/ 4(hk hk—l) (182)

Q16 Q26 Weoly LKxy]

_gll (212 ?16_ [ K?} ] 1

+|0z Qz2 Qa6 | %y | (hk —hi-1)

1
Q16 Q26 Weoly LKxy]

Qy]

0 { Qaa Q45] [sz (hy — hye_y)
x k

Q45 Q55 sz (183)

[ 945] [Vw] (h2 - h_ 1)}

Q4—5 Qss sz
Ry Qaa Q45] [YJ’Z] h2 — h2
[Rx] { Qus  Qss k Viz ( “ . 1)

i el

Q45 Uss sz

(184)
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Since the deformation and curvature of the shear plane are not part of the sums, the
laminate stiffness matrix and hk terms can be combined to create new matrices.

Ay = ) [0y], (e = ) (185)
k=1

By = %kzn:[@ij] o (hi = hE_q) (186)
=

D;; = %Z[Qu]k(hi —hi_y) (187)

Eij = %kzn:[@ij] (it = hi) (188)
=

Fy =§i[@i,-1k<hz—hz_l) (189)

Where 4;; is extensional stiffness matrlx B;j is extension-bending coupling matrix,
D;j is bendlng stiffness matrix, E;; is second order coupling matrix, F;; is second
order stiffness matrix.

2=
Ajj, Bij, Dij, Eij, Fij = fh[Qij] (1,2,2z%,23,z%)dz

Aij, Dij F (11—12456)
EU,BU (,i =126)

(190)

Stress-strain relationship in terms of stress resultants in full matrix form according
to Shahrjerdi & Bayat (2010):

o [ &5
xx [A11 A1z A1e] [Bir Biz Bis] [Di1 D1z Dis]] 539
Ny Ay Az Az Bi; By; Big D13 Dyy Dy &0
Lyl (A1 Aze Agel 1B1s Bag Bgel LDig Dze Desl|| =7~
My [B11 Biz Big] [P11 D1z Die] [E11 Eiz  Eie] Kx
My 1|=||Biz B2z Bis Di; Dy Dy Eiz Ezp Eje Ky (191)
| My | Bie B¢ Bes Dis Dzs Dee Eis Ezs Ege _K,?y
Ly Di; D1z D Ei1 Eip Eie Fi1 Fip Fie] ||y Kl
L, D12 Dy Dy Eiz Ep Eze Fip Fyp Fie il
Ly Dig Dzs Des Eie Eze Eeo Fig Fe Fee 1y
y K
| Kxy
[Qy] [Ags A45] Byy Bys [yyz]
_ |lAss  Ass] [Bss 355 Viz
[Ry] By 345] [044 D45 [yyz] (192)
R, [Bys  Bss Dys

Stress-strain relationship in terms of stress resultants in contracted matrix form:
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[£° ‘
[x°]
o (193)

[Q11 _ 1Al [B11[ly°I
[[R]] B [[B] [D]] [[yl]] (194)
13.3.4 Governing plate equations in terms of displacement

Substitution of the plate equilibrium equations into the previous stress-strain
relations and subsequent equation substitution (strain curvatures) yields governing
plate equations in terms of displacement uo, Vo, Wo, ¢4, ¢, 1 and y,. By further
mathematical adjustments we obtain:

1) Equation for displacement uo (in the x-axis direction):

Bzuo BZVO azuo OZVO 62¢1 621|J1
A ox? A1 ox dy T A1 <6x dy * ox? > T Bu ox? *Bio ox dy
0*¢py 0%y 0%, 0%, 0*d, | 9%y
Bis (ax dy * ox? >+ 1 gx2 + D1z 0x 0y Dis (ax dy * 0x? >
azuo OZVO azuo aZVO 62(1)1
At 0x 0y Az dy? * Ao < dy? * dy 6X> 16 9x dy
0%y 0’y %Yy 0%, 0%y,
+ Bae dy? * Bes < dy? * 0x 6y> * Die 0x dy D26 dy?
0*¢, 9%y,
(195)
2) Equation for displacement vo (in the y-axis direction):
0%ug 0%v, 0%u, 0%v, 0%¢, 0%y,
A6 d0x? Az 0xdy oo <axay * 0x? > *Big 0x? *Bas dxdy
0’1 0%y 0%¢, 0%y,
Beo | ——— + =21 | + Dy == + Dyg—2=
66 (6x6y+ 0x? > Pis dx? * Pas d0x0y
0%¢p, 0%y, 0%u, 02%v, 0%uy, 0%v,
* Deo <axay * d0x? > A1z dxdy Az dy? Az < dy? * 6x6y>
0%¢, 0%y, 0%¢, 0%y, 0°¢,
+ B dxdy + B2 dy? *Bas < dy? + 6x6y> D1z oxdy
0%, 0%¢, 0%y
D _ [ | =
TGt 26<ay2 +6x6y> 0
(196)

3) Equation for displacement wy (in the z-axis direction)
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2 2
Ae <61/)1 d Wo) A55(6¢1 d Wo) B456(2¢2)+B 0(2¢,)

dx  dxdy ox * d0x? ox > ox
oY, aZWO ool aZWO 9(2¢5)
+A44<W+6—yz + Ays W-Fm -|-B4_4_T
0(2¢,)
+ B - (x' )
45 dy y
(297)

4) Equation for displacement ¢, (rotation of the perpendicular to the midplane
in the zx plane)

0%u, 0%v, 0%u, 0%v, 0%¢, 0%y,
By —— + Byy—— + Byg [ —— —l4D,—
1 9x2 T 512 oxdy B <6x6y * 0x? > T Pu d0x? P12 doxdy

D16(62¢1 521/}1) 0%, 0%, . <62¢z+62¢z)

0x0y * dx? +En dx? * Bz 0x0y T E16 dxdy  0x?
azuo 62170 62u0 62170 62¢1
B B — 0y -1
+ 516 dxdy B2s dy?  Bes < dy? * 6x6y> 16 9xay

02 92 92 02 92
+ Das aylpz1 + Des < ale " axlg;> +Eae ax?;; + Eae a;zpzz
00, 0w,
( oy? ' 6x6Y)
A aWO 6W0 _
~[as (w14 550) + dss (1 +52) + Bas2ibe + Bes2] = 0
(198)

5) Equation for displacement ¢, (rotation of the perpendicular to the midplane
in the yx plane)

0%u, 92%v, 0%uy, 0%v, 0%¢, 0%y,
By — —0 e ] — Tl Dyt
16 gx2 B2 oxdy  °° (6x6y+ 0x? ) T D1 0x? D26 0xay
0°¢; 9%y 0% ¢, 01,
* Des (axay T > T B 5y TR 55,
0%¢p, 0%, 0%ug 0%v, 0%u, 0%v,
+E66<m+ﬁ>+312m+3220—yz+ 26<— )
0°¢, 0%, <52¢1 62¢1>+E 0% ¢,

D D —_—
T P15y T P22 gy T P26 537 T axay

0%, 0°p, 0%,
Epp —— + Epg | =
b2z dy? * 26<6y2 +0xc’)y>

adwg adwy
- [A44 (1/’1 + W) + Ays <¢1 + W) + Bys 2, + B452¢2] =0

(199)
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6) Second order displacement equation v, (rotation of the perpendicular to the
midplane in the zx plane)
0%u, 0%v, 0%u, 0dv, 0%¢, 0%y,
Diy——5 +Djp—— ——+—|+E; =5 +E,——
15z T D125, + Die <6x6y+6x2>+ 192 T 1255,

0%¢, 0%y 0% ¢, 0%, 0%p, 0%,

* s <6x6y+ ax2>+F g,z tFzgg,t s <0x6y+ 6x2>
9%u, 0%v, 0%u, 9%y, 0%¢,
Dyg——2 + Dyg — — ) 4B
T D165y T P26 g2 * 66<0y2 +0x6y> 16 9xay

+

0%y <62¢1 62w1>+F 0%y . 9

Eyg—o + Egg | —o F
T Ez26 dy? * Eeo dy? ' dxdy 16axay+ 26 gy?
0%¢, 0%,
F,. |—24+_—_'=2
* 66<6y2 +ax6y>
dwy dwy
~2|Bus (W1 +5,0) + Bas (01 + 50) + Das2ips + Das2ets| = 0

(200)

7) Second order displacement equation v, (rotation of the perpendicular to the
midplane in the zy plane)

0%u, 0%v, %uy, 0%v, 9%¢, 0%y,
— 04 04
[ 66 <6x6y+ 0x? > T E1e ax? *E2e 0xdy
0%¢p; 0%y 0%, 0%,
* o <axay T ox? ) Tz tFegg,
0°p, %P,
* Feo <6xay T ox? >]
9%uq 0%v, 0%u, 09%v, 0%¢,
Dyy—— + Dyy—— 4+ Dy | —— + ——— | + Eyy ——r
* [ 12 9xay D22 ay? D26 < ay? * 0x6y> T E dx0y
0%, <52¢1 521/’1> F 0°¢, 0%,

T B2 g Y| 507t oxay | T T2 529y T F22 552

0%¢p, 0%y,
* Fae < ay? * 6x6y>]
adwy dw,
—2 [344 (’l’l + W) + Bys (¢1 + _) + Dyg29, + D452¢1] =0

d0x
(201)

13.4 Derivation of relations according to Third-Order Shear
Deformation Theory

13.4.1 Strains and curvatures

The linear strains associated with the displacement field according to Nami (2015):

& = €2+ zkd + 2%k} + 23k2 (202)
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gy = & + 2Ky + z%K, + 23K}
YVyz = Yoz + 2Vyz + 2°Vy,
Yxz = V)?Z + ZYJ}Z + ZZ)/J?Z
Exy = Exy + ZKgy + Z%Kyy + 2°KZ,
Where

duy dv, duy  dvg
=T 8 = ()

dy ay dyp, dy
0 _ X . o0 _T7V . 0 _ X, Ty
T YT a0 <dy T dx
d¢ d¢ dp, do
1 _2¥x 1" 1 X 2y
T T dy ’ Fxy (dy i
dA dA dA, dA
2 X 2 7Y . 2 (> 7Ty
Ky dx Ky dy ' Kxy < dy + dx>
dWO dWO
Vyz = (Eby + W) ; Yaz = (1/1x + W)
V)}z = 2¢y ’ V)}z = 2¢y
Yoz =34y 5 Vi =3
In matrix form:
dug [ dy,
0 dx 0 dx
0 )(C) dvo 0 J(; dl/)y
=18 | = E ; K=Ky | = W
0 0
Exy (duo N dv0> Kxy di, N dipy
\dy  dx/] [\ dy dx /]
do, 1 i dAy
1 dx 2 dx
Kx do Kx dA
1 1 -y 2 2 -y
K-=|Ky|= dy ; K= | Ky | = d_'y
1 2
ol (e dgy ol (dA, | day
[\ dy dx [\dy dx /]
( dwo)
)/0 _ [%?z ¥ d
ol dw,
7l 15y
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(204)
(205)

(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)

(214)
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Figure 37 - Initial and deformed geometries of a laminated composite beam under TSDT assumptions
(Shafei, 2020)

13.4.2 Equilibrium equations

Similar to CPT, FSDT and SSDT, the equation of equilibrium is determined from
the forces and moments acting in the plane of the plate.

Stress resultant in x and y-direction:

dN, dN dN. dN.
x Sy _ xy Sy _

= 21
dx dy "odx dy 0 (218)
Stress resultant in z-direction:
dQ,  dQy
E‘FE‘FP(X,_’Y) =0 (219)
Moment resultant about x and y-axis:
dM, dM,, dM,, dM,
pa— f— = . _— - = 22
dx+dy Qx Sxo,dx+dy Qy—Sy=0 (220)
Second order stress resultant in x and y-direction:
dL, dLy, dLy, dL,

The components representing third order stress resultants in x and y-direction are
then written as:

dP, dP,, dP,, dP,
—x ~35,=0 ; —Y_35 = 222
ot gy 3= 0 + 35, =0 (222)
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13.4.3 Orthotropic plate stress-strain relationship

The stress-strain relations for the kth lamina in the laminate coordinates are given
by:
Oy Gll 612 616

(@)

< < < 0 Ex
gy Qiz Q22 Q26 0 0 &y
Oxy|=|Qs Q26 Qs 0 0 |[Vay (223)
Oyz 00 0 Qu Qusl||l
Oxz 0 0 0 Qus Oss Vaz

Where Q;; is the transformed stiffness matrix. Stress-resultants for TSDT are
defined according to Szekrényes (2014) as:

(Mo, M) = Z (o i (220
(M My, M) = Z . Gty o) (225)
(Lx,Ly,ny)=Z j (020,02 )22d2 (226)
(B Pry) = Z [ )it (227)
(Qy.ox>=2 [ i (228)
(Ry Ry) = Z .. " Oy oue)s (229)
5) = Z [ i (230)

Stress-strain relationship according to Tian (2022) in terms of stress resultants in
contracted form:

[N]] [f4l [B] [D] [E]j[e®
[(M]| _|[B] [D] [E] [F]||x®
[L] [D] [E] [F] [G]]|«? (231)
[P] [E] [F] [G] [H]Lk?
[el] [fal [B] I[DI][»°
[R]|=|[B] [D] [E]||y! (232)
[s1] [[D] [E] [F1]]y?

in full form:
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"<2 RZ

Ay A Asge By Biz Big Diy D1z Dy
N, A, Ay Ay Biz Bz By Di; Dy Dy
L [A1g Aze  Acs Bis Bas Bes Dig Dy Dee
My [Bi1 Biz Bie D11 Dy; Dis Eyy E;; Eie
My By By By Di; Dy Dy Ei6¢ Ezs Eee
My _ Bis Bs Bes Dis Dy Des Ei¢ Eze Ees
Ly D11 D1z Dig] [Eir E1z Eie Fi1 Fip Fig
L, Di; Dy Dis| |[Eie Ea6 Eee Fip Fpp Fpe
Lyy] 1D1s D6 Des Eie Ez Ees Fie Fas Fee
[P, ] [E11 Eiz Eie Fi1 Fip Fie Gi1 Gz Gie
P, Ei¢ Eze Eee Fiz Fpp Fp [612 G2 G2
P (Ei6 Eze  Ees Fie Fzs Fee Gis G6 Ges
L | " XY |

0 -
Qy] Agy A45] [344 345] [044 D45] Yz
Ays  Ass Bys  Bss Dys  Dssl||Vxz
[Ry] _ | [Bas 345] [D44 D45] [E E45] Vyz
R Bys  Bss Dys Dssl |Ess  Essl||yl,
[Sy] D4y D45] [E44 E45] [F44 F45] Vi
S Dys Dss E4ys Ess Fys  Fss 2
']/XZ‘

Where:

l]' l_]’ l_]' l_]’ l]' l]'

Aij, Bij, Dij, Eij, Fij, G, Hyj = f[CU](lzz z3,z%,25,2%)dz

l]' L_]J l]' U’ (]l 1,2,4,5,6)

A;i, Bii, D;
Hyj, Gy (]:1—1;2'6)

ijr

For kth layer of the laminate:

n

sz]k(hk — hy—1)
1

Bij =%Z[QU] (hk hlzc—l)

k=1

:

3

R P ANCEL S

BII

Eij = Zkzzl[@ij]k(hi — hi_1)
Fij = %Z[@ii]k(hﬁ —hi_1)
Gyj = %Z[@U]k(h? —hiy)
Hy = ;Z[@,-]kmz —h)
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(236)

(237)

(238)

(239)

(240)

(241)

(242)



Where 4;; is extensional stiffness matrix, B;; is extension-bending coupling matrix,
D;; is bending stiffness matrix, E;; is second order coupling matrix, F;; is second
order stiffness matrix, G;; is third order second order stiffness matrix, Hj; is third
order coupling matrix (Szekrényes, 2014).

13.4.4 Governing plate equations in terms of displacement

Substitution of the plate equilibrium equations into the stress-strain relations above
and subsequent equation substitution (strain curvatures) yields governing plate
equations in terms of displacement uo, Vo, Wo, ¢, ¢y, ¥y, Py, A, and 4,,. By further
mathematical adjustments we obtain:

1) Equation for displacement uo (in the x-axis direction):

9%u, 92%v, 0%u, 0%v, 9%, 0%y, 0%y, 0%y,
Ay — — —24+—2)+B B
15,2 i 0x0y T fae (Gxay 0x? ) T PG T he 0x0y B (axay 0x? )
0%y 0%, %¢, 0%, 0%, 9%2,
D D E E
+Pu dx? D1z 6x6y+ 16 6x6y+ d0x? T dx? T E1 dxdy
9%1, 0%4, 0%u, 02%v, 0%u, 0%v,
—= Ao+ Apg——r + Agg | =—
16 <axay * dx? ) s dxdy Az dy? T Ass ( dy? * 6x6y>

0Py 9%y (azlpx 32%) 0% x 0%y

B B B -
Bie 6x6y+ 26 gy2 * Bes dy? +6x6y 16 9xay 26 gy2

0%¢p, 0%, 0%, 922, 0%4, 022,
* Dee ( dy? * dxdy *Ere dxdy * Bz dy? * Eos dy? + oxdy) 0
(243)

2) Equation for displacement vo (in the y-axis direction):

9%u, 0%v, 0%u, 0%v, 0%, 0%y, 0%y, 0%y,
A= — 1t A |l =+ B B B
16 gx2 T Az dxay (axay dx? ) * Bie d0x? * Bze dxdy T Bes (axay + d0x? )
0%, %, N <02¢x quby) 0%, 9%2,

66

D D E E
Dis dx? + 26 9xdy E)xay+ dx? *Eie d0x? bz dxdy

L E 022, N 9%2, 4 0%, A 02%v, A 0%u, N 02%v,
66\ oxdy = 0x2 12 9xay 22 9y2 26\ oy ' oxay
0%y 0%y (azll)x 62%) +D 0%y 0’y

B B B Dyy—=——
* 126x6y+ 22 9y2? * Bz dy? +0x0y 126x6y+ 22 gy2

0%p, 0%, 0%, a%2, 0%,  0%A,
D Ei,m——+E;,—=+E =0
D26 < dy? + axay) E1z dxdy bz dy? bz < dy? + dxdy

(244)

3) Equation for displacement wo (in the z-axis direction):
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d 82w, 97w, 9 9 9
Ays Ed’y +m + Ass a‘l&‘" 322 +2345£¢y+23555¢x+3D4sa/1y

elan (Zp + 290 4o (L + 2% 428, 2 428, 2
44 aylpy ayz 45 aylpx axay 44 ay ¢y 45 ay ¢x

d d
+ 3Dy, @Ay + 3Dys @Ax] =—-p(x,y)
(245)

4) Equation for the displacement v, (rotation of the perpendicular to the
midplane in the zx plane)

0%u, 9%v, 0%u, 0%v, 04, Rl 0%y, 9%y
Biyi—=—5 + By ——+——|+D D > +D > ”
15y 0xdy * Bis <6x6y *ox ) g e 0xdy e <6x6y *ox )
92, 9%¢,, (achx aquy) 921, 922,

16

+Ey = +Ep o2+ + +F +F
1 gx2 12 9xay dxdy = dx? 11 9x2 12 9xoy

L E %2, N a%2, B 0%u, +B 0%y, +B 0%u, N 02%v,
16\ oxdy = 0ox? 6 9xdy = % 9y? 66\ ay2 ' oxdy
01 0%y, %Y, 9%, 0% ¢ 0%¢,
D D D E E,e —=
Dis dxdy D26 dy? T Dos ( dy? + 6x6y> 16 9xay bz dy?
02 02 0% 022 9% 0%
+ E66 < ¢X ¢y) X y F66 < X y)

Fie=——+F,s ==
dy? +6x6y ¥ 6x6y+ 26 gy2 + dy? +6x6y

aw, Wy

d
a5 (y +557) + s (s + 52) + 2Basy, + 2Bass + 3Dus,

+ 3055/1x]

aw, Wy

d
- [D45 <1/}y + 3y ) + Dss <1/}x + W) + 2E45¢y + 2E550, + 3Fy54,

+ 3F55&x:| =0
(246)

5) Equation for the displacement y, (rotation of the perpendicular to the
midplane in the zy plane)
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0? U azvo 62u0 62‘”0 zlpx leby azlpx azlpy
B +Byg=——+Bgs|=—=+—=—|+D D D
16 9x2 266x6y+ 66 <6x6y+ dx? 16552 T D265, 6y+ 66 6x0y+ dx?
0%¢, a%¢, N (a%px 02 ¢y> 021, 222,
66

E Epg —> F F
Thie e * 26 9xdy 6x6y+ ax2 ) THe g2 T ey x0y

E 0%, N a%2, B 0%ug uy o 02 Pvo o 0%u, N 0%y,
66\ oxdy = 0dx? Zoxay = 229y ' U\ ay? ' axdy
0%y, %Py D, (azwx 2%) cp Ll Oy

+Dign 6y+D22 dy? dy? +6x6y 12 9xay Bz dy?

¢, 9%, 922, 21, 92, 024,
* Ea ( dy? + axay) +Fe g xdy +Faz dy? >+ Fa ( dy? + 6x6y)
ow,
[ (9 + 52 + s (e + 52 4 281y + 2Bus + 30y
+3D,50, ]
dwg
= [ (0 + 52+ Dus (4 5) # 2By + 2Eus + 3Eucdy
+ 3F45/1x] =0
(247)

6) Equation for second order displacement ¢, (rotation of the perpendicular to
the midplane in the zx plane)

0%u, 0%v, 0%u, 9%v, GRT/R 0%y, 0%y, 0%,
D +D D (L 2 %0) g E E

1.2 T P2gaa, 16<6x6y+ ax2 ) TR g Y Rzga T e ey T ox2

92 92¢ 92, 0% 022, 9%,

tFuga TRy ay+F16<axax+ axz ) F O G,

022, %A, 92, 9%v, 9%, 8%,

D D D —_—
+G16<a ay " axz ) Y Pegxay T P26 52 T Pee | 502 T oxay

52 Py 2
0“1y 7Y, 0%, 0%, 0y 0%,
+ E16a a + E26 a 2 + E66 ayz + axay 166 a + F26 a 2
22, 0%, 021, 922, 022, 072,
F - -
+ 6<6y2 *37ay) T C1oamay T C2e gz +Ges| o7 T anay

ow, aw
= 2{Bus (0 +57) + Bas (e + 57) + Dus2ey + Das2 + Evs32,

+ ESSSAX] -0
(248)
7) Equation for second order displacement ¢,, (rotation of the perpendicular to
the midplane in the zy plane)
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0%u, 0%v, 0*u, 0%v, 04, Rl o*yp, 0%y
E E E F F L+ F = Y
1 gx2 1 dxdy * Ee <6x6y + dx? ) T 0x? Fhz dxdy * F1e (axay + 0x? )
0%, 0%¢ 0%¢p, 0%¢ 9°2 d%2
Gy ——+ Gy —2 + Gy | —= Yy g X Ny
+on 0x? 0z dxdy e (axay 0x? ) i 0x? e dxdy
0%, 022 0%u, 0%y, 0%*u, 0%v,
H >+ E E Ege| =
e <6x6y + 0x? ) Ee dxdy 26 dy? * e ( dy? + 6x6y)

2 2 2 2 2 2
0y 6¢y+F66<6¢x awy)+ 07¢x "¢y

Fie =+ F6—— Gy ——
+ 166x6y+ 26 9y2 dy? +6x6y 16 6x6y+ 26 gy2

0%¢p, 0%¢ 9?2 9% 0%, 0°%2
G )+ H =+ Hyg——= + Heg | = 2
* Ges < dy? + 6x6y> e dxdy s dy? *+ Hes ( dy? + dxdy

aw, aw,
- 3 [D45 (wy + W) + D55 (wx + W) + 2E45¢y + 2E55¢X + 3F45}.y

+ 3F55/1x] =0
(249)

8) Equation for the third order displacement 4, (rotation of the perpendicular
to the midplane in the zy plane)

azuo 62170 62u0 62170 azll}x azl,b 621’[} 621/)

Ejg = + Eyg——> oot o | +F Fas 3eay T F : 2
16 9x2 ' T gxay | 6° <6x6y T ox2 ) e gz T s 0xdy o (Bxay " ox )

%, 9%, ¢, %9, Oy o Oy

iy = —

+ Gl6 axz + GZ6 axay + 66 (axay + axz ) + 16 axz + 26 axay

T H 0%, N a%2, i E 0%u, LB 0%v, LB 0%u, N 0%v,
66\ oxdy = 0x2 xdy 2% Qy? 26\ 9y2 ' oxdy
0% 0%y, <32¢x 02%) 0% ¢ 0’¢,

Fio———+F,, —
+ 126x6y+ 2 9y2 * Fae dy? +6x6y +Glzax6y+G22

FE 92 922 9221 921, 922
+GZ6< ¢"+ ¢y>+H X+ 4 H26< ad y>

H + —-— +
dy? = 0xdy 12 9xdy 2 gy2 dy? = dxdy
- 3[D44‘9392 + D45€J(c]z + E44€31/z + E4559%z + F44€32/z + F45€§z] =0

(250)

9) Equation for the third order displacement A, (rotation of the perpendicular
to the midplane in the zx plane)
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0%u, 0%y, 0%u, 0%v, GRT/R iRT) 0%y, 9%y
Dig—==+Dyg——+Dgg| =———+—=— E E Y ad 4
16 gx2 D26 dxdy *Des (axay + dx? ) *Eie 0x? bz dxdy * Lo <6x6y + dx? )

i ) e

+ Geg <g;—;; + a;;g) +Dy, g;—;; +D,, 002_;20 + Dy (a;—yuz" + g;;;)

sy + i e Er (o ) iy P gy

+ Fae <6;% + g;?;) 12 g;_;; + Gy, % + G (a;_jzx + 2;;;)
om, om,

- 2 [344 (wy + ay ) + B4_5 (lsz + ax ) + 2D44¢y + 2D45¢x + 3E44Ay

+ 3545/1x] =0
(251)

13.5 Effects of moisture and fiber orientation on material
parameters of wood

As can be seen from the Graph 26-Graph 36, the material constants depend
on both moisture content and fiber orientation. In the case of the stiffness matrix
C11, the greater the fiber deflection and the greater the moisture content, the more
the modulus of elasticity decreases. In the case of stiffness matrix C11=10000 MPa,
which we transform to an angle of 90° and convert to a material moisture content
of 30%, then C11 is around 212 MPa. The stiffness matrix is therefore reduced by
98% of its original value. When only the moisture content is changed, the stiffness
matrix is reduced by 36%.

The following graphs are expressions of the dependence of the material
constants on moisture content and fiber deflection separately and the dependence
on moisture content and fiber deflection simultaneously.
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Graph 28 the dependence of the stiffness parameter Graph 29 - the dependence of the stiffness parameter
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Graph 32 - the dependence of the stiffness parameter C22 on the fiber orientation and moisture content
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Graph 35 - the dependence of the stiffness parameter C26 on the fiber orientation and moisture content
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13.6 Numerical FlexPDE script — Non-stationary 3D moisture

diffusion

TITLE 'Non-stationary 3D moisture diffusion at 20°C’'

SELECT
errlim=1e-5
painted

COORDINATES
cartesian3

VARIABLES
w

DEFINITIONS

vyska = 0.1

delka = 1.0
tp=273.15+20
ro=0.450
w_fin_voda=0.30
w_fin_vzduch=0.16

koeficient1=3.5
koeficient2=1

patm=100000

rvoda=1

R=8.341

rk=ro/(1+0.28*ro)
Pw=1-rk*(0.653+w)
Ea=38500-29000*w
E0=40600+42.4*(tp-273)
po=1.3*107(11)*exp(-Eo/ (R*tp))
rBS=1.53/(1+1.53*w)
A=7.731706-0.014348*tp
B=0.008746+0.000567*tp
dphidw=100*A*B*exp (-100*B*w)*exp (-A*exp(-100*B*w))

Da=(2.2/patm)*(tp/273.15)"1.75
DBT=7*10"(-6)*exp(-Ea/(R*tp))
DV=Da*0.018*po/ (rBS*rvoda*R*tp)*dphidw

DTang=(1/(1-Pw))*(DBT*DV/(DBT+DV*(1-Pw”(1/2))))*koeficientl
DRad=3/2*DTang

DBL=2.5*DBT
DLong=(Pw/(1-Pw))*(DV* DBL/(DBL+0.01*(1-Pw*(1/2))*DV))*koeficient2

hw_voda=1le-6
hw_vzduch=2e-7

INITIAL VALUES
w=0.12
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EQUATIONS
dx(DLong*dx(w) )+dy(DRad*dy(w) )+dz(DTang*dz(w))-dt(w)=0

EXTRUSION
z = -vyska/2,vyska/2

BOUNDARIES

surface 1 natural(w)=hw_vzduch*(w_fin_vzduch-w)
surface 2 natural(w)=hw_voda*(w_fin_voda-w)

Region 1
start(-delka/2,-delka/2)
natural(w)=hw_vzduch*(w_fin_vzduch-w)
line to (delka/2,-delka/2)
to (delka/2,delka/2)
to (-delka/2,delka/2)
to close

TIME
0 to 30*86400

PLOTS

for t = @ by 1*86400 to 30*86400
contour(w) on z=0 as "Moisture distribution in the plane XY [-]"
contour(w) on x=0 as "Moisture distribution in the plane YZ [-]"
contour(w) on y=@ as "Moisture distribution in the plane Xz [-]"
elevation(w) from (-delka/2,0,0) to (delka/2,0,0) as "Moisture content
- X-axis [-1"
elevation(w) from (@,-delka/2,0) to (@,delka/2,0) as "Moisture content
Y-axis [-]"
elevation(w) from (0,0,-vyska/2) to (9,0,vyska/2) as "Moisture content
-Z-axis [-]"

HISTORIES
history(w) at (0,0,-0.045) (0,0,0) (0,0,0.045) fixed range(0.1,0.35) as
"Moisture content change over time [-]"

END

13.7 Numerical FlexPDE script — CPT

TITLE 'Bending - 3 LAYERS - CPT'

SELECT

ngrid=16 { increase initial gridding }

errlim =le-4 { increase accuracy to resolve stresses }
painted { paint all contour plots }

VARIABLES
u

\Y

W

WXX

wyy
uxx
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uyy
VXX

vyy

DEFINITIONS { parameter definitions }
E_11 = 11*10"9

E_22 = 0.37*10"9
G_12 = 8.69*10"9
G 13 = G_12

G 23 =G 12
v12=0.2

v21 = (E_22/E_11)*v12

! LAMINAE LAYERS, GEOMETRY

hl = 0.03
h2 = 0.03
h3 = 0.03

h=h1 + h2 + h3

rho = 410

g=rho*9.81

L1=1.5

L2=0.3

al = @

a2 = 90

a3 =0

p= - 12000 - (g*h) {N.m-2}
Q11 = E_11 / (1-v12*v21)
Q12 = (v12 * E_22) / (1-v12*v21)
Q16 = ©

026 = 0

Q22 = E_22 / (1-v12*v21)
Q66 = G_12

ml=1 !cos(30 degrees)
nl=0 !sin(30 degrees)
m2=0 !cos(55 degrees)
n2=1 !sin(55 degrees)
m3=1 !cos(83 degrees)
n3=0 !sin(83 degrees)

[

PR RPRRPRPR
I

= Q11*m17M4+2*(Q12+2*Q66)*m1r2*n122+Q22*n1 4

= (Q11+022-4*Q66)*m172*n172+Q12* (m1~4+n1”4)

= Q11*n174+2*(Q12+2*Q66)*m1A2*n172+Q22*m1 4

= (Q11-Q12-2*%Q66)*(m1)~3*n1+(Q12-Q22+2*Q66)*m1* (n1)~3
= (Q11-Q12-2*%Q66)*n173*m1+(Q12-Q22+2*Q66)*n1*m1A3

= (Q11+022-2*Q12-2*Q66)*m1 2*n172+Q66* (M1 4+n174)

ANBEDNRR,

A O NN

2 = Q11*m274+42%(Q12+2%Q66)*m2/2*n2A2+Q22*n2"4
2 = (Q11+Q22-4*Q66)*m22*¥n2/2+Q12* (M2~ 4+n2~4)
2 = Q11*n274+2*(Q12+2*Q66)*M272*n2/2+Q22*m2 4
2 = (Q11-Q12-2%Q66)*m2/3*n2+(Q12-Q22+2*Q66)*m2*n2/3
2 = (Q11-Q12-2%Q66)*n2/3*m2+(Q12-Q22+2*Q66)*n2*m2/3

O O O O O IcOrOrOcOcOcO
|
I
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Q_66_2

Q_11_3
Q_12_3
Q_22_3
Q_16_3
Q_26_3
Q_66_3

A1l = Q 11 1 * ( (h2/2 + h1) - h2/2) + Q 11 2 * (

(Q11+Q22-2*Q12-2*Q66 ) *mM272*Nn272+Q66* (M2 4+n2"4)

Q11*m3/74+2* (Q12+2*Q66) *m342*Nn342+Q22*n3 4
(Q11+Q22-4*Q66)*m372*n322+Q12* (m374+n3/4)
Q11*n374+2%(Q12+2*Q66)*M342*n3/2+Q22*m3/4
(Q11-Q12-2%Q66)*m3~3*n3+(Q12-022+2*Q66 ) *m3*n3~3
(Q11-Q12-2%Q66)*n3~3*m3+(Q12-022+2*Q66 ) *n3*m3~3
(Q11+Q22-2*Q12-2*Q66)*m322*n3/2+Q66* (M374+n3"4)

(h2/2) -

Q.11 3 * ( (-h2/2) - (-h2/2 - h3))

A12 = Q_12_1 * ( (h2/2 + h1l) - h2/2) + Q_12_2 * (

(h2/2) -

Q 123 * ( (-h2/2) - (-h2/2 - h3))

A22 = Q221 * ( (h2/2 + h1l) - h2/2) + Q 22 2 * (

(h2/2) -

Q 223 * ( (-h2/2) - (-h2/2 - h3))

Al6 = Q 16 1 * ( (h2/2 + h1l) - h2/2) + Q 16 2 * (

(h2/2) -

Q.16 3 * ( (-h2/2) - (-h2/2 - h3))

A26 = Q 26_1 * ( (h2/2 + h1) - h2/2) + Q_26_2 * (

(h2/2) -

Q.26 3 * ( (-h2/2) - (-h2/2 - h3))

A66 = Q 66 1 * ( (h2/2 + hl) - h2/2) + Q 66 _2 * (

(h2/2) -

Q.66 3 * ( (-h2/2) - (-h2/2 - h3))

B1l = 1/2 * ( Q11 .1 * ( (h2/2
(h2/2)"2 - (-h2/2)"2) + Q_11 3
B12 = 1/2 * ( Q121 * ( (h2/2
(h2/2)"2 - (-h2/2)"2) + Q_12_3
B22 = 1/2 * ( Q221 * ( (h2/2
(h2/2)"2 - (-h2/2)"2) + Q 223
B16 = 1/2 * ( Q_16_1 * ( (h2/2
(h2/2)"2 - (-h2/2)"2) + Q_16_3
B26 = 1/2 * ( Q 26_1 * ( (h2/2
(h2/2)"2 - (-h2/2)"2) + Q_26_3
B66 = 1/2 * ( Q_66_1 * ( (h2/2
(h2/2)"2 - (-h2/2)"2) + Q_66_3

D11 = 1/3 * ( Q 11_1 * ( (h2/2
(h2/2)"3 - (-h2/2)"3) + Q_11 3
D12 = 1/3 * ( Q 121 * ( (h2/2
(h2/2)"3 - (-h2/2)"3) + Q_12_3
D22 = 1/3 * ( Q221 * ( (h2/2
(h2/2)"3 - (-h2/2)"3) + Q 223
D16 = 1/3 * ( Q 161 * ( (h2/2
(h2/2)"3 - (-h2/2)"3) + Q_16_3
D26 = 1/3 * ( Q 26_1 * ( (h2/2
(h2/2)"3 - (-h2/2)"3) + Q_26_3
D66 = 1/3 * ( Q.66 1 * ( (h2/2
(h2/2)"3 - (-h2/2)"3) + Q_66_3

¥4+ ¥+ ¥+ ¥+ ¥+ * +

¥+ ¥+ ¥+ x4+ ¥+ x +

h1)72 - (h2/2)72) + Q 11 2 * (
( (-h2/2)72 - (-h2/2 - h3)A2))
h1)~2 - (h2/2)72) + Q 12.2 * (
( (-h2/2)72 - (-h2/2 - h3)2))
h1)72 - (h2/2)72) + Q 222 * (
( (-h2/2)72 - (-h2/2 - h3)A2))
h1)~2 - (h2/2)"2) + Q_16.2 * (
( (-h2/2)72 - (-h2/2 - h3)2))
h1)~2 - (h2/2)"2) + Q_26_2 * (
( (-h2/2)72 - (-h2/2 - h3)"2))
h1)22 - (h2/2)72) + Q 66 2 * (
( (-h2/2)72 - (-h2/2 - h3)2))

h1)A3 - (h2/2)73) + Q 11 2 * (
( (-h2/2)73 - (-h2/2 - h3)73))
h1)A3 - (h2/2)73) + Q 12 2 * (
( (-h2/2)73 - (-h2/2 - h3)73))
h1)A3 - (h2/2)"3) + Q 22 2 * (
( (-h2/2)*3 - (-h2/2 - h3)73))
h1)A3 - (h2/2)73) + Q 16 2 * (
( (-h2/2)73 - (-h2/2 - h3)73))
h1)A3 - (h2/2)"3) + Q 26 2 * (
( (-h2/2)*3 - (-h2/2 - h3)73))
h1)~3 - (h2/2)"3) + Q_66_2 * (
( (-h2/2)*3 - (-h2/2 - h3)73))

ex=dx(u)

ey=dy(v)
exy=dx(v)+dy(u)
kx=-dxx(w)
ky=-dyy(w)
kxy=-2*%( dxy(w) )

(-h2/2))
(-h2/2))
(-h2/2))
(-h2/2))
(-h2/2))
(-h2/2))

-+

+

-+

-+

+

-+
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{1

TOP

el 1 top = ex + (h1+h2/2) * kx
e2_1 top = ey + (h1+h2/2) * ky
e6_1 top = exy + (h1+h2/2) * kxy

Sigma_x_1 top = Q_ 11 1*el 1 top + Q_ 12 1*e2_1 top + Q_16_1*e6_1 top
Sigma_y 1 top = Q 12 _1*el 1 top + Q_22_1*e2_1 top + Q_26_1*e6_1 top
Sigma_xy 1 top = Q_16_1*el 1 top + Q_26_1%*e2_1 top + Q_66_1*e6_1 top

{1.
MID
el 1 mid = ex + (h1/2+h2/2) * kx
e2_ 1 mid = ey + (h1/2+h2/2) * ky

e6_1 mid = exy + (h1/2+h2/2) * kxy

Sigma_x_1 mid = Q_11_1*el 1 mid + Q_12_1*e2_1 mid + Q_16_1*e6_1 mid
Sigma_y 1 mid = Q_12 1*el 1 mid + Q_22_1*e2_1 mid + Q_26_1*e6_1 mid
Sigma_xy 1 mid = Q_16_1*el 1 mid + Q_26_1*e2_1 mid + Q_66_1*e6_1 mid

{1.

BOT

el 1 bot = ex + (h2/2) * kx
e2_1 bot = ey + (h2/2) * ky
e6_1 bot = exy + (h2/2) * kxy

Sigma_x_1 bot = Q_11 1*el 1 bot + Q_12_1*e2_1 bot + Q_16_1*e6_1 bot
Sigma_y 1 bot = Q_12 1*el 1 bot + Q_ 22 1*e2_ 1 bot + Q_26_1*e6_1 bot
Sigma_xy 1 bot = Q_16_1*el 1 bot + Q_26_1*e2_1 bot + Q_66_1*e6_1 bot

{2.

TOP

el 2 top = ex + (h2/2) * kx
e2_ 2 top = ey + (h2/2) * ky
e6_2 top = exy + (h2/2) * kxy

Sigma_x_2_top = Q_11_2*el_2_top + Q_12_2%e2_2_top + Q_16_2*e6_2_top
Sigma_y 2 _top = Q_12_2*el_2_top + Q_22_2%e2_2_top + Q_26_2%*e6_2_top
Sigma_xy 2 top = Q_16_2*el 2 top + Q_26_2*e2 2 top + Q_66_2*e6_2_ top

{2.

MID

el 2 mid = ex + (@) * kx
e2 2 mid = ey + (0) * ky
e6_2 mid = exy + (0) * kxy

Sigma_x_2 mid = Q_11 2*el 2 mid + Q_12 2*e2 2 mid + Q_16_2*e6_2 mid
Sigma_y 2 mid = Q_12 2*el 2 mid + Q_22 2*e2 2 mid + Q_26_2*e6_2 mid
Sigma_xy 2 mid = Q_16_2*el 2 mid + Q_26_2*e2 2 mid + Q_66_2*e6_2 mid

(2.
BOT
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el 2 bot = ex + (-h2/2) * kx
e2_2 bot = ey + (-h2/2) * ky
e6_2 bot = exy + (-h2/2) * kxy

Sigma_x_2 bot = Q_11 2*el 2 bot + Q_12_2*e2_2 bot + Q_16_2*e6_2_ bot
Sigma_y 2 bot = Q_12 2*el 2 bot + Q_22_2*e2_2 bot + Q_26_2*e6_2 bot
Sigma_xy 2 bot = Q_16_2*el 2 bot + Q_26_2*e2_ 2 bot + Q_66_2*e6_2 bot

{3.

TOP

el 3 top = ex + (-h2/2) * kx
e2_3 top = ey + (-h2/2) * ky
e6_3 _top = exy + (-h2/2) * kxy

Sigma_x_3 top = Q_11 3*el 3 top + Q_12 3*e2 3 top + Q_16_3*e6_3 top
Sigma_y 3 top = Q_12 3*el 3 top + Q_22_3*e2_3 top + Q_26_3*e6_3 top
Sigma_xy 3 top = Q_16_3*el 3 top + Q_26_3*e2_3 top + Q_66_3*e6_3 top

{3.

MID

el 3 mid = ex + (-h1/2-h2/2) * kx
e2 3 mid = ey + (-h1/2-h2/2) * ky
e6_3 mid = exy + (-h1/2-h2/2) * kxy

Sigma_x_3 mid = Q_11 3*el 3 mid + Q_12_3*e2_3 mid + Q_16_3*e6_3_mid
Sigma_y 3 mid = Q_12_3*el_3 mid + Q_22 3*e2 3 mid + Q_26_3*e6_3 mid
Sigma_xy 3 mid = Q_16_3*el 3 mid + Q_26_3*e2_3 mid + Q_66_3*e6_3 mid

{3.

BOT

el 3 bot = ex + (-h1-h2/2) * kx
e2_3 bot = ey + (-h1-h2/2) * ky
e6_3 bot = exy + (-h1-h2/2) * kxy

Sigma_x_3 bot = Q_11 3*el 3 bot + Q_12_3*e2_ 3 bot + Q_16_3*e6_3 bot
Sigma_y 3 bot = Q_12 3*el 3 bot + Q_22 3*e2 3 bot + Q_26_3*e6_3 bot
Sigma_xy 3 bot = Q_16_3*el 3 bot + Q_26_3*e2_3 bot + Q_66_3*e6_3 bot

INITIAL VALUES
u==~o
v =0

WXX =
wyy =
UXX =
uyy =
VXX =
vyy =
lwx =
lwy =

OO0

EQUATIONS
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wxx:  dxx(w)=wxx
wyy: dyy(w)=wyy
uxx: dxx(u)=uxx
uyy: dyy(u)=uyy
vxx:  dxx(v)=vxx
vyy: dyy(v)=vyy

u:
A11*dxx(u)+A12*dxy (v)+A16* (dxy (u)+dxx(v))-
(B11*dx(wxx)+B12*dx(wyy)+2*B1l6*dy (wxx)) +
Al6*dxy(u)+A26*dyy (v)+A66* (dyy(u)+dxy(v))
(B16*dy (wxx)+B26*dy (wyy)+2*B66*dx (wyy) )=0

Vi
Al6*dxx(u)+A26*dxy (v)+A66* (dxy(u)+dxx(v))
(B16*dx (wxx)+B26*dx(wyy)+2*B66*dy (wxx)) +
A12*dxy (u)+A22*dyy (v)+A26* (dyy(u)+dxy(v))
(B12*dy (wxx)+B22*dy (wyy)+2*B26*dx (wyy)) =

(W]

W:

B1l*dx(uxx)+B12*dy(vxx)+B16* (dy (uxx)+dx(vxx)) -
(D11*dxx(wxx)+D12*dyy (wxx)+2*D16* (dxy (wxx))) +
B16*dy (uxx)+B26*dx (vyy)+B66* (dx (uyy)+dy(vxx)) -
(D16*dxy (wxx)+D26*dxy (wyy)+2*D66* (dxx (wyy))) +
B12*dx(uyy)+B22*dy(vyy)+B26* (dy (uyy)+dx(vyy)) -
(D12*dxx(wyy)+D22*dyy (wyy)+2*D26* (dxy (wyy))) = -p

BOUNDARY CONDITIONS

"simply supported y" :
VALUE (w)=0
VALUE (wxx)=0
natural(wyy)=0
VALUE (v)=0
VALUE (u)=0
natural(uxx)=0
natural(uyy)=0
VALUE (vxx)=0
VALUE (vyy)=0

"free edge x" :
natural(w)=0
natural(wxx)=0
VALUE (wyy)=0
VALUE(v)=0
natural(u)=0
natural(uxx)=0
natural(uyy)=0
natural(vxx)=0
natural(vyy)=0

BOUNDARIES
region 1
start (0,0)
USE BC "free edge x"
line to (L1,0)
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USE BC "simply supported y"
line to (L1,L2)
USE BC "free edge x"
line to (0,L2)
USE BC "simply supported y"
line to close

PLOTS
contour(w) { show deformed grid as solution progresses }
surface(w)
elevation(w) from (@,L2/2) to (L1/2,L2/2)
elevation(w) from (L1/2,0) to (L1/2,L2)
END

13.8 Numerical FlexPDE script - FOSDT

TITLE 'Bending - 3 LAYERS - FOSDT-DE'

SELECT

ngrid=21 { increase initial gridding }

cubic { Use Cubic Basis }

errlim =le-4 { increase accuracy to resolve stresses }
painted { paint all contour plots }

ICHANGELIM = 0.1

ISTAGES = 36

lautostage = on
IPREFER_STABILITY=0n
INONLINEAR=0fF

VARIABLES
WXX

wyy

=

mTmm< C

_X_X
_X

Fyy
F_y

DEFINITIONS { parameter definitions }

layer_1_w = 30
layer_2_w = 12
layer 3 w = 12

layerll=12 {°C}

layerl2= layer_1_w

layer21=12

layer22=layer_2_w

layer31=12

layer32=layer 3 w
abs_w_1=(layerll-layerl2)
abs_w_2=(layer21-layer22)
abs_w_3=(layer31l-layer32)

! Layer 1  C22
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E 11 1 wl2 = 11*10"9

E_ 22 1 wl2 = 0.37*%10%9
G_12_1 wl2 = 0.69*10"9
G 13 1 wl2 = G_12 1 wi2

G 23 1 wl2 = G_12_1 wi2
E 11 1 = E_11_1 wl2*(1+0.02*(12-layer 1 _w))

E 22 1 = E_22_ 1 wl2*(1+40.02*(12-layer_1_w))
G 12 1 = G_12_1_wl2*(1+0.02*(12-layer_ 1 w))
G 131 = G_13_1 wl2*(1+0.02*(12-layer_1 w))
G 23 1 = G_23_1 wl2*(1+0.02*(12-layer_1 w))
vi2_1=0.2

v21_1 = (E_22 1/E_11 1)*vi2_1

rho_1 420 lkg/m3
rho@_1=rho_1/1000 !g/m3
g 1l=rho_1%9.81

Q11 1 = E_11.1 / (1-v12_1*v21_1)

Q12_1 = (v12_1 * E_22 1) / (1-v12_1*v21_1)
Ql6 1 = ©

Q26 1 =0

Q22_1 = E_22.1 / (1-vi2_1*v21_1)

Q66 1 = G 12 1

Q44 1 = G 23 1

Q55 1 = G_13_1

! Layer 2 C22

E 11 2 wl2 = 11*1079
E_22 2 wl2 = 0.37*%10%9
G_12_2 wl2 = 0.69*10"9
G 13 2 wl2 = G_12_ 2 wl2
G 23 2 wl2 = G_12 2 _wi2

E 11 2 = E_11 2 wl2*(1+0.02*(12-layer_2 w))

E 22 2 = E_22 2 wl2*(1+0.02*(12-1layer_2 w))
G_12_2 = G_12_2 wl12*(1+0.02*(12-layer_2_w))
G_13 2 = G_13 2 wl2*(1+0.02*(12-layer_2 w))
G 23 2 = G_23 2 wl2*(1+0.02*(12-layer_2 w))
vli2_2 = 0.2

v21 2 = (E_22 2/E_11_2)*v12 2

rho_2 = 420

rho@_2=rho_2/1000
g 2=rho_2%9.81

Q11 2 = E_11 2 / (1-v12_2*v21_2)

Q12_2 = (v12_2 * E_222) / (1-v12_2*v21_2)
Ql6 2 = ©

Q26 2 = 0

Q222 = E_22.2 / (1-v12_2*v21_2)

Q66 2 = G_12 2

Q44 2 = G 23 2

Q55 2 = G_13_2

! Layer 3 C22
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E_11_3 wl2
E_22_ 3 wl2

11*10"9
0.37*10"9

G_12_3 wl2 = 0.69*10"9

G_13 3 wi2

G_12_3 wl2

G 23 3 wl2 = G_12_3 wi2

E_11 3
E_22 3
G 12 3
G 13 3
G 23 3

vli2 3
v21 3

rho_3

E_11 3 wl2*(1+0.02*(12-1layer_3 w))
E_22 3 wl2*(1+0.02*(12-1layer_3 w))
G_12_3 wl2*(1+0.02*(12-layer 3 w))
G_13_3 wl2*(1+0.02*(12-layer 3 w))
G_23 3 wl2*(1+40.02*(12-layer_3 w))

0.2
(E_22_3/E_11_3)*v12_3

420

rho@_3=rho_3/1000
g 3=rho_3%9.81

Q113
Q12_3
Q16_3
Q26_3
Q22_3
Q66_3
Q44 3
Q55_3

E_11_3 / (1-v12_3*v21_3)

(vi2_3 * E_22_3) / (1-v12_3*v21_3)
0

)

E 22 3 / (1-v12_3*v21_3)

G 12 3

G 233

G 13 3

! LAMINAE LAYERS THICKNESS, GEOMETRY

hl = 0.

h2 = 0
h3 =0
+

-
N B
I
[N
w Ui

(4]
.0
.0
h

3
3
3
2 + h3

p= - 12000 {N.m-2}

ml=1 !cos(al degrees)
n1=0 !sin(al degrees)
m2=0 !cos(a2 degrees)
n2=1 !sin(a2 degrees)
m3=1 !cos(a3 degrees)
n3=0 !sin(a3 degrees)

R R RRRRRRR

Q11_1*m174+2*%(Q12_1+2*Q66_1)*m1~2*n172+Q22_1*n1~4

= (Q11_1+Q22_1-4*Q66_1)*m172*n1~2+Q12_1*(m1~4+n1~4)

Q11_1*n174+2*(Q12_1+2*Q66_1)*m1A2*n172+Q22_1*m1~4
(Q11_1-Q12_1-2*Q66_1)*(m1)~3*n1+(Q12_1-Q22_1+2*Q66_1)*ml*(n1)~3
(Q11_1-Q12_1-2*Q66_1)*n173*m1+(Q12_1-0Q22_1+2*Q66_1)*nl1*m1’3
(Q11_1+Q22_1-2*Q12_1-2*Q66_1)*m1A2*n172+Q66_1*(m1r4+n1”4)
Q44_1*m172+Q55_1*n172

(Q55_1-Q44_1)*n1*mil

Q55_1*m172+Q44_1*n1n2

Q11 2*m274+2*%(Q12 2+2*Q66 2)*m2~2*n2~2+Q22 2*n2~4
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Q 12 2 = (Q11_2+Q22_2-4*Q66_2)*m2~2*n2~2+Q12_2*(m2~4+n2"4)
Q 22 2 = Q11_2%n2°4+2%(Q12_2+2*Q66_2)*m2°2*n2~2+Q22_2*m2~4
Q 16_2 = (Q11_2-Q12_2-2*Q66_2)*m2~3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2"3
Q 26 _2 = (Q11_2-Q12_2-2*Q66_2)*n273*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2"3
Q 66_2 = (Q11_2+Q22_2-2*Q12_2-2*Q66_2)*m272*n2/2+Q66_2* (M2 4+n2~4)
Q 44 2 = Q44 _2*m272+Q55_2*n2/2
Q 45 2 = (Q55_2-Q44_2)*n2*m2
Q_55_2 = Q55_2*m2°2+Q44_2*n2/2
Q 11 3 = Q11_3*m374+2*(Q12_3+2*Q66_3)*m3°2*n3/2+Q22_3*n3~4
Q 12 3 = (Q11_3+Q22_3-4*Q66_3)*m372*n3/2+Q12_3*(m374+n3"4)
Q 22 3 = Q11_3*n3~4+2*(Q12_3+2*Q66_3)*m3°2*n3/2+Q22_3*m3~4
Q 16_3 = (Q11_3-Q12_3-2*Q66_3)*m3~3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3~3
Q 26_3 = (Q11_3-Q12_3-2*Q66_3)*n3~3*m3+(Q12_3-Q22_3+2*Q66_3)*n3*m3~3
Q_66_3 = (Q11_3+Q22_3-2*Q12_3-2*Q66_3)*m3~2*n3/2+Q66_3* (M3 4+n3~4)
Q 44 3 = Q44_3*m372+Q55_3*n3/2
Q_45_3 = (Q55_3-Q44_3)*n3*m3
Q_55_3 = Q55_3*m372+Q44_3*n3~2
A1l = Q 11 1 * ( (h2/2 + h1) - h2/2) + Q 112 * ( (h2/2) - (-h2/2)) +
Q 113 * ( (-h2/2) - (-h2/2 - h3))
A12 = Q 12 1 * ( (h2/2 + h1) - h2/2) + Q 122 * ( (h2/2) - (-h2/2)) +
Q 123 * ( (-h2/2) - (-h2/2 - h3))
A22 = Q221 * ( (h2/2 + h1) - h2/2) + Q 222 * ( (h2/2) - (-h2/2)) +
Q 22 3 * ( (-h2/2) - (-h2/2 - h3))
Al6 = Q 16 1 * ( (h2/2 + h1) - h2/2) + Q 16_2 * ( (h2/2) - (-h2/2)) +
Q 16 3 * ( (-h2/2) - (-h2/2 - h3))
A26 = Q 26 1 * ( (h2/2 + h1) - h2/2) + Q 262 * ( (h2/2) - (-h2/2)) +
Q.26 3 * ( (-h2/2) - (-h2/2 - h3))
A66 = Q 66_1 * ( (h2/2 + h1) - h2/2) + Q 662 * ( (h2/2) - (-h2/2)) +
Q. 66_3 * ( (-h2/2) - (-h2/2 - h3))
Ad4 = Q 44 1 * ( (h2/2 + h1) - h2/2) + Q 44 2 * ( (h2/2) - (-h2/2)) +
Q 44 3 * ( (-h2/2) - (-h2/2 - h3))
A45 = Q 45 1 * ( (h2/2 + h1l) - h2/2) + Q. 45 2 * ( (h2/2) - (-h2/2)) +
Q 45 3 * ( (-h2/2) - (-h2/2 - h3))
A55 = Q 55 1 * ( (h2/2 + h1) - h2/2) + Q 552 * ( (h2/2) - (-h2/2)) +
Q.55 3 * ( (-h2/2) - (-h2/2 - h3))
A=matrix((A11,A12,A16), (A12,A22,A26), (A16,A26,A66))
B11 = 1/2 * ( Q111 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q 11 2 * ( (h2/2)~2
(-h2/2)722) + Q_11 3 * ( (-h2/2)"2 - (-h2/2 - h3)~2))
B12 = 1/2 * ( Q121 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q_ 122 * ( (h2/2)2
(-h2/2)72) + Q_12_3 * ( (-h2/2)"2 - (-h2/2 - h3)~2))
B22 = 1/2 * ( Q. 22.1 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q 222 * ( (h2/2)"2
(-h2/2)722) + Q 223 * ( (-h2/2)"2 - (-h2/2 - h3)"2))
B16 = 1/2 * ( Q 161 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q_16_2 * ( (h2/2)"2
(-h2/2)72) + Q_16_3 * ( (-h2/2)"2 - (-h2/2 - h3)"2))
B26 = 1/2 * ( Q 261 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q_26_2 * ( (h2/2)2
(-h2/2)722) + Q_26_3 * ( (-h2/2)"2 - (-h2/2 - h3)"2))
B66 = 1/2 * ( Q 661 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q_66_2 * ( (h2/2)2

(-h2/2)"2) + Q_66_3 * ( (-h2/2)*2 - (-h2/2 - h3)~2))

B=matrix((B11,B12,B16), (B12,B22,B26), (B16,B26,B66))
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D11 = 1/3 * ( Q 111 * ( (h2/2 + h1)"3 - (h2/2)"3) + Q 11 2 * ( (h2/2)"3 -
(-h2/2)73) + Q 11_3 * ( (-h2/2)"3 - (-h2/2 - h3)"3))
D12 = 1/3 * ( Q 12_1 * ( (h2/2 + h1)"3 - (h2/2)"3) + Q 122 * ( (h2/2)"3 -
(-h2/2)73) + Q 123 * ( (-h2/2)"3 - (-h2/2 - h3)"3))
D22 = 1/3 * ( Q. 22.1 * ( (h2/2 + h1)"3 - (h2/2)"3) + Q 222 * ( (h2/2)"3 -
(-h2/2)73) + Q223 * ( (-h2/2)"3 - (-h2/2 - h3)"3))
D16 = 1/3 * ( Q 16_1 * ( (h2/2 + h1)"3 - (h2/2)"3) + Q_16_2 * ( (h2/2)"3 -
(-h2/2)73) + Q_16_3 * ( (-h2/2)"3 - (-h2/2 - h3)"3))
D26 = 1/3 * ( Q. 26_1 * ( (h2/2 + h1)"3 - (h2/2)"3) + Q 26_2 * ( (h2/2)"3 -
(-h2/2)73) + Q 26 3 * ( (-h2/2)"3 - (-h2/2 - h3)"3))
D66 = 1/3 * ( Q. 66_1 * ( (h2/2 + h1)"3 - (h2/2)"3) + Q_66_2 * ( (h2/2)"3 -
(-h2/2)73) + Q_66_3 * ( (-h2/2)"3 - (-h2/2 - h3)"3))

D=matrix((D11,D12,D16), (D12,D22,D26), (D16,D26,D66))

IMOISTURE STRAINS

KaT_1=(2/3)*rho0@_1
KaR_1=(1/30)*rho0_1
KalL_1=(1/30)*rho@_1
KaT_2=(2/3)*rhoe_2
KaR_2=(1/30)*rho0o_2
KalL_2=(1/30)*rho@_2
KaT_3=(2/3)*rho@_3
KaR_3=(1/30)*rhoo_3
KaL_3=(1/30)*rhoo_3

ewll 1=(KalL_1*(abs_w_1))/100
ew22_ 1=(KaR_1*(abs _w_1))/100

ewll 2=(KalL_2*(abs_w_2))/100
ew22 2=(KaR_2*(abs_w_2))/100

ewll 3=(KalL_3*(abs_w_3))/100
ew22_3=(KaR_3*(abs_w_3))/100

Ks = 5/6 ! First order shear plate theory coefficient for shear stress
e_x = dx(u)

ey = dy(v)

e xy = dy(u)+dx(v)

Kx = dx(F_x)

Ky = dy(F_y)

Kxy = 2*(dy(F_x)+dx(F_y))

eyz
exz

(F_y) +dy(w)
(F_x) + dx(w)

{1. TOP

el 1 top
e2 1 top

e x + (h1+h2/2)*Kx + ewll_1
ey + (hl+h2/2)*Ky + ew22 1
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e6_1 top = e_xy + (hl+h2/2)*Kxy
e4 1 top = eyz
e5 1 top = exz

Sigmal 1 top
Sigma2_1 top
Sigma6_1 top
Sigmad4_1 top

Q 11 1*el 1 top + Q 12 1*e2 1 top + Q_16_1*e6_1 top
Q 12 1*el 1 top + Q_22_1*e2_1 top + Q_26_1*e6_1_top
Q 16_1*el 1 top + Q_26_1*e2_1 top + Q_66_1*e6_1_top
Q44 1 * e4 1 top + Q 45 1 * e5 1 top

Sigma5_1 top =Q 45 1 * e4 1 top + Q 551 * e5_1 top

{1. MID

el 1 mid
e2 1 mid
e6_1 mid
e4 1 mid
e5 1 mid

e x + (h1/2+h2/2)*Kx + ewll 1
ey + (h1/2+h2/2)*Ky + ew22_1
e xy + (h1/2+h2/2)*Kxy

eyz

exz

Sigmal 1 mid = Q_11 1*el 1 mid + Q_12_1*e2_1 mid + Q_16_1*e6_1 mid
Sigma2_1 mid = Q_12_1*el 1 mid + Q_22_1*e2_ 1 mid + Q_26_1*e6_1 mid
Sigma6_1 mid = Q_16_1*el 1 mid + Q_26_1*e2_1 mid + Q_66_1*e6_1 mid
Sigma4_1 mid = Q 44 1 * e4_1 mid + Q_45_1 * e5_1 mid
Sigma5_1_mid =Q_45_1 * e4_1_mid + Q_55_1 * e5_1_mid

{1. BOT

el 1 bot
e2_1 bot
e6_1 bot
e4_1 bot
e5_1 bot

e X + (h2/2)*Kx + ewll_1
ey + (h2/2)*Ky + ew22_1
e_xy + (h2/2)*Kxy

eyz

exz

Sigmal_1 bot = Q_11 1*el 1 bot + Q_12_1*e2_1 bot + Q_16_1*e6_1 bot
Sigma2_1 bot = Q_12_1*el 1 bot + Q_ 22 1*e2_1 bot + Q_26_1*e6_1 bot
Sigma6_1 bot = Q_16_1*el 1 bot + Q_26_1*e2_1 bot + Q_66_1*e6_1 bot
Sigma4_1 bot = Q 44 1 * e4_1 bot + Q_45_1 * e5_1 bot

Sigma5_1 bot =Q 45 1 * e4_1 bot + Q_ 551 * e5_1 bot

{2. ToP

el 2 _top
e2_2_ top
e6_2_top
e4 2 top
e5 2 top

Sigmal_2_top
Sigma2_2_top
Sigma6_2_ top
Sigmad_2_ top

e X + (h2/2)*Kx + ewll 2
ey + (h2/2)*Ky + ew22_2
e_xy + (h2/2)*Kxy

eyz

exz

Q_ 11 _2*el 2 top + Q_12_2*e2_2 top + Q_16_2*e6_2_top
Q_ 12 _2*el_2_ top + Q_22_2*e2_2_top + Q_26_2%e6_2_top
Q_16 _2*el 2 top + Q_26_2*e2 2 top + Q_66_2*e6_2 top
Q44 2 * e4 2 top + Q 45 2 * e5_2 top

Sigma5_2 top =Q 45 2 * e4_2 top + Q 55 _2 * e5_2 top

{2. MID

el 2 mid = e_ x + (O)*Kx + ewll 2
e2 2 mid = ey + (0)*Ky + ew22 2
e6 2 mid = e_xy + (0)*Kxy
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ed4d 2 mid = eyz
e5_ 2 mid = exz

Sigmal_2_mid
Sigma2_2_mid
Sigma6_2_ mid
Sigmad4_2_mid
Sigma5_2 mid

{2. BOT

Q_11 2*el 2 mid + Q_12 2*e2 2 mid + Q_16_2*e6_2 mid
Q_12 2*el 2 mid + Q_22 2*e2 2 mid + Q_26_2*e6_2 mid
Q 16 _2*el 2 mid + Q_26_2*e2_2 mid + Q_66_2*e6_2_ mid
Q44 2 * e4 2 mid + Q_45 2 * e5_2 mid
Q45 2 * e4 2 mid + Q_55_2 * e5_2 mid

el _2 bot
e2_2 bot
e6_2 bot
e4 2 bot
e5_ 2 bot

Sigmal_2_bot
Sigma2_2_bot
Sigma6_2_ bot
Sigmad4_2_ bot
Sigma5_2_ bot

{3. TOP

e X + (-h2/2)*Kx + ewll_2
ey + (-h2/2)*Ky + ew22_2
e xy + (-h2/2)*Kxy

eyz

exz

Q_11_2*el_2_bot + Q_12_2*e2_2 bot + Q_16_2%*e6_2_bot
Q_12_2*el_2_bot + Q_22_2*e2_2_bot + Q_26_2*e6_2_bot
Q_16_2*el_2_bot + Q_26_2*e2_2 bot + Q_66_2*e6_2_bot
Q 44 2 * e4 2 bot + Q_45_2 * e5_2_bot
Q_45_2 * e4 2 bot + Q_55_2 * e5_2_bot

el 3 top
e2_3_top
e6_3_top
e4 3 top
e5 3 top

Sigmal_3_top
Sigma2_3_top
Sigma6_3_top
Sigmad_3_ top
Sigma5_3 top

{3. MID

e x + (-h2/2)*Kx + ewll 3
ey + (-h2/2)*Ky + ew22_3
e_xy + (-h2/2)*Kxy

eyz

exz

Q_11 3*el 3 _top + Q_12_3*e2_3 top + Q_16_3*e6_3_top
Q_12 3*el_3_top + Q_22_3*e2_3 top + Q_26_3*e6_3_top
Q_16_3*el 3 _top + Q_26_3*e2_3 top + Q_66_3*e6_3 top
Q44 3 * e4 3 top + Q_45 3 * e5_3 top
Q45 3 * e4 3 top + Q_55_3 * e5_3 top

el 3 mid
e2_3_mid
e6_3_mid
e4_3 mid
e5 3 mid

Sigmal_3_mid
Sigma2_3_mid
Sigma6_3 _mid
Sigmad4_3 mid
Sigma5_3 mid

{3. BOT

e x + (-h2/2-h3/2)*Kx + ewll 3
ey + (-h2/2-h3/2)*Ky + ew22_3
e xy + (-h2/2-h3/2)*Kxy

eyz

exz

Q_ 11 3*el 3 mid + Q_12_3*e2 3 mid + Q_16_3*e6_3 mid
Q_12 3*el 3 mid + Q_22_3*e2 3 mid + Q_26_3*e6_3 mid
Q_16_3*el_3 _mid + Q_26_3*e2_3 mid + Q_66_3*e6_3_mid
Q44 3 * e4 3 mid + Q_45 3 * e5_3 mid
Q 45 3 * e4_ 3 mid + Q_55 3 * e5_3 mid

el 3 bot
e2_3 bot
e6_3_bot
e4 3 bot

e X + (-h2/2-h3)*Kx + ewll 3
ey + (-h2/2-h3)*Ky + ew22 3
e_xy + (-h2/2-h3)*Kxy

eyz
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e5_3 bot = exz

Sigmal_3_bot
Sigma2_3 bot
Sigma6_3_bot
Sigmad4_3_ bot
Sigma5_3_ bot

Q 11 3*el 3 bot + Q_12_3*e2_3 bot + Q_16_3*e6_3_bot
Q_12 3*el 3 bot + Q_22 3*e2_ 3 bot + Q_26_3*e6_3 bot
Q_16_3*el 3 bot + Q_26_3*e2_3 bot + Q_66_3*e6_3 bot
Q44 3 * e4 3 bot + Q_ 45 3 * e5_3 bot
Q 45 3 * e4_3 bot + Q_ 55 3 * e5_3 bot

INITIAL VALUES

0

X =0
y =0
EQUATIONS

F_x_x: dx(F_x)=F_x_x
Foy_y: dy(F_y)=F_y_y
wWXX: dxx(w)=wxx
wyy: dyy(w)=wyy

u:
All*dxx(u)+A12*dxy (v)+A16* (dxy(u)+dxx(v))+Bll*dxx(F_x)+B12*dxy(F_y)+B16*(dx
y(F_x)+dxx(F_y))+Al6*dxy(u)+A26*dyy(v)+A66*(dyy(u)+dxy(v))+Ble*dxy(F_x)+B26
*dyy (F_y)+B66* (dyy (F_x)+dxy(F_y))=0

v:
Al6*dxx(u)+A26*dxy (v)+A66* (dxy(u)+dxx(v))+Ble6*dxx(F_x)+B26*dxy(F_y)+B66* (dx
Y (F_x)+dxx(F_y))+A12*dxy (u)+A22*dyy(v)+A26*(dyy(u)+dxy(v))+B1l2*dxy(F_x)+B22
*dyy (F_y)+B26* (dyy(F_x)+dxy(F_y))=0

W:
Ks*A45* (dx(F_y)+dxy (w))+Ks*A55% (dx(F_x)+dxx(w))+Ks*A44* (dy (F_y)+dyy (w))+Ks*
A45* (dy (F_x)+dxy(w))=-p

F_x:

B1ll*dxx(u)+B12*dxy(v)+B16* (dxy(u)+dxx(v))+D11*dxx(F_x)+D12*dxy(F_y)+D16*(dx
y(F_x)+dxx(F_y))+B16*dxy(u)+B26*dyy(v)+B66*(dyy(u)+dxy(v))+D16*dxy(F_x)+D26
*dyy (F_y)+D66* (dyy (F_x)+dxy (F_y))=Ks*A45*(F_y+dy(w) )+Ks*A55* (F_x+dx(w))

F_y:

B16*dxx(u)+B26*dxy(v)+B66* (dxy(u)+dxx(v))+D16*dxx(F_x)+D26*dxy(F_y)+D66* (dx
Yy (F_x)+dxx(F_y))+B12*dxy(u)+B22*dyy(v)+B26*(dyy(u)+dxy(v))+D12*dxy(F_x)+D22
*dyy (F_y)+D26* (dyy (F_x)+dxy (F_y) )=Ks*Ad4* (F_y+dy(w) ) +Ks*A45* (F_x+dx(w))

BOUNDARIES
region 1

{--------- X--oommmm-- } start (0,0) {---------- X--ooomoo- }

value(F_x_x)=0
natural(F_y y)=0
natural(w)=0
value(wyy)=0
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natural(wxx)=0
natural(u)=0
value(v)=0

{--------- Yoommoomoo - } line to (L1,0) {---------- AELTEEETEE }

value(F_x_x)=0
value(F_y y)=0
value(w)=0
natural(wyy)=0
value(wxx)=0
natural(u)=0
natural(v)=0

{--------- Xemmmmmmm o - } line to (L1,L2) {--------- Xemmmmmmm o= }

value(F_x_x)=0
natural(F_y_y)=0
natural(w)=0
value(wyy)=0
natural(wxx)=0
natural(u)=0
value(v)=0

{---------- Yooommo oo } line to (@,L2) {---------- Yoo oo }

value(F_x_x)=0
value(F_y_y)=0
value(w)=0
natural(wyy)=0
value(wxx)=0
natural(u)=0
natural(v)=0

line to close

PLOTS
contour(w) { show deformed grid as solution progresses }
surface(w)
elevation(w) from (@,L2/2) to (L1/2,L2/2)
elevation(w) from (L1/2,0) to (L1/2,L2)
END

13.9 Numerical FlexPDE script — SOSDT

TITLE 'Bending - 3 LAYERS-SOSDT'

SELECT

ngrid=31 { increase initial gridding }

cubic { Use Cubic Basis }

errlim = le-4 { increase accuracy to resolve stresses }
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Ipainted { paint all contour plots }

ICHANGELIM = 0.1
ISTAGES = 36
lautostage = on
IPREFER_STABILITY=0n
INONLINEAR=0OFf

VARIABLES

VU TN T C© =
NEFENPR

IMx
IMy
INx
INy

DEFINITIONS { parameter definitions }
layer_ 1 w = 30

layer_2_ w = 12

layer_3_w = 12

layerll=12

layerl2= layer_1 w

layer21=12

layer22=layer_2_w

layer31=12

layer32=layer 3 w

abs_w_1=(layerill-layeril2)
abs_w_2=(layer2l-layer22)
abs_w_3=(layer31l-layer32)

I Layer 1  C22

E 11 1 wl2 = 11*109

E 22 1 wl2 = 0.37*%10%9
G_12_1 wl2 = 0.69*10"9
G 131 wl2 = G_12_1 wi2

G 23 1 wl2 = G_12_1 wil2

E_11 1 = E_11_1 wl2*(1+0.02*%(12-layer_1_w))

E 22 1 = E_22 1 wl2*(1+0.02*(12-1layer_1 w))
G 12 1 = G_12 1 wl2*(1+0.02*(12-layer_1 w))
G_13_1 = G_13_1 wl12*(1+0.02*(12-layer_1_w))
G_23_1 = G_23_1 wl2*(1+0.02*(12-layer_1_w))
v12_1=0.2

v21 1 = (E_22 1/E_11_1)*v12_ 1

rho_1 = 420

rho@_1=rho_1/1000
g 1l=rho_1%*9.81

Q11 1 = E_11_1 / (1-v12_1*v21_1)
Q12 1 = (v12. 1 * E 22 1) / (1-v12 1*v21 1)

{°c}
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Ql6 1 = 0
Q26 1 =0
Q2.1 =E
Q66 1 =G
G
G

Q44 1
Q55 1

! Layer 2

E 11 2 wl2
E_22 2 wl2
G_12_2 wil2
G_13_2 wil2
G_23_2 wil2

E 11 2 = E_

m
N
N
N
1}

E
=G
=G
=G

a9 N
NP
w W N
NN
oo

v12_2
v21_ 2

Q.
(E

rho_2 = 42
rho@_2=rho
g_2=rho_2%*

Q11 2
Q12 2
Q16_2
Q26_2
Q22 2
Q66_2
Q44 2

(v
0
0

! Layer 3

E_11_3_wl2
E_22 3 wi2
G_12_3 wi2
G_13_3 wil2
G_23_3 wil2

E 11 3 = E_
_22 3 wl2*(140.02*(12-layer_3_w))
12 3 wl2*(140.02*(12-layer_3_w))
133 w12*(1+0.02*(12-layer 3 w))
23 3 w12*(1+0.02*(12-layer 3 w))

m

N

N

w
|

= E
=G
G
=G

[l M)
N R R
w W N
ww w
oo

vl2_3
v21_3

Q.
(E

rho_3 = 42
rho@_3=rho
g 3=rho_3*

E_

E_
G_
G_
Q55_2 = G_

/ (1-v12_1*v21_1)

c22

11*10°9

0.37*%10"9
0.69*%10"9
G_12_2 wl2
= G 12 2 wl2

11 2 wl2*(1+0.02*(12-layer_2 w))

22 2 wl2*(1+0.02*(12-1layer_2 w))
12 2 wl2*(140.02*(12-layer_2_w))
13 2 wl2*(140.02*(12-layer_2_w))
23 2 wl2*(1+0.02*(12-layer_2 w))

2

22 2/E_11_2)*v12 2

0

_2/1000

9.81

11 2 / (1-v12_2*v21 2)
12_2 * E_22_2) / (1-v12_2%*v21_2)

22 2 / (1-v12_2*v21 2)
12 2
23 2
13 2

Cc22

11*1079

0.37*%10"9
0.69*%109
G_12_3 wil2
= G_12_3 wl2

11_3 wil2*(1+0.02*(12-layer_3_w))

2

22 3/E_11_3)*v12_3

0

3/1000

9.81
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Q11_3 = E_11_3 / (1-v12_3*v21_3)

Q12_3 = (v12_3 * E_22 3) / (1-v12_3*v21_3)
Q16 3 = 0

Q26_3 = 0

Q22_3 = E_22 3 / (1-v12_3*v21_3)

Q66_3 = G_12_3

Q44 3 = G_23_3

Q55 3 = G_13_3

! LAMINAE LAYERS, GEOMETRY
hi = 0.03

h2 = 0.03
h3 = 0.03
h=hl + h2 + h3

-
=
Il
=
Ui

L2=0.3

p= - 12000 {N.m-2}

ml=1! cos(30 degrees) 11 lcos(40 degrees) !cos(al degrees)

nl=0! sin(30 degrees) 10 1sin(40 degrees) !sin(al degrees)

m2=0! cos(55 degrees) 10 lcos (20 degrees)!cos(a2 degrees)

n2=1! sin(55 degrees) 11 !sin(20 degrees) Isin(a2 degrees)
m3=1! cos(83 degrees) 11 !cos(55 degrees) !cos(a3 degrees)

n3=0 !sin(83 degrees) 10 !sin(55 degrees) !sin(a3 degrees)
Q 11 1 = Q11_1*ml1~4+2*(Q12_1+2*Q66_1)*m1r2*n1~2+Q22_1*nl’4

Q 12 1 = (Q11_1+Q22_1-4*Q66_1)*m1~2*n172+Q12_1*(m1~4+nl1”r4)

Q 22 1 = Q11_1*n174+2*(Q12_1+2*Q66_1)*m1r2*n172+Q22_1*ml 4

Q 16_1 = (Q11_1-Q12_1-2*Q66_1)*(m1)*3*n1+(Q12_1-Q22 1+2*Q66_1)*m1*(n1)~3
Q26 1 = (Q11_1-Q12 1-2*Q66_1)*n1~3*m1+(Q12_1-Q22 1+2*Q66_1)*n1*m1~3
Q 66 1 = (Q11 1+Q22_1-2%Q12_1-2*Q66_1)*m172*n172+Q66_1*(ml 4+n1”4)

Q 44 1 = Q44 1*m172+Q55_1*n1~2

Q 45 1 = (Q55_1-Q44 1)*nl*ml

Q 55 1 = Q55_1*m172+Q44_1*n1~2

Q 11 2 = Q11 _2*m274+2*(Q12_2+2*Q66_2)*m2/2*n2/2+Q22_2*n2~4

Q 12 2 = (Q11_2+Q22_2-4*Q66_2)*m2~2*n272+Q12_2*(m274+n2~4)

Q 22 2 = Q11 _2*n274+2*(Q12_2+2*Q66_2)*m2/2*n2/2+Q22_2*m2 4

Q 16_2 = (Q11_2-Q12_2-2*Q66_2)*m2~3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2~3
Q 26 _2 = (Q11_2-Q12_2-2*Q66_2)*n2~3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2/3
Q 66 2 = (Q11 2+Q22_2-2%Q12_2-2*Q66_2)*m2/2*n2~2+Q66_2*(m2~4+n2"4)

Q 44 2 = Q44 2*m272+Q55_2*n272

Q 45 2 = (Q55_2-Q44 2)*n2*m2

Q_55_2 = Q55_2*m272+Q44_2*n2"2

Q 11 3 = Q11 _3*m374+2*(Q12_3+2*Q66_3)*m3/2*n3/2+022_3*n3~ 4

Q 12 3 = (Q11_3+Q22_3-4*Q66_3)*m3~2*n372+Q12_3*(m3~4+n3"4)

Q 22 3 = Q11_3*n374+2*(Q12_3+2*Q66_3)*m3/2*n3~2+Q22_3*m3~4

Q_16_3 = (Q11_3-Q12_3-2*Q66_3)*m3~3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3~3
Q 26 _3 = (Q11_3-Q12_3-2*Q66_3)*n3~3*m3+(Q12_3-022_3+2*Q66_3)*n3*m3~3
Q 66 _3 = (Q11 3+Q22_3-2*Q12_3-2*Q66_3)*m372*n3/2+Q66_3*(m3~4+n3"4)

Q 44 3 = Q44 3*m372+Q55_3*n372

Q 45 3 = (Q55_3-Q44 3)*n3*m3

Q 55 3 = Q55 3*m372+Q44 3*n3~2

141




A1l = Q 11 1 * ( (h2/2 + h1) - (h2/2)) + Q 112 * (
Q 113 * ( (-h2/2) - (-h2/2 - h3))
A12 = Q 12 1 * ( (h2/2 + h1) - (h2/2)) + Q 122 * (
Q 123 * ( (-h2/2) - (-h2/2 - h3))
A22 = Q 221 * ( (h2/2 + h1) - (h2/2)) + Q222 * (
Q 22 3 * ( (-h2/2) - (-h2/2 - h3))
Al6 = Q 16 1 * ( (h2/2 + h1) - (h2/2)) + Q 16 2 * (
Q 163 * ( (-h2/2) - (-h2/2 - h3))
A26 = Q 26 1 * ( (h2/2 + h1) - (h2/2)) + Q 26 2 * (
Q 263 * ( (-h2/2) - (-h2/2 - h3))
A66 = Q 66_1 * ( (h2/2 + h1) - (h2/2)) + Q 66_2 * (
Q. 663 * ( (-h2/2) - (-h2/2 - h3))

Ad4 = Q_44_1 * ( (h2/2 + h1) - (h2/2)) + Q 44 2 * (
Q44_3 * ( (-h2/2) - (-h2/2 - h3))
A45 = Q_45_1 * ( (h2/2 + hl) - (h2/2)) + Q_45_2 * (
Q453 * ( (-h2/2) - (-h2/2 - h3))
A55 = Q55 1 * ( (h2/2 + hl1) - (h2/2)) + Q_55_2 * (
Q_55_3 * ( (-h2/2) - (-h2/2 - h3))

A=matrix((A11,A12,A16), (A12,A22,A26), (Al6,A26,A66))

B11 = 1/2 *(Q 111 * ( (h2/2 + h1)*2 - (h2/2)~2) + Q 11 2

h2/2)72) + Q 113 * ( (-h2/2)*2 - (-h2/2 - h3)A2))

B12 = 1/2 *(Q 121 * ( (h2/2 + h1)"2 - (h2/2)"2) + Q 12 2

h2/2)72) + Q 12 3 * ( (-h2/2)*2 - (-h2/2 - h3)"2))

B22 = 1/2 *(Q 221 * ( (h2/2 + h1)*2 - (h2/2)"2) + Q 222

h2/2)72) + Q 22 3 * ( (-h2/2)*2 - (-h2/2 - h3)"2))

B16 = 1/2 *(Q_16_1 * ( (h2/2 + h1)"~2 - (h2/2)"2) + Q_16_2

h2/2)"2) + Q_16_3 * ( (-h2/2)*2 - (-h2/2 - h3)A2))

B26 = 1/2 *(Q 26_1 * ( (h2/2 + h1)*2 - (h2/2)"2) + Q_26_2

h2/2)72) + Q_ 26_3 * ( (-h2/2)"2 - (-h2/2 - h3)"2))

B66 = 1/2 *(Q 66 _1 * ( (h2/2 + h1)"~2 - (h2/2)"2) + Q_66_2

h2/2)"2) + Q 66_3 * ( (-h2/2)72 - (-h2/2 - h3)A2))

B44 = 1/2 *(Q 44 1 * ( (h2/2 + h1)*2 - (h2/2)72) + Q 44 2

h2/2)72) + Q 44 3 * ( (-h2/2)"2 - (-h2/2 - h3)"2))

B45 = 1/2 *(Q 45 1 * ( (h2/2 + h1)"~2 - (h2/2)"2) + Q_45 2

h2/2)"2) + Q453 * ( (-h2/2)72 - (-h2/2 - h3)A2))

B55 = 1/2 *(Q 55 1 * ( (h2/2 + h1)*2 - (h2/2)*2) + Q_55_2

h2/2)~2) + Q 55 3 * ( (-h2/2)*2 - (-h2/2 - h3)"2))
B=matrix((A11,A12,A16), (A12,A22,A26), (A16,A26,A66))

D11 = 1/3 *( Q 11 1
(-h2/2)73) + Q_11_3
D12 = 1/3 *( Q 12 1
(-h2/2)73) + Q_12_3
D22 = 1/3 *( Q_22_1
(-h2/2)"3) + Q_22_3

*(
* ((-h2/2)73 - (-h2/2 - h3)73))
*(
*(
*(
*(
D16 = 1/3 *( Q_16_1 * (
*(
*(
*(
*(
* (

(-h2/2)"3 - (-h2/2 - h3)"3))
(-h2/2)"3 - (-h2/2 - h3)"3))

(-h2/2)73) + Q_16_3
D26 = 1/3 *( Q 26_1
(-h2/2)73) + Q_26_3
D66 = 1/3 *( Q_66_1
(-h2/2)"3) + Q 66_3

(-h2/2)*3 - (-h2/2 - h3)"3))
(-h2/2)*3 - (-h2/2 - h3)"3))

(-h2/2)3 - (-h2/2 - h3)"3))

(h2/2)
(h2/2)
(h2/2)
(h2/2)
(h2/2)

(h2/2)

(h2/2)
(h2/2)

(h2/2)

(h2/2 + h1)~3 - (h2/2)73) + Q_11_2
(h2/2 + h1)~3 - (h2/2)73) + Q_12_2
(h2/2 + h1)*3 - (h2/2)"3) + Q222
(h2/2 + h1)~3 - (h2/2)73) + Q_16_2
(h2/2 + h1)~3 - (h2/2)"3) + Q_26_2

(h2/2 + h1)73 - (h2/2)73) + Q_66_2

*

*

*

*

*

*

(-h2/2))+
(-h2/2))+
(-h2/2))+
(-h2/2))+
(-h2/2))+

(-h2/2))+

(-h2/2))+
(-h2/2))+

(-h2/2))+

(h2/2)~2
(h2/2)72
(h2/2)~2
(h2/2)72
(h2/2)~2

(h2/2)~2

(h2/2)2
(h2/2)72

(h2/2)2

( (h2/2)"3
( (h2/2)"3
( (h2/2)"3
( (h2/2)"3
( (h2/2)3

( (h2/2)73
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D44 = 1/3 *( Q44 1 *
(-h2/2)73) + Q 44 3 *
D45 = 1/3 *( Q 45 1 *
(-h2/2)73) + Q 45 3 *
D55 = 1/3 *( Q55 1 *
(-h2/2)73) + Q 55 3 *

(
(
(
(
(
(

(h2/2 + h1)*3 - (h2/2)73) + Q_44 2
(-h2/2)~3 - (-h2/2 - h3)73))
(h2/2 + h1)*3 - (h2/2)73) + Q_45 2
(-h2/2)~3 - (-h2/2 - h3)73))
(h2/2 + h1)73 - (h2/2)~3) + Q_55 2
(-h2/2)~3 - (-h2/2 - h3)73))

D=matrix((B11,B12,B16), (B12,B22,B26), (B16,B26,B66))

E11 = 1/4 *( Q_11_1 *
(-h2/2)74) + Q 11 3 *
E12 = 1/4* ( Q 12 1 *
(-h2/2)74) + Q 123 *
E22 = 1/4* ( Q 221 *
(-h2/2)74) + Q 223 *
El16 = 1/4* ( Q_16_1 *
(-h2/2)74) + Q_16_3 *
E26 = 1/4* ( Q 26 1 *
(-h2/2)74) + Q_26_3 *
E66 = 1/4* ( Q_66_ 1 *
(-h2/2)74) + Q_66_3 *
E44 = 1/4* ( Q 44 1 *
(-h2/2)74) + Q 44 3 *
E45 = 1/4* ( Q_45_1 *
(-h2/2)74) + Q 45 3 *
E55 = 1/4* ( Q55 1 *
(-h2/2)74) + Q 55 3 *

AN AN AN A AN A A AN AN A

(h2/2 + h1)*4 - (h2/2)74) + Q_11 2
(-h2/2)*4 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q 12 2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q 22 2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_16_2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_26_2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)*4) + Q_66_2
(-h2/2)74 - (-h2/2 - h3)74))

(h2/2 + h1)*4 - (h2/2)"4) + Q 44 2
(-h2/2)24 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)"4) + Q_45_2
(-h2/2)24 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)"4) + Q_55_2
(-h2/2)24 - (-h2/2 - h3)74))

E=matrix((E11,E12,E16), (E12,E22,E26), (E16,E26,E66))

F11 = 1/5% ( Q_11_1 *
(-h2/2)75) + Q_11_3 *
F12 = 1/5% ( Q 12 1 *
(-h2/2)75) + Q_12_3 *
F22 = 1/5% ( Q22 1 *
(-h2/2)75) + Q 223 *
F16 = 1/5* ( Q_16_1 *
(-h2/2)75) + Q_16_3 *
F26 = 1/5* ( Q_26_1 *
(-h2/2)75) + Q_26_3 *
F66 = 1/5* ( Q_66_1 *
(-h2/2)75) + Q_66_3 *
F44 = 1/5* ( Q 44 1 *
(-h2/2)75) + Q 44 3 *
F45 = 1/5% ( Q_45_1 *
(-h2/2)75) + Q_45_3 *
F55 = 1/5% ( Q 55 1 *
(-h2/2)75) + Q 55 3 *

AN AN AN A A AN AN AN A

AN AN AN A A A

(h2/2 + h1)~5 - (h2/2)~5) + Q 11 2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)A5 - (h2/2)"5) + Q_12_2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)~5) + Q 22 2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)"5) + Q_16_2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)~5) + Q_26_2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)"5) + Q_66_2
(-h2/2)75 - (-h2/2 - h3)75))

(h2/2 + h1)~5 - (h2/2)75) + Q_44 2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)75) + Q_45 2
(-h2/2)"5 - (-h2/2 - h3)%5))
(h2/2 + h1)~5 - (h2/2)75) + Q_55_2
(-h2/2)75 - (-h2/2 - h3)75))

(h2/2)"3
(h2/2)"3

(h2/2)"3

(h2/2)74
(h2/2)*4
(h2/2)*4
(h2/2)"4
(h2/2)"4

(h2/2)"4

(h2/2)4
(h2/2)4

(h2/2)~4

(h2/2)"5
(h2/2)75
(h2/2)"5
(h2/2)75
(h2/2)"5

(h2/2)"5

(h2/2)75
(h2/2)75

(h2/2)"5

F=matrix((F11,F12,F16,0,0),(F12,F22,F26,0,0), (F16,F26,F66,0,0))

IMOISTURE STRAINS
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KaT_1=(2/3)*rho0_1
KaR_1=(1/30)*rho0_1
KalL_1=(1/30)*rho@_1
KaT_2=(2/3)*rhoe_2
KaR_2=(1/30)*rhoo_2
KalL_2=(1/30)*rho@_2
KaT_3=(2/3)*rho@_3
KaR_3=(1/30)*rho@_3
KaL_3=(1/30)*rhoo_3

ewll 1=(KalL_1*(abs_w_1))/100
ew22_1=(KaR_1*(abs_w_1))/100
ewll 2=(KalL_2*(abs_w_2))/100
ew22_2=(KaR_2*(abs_w_2))/100
ewll 3=(KalL_3*(abs_w_3))/100
ew22_ 3=(KaR_3*(abs_w_3))/100

ex=dx(u)

ey=dy(u)
exy=dx(v)+dy(u)
kx=dx(F_1)
ky=dy(P_1)
kxy=dx(P_1)+dy(F_1)
kkx=dx(F_2)
kky=dy(P_2)
kkxy=dx(P_2)+dy(F_2)
eyz=P_1+dy(w)
exz=F_1+dx(w)
eeyz=2*P_2
eexz=2*F_2

{1. TOP

el 1 top = ex + (h1+h2/2)*kx+((h1+h2/2)"2)*kkx + ewll 1
e2_1 top = ey + (h1+h2/2)*ky+((h1+h2/2)"2)*kky + ew22_1
e6_1 top = exy + (h1+h2/2)*kxy + ((h1+h2/2)72)*kkxy
e4 1 top = eyz + (hl+h2/2)*eeyz

e5 1 top = exz + (hl+h2/2)*eexz

Sigmal_1_top = Q_11_1*el_1_top + Q_12_1%*e2_1 top + Q_16_1*e6_1_top
Sigma2_1_top = Q_12_1*el_1_top + Q_22_1%e2_1 top + Q_26_1*e6_1_top
Sigma6_1 top = Q_16_1*el 1 top + Q_26_1*e2 1 top + Q_66_1*e6_1 top
Sigma4_1 top =+ Q_44 1*e4 1 top + Q_45 1*e5_1 top
Sigma5_1 top =+ Q_45_1*e4 1 top + Q_55_1*e5_1 top

{1. mID

el 1 mid = ex + (h1/2+h2/2)*kx+((h1/2+h2/2)"2)*kkx + ewll 1
e2_1 mid = ey + (h1/2+h2/2)*ky+((h1/2+h2/2)"2)*kky + ew22_1
e6_1 mid = exy + (h1/2+h2/2)*kxy + ((h1/2+h2/2)"2)*kkxy
e4 1 mid = eyz + (h1/2+h2/2)*eeyz

e5 1 mid = exz + (h1/2+h2/2)*eexz

Sigmal_1 mid = Q_11 1*el 1 mid + Q_12_1*e2_1 mid + Q_16_1*e6_1 mid
Sigma2_ 1 mid = Q 12 1*el 1 mid + Q 22 1*e2 1 mid + Q_26_1*e6 1 mid
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Sigma6_1 mid = Q_16_1*el 1 mid + Q_26_1*e2 1 mid + Q _66_1*e6_1 mid
Sigma4_1 mid = + Q_44_1*e4_1 mid + Q_45_1*e5_1 mid

Sigma5_1 mid = + Q_45_1*e4_1 mid + Q_55_1*e5_1 mid

{1. BOT

el 1 bot = ex + (h2/2)*kx+((h2/2)72)*kkx + ewll 1

e2_1 bot = ey + (h2/2)*ky+((h2/2)*2)*kky + ew22_1

e6_1 bot = exy + (h2/2)*kxy + ((h2/2)72)*kkxy

e4_1 bot = eyz + (h2/2)*eeyz

e5 1 bot = exz + (h2/2)*eexz

Sigmal_1 bot = Q 11 1*el 1 bot + Q_12_1*e2_1 bot + Q_16_1*e6_1 bot
Sigma2_1 bot = Q 12 1*el 1 bot + Q_22_1*e2_1 bot + Q_26_1*e6_1 bot
Sigma6_1 bot = Q_16_1*el 1 bot + Q_26_1*e2_1 bot + Q _66_1*e6_1 bot
Sigma4_1 bot = + Q_44 1*e4_1 bot + Q_45_1*e5_1 bot

Sigma5_1 bot = + Q_45 _1*e4_1 bot + Q_55_1*e5_1 bot

{2. TOP

el 2 top = ex + (h2/2)*kx+((h2/2)*2)*kkx + ewll 2

e2 2 top = ey + (h2/2)*ky+((h2/2)"2)*kky + ew22_2

e6_2 top = exy + (h2/2)*kxy + ((h2/2)72)*kkxy

e4_2 top = eyz + (h2/2)*eeyz

e5 2 top = exz + (h2/2)*eexz

Sigmal_2_top = Q_11_2*el_2_top + Q_12_2%*e2_2 top + Q_16_2*e6_2_top
Sigma2_2_top = Q_12_2*el_2_top + Q_22_2%e2_2 top + Q_26_2%e6_2_top
Sigma6_2 top = Q_16 2*el 2 top + Q_26_2*e2 2 top + Q_66_2*e6_2_ top
Sigmad_2 top = + Q_44 2*e4 2 top + Q_45_2*e5 2 top

Sigma5_2 top = + Q_45_2*e4_2 top + Q_55_2*e5 2 top

{2.MID

el 2 MID = ex + (0)*kx+((0)*2)*kkx + ewll 2

e2_2 MID = ey + (@)*ky+((0)"2)*kky + ew22_2

e6_2 MID = exy + (@)*kxy + ((0)"2)*kkxy

e4 2 MID = eyz + (0)*eeyz

e5 2 MID = exz + (0)*eexz

Sigmal 2 MID = Q 11 2*el 2 MID + Q 12 _2%*e2 2 MID + Q_16_2*e6_2 MID
Sigma2_2 MID = Q 12 2*el 2 MID + Q 22 2*e2 2 MID + Q 26 2*e6_2 MID
Sigma6_2 MID = Q 16 _2*el 2 MID + Q 26 _2*e2 2 MID + Q_66_2*e6_2 MID
Sigma4_2 MID = + Q 44 2*e4 2 MID + Q_45_2*e5 2 MID

Sigma5_2 MID = + Q_45 2*e4 2 MID + Q_55_2*e5_2 MID

{2. BOT

el 2 bot = ex + (-h2/2)*kx+((-h2/2)"2)*kkx + ewll 2

e2_2 bot = ey + (-h2/2)*ky+((-h2/2)"2)*kky + ew22_2

e6_2 bot = exy + (-h2/2)*kxy + ((-h2/2)"2)*kkxy

e4 2 bot = eyz + (-h2/2)*eeyz

e5 2 bot = exz + (-h2/2)*eexz
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Sigmal_2_bot
Sigma2_2_ bot
Sigma6_2_ bot
Sigma4_2_bot
Sigma5_2_ bot

Q 11 2*el 2 bot + Q_12_2*e2_2 bot + Q_16_2*e6_2_ bot
Q 12 2*el 2 bot + Q_22_2*e2_2 bot + Q_26_2*e6_2_bot
Q_16_2*el 2 bot + Q_26_2*e2_2 bot + Q_66_2*e6_2_ bot
+ Q_44 2*ed4 2 bot + Q_45 2*e5 2 bot
+ Q_45 2*ed4 2 bot + Q_55 2*e5 2 bot

{3. TOP

el 3 top = ex + (-h2/2)*kx+((-h2/2)"2)*kkx + ewll 3

e2_3 top = ey + (-h2/2)*ky+((-h2/2)"2)*kky + ew22_3

e6_3_top = exy + (-h2/2)*kxy + ((-h2/2)"2)*kkxy

e4 3 top = eyz + (-h2/2)*eeyz

e5 3 top = exz + (-h2/2)*eexz

Sigmal 3 top = Q_11 3*el 3 top + Q_12 3*e2 3 top + Q_16_3*e6_3 top
Sigma2_3 top = Q_12 3*el 3 top + Q_22 3*e2_3 top + Q_26_3*e6_3_top
Sigma6_3 top = Q_16_3*el 3 top + Q_26_3*e2 3 top + Q_66_3*e6_3 top
Sigmad_3_top = + Q_44_3*ed4_3 top + Q_45_3*e5 3 top

Sigma5_3 top = + Q_45 3*e4_3 top + Q_55_3*e5_3 top

{3. MID

el 3 mid = ex + (-h3/2-h2/2)*kx+((-h3/2-h2/2)"2)*kkx + ewll 3
e2 3 mid = ey + (-h3/2-h2/2)*ky+((-h3/2-h2/2)"2)*kky + ew22_3

e6_3 mid = exy + (-h3/2-h2/2)*kxy + ((-h3/2-h2/2)"2)*kkxy

e4_3 mid = eyz + (-h3/2-h2/2)*eeyz

e5_ 3 mid = exz + (-h3/2-h2/2)*eexz

Sigmal 3 mid = Q_11 3*el 3 mid + Q_12 3*e2_3 mid + Q_16_3*e6_3 mid
Sigma2_3 mid = Q_12 3*el 3 mid + Q_22 3*e2_3 mid + Q_26_3*e6_3 mid
Sigma6_3 mid = Q_16_3*el 3 mid + Q_26_3*e2 3 mid + Q_66_3*e6_3 mid
Sigma4_3 mid = + Q_44_3*e4_3 _mid + Q_45_3*e5_3 mid

Sigma5_3 mid = + Q_45_3*e4_3 mid + Q_55_3*e5_3 mid

{3. BOT

el 3 bot = ex + (-h2/2-h3)*kx+((-h2/2-h3)"2)*kkx + ewll 3

e2 3 bot = ey + (-h2/2-h3)*ky+((-h2/2-h3)"2)*kky + ew22_3

e6_3 bot = exy + (-h2/2-h3)*kxy + ((-h2/2-h3)"2)*kkxy

e4_3 bot = eyz + (-h2/2-h3)*eeyz

e5 3 bot = exz + (-h2/2-h3)*eexz

Sigmal_ 3 bot
Sigma2_3 bot
Sigma6_3_bot
Sigmad4_3_bot
Sigma5_3_bot

INITIAL VALUES

Q 11 3*el 3 bot + Q_12_3*e2_3 bot + Q_16_3*e6_3_bot
Q 12 3*el 3 bot + Q_22 3*e2_3 bot + Q_26_3*e6_3 bot
Q_16_3*el_3_bot + Q_26_3*e2_3_bot + Q_66_3*e6_3_bot
+ Q_44 3*e4_3 bot + Q_45_3*e5_3 bot
+ Q_45_3*e4_3 bot + Q_55_3*e5_3 bot
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EQUATIONS

W:
A45*(dx(P_1)+dxy(w))+A55* (dx(F_1)+dxx(w))+B45*dx(2*P_2)+B55*dx (2*F_2)
+A44* (dy (P_1)+dyy(w) )+A45*(dy(F_1)+dxy(w))+B44*dy (2*P_2)+B45*dy(2*F_2)= -p

A55*dx (F_1)+A55*dxx(w)+2*B55*dx (F_2)+A44*dy (P_1)+A44*dyy(w)+2*B44*dy(P_2) +
p=0

u:
A11*dxx(u)+A12*dxy (v)+A16* (dxy(u)+dxx(v))+B11l*dxx(F_1)+B12*dxy(P_1)+B16*(dx
y(F_1)+dxx(P_1))+D11*dxx(F_2)+D12*dxy(P_2)+D16* (dxy(F_2)+dxx(P_2))+A16*dxy(
u)+A26*dyy (v)+A66* (dyy(u)+dxy(v))+Bl6e*dxy(F_1)+B26*dyy(P_1)+B66*(dyy(F_1)+d
xy(P_1))+D16*dxy(F_2)+D26*dyy(P_2)+D66*(dyy(F_2)+dxy(P_2)) = ©

Vi
Al16*dxx(u)+A26*dxy (v)+A66* (dxy(u)+dxx(v))+Ble*dxx(F_1)+B26*dxy(P_1)+B66*(dx
y(F_1)+dxx(P_1))+D16*dxx(F_2)+D26*dxy(P_2)+D66* (dxy (F_2)+dxx(P_2))+A12*dxy(
u)+A22*dyy(v)+A26* (dyy(u)+dxy(v))+B1l2*dxy(F_1)+B22*dyy(P_1)+B26*(dyy(F_1)+d
xy(P_1))+D12*dxy(F_2)+D22*dyy(P_2)+D26*(dyy(F_2)+dxy(P_2)) = @

F 1:

B1ll*dxx(u)+B1l2*dxy(v)+B16* (dxy(u)+dxx(v))+D11*dxx(F_1)+D12*dxy(P_1)+D16*(dx
y(F_1)+dxx(P_1))+E11*dxx(F_2)+E12*dxy(P_2)+E16* (dxy(F_2)+dxx(P_2))+Bl6*dxy(
u)+B26*dyy(v)+B66*(dyy(u)+dxy(v))+D16*dxy(F_1)+D26*dyy(P_1)+D66* (dyy(F_1)+d
xy(P_1))+El6*dxy(F_2)+E26*dyy(P_2)+E66* (dyy(F_2)+dxy(P_2))-
(A45*(P_1+dy(w) )+A55* (F_1+dx(w) )+B45*2*P_24+4B55*2*F_2)= @

F_2:

B16*dxx(u)+B26*dxy(v)+B66* (dxy(u)+dxx(v))+D16*dxx(F_1)+D26*dxy(P_1)+D66* (dx
y(F_1)+dxx(P_1))+E16*dxx(F_2)+E26*dxy(P_2)+E66* (dxy(F_2)+dxx(P_2))+B12*dxy(
u)+B22*dyy(v)+B26*(dyy(u)+dxy(v))+D12*dxy(F_1)+D22*dyy(P_1)+D26*(dyy(F_1)+d
xy(P_1))+E12*dxy(F_2)+E22*dyy(P_2)+E26*(dyy(F_2)+dxy(P_2)) -

(A44* (P_1+dy(w))+A45* (F_1+dx(w))+B44*2*P 24BA5*2*F 2)= @

P 1:

D11*dxx(u)+D12*dxy(v)+D16* (dxy(u)+dxx(v))+E11*dxx(F_1)+E12*dxy(P_1)+E16*(dx
y(F_1)+dxx(P_1))+F11*dxx(F_2)+F12*dxy(P_2)+F16*(dxy(F_2)+dxx(P_2))+D16*dxy(
u)+D26*dyy(v)+D66* (dyy(u)+dxy(v))+E16*dxy(F_1)+E26*dyy(P_1)+E66*(dyy(F_1)+d
xy(P_1))+Fl6*dxy(F_2)+F26*dyy(P_2)+F66* (dyy(F_2)+dxy(P_2))-

(B45*(P_1+dy(w) )+B55*(F_1+dx(w) )+D45*2*P_24+D55*2*F_2)= @

P_2:

D16*dxx(u)+D26*dxy (v)+D66* (dxy(u)+dxx(v))+E16*dxx(F_1)+E26*dxy(P_1)+E66*(dx
y(F_1)+dxx(P_1))+F16*dxx(F_2)+F26*dxy (P_2)+F66* (dxy(F_2)+dxx(P_2))+D12*dxy (
u)+D22*dyy (v)+D26*(dyy(u)+dxy(v))+E12*dxy(F_1)+E22*dyy(P_1)+E26* (dyy(F_1)+d
xy(P_1))+F12*dxy(F_2)+F22*dyy(P_2)+F26*(dyy(F_2)+dxy(P_2))-
(B44*(P_1+dy(w))+B45*(F_1+dx (w) )+D44*2*P_2+D45*2*F 2)= 0

BOUNDARIES
region 1

start (0,0)
natural(v)=0
natural(w)=0
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natural(P_1)=0
natural(P_2)=0
natural(u)=0

natural(F_1)=0
natural(F_2)=0

line to (L1,0)

natural(v)=0
value(w)=0
natural(P_1)=0
value(P_2)=0
natural(u)=0
natural(F_1)=0
natural(F_2)=0

line to (L1,L2)
natural(v)=0
natural(w)=0
natural(P_1)=0
natural(P_2)=0
natural(u)=0
natural(F_1)=0
natural(F_2)=0

line to (0,L2)

natural(v)=0
value(w)=0
natural(P_1)=0
value(P_2)=0
natural(u)=0
natural(F_1)=0
natural(F_2)=0

line to close

PLOTS
contour(w) { show deformed grid as solution progresses }
surface(w)
elevation(w) from (0,L2/2) to (L1,L2/2)
elevation(w) from (L1/2,0) to (L1/2,L2)

END

13.10 Numerical FlexPDE script — TOSDT

TITLE 'Bending - 3 LAYERS - TOSDT'

SELECT

ngrid=31 { increase initial gridding }

cubic { Use Cubic Basis }

errlim = le-4 { increase accuracy to resolve stresses }
painted { paint all contour plots }

ICHANGELIM = 0.1
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ISTAGES = 36
lautostage = on
IPREFER_STABILITY=0n
INONLINEAR=OfF

VARIABLES

I |
X <

I—I—'U'Ul'n-n<ci
X < X

|
<

DEFINITIONS { parameter definitions }

layer_1_w = 30

layer_2_ w = 12

layer 3 w = 12

layerll=12 {°C}
layerl2= layer_1 w

layer21=12

layer22=layer_2_w

layer31=12

layer32=layer 3 w

abs_w_1=(layerill-layeril2)
abs_w_2=(layer21-layer22)
abs_w_3=(layer31l-layer32)

! Layer 1  C22

E 11 1 wl2 = 11*1079

E 22 1 wl2 = 0.37*%10%9
G_12_1 wl2 = 0.69*10"9
G 131 wl2 = G_12_1 wi2
G 23 1 wl2 = G_12_1 wl2

E_11 1 = E_11_1 wl12*(140.02*(12-layer_1_w))

E 221 = E:22_1_w12*(1+0.02*(12—1ayer_1_w))
G 12 1 = G_12 1 wl2*(1+0.02*(12-layer_1 w))
G_13 1 = G_13_1 wl2*(1+0.02*(12-layer_1 w))
G_ 23 1 = G_23_1 wl2*(1+0.02*(12-1layer_1 w))
v12_1=0.2

v21_1 = (E_22_1/E_11_1)*vi12_1

rho_1 = 420
rho@_1=rho_1/1000
g 1l=rho_1%*9.81

Q111 = E_11_1 / (1-vi2_1*v21_ 1)

Q12_1 = (v12_1 * E_22 1) / (1-v12_1*v21_1)
Q16_1 = ©

Q26_1 = 0

Q22_1 = E_22.1 / (1-v12_1%*v21_1)

Q66 1 = G 12 1

Q44 1 = G 23 1

149




Q55 1

G 13 1

! Layer 2 c22
E_11 2 wl2 = 11*10"9

E_22 2 wl2
G_12_2 wil2
G_13_2 wil2

0.37*%10"9
0.69*%10"9
G_12_2 wil2

G 23 2 wl2 = G_12 2 wi2
= E_11_2 wl2*(1+0.02*(12-layer 2 w))

E 11 2
E 222
G 12 2
G 13 2
G 23 2

vi2_2
v21_2

rho_2

0.2
(E_22_2/E_11_2)*v12 2

420

rho@_2=rho_2/1000
g 2=rho_2%9.81

Q11 2
Q12 2
Q16_2
Q26_2
Q22 2
Q66_2
Q44 2
Q55 _2

E_11 2 / (1-v12_2%v21 2)

E_22 2 wl2*(1+0.02*(12-1layer_2 w))
G_ 12 2 wl2*(1+0.02*(12-layer_2 w))
G_13 2 wl2*(1+0.02*(12-layer 2 _w))
G_23 2 wl2*(1+0.02*(12-layer 2 _w))

(vi2_2 * E_22 2) / (1-v12_2*v21 2)

)
0

E 222 / (1-v12_2*v21_2)
G 122

G 232

G 132

! Layer 3  C22

E_ 11 3 wl2
E_22_ 3 wl2
G_12_3 wil2

11*1079
0.37*10"9
0.69*10"9

G 13 3 wl2 = G_12 3 wi2

G_23 3 wi2

E 11 3
E_22 3
G 12 3
G_13_3
G 23 3

vi2_3
v21_3

rho_3
rhoo_3

G_12_3 wil2

= E_11 3 wl2*(1+0.02*(12-layer_3 w))

0.2
(E_22_3/E_11_3)*v12_ 3

420
rho_3/1000

g 3=rho_3%*9.81

Q11_3
Q12_3
Q16_3
Q26_3
Q223
Q66_3
Q44 3

E_11 3 / (1-v12_3*v21_3)

E_22 3 wl2*(1+0.02*(12-1layer_3 w))
G_ 12 3 wl2*(1+40.02*(12-layer_3 w))
G_13_3 wil2*(1+0.02*(12-layer_3_w))
G_23_3_wl2*(1+0.02*(12-layer_3_w))

(v12_3 * E_22 3) / (1-v12_3*v21_3)

0
0

E_22 3 / (1-v12_3*v21_3)
G 12 3

G 23 3
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Q55 3 = G_13_3

! LAMINAE LAYERS, GEOMETRY

hl = 0.03
h2 = 0.03
h3 = 0.03

h=hl + h2 + h3

L2=0.3
p= -12000  {N.m-2}

ml=1 !cos(al degrees)
nl=0 !sin(al degrees)
m2=0 !cos(a2 degrees)
n2=1 !sin(a2 degrees)
m3=1 !cos(a3 degrees)
n3=0 !sin(a3 degrees)

= Q11_1*m174+2*(Q12_1+2%Q66_1)*m172*n172+4Q22_1*n1”4

= (Q11_1+Q22_1-4*Q66_1)*m1~2*n172+Q12_1*(m1r4+n1r4)

= Q11 _1*n174+2*(Q12_1+2*Q66_1)*m1r2*n172+Q22_1*m1r4

= (Q11_1-Q12_1-2*Q66_1)*(m1)~3*n1+(Q12_1-Q22_1+2*Q66_1)*m1*(n1)~3
(Q11_1-Q12_1-2*Q66_1)*n173*m1+(Q12_1-Q22_1+2*Q66_1)*n1*m1~3

= (Q11_1+Q22_1-2*Q12_1-2*Q66_1)*m1r2*n1°2+Q66_1*(m1~4+n1~4)

= Q44_1*m172+Q55_1*n1A2

= (Q55_1-Q44_1)*n1*ml

= Q55_1*m172+Q44_1*n1A2

RPRRPRRPRRRRPRPR
1l

= Q11_2*m2/4+2*(Q12_2+2*Q66_2)*m2/2%n2/2+Q22_2*n2"4

= (Q11_2+Q22_2-4*Q66_2)*m2/2%n2/2+Q12_2*(m2~4+n2/4)

= Q11_2*n2/4+2*(Q12_2+2*Q66_2)*m2/2%n2/2+Q22_2*m2~4

= (Q11_2-Q12_2-2*Q66_2)*m2~3*n2+(Q12_2-022_2+2*Q66_2)*m2*n2/3
(Q11_2-Q12_2-2*Q66_2)*n2~3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2/3
= (Q11_2+Q22_2-2%Q12_2-2*Q66_2)*m2°2*n2~2+Q66_2* (m274+n2"4)

= Q44_2*m272+Q55_2*n2/2

= (Q55_2-Q44_2)*n2*m2

= Q55_2*m2/2+Q44_2*n2A2

I
(o)} mlm NN R

IS
NNNNNNNNN
1

I 1
mlml

= Q11_3*m374+2%(Q12_3+2*Q66_3)*m3/2*n342+Q22_3*n3"4

= (Q11_3+Q22_3-4*Q66_3)*m3/2*n372+Q12_3*(m3~4+n3/4)

= Q11_3*n374+2*(Q12_3+2*Q66_3)*m342*n342+Q22_3*m3/4

= (Q11_3-Q12_3-2*Q66_3)*m3~3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3~3
(Q11_3-Q12_3-2*Q66_3)*n33*m3+(Q12_3-022_3+2*Q66_3)*n3*m3~3
= (Q11_3+Q22_3-2*Q12_3-2*Q66_3)*m32*n372+Q66_3*(m3~4+n3~4)

= Q44_3*m372+Q55_3*n3A2

= (Q55_3-Q44_3)*n3*m3

= Q55_3*m372+Q44_3*n3A2

I 1
Imlm NN R

i
Wwwwwwwww
I

oo oo ooNoN o) ol rOrOOOIrOrOrOOO © O O O0O0O0O0O0O0
unhDDONRERENRBR unhrpPhDoOONRERENRBR

U'IIU'I

A1l = Q 11 1 * ( (h2/2 + h1) - (h2/2)) + Q112 * ( (h2/2) - (-h2/2))+
Q 11 3 * ( (-h2/2) - (-h2/2 - h3))
A12 = Q121 * ( (h2/2 + h1) - (h2/2)) + Q122 * ( (h2/2) - (-h2/2))+
Q 123 * ( (-h2/2) - (-h2/2 - h3))
A22 = Q 221 * ( (h2/2 + h1) - (h2/2)) + Q222 * ( (h2/2) - (-h2/2))+
Q 22 3 * ( (-h2/2) - (-h2/2 - h3))
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Al6 = Q 16 1 * ( (h2/2 + h1) - (h2/2)) + Q 16 2 * ( (h2/2)

Q 16 3 * ( (-h2/2) - (-h2/2 - h3))
A26
Q 263 * ( (-h2/2) - (-h2/2 - h3))

A66 = Q 66 1 * ( (h2/2 + h1) - (h2/2)) + Q 66 2 * ( (h2/2)

Q.66 3 * ( (-h2/2) - (-h2/2 - h3))

Ad4 = Q 44 1 * ( (h2/2 + h1) - (h2/2)) + Q 44 2 * ( (h2/2)

Q44 3 * ( (-h2/2) - (-h2/2 - h3))

Ad5 = Q 45 1 * ( (h2/2 + h1) - (h2/2)) + Q45 2 * ( (h2/2)

Q 45 3 * ( (-h2/2) - (-h2/2 - h3))
A55
Q 55 3 * ( (-h2/2) - (-h2/2 - h3))

A=matrix((A11l,A12,A16), (A12,A22,A26), (A16,A26,A66))

B11 = 1/2 *(Q_11_1 * ( (h2/2 + h1)"2 - (h2/2)"2) + Q_11 2

h2/2)"2) + Q 113 * ( (-h2/2)*2 - (-h2/2 - h3)A2))

B12 = 1/2 *(Q 12.1 * ( (h2/2 + h1)"2 - (h2/2)2) + Q 12 2

h2/2)72) + Q 12 3 * ( (-h2/2)"2 - (-h2/2 - h3)"2))

B22 = 1/2 *(Q 221 * ( (h2/2 + h1)"2 - (h2/2)"2) + Q 22 2

h2/2)"2) + Q 223 * ( (-h2/2)*2 - (-h2/2 - h3)A2))

B16 = 1/2 *(Q_16_1 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q_16_2

h2/2)72) + Q_16_3 * ( (-h2/2)"2 - (-h2/2 - h3)"2))

B26 = 1/2 *(Q 26_1 * ( (h2/2 + h1)*2 - (h2/2)"2) + Q_26_2

h2/2)"2) + Q 26_3 * ( (-h2/2)*2 - (-h2/2 - h3)A2))

B66 = 1/2 *(Q 66 _1 * ( (h2/2 + h1)~2 - (h2/2)"2) + Q_66_2

h2/2)72) + Q_66_3 * ( (-h2/2)*2 - (-h2/2 - h3)"2))

B44 = 1/2 *(Q 44 1 * ( (h2/2 + h1)*2 - (h2/2)"2) + Q 44 2

h2/2)72) + Q 44 3 * ( (-h2/2)"2 - (-h2/2 - h3)"2))

B45 = 1/2 *(Q 45 1 * ( (h2/2 + h1)"2 - (h2/2)"2) + Q 45 2

h2/2)"2) + Q45 3 * ( (-h2/2)72 - (-h2/2 - h3)A2))

B55 = 1/2 *(Q_55_1 * ( (h2/2 + h1)*2 - (h2/2)~2) + Q_55_2

h2/2)~2) + Q 55 3 * ( (-h2/2)*2 - (-h2/2 - h3)"2))
B=matrix((A11,A12,A16), (A12,A22,A26), (A16,A26,A66))

D11 = 1/3 *( Q 11_1
(-h2/2)73) + Q_11_3
D12 = 1/3 *( Q 12_1
(-h2/2)73) + Q_12_3
D22 = 1/3 *( Q 22_1
(-h2/2)73) + Q_22_3
D16 = 1/3 *( Q_16_1
(-h2/2)73) + Q_16_3
D26 = 1/3 *( Q 26_1

*

* ((-h2/2)"3 - (-h2/2 - h3)73))

*

*

*

*

*

*

*
(-h2/2)"3) + Q 26 _3 *

*

*

*

*

*

k

*

*

(-h2/2)*3 - (-h2/2 - h3)"3))
(-h2/2)*3 - (-h2/2 - h3)"3))
(-h2/2)73 - (-h2/2 - h3)"3))

(-h2/2)~3 - (-h2/2 - h3)73))
D66 = 1/3 *( Q_66_1
(-h2/2)73) + Q_66_3
D44 = 1/3 *( Q 44 1
(-h2/2)73) + Q_44 3
D45 = 1/3 *( Q_45_1
(-h2/2)73) + Q_45_3
D55 = 1/3 *( Q_55_1
(-h2/2)73) + Q_55_3

(-h2/2)73 - (-h2/2 - h3)"3))
(-h2/2)73 - (-h2/2 - h3)73))
(-h2/2)73 - (-h2/2 - h3)"3))
(-h2/2)73 - (-h2/2 - h3)73))

D=matrix((B11,B12,B16), (B12,B22,B26), (B16,B26,B66))

Q261 * ( (h2/2 + h1) - (h2/2)) + Q. 26_2 * ( (h2/2)

Q55 1 * ( (h2/2 + h1) - (h2/2)) + Q.55 2 * ( (h2/2)

(h2/2 + h1)73 - (h2/2)73) + Q 11 2
(h2/2 + h1)73 - (h2/2)73) + Q_12 2
(h2/2 + h1)?3 - (h2/2)73) + Q 222

(h2/2 + h1)~3 - (h2/2)"3) + Q_16_2

(h2/2 + h1)~3 - (h2/2)"3) + Q_66_2
(h2/2 + h1)73 - (h2/2)73) + Q_44_2
(h2/2 + h1)~3 - (h2/2)"3) + Q 45 2

(

(

(

(

(

(

E

( (h2/2 + h1)"3 - (h2/2)73) + Q_26_2
(

(

(

(

(

E

( (h2/2 + h1)~3 - (h2/2)73) + Q_55_2
(

(-h2/2))+
(-h2/2))+
(-h2/2))+
(-h2/2))+
(-h2/2))+

(-h2/2))+

(h2/2)72
(h2/2)~2
(h2/2)72
(h2/2)72
(h2/2)~2
(h2/2)72
(h2/2)~2
(h2/2)72

(h2/2)2

( (h2/2)"3
( (h2/2)3
( (h2/2)"3
( (h2/2)"3
( (h2/2)3
( (h2/2)"3
( (h2/2)3
( (h2/2)"3

( (h2/2)"3
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E1l = 1/4 *(

(-h2/2)~4)
E12 = 1/4%
(-h2/2)~4)
E22 = 1/4%
(-h2/2)~4)
El6 = 1/4%
(-h2/2)~4)
E26 = 1/4*
(-h2/2)~4)
E66 = 1/4%
(-h2/2)~4)
E44 = 1/4%
(-h2/2)~4)
E45 = 1/4%
(-h2/2)~4)
E55 = 1/4%

(-h2/2)74) + Q_55_3

~ et ~Ft~F~F~F ~F~F ~+

¥ X K X X X X X X X ¥ ¥ X X ¥ X ¥ x

AN AN AN AN AN AN AN AN AN AN A AN AN AN AN AN A

(h2/2 + h1)*4 - (h2/2)74) + Q_11 2
(-h2/2)"4 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_12 2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q 22 2
(-h2/2)*4 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_16_2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_26_2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)*4) + Q_66_2
(-h2/2)*4 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_44 2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_45 2
(-h2/2)74 - (-h2/2 - h3)74))
(h2/2 + h1)*4 - (h2/2)74) + Q_55_2
(-h2/2)74 - (-h2/2 - h3)74))

E=matrix((E11,E12,E16), (E12,E22,E26), (E16,E26,E66))

F11 = 1/5% ( Q111

(-h2/2)75)
F12 = 1/5%*
(-h2/2)75)
F22 = 1/5%
(-h2/2)75)
F16 = 1/5%*
(-h2/2)75)
F26 = 1/5*%
(-h2/2)75)
F66 = 1/5%*
(-h2/2)75)
F44 = 1/5%
(-h2/2)75)
F45 = 1/5%

(-h2/2)"5) + Q_
F55 = 1/5% ( Q_
(-h2/2)"5) + Q_5

eeLLRRe

©Q

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

AN AN AN AN AN AN AN AN AN AN AN A AN AN AN AN AN

(h2/2 + h1)~5 - (h2/2)"5) + Q 11 2
(-h2/2)~5 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)75) + Q 12 2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)75 - (h2/2)"5) + Q 22 2
(-h2/2)~5 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)75) + Q_16_2
(-h2/2)~5 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)"5) + Q_26_2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)25 - (h2/2)75) + Q_66_2
(-h2/2)~5 - (-h2/2 - h3)75))
(h2/2 + h1)?5 - (h2/2)75) + Q_44 2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)"5) + Q_45_2
(-h2/2)75 - (-h2/2 - h3)75))
(h2/2 + h1)~5 - (h2/2)75) + Q_55_2
(-h2/2)75 - (-h2/2 - h3)75))

(h2/2)~a
(h2/2)"4
(h2/2)*4
(h2/2)"4
(h2/2)*4
(h2/2)74
(h2/2)*4
(h2/2)*4

(h2/2)"4

(h2/2)75
(h2/2)"5
(h2/2)75
(h2/2)"5
(h2/2)75
(h2/2)"5
(h2/2)75
(h2/2)75

(h2/2)75

F=matrix((F11,F12,F16,0,0), (F12,F22,F26,0,0), (F16,F26,F66,0,0))

G11 = 1/6* ( Q_11_1
(-h2/2)"6) + Q_11_3

G12 = 1/6*
(-h2/2)"6)
G22 = 1/6%*
(-h2/2)76)
Gl6 = 1/6*
(-h2/2)"6)
G26 = 1/6*
(-h2/2)76)
G66 = 1/6*
(-h2/2)"6)
Ga4 = 1/6*
(-h2/2)76)

*
*
*
*
*
*
*
*
*
*
*
*
*
*

AN AN AN AN AN AN AN AN AN AN AN AN AN A

(h2/2 + h1)76 - (h2/2)"6) + Q_11_2
(-h2/2)"6 - (-h2/2 - h3)76))
(h2/2 + h1)76 - (h2/2)%6) + Q_12_2
(-h2/2)"6 - (-h2/2 - h3)76))
(h2/2 + h1)76 - (h2/2)"6) + Q_22_2
(-h2/2)"6 - (-h2/2 - h3)76))
(h2/2 + h1)76 - (h2/2)%6) + Q_16_2
(-h2/2)"6 - (-h2/2 - h3)76))
(h2/2 + h1)76 - (h2/2)"6) + Q_26_2
(-h2/2)"6 - (-h2/2 - h3)76))
(h2/2 + h1)76 - (h2/2)%6) + Q_66_2
(-h2/2)"6 - (-h2/2 - h3)76))
(h2/2 + h1)76 - (h2/2)"6) + Q_44 2
(-h2/2)26 - (-h2/2 - h3)76))

(h2/2)6
(h2/2)"6
(h2/2)6
(h2/2)"6
(h2/2)6
(h2/2)"6

(h2/2)"6
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G45 = 1/6* ( Q.45 1 * ( (h2/2 + h1)*6 - (h2/2)%6) + Q 45 2 * ( (h2/2)"6
(-h2/2)76) + Q_45_3 * ( (-h2/2)"6 - (-h2/2 - h3)"6))
G55 = 1/6* ( Q551 * ( (h2/2 + h1)?6 - (h2/2)76) + Q_55 2 * ( (h2/2)"6
(-h2/2)76) + Q_55 3 * ( (-h2/2)"6 - (-h2/2 - h3)"6))

G=matrix((G11,G12,G16,0,0), (G12,G22,G26,0,0), (G16,G26,G66,0,0))

H11 = 1/7* ( Q11_1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q 112 * ( (h2/2)"7
(-h2/2)77) + Q 11 3 * ( (-h2/2)*7 - (-h2/2 - h3)"7))
H12 = 1/7* ( Q 12_1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q 122 * ( (h2/2)"7
(-h2/2)77) + Q_12_3 * ( (-h2/2)"7 - (-h2/2 - h3)"7))
H22 = 1/7* ( Q22_1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q 222 * ( (h2/2)"7
(-h2/2)77) + Q 22 3 * ( (-h2/2)*7 - (-h2/2 - h3)"7))
H16 = 1/7* ( Q 16 1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q 16 2 * ( (h2/2)"7
(-h2/2)77) + Q_16_3 * ( (-h2/2)*7 - (-h2/2 - h3)"7))
H26 = 1/7* ( Q 26_1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q 26_2 * ( (h2/2)"7
(-h2/2)77) + Q 26_3 * ( (-h2/2)"7 - (-h2/2 - h3)"7))
H66 = 1/7* ( Q.66 1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q_66_2 * ( (h2/2)"7
(-h2/2)77) + Q_66_3 * ( (-h2/2)*7 - (-h2/2 - h3)"7))
Ha4 = 1/7* ( Q44 1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q 44 2 * ( (h2/2)"7
(-h2/2)77) + Q44 3 * ( (-h2/2)"7 - (-h2/2 - h3)"7))
HA5 = 1/7* ( Q45 1 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q 45 2 * ( (h2/2)"7
(-h2/2)77) + Q45 3 * ( (-h2/2)*7 - (-h2/2 - h3)"7))
H55 = 1/7* ( Q. 551 * ( (h2/2 + h1)A7 - (h2/2)"7) + Q55 2 * ( (h2/2)"7
(-h2/2)77) + Q.55 3 * ( (-h2/2)"7 - (-h2/2 - h3)"7))

HH=matrix((H11,H12,H16,0,0), (H12,H22,H26,0,0), (H16,H26,H66,0,0))

IMOISTURE STRAINS

KaT_1=(2/3)*rho@_1
KaR_1=(1/30)*rhoo_1
KalL_1=(1/30)*rhoo_1
KaT_2=(2/3)*rho@_2
KaR_2=(1/30)*rhoo_2
KaL_2=(1/30)*rhoo_2
KaT_3=(2/3)*rhoe_3
KaR_3=(1/30)*rhoo_3
KaL_3=(1/30)*rhoo_3

ewll_1=(KaL_1*(abs_w_1))/100
ew22_1=(KaR_1*(abs_w_1))/100
ewll_2=(KaL_2*(abs_w_2))/100
ew22 2=(KaR_2*(abs_w_2))/100
ewll 3=(KalL_3*(abs_w_3))/100
ew22_3=(KaR_3*(abs_w_3))/100

ex_0=dx(u)

ey 0=dy(u)
exy_0=(dx(v)+dy(u))
ex_1=dx(P_x)

ey_1=dy(P_y)

exy 1=2*(dx(P_y)+dy(P_x))

ex_2=dx(F_x)

ey_2=dy(F_y)
exy 2=3*(dx(F_y)+dy(F_x))
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ex_3=dx(L_x)

ey_3=dy(L_y)

exy 3= 4*¥(dx(L_y)+dy(L_x))
exz_0=(P_x +dx(w))
eyz_0=(P_y +dy(w))

exz_1= 2*F_x

eyz_1= 2*F_y

exz_2= 3*L_x

eyz 2= 3*L y

{1. ToP }

el 1 top = ex_© + ex_1 * (h1+h2/2) + ex_2 * (( h1+h2/2)7*2) + ex_3 * ((
h1+h2/2)73) + ewll 1

e2_1 top = ey _© + ey 1 * (h1+h2/2) + ey_2 * (( h1+h2/2)7*2) + ey 3 * ((
hi+h2/2)73) + ew22 1

e6_1 top = exy_© + exy_1 * (h1+h2/2) + exy_2 * (( hl+h2/2)"2) + exy 3 *
(( h1+h2/2)"3)

e4_1 top = eyz © + eyz_1 * (h1l+h2/2) + eyz_2 * ((h1+h2/2)72)

e5 1 top = exz_0 + exz_1 * (hl+h2/2) + exz_2 * ((hl1+h2/2)"2)

Sigmal_1 top
Sigma2_1_top
Sigma6_1_top
Sigma4_1 top
Sigma5_1 top

Q_11 1*el 1 top + Q_12 1*e2_1 top + Q_16_1*e6_1_top
Q_12_1*el_1_top + Q_22_1*e2_1_top + Q_26_1%e6_1_top
Q_16_1*el 1 top + Q_26_1*e2_1 top + Q_66_1*e6_1_top
+ Q_44 1*ed4 1 top + Q_45 _1*e5_1 top
+ Q_45 1*ed4 1 top + Q_55_1*e5_ 1 top

{1. MID }

el 1 mid = ex_© + ex_1 * (h1/2+h2/2) + ex_ 2 * (( hl1/2+h2/2)"2) + ex 3 *

(( h1/2+h2/2)73) + ewll 1
e2_1 mid = ey_© + ey 1 * (h1/2+h2/2) + ey_2 * (( h1/2+h2/2)72) + ey_3 *
(( h1/2+h2/2)73) + ew22_ 1

e6_1 mid = exy_© + exy_1 * (h1/2+h2/2) + exy_2 * (( hl1/2+h2/2)"2) +
exy 3 * (( h1/2+h2/2)"3)

e4 1 mid = eyz_ @ + eyz_ 1 * (hl/2+h2/2) + eyz_2 * ((h1/2+h2/2)"2)
e5 1 mid = exz_ 0 + exz_1 * (h1/2+h2/2) + exz_2 * ((h1/2+h2/2)"2)

Sigmal 1 mid
Sigma2_1 mid
Sigma6_1_mid
Sigmad_1_mid
Sigma5_1_mid

Q_11 1*el 1 mid + Q_12_1*e2_1 mid + Q_16_1*e6_1 mid
Q_12 1*el_ 1 mid + Q_22_1*e2_1 mid + Q_26_1*e6_1 mid
Q_16_1*el_1 mid + Q_26_1*e2_1_mid + Q_66_1*e6_1_mid
+ Q_44 1*e4_1 mid + Q_45_1*e5_1 mid
+ Q_45_1*e4_1_mid + Q_55_1*e5_1_mid

{1. BOT }

el 1 bot = ex_ @ + ex_1 * (h2/2) + ex_2 * ((h2/2)"2) + ex_3 * ((h2/2)73)

+ ewll_ 1

e2 1 bot = ey © + ey 1 * (h2/2) + ey 2 * ((h2/2)"2) + ey_3 * ((h2/2)73)

+ ew22_1

e6_1 bot = exy 0+ exy_1 * (h2/2) + exy_2 * ((h2/2)72) + exy_3 * ((h2/2)73)
e4_1 bot = eyz_ 0 + eyz_1 * (h2/2) + eyz_2 * ((h2/2)"2)

e5 1 bot = exz_ @ + exz_1 * (h2/2) + exz_2 * ((h2/2)"2)

Sigmal 1 bot = Q 11 1*el 1 bot + Q_12 1*e2_ 1 bot + Q_16_1*e6_1 bot
Sigma2_1 bot = Q_12_1*el 1 bot + Q_22_1*e2_1 bot + Q_26_1*e6_1 bot
Sigma6_1 bot = Q 16 1*el 1 bot + Q 26 _1*e2 1 bot + Q 66 _1*e6 1 bot
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Sigma4_1 bot
Sigma5_1 bot

+ Q 44 _1*e4 1 bot + Q 45 _1*e5 1 _bot
+ Q 45 _1*e4 1 bot + Q 55 _1*e5_1_bot

{2. TOP }
el 2 top = ex O + ex_ 1 * (h2/2)+ex 2 * (( h2/2)"2) + ex 3 * (( h2/2)"3)

+ ewll 2

e2 2 top = ey O + ey 1 * (h2/2)+ey_ 2 * (( h2/2)"2) + ey_3 * (( h2/2)73)

+ ew22_2

e6_2 top = exy_© + exy_1 * (h2/2) + exy_ 2 * (( h2/2)"2) + exy_3 * ((
h2/2)3)

ed4 2 top = eyz_ @ + eyz_1 * (h2/2) + eyz_2 * ((h2/2)"2)

e5 2 top = exz_0 + exz_1 * (h2/2) + exz_2 * ((h2/2)"2)

Sigmal 2 top
Sigma2_2_ top
Sigma6_2_ top
Sigmad_2_top
Sigma5_2_ top

Q 11 2*el 2 top + Q_ 12 2*e2 2 top + Q_16_2*e6_2 top
Q 12 2*el 2 top + Q 22 2*e2 2 top + Q 26 2*e6_2 top
Q_16_2*el 2 top + Q_26_2*e2_2 top + Q_66_2*e6_2 top
+ Q_44 2*ed4 2 top + Q_45 2*e5_2 top
+ Q_45 2%ed4 2 top + Q_55_2%e5_2 top

{2. mID }
el 2 mid = ex © + ex_1 * (0) + ex 2 * (( ©)"2) + ex 3 * (( 90)"3) +
ewll 2

€2 2 mid = ey @ + ey 1 * () + ey 2 * (( ©)"2) + ey_3 * (( 9)"3) +
ew22_2

e6_2 mid = exy_© + exy 1 * (@) + exy 2 * (( 0)*2) + exy 3 * (( 9)73)
ed 2 mid = eyz_ 0 + eyz_1 * (0) + eyz_2 * ((0)"2)

e5_2 mid = exz_0 + exz_1 * (@) + exz_2 * ((0)"2)

Q_11 2*el 2 mid + Q_12 2*e2 2 mid + Q_16_2*e6_2 mid
Q_12 2*el 2 mid + Q_22 2*e2_2 mid + Q_26_2*e6_2 mid
Q_16_2*el_2 mid + Q_26_2*e2_2_mid + Q_66_2*e6_2_mid
+ Q_44 2*e4_2 mid + Q_45_2*e5_2_mid
+ Q_45 2*ed4 2 mid + Q_55_2*e5_2 mid

Sigmal 2 _mid
Sigma2_2 mid
Sigma6_2_mid
Sigmad_2_mid
Sigma5_2 mid

{2. BOT }

el 2 bot = ex_© + ex_1 * (-h2/2) + ex 2 * (( -h2/2)"2) + ex 3 * (( -
h2/2)73) + ewll 2

e2_2 bot = ey © + ey 1 * (-h2/2) + ey 2 * (( -h2/2)*2) + ey 3 * (( -
h2/2)73) + ew22_2

e6_2 bot = exy ® + exy_1 * (-h2/2) + exy_2 * (( -h2/2)"2) + exy_3 * (( -
h2/2)73)

e4 2 bot = eyz © + eyz_ 1 * (-h2/2) + eyz_2 * ((-h2/2)"2)

e5 2 bot = exz_ 0 + exz_1 * (-h2/2) + exz_2 * ((-h2/2)"2)

Sigmal_2_bot
Sigma2_2_bot
Sigma6_2_ bot
Sigmad4_2_ bot
Sigma5_2_ bot

Q 11 _2*el 2 bot + Q_ 12 2*e2 2 bot + Q 16 2*e6_2 bot
Q_12_2*el 2 bot + Q 22 2*e2 2 bot + Q 26 2*e6_2 bot
Q_16_2*el 2 bot + Q_26_2*e2_2 bot + Q_66_2*e6_2_ bot
+ Q_44 2*ed4 2 bot + Q_45 2*e5 2 bot
+ Q_45_2*e4_2 bot + Q_55_2*e5_2 bot

{3. TOP }

el 3 top = ex_© + ex_ 1 * (-h2/2) + ex 2 * (( -h2/2)"2) + ex 3 * (( -
h2/2)"3) + ewll 3
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e2 3 top =
h2/2)~3)
e6_3 top =
h2/2)73)
e4 3 top =
e5 3 top =

Sigmal_3_top
Sigma2_3_top
Sigma6_3_top
Sigmad4_3_top

ey © + ey 1 * (-h2/2) + ey 2 * (( -h2/2)"2) + ey 3 * (( -
+ ew22_3
exy_© + exy 1 * (-h2/2) + exy 2 * (( -h2/2)"2) + exy_3 * (( -

eyz @ + eyz_1 * (-h2/2) + eyz_2 * ((-h2/2)"2)
exz_ 0 + exz_1 * (-h2/2) + exz_2 * ((-h2/2)"2)

Q 11 3*el 3 top + Q_12_3*e2_3 top + Q_16_3*e6_3_top
Q_12 3*el 3 top + Q 22 3*e2_3 top + Q_26_3*e6_3 top
Q_16 3*el 3 top + Q_26_3*e2_3 top + Q_66_3*e6_3 top
+ Q 44 3*e4 3 top + Q_45 3*e5 3 top

Sigma5_3 top = + Q_45_3*e4_3 top + Q_55_3*e5_3 top

{3. MID }
el 3 mid = ex_© + ex_1 * (-h2/2-h3/2) + ex_ 2 * (( -h2/2-h3/2)"2) + ex_3
* (( -h2/2-h3/2)"3) + ewll 3

e2_3_mid = ey_© + ey 1 * (-h2/2-h3/2) + ey_2 * (( -h2/2-h3/2)"2) + ey_3
* (( -h2/2-h3/2)"3) + ew22_3

e6_3 mid = exy_© + exy_1 * (-h2/2-h3/2) + exy_2 * (( -h2/2-h3/2)"2) +
exy_3 * (( -h2/2-h3/2)73)

e4 3 mid = eyz © + eyz_1 * (-h2/2-h3/2) + eyz_2 * ((-h2/2-h3/2)72)
e5 3 mid = exz_ 0@ + exz_1 * (-h2/2-h3/2) + exz_2 * ((-h2/2-h3/2)72)
Sigmal 3 mid = Q_11 3*el 3 mid + Q_12 3*e2_3 mid + Q_16_3*e6_3 mid
Sigma2_3 mid = Q_12 3*el 3 mid + Q_22 3*e2_3 mid + Q_26_3*e6_3 mid
Sigma6_3 mid = Q_16_3*el 3 mid + Q_26_3*e2 3 mid + Q_66_3*e6_3 mid
Sigma4_3 mid = + Q_44_3*e4_3 mid + Q_45_3*e5 3 mid

Sigma5_3 mid = + Q_45_3*e4_3 mid + Q_55_3*e5_ 3 mid

{3. BOT }
el 3 bot = ex @ + ex_1 * (-h2/2-h3) + ex_ 2 * (( -h2/2-h3)"2) + ex_3 *
(( -h2/2-h3)73) + ewll 3

e2_3 bot = ey © + ey 1 * (-h2/2-h3) + ey 2 * (( -h2/2-h3)"2) + ey 3 *
(( -h2/2-h3)73) + ew22 3

e6_3 _bot = exy 0 + exy_1 * (-h2/2-h3) + exy_2 * (( -h2/2-h3)"2) + exy_3
* (( -h2/2-h3)73)

e4 3 bot = eyz © + eyz_ 1 * (-h2/2-h3) + eyz_ 2 * ((-h2/2-h3)72)

e5 3 bot = exz_© + exz_1 * (-h2/2-h3) + exz_2 * ((-h2/2-h3)72)

Sigmal_3_bot
Sigma2_3_bot
Sigma6_3 bot
Sigmad4_3 bot

Q_11 3*el_3_bot + Q_12_3*e2_3 bot + Q_16_3*e6_3_bot

Q_12 3*el_3_bot + Q_22_3*e2_3 bot + Q_26_3*e6_3_bot

Q_16_3*el 3 bot + Q_26_3*e2_3 bot + Q_66_3*e6_3_bot
+ Q_44 _3*ed4 3 bot + Q_45_3*e5_3 bot

Sigma5_3 bot = + Q_45_3*e4_3 bot + Q_55_3*e5_3 bot

INITIAL VALUES

w=0
u=0

r— U UoUuTnmTm<
1
OO0

=0
X
-y
_X
-y
X
=Y
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EQUATIONS

W:
AA5* (dx(P_y)+dxy (w))+A55* (dx(P_x)+dxx(w) )+2*B45*dx (F_y)+2*B55*dx (F_x)+3*D45
*dx(L_y)+3*D55*dx (L_x)+A44* (dy(P_y)+dyy(w))+A45*(dy(P_x)+dxy(w))+2*B44*dy (F
_y)+2*B45*dy (F_x)+3*D44*dy(L_y)+3*D45*dy(L_x)= -p

u:
A11*dxx(u)+A12*dxy (v)+A16* (dxy(u)+dxx(v))+B11*dxx(P_x)+B12*dxy(P_y)+B16* (dx
y(P_x)+dxx(P_y))+D11*dxx(F_x)+D12*dxy (F_y)+D16* (dxy (F_x)+dxx(F_y))+E11*dxx(
L_x)+E12*dxy(L_y)+E16*(dxy(L_x)+dxx(L_y))+Al6*dxy(u)+A26*dyy(v)+A66* (dyy(u)
+dxy (v))+B1l6*dxy(P_x)+B26*dyy(P_y)+B66* (dyy(P_x)+dxy(P_y))+D16*dxy(F_x)+D26
*dyy (F_y)+D66* (dyy (F_x)+dxy(F_y))+E16*dxy(L_x)+E26*dyy(L_y)+E66*(dyy(L_x)+d
xy(L_y))=0

Vi
Al16*dxx(u)+A26*dxy (v)+A66* (dxy (u)+dxx(v))+Ble*dxx(P_x)+B26*dxy(P_y)+B66*(dy
X(P_x)+dxx(P_y))+D16*dxx(F_x)+D26*dxy (F_y)+D66* (dxy (F_x)+dxx(F_y))+E16*dxx(
L_x)+E26*dxy(L_y)+E66*(dxy(L_x)+dxx(L_y))+Al2*dxy(u)+A22*dyy(v)+A26* (dyy(u)
+dxy(v))+B12*dxy(P_x)+B22*dyy(P_y)+B26*(dyy(P_x)+dxy(P_y))+D12*dxy(F_x)+D22
*dyy (F_y)+D26*(dyy (F_x)+dxy(F_y))+E12*dxy(L_x)+E22*dyy(L_y)+E26*(dyy(L_x)+d
xy(L_y))=0

F_x:

B11*dxx(u)+B12*dxy(v)+B16* (dxy(u)+dxx(v))+D11*dxx(P_x)+D12*dxy(P_y)+D16* (dx
Y (P_x)+dxx(P_y) )+E11*dxx(F_x)+E12*dxy (F_y)+E16* (dxy (F_x)+dxx(F_y) )+F11*dxx(
L_x)+F12*dxy(L_y)+F16*(dxy(L_x)+dxx(L_y))+Ble*dxy(u)+B26*dyy(v)+B66*(dyy(u)
+dxy(v))+D16*dxy(P_x)+D26*dyy(P_y)+D66* (dyy(P_x)+dxy(P_y))+E16*dxy(F_x)+E26
*dyy (F_y)+E66* (dyy (F_x)+dxy(F_y))+F16*dxy(L_x)+F26*dyy(L_y)+F66*(dyy(L_x)+d
xy(L_y))-

(A45* (P_y+dy(w) )+A55* (P_x+dx(w) )+2*B45*F_y+2*B55*F _x+3*D45*L_y+3*D55*L_x)-
(D45* (P_y+dy(w) )+D55* (P_x+dx(w) )+2*E45*F_y+2*E55*%F _x+3*FA45*L_y+3*F55*L_x)=0

F y:

B16*dxx(u)+B26*dxy (v)+B66* (dxy(u)+dxx(v))+D16*dxx(P_x)+D26*dxy(P_y)+D66* (dx
y(P_x)+dxx(P_y))+E16*dxx(F_x)+E26*dxy (F_y)+E66* (dxy (F_x)+dxx(F_y))+F16*dxx(
L_x)+F26*dxy(L_y)+F66*(dxy(L_x)+dxx(L_y))+B12*dxy(u)+B22*dyy(v)+B26*(dyy(u)
+dxy(v))+D12*dxy (P_x)+D22*dyy(P_y)+D26* (dyy (P_x)+dxy(P_y))+E12*dxy(F_x)+E22
*dyy (F_y)+E26*(dyy (F_x)+dxy(F_y))+F12*dxy(L_x)+F22*dyy(L_y)+F26*(dyy(L_x)+d
xy(L_y))-

(A44* (P_y+dy(w) )+A45* (P_x+dx(w) )+2*B44*F_y+2*B45*F _x+3*D44*L_y+3*D45*L_x)-
(D44* (P_y+dy(w))+D45* (P_x+dx(w) )+2*E44*F_y+2*EA5*F_x+3*F44*L_y+3*F45*L x)=0

P_x:

E11*dxx(u)+E12*dxy(v)+E16* (dxy(u)+dxx(v))+F11l*dxx(P_x)+F12*dxy(P_y)+F16*(dx
Yy (P_x)+dxx(P_y) )+G11*dxx(F_x)+G12*dxy (F_y)+G16* (dxy (F_x)+dxx(F_y) )+H11*dxx(
L_x)+H12*dxy(L_y)+H16*(dxy(L_x)+dxx(L_y))+E16*dxy(u)+E26*dyy(v)+E66*(dyy(u)
+dxy(v))+F16*dxy(P_x)+F26*dyy(P_y)+F66*(dyy(P_x)+dxy(P_y))+Gl6*dxy(F_x)+G26
*dyy (F_y)+G66*(dyy (F_x)+dxy(F_y))+H16*dxy(L_x)+H26*dyy(L_y)+H66* (dyy(L_x)+d
xy(L_y))-

3% (D45* (P_y+dy (w) )+D55% (P_x+dx(w) )+2*EA5*F_y+2*E55*F_x+3*FA5*L_y+3*F55*L_x)
=0

P y:
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E16*dxx(u)+E26*dxy (v)+E66* (dxy(u)+dxx(v))+F16*dxx(P_x)+F26*dxy (P_y)+F66* (dx
Y (P_x)+dxx(P_y) )+G1l6*dxx(F_x)+G26*dxy (F_y)+G66* (dxy (F_x)+dxx(F_y))+H16*dxx(
L_x)+H26*dxy (L_y)+H66* (dxy(L_x)+dxx(L_y))+E12*dxy(u)+E22*dyy(v)+E26* (dyy(u)
+dxy (v))+F12*dxy (P_x)+F22*dyy(P_y)+F26*(dyy(P_x)+dxy(P_y))+G12*dxy (F_x)+G22
*dyy (F_y)+G26*(dyy (F_x)+dxy(F_y))+H12*dxy(L_x)+H22*dyy(L_y)+H26* (dyy(L_x)+d
xy(L_y))-

3*(D44* (P_y+dy(w))+D45* (P_x+dx(w) )+2*E44*F_y+2*EA5*F_x+3*F44*L_y+3*F45*L_x)
=0

L_x:

D11*dxx(u)+D12*dxy(v)+D16* (dxy(u)+dxx(v))+E11*dxx(P_x)+E12*dxy(P_y)+E16*(dx
Y(P_x)+dxx(P_y) )+F11*dxx(F_x)+F12*dxy(F_y)+F16* (dxy(F_x)+dxx(F_y))+G11*dxx(
L_x)+G12*dxy(L_y)+G16*(dxy(L_x)+dxx(L_y))+D16*dxy(u)+D26*dyy(v)+D66* (dyy(u)
+dxy(v))+E16*dxy(P_x)+E26*dyy(P_y)+E66* (dyy(P_x)+dxy(P_y))+F16*dxy(F_x)+F26
*dyy (F_y)+F66*(dyy(F_x)+dxy(F_y))+Gl6*dxy(L_x)+G26*dyy(L_y)+G66*(dyy(L_x)+d
xy(L_y))-

2*(B45* (P_y+dy(w) )+B55* (P_x+dx(w) )+2*D45*F_y+2*D55*F x+3*E45*L_y+3*E55*L_x)
=0

L y:
D16*dxx(u)+D26*dxy(v)+D66* (dxy (u)+dxx(v))+E16*dxx(P_x)+E26*dxy(P_y)+E66* (dx
y(P_x)+dxx(P_y))+F16*dxx(F_x)+F26*dxy (F_y)+F66* (dxy (F_x)+dxx(F_y))+G1l6*dxx(
L_x)+G26*dxy(L_y)+G66* (dxy(L_x)+dxx(L_y))+D12*dxy(u)+D22*dyy(v)+D26*(dyy(u)
+dxy (v))+E12*dxy(P_x)+E22*dyy(P_y)+E26*(dyy(P_x)+dxy(P_y))+F12*dxy(F_x)+F22
*dyy (F_y)+F26* (dyy(F_x)+dxy(F_y))+G12*dxy(L_x)+G22*dyy(L_y)+G26* (dyy(L_x)+d
xy(L_y))-

2*(B44* (P_y+dy(w) )+B45* (P_x+dx(w) )+2*D44*F_y+2*DA5*F_x+3*E44*L_y+3*E45*L_Xx)
=0

BOUNDARIES
region 1
start (0,0)

natural(v)=0
natural(w)=0
natural(P_x)=0
natural(P_y)=0
natural(L_x)=0
natural(L_y)=0
natural(u)=0
natural(F_x)=0
natural(F_y)=0

line to (L1,0)
natural(v)=0
value(w)=0
natural(P_x)=0
natural(P_y)=0
natural(L_x)=0
natural(L_y)=0
natural(u)=0
natural(F_x)=0
natural(F_y)=0

line to (L1,L2)
natural(v)=0
natural(w)=0
natural(P_x)=0
natural(P_y)=0
natural(L_x)=0
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natural(L_y)=0
natural(u)=0

natural(F_x)=0
natural(F_y)=0

line to (@,L2)

natural(v)=0
value(w)=0
natural(P_x)=
natural(P_y)=
natural(L_x)=
natural(L_y)=
natural(u)=0
natural(F_x)=0
natural(F_y)=0

line to close

PLOTS

END

contour(w) { show deformed grid as solution progresses }
surface(w)

elevation(w) from (0,L2/2) to (L1,L2/2)

elevation(w) from (L1/2,0) to (L1/2,L2)
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