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Bending solutions for symmetrical and non-

symmetrical generally orthotropic panels (CLT) 

Abstract 

This diploma thesis is focused on the development and verification of numerical models 

for the solution of bending of generally orthotropic plates based on the assumptions of 

CPT, FSDT, SSDT and TSDT theories. The thesis investigates the effect of material and 

axial asymmetry on the laminate stiffness parameters and mechanical response in the 

form of deflection and internal forces. A numerical non-stationary moisture diffusion 

model has been constructed to evaluate the effect of moisture on the wetting time of the 

CLT panel when exposed to rainwater. Subsequently, the effect of such moisture on the 

distribution of internal forces along the thickness of the panel was evaluated. The case of 

a moisture-loaded CLT panel, a panel without moisture loading and experiment 

measurements were compared. The results indicate a significant influence of material 

asymmetry of CLT ceiling panels caused by moisture loading of the panel lamellas in 

contact with pooled rainwater. 

Keywords: analytical method, numerical method, plate theories, cross-laminated timber 

(CLT), layered composite material 

 

 

  



 

Řešení ohybu symetrických a nesymetrických obecně 

ortotropních desek (CLT) 

Abstrakt 

Tato diplomová práce se zabývá na sestavení a ověření numerických modelů pro řešení 

ohybu vrstvených obecně ortotropních desek na základě předpokladů teorií CPT, FSDT, 

SSDT a TSDT. Práce zkoumá vliv materiálové a osové nesymetrie na parametry tuhosti 

laminátu a mechanickou odezvu v podobě průhybu a vnitřních sil. Pro zhodnocení vlivu 

vlhkosti byl sestaven nestacionární model vlhkostní difúze, kterým byla zhodnocena doba 

navlhání CLT panelu při vystavení dešťové vodě. Následně byl zhodnocen vliv takové 

vlhkosti na podobu průběhu vnitřních sil po tloušťce desky. Byl porovnán případ 

vlhkostně zatíženého CLT panelu a panelu bez vlhkostního zatížení. Výsledky ukazují na 

významný vliv materiálové asymetrie stropních panelů CLT způsobené vlhkostním 

zatížením lamel panelů při kontaktu se shromážděnou dešťovou vodou. 

Klíčová slova: analytická metoda, numerická metoda, teorie desek, křížem lepené dřevo 

(CLT), vrstvený kompozitní materiál. 
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1 Introduction 

The scale of timber construction and its structural technological forms in our climatic 

conditions still do not correspond to European and global trends. There are certainly more 

reasons for this dismal situation, but one of them is certainly the lack of knowledge and 

experience of architects and designers with the aforementioned material base. New 

possibilities of wood application in current construction are clearly linked to the 

development of innovative wood processing technologies that support the development 

of contemporary wood structures (Pavlas, 2016). Timber is a material offering an answer 

to the currently discussed issue of renewable resources and energy efficiency of building 

production. Life cycle assessment (LCA) of timber buildings shows significantly lower 

CO2 emissions than concrete buildings, after including stored biogenic carbon. The long-

term trend towards low-energy buildings, linked to the process of technological 

innovation and the arrangement of the monitored parameters in accordance with the 

principles of sustainability, may be one of the most important factors (Pavlas, 2016; 

Shaobo Liang et al., 2020). Multi-storey wooden buildings made of CLT panels could be 

the answer to the problem of energy efficiency of building production. For these 

buildings, fire resistance, rigidity and acoustics are crucial issues. In terms of production, 

there is already a product standard, but technical standards need to be developed to give 

designers a basis for designing structures at normal temperatures and under fire 

conditions. In the Czech Republic, there is a significant increase in the number of wood-

based building projects, as well as in multi-storey residential and office buildings. The 

Czech Republic can afford such an increase. Forests cover 34% of the entire territory and 

the wood reserves in these forests have been increasing for a long time. The very interest 

in wooden buildings can be seen in the example of family houses, where wooden 

buildings already account for 15% of the total. (ČSÚ, 2018), (Kuklík, [online]). In order 

to use timber as one of the main construction materials, it is necessary to verify all the 

properties of building products made from solid timber, such as cross-laminated timber 

or CLT panels. One of the performance categories of buildings is durability, which in the 

case of timber can be strongly affected by prolonged exposure to moisture. Because wood 

is a hygroscopic material, it exchanges moisture with the surrounding environment. 

In the design of CTL made buildings, the stiffness and strength of the panels are adjusted 

by modification factors that take on values depending on the moisture content of the CLT 

panels in the structure. However, this modification of the material values is only done in 

relation to the relative humidity and situations where the material is exposed to moisture 

in the liquid state are not considered (With proper construction and maintenance of the 

building, such a situation will not really occur and if it does, it will only occur for a short 

period of time). During the construction process, CLT ceiling panels in particular are 

more exposed to weather conditions, especially rain and snow. Rainwater can therefore 

remain on CLT panels for up to several weeks. CLT panel lamellas exposed to liquid 

moisture for long periods of time may swell and degrade, and their modulus of elasticity 
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and strength may decrease. A ceiling panel with such degraded surface lamellae does not 

behave as a specially orthotropic panel due to the shifting neutral mid-plane, and the 

essence of the special orthotropy for which the panel was designed is temporarily lost. At 

the same time, stresses and strains may arise in the panel that are not considered in the 

final structural design. This can have a significant effect on the overall spatial stiffness of 

the structure or on the stiffness of connections that are not designed for such stresses. 

When investigating the possibility of designing such moisture-loaded floor slabs, no 

design tool was found that could be used to perform an analysis of strain and internal 

stresses. Design tools for timber structures such as Dlubal, AxisVM or Stora Enso's CLT 

panel design tool Calculatis are based on the design and assessment of timber structures 

based on Eurocodes and for instance do not allow for the integration of swelling into the 

calculation. More complex and general finite element tools such as Abaqus or Ansys 

allow working with temperature and its effect on material properties, but do not work 

with the effect of moisture. In this regard, my work aims to develop a tool based on a 

numerical solution to analyse the effect of moisture on laminated panels (which can be 

CLT ceiling panels) in any configuration. 
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2  Objectives 

The aim of my thesis is to develop a numerical model which allows for the analysis of 

deflection, deformation and internal stresses of timber panels intended for load-bearing 

structural purposes (CLT). The models are built on the basis of at least two selected shell 

elasticity plate theories. These theories are the most used for the analysis of isotropic sheet 

materials. One of the sub-objectives will be to define these theories so that they are 

applicable to any generally orthotropic panels in the models. The numerical model must 

be defined in the following terms: 

• Displacement field 

• Stress field 

• Stress resultants 

• Governing equations 

Each of the models will be modified for possible symmetric and non-symmetric plate 

types and compared with each other. The model results for the chosen type of symmetry 

or asymmetry will be verified by experiment. 

 

Sub-objectives of the thesis: 

1. Development of a numerical model for deflection calculation according to the 

selected theories. 

2. Defining of relations for calculation of internal stresses according to the 

mathematical theory of elasticity, 

3. Experimental verification of numerical models 

4. Defining relationships for integrating moisture or thermal deformations into the 

numerical models, 

5. Defining possible compositions of symmetric and non-symmetric plates, 

6. Comparison and evaluation of the results provided by each numerical model and 

the difference between them, 

7. Proposed practical application of the results. 
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3 Elastic properties of wood 

Wood, like any other material, is made up of atoms and molecules that are randomly or 

lawfully arranged in a given space. The degree of homogeneity of the arrangement of 

atoms and molecules in the volume of wood and the orientation of especially covalent 

and hydrogen bonds determines the magnitude and orientation of mechanical properties 

at the microstructural and macrostructural level. The variation of mechanical properties 

in the volume of wood and their dependence on direction is called anisotropy of 

mechanical properties (Požgaj et al., 1997). Parallel to the fibers, i.e. in the direction of 

the trunk, the strength of the material is particularly high, while perpendicular to the fibers 

the strength properties are low (Horáček, 2010). 

Poisson’s ratio 

Poisson's numbers are an important characteristic of the elasticity of wood and are mainly 

used for volume changes due to mechanical tension. When a solid is subjected to 

compression or tension, the solid is elongated or shortened and deformed perpendicular 

to the direction of the tensile/compressive force. Such deformations are called transverse 

deformations. Poisson numbers express the ratio of transverse deformation to longitudinal 

deformation. We assign a positive sign to tensile deformations and a negative sign to 

compressive deformations (Požgaj et al., 1997). According to Nettles (1994) Poisson 

number 𝜇21 can be derived as: 

 𝜇21 =
𝐸22

𝐸11
𝜇12 (1) 

Modulus of elasticity  

The modulus of elasticity expresses the internal resistance of the material to elastic 

deformation. The greater the modulus of elasticity, the greater the stress required to 

induce deformation. Of the basic ones, we distinguish between the elastic moduli E for 

normal stresses such as tension, compression and bending and the elastic moduli G for 

tangential stresses such as torsion or shear. According to Horáček (2010) the relationship 

for calculating the modulus of elasticity under normal stresses is. 

 𝐸 =
𝑑𝜎

𝑑𝜀
 (2) 

where 𝜎 is the normal stress and 𝜀 is the normal strain. The relationship for calculating 

the shear modulus is. 

 𝐺 =
𝑑𝜏

𝑑𝛾
 (3) 

Where 𝜏 is the shear stress and 𝛾 is the shear strain (Horáček, 2010). 
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Mechanical stress is a defined as a process in which mechanical forces or other stress 

factors interact with the wood. This process results in temporary or permanent changes in 

the shape of the wood. The response of wood to mechanical stresses depends not only on 

the bonds of the chemical components of the wood and their interconnection (cellulose, 

lignin, hemicellulose), but often to a decisive extent on the geometry of the body itself. 

Therefore, each mechanical property of wood must be considered in terms of the 

geometry of the test body itself, inhomogeneity, structure, and chemical composition, as 

well as the resulting anisotropy of properties. The basic types of mechanical stresses are 

distinguished according to the type of stress that occurs in the body as a result of an 

external force. The stress in wood represents the intensity of the internal forces that occur 

in the body in response to external mechanical forces. These forces acting on the body 

can be oriented in different directions in space and can act on up to six mutually 

perpendicular planes. An example of mechanical stress is axial tension, which acts in only 

one plane of the body (Požgaj et. al., 1997). The stress 𝜎 is defined as the magnitude of 

the internal force, which is related per unit area of the body according to the relation. 

 𝜎 =
𝐹

𝑆
 (4) 

where F is the external force, S is the area of the body. 

Compression, tension and shear 

If the force pulls the cross-section and the internal forces act perpendicularly to it, we 

refer to tensile stress. Stress and strain is expressed positively. If an external force is 

pushing on the cross-section, compressive stresses are generated. Stress and strain is 

expressed negatively. In the first case the wood fibers are stretched and in the second case 

compressed. When the tensile strength is reached, the wood fibers break and are 

compressed. In tension and compression, the forces act perpendicular to the cross-section. 

If the resultant of external forces mutually displace fibers in their planes, tangential 

stresses are generated. The cross-section shifts. The wood ruptures on shear (Požgaj et 

al., 1997). 
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4 Moisture properties of wood 

4.1 Wood moisture content 

The presence of water in wood is called the moisture content of the wood. It is expressed 

as the ratio of the weight of water to the weight of the wood in its dry state - absolute 

moisture content 𝑤𝑎𝑏𝑠, or as the ratio of the weight of water to the weight of wet wood - 

relative moisture content 𝑤𝑟𝑒𝑙. The absolute moisture content of wood is used to 

characterize the physical and mechanical properties of wood. Relative moisture content 

is used where it is necessary to know the percentage of water in the total wet weight of 

the timber, e.g., when selling or buying timber (Horáček, 2008). According to Horáček 

(2008), three different threshold values can be distinguished depending on the water 

content of the wood in relation to the dry weight of the wood: 

• Moisture content of dry wood - the steady-state ratio of the weight of water to 

the weight of dry matter when the wood is dried at 103+-2 °C, i.e., there is no 

bound or free water in the wood. This moisture content is expressed in absolute 

dry wood (𝑤0 =  0%). 

• Moisture at cell wall saturation - the microcapillary system in the cell wall is 

filled with water. This moisture is expressed between the cell wall saturation Cell 

wall saturation limit or hygroscopicity limit (Cell wall saturation limit = 

Hygroscopicity limit = 22-35%). 

• Moisture saturation of the wood - the micro and macro-capillary system is fully 

saturated with water; the wood contains the maximum amount of water. This 

moisture content is expressed by the maximum moisture content of the wood 

(𝑤𝑚𝑎𝑥 = 80 − 400%). 

4.2 Equilibrium wood moisture content 

Wood is a hygroscopic material that has the ability to change its moisture content 

according to the humidity of the surrounding environment through adsorption. Wood is 

also a capillary-porous material. The average porosity of wood, depending on its density, 

is around 50-60%. Adsorption of wood is then understood as the binding of a gaseous or 

liquid substance on the specific internal surface of the wood. The specific internal surface 

of wood is formed by the fibrillar structure of the submicroscopic cell wall. The 

consequence of the considerable porosity is a large internal surface, which, depending on 

the density of the wood, is around 100-300 m2.g-1 dry weight or 20-300 m.cm-3 for dry 

wood. Like most porous substances, this substantial internal surface can adsorb water 

vapour contained in the surrounding air and, thanks to capillary transport processes, can 

take up liquids (e.g., water, impregnating agents, adhesives) with which it is in direct 

contact. The internal surface of the wood is determined from the idea that the water in the 

wood is evenly distributed over the entire internal surface of the wood when the sorption 
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sites are hypothetically filled. According to the nature of the forces that cause adsorption, 

we divide adsorption into physical and chemical. In both cases, thermodynamic 

equilibrium must hold in the wood-adsorbent system. The amount of adsorbed substance 

in wood depends on its chemical and physical properties (molecular weight and volume, 

surface tension) and on environmental factors (pressure, temperature, relative humidity, 

air velocity). The dependence of the amount of adsorbed substance on environmental 

factors is expressed by adsorption isotherms. These are mathematical expressions of 

sorption theories that attempt to explain adsorption in terms of its physical or chemical 

nature. The moisture content of wood that will stabilize under given environmental 

conditions (relative humidity and temperature) is called the equilibrium moisture content 

of wood, equilibrium moisture content. The state that is reached is then called the 

equilibrium moisture content. With each change in relative humidity and air temperature, 

the equilibrium moisture content of the wood changes. If the moisture content of the wood 

is lower than the State of moisture balance, the wood takes up (adsorption) water in the 

form of water vapour from the surrounding air until it reaches the State of moisture 

balance. If the moisture content of the wood is higher than the State of moisture balance, 

the opposite process occurs, and the wood loses water (desorption). This process of wood 

moisture content change as a function of relative humidity and ambient temperature is 

reversible, but not along the same curve. For the same relative humidity and air 

temperature, the wood moisture content is higher in desorption than in adsorption, by 2.5 

to 3.5 % over a range of relative humidity 𝜑= 30-90 %. The dependence of Equilibrium 

wood moisture content on relative humidity at constant temperature is called the sorption 

isotherm (Horáček, 2008). 

 
Figure 1 – Sorption isotherm at different temperatures (Horáček, 2008) 

4.3 Dimensional changes due to changes in moisture content 

If the moisture content of the wood changes within the range of bound water, the wood 

undergoes dimensional changes - dimensional hygroexpansion. A reduction in the 
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moisture content of wet wood to between hygroscopicity (evaporation of free water) has 

no significant effect on the dimensional change. The shrinking and swelling is localized 

in the cell wall, where the fibrillar structure moves away or closer. This changes the 

dimensions of the individual elements and the wood as a whole. The orientation of the 

fibrils in the cell wall has a major influence on the amount of shrinkage and swelling. The 

longitudinal shrinkage and swelling caused by the inclination of the fibrils is insignificant. 

The small dimensional changes in the longitudinal direction are explained by the fact that 

molecules cannot arise between fibrils to form a valence chain in the longitudinal 

junction, so there is no spacing in this direction. Hygroexpansion of dimensions can be 

described as a reversible process that follows the same trajectory. The different values of 

swelling and shrinkage result only from the definition and mathematical expression of the 

process, not from the nature of the process itself. Desiccation and swelling are processes 

in which the linear, planar or volumetric dimensions of a solid change as a result of a 

change in moisture content. They are defined as the ratio of the relevant dimensional 

change to the original value of the dimension (Horáček, 2008). 

4.4 Swelling 

Swelling 𝛼 refers to the ability of wood to increase its dimensions by taking up bound 

water in the moisture content range of 0% - Hygroscopicity limit (Cell wall saturation 

limit). We distinguish between linear swelling (in each anatomical direction - 

longitudinal, radial, and tangential), surface swelling (change in solid surface area) and 

volumetric swelling (change in solid volume). The swelling of wood from the absolute 

dry state to the hygroscopic limit is called total swelling (maximum). Swelling of wood 

in any smaller interval is called partial swelling. Swelling is expressed as a percentage of 

the change in dimension to the original value and is most often given in %. For practical 

purposes, it is useful to know the percentage change in dimensions, area or volume if the 

humidity changes by 1%. The calculation and use of the swelling coefficient assumes that 

changes in the dimensions of solids below the hygroscopicity limit are linearly 

proportional to changes in moisture content. This assumption is not entirely accurate, but 

its use is sufficient for practical purposes. Swelling also has an anisotropic character. 

Along the fibers the swelling is very small and does not exceed 1%. The average value of 

total longitudinal swelling for our species is 0.1-0.4%. In the transverse direction the 

wood swells much more, 3-6 % in the radial direction and 6-12 % in the tangential 

direction. Swelling in each anatomical direction is often expressed by the ratio 

α_t:α_r:α_l=20:10:1 (Horáček, 2008).  

4.5 Moisture stress 

During drying - evaporation of water from the wood - internal stresses are created in the 

wood during uneven drying, which consist of two components - moisture and residual 

stress. Moisture stresses are due to the existence of a moisture gradient. The 

hygroexpansion of wood is considered to be continuous and the resulting deformations 
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are directly proportional to the stresses due to Hooke's law. Moisture stresses and 

deformations are considered elastic, having a temporary character and disappearing after 

moisture equilibration (Horáček, 2008). 

A change in moisture content is always associated with significant swelling or shrinking 

of the wood. Moisture deformation is therefore only dependent on the change in moisture 

inside the wood. This deformation can be defined as follows (Kollmann and Coté, 1968). 

 𝛼 = [𝛼𝑙 𝛼𝑟 𝛼𝑡 0 0 0]𝑇 (5) 

Where 𝛼𝑙 , 𝛼𝑟 , 𝛼𝑡 - material swelling coefficients in individual directions (Ormarsson, 

1998). 

4.6 Effect of moisture on the mechanical properties of wood 

The laws of the influence of bound water on mechanical properties are investigated in 

terms of the use of wood for structural purposes and also in terms of technological 

processes in the manufacture of wood products. Structural timber can reach an 

equilibrium moisture content in the range of 9-22% under our conditions. When the 

moisture content changes by 1% in the water-bound range, the strength of the wood 

changes by an average of 3-4%. This already shows that moisture has a great influence 

on the strength of wood.  The change in wood strength has a non-linear pattern depending 

on the change in water content. If we take into account that a change in moisture content 

of 1% in the range of bound water causes a change in wood strength of 2.5% to 3.5%, the 

total decrease will be 30 to 70%. The elastic modulus of wood changes linearly due to 

bound water. A 1% change in moisture content within the range of bound water causes a 

change in the modulus of elasticity E of 1.5 to 2%. This means that the modulus of 

elasticity E drops by 35 to 50% when the moisture content changes from, for example, 

8% to cell wall saturation limit. The shear elastic moduli of wood (GLR, GLT, GRT) in the 

water-bonded range are closely related to moisture content. A 1% change in moisture 

content represents a 1.5 to 2% change in shear modulus (Požgaj et al., 1977).  

 
Figure 2 - Effect of moisture on wood strength in some wood species, Crushing strength = 

bending strenght (Kollman, 1968) 
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Conversion of the wood strength determined at any moisture content in the interval 5-

25% to the property at 12% moisture content is carried out according to the following 

relation: 

 𝜎12 = 𝜎𝑤(1 + 𝛼(𝑤 − 12)) (6) 

where w - wood moisture content (%), 𝜎𝑤 - wood strength (MPa), 𝛼 - correction factor 

(Horáček, 2008) 

Table 1 - Correction coefficients expressing the effect of moisture on a given property (Horáček, 2010) 

Method of loading Correction coefficients 𝜶 

Compression in the direction of the fibers 0,04 

Compression perpendicular to fibers 0,035 

Tension in the direction of the fibers 0,01 

Tension perpendicular to fibers (R) 0,01 

Tension perpendicular to fibers (T) 0,025 

Static bending 0,04 

Shear in fiber direction 0,04 

Modulus of elasticity 0,01-0,02 

4.7 Water movement in wood 

Fluids (liquids and gases) move through wood in two basic ways - volume flow and 

molecular flow. Volumetric flow takes place in meso- and macrocapillaries under the 

influence of a static or capillary pressure gradient. Molecular flow involves the movement 

of gases in the cell lumen across cell wall thinning and the movement of water bound in 

the cell wall microcapillaries. The magnitude of volume flow through wood is determined 

by its permeability. The application of molecular flux is the drying of the wood and the 

movement of the moisture field through the wood element to reach equilibrium moisture 

content. The molecular flow of substances is described by diffusion. 

4.7.1 Mechanism of water movement in the cell wall 

The explanation of the mechanism of movement of water bound in the cell wall is based 

on the theory of sorption and the actual mechanism will be further used to describe the 

diffusion of fluids in wood. The sorption theory assumes that: 

• Water molecules are absorbed at sorption sites (hydroxyl groups) or due to the 

polar nature of water in their proximity by chemical bonds through hydrogen 

bridges and Van der Waals forces, 

• Polymolecular sorption assumes the ability of an isolated sorption site to attract 

1-5 water molecules depending on the equilibrium moisture content of the wood, 

• The range between monomolecular and polymolecular sorption is around 6-8% 

moisture content. 
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Figure 3 – Hypothetical model of the effect of moisture in the cell wall on the thermodynamics of bound water 

- a non-uniform moisture distribution, b uniform moisture distribution - Hv enthalpy of water vapour, Ha enthalpy 

of activated bound water, Hs enthalpy of bound water, delta Hs differential heat of sorption, delta Hv evaporative 

heat of water, Es activation energy of bound water (Siau 1995) 

Assume that we know the number of sorption sites in a given mass or volume unit of 

wood and the number of water molecules (number of water layers) bound per sorption 

site at a given moisture content of the wood. In reality, we only have some idea of the 

magnitude of the binding energy of water in wood from the thermodynamics of sorption 

(e.g., differential heat of sorption, heat of wetting). Let us assume, then, that there is a 

moisture gradient in wood, i.e., that different numbers of water molecules are bound at 

different sorption sites, as shown in Figure 3. The different sorption sites are then 

separated according to the theory of isolated sorption sites via potential pits. We know 

from thermodynamics that water in different states has different enthalpies. The potential 

pit is then an energy barrier between two adjacent sorption sites that must be overcome if 

the water molecule is to move in the direction of the moisture gradient. The size of the 

potential pit varies with humidity and is already constant above hygroscopicity limit. The 

size of the potential pit is expressed in terms of the activation energy Ea, which determines 

the necessary magnitude of energy supplied to the water molecule to overcome the energy 

barrier and move into the adjacent potential pit. The activation energy depends on the 

moisture content of the wood (Horáček, 2008). 

4.7.2 Diffusion of water and gases in wood 

Diffusion characterizes the movement of bound water in wood. If there is an 

uneven distribution of moisture in the wood, water movement - diffusion - is induced to 

compensate for these differences. Diffusion refers to the molecular flux caused by a non-

zero concentration gradient where a substance tries to find an equilibrium concentration. 
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No external static pressure is required for this movement, but only the concentration 

gradient is the driving force. The concentration gradient can be thought of as a non-

uniformly distributed moisture in the wood, but also as a non-uniformly distributed 

temperature field or chemical potential of water. Let us consider only the movement of 

water bound across the fibers, e.g. in the radial direction. Water can then move in different 

states through the wood in three ways - (1) across the tangential cell wall as liquid g1, (2) 

across the lumen in the radial direction as water vapor g2, and (3) across the radial cell 

wall as liquid g3. In the tangential direction, the movement of water can be described by 

analogy to the radial flow. The conductivity of path (3) is negligible due to the need to 

travel large distances and the considerable activation energy of the bound water, and the 

general transverse diffusion model is based only on the conductive paths (1) and (2) 

 
1

𝑔𝑇
=

1

𝑔1
+

1

𝑔2
 (7) 

where gT is the conductivity of water bound in the transverse direction, g1 is the 

conductivity of water through the cell wall, g2 is the conductivity of water vapour through 

the lumen and gi≈Kwi (the moisture conductivity coefficient kg.m-1.s-1). From the 

perspective of water in wood, it is necessary to consider wet wood as a continuum - an 

environment with continuously changing properties. All parameters of such an 

environment are then continuous functions of spatial coordinates and time. According to 

its nature, diffusion is divided into isothermal and non-isothermal, stationary and non-

stationary (Horáček, 2008). The general physical notation of water diffusion in wood is: 

 𝑗 = −𝐷∇𝑐 (8) 

where 𝑗 – flux density (kg.m-2.s-1), D – coefficient of diffusion (m2.s-1) a 𝑐 – water 

concentration in wood (kg.m-3). 

4.7.2.1 Stationary diffusion 

Under stationary (steady) conditions, i.e. if the diffusion is constant in time and varies 

only with distance, the process can be described according to Fick's law I: 

 
𝑚

𝑡 𝑆
= 𝐷

∆𝑐

∆𝑥
 (9) 

where D – coefficient of diffusion (m2.s-1), m – weight of the diffused liquid (kg), t – time 

(s), S – diffusion area (m2), ∆𝑥 distance of different concentrations (m) a ∆𝑐 difference in 

concentration (kg.m-3) (Dushman, 1962). 

4.7.2.2 Non-stationary diffusion 

In non-stationary diffusion, the fluid flow and its concentration are variables in time and 

space, unlike in stationary diffusion, where both variables are considered constant. 
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Nonstationary fluid flow occurs during heating, impingement, or drying of wood; 

therefore, diffusion of water in wood is often described as a nonstationary process, which 

is derived from a stationary relationship of derivatives by time and distance with a 

simplification to a 1-dimensional Cartesian coordinate system. According to Horáček 

(2008): 

 
𝑑𝑚

𝑑𝑡
= 𝐾𝑤𝑆 (

𝑑𝑤

𝑑𝑥
)
𝑡,𝑥

 (10) 

By applying 1. Law of Thermodynamics 

 𝐸1̇ − 𝐸2̇ = 𝐸̇3 (11) 

where 𝐸1̇ – energy flow into the system, 𝐸2̇ – energy flow from the system and 𝐸3̇ – 

energy balance in the system. The equation can be written as: 

 𝐸1̇ ≈̇ (
𝑑𝑚

𝑑𝑡
)
𝑖𝑛

= 𝐾𝑤𝑆 (
𝑑𝑤

𝑑𝑥
)
𝑥
 (12) 

 𝐸2̇ ≈̇ (
𝑑𝑚

𝑑𝑡
)
𝑜𝑢𝑡

= 𝐾𝑤𝑆 (
𝑑𝑤

𝑑𝑥
)
𝑥+∆𝑥

 (13) 

 𝐸3̇ ≈̇ (
𝑑𝑚

𝑑𝑡
)
𝑔𝑎𝑖𝑛

= 𝑆𝜌𝑟𝑤̅ (
𝑑𝑤

𝑑𝑡
)
∆𝑥

 (14) 

Substituting (12) – (14) into equation (11) and rearranging, we get:  

 
𝑑𝑤

𝑑𝑡
=

𝐾𝑤

𝜌𝑟𝑤̅

𝑑2𝑤

𝑑𝑥2
 (15) 

Substituting relation into equation (15) gives an equation for the approximate 

determination of the average diffusion coefficient of water in wood, which is assumed to 

be constant: 

 
𝑑𝑤

𝑑𝑡
= 𝐷̅

𝑑2𝑤

𝑑𝑥2
 (16) 

A more accurate solution can be obtained by differentiating the coefficient D by the 

moisture content of the wood and equation (16) in the form: 

 
𝑑𝑤

𝑑𝑡
=

𝑑

𝑑𝑥
(𝐷

𝑑𝑤

𝑑𝑥
) (17) 

The partial differential equations (16) and (17) are called II. Fick's law, and by solving 

them partially we obtain the distribution of moisture (or concentration, osmotic pressure, 
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free energy of bound water) as a function of position and time, i.e. w=f(x,t). The general 

form of Fick's law II in the Cartesian coordinate system has the form: 

 
𝑑𝑤

𝑑𝑡
=

𝑑

𝑑𝑥
(𝐷𝑥

𝑑𝑤

𝑑𝑥
) +

𝑑

𝑑𝑦
(𝐷𝑦

𝑑𝑤

𝑑𝑦
) +

𝑑

𝑑𝑧
(𝐷𝑧

𝑑𝑤

𝑑𝑧
) (18) 

When solving these equations, it is necessary to know the boundary conditions for the 

equilibrium moisture content on the surface of the solid, the moisture distribution at the 

initial moment and the target moisture content of the wood (Siau, 1995). 
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5 Thermal properties of wood 

The thermal properties of wood are most often of interest to us when solving practical 

problems related to drying wood and using the thermal insulation properties of wood. For 

example, we are interested in how much heat must be supplied to a wood-water system 

to warm it to the desired temperature, and what is the temperature at a given point in the 

body and at a given time. We are less concerned with questions of changes in the 

dimensions of the solid associated with temperature change (Horáček, 2008). 

5.1 Thermal expansion 

Increasing the temperature of a body causes the energy of its molecules to increase, and 

ultimately the size of the body to increase. Thermal expansion is characterized by the 

coefficient of thermal expansion 𝛼𝑖, which is defined, similarly to the coefficient of 

swelling and slumping, by the ratio of the change in dimension and the dimension of the 

soil body with a linear dependence on temperature: 

 𝛼𝑖 =
𝑙𝑇 − 𝑙0
𝑙0Δ𝑇

 (19) 

where 𝛼𝑖 - coefficient of thermal expansion in i-direction (mm-1.K-1), 𝑙0 - initial 

dimension (m) and 𝑙𝑇 - dimension after temperature change Δ𝑇 (K). 

The coefficient of thermal expansion 𝛼𝑖, expresses the change in the unit length of wood 

when heated by 1K. Due to the anisotropy of the wood, the ratios of 𝛼𝑖 in each direction 

are similar to those of swelling or shrinking, 𝛼𝑇: 𝛼𝑅: 𝛼𝐿 = 15: 10: 1, but the values are 

about 4 orders smaller. Given these low values of the thermal expansion coefficient 𝛼𝑖, 

we can neglect the thermal dimensional changes in wood compared to moisture content. 

The linear dimension of the body when the temperature changes by ΔT can be calculated 

according to Eq (Horáček, 2008): 

 𝑙𝑇 = 𝑙0 + 𝛼𝑖 Δ𝑇 = 𝑙0(1 + 𝛼𝑖 Δ𝑇)  (20) 

5.1.1 Effect of temperature on the mechanical properties of wood 

Wood is subjected to the effects of temperature in different time modifications during 

different technological processes. Taking into account these heat treatments, it is 

desirable to investigate the changes in the structure of wood in order to influence its 

further use. In addition to temperature, the effect of moisture content must also be taken 

into account in the process of converting wood into a product. The interaction of 

temperature and moisture content of the wood has a more pronounced effect on the 

change in mechanical properties due to the individual action of these factors. The 

torsional modulus G is sensitive to temperature change. A significant decrease in elastic 

modulus due to temperature is generally described by physical and chemical changes in 



25 

lignin, hemicelluloses or amorphous cellulose. Similar results were found when the effect 

of temperature on the elastic moduli of wood E was also observed. The relationship 

between temperature and tensile modulus E is linear. When observing the effect of 

temperature on the shear strength of wood, there is a more pronounced decrease in 

strength observed at moisture contents around cell wall saturation limit than in the dry 

state. Even at this strength, moisture-temperature interactions are more pronounced. The 

relationship between temperature and strength in the humidity range from 20 to 100°C is 

linear. If the moisture content is greater than cell wall saturation limit, the modulus of 

elasticity no longer changes. The dependence of the elastic modulus on moisture content 

and temperature can be expressed according to the following relationships (Požgaj et al., 

1997): 

 𝐸𝑙 = 𝐸𝑙0(1 + 𝐸𝑙𝑇(𝑇0 − 𝑇)) + 𝐸𝑙𝑤(𝑤𝑓 − 𝑤𝑎) (21) 

 𝐸𝑟 = 𝐸𝑟0(1 + 𝐸𝑟𝑇(𝑇0 − 𝑇)) + 𝐸𝑟𝑤(𝑤𝑓 − 𝑤𝑎) (22) 

 𝐸𝑡 = 𝐸𝑡0(1 + 𝐸𝑡𝑇(𝑇0 − 𝑇)) + 𝐸𝑡𝑤(𝑤𝑓 − 𝑤𝑎) (23) 

 𝐺𝑙𝑟 = 𝐺𝑙𝑟0(1 + 𝐺𝑙𝑟𝑇(𝑇0 − 𝑇)) + 𝐺𝑙𝑟𝑤(𝑤𝑓 − 𝑤𝑎) (24) 

 𝐺𝑙𝑡 = 𝐺𝑙𝑡0(1 + 𝐺𝑙𝑡𝑇(𝑇0 − 𝑇)) + 𝐺𝑙𝑡𝑤(𝑤𝑓 − 𝑤𝑎) (25) 

 𝐺𝑟𝑡 = 𝐺𝑟𝑡0(1 + 𝐺𝑟𝑡𝑇(𝑇0 − 𝑇)) + 𝐺𝑟𝑡𝑤(𝑤𝑓 − 𝑤𝑎) (26) 

where:  

 𝑤𝑎 = 𝑤     𝑖𝑓    𝑤 ≤ 𝑤𝑓  (27) 

 𝑤𝑎 = 𝑤𝑓    𝑖𝑓    𝑤 > 𝑤𝑓 (28) 

𝐸𝑙0. 𝐸𝑟0, 𝐸𝑡0, 𝐺𝑙𝑟0, 𝐺𝑙𝑡0, 𝐺𝑟𝑡0 – modulus of elasticity at 20°C (MPa; %); 

𝐸𝑙𝑤, 𝐸𝑟𝑤. 𝐸𝑡𝑤. 𝐺𝑙𝑟𝑤 , 𝐺𝑙𝑡𝑤. 𝐺𝑟𝑡𝑤 – coefficients describing the effect of humidity and 

temperature (MPa) (Ormarsson, 1998). 



26 

 
Figure 4 – Average values of the modulus of elasticity with changes in moisture content and temperature 

(Sulzberger, 1953) 

It is therefore obvious that temperature also has an obvious effect on the mechanical 

properties, namely that the strength of the wood and its elasticity decrease with 

temperature. The smallest effect of temperature can be observed in tension parallel to the 

grain. On the other hand, mechanical properties perpendicular to the grain are more 

sensitive to temperature changes than in the direction of the grain. This can be explained 

by the fact that covalent bonds are less involved in the strength of wood than hydrogen 

bonds when stressed perpendicular to the fibers (Požgaj et al., 1997). 
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6 Mechanics of plates and fiber-composite materials 

Wood is a natural anisotropic material consisting of fibers of individual cells. Due to its 

fibrous structure, it is considered an orthotropic material in terms of mechanical behavior.  

Such materials lie between isotropic and anisotropic materials, where the degree of 

isotropy depends on the number and orientation of the planes of symmetry. 

The variation in these materials can be observed most clearly in their response to 

different types of loads such as tensile and shear. When a rectangular material sample 

made of isotropic, anisotropic, and orthotropic materials is subjected to uniaxial tensile 

loading, the response will differ among them. The isotropic material sample under 

uniaxial tensile loading will stretch in the loading direction and compress in the transverse 

direction (as shown in the Figure 5), while the angles between the sides of the rectangle 

remain unchanged. However, under pure shear, the angles between the sides will change 

but there will be no elongation or compression. The deformations of an isotropic material 

are thus "direction-independent," meaning that normal deformations are determined by 

normal stresses and are not affected by shear stresses, while shear deformations are 

determined by shear stresses and are not affected by normal stresses. For anisotropic 

materials, we can observe a correlation between the normal load components and shear 

deformations and vice versa. When subjected to normal loads, the material will 

experience both shortening and a change in the angle of the sides. In addition to shear 

deformation, the material will elongate and shorten when subjected to pure shear 

(Agarwal, 2015). 

 
Figure 5 – Uniaxial tension, pure shear (Agarwal, 2015) 
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6.1 Hooke’s law for anisotropic and orthotropic materials 

Normal stress is a measure of force per unit area applied perpendicular to the surface. The 

corresponding displacement is defined as the elongation (or shortening) per unit length 

of material in the direction of loading. In isotropic materials, the relationship between 

stress and strain is direction-independent, requiring only one elastic constant to describe 

the elastic behavior of the material under uniaxial loading. However, in anisotropic 

materials, at least two elastic constants are required to describe the elastic behavior due 

to the dependence of stress and strain on the direction of the applied force (Nettles, 1994). 

When an isotropic material is subjected to normal stress 𝜎 in a particular direction, only 

the dimensions change, but not the shape. As a result, 𝜀 = 0 and 𝛾 = 0. However, in the 

case of shear stress, only the shape changes, not the dimensions, so 𝜀 = 0 and 𝛾 ≠ 0. On 

the other hand, when an anisotropic material is subjected to normal stress 𝜎 in a particular 

direction, there is a change in both the dimensions and the shape, resulting in 𝜀 ≠ 0 and 

𝛾 ≠ 0. The same is true when an anisotropic material is subjected to shear stress 𝜏 (Vrbka, 

2008). 

 
Figure 6 – Mechanical behavior of isotropic and anisotropic material (Vrbka, 2008) 

The schematic shown Figure 6 illustrates a solid isotropic material. The material's 

strength is characterized by a single value, the modulus E, which is independent of the 

direction of the load. In contrast, the stiffness of an orthotropic (or anisotropic) material 

requires at least two material constants to describe its properties - one for the fibers' 

direction and another for the direction perpendicular to the fibers. Typically, these are 𝐸𝐿 
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(the elastic modulus of the material in the direction of the fibers) and 𝐸𝑇 (the elastic 

modulus of the material perpendicular to the fibers) (Vrbka, 2008). 

For ease of notation and definition, the subscripts 1 and 2 can be used, where 𝐸1 represents 

the elastic modulus in the direction of the fibers (or equivalent) and 𝐸2 represents the 

elastic modulus perpendicular to the fibers (or equivalent). Subscripts can also be used to 

indicate stresses, strains, and other elastic moduli. In contrast, for orthotropic materials, 

the directions or orientations must be explicitly specified. If external stresses are applied 

perpendicular or transverse to the fibers of a material, it is considered to be orthotropic in 

a specific way (Nettles, 1994). 

 
Figure 7 – Difference between isotropic and orthotropic material (Nettles, 1994) 

6.1.1 General anisotropic material 

It is the most general material model. Hooke's law can be according to Vrbka (2008) 

written in the following tensor form. 

 
𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙         𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3 

(29) 

possibly in a narrowed form, which we will use hereafter. 

 𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗 (30) 

For reasons of formal simplicity, Einstein's summation symbolism was used to sum over 

all indices i, j, k, l and I, j, respectively. The relation above can be expressed as a matrix. 
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[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜏23

𝜏31

𝜏12]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

𝐶14 𝐶15 𝐶16

𝐶24 𝐶25 𝐶26

𝐶34 𝐶35 𝐶36

𝐶41 𝐶42 𝐶43

𝐶51 𝐶52 𝐶53

𝐶61 𝐶62 𝐶63

𝐶44 𝐶45 𝐶46

𝐶54 𝐶55 𝐶56

𝐶64 𝐶65 𝐶66]
 
 
 
 
 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3
𝛾23

𝛾31

𝛾12]
 
 
 
 
 

 
(31) 

The shear stresses and slope were included in the previous matrix relationship as part of 

the assignment to provide a clear physical interpretation.  

 𝜎4 = 𝜏23  ;    𝜎5 = 𝜏31   ;    𝜎6 = 𝜏12 (32) 

 𝜀4 = 𝛾23   ;    𝜀5 = 𝛾31   ;    𝜀6 = 𝛾12 (33) 

In simplified matrix form, we express the relationship in symbolic form. 

 𝜎 = 𝐶𝜀 (34) 

In expanded matrix form for plane 12 (xy): 

 [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [

𝐶11 𝐶12 𝐶16

𝐶12 𝐶22 𝐶26

𝐶16 𝐶26 𝐶66

] ⌊

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

⌋ (35) 

For the case of transverse stresses τyz and τxz in expanded matrix form: 

 [
𝜏𝑦𝑧

𝜏𝑥𝑧
] = [

𝐶44 𝐶45

𝐶45 𝐶55
] [

𝛾𝑥𝑧

𝛾𝑦𝑧
] (36) 

 where [𝜎] is the stress tensor, C is the stiffness matrix, or the matrix of stiffness material 

constants, and [𝜀] is the deformation vector. The matrix of stiffness material constants C 

is therefore a symmetric matrix, which contains a total of 21 independent material 

constants in the case of a general anisotropic material (Vrbka, 2008). According to Nettles 

(1994) some of the matrix’s C, can be defined by known material constants: 

 𝐶11 =
𝐸11

(1 − 𝜇12𝜇21)
     ;     𝐶22 =

𝐸22

(1 − 𝜇12𝜇21)
    (37) 

 𝐶66 = 𝐺12   ;  𝐶44 = 𝐺23   ;    𝐶55 = 𝐺13   ;   𝐶12 = 𝐶11𝜇21 (38) 

In some cases, Hooke's law is used in inverse form, which expresses the elements of the 

transformation vector 𝜀 as a linear combination of the elements of the stress vector 𝜎. The 

corresponding relations are obtained by multiplying Hooke's law in its basic form by the 

internal stiffness matrix [C]-1 from the left, i.e. (Vrbka, 2008). 
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 𝐶 − 1𝜎 = 𝐶 − 1𝐶𝜀 (39) 

 The inverse of the stiffness matrix [C]-1 is called the material yield matrix with the 

designation [S], written mathematically (Vrbka, 2008). 

 [𝑆] = [𝐶]−1 (40) 

After proper mathematical modifications, we obtain the relation for determining the 

deformations, i.e. 

 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀6
𝛾23

𝛾31 

𝛾12 ]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

𝑆14 𝑆15 𝑆16

𝑆24 𝑆25 𝑆26

𝑆34 𝑆35 𝑆36

𝑆41 𝑆42 𝑆43

𝑆51 𝑆52 𝑆53

𝑆61 𝑆62 𝑆63

𝑆44 𝑆45 𝑆46

𝑆54 𝑆55 𝑆56

𝑆64 𝑆65 𝑆66]
 
 
 
 
 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜏23

𝜏31

𝜏12]
 
 
 
 
 

 (41) 

The material yield matrix [S] is, like the material stiffness matrix C, a symmetric matrix, 

where the following holds 

 𝑆𝑖𝑗 = 𝑆𝑗𝑖 (42) 

6.1.2 Generally orthotropic material 

In general, an orthotropic material must satisfy the condition where the load is oriented 

at an angle to the material other than 0° or 90°. The body is considered generally 

orthotropic, also because the load is not considered in the anatomical directions of the 

material (Nettles, 1994). 

 
Figure 8 – Main orthotropic coordinate system (Nettles, 1994) 

Stresses and strains in orthotropic material must be transformed into coordinates 

corresponding to the orientation of the fibers in the body, i.e., into anatomical directions. 

The orientations are illustrated in Figure 9 for the case where the forces act in the 1-

direction (Nettles, 1994): 
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Figure 9 - Generally orthotropic body (Nettles, 1994) 

 

We derive Hooke's law of general orthotropic material in the main orthotropic coordinate 

system from Hooke's law of general anisotropic material considering the characteristics 

of orthotropic axes (Ventsel, 2001): 

 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜏23

𝜏31

𝜏12]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44 0 0
0 𝐶55 0
0 0 𝐶66]

 
 
 
 
 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3
𝛾23

𝛾31

𝛾12]
 
 
 
 
 

 
(43) 

 

Taking symmetry into account, a general orthotropic material's stiffness matrix [C] 

comprises 9 independent material constants. Hooke's law for a general orthotropic 

material can be obtained by modifying Hooke's law in inverse form in a similar manner 

as for a general anisotropic material. 

 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3
𝛾23

𝛾31

𝛾12]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑆44 0 0
0 𝑆55 0
0 0 𝑆66]

 
 
 
 
 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜏23

𝜏31

𝜏12]
 
 
 
 
 

 (44) 
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Applying the superposition principle for loading stresses in the main orthotropic 

directions 1, 2 and 3, we obtain relations for the relative strains and slope. The procedure 

is similar to that for isotropic material. 

 
Figure 10 – Loading of an element of a general orthotropic material in the main orthotropic direction 

For relative deformations and slope in the main orthotropic directions we get 

 𝜀1 =
𝜎1

𝐸1
− 𝜇21

𝜎2

𝐸2
− 𝜇31

𝜎3

𝐸3
 (45) 

 𝜀2 = −𝜇12

𝜎1

𝐸1
+

𝜎2

𝐸2
− 𝜇32

𝜎3

𝐸3
 (46) 

 𝜀3 = −𝜇13

𝜎1

𝐸1
− 𝜇23

𝜎2

𝐸2
+

𝜎3

𝐸3
 (47) 

 𝛾23 =
𝜏23

𝐺23
    ;    𝛾31 =

𝜏31

𝐺31
    ;     𝛾12 =

𝜏12

𝐺12
 (48) 

The main orthotropic directions are indicated by the subscripts of the stress components, 

while the direction of the respective stress is denoted by the first subscript of the Poisson 

numbers and the direction of contraction is indicated by the second subscript. Previous 

equation written in matrix form. 
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[
 
 
 
 
 
𝜀1

𝜀2

𝜀3
𝛾23

𝛾31

𝛾12]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸1
−

𝜇21

𝐸2
−

𝜇31

𝐸3

−
𝜇12

𝐸1

1

𝐸2
−

𝜇32

𝐸3

−
𝜇13

𝐸1
−

𝜇23

𝐸2

1

𝐸3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1

𝐺23
0 0

0
1

𝐺31
0

0 0
1

𝐺31]
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3
𝜏23

𝜏31

𝜏12]
 
 
 
 
 

 (49) 

Written in contracted form. 

 
[𝜀] = [𝑆][𝜎] 

(50) 

There are a total of 12 material parameters contained within the S yield matrix. The 

material parameters are very significantly related through the symmetry condition of the 

material compliance matrix S. 

 
𝜇21

𝐸2
=

𝜇12

2
   ;     

𝜇31

𝐸3
=

𝜇13

𝐸3
    ;     

𝜇32

𝐸3
=

𝜇23

𝐸3
 (51) 

Therefore, according to material properties described in Vrbka (2008), a general 

orthotropic material is characterized by 9 independent parameters, namely 𝐸1, 𝐸2, 𝐸3, 𝜇12, 

𝜇23, 𝜇31, 𝐺12, 𝐺23, and 𝐺32, as well as three Poisson's ratios: 𝜇12, 𝜇32, and 𝜇13.  

6.1.3 Planar orthotropic material 

For a planar orthotropic material where the principal orthotropic axes are the coordinate 

axes 1 and 2, the matrix relation for a general orthotropic material gives rise to the 

following basic form of Hooke's law Vrbka (2008). 

 [

𝜎1

𝜎2

𝜏12

] = [

𝐶11 𝐶12 0
𝐶21 𝐶22 0
0 0 𝐶66

] [

𝜀1

𝜀2

𝛾12

] (52) 

As a result, a planar orthotropic material is characterized by four independent material 

constants within its stiffness matrix [C]. According to the previous relations, the inverse 

expression of Hooke's law can be given as follows: 

 [

𝜀1

𝜀2

𝛾12

] = [

𝑆11 𝑆12 0
𝑆21 𝑆22 0
0 0 𝑆66

] [

𝜎1

𝜎2

𝜏12

] (53) 
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Likewise, in this case, the compliance matrix 𝑆 consists of four independent elements. 

When the independent elements of S are defined using material constants, the inverse 

Hooke's law can be expressed in the following form: 

 [

𝜀1

𝜀2

𝛾12

] =

[
 
 
 
 
 
 

1

𝐸1
−

𝜇21

𝐸2
0

−
𝜇12

𝐸1

1

𝐸2
0

0 0
1

𝐺12]
 
 
 
 
 
 

[

𝜎1

𝜎2

𝜏12

] (54) 

This expression involves four independent material constants, namely 𝐸1, 𝐸2, 𝜇21, and 𝐺12, 

as described in Vrbka (2008). 

6.2 Stress and strain transformations 

When using wood and wood composites, situations often arise where the orientation of 

the fibers in the body does not correspond to a suitable coordinate system. The orientation 

of the fibers in the wood is represented by the anatomical coordinate system. This may 

ideally correspond to the global coordinate system, but in a non-ideal case the fiber 

deflection will be non-zero. In such cases, the directions in which the deformations due 

to stresses occur do not correspond to us and we have to use a transformation. The stress-

strain properties of materials are generally discussed in relation to their non-isotropic 

nature (Bodig & Jayne, 1993). 

In the transformation we will denote two coordinate systems: 

- Global coordinate system (global axes) ...𝑥𝑖̅  

- Anatomical coordinate system (anatomical axes) ... 𝑥𝑖 

6.2.1 Stress transformation 

The transformation matrix T is utilized in the form of a stress transformation. According 

to Bodig&Jayne (1993): 

 𝑇𝜎 = [

cos2 𝜃 sin2 𝜃 +2(sin 𝜃 cos 𝜃)

sin2 𝜃 cos2 𝜃 −2(sin 𝜃 cos 𝜃)

−(sin 𝜃 cos 𝜃) +(sin 𝜃 cos 𝜃) (cos2 𝜃 − sin2 𝜃)

] (55) 

In this case, the goniometric functions of sine and cosine that correspond to the deflection 

of fibers in anatomical axes from global axes are expressed using C and S, respectively. 

𝜃 represents the angle of fiber deflection from global axes. The equation for stress 

transformation is expressed as follows: 

 [𝜎] = [𝑇𝜎][𝜎̅] (56) 
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where |𝜎| is the stress matrix acting in the anatomical axes and |𝜎̅| is the stress matrix 

acting in the geometrical axes. Then 𝜃 is the angle of deflection of the fibers from the 

global axes. An alternative to this notation may look like the following: 

 [

𝜎1

𝜎2

𝜎12

] = [𝑇𝜎] [

𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

] (57) 

where 𝜎𝑥, 𝜎𝑦 and 𝜎𝑥𝑦 correspond to the global axes and 𝜎1, 𝜎2 and 𝜎12 correspond to the 

anatomical axes. For example, for a material with a fiber offset of 60° from the geometric 

coordinate axes, the notation would be as follows 

 [

𝜎1

𝜎2

𝜎12

] = [

cos2 𝜃 sin2 𝜃 +2(sin𝜃 cos 𝜃)

sin2 𝜃 cos2 𝜃 −2(sin𝜃 cos 𝜃)

−(sin𝜃 cos 𝜃) +(sin𝜃 cos 𝜃) (cos2 𝜃 − sin2 𝜃)

] [

𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

] (58) 

Assumptions for stress transformation (Bodig & Jayne, 1993):  

• Invariant, 

• Equilibrium method, 

• The goniometric relations apply, 

• The general form of stress transformation is derived by incorporating goniometric 

relations into the equilibrium method, particularly when all stress components act 

in geometric axes, 

• The components of transformation rotate in a circle (known as Mohr's circle) , 

• The transformation involves the appearance of the trigonometric functions 

sin(2𝜑) and cos(2𝜑). 

6.2.2 Transformation of deformations 

To perform stress transformation, we utilize the transformation matrix T, which according 

to Bodig&Jayne (1993) takes the following form: 

 𝑇𝜀 = [

cos2 𝜃 sin2 𝜃 +(sin𝜃 cos 𝜃)

sin2 𝜃 cos2 𝜃 −(sin𝜃 cos 𝜃)

−2(sin𝜃 cos 𝜃) +2(sin 𝜃 cos 𝜃) (cos2 𝜃 − sin2 𝜃)

] (59) 

Here, C and S represent the trigonometric functions of the sine and cosine of the angle 

between the fibers in the anatomical axes and the global axes. The equation for 

deformation transformation is expressed in the following form: 

[𝜀] = [𝑇𝜀][𝜀]̅ 

Here, |𝜀| refers to the deformation matrix operating in the anatomical axes, while |𝜀 ̅| refers 

to the deformation matrix operating in the geometric axes. An alternative to this notation 

may appear as follows. 
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[

𝜀1

𝜀2

𝜀12

] = [𝑇𝜀] [

𝜀𝑥

𝜀𝑦

𝜀𝑥𝑦

] 

where 𝜀𝑥, 𝜀𝑦 and 𝜀𝑥𝑦 correspond to the global axes and 𝜀1, 𝜀2 and 𝜀12 correspond to the 

anatomical axes (Bodig & Jayne, 1993). 

6.2.3 Transformation of stiffness matrix 

The relation for the stiffness matrix transformation is written in the forms. 

𝐶1̅1𝑖
= 𝐶11 cos4 𝜃 + 2(𝐶12 + 2𝐶66) cos2 𝜃 sin2 𝜃 + 𝐶22 sin4 𝜃 

𝐶1̅2𝑖
= (𝐶11 + 𝐶22 − 4𝐶66)𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝐶12(𝑐𝑜𝑠4𝜃 + 𝑠𝑖𝑛4𝜃) 

𝐶2̅2𝑖
= 𝐶11𝑠𝑖𝑛

4𝜃 + 2(𝐶12 + 2𝐶66)𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝐶22𝑐𝑜𝑠4𝜃 

𝐶1̅6𝑖
= C11 − C12 − 2C66) 𝑐𝑜𝑠3𝜃sin𝜃 + (C12 − C22 + 2C66)cos𝜃𝑠𝑖𝑛3𝜃 

𝐶2̅6𝑖
= (C11 − C12 − 2C66)sin

3𝜃cos𝜃 + (C12 − C22 + 2C66)sin𝜃cos3𝜃 

𝐶6̅6𝑖
= (C11 + C22 − 2C12 − 2C66)cos2𝜃sin2𝜃 + C66(cos

4𝜃 + sin4𝜃) 

𝐶4̅4𝑖
= C44 ∗ cos2𝜃 + C55 ∗ sin2 𝜃 

𝐶4̅5𝑖
= (C55 − C44)sin𝜃cos𝜃 

𝐶5̅5𝑖
= C55cos

2𝜃 + C44sin
2𝜃 

(60) 

Where  𝐶𝑖̅𝑗𝑖
 is the transformed stiffness matrix, C55 is the non-transformed stiffness 

matrix, θ is the angle expressing the fiber deflection from the longitudinal direction in the 

transformed laminate layer (Bodig & Jayne, 1993).  
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7 Plate theories 

7.1 Kirchhoff-Love Plate Theory 

Also known as Classical Plate Theory (CPT). The main assumption of Kirchhoff-Love 

Plate Theory is the perpendicularity and straightness of normals to the deformed central 

plane of the plate. The theory neglects shear along the thickness of the plate and works 

only with shear stress in the plane of the plate. Such neglect can lead to a relatively high 

error when applied to thick plates. To adopt this theory, two boundary conditions must be 

satisfied. Given the fact that (as in other cases) this is a shell theory, i.e., a theory that 

does not require a three-dimensional analysis, several assumptions according to Szilard 

(2004) must be satisfied: 

• The plate is thin in the sense that the thickness is small compared to the main 

dimensions, but not so thin that the lateral buckling is comparable to the deflection 

w, 

• The thickness of the plate is uniform or varies to such an extent that three-

dimensional stresses are neglected, 

• The applied transverse load is distributed over an area greater than the thickness 

of the plate, 

• The support conditions are such that there are no significant extensions of the 

median plane. 

Displacement field 

The displacement of the plate in the x-axis direction is denoted by u.  For the 

displacement of the plate in the y-axis direction, we denote v and for the displacement 

in the z-axis, w. The Figure 11 shows these displacements.  

 
Figure 11 - CPT displacement field (Nettles, 1994) 
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The CPT is according to Nettles (1994) based on the following representation of the 

displacement field: 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜅𝑥(𝑥, 𝑦) (61) 

 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜅𝑦(𝑥, 𝑦) (62) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (63) 

Where u, v and w are the designations for the displacement components in the x, y and z 

directions, respectively. The displacements in the midplane are denoted by u0, v0, w0. The 

displacement components u and v are functions in the x,y plane. The overall displacement 

in the plate's plane at a particular point is a combination of the normal displacements and 

the displacement caused by bending. Assuming the displacements in the midplane are 

denoted as u0 and v0 along the x and y axes, respectively, the total displacement can be 

expressed as shown in the Figure 12: 

 𝑢 = 𝑢0 − 𝑧
𝑑𝑤

𝑑𝑥
   ;     𝑣 = 𝑣0 − 𝑧

𝑑𝑤

𝑑𝑦
 (64) 

It is assumed that there is no strain in the direction of thickness, only displacement. 

 
Figure 12 – Total displacements in a plate (Nettles, 1994) 

The full derivation of the relations resulting from the definition of the displacement 

field are presented in the appendix 13.1. 
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7.2 Mindlin-Reissner Plate Theory 

Also known as “First-Order Shear deformation theory” (FSDT). Mindlin-Reissner plate 

theory is a mathematical model utilized for analyzing the behavior of thin and thick plates, 

which are structural components that are typically much thinner in one direction than the 

others. It is a more advanced and precise model than classical plate theory, which assumes 

that plates are infinitely thin. Mindlin-Reissner plate theory considers the plate's thickness 

and material properties, such as its elastic modulus and Poisson's ratio, allowing for more 

accurate predictions of deformation and stress within the plate under external loads. 

Reissner and Mindlin developed a theory that considers shear deformation along the 

thickness of a plate, overcoming the limitations of the Kirchhoff-Love Plate theory and 

enabling analysis of thicker plates (Szilard, 2004). The Kirchhoff-Love Plate theory 

(CPT) disregards the influence of shear deformation across the thickness of the plate, 

which may lead to inaccurate results when dealing with plates of larger thicknesses. The 

definition of thin and thick plates is still a matter of debate and depends on several factors, 

including the stiffness of the individual laminates. Generally, plates considered as thin 

under CPT are those whose length/thickness ratio falls between <5-100>, while plates 

considered as thick have a ratio between <5-10>. The first-order shear deformation theory 

(FSDT) considers shear deformation in the plate thickness by assuming constant shear 

deformation throughout the plate's thickness, requiring the utilization of a shear correction 

factor to satisfy the assumption of zero shear stress on the top and bottom planes of the 

plate (Panyatong, 2015). 

For this theory to be applicable, three boundary conditions must be satisfied. One of these 

involves the deflection, while the other two relate to normal and tangential rotations, 

respectively (Szilard, 2004). 

Mindlin-Reissner Plate theory is according to Bittnar&Šejnoha (1992) based on the 

following assumptions: 

- The difference in displacement of the edge points of the plate in the z-axis 

direction (plate compression) is negligible with respect to the absolute value of 

the displacement w, 

- The normals to the midplane remain straight after deformation but are no longer 

perpendicular to the midplane surface of the plate. They are therefore called 

pseudonormals of the plate. The Mindlin-Reissner plate theory neglects the 

collapse of the transverse sections, as can be seen in the Figure 13, 

- The normal stress of 𝜎𝑧 is small compared to the stresses of 𝜎𝑥, 𝜎𝑦. 
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Figure 13 – Assumptions about plate reshaping (Bittnar&Šejnoha, 1992) 

Displacement field 

The FSDT is based on the following representation of the displacement field: 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑥(𝑥, 𝑦) (65) 

 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑦(𝑥, 𝑦) (66) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (67) 

Where u, v and w are the designations for the displacement components in the x, y and z 

directions, respectively. The displacements of points in the midplane are denoted by u0, 

v0, w0. All displacement components (u, v, 𝜙𝑥, 𝜙𝑦) are functions in the x,y plane. 

Compared to Kirchhoff-Love Plate theory, the assumption that there is no strain in the 

thickness direction, only displacement, no longer holds. The displacement in the thickness 

direction is now defined by the rotation of the perpendicular to the centerline of the neutral 

axis of the plate, as shown in the Figure 14 (Kolvik, 2012). 

 
Figure 14 - Displacement of pseudonormals (Abbas, 2013) 

The full derivation of the relations resulting from the definition of the displacement field 

are presented in the appendix 13.2. 
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7.3 Second-Order Shear Deformation Theory 

Second-order shear deformation theory is a mathematical model that is used to describe 

the behavior of thin-walled beams and plates under loading. It is an extension of first-

order shear deformation theory, which only accounts for linear deformations of a beam 

or plate. In contrast, second-order shear deformation theory takes into account the 

nonlinear deformations that can occur in a beam or plate, such as shear and rotation, and 

is therefore more accurate in predicting the behavior of these structures under various 

loads. The theory is typically used in the design of beams and plates in engineering 

applications, such as bridges, buildings, and aircraft. 

Displacement field 

The SSDT is based on the following representation of the displacement field: 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜙1 + 𝑧2𝜙2 (68) 

 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜓1 + 𝑧2𝜓2 (69) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (70) 

Where u, v and w are the designations for the displacement components in the x, y and z 

directions, respectively. The displacements of points in the midplane are denoted by u0, 

v0, w0. All the displacement components u0, v0, w0, 𝜙1, 𝜙2, 𝜓1, 𝜓2 are functions in the 

xy-plane (Shahrjerdi & Mustapha, 2011). 

 

The full derivation of the relations resulting from the definition of the displacement 

field are presented in the appendix 13.3. 

7.4 Third-Order Shear Deformation Theory 

Third order shear deformation theory (TODT) is a mathematical model used in structural 

mechanics to analyze the behavior of plates and other structural elements subject to 

external loads. The theory accounts for the nonlinear shear deformations that occur in 

beams due to large deflections, which can cause the plates to twist and bend out of its 

original shape. This is in contrast to traditional plate theory, which assumes that the plate 

remains straight and only experiences small deflections. By taking into account the 

Figure 15 - Various shear deformation hypotheses (Zhang, 2014) 
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nonlinear deformations, third order shear deformation theory can provide more accurate 

predictions of a plate behavior under load, which is important for designing safe and 

effective structures.  

The main difference between the SODT and TODT is the level of accuracy they 

provide in predicting the behavior of the beam. Second order shear deformation theory is 

a simpler and less accurate model than third order shear deformation theory. It assumes 

that the plate remains straight and only experiences small deflections, and therefore it 

does not account for the nonlinear shear deformations that occur in the plate due to large 

deflections. This means that second order shear deformation theory is only suitable for 

analyzing plates that are not subject to significant loads or deformations. In contrast, third 

order shear deformation theory takes into account the nonlinear shear deformations that 

occur in the plate due to large deflections, which allows it to provide more accurate 

predictions of the plate 's behavior under load. This is important for designing safe and 

effective structures that are subject to large loads or deformations. 

Displacement field 

The TSDT is according to Shokrieh (2017) based on the following representation of the 

displacement field: 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜓𝑥(𝑥, 𝑦) + 𝑧2𝜙𝑥(𝑥, 𝑦) + 𝑧3𝜆𝑥(𝑥, 𝑦) (71) 

 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜓𝑦(𝑥, 𝑦) + 𝑧2𝜙𝑦(𝑥, 𝑦) + 𝑧3𝜆𝑦(𝑥, 𝑦) (72) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (73) 

Where u, v and w are the designations for the displacement components in the x, y and z 

directions, respectively. The displacements in the midplane are denoted by u0, v0, w0. All 

the displacement components u0, v0, w0, 𝜙𝑥, 𝜙𝑦, 𝜓𝑥, 𝜓𝑦, 𝜆𝑥, 𝜆𝑦 are functions in the xy 

plane. 

  
Figure 16 – Transfer displacement of plate according to TSDT (Ghiamy, 2022) 

The full derivation of the relations resulting from the definition of the displacement 

field are presented in the appendix 13.4.  
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8 Methodology 

8.1 CLT panel swelling 

One of the problems faced in this work is the possible damage to laminated cross-

laminated timber boards by the effects of rain and snow, respectively by the direct 

exposure to rainwater that is in direct contact with the top lamella of the board. Damage 

to the lamellas in terms of reduction in modulus of elasticity due to increased humidity 

should also be investigated in terms of time. Therefore, it was decided to verify 

numerically the rate of wetting of the top lamella of the plate by continuous water 

exposure. The objective of the verification is to determine for how long the top lamella 

of the plate must be exposed to water in order for the material used to reach the saturation 

limit of the cell wall. The script that has been developed for this purpose is based on the 

knowledge and relationships described in the chapter on water movement in wood. 

 
Figure 17 - Model boundary conditions 

The model is based on the equation of non-stationary moisture diffusion (chapter  

Non-stationary diffusion), i.e.: 

 
𝑑𝑤

𝑑𝑡
=

𝑑

𝑑𝑥
(𝐷𝑥

𝑑𝑤

𝑑𝑥
) +

𝑑

𝑑𝑦
(𝐷𝑦

𝑑𝑤

𝑑𝑦
) +

𝑑

𝑑𝑧
(𝐷𝑧

𝑑𝑤

𝑑𝑧
) (74) 

The complete numerical script is part of the appendix 13.6. 

8.2 Extension to hygrothermal stresses in laminates 

We know from the chapters Moisture properties of wood and Thermal properties of wood 

that a change in temperature and moisture of a material causes a change in the dimensions 

of the material in the form of swelling/drying or thermal expansion. In other words, 

changes in moisture content and temperature result in strains. These strains are not the 
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result of an external force acting on the body and are not accompanied by a response of 

the body in the form of the presence of internal forces. This is the case if the body is not 

constrained in any way and can change its dimensions in the radial, tangential and 

longitudinal direction, or its entire volume without limitation. Internal forces will be 

present in a body which is subjected to changes in temperature or moisture content and is 

restricted in any way in the directions of temperature and moisture deformations. The 

reasoning in relation to laminated materials is well illustrated in Figure 18 by a simple 

material consisting of two different materials with different moisture content and 

temperature properties. When the environmental moisture or temperature increases, one 

of the materials will react with dimensional changes before the other material. If the two 

materials are not bonded together, each will deform separately with respect to the 

environmental temperature and moisture conditions and no internal forces will occur in 

either material.  

 
Figure 18 – Moisture change of bounded and unbounded laminate layers (Agarwal, 2015) 

Since the two layers of materials form a single unit (are rigidly bonded), the actual 

deformations in both layers are the same. The magnitude of this deformation will be less 

than that of loose material 1 and greater than that of loose material 2 (if the modulus of 

elasticity Ematerial-1>Emateria-l2). The resulting deformation therefore depends on the elastic 

moduli of each material. If there is no external force acting on the body, the internal forces 
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from the hygrothermal loads balance each other - the net internal force is zero. Since 

hygrothermal changes are linear and reversible, the relationship between dimensional 

changes and moisture or temperature change can be written in the following form: 

 𝜀𝑇 = 𝛼Δ𝑇 (75) 

 𝜀𝐻 = 𝛽Δ𝐶 (76) 

where Δ𝑇 – temperature change, Δ𝐶 – change in moisture content, 𝜀𝑇 thermal 

deformation, 𝜀𝐻 moisture deformation, 𝛼, 𝛽 – coefficients of temperature and moisture 

changes. In the case of an orthotropic material, the coefficients of thermal and moisture 

expansion, like other material properties, depend on the orientation of the fibers. The 

moisture and thermal deformations in the longitudinal and transverse directions are then 

written as follows: 

 𝜀𝐿
𝑇 = 𝛼𝐿Δ𝑇 (77) 

 𝜀𝑇
𝑇 = 𝛼𝑇Δ𝑇 (78) 

 𝜀𝐿
𝐻 = 𝛽𝐿Δ𝐶 (79) 

 𝜀𝑇
𝐻 = 𝛽𝑇Δ𝐶 (80) 

Where 𝛼𝐿, 𝛼𝑇, 𝛽𝐿, 𝛽𝑇 are the coefficients of thermal and moisture expansion in the 

longitudinal and transverse directions. These coefficients, like strain and stress, can be 

transformed arbitrarily in the x and y axes as in the case of strains. 

 [

𝛼𝑥

𝛼𝑦

𝛼𝑥𝑦

] = [𝑇𝜀]
−1 [

𝛼𝐿

𝛼𝑇

0
] (81) 

 [

𝛽𝑥

𝛽𝑦

𝛽𝑥𝑦

] = [𝑇𝜀]
−1 [

𝛽𝐿

𝛽𝑇

0

] (82) 

Where [𝑇𝜀] is the transformation matrix, which is the same as the transformation matrix 

given in equation (59) for the strain transformation. Therefore, hygrothermal strains can 

be written in terms of strains: 

 [

𝜀𝑥
𝑇

𝜀𝑦
𝑇

𝛾𝑥𝑦
𝑇

] = [

𝛼𝑥Δ𝑇
𝛼𝑦Δ𝑇

𝛼𝑥𝑦Δ𝑇
] (83) 

 [

𝜀𝑥
𝐻

𝜀𝑦
𝐻

𝛾𝑥𝑦
𝐻

] = [

𝛽𝑥Δ𝐶
𝛽𝑦Δ𝐶

𝛽𝑥𝑦Δ𝐶
] (84) 
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Hygrothermals strains themselves do not produce internal forces or moments when the 

body is not restrained against displacement, torsion or bending. When considering the 

laminate as a whole, thermal and moisture changes do not affect the resulting internal 

force and moment. However, the separate laminas are not free and are constrained by the 

remaining laminas. The deformation of each laminate is affected by the deformation of 

the other laminates. Since the hygrothermal deformations of the laminate are of the same 

nature as the deformations induced by external loading, they can be written as the 

resulting mechanical deformations: 

 [

𝜀𝑥
𝑀

𝜀𝑦
𝑀

𝛾𝑥𝑦
𝑀

]

𝑘

= [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

]

𝑘

− [

𝜀𝑥
𝑇

𝜀𝑦
𝑇

𝛾𝑥𝑦
𝑇

]

𝑘

− [

𝜀𝑥
𝐶

𝜀𝑦
𝐶

𝛾𝑥𝑦
𝐶

]

𝑘

 (85) 

Mechanical stress in kth ply is then calculated by: 

 [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

= [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜀𝑥
𝑀

𝜀𝑦
𝑀

𝛾𝑥𝑦
𝑀

]

𝑘

 (86) 

The relationship (86) represents the solution to the combination of mechanical stresses 

combined with moisture and temperature stresses. 

8.3 Effect of moisture and fiber orientation on material constants 

As already mentioned in the chapter dealing with moisture properties of wood and the 

chapter dealing with the transformation of stiffness metric matrices, both fiber orientation 

and moisture have a significant effect on the material constants of wood. It is clear from 

the chapter Moisture properties of wood that a change in moisture content of wood results 

in a change in dimensions, or deformation. This deformation must be included in the 

calculation together with the change in material constants due to moisture.  

The elastic moduli have a major dependence on the change in fiber orientation. The 

modulus of elasticity in the direction of the fibers decreases by more than 90% when the 

orientation of the fibers is changed by 45°, and by up to 96% when the orientation is 

changed by 90°. The shear modulus decreases by approximately 50% with a 45° change 

in fiber orientation. The stiffness matrix parameters C, which are defined by the elastic 

moduli, are similarly dependent. Similarly, a change in wood moisture content from 12% 

to 30% will reduce the stiffness matrix element C11 by more than 35%. 

Graphic representations of the dependence of wood material parameters on moisture 

content and grain orientation are included in the appendix 13.5. 
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8.4 Compiling a numeric models 

In this chapter, the principle (workflow) of defining numerical models according to the 

chosen plate theories is described in the Figure 19, This principle is the basis for the 

development of the numerical models, but the models themselves may differ slightly. 

The full form of the numerical models is included in the appendix 13.7 – 13.10. 

 
Figure 19 – Flowchart for laminate stress analysis 
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8.5 Experiment  

8.5.1 Thin plate 

The experiment was performed to verify the numerical model. Since it is well known and 

verified by research that the Kirchhoff-Love Plate Theory is not reliable when applied to 

thick plates and the remaining theories are based on CPT, several thin plates of 19 mm 

thickness, 300 mm width and 1500 mm length (Figure 21) were constructed to verify the 

numerical models. It was constructed of three layers of 6-7-6 mm of C22 strength, with 

the surface layers having an orientation in the direction of the plate length L1. The plates 

were placed on supports 1300 mm apart and loaded with the load-bearing arm of a loading 

machine. 

 

 
Figure 20 – Thin plate loading model 

The plate was placed on the supports and gradually loaded with the force arm Q until the 

plate broke. The deflection of the plate was continuously recorded. 

 
Figure 21 – Tested thin plate samples 

The result of the experiment is the deflections of the plate under a certain load. The same 

load and geometry will be applied for the numerical model of „Special Axis and Material 

Symmetry“ and the results will be compared. 
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8.5.2 Thick plate 

From the point of view of mechanics, we distinguish between thin and thick plates. While 

thin plates can be examined without taking into account the shear stress along the 

thickness of the plate, in thick plates the shear stress is often the cause of plate failure. 

Similar to the thin plates, the experiment was approached for the purpose of verifying the 

numerical model. Since it is generally known and verified by research that the Kirchhoff-

Love Plate Theory is not reliable when applied to thick plates and the remaining theories 

deviate from CPT, several plates manufactured by Stora Enso, Pfeifer and Naturfor were 

tested for bending to verify the numerical models. The geometry of the tested plates is 

given in the Table 2. 

Table 2 – Selected CLT panel geometry 

Plate Number 

of 

layers 

Layer 

thicknesses 

[mm] 

Orientation 

of layers 

[°] 

Material 
Plate width 

[mm] 

Plate 

length 

[mm] 

NaturFor 3 30 - 30 - 30 0- 90 - 0 C24 300 1500 

Stora Enso 3 30 - 30 - 30 0- 90 - 0 C24 300 1500 

Pfiefer 3 30 - 30 - 30 0- 90 - 0 C24 300 1500 

As is displayed in the Figure 22 each of the plates was placed on supports and 

progressively loaded with the force Q until the plate broke. The deflection of the plate 

was continuously recorded. The plates were placed on supports 1200 mm apart and loaded 

with the load arm of the tearing machine. 

 
Figure 22 – Loading scheme of the thick plate 

8.6 Model Verification 

Verification of the numerical models was performed in two ways. The first way of 

verification is to compare the results of the numerical models. Since the geometry, loading 

and material characteristics are the same in all models and the fundamentals of the 

numerical models (displacement field, strains and curvatures, equilibrium equations, 

stress-strain relationships, governing plate equations) are different, the numerical models 

should agree in their results when the model is correctly built. 

The second way of verification is to compare the results of deflections from numerical 

models and experimental measurements. Such verification will be performed only for the 
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full symmetry variant, i.e. the variant in which the thickness of the layers is axially 

symmetric and the orientation of the layers is 90°-0°-90° or 0°-90°-0°. Since all numerical 

models are built for generally orthotropic plates, the slightest error can result in different 

results by orders of magnitude.  

8.6.1 Special Axis Symmetry and Material Symmetry 

Special axis and material symmetry refers to the geometry and composition of the panel 

in which the symmetry in the orientation of the layers at angles of 0°-90°-0° and the 

material of the lamellas is maintained, with the plane of symmetry being the neutral and 

geometric centre plane of the panel. Since this is a composition that is typical of 

commercially produced panels, verification was performed in both ways - that is, by 

comparing the deflections of the thick and thin plate experiments with the numerical 

models and by comparing the results from the numerical models with each other. 

 
Figure 23 – Geometry of a specially axisymmetric and material-symmetric plate 

8.6.2 General Axis Symmetry 

Special axial and material symmetry refers to the geometry and composition of the panel 

in which symmetry in the orientation of the material layers is maintained, with the plane 

of symmetry being the neutral and geometric centre plane of the panel. The difference 

from special axial and material symmetry is the orientation of the individual laminae, 

which do not necessarily have to be oriented at 0°-90°-0°, but for example 20°-70°-20°. 

 
Figure 24 – Geometry of a generally axisymmetric plate 

8.6.3 Axial Asymmetry 

Axial asymmetry refers to the geometry and composition of the panel in which the 

symmetry in the orientation of the lamella material layers is not maintained. The 
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difference from special axial and material symmetry and general axial symmetry is the 

orientation of the individual lamellae, which is not geometrically symmetrical in the panel 

width. An example of a panel with axisymmetry can be a panel with a 0°-90°-30° fiber 

orientation. 

 
Figure 25 – Geometry of an axially non-symmetrical plate 

8.6.4 Material Asymmetry 

Material asymmetry refers to the geometry and composition of the panel in which the 

symmetry in the orientation of the layers of the lamella material is maintained, but the 

symmetry of the materials of which the material is composed is not maintained. An 

example would be a panel composed of three laminae, each of which is made of a different 

wood or wood strength. 

 
Figure 26 – Example of a materially unsymmetrical plate 
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9 Results and Discussion 

9.1 CLT panel moisture content change 

In this chapter, the results of a numerical model that investigated the CLT panel moisture 

content change rate are described. The solution was a numerical script constructed based 

on the knowledge of non-stationary diffusion. 

 
Graph 1 - Non-stationary 3D moisture diffusion over time; y-

axis – moisture content (-), x-axis time (t), a – bottom plane of 

the plate, b – middle plane of the plate, c – top plane of the plate 

 
Graph 2 -Non-stacionary 3D moisture diffusion – moisture 

content in Z-axis (thickness of the plate), y-axis – moisture 

content, x-axis -thickness of the plate [m] 

 

 

 

Graph 3 - Non-stacionary 3D moisture diffusion moisture distribution in the XZ plane, t = 5.18e5; x axis – length 

of the plate, y axis – thickness of the plate 
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Based on the findings from the Graph 1 and Graph 3, we can conclude that under the 

given boundary conditions, the top lamella of the CLT panel under consideration is 

soaked to the cell wall saturation limit (28% material moisture) in 143.8 hours, 

respectively 5.7 days. It is important to note that although this is a non-stationary diffusion 

model, it is only a simplified model that does not consider the presence of adhesive in 

CLT panels, which has different diffusion properties than wood. It can be expected that 

the wetting time will be longer if the glued joint is included in the calculation. The 

moisture gradient along the thickness of the panel would not be linear as in Graph 2, but 

the moisture profile would show large differences in moisture content at the glued joint. 

An example of such a moisture gradient can be seen in the Graph 4, which represents the 

moisture profile of a three-layer CLT panel with 0.1 mm glued joints. From this graph, 

presented by Gereke (2009), it is clear that there is a jump in moisture content at the glued 

joint. The question remains as to what effect the glued joint has on the wetting rate of a 

unilaterally moisture loaded panel. The answer to this question could be the non-

stationary diffusion model involving the glued joint presented in "Combined loading of 

laminated structural elements" by Valášek (2021). 

 

The numerical model is not a unified solution, and the result is influenced by a number 

of factors. These factors include the thickness of the layers of the CLT panel, the thickness 

of the adhesive, the type of adhesive, the wood species used to produce the CLT panel, 

the diffusion properties of the adhesive, the method used to calculate the moisture 

distribution, the effect of stationary or non-stationary conditions, or the chosen neglect of 

the effect of temperature on the rate of wetting. The calculation itself was undertaken to 

test the hypothesis that exposure of the ceiling panel to rainwater may lead to significant 

degradation of the material properties of the CLT panel surface. If the construction of a 

timber building using CLT ceiling panels is properly designed and constructed, such 

extreme moisture loading cannot occur during the use of the building. However, what is 

often not included in the calculations and considerations is the construction phase of the 

Graph 4 - Moisture profiles along the thickness of a CLT panel involving a glued joint with constant glue diffusion 

coefficients compared to measurements; 14 days (Gereke, 2009) 
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rough construction, during which entire floors may become covered with rainwater or 

snow (as can be seen on Figure 27).  

  

 
 

Figure 27 - CLT panel ceiling exposed to pooled water (Olsson, 2020) 

Such moisture loads are examined from the perspective of protection against mold and 

wood-boring fungi and are not considered from the perspective of reduction or change in 

mechanical properties (Öberg, 2018). The software (AxisVM, Abaqus, Dlubal, Ansys) 

used for the design of structures or joints does not allow the inclusion of moisture 

deformations in the calculation (AxisVM support [online]; Abaqus Analysis [online]; 

Dlubal manual [online]; Ansys workbench [online]). In the design of timber-based 

structures, the exposure of timber to moisture is only possible through the kdef coefficient 

defined by the service class, which is determined during design for the service stage of 

the structure, not for the design stage (Koželouh, 1998; Eurocode 5, 1994). 
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9.2 Verification 1 – thin plate 

9.2.1 Experiment 1 

This chapter describes the results of individual measurements and their subsequent 

comparison with numerical models. Specific values of the deflection of the plates are 

described. The results are valid for a plate with a temperature of 20°C and a relative 

humidity of 12%. The results are described and illustrated in graphs and tables. 

 
Graph 5 – Results of experimental measurement of deflection of thin plates 

In the Graph 5 it can be seen the deflections of individual plate samples depending on the 

applied surface load [N/m2]. It can be seen from the graph that at the highest load 

observed, i.e., at 6900 N/m2, the deflection ranged from 71.4 to 81.4 mm. The largest 

deflection at the highest observed load occurred in sample 5. The smallest deflection was 

observed in sample 7. 
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Table 3 – Results of experimental measurement of deflection of a thin plate 

Table 3 shows the results of the experimental measurements together with the arithmetic 

mean used in the subsequent comparison of the values from the numerical calculations. 

9.2.2 Numerical models 

This chapter describes the results resulting from the numerical scripts. The boundary 

conditions and loads that were entered into the scripts were based on the conditions of 

Experiment 1. The deflection was calculated for loads from 0 to 6900 N/m2. 

Table 4 – Results of deflection of thin plates from numerical models  

Load 

[N/m2] 

Deformation [mm] 
Standard deviation 

CPT FOSDT SOSDT TOSDT 

700 8.71 8.39 8.42 8.45 0.13 

1400 16.91 16.84 16.87 16.9 0.03 

2100 24.36 24.07 24.1 24.13 0.11 

2800 32.01 31.78 31.81 31.84 0.09 

3500 39.84 39.47 39.5 39.53 0.15 

4200 47.34 47.13 47.16 47.19 0.08 

4900 55.24 54.82 54.85 54.88 0.17 

5600 62.36 61.8 61.83 61.86 0.23 

6300 69.77 69.4 69.43 69.46 0.15 

6900 77.78 77.39 77.42 77.55 0.15 

In the Table 4 we can see that the results of the numerical theories are similar. FOST, 

SODT and TODT differ in their deflection results in hundredths of millimeters, while 

CPT differs in tenths of millimeters. Due to the low standard deviation, the results can be 

considered relevant. The smallest deflection at the maximum considered load of 6900 

N/m2 resulted from FODT. The highest deformation at the maximum considered load 

resulted from CPT. 

Load 

[N/m2] 

Deformation [mm] 
Arithmetic 

mean 
Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Sample 

6 

Sample 

7 

Sample 

8 

Sample 

9 

700 8.62 8.37 8.23 8.49 8.73 9.36 8.06 9.34 9.62 8.76 

1400 16.46 16.04 15.56 16.18 16.73 18.03 15.4 17.01 17.28 16.52 

2100 24.29 23.54 22.9 23.65 24.73 26.36 22.4 24.68 24.95 24.17 

2800 31.96 31.04 30.06 31.2 33.06 35.03 29.4 32.34 32.62 31.86 

3500 39.79 38.7 37.4 39.6 40.73 43.36 36.4 40.01 40.28 39.59 

4200 47.62 46.37 44.56 46.48 49.06 51.7 43.4 47.68 47.95 47.20 

4900 55.62 54.2 51.9 54.33 57.06 60.03 50.4 55.34 55.62 54.94 

5600 63.62 61.87 59.4 62.02 65.06 - 57.4 63.01 63.28 61.96 

6300 69.98 69.87 66.9 69.98 73.4 - 64.4 70.68 70.95 69.52 

6900 80.62 77.87 74.4 77.97 81.4 - 71.4 78.34 78.28 77.54 
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9.2.3 Comparison of verification results 1 

In this chapter, a comparison between experimental measurements and numerical model 

results is presented. 

Table 5 – Comparison of verification results 1 

Load 

[N/m2] 

Deformation [mm] 
Standard 

deviation 
Experiment 1 – 

average value 
CPT FODT SODT TODT 

 
700 8.76 8.71 8.39 8.42 8.45 0.16  

1400 16.52 16.91 16.84 16.87 16.9 0.15  

2100 24.17 24.36 24.07 24.1 24.13 0.10  

2800 31.86 32.01 31.78 31.81 31.84 0.08  

3500 39.59 39.84 39.47 39.5 39.53 0.13  

4200 47.20 47.34 47.13 47.16 47.19 0.07  

4900 54.94 55.24 54.82 54.85 54.88 0.15  

5600 61.96 62.36 61.8 61.83 61.86 0.21  

6300 69.52 69.77 69.4 69.43 69.46 0.13  

6900 77.54 77.78 77.39 77.42 77.55 0.14  

The Table 5 shows the comparison of the results of verification 1, i.e. the comparison of 

the deflection of the plate loaded experimentally measured and numerically calculated. 

The differences between the numerical theories and the experimental measurements are 

in the order of tenths of millimeters to hundredths of millimeters. The standard deviation 

is in the interval from 0.07 to 0.21. Because the standard deviation is so low, we can 

consider the results relevant.  

Referring to results of experimental measurement 1 (measuring the deflection of the thin 

plate) from Graph 5 and Table 3, it can be said that the mechanical response of all 9 plates 

showed the same deflection values. It should be stated that since the numerical models 

derived were only linear Hooke's law based, only the elastic behavior of the plates was 

investigated and therefore the failure is not included in the working graphs from the 

experimental measurements. Based on the results of the numerical models in Table 4, it 

can be concluded that all numerical models agree in the deflection results. Based on the 

findings from Table 5, it can be concluded that the deflection observed in the experimental 

measurements and the deflection given by the numerical theories are in agreement and it 

can be concluded that the numerical theories were correctly derived for the bending of 

the thin plates. 
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9.3 Verification 2 – thick plate 

9.3.1 Experiment 2 

This chapter describes the results of individual measurements and their subsequent 

comparison with numerical models. Specific values of the deflection of the plates are 

described. The results are valid for a plate with a temperature of 20°C and a relative 

moisture content of 12%. The results are described and illustrated in graphs and tables. 

 
Graph 6 - Results of experimental measurement of deflection of thick plates 

In the Graph 6 it can be seen the deflections of the individual plate samples depending on 

the applied surface load [N/m2]. The graph shows that at the highest observed load, i.e. 

12000 N/m2, the deflection ranged from 0.039 to 3.3 mm. The largest deflection at the 

highest observed load was for NaturFor 1 and the smallest for Stora Enso 2. 
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Table 6 - Results of experimental measurement of deflection of a thick plate 

Load 

[N/m2] 

Deformation [mm] 
Arithmetic 

mean 

Standard 

deviation 

Selective 

standard 

deviation 

NaturFor 

1 

NaturFor 

2 

NaturFor 

3 

NaturFor 

4 

Stora 

Enso 1 

Stora 

Enso 2 

Pfeifer 

1 

Pfeifer 

2 

500 0.517 0.044 0.194 0.049 0.069 0.039 0.214 0.099 0.153 0.152 0.061 

1000 0.809 0.092 0.297 0.093 0.135 0.073 0.357 0.143 0.250 0.232 0.096 

2000 1.192 0.190 0.470 0.185 0.253 0.155 0.543 0.285 0.409 0.323 0.130 

3000 1.475 0.290 0.620 0.290 0.371 0.240 0.710 0.390 0.548 0.383 0.155 

4000 1.692 0.384 0.764 0.384 0.489 0.334 0.856 0.484 0.673 0.423 0.174 

5000 1.900 0.484 0.894 0.492 0.616 0.432 0.989 0.592 0.800 0.456 0.185 

7000 2.292 0.670 1.150 0.698 0.864 0.628 1.253 0.798 1.044 0.517 0.210 

9000 2.675 0.870 1.410 0.911 1.100 0.821 1.539 1.011 1.292 0.576 0.241 

12000 3.300 1.147 1.847 1.212 1.450 1.112 1.979 1.312 1.670 0.685 0.295 
 

The Table 6 shows the results of the experimental measurements together with the 

arithmetic mean, which is used in the subsequent comparison of the values from the 

numerical calculations. The overall standard deviation takes values up to 1.67. This is 

mainly due to the NaturFor 1 and NaturFor 4 samples, where partial delamination of the 

panel layers occurred. This had a significant effect on the final deflection at the observed 

maximum load. When these specimens are declared unsuitable and excluded from the 

statistics, the sample standard deviation values are such that the results can be declared 

relevant. Samples NaturFor 1 and NaturFor 4 are shown on Figure 28. 

 

Sample NaturFor 1 Sample NaturFor 4 

  
Figure 28 – Samples NaturFor 1 and NaturFor 4 excluded from statistics  

9.3.2 Numerical models 

This chapter describes the results resulting from the numerical scripts. The boundary 

conditions and loads that were entered into the scripts were based on the conditions of 

Experiment 2. Deflection was calculated for loads from 0 to 12000 N/m2. 
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Table 7 - Deflection results of thick plates from numerical models  

Load 

[N/m2] 

Deformation [mm] Standard 

deviation CPT FOSDT SOSDT TOSDT 

500 0.0879 0.092 0.092 0.092 0.002 

1000 0.138 0.146 0.145 0.146 0.003 

2000 0.241 0.253 0.251 0.253 0.005 

3000 0.335 0.360 0.337 0.360 0.012 

4000 0.444 0.467 0.435 0.467 0.014 

5000 0.546 0.574 0.531 0.574 0.019 

7000 0.752 0.788 0.743 0.788 0.020 

9000 0.96 1.050 0.950 1.050 0.048 

12000 1.26 1.320 1.270 1.320 0.028 

In the Table 7 the results of the numerical theories are very similar. The results of FOSDT, 

SOSDT and TOSDT are almost identical throughout the measurement period. The CPT 

results start to move away from the other models as the load increases. Due to the low 

standard deviation, the results can be considered relevant. The smallest deformation at 

the maximum considered load of 12000 N/m2 resulted from CPT. The highest 

deformation at the maximum considered load resulted identically from FOSDT and 

TOSDT. 

9.3.3 Comparison of verification results 2 

In this chapter a comparison between experimental measurements, results of selected 

finite element methods software and results of numerical models is presented. 

Table 8 - Comparison of verification results 2 

Load 

[N/m2] 

Deformation [mm] 
Standard 

deviation 
Experiment 2 - 

Average value 
CPT FOSDT SOSDT TOSDT AxisVM Abaqus 

500 0.086 0.0879 0.092 0.092 0.092 0.059 0.054 0.015 

1000 0.149 0.138 0.146 0.145 0.146 0.115 0.107 0.016 

2000 0.269 0.241 0.253 0.251 0.253 0.233 0.213 0.016 

3000 0.382 0.335 0.360 0.337 0.360 0.351 0.320 0.019 

4000 0.488 0.444 0.467 0.435 0.467 0.469 0.426 0.020 

5000 0.601 0.546 0.574 0.531 0.574 0.586 0.539 0.024 

7000 0.819 0.752 0.788 0.743 0.788 0.824 0.753 0.030 

9000 1.042 0.96 1.050 0.950 1.050 1.050 0.959 0.045 

12000 1.369 1.26 1.320 1.270 1.320 1.390 1.279 0.046 

The Table 8 shows the comparison of the results of verification 2, i.e. the comparison of 

the deflection of the plate loaded in area, which was experimentally measured, solved in 

finite element software and numerically calculated by the derived models. The differences 

between numerical theories, experimental measurements and FEM software are in the 
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order of tenths of millimeters to hundredths of millimeters. The standard deviation is in 

the interval from 0.015 to 0.046.  

The experimental measurement of the mechanical response of the thick plate in the form 

of deflection was observed only in the elastic behavior region for the same reason as the 

experimental measurement of the thin plate. Based on the findings from Table 6 and 

Graph 6, it can be said that NaturFor 1 and NaturFor 3 a samples achieved significantly 

higher deflection than other samples at the same stress. This significant difference in 

deflection was most likely due to the slight delamination of these samples before the 

experiment was conducted, which was caused by the improper storage of these samples. 

The delamination of these samples is shown in Figure 28, and it can be stated that even a 

small amount of delamination has a significant effect on the mechanical behavior of the 

CLT panels. These samples were considered as defective and excluded from the 

subsequent statistics. Based on Table 7, it can be concluded that the agreement between 

the results of the numerical theories was significantly higher than that of the thin plate 

results, as evidenced by the standard deviations, which reach a maximum value of 0.048 

for the thick plate. For the thick plate verification case, in addition to the experiment, 

modelling was proceeded with the FEM software AxisVM and Abaqus while the results 

from these software served as further comparison of the results of the numerical scripts. 

Based on the results from Table 8, it can be concluded that the numerical theories were 

derived correctly for the thick plate model case.  

9.4 Results of numerical models 

Depending on the composition of the laminate, there are several types of symmetry and 

non-symmetry - material and axial. Material symmetry refers to a laminate that is 

geometrically symmetrical with respect to the materials used in the individual layers. 

Axial symmetry refers to laminates that are symmetrical with respect to the orientation of 

the fibers in the individual plies. A special case may be so-called special orthotropy, by 

which we mean laminates in which the plies are oriented at 90° and 0° angles. In this 

chapter, the stress results of the numerical theories are compared with respect to the 

symmetric or unsymmetric plate under investigation.  

The following notations is used in the following chapters: 

• CPT – Classical plate theory (Kirchhoff-Love Plate Theory), 

• FOSDT – First Order Shear Deformation Theory (Mindlin-Reissner Shear 

Deformation Theory), 

• SOSDT – Second Order Shear Deformation Theory, 

• TOSDT – Third Order Shear Deformation Theory. 

The notation "S1 CPT L1/2, L2/2" in graphs indicates the Classical Plate Theory stress 𝜎1 

observed in a section through half the length and half the width of the plate. 
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9.4.1 Special Axis Symmetry and Material Symmetry (SASMS) 

This chapter describes the results of the numerical models in the form of stress 

distributions and their comparison between the different numerical theories. The 

geometry and material properties used in the model are derived from the plate geometry 

used in Experiment 2. 

 
Graph 7 – (SASMS) 𝜎1 across the thickness of the plate 

Table 9 – (SASMS) 𝜎1 stress comparison 

S1 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT -2,6 -1,734 -0.867 -0.009 0 0.009 0.867 1.734 2.600 

FSDT -2.593 -1.729 -0.864 -0.006 0 0.006 0.864 1.729 2.593 

SSDT -2.593 -1.729 -0.864 -0.006 0 0.006 0.864 1.729 2.593 

TSDT -2.593 -1.729 -0.864 -0.006 0 0.006 0.864 1.729 2.593 

Considering the findings from the Graph 7  and Table 9, it can be stated that all four 

numerical models agree in their results for the specially axially and materially symmetric 

plates for 𝜎1 stresses (stresses in the fiber direction). The progression of the 𝜎1 stress 

through the thickness of the plate represents a result that corresponds in form to the stress 

in its shape - that is, the pressure in the upper part of the laminate that is generated by the 

compression of the fibers, and the stress in the bottom layer of the laminate represents the 

tension that corresponds to the bending of the fibers. The stresses in the transversely 

oriented middle layer are minimal or non-existent because there is no stress in the 

direction of the fibers in this layer. Considering the form of the stress distribution 𝜎1, it 

can be concluded that the result corresponds to a specially orthotropic plate. 
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Graph 8 - (SASMS) 𝜎2 stresses across the fibers across the thickness of the plate  

Table 10 - (SASMS) 𝜎2 stress comparison 

S2 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT -0.019 -0.013 -0.006 -0.029 0 0.029 0.006 0.013 0.019 

FSDT -0.017 -0.012 -0.006 -0.029 0 0.029 0.006 0.012 0.017 

SSDT -0.017 -0.012 -0.006 -0.029 0 0.029 0.006 0.012 0.017 

TSDT -0.017 -0.012 -0.006 -0.029 0 0.029 0.006 0.012 0.017 

Considering the results shown in the Graph 8 and Table 10, it can be concluded that all 

four numerical models are consistent with the results for the special axially symmetric 

and material symmetric plates for 𝜎2 stresses (stresses across the fibers), only the classical 

plate theory shows a slight deviation from the other theories. This deviation is probably 

due to the computational complexity of the numerical model of Kirchhoff's plate theory, 

which, in its modification for the analysis of generally orthotropic plates, contains fourth-

order partial derivatives that must be solved in the software FlexPDE by using a 

substitution that generates additional variables to allow this substitution. The inaccuracy 

of the calculation is well observed in the progression of the stresses 𝜎1 and 𝜎2 along the 

length of the plate, which is shown in the Graph 9 and Graph 10. The Kirchhoff-Love 

plate theory derived only for specially orthotropic plates does not exhibit these deviations 

(Valášek, 2021), and therefore it can be concluded that Kirchhoff-Love plate theory is not 

suitable for solving general geometric and boundary conditions, and for each specific 

problem it is more appropriate to derive this theory or to choose software that provides 

solutions of partial derivatives of higher than third order. The progression of 𝜎2 stresses 

through the thickness of the plate presents a result that is consistent in form with these 

stresses - i.e., minimal or no stresses are generated in the top layer of the laminate due to 

the fact that this layer is not subjected to loads applied across the fibers. The increase in 

stress is observed in the middle layer, which is oriented at 90° to the longitudinal axis of 

the plate and is therefore subject to stresses across the fibers. 
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Graph 9 - (SASMS) stress distribution 𝜎1 along the length of 

the plate according to CPT 

 
Graph 10 - (SASMS) stress distribution 𝜎2 along the length 

of the plate according to CPT 

 
Graph 11 - (SASMS) 𝜎5 stresses by plate thickness 

Table 11 - (SASMS) stress 𝜎5 comparison 

S5 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 

SSDT -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 

TSDT 0 -0.085 -0.130 -0.130 -0.146 -0.130 -0.130 -0.085 0 

Based on the Graph 11 and the Table 11, it can be said that in the case of 𝜎5 stresses, i.e. 

shear stress xz, the first difference in the results of the stress progression through the 

thickness of the plate can be seen, even though these stresses are very small. FSDT and 

TSDT agree in the maximum of the 𝜎5 stress. SSDT deviates slightly from the maximum 

in its value. It can also be seen that the FSDT and SSDT only give maximum stress values. 

TSDT is a more advanced theory in this aspect and can plot the stress distribution from 0 
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to maximum. The TSDT stress distribution is an example of a bending shear stress 

distribution that is zero at the material surface and maximum in the geometric and neutral 

planes. Kirchhoff's plate theory does not allow the calculation of the shear stress and is 

therefore not shown in the Table 11. 

9.4.2 General Axis Symmetry (GAS) 

This chapter describes the results of the numerical models in the form of stress 

distributions and their comparison between the different numerical theories. The 

geometry and material properties used in the model are described in the methodology.  

 
Graph 12 - (GAS) 𝜎1 across the thickness of the plate  

Table 12 - (GAS) stress 𝜎1 Comparison 

S1 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -2.83 -1.89 -0.94 -0.13 0 0.13 0.94 1.89 2.83 

SSDT -2.83 -1.89 -0.94 -0.13 0 0.13 0.94 1.89 2.83 

TSDT -2.85 -1.88 -0.94 -0.13 0 0.13 0.94 1.88 2.85 

Based on the findings from the Graph 12 and Table 12 it can be concluded that all four 

numerical models agree in their results for 𝜎1 stresses (stresses in the fiber direction). The 

progression of the 𝜎1 stress through the thickness of the plate represents the result that 

corresponds to the stress in its form - that is, the pressure in the top of the laminate 

resulting from the compression of the fibers. The stress in the bottom layer of the laminate 

is tension, which corresponds to the fibers being pulled as laminate bend. The difference 

from the previous case of symmetry can be seen in the stress in the middle layer of the 

laminate, which higher values by an order of magnitude. This stress is due to the 

orientation of the layer itself, which is oriented at 70°, not 90°. 
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Graph 13 - (GAS) 𝜎2 Stresses Across Plate Thickness  

Table 13 - (GAS) Stress 𝜎2 comparison  

S2 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032 

SSDT -0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032 

TSDT -0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032 

Based on the findings from the Graph 13 and Table 13 it can be concluded that all four 

numerical models match the results for 𝜎2 stresses (stresses across fibers). The stress 

maximums in all layers reach similar values due to their orientation, which is close to a 

45° deviation from the 0°-90°-0° laminate orientation, specifically in this case a 20° 

deviation of the fibers in each layer. The internal forces are therefore distributed both in 

the direction of the fibers and across the fibers. The maximum compressive stress is 

observed at the top surface of layer 1 and the top surface of layer 2. The maximum tensile 

stress is then observed on the bottom surface of layer 2 and the bottom surface of layer 3. 
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Graph 14 - (GAS) 𝜎6 stresses by plate thickness  
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Table 14 - (GAS) Stress 𝜎6 Comparison 

S6 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT 0.131 0.087 0.044 0.043 0 -0.043 -0.044 -0.087 -0.131 

SSDT 0.131 0.087 0.044 0.043 0 -0.043 -0.044 -0.087 -0.131 

TSDT 0.132 0.087 0.044 0.042 0 -0.042 -0.044 -0.087 -0.132 

Based on the findings from the Graph 14 and Table 14 it can be concluded that because 

the geometry and composition of the laminate is different from the special axis and 

material symmetry, shear stresses that result from layer orientations other than 0°-90°-0° 

can be expected. The 𝜎6 stress, respectively the stress in the XY plane of the plate, is 

observed to be maximum at the surface of the plate and decreasing linearly towards the 

neutral plane of the plate to the bottom surface of the plate where it takes a second 

maximum. The numerical theories agree almost identically in their results, except for the 

TSDT, which deviates in the thousands of the value of the stress in MPa. 

 
Graph 15 - (GAS) 𝜎4 stresses by plate thickness 

Table 15 - (GAS) Stress 𝜎4 Comparison 

S4 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 

SSDT -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 

TSDT -0.002 -0.025 -0.039 -0.039 -0.044 -0.039 -0.039 -0.025 -0.002 

Based on the findings from the Graph 15 and Table 15 it can be concluded that in contrast 

to the previous type of symmetry, in this case it is possible to investigate the 𝜎4 stress, 

i.e., the YZ shear stress. This stress, like 𝜎6, is due to the different orientation of the fibers 

in the individual layers. In this case of general symmetry, FSDT and SSDT correspond 

and express only the maximum value of the stress. The TSDT is expressed by a parabolic 
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progression of stresses from zero values to the maximum. At the maximum, TSDT differs 

from the other theories. 

 
Graph 16 - (GAS) 𝜎5 stresses by plate thickness 

Table 16 – (GAS) Stress 𝜎5 Comparison 

S5 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 

SSDT -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 

TSDT 0 -0.085 -0.131 -0.131 -0.146 -0.131 -0.131 -0.085 0 

Based on the findings from the Table 16 and Graph 16 it can be concluded that in 

the case of the 𝜎5 stress, i.e. the shear stress xz, the difference in the results of the stress 

progression through the plate thickness is visible, even though these stresses are small. 

FSDT and SSDT agree in the maximum of the 𝜎5 stresses. It can also be seen that FSDT 

and SSDT only give maximum stress values. TSDT is the more advanced theory in this 

regard and is able to plot the stress progression from zero to maximum. The TSDT stress 

progression is an example of a bending shear stress progression which is zero at the 

surface of the material and maximum in the geometric and neutral planes.  

9.4.3 Axis Asymmetry (AA) 

This chapter describes the results of the numerical models in the form of stress 

distributions and their comparison between the different numerical theories. The 

geometry and material properties used in the model are described in the methodology. 
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Graph 17 – (AA) 𝜎1 stresses by plate thickness 

Table 17 - (AA) Stress 𝜎1 Comparison 

S1 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89 

SSDT -3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89 

TSDT -3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89 

Based on the findings from the Graph 17 and Table 17 it can be concluded that 

the 𝜎1 stress (stress along the fibers) in the case of axial non-symmetry reaches 

corresponding values along the thickness of the plate. The highest tensile stress is present 

at the bottom of layer 3 where the fibers are pulled. The highest compressive stress is 

present on the upper surface of layer 1 where the fibers are compressed. The individual 

numerical models agree in their results to within hundredths. 

 
Graph 18 - (AA) 𝜎2 stresses by plate thickness 
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Table 18 - (AA) 𝜎2 Stress Comparison 

S2 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.022 -0.011 -0.001 -0.004 0.049 0.102 0.088 0.109 0.130 

SSDT -0.022 -0.011 -0.001 -0.004 0.049 0.102 0.088 0.109 0.130 

TSDT -0.022 -0.011 -0.001 -0.004 0.049 0.102 0.088 0.109 0.130 

Based on the findings from the Table 18 and Graph 18 it can be concluded that 

for the 𝜎2 stress progression through the thickness of the plate (stress across the fibers), 

the highest value of tensile stress can be observed on the bottom surface of layer 3, which 

is oriented at an angle of 30° from the longitudinal x-axis. The highest compressive stress 

is observed on the upper surface of layer 1. In this case of symmetry, it can be seen that 

the compressive and tensile stresses do not reach the same values as in the case of special 

axis and material symmetry. From the Table 18 it can be seen that the neutral plane in 

which the 𝜎2 stresses should reach zero values no longer matches the geometric plane. 

The values of all the numerical models compared agree in the result. 

 
Graph 19- (AA) 𝜎6 stresses by plate thickness 

Table 19 – (AA) 𝜎6 Stress Comparison 

S1 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.252 -0.252 -0.253 0.253 0.253 0.253 -0.291 -0.376 -0.462 

SSDT -0.252 -0.252 -0.253 0.253 0.253 0.253 -0.291 -0.376 -0.462 

TSDT -0.252 -0.252 -0.253 0.253 0.253 0.253 -0.291 -0.376 -0.462 

Based on the findings from the Graph 19 and Table 19 it can be concluded that in 

the case of the 𝜎6 stress progression (stress in the plane of the plate), we can observe a 

large difference between the XY shear stress in the individual layers. In this case of 

symmetry, the stresses on the upper and lower surfaces of the laminate no longer coincide 

and the zero-shear stress is no longer left in the geometric centre plane. The top layer of 

the laminate, which is not rotated from the longitudinal x-axis, achieves a linear stress 
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progression through the layer thickness. All numerical theories agree in the values of the 

results. 

 
Graph 20 - (AA) 𝜎4 stresses by plate thickness 

Table 20 - (AA) 𝜎4 Stress Comparison 

S4 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT 0.000 -0.007 -0.014 -0.014 -0.021 -0.029 -0.029 -0.036 -0.043 

SSDT 0.000 -0.007 -0.014 -0.014 -0.021 -0.029 -0.029 -0.036 -0.043 

TSDT 0.000 -0.011 -0.023 -0.023 -0.030 -0.030 -0.030 -0.023 -0 

Based on the findings from the Table 20 and Graph 20 it can be concluded that in 

the case of in the case of 𝜎4, the stress progression across the thickness of the plate is 

significantly different from the previous cases. Whereas in the previous cases the shear 

stress reached a maximum in the middle plane of the plate, in this type of 

symmetry/unsymmetry the shear stress according to FSDT and SSDT reaches a 

maximum value on the bottom surface of layer 3 and a zero value on the top surface of 

layer 1. The shear stress progression was achieved by changing the fiber orientation of 

the third layer by 30°. Also in this case, the results obtained from the different numerical 

models agree in values.  
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Graph 21 - (AA) 𝜎5 stresses by plate thickness 

Table 21 - (AA) 𝜎5 Stress Comparison 

S5 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.150 -0.147 -0.143 -0.143 -0.140 -0.137 -0.137 -0.133 -0.130 

SSDT -0.143 -0.139 -0.134 -0.134 -0.130 -0.126 -0.126 -0.121 -0.117 

TSDT  0.000 -0.098 -0.142 -0.142 -0.155 -0.138 -0.138 -0.090 0.000 

Based on the findings from the Graph 21 and Table 21 it can be concluded that in 

the case of the 𝜎5 stress (shear stress in the XZ plane), we can observe the first variations 

in the stress evolution along the plate thickness according to the individual numerical 

models. FSDT and SSDT show a linear XZ shear stress waveform, while TSDT shows a 

quadratic one. According to TSDT, the minimum stress occurs on the top surface of the 

first layer and on the bottom surface of the third layer. In the shear stress waveform after 

the thickness of the second layer, all numerical models are in agreement. In the case of 

the surface layers, the FSDT and SSDT models differ slightly. 
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9.4.4 Material Asymmetry (MA) 

This chapter describes the results of the numerical models in the form of stress 

distributions and their comparison between the different numerical theories. The 

geometry and material properties used in the model are described in the methodology. 

 
Graph 22 - (MA) Stress 𝜎1 across the thickness of the plate   

Table 22 - (MA) 𝜎1 Stress Comparison 

S1 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -20.30 -19.60 -18.89 -0.05 -0.02 0.02 0.63 1.73 2.83 

SSDT -20.30 -19.60 -18.90 -0.05 -0.02 0.02 0.62 1.73 2.84 

TSDT -20.32 -19.60 -18.89 -0.05 -0.02 0.02 0.63 1.73 2.87 

In the case of 𝜎1 stresses (stresses in the direction of the fibers) in the case of material 

asymmetry, when the elastic moduli of the first layer are reduced to the equivalent of 30% 

of the moisture content of the layer, i.e. a moisture content that corresponds 

approximately to the saturation limit of the fibers, a significant increase in the stresses in 

the first layer of the laminate can be observed from the Graph 22. This increase is due 

not only to the lower elastic moduli but also to the moisture deformations that occur 

naturally when the moisture content of the wood increases (swelling/drying). The Graph 

22 shows that while the stress on the bottom surface of the 3rd layer of the laminate is 

around 2.83 MPa (corresponding to the tensile stress resulting from the bending and 

stretching of the fibers), the stress on the top surface of the first layer reaches a 

compression stress of 20.3 MPa. The table shows that the neutral plane has moved further 

away from the geometric plane of the plate, and according to the stress values from the 

middle plane of the 2nd layer and the bottom plane of the 2nd layer, the neutral plane of 

the plate has moved from the geometric middle plane lower in laminate. 

-45

-35

-25

-15

-5

5

15

25

35

45

-24 -19 -14 -9 -4 1 6

P
la

te
 t

h
ic

k
n

es
s 

[m
m

]

Stress [MPa]

S1 FSDT L1/2,L2/2 S1 SSDT L1/2,L2/2 S1 TSDT L1/2,L2/2

α1 = 0°

α3 = 0°

α2 = 90°

w1 = 30%

w2 = 12%

w3 = 12%



75 

 
Graph 23 - (MA) 𝜎2 Stress by Plate Thickness 

Table 23 - (MA) 𝜎2 Stress Comparison 

S2 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.733 -0.729 -0.724 -0.011 -0.003 0.004 0.004 0.012 0.019 

SSDT -0.733 -0.729 -0.724 -0.011 -0.003 0.004 0.004 0.012 0.019 

TSDT -0.733 -0.729 -0.724 -0.010 -0.003 0.004 0.004 0.012 0.019 

Based on the findings from the Table 23 and Graph 23 it can be concluded that in the 

case of in the case of stresses across the fibers (𝜎2 stresses), there is a significant increase 

in stress due to a reduction in the elastic moduli and swelling in the transverse direction 

of the plate. According to the Graph 23 and Table 23, the difference between the stress 

on the bottom surface of layer 3 (0.019 MPa) and the top surface of layer 1 (-0.733 MPa) 

is almost 39 times higher. 

 
Graph 24 - (MA) 𝜎5 stress by plate thickness  
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Table 24 - (MA) 𝜎5 Stress Comparison 

S5 

[MPa] 

Layer 1 Layer 2 Layer 3 

TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - - 

FSDT -0.087 -0.087 -0.087 -0.136 -0.136 -0.136 -0.136 -0.136 -0.136 

SSDT -0.088 -0.084 -0.079 -0.123 -0.116 -0.108 -0.108 -0.101 -0.093 

TSDT 0.000 -0.071 -0.094 -0.147 -0.155 -0.135 -0.135 -0.087 0.000 

The difference between the models based on different shear theories can be clearly 

observed at Graph 24 (shear stress in the XZ plane). The first (FOSDT) and second 

(SOSDT) order theories show the shear along the plate thickness in the form of linear 

maximums. The third-order theory plots the shear stress along the plate thickness 

parabolically and plots both maxima and minima, maintaining zero stress on the bottom 

surface of layer 3 and the top surface of layer 1.  
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Evaluation of numerical model results 

By analyzing the stress distribution along the thickness of the plate and based on the 

results, it can be stated that numerical models for the analysis of generally orthotropic 

materials in any configuration, taking into account the effect of moisture, have been 

successfully developed, also in terms of swelling and slumping. However, the numerical 

models (which are included in the appendix 13.5 – 13.10) do not include the effect of 

temperature. The influence of temperature has been neglected mainly because the stresses 

and strains that occur when the temperature of the timber changes are negligible in a 

stationary calculation. The incorporation of the effect of temperature would make sense 

if connected to the model of non-uniform distribution of moisture and temperature 

described by Valášek (2021) in his thesis, which also deals with the principle of 

mechanosorption. In such a case, the model would be extended by defining temperature 

changes that would look similar to those of moisture with the difference of different 

coefficients (temperature expansion coefficients) and the resulting deformations would 

be added to the superposition with mechanical and moisture deformations. 

Another point that can be noticed is that, apart from the special axis and material 

symmetry, the results do not contain values coming from Kirchhoff's thin plate theory. 

The reason for this is the computational difficulty that results from the presence of fourth 

order partial differential equations and their input into the chosen software for solving 

differential systems, FlexPDE. The software does not allow specifying partial terms in 

fourth order and the input has to be solved by substitution as given in equation (87), where 

the left side of the equation represents the mathematical notation and the right side of the 

equation the syntax of the FlexPDE software. 

 
𝑑4𝑤0

𝑑𝑥4
= 𝑑𝑥𝑥(𝑤𝑥𝑥)  ~  

𝑑2𝑤0

𝑑𝑥2
= 𝑤𝑥𝑥 (87) 

By using the substitution term, a new variable 𝑤𝑥𝑥 is defined in the software for which a 

boundary condition needs to be defined, which was not successfully done and therefore 

for the remaining symmetry/unsymmetry cases the CPT evaluation is not present. It is 

necessary to add that the fourth order partial differential equations occur in the equation 

in product with coupling matrices B, which take zero values in the case of special axis 

and material symmetry. For such a symmetry condition, the CPT is a sufficient solution 

for the analysis of thin plates. From the point of view of the results, the model based on 

the Third Order Shear Deformation Theory seems to be the most suitable model for the 

analysis of timber-based laminated plates.  
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Comparison of SASMS and MA stress distribution 

As mentioned in chapter “9.1 CLT panel moisture content change” a situation where 

moisture content of the top lamella of a CLT panel is high is possible and therefore a 

comparison of the Special Axis and Material Symmetry (SASMS) and Material 

Asymmetry (MA) cases was performed. For comparison, only the TOSDT results were 

used. 

  

 
Graph 25 - Comparison of stress distribution along the laminate thickness of special material & axial symmetry (SASMS) and 

material asymmetry (MA). 

The results obtained from the MA are the results for the extreme case, where the cell wall 

of the first layer of the CLT panel is completely saturated and therefore the largest 

possible decrease in stiffness and strength of this layer occurs. As can be seen from the 

Graph 25, moisture has a major effect on the stress increase. The combination of the 

modulus of elasticity, which decreases by approximately 36% at cell wall saturation limit, 

and the moisture stresses that occur due to the constraints on the movement of the laminae 

in the width and length direction of the panel, resulted in an increase in compressive stress 

-2.59

-0.86

-0.01

0.00

0.01

0.86

2.59

-20.32

-18.89 -0.05

-0.02

0.02

0.63

2.87

-45

-35

-25

-15

-5

5

15

25

35

45

-25 -21 -17 -13 -9 -5 -1 3 7

P
la

te
 t

h
ic

kn
es

s 
[m

m
]

Stress [MPa]

S1 TSDT SASMS

S1 TSDT MA

-0.02

-0.01

-0.03

0.00

0.03
0.01

0.02

-0.73

-0.72

-0.01

0.00

0.00

0.00

0.02

-45

-35

-25

-15

-5

5

15

25

35

45

-0.8 -0.6 -0.4 -0.2 0 0.2

P
la

te
 t

h
ic

kn
es

s 
[m

m
]

Stress [MPa]

S2 TSDT SASMS

S2 TSDT MA

0.00

-0.08

-0.13

-0.15

-0.13

-0.08

0.00

0.00

-0.07

-0.09-0.15

-0.16

-0.14
-0.09

0.00

-45

-35

-25

-15

-5

5

15

25

35

45

-0.2 -0.15 -0.1 -0.05 0

P
la

te
 t

h
ic

kn
es

s 
[m

m
]

Stress [MPa]

S5 TSDT SASMS

S5 TSDT MA



79 

in the fiber direction by 784% in the case of 𝜎1 stress (17.73 MPa in absolute value, to a 

value of 20.32 MPa), which is almost the characteristic compressive strength in the fiber 

direction of the C24 material (21 MPa) used for the manufacture of the laminae. In the 

case of the compressive stress across the 𝜎2 fibers, the change is from 0.02 MPa to 0.73 

MPa. Surprisingly, for the shear stress 𝜎5, a decrease in stress in the middle and bottom 

planes of the first lamella and, on the contrary, an increase in stress in the middle lamella 

is observed. 

 

 

 
Figure 29 ULS Utilization of analyzed CLT panel (load = 12 000 Pa) according to Calculatis (Stora Enso 

[online]) 

The internal stresses from Graph 25 are the result for an area load of 12 kN/m2, 

which, according to Calculatis (STORA ENSO [online]), corresponds to 26% of the panel 

load bearing capacity in ULS perspective (Figure 29) after reduction of the elastic moduli 

by 𝛾𝑀. At a load close to 100% of the load bearing capacity at the moisture limit of the 

cell wall saturation limit (28-30%), the stresses in the first lamella would certainly exceed 

the compressive strength in the grain direction, resulting in the compression thickening 

of the wood grain and possible lamella failure or permanent reduction of the load bearing 

capacity of the CLT panel. 
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9.5 TOSDT Coupling Phenomenon of the ABDEFGH matrix 

For the classical ABD matrix used in the numerical script based on the Kirchhoff-

Love Plate Theory, it is possible to "predict" the laminate behavior based on the 

knowledge of the matrices elements of the ply stiffnesses, the elastic moduli, the ply 

orientation and the Poisson's ratio, without solving higher order partial differential 

equations. When constructing the script for TOSDT and then evaluating the results for 

each symmetry/asymmetry condition, a similar phenomenon was observed for the 

ABDEFGH matrix. This chapter is focused on describing the coupling phenomenon for 

the matrix used in deriving the relations for TOSDT. Denoting matrices from the stress-

strain relation for TOSDT:   

 

The following figure describes the behavior of the laminate when some elements of the 

matrix are non-zero. The result is a description of the so-called TOSDT coupling 

phenomenon. TOSDT coupling matrix is denoted on Figure 30. 

Figure 30 – Denoting matrices ABDEFGH 
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Figure 31 - Coupling phenomena  

ABDEFGH matrices.  
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10 The benefits for science and practice 

Solid timber structures, especially glued CLT panels, have a great potential to 

become an ideal construction material for residential and multi-storey buildings. In 

order for this potential to be fulfilled at least in part, it is first necessary to study the 

behavior of such material under various conditions in the greatest detail. Since 

wood is a hygroscopic material, its properties are largely influenced by moisture. It 

is therefore essential to find out how a given structural element will behave at a 

given moisture content. In order to do this, it is necessary to determine the effect of 

moisture, particularly on laminated wood-based materials, as accurately as possible. 

Current practice uses software that does not go further than the building codes in 

the case of moisture exposure. In the Czech Republic, to date, we do not have 

standards describing the design of CLT elements or standards for the construction 

of timber structures. It is during the construction phase of timber-based buildings 

that most moisture-related problems arise, both in terms of the risk of mould growth 

and the reduction of the mechanical properties of the timber. In fact, Sweden places 

clear requirements in its Building Code to protect construction products and 

construction materials from moisture during the construction phase. For large 

constructions, the law requires documented inspections, measurements, and 

analyses. Material specifications under the legislation require "Wood materials and 

wood products to be protected from moisture during and after assembly to avoid 

microbial growth and other problems" (Olsson, 2020). If we are to take timber 

construction further in the Czech Republic, we need to be inspired by similar 

requirements and enforce the requirements for the protection of timber buildings 

during the construction process by legislation and standards. The results of this 

work provide relevant arguments for stricter protection of building materials during 

construction and can be the basis for the development of suitable standards for the 

implementation of timber buildings. Furthermore, the numerical models can be 

used as a tool to verify the load-bearing capacity of moisture-stressed CLT panels. 

From the point of view of further research, the derived numerical models can 

be used in the design of new laminates made of arbitrary materials (not only wood) 

and the analysis of their behavior using "TOSDT Coupling Phenomena" according 

to the chosen composition and the presence of individual components of the 

ABDEFGH matrix. The model can be modified and freely extended to include other 

variables such as temperature or to incorporate the effect of mechanosorption. The 

model can be modified quite easily for dynamic response and vibration analysis. In 

general, the model offers a solid basis for investigating the behavior of laminates.  
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11 Conclusions 

The thesis deals with the development and validation of computational models for 

the analysis of bending, deformation, and internal stresses of laminated panels 

(CLT) with arbitrarily oriented layers and composed of different materials under 

transverse loading. The numerical models were developed based on four plate 

theories in a form for the analysis of generally orthotropic panels. It was found that: 

• The model based on the Kirchhoff-Love Plate Theory, unlike the other 

models, does not allow for shear stress analysis along the thickness of the 

laminate. In addition to this, it is the most computationally demanding in 

its general form, which places higher requirements on the differential 

solver used and therefore, from this point of view, it is not suitable for the 

analysis of wood-based laminates. 

• The most difficult model to derive and the most suitable in terms of the 

provided results is the model based on Third Order Shear Deformation 

Theory. This model is suitable for the analysis of generally orthotropic 

laminates. 

• The behavior of an arbitrarily composed laminate can be estimated only 

on the basis of the composition of the laminate matrix (in the case of 

TOSDT this is the ABDEFGH matrix). Thus, the torsion, bending or shear 

deformation of the laminate can be predicted without the need to solve a 

system of higher order partial differential equations. 

• Based on the results obtained, it can be argued that a situation where the 

moisture content of the upper lamellas of the CLT panels at the cell wall 

saturation limit can occur. At such a change in moisture content, internal 

stresses approaching the strength of the material can be generated even at 

relatively low external loads, and even at loads equivalent to 25% of the 

panel load bearing capacity. 

 

The result of this thesis may help in future efforts to further understand the effect 

of moisture on CLT panels and the effect on the overall load bearing capacity. 

However, it should be taken into account that the numerical models are a stationary 

models and did not take into account the fact that the change and equilibration of 

moisture will occur not only in one laminate but throughout the thickness of the 

laminate as described by the nonstationary diffusion principle. The findings suggest 

that moisture has a significant effect on the load-bearing capacity of the panel and 

that this type of stress must be taken into account in the future when dimensioning 

these structural elements or when carrying out construction. 

  



84 

12 References 

1. ABBAS, M., ELSHAFEI, M., NEGM, H. (2013). “Modeling and Analysis 

of Laminated Composite Plate Using Modified Higher Order Shear 

Deformation Theory”, International Conference on Aerospace Sciences and 

Aviation Technology, 15, pp. 1-25. doi: 10.21608/asat.2013.22182 

2. AGARWAL, D. Bhagwan., BROUTMAN, J., CHANDRASHEKHERA, 

K.. (2015). “Analysis and Performance of Fiber Composites”. Third 

Edition. Wiley India. ISBN: 978-81-265-3636-8 

3. ANSYS, Inc. and ANSYS Europe. “ANSYS Workbench – Product release 

notes 10.0”. Canonsburg, PA 15317. [cit. 2023-03-10]. Available from: 

https://kashanu.ac.ir/Files/Content/ANSYS%20Workbench.pdf 

4. BALOGH, Bence (2013). “Computer program for the calculation of 

Mindlin Plates “. Department of Structural Mechanics, BUTE, Budapest. 

Thesis supervisor: Dr. Imre Bojtár 

5. BITTNAR & ŠEJNOHA. (1992). “Numerické metody mechaniky 1“. 

Praha. 1992. ČVUT. ISBN: 80-01-00855-x 

6. ČESKÝ STATISTICKÝ ÚŘAD (2018): “Staví se stále více úsporných 

domů [online] “; available from [cit. 10. 03. 2023]: 

https://www.czso.cz/csu/czso/stavi-se-stale-vice-uspornych-domu 

7. DLUBAL SOFTWARE. (2020). “Rfem 5 – Spacial Models Calculated 

According to Finite Element Method [online]”. [cit. 2023-03-10]. Available 

from: 

https://www.dlubal.com/-/media/Files/website/documents/manuals/rfem-

fea-software/rfem-5/rfem-5-manual-

en.pdf?la=en&mlid=1940DA1D4C7242DCB72553023E0C2DAB&hash=

4AE0E597004925B09F37ACB257107A8594F43B11 

8. DUSHMAN S., LAFFERTY J.M. (1962). “Scientific Foundations of 

Vacuum Technique”. Wiley - New York. ISBN: 978-0471228035 

9. EUROPEAN COMMITTEE FOR STANDARDIZATION (1994): 

„Eurocode 5: design of timber structure“, Brussels, BSI; ISBN: 

9780470675007 

10. GEREKE, Thomas Verfasser. (2009): “Moisture-Induced Stresses in Cross 

Laminated Wood Panels”. Moisture-Induced Stresses in Cross-Laminated 

Wood Panels. Zürich: ETH, 

11. GHIAMY, Ali., HOSSEIN, Amoushahi. (2022) “Thin-Walled Structures: 

Dynamic stability of different kinds of sandwich plates using third order 

shear deformation theory “. Vol 172. Department of Civil Engineering, 

Faculty of Civil Engineering and Transportation: Department of Civil 

Engineering, Faculty of Civil Engineering and Transportation. ISSN 0263-

8231 

12. HORÁČEK, P. (2008). „Fyzikální a mechanické vlastnosti dřeva I„. Brno: 

Mendelova zemědělská a lesnická univerzita v Brně. ISBN 978-80-7375-

169-2 



85 

13. HORÁČEK P. (2010). „Mechanické vlastnosti dřeva [online]“. Available 

from [cit 10. 03. 2023]: 

14. https://is.mendelu.cz/lide/clovek.pl?zalozka=13;id=7038;studium=17869;z

p=143 44;download_prace=1;lang=sk 

15. INTER-CAD KFT. “AxisVM – Advanced Step by Step Tutorial [online]”. 

2019 [cit. 2023-03-10]. Available from: 

 https://axisvmsupport.hu/manual/axisvm_advancedstepbystepbook.pdf 

16. KHDEIR, A., REDDY, J.N. (1999). “Free vibrations of laminated 

composite plates using second-order shear deformation theory “. 

Computers & Structures. Vol 71, Issue 6, Pages 617-626. ISSN 0045-7949 

17. KOLLMANN, F., CÔTÉ, W.A. (1968). “Principles of Wood Science and 

Technology”, Springer, Berlin, ISBN: 978-3-642-87930-2 

18. KOLVIK, Gjermund Mæsel (2012). “Higher Order Shear Deformation 

Plate Theory”. Faculty of Mathematics and Natural Sciences, University of 

Oslo. Thesis supervisor: Noël Challamel, Jostein Hellesland 

19. KOŽELOUH B. (1998). „Dřevěné Konstrukce podle Eurokódu 5: Step 1 – 

Navrhování a konstrukční materiály“. KODR Zlín. ISBN 80-238-2620–4 

20. NAMI, Rahim Mohammad., JANGHORBAN, Maziar. DAMADAM, 

Mohsen. (2015). “Thermal buckling analysis of functionally graded 

rectangular nanoplates based on nonlocal third-order shear deformation 

theory”. Journal of Aerospace Science and Technology. Vol 41. Pages 7-

15. DOI: 10.1016/j.ast.2014.12.001  

21. NETTLES A. T. (1994). “Basic Mechanics of Laminated Composite Plates 

“. NASA Alabama. ISBN 1730984487 

22. OLSSON, Lars. (2020). “Moisture safety in CLT construction without 

weather protection – Case studies, literature review and interviews “. E3S 

Web of Conferences 172. RISE Research Institutes of Sweden, Division 

Build Environment, Building Technology, Sweden.  

23. ORMARSSON, S. (1998). “Numerical analysis of moisture-related 

distortions in sawn timber”, PhD thesis, Chalmers University of 

Technology 

24. ÖBERG, Johan. (2018). “Moisture risks with CLT-panels subjected to 

outdoor climate during construction -focus on mould and wetting process”. 

PolygonAK (Polygon Sverige AB). Graduate thesis supervisor: Erik Wiege 

25. PANYATONG, Monchai., CHINNABOON, Boonme., 

CHUCHEEPSAKUL, Somchai. (2015). “Nonlocal second-order shear 

deformation plate theory for free vibration of nanoplates”. Suranaree 

Journal of Science and Technology. Vol 22. Available from [cit. 

18.03.2023]:  

https://www.thaiscience.info/journals/Article/SJST/10984529.pdf 

26. PAVLAS, Marek. (2006). “Dřevostavby z vrstvených masivních panelů – 

technologie CLT”. Grada Publishing. ISBN 978-80-271-0055-2 

27. POŽGAJ A., CHOVANEC D., KURJATKO S., BABIAK M. (1997). 

“Štruktúra a vlasnosti dreva”. Bratislava: Príroda. ISBN 80-07-00960-4 

28. SIAU, J.F. (1995). “Wood: Influence of moisture on physical properties “. 

Department of Wood Science and Forest Products, Virginia Polytechnic 

Institute and State University, Blacksburg, USA, ISBN: 978-0962218101 



86 

29. SIMULIA. Abaqus 6.12 Analysis User´s Manual, “Volume I: Introduction, 

Spacial Modeling, Execution & Output [online]”. United States, Fremont, 

CA. [cit. 2023-03-10]. Available from: 

 http://dsk-016-1.fsid.cvut.cz:2080/v6.12/pdf_books/ANALYSIS_1.pdf 

30. SHAFEI, Erfan., FAROUGHI, Shirko., REALI, Alessandro. (2020). 

“Geometrically nonlinear vibration of anisotropic composite beams using 

isogeometric third-order shear deformation theory”. Journal of Composite 

Structures. Vol 252.  DOI: 10.1016/j.compstruct.2020.112627 

31. SHAHRJERDI & BAYAT, SAPUAN, S.M., ZAHARI, R. (2010). 

“Second-Order Shear Deformation Theory to Analyze Stress Distribution 

for Solar Functionally Graded Plates “. Journal of Mechanics Based Design 

of Structures and Machines. Vol 38. Issue 3. Pages 348-361. DOI: 

10.1080/15397731003744603 

32. SHAHRJERDI A., MUSTAPHA F. (2011). “Second Order Shear 

Deformation Theory (SSDT) for Free Vibration Analysis on a Functionally 

Graded Quadrangle Plate”.  Journal of Recent Advances in Vibration 

Analysis. InTech. DOI: 10.5772/22245. 

33. SHAOBO L., GU H., BERGMAN R., KELLEY S. (2020): “Comparative 

life-cycle assessment of a mass timber building and concrete alternative “. 

Wood and Fiber Science [online]; Society of Wood and Technology; [cit. 

10. 03. 2023] available from: 

https://www.researchgate.net/publication/340960305_Comparative_lifecy

cle_assessment_of_a_mass_timber_building_and_concrete_alternative 

34. SHOKRIEH, M.M., PARKESTANI, A. Nouri. (2017). “Post buckling 

analysis of shallow composite shells based on the third order shear 

deformation theory”. Aerospace Science and Technology. Vol 66. Pages 

332-341. DOI: 10.1016/j.ast.2017.01.011 

35. STORA ENSO. „Calculatis [Online] „. Available from [cit. 10.30.2023]: 

https://calculatis.storaenso.com/  

36. SULZBERGER, P. H. (1953). “The Effect of Temperature on the Strength 

of Wood, Plywood and Glued Joints”. Rept. ACA-46, Dept. Supply, 

Aeronait. Res. Consult. Com., Commonwealth of Australia, 

37. SZEKRÉNYES, András. (2014). “Stress and fracture analysis in 

delaminated orthotropic composite plates using third-order shear 

deformation theory “. Applied Mathematical Modelling. Vol 38, Issues 15–

16. Pages 3897-3916. DOI: 10.1016/j.apm.2013.11.064. 

38. SZILARD, Rudolph. (2004). “Theory and Application of Plate Analysis: 

Classical numerical and engineering methods”. John Wiley & Sons, Inc., 

Hoboken, New Jersey. ISBN 0-471-42989-9 

39. THAI, Huu-Tai., CHOI, Dong-ho (2013). “A simple first-order shear 

deformation theory for laminated composite plates“. Composite Structures. 

Vol 106. Pages 754-763. ISSN 0263-8223 

40. TIAN, Yuhang., LI, Qingya., WU, Di., CHEN, Xiaojun., GAO, Wei. 

(2022). “Nonlinear dynamic stability analysis of clamped and simply 



87 

supported organic solar cells via the third-order shear deformation plate 

theory”. Engineering Structures. Vol 252. ISSN 0141-0296 

41. VALÁŠEK, Václav. „Kombinované zatížení vrstvených konstrukčních 

prvků”. 2021. Theses. Supervisor: prof. Dr. Ing. Petr Horáček 

42. VENTSEL, Eduard. (2001). “Theory, Analysis and Applications - Thin 

Plates and Shells”. The Pennsylvania State University, Pennsylvania. 

Marcel Dekker Inc. New York. ISBN: 0-8247-0575-0 

43. VRBKA, Jan. (2008). “Mechanika kompozitů [online]”. Brno: Ústav 

mechaniky těles, mechatroniky a biomechaniky. Fakulta strojního 

inženýrství VUT v Brně. Available from [cit. 2023-03-10]: 

https://www.vutbr.cz/www_base/priloha.php?dpid=83340 

44. ZHANG, Shunqi. (2014). “Nonlinear FE Simulation and Active Vibration 

Control of Piezoelectric Laminated Thin-Walled Smart Structures”. 

Institute of General Mechanics RWTH Aachen University. Ph.D. 

dissertation Supervisor: apl. Prof. Dr.-Ing. Rüdiger Schmidt  

  



88 

13  Appendix 

13.1 Derivation of relations according to Kirchhoff-Love Plate 

Theory 

13.1.1 Strains and curvatures 

From equations defining displacement field the strains and curvatures are defined 

according to Nettles (1994) as:  

 𝜀𝑥 =
𝑑𝑢

𝑑𝑥
=

𝑑𝑢0

𝑑𝑥
− 𝑧

𝑑2𝑤

𝑑𝑥2 
 (88) 

 𝜀𝑦 =
𝑑𝑣

𝑑𝑦
=

𝑑𝑣0

𝑑𝑦
− 𝑧

𝑑2𝑤

𝑑𝑦2 
 (89) 

 𝛾𝑥𝑦 =
𝑑𝑢

𝑑𝑦
+

𝑑𝑣

𝑑𝑥
=

𝑑𝑢0

𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
− 2𝑧

𝑑2𝑤

𝑑𝑥𝑑𝑦
 (90) 

Defining: 

 
𝑑𝑢0

𝑑𝑥0
 𝑎𝑠 𝜀𝑥

0   ;    
𝑑𝑣0

𝑑𝑦0
 𝑎𝑠 𝜀𝑦

0   ;    
𝑑𝑢0

𝑑𝑦0
+

𝑑𝑣0

𝑑𝑥0
 𝑎𝑠 𝛾𝑥𝑦

0     (91) 

To be the midplane strains and defining: 

 −
𝑑2𝑤

𝑑𝑥2
 𝑎𝑠 𝜅𝑥   ;    −

𝑑2𝑤

𝑑𝑦2
 𝑎𝑠 𝜅𝑦   ;   −2

𝑑2𝑤

𝑑𝑥𝑦
 𝑎𝑠 𝜅𝑥𝑦  (92) 

to be the plate curvatures will make notation easier. The above equations can be 

expressed in matrix notation as follows: 

 [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] = [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧 [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

] (93) 
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As illustrated in the Figure 32, the plate's curvature Kx or Ky represents the change 

in slope of the bending plate along the x- or y-axis, respectively. The term Kxy refers 

to the amount of bending in the x-direction along the y-axis, also known as twisting. 

 
Figure 32 – Definitions of plate curvatures (Nettles, 1994) 

13.1.2 Equilibrium equations 

The Figure 33 illustrates the directions for all stress and moment resultants. The 

double-headed arrow indicates torque in the direction determined by the right-hand 

rule (i.e., point your right-hand thumb in the direction of the double-headed arrows, 

and the direction of the torque's rotation is in the direction your fingers are 

pointing). The Mx and My components will result in the board bending, while the 

Mxy component will cause twisting of the board (Nettles, 1994).  
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Figure 33 – External and internal forces on the element of the middle surface (Szilard, 2004) 

 

Based on the Figure 33 and the strain and curvature relations (as discussed in the 

previous chapter), we can derive the equilibrium equations for shell plates, which 

can be expressed in the following form: 

- Equilibrium equation for forces in the x-direction: 

 −𝑁𝑥𝑑𝑦 + (𝑁𝑥 +
𝑑𝑁𝑥

𝑑𝑥
𝑑𝑥) 𝑑𝑦 − 𝑁𝑥𝑦𝑑𝑥 + (𝑁𝑥𝑦 +

𝑑𝑁𝑥𝑦

𝑑𝑦
𝑑𝑦)𝑑𝑥 = 0 (94) 

 in reduced form for forces in x, y-direction: 

 
𝑑𝑁𝑥

𝑑𝑥
+

𝑑𝑁𝑥𝑦

𝑑𝑦
= 0   ;    

𝑑𝑁𝑥𝑦

𝑑𝑥
+

𝑑𝑁𝑦

𝑑𝑦
= 0 (95) 

- Equilibrium equation for forces in the z-direction: 

 
−𝑅𝑥𝑧𝑑𝑦 + (𝑅𝑥𝑧 +

𝑑𝑅𝑥𝑧

𝑑𝑥
𝑑𝑥) 𝑑𝑦 − 𝑅𝑦𝑧𝑑𝑥 + (𝑅𝑦𝑧 +

𝑑𝑅𝑦𝑧

𝑑𝑦
)𝑑𝑥

+ 𝑝 𝑑𝑥𝑑𝑦 = 0 

(96) 
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 in reduced form: 

 
𝑑𝑅𝑥𝑧

𝑑𝑥
=

𝑑𝑅𝑦𝑧

𝑑𝑦
+ 𝑝 = 0 (97) 

- Moment equations of equilibrium around the x-axis: 

 

𝑀𝑦𝑑𝑥 − (𝑀𝑦 +
𝑑𝑀𝑦

𝑑𝑦
𝑑𝑦)𝑑𝑥 + 𝑀𝑥𝑦𝑑𝑦 − (𝑀𝑥𝑦 +

𝑑𝑀𝑥𝑦

𝑑𝑥
𝑑𝑥)𝑑𝑦

+ (𝑅𝑦𝑧 +
𝑅𝑦𝑧

𝑑𝑦
𝑑𝑦)𝑑𝑥𝑑𝑦 +

𝑑𝑦

2
(𝑅𝑥𝑧 +

𝑑𝑅𝑥𝑧

𝑑𝑥
𝑑𝑥) 𝑑𝑦

−
𝑑𝑦

2
𝑅𝑥𝑧𝑑𝑦 +

𝑑𝑦

2
𝑝 𝑑𝑥𝑑𝑦 = 0 

(98) 

In reduced form: 

 
𝑑𝑀𝑥

𝑑𝑥
=

𝑑𝑀𝑥𝑦

𝑑𝑦
− 𝑅𝑥𝑧 = 0 (99) 

Similarly, the moment equations of equilibrium about the y-axis: 

 

 
𝑑𝑀𝑥𝑦

𝑑𝑥
+

𝑑𝑀𝑦

𝑑𝑦
− 𝑅𝑦𝑧 = 0 (100) 

Substituting the (moment) equation into the equilibrium equations in the z-

direction, we can derive the equilibrium equation for the plate: 

 

 
𝑑2𝑀𝑥

𝑑𝑥2
+ 2

𝑑2𝑀𝑥𝑦

𝑑𝑥𝑑𝑦
+

𝑑2𝑀𝑦

𝑑𝑦2
+ 𝑝 = 0 (101) 

These three equilibrium equations serve as the basis for establishing the governing 

plate equations in terms of displacement for the Kirchhoff-Love Plate Theory, 

which will be discussed in the following chapters. 

13.1.3 Orthotropic plate stress-strain relationship 

As previously mentioned (in the Hook's Law chapter), the stress in each lamination 

can be expressed in terms of strain and curvature as follows: 

 [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] = [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧 [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

] (102) 

The stresses in each layer may vary due to the thickness of the layer, thus it 

is necessary to define the stresses in terms of equivalent forces acting on the 

midplane of the plate. Referring to the Figure 34, we can observe that the stresses 

acting on the plate can be divided into increments and then summed. The resulting 

relationship in integral form is defined as the stress resultant and is denoted by Ni. 

This stress resultant has a unit force per length and acts in the same direction as the 

applied stress. 
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Figure 34 – Scheme of midplane notation 

The figure can be rearranged to represent the components in the y-axis direction 

and the in-plane shear stress as follows: 

 𝑁𝑥 = ∫ 𝜎𝑥𝑑𝑧
ℎ/2

−ℎ/2

 (103) 

 𝑁𝑦 = ∫ 𝜎𝑦𝑑𝑧
ℎ/2

−ℎ/2

 (104) 

 𝑁𝑥𝑦 = ∫ 𝜏𝑥𝑦𝑑𝑧
ℎ/2

−ℎ/2

 (105) 

From the figure presented earlier, it is evident that the applied stress on the 

plate generates a moment in the midline plane of the plate. The magnitude of this 

moment is dependent on the distance z from the midplane. These moments can be 

defined around all axes based on this principle. 

 𝑀𝑥 = ∫ 𝜎𝑥𝑧𝑑𝑧
ℎ/2

−ℎ/2

 (106) 

 𝑀𝑦 = ∫ 𝜎𝑦𝑧𝑑𝑧
ℎ/2

−ℎ/2

 (107) 

 𝑀𝑥𝑦 = ∫ 𝜏𝑥𝑦𝑧𝑑𝑧
ℎ/2

−ℎ/2

 (108) 

These moment resultants have units of torque per unit length. The Figure 35 

illustrates the directions of all stress and moment resultants (Nettles, 1994): 
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Figure 35 – Stress and moment resultants (Nettles, 1994) 

Equations (for Nx, Ny, Nxy) written in matrix form: 

 [

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]
ℎ/2

−ℎ/2

 (109) 

Equations (for Mx, My, Mxy) written in matrix form: 

 [

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] 𝑧𝑑𝑧
ℎ/2

−ℎ/2

 (110) 

These integral notations must be applied for each individual lamination and added 

together if there is a discontinuity in the stresses between the layers. 
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Figure 36 – Cross section of a laminate 

The equations (Nx, Ny, Nxy, My, ...) must be expressed in the form using the figure 

provided above: 

 
[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∑ ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

𝑑𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

 
(111) 

 [

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑ ∫ [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

]

𝑘

𝑧𝑑𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

 (112) 

By substituting the aforementioned equations into the equation for stress, we obtain: 

 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∑ {∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

]
𝑘𝑘

ℎ𝑘−1

𝑑𝑧

𝑛

𝑘=1

+ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]
𝑘𝑘

ℎ𝑘−1

𝑧𝑑𝑧} 

(113) 

Since strains and curvatures (ε0.κ0) do not vary with z (their values are always 0 in 

the median plane), they do not need to be included in the integration. Additionally, 
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the stiffness matrix of the laminate is constant for each layer and thus will remain 

constant during the integration over the thickness of the laminate. Therefore, 

subtracting these constants before integrating over the thickness yields: 

 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∑ {[

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

]∫ 𝑑𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]∫ 𝑧𝑑𝑧
ℎ𝑘

ℎ𝑘−1

} 

(114) 

 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑ {[

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

]∫ 𝑧𝑑𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

𝑘=1

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]∫ 𝑧2𝑑𝑧
ℎ𝑘

ℎ𝑘−1

} 

(115) 

By performing a simple integration, we get: 

 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∑ {[

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] (ℎ𝑘 − ℎℎ−1)

𝑛

𝑘=1

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]
1

2
(ℎ𝑘

2 − ℎ𝑘−1
2 )} 

(116) 

 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑ {[

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

]
1

2
(ℎ𝑘

2 − ℎℎ−1
2 )

𝑛

𝑘=1

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

]
1

3
(ℎ𝑘

3 − ℎ𝑘−1
3 )} 

(117) 

Since the deformation and curvature of the shear plane are not part of the sums, the 

laminate stiffness matrix and hk terms that can be seen in Figure 36 can be combined 

to create new matrices. 

 𝐴𝑖𝑗 = ∑[𝑄̅𝑖𝑗]𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

 (118) 
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 𝐵𝑖𝑗 =
1

2
∑[𝑄̅𝑖𝑗]𝑘

(ℎ𝑘
2 − ℎ𝑘−1

2 )

𝑛

𝑘=1

 (119) 

 𝐷𝑖𝑗 =
1

3
∑[𝑄̅𝑖𝑗]𝑘

(ℎ𝑘
3 − ℎ𝑘−1

3 )

𝑛

𝑘=1

 (120) 

The extensional stiffness matrix is denoted as matrix A, the coupling stiffness 

matrix as matrix B, and the bending stiffness matrix as matrix Dij. The bending 

stiffness matrix relates the amount of plate curvatures with the bending moments. 

In matrix notation, stress-strain relationship can be written as: 

 

[
 
 
 
 
 
 

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦
− − −

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

|
|
|

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

− − − | − − −

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

|
|
|

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜀𝑥

0

𝜀𝑦
0

𝛾𝑥𝑦
0

−
𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦]
 
 
 
 
 
 

 (121) 

13.1.4 Governing plate equations in terms of displacement 

By substituting the plate equilibrium equations into the stress-strain relations and 

then substituting the equations for strain and curvatures, we can derive the 

governing plate equations in terms of displacement u0, v0, and w0. Further 

mathematical manipulations lead to: 

1) Displacement u0 (in the x-axis direction): 

𝐴11

𝑑2𝑢0

𝑑𝑥2
+ 2𝐴16

𝑑2𝑢0

𝑑𝑥𝑑𝑦
+ 𝐴66

𝑑2𝑢0

𝑑𝑦2
+ 𝐴16

𝑑2𝑣0

𝑑𝑥2
+ (𝐴12 + 𝐴66)

𝑑2𝑣0

𝑑𝑥𝑑𝑦

+ 𝐴26

𝑑2𝑣0

𝑑𝑦2
− 𝐵11

𝑑3𝑤0

𝑑𝑥3
− 3𝐵16

𝑑3𝑤0

𝑑𝑥2𝑑𝑦

− (𝐵12 + 2𝐵66)
𝑑3𝑤0

𝑑𝑥𝑑𝑦2
− 𝐵26

𝑑3𝑤0

𝑑𝑦3 
= 0 

(122) 

2) Displacement v0 (in the y-axis direction) 

𝐴16

𝑑2𝑢0

𝑑𝑥2
+ (𝐴12 + 𝐴66)

𝑑2𝑢0

𝑑𝑥𝑑𝑦
+ 𝐴26

𝑑2𝑢0

𝑑𝑦2
+ 𝐴66

𝑑2𝑣0

𝑑𝑥2
+ 2𝐴26

𝑑2𝑣0

𝑑𝑥𝑑𝑦

+ 𝐴22

𝑑2𝑣0

𝑑𝑦2
− 𝐵16

𝑑3𝑤0

𝑑𝑥3
− (𝐵12 + 2𝐵66)

𝑑3𝑤0

𝑑𝑥2𝑑𝑦

− 3𝐵26

𝑑3𝑤0

𝑑𝑥𝑑𝑦2
− 𝐵22

𝑑3𝑤0

𝑑𝑦3
= 0 

 

(123) 
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3) Displacement w0 (in the z-axis direction) 

𝐷11

𝑑4𝑤0

𝑑𝑥4
+ 4𝐷16

𝑑4𝑤0

𝑑𝑥3𝑑𝑦
+ 2(𝐷12 + 2𝐷66)

𝑑4𝑤0

𝑑𝑥2𝑑𝑦2
+ 4𝐷26

𝑑4𝑤0

𝑑𝑥𝑑𝑦3

+ 𝐷22

𝑑4𝑤0

𝑑𝑦4
− 𝐵11

𝑑3𝑢0

𝑑𝑥3
− 3𝐵16

𝑑3𝑢0

𝑑𝑥2𝑑𝑦

− (𝐵12 + 2𝐵66)
𝑑3𝑢0

𝑑𝑥𝑑𝑦2
− 𝐵26

𝑑3𝑢0

𝑑𝑦3
− 𝐵16

𝑑3𝑣0

𝑑𝑥3

− (𝐵12 + 2𝐵66)
𝑑3𝑣0

𝑑𝑥2𝑑𝑦
− 3𝐵26

𝑑3𝑣0

𝑑𝑥𝑑𝑦2
− 𝐵22

𝑑3𝑣0

𝑑𝑦3
= 𝑞 

(124) 

13.2 Derivation of relations according to Mindlin-Reissner Plate 

Theory 

13.2.1 Strains and curvatures 

The linear strains associated with the displacement field in Eq. (65), (66) and (67) 

are: 

 𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝜅𝑥

0   ;    𝜀𝑦 = 𝜀𝑦
0 + 𝑧𝜅𝑦

0   ;    𝜀𝑥𝑦 = 𝜀𝑥𝑦
0 + 𝑧𝜅𝑥𝑦

0   (125) 

 𝜀𝑦𝑧 = 𝛾𝑦𝑧
0    ;    𝜀𝑥𝑧 = 𝛾𝑥𝑧

0  (126) 

The strain and curvature displacement equations of linear strain are given by: 

 𝜅𝑥
0 =

𝑑𝜙𝑥

𝑑𝑥
   ;    𝜅𝑦

0 =
𝑑𝜙𝑦

𝑑𝑦
   ;    𝜅𝑥𝑦

0 = (
𝑑𝜙𝑥

𝑑𝑦
+

𝑑𝜙𝑦

𝑑𝑥
) (127) 

 𝜀𝑥
0 =

𝑑𝑢0

𝑑𝑥
   ;    𝜀𝑦

0 =
𝑑𝑣0

𝑑𝑦
   ;    𝜀𝑥𝑦

0 = (
𝑑𝑢0

𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
) (128) 

 𝛾𝑦𝑧
0 = 𝜙𝑦 +

𝑑𝑤

𝑑𝑦
   ;    𝛾𝑥𝑧

0 = 𝜙𝑥 +
𝑑𝑤

𝑑𝑥
 (129) 

In matrix form: 

 [𝜅] = [

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

] =

[
 
 
 
 
 
 

𝑑𝜙𝑥

𝑑𝑥
𝑑𝜙𝑦

𝑑𝑦

(
𝑑𝜙𝑥

𝑑𝑦
+

𝑑𝜙𝑦

𝑑𝑥
)
]
 
 
 
 
 
 

   ;    [𝜀] = [

𝜀𝑥

𝜀𝑦

𝜀𝑥𝑦

] =

[
 
 
 
 
 
 

𝑑𝑢0

𝑑𝑥
𝑑𝑣0

𝑑𝑦

(
𝑑𝑢0

𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
)
]
 
 
 
 
 
 

 (130) 

 [𝛾] = [
𝛾𝑦𝑧

𝛾𝑥𝑧
] =

[
 
 
 𝜙𝑦 +

𝑑𝑤

𝑑𝑦

𝜙𝑥 +
𝑑𝑤

𝑑𝑥 ]
 
 
 
 (131) 
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13.2.2 Equilibrium equations 

If we do not proceed from the assumptions of Kirchhoff-Love's thin plate theory 

that the shear stresses Rxz and Ryz are zero over the thickness of the plate, then the 

equations of equilibrium can be rewritten in the following form: 

- Equilibrium equation o of forces in the x-axis direction: 

 −𝑁𝑥  𝑑𝑦 + (𝑁𝑥 +
𝑑𝑁𝑥

𝑑𝑥
𝑑𝑥)𝑑𝑦 − 𝑁𝑥𝑦𝑑𝑥 + (𝑁𝑥𝑦 +

𝑑𝑁𝑥𝑦

𝑑𝑦
𝑑𝑦)𝑑𝑥 = 0 (132) 

 in reduced form in x and y-direction: 

 
𝑑𝑁𝑥

𝑑𝑥
+

𝑑𝑁𝑥𝑦

𝑑𝑦
= 0   ;    

𝑑𝑁𝑥𝑦

𝑑𝑥
+

𝑑𝑁𝑦

𝑑𝑦
= 0 (133) 

- Equation of balance of forces in the z-axis direction: 

 
−𝑅𝑥𝑧𝑑𝑦 + (𝑅𝑥𝑧 +

𝑑𝑅𝑥𝑧

𝑑𝑥
𝑑𝑥) 𝑑𝑦 − 𝑅𝑦𝑧𝑑𝑥 + (𝑅𝑦𝑧 +

𝑑𝑅𝑦𝑧

𝑑𝑦
𝑑𝑦)𝑑𝑥

+ 𝑝 𝑑𝑥𝑑𝑦 = 0 

(134) 

in reduced form: 

 
𝑑𝑅𝑥𝑧

𝑑𝑥
+

𝑑𝑅𝑦𝑧

𝑑𝑦
+ 𝑝 = 0 (135) 

- Moment equations of equilibrium around the x-axis: 

 

𝑀𝑦𝑑𝑥 − (𝑀𝑦 +
𝑑𝑀𝑦

𝑑𝑦
𝑑𝑦)𝑑𝑥 + 𝑀𝑥𝑦𝑑𝑦 − (𝑀𝑥𝑦 +

𝑑𝑀𝑥𝑦

𝑑𝑥
𝑑𝑥)𝑑𝑦

+ (𝑅𝑦𝑧 +
𝑑𝑅𝑦𝑧

𝑑𝑦
𝑑𝑦)𝑑𝑥𝑑𝑦 +

𝑑𝑦

2
(𝑅𝑥𝑧 +

𝑑𝑅𝑥𝑧

𝑑𝑥
𝑑𝑥)𝑑𝑦

−
𝑑𝑦

2
𝑅𝑥𝑧𝑑𝑦 + 𝑝 𝑑𝑥𝑑𝑦 = 0 

(136) 

in reduced form: 

 

𝑑𝑀𝑥

𝑑𝑥
+

𝑑𝑀𝑥𝑦

𝑑𝑦
− 𝑅𝑥𝑧 = 0 

(137) 

- Similarly, the moment equations of equilibrium about the y-axis: 

 
𝑑𝑀𝑥𝑦

𝑑𝑥
+

𝑑𝑀𝑦

𝑑𝑦
− 𝑅𝑦𝑧 = 0 (138) 

These four resulting equilibrium equations are the foundation for the 

establishment of governing plate equations in terms of displacement for Mindlin-

Reissner plate theory in the following chapters. 
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13.2.3 Orthotropic plate stress-strain relationship 

Similar to Kirchhoff-Love plate theory, the stress-strain relationship for an 

orthotropic laminate with layers of different orientations can be written as: 

 

[
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧]
 
 
 
 

=

[
 
 
 
 
 
𝑄̅11 𝑄̅12

𝑄̅12 𝑄̅22

𝑄̅16

𝑄̅26

0 0
0 0

𝑄̅16 𝑄̅26 𝑄̅66 0 0

0 0
0 0

0
0

𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55]
 
 
 
 
 

𝑘

[
 
 
 
 
𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

𝛾𝑦𝑧

𝛾𝑥𝑧]
 
 
 
 

 (139) 

Where 𝑄̅𝑖𝑗 is the transformed stiffness matrix. Stress-resultants for Mindlin-

Reissner can be derived, as in Kirchhoff-Love plate theory, from the relations: 

 (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) = ∫ (𝜎𝑥, 𝜎𝑦𝜎𝑥𝑦)𝑑𝑧
ℎ/2

−ℎ/2

 (140) 

 (𝑀𝑥 ,𝑀𝑦,𝑀𝑥𝑦) = ∫ (𝜎𝑥, 𝜎𝑦𝜎𝑥𝑦)𝑧𝑑𝑧
ℎ/2

−ℎ/2

 (141) 

 (𝑄𝑥 , 𝑄𝑦) = ∫ (𝜎𝑥𝑧, 𝜎𝑦𝑧)𝑑𝑧
ℎ/2

−ℎ/2

 (142) 

Similar to Kirchhoff-Love plate theory, the stress-strain relationship for an 

orthotropic laminate with layers of different orientations written according to Thai 

(2013) as: 

 

[
 
 
 
 
 
 
𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66]
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑥𝑦

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦]
 
 
 
 
 

 (143) 

Where  

 
𝐴𝑖𝑗 = ∑(𝑄̅𝑖𝑗)(𝑘)

(𝑧𝑘+1 − 𝑧𝑘)

𝑁

𝑘=1

 
(144) 

 
𝐵𝑖𝑗 =

1

2
∑(𝑄̅𝑖𝑗)(𝑘)

(𝑧𝑘+1
2 − 𝑧𝑘

2)

𝑁

𝑘=1

 
(145) 

 𝐷𝑖𝑗 =
1

3
∑(𝑄̅𝑖𝑗)(𝑘)

(𝑧𝑘+1
3 − 𝑧𝑘

3)

𝑁

𝑘=1

 (146) 
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In addition, according to Balogh (2013) following laminate constitutive equations:  

 [
𝑄𝑦

𝑄𝑥
] = [

𝐴44 𝐴45

𝐴45 𝐴55
]

[
 
 
 𝜙𝑦 +

𝑑𝑤

𝑑𝑦

𝜙𝑦 +
𝑑𝑤

𝑑𝑥 ]
 
 
 

 (147) 

where 

 𝐴𝑖𝑗 = ∑(𝑄̅𝑖𝑗)(𝑘)
(𝑧𝑘+1 − 𝑧𝑘)

𝑁

𝑘=1

 (148) 

13.2.4 Governing plate equations in terms of displacement 

After substituting the plate equilibrium equations into the stress-strain relations and 

then replacing the strain curvatures equations, we obtain the governing plate 

equations in terms of displacement u0, v0, w0, ϕx, and ϕy. Further mathematical 

modifications result in: 

1) Equation for displacement u0 (in the x-axis direction): 

𝐴11

𝜕2𝑢0

𝜕𝑥2
+ 𝐴12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2 ) + 𝐵11

𝜕2𝜙𝑥

𝜕𝑥2
+ 𝐵12

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦

+ 𝐵16 (
𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2 ) + 𝐴16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑣0

𝜕𝑦2

+ 𝐴66 (
𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝐵16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐵26

𝜕2𝜙𝑦

𝜕𝑦2

+ 𝐵66 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
)  = 0 

(149) 

1) Equation for displacement v0 (in the y-axis direction): 

𝐴16

𝜕2𝑢0

𝜕𝑥2
+ 𝐴26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴66 (

𝜕2𝑢0

𝜕𝑦𝜕𝑥
+

𝜕2𝑣0

𝜕𝑥2 ) + 𝐵16

𝜕2𝜙𝑥

𝜕𝑥2
+ 𝐵26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦

+ 𝐵66 (
𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2 ) + 𝐴12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴22

𝜕2𝑣0

𝜕𝑦2

+ 𝐴26 (
𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝐵12

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐵22

𝜕2𝜙𝑦

𝜕𝑦2

+ 𝐵26 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) = 0 

(150) 

2) Equation for displacement w0 (in the z-axis direction): 

𝐴45 (
𝜕𝜙𝑦

𝜕𝑥
+

𝜕2𝑤

𝜕𝑥𝜕𝑦
) + 𝐴55 (

𝜕𝜙𝑥

𝜕𝑥
+

𝜕2𝑤

𝜕𝑥2) + 𝐴44 (
𝜕𝜙𝑦

𝜕𝑦
+

𝜕2𝑤

𝜕𝑦2)

+ 𝐴45 (
𝜕𝜙𝑥

𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑦
) + 𝑝 = 0 

(151) 
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3) Equation for displacement 𝜙𝑥 (rotation of the perpendicular to the midplane 

in the zx-plane) 

𝐵11

𝜕2𝑢0

𝜕𝑥2
+ 𝐵12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐵16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2 ) + 𝐷11

𝜕2𝜙𝑥

𝜕𝑥2
+ 𝐷12

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦

+ 𝐷16 (
𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2 ) + 𝐵16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐵26

𝜕2𝑣0

𝜕𝑦2

+ 𝐵66 (
𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝐷16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐷26

𝜕2𝜙𝑦

𝜕𝑦2

+ 𝐷66 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) = 𝐴45 (𝜙𝑦 +

𝜕𝑤

𝜕𝑦
) + 𝐴55 (𝜙𝑥 +

𝜕𝑤

𝜕𝑥
) 

(152) 

4) Equation for displacement 𝜙𝑦 (rotation of the perpendicular to the midplane 

in the zy-plane) 

 

𝐵16

𝜕2𝑢0

𝜕𝑥2
+ 𝐵26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐵66 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2 ) + 𝐷16

𝜕2𝜙𝑥

𝜕𝑥2
+ 𝐷26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦

+ 𝐷66 (
𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2 ) + 𝐵12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐵22

𝜕2𝑣0

𝜕𝑦2

+ 𝐵26 (
𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝐷12

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐷22

𝜕2𝜙𝑦

𝜕𝑦2

+ 𝐷26 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
)

= 𝐴44 (𝜙𝑦 +
𝜕𝑤

𝜕𝑦
) + 𝐴45 (𝜙𝑥 +

𝜕𝑤

𝜕𝑥
) 

(153) 

13.3 Derivation of relations according to Second Order Shear 

Deformation Theory 

13.3.1 Strains and curvatures 

The linear strains associated with the displacement field in Eq. (68), (69) and (70) 

are according to Khdeir (1999): 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝜅𝑥

0 + 𝑧2𝜅𝑥
1   ;    𝜀𝑦 = 𝜀𝑦

0 + 𝑧𝜅𝑦
0 + 𝑧2𝜅𝑦

1 
(154) 

𝛾𝑦𝑧 = 𝛾𝑦𝑧
0 + 𝛾𝑦𝑧

1    ;    𝛾𝑥𝑧 = 𝛾𝑥𝑧
0 + 𝛾𝑥𝑧

1  
(155) 

𝜀𝑥𝑦 = 𝜀𝑥𝑦
0 + 𝜅𝑥𝑦

0 + 𝜅𝑥𝑦
1  (156) 

where 

𝜀𝑥
0 =

𝑑𝑢0

𝑑𝑥
   ;    𝜀𝑦

0 =
𝑑𝑣0

𝑑𝑦
   ;    𝜀𝑥𝑦

0 = 𝛾𝑥𝑦
0 = (

𝑑𝑢0

𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
) (157) 
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𝜅𝑥
0 =

𝑑𝜙1

𝑑𝑥
   ;    𝜅𝑦

0 =
𝑑𝜓1

𝑑𝑦
   ;    𝜅𝑥𝑦

0 = (
𝑑𝜙1

𝑑𝑦
+

𝑑𝜓1

𝑑𝑥
) (158) 

𝜅𝑥
1 =

𝑑𝜙2

𝑑𝑥
   ;    𝜅𝑦

1 =
𝑑𝜓2

𝑑𝑦
   ;    𝜅𝑥𝑦

1 = (
𝑑𝜙2

𝑑𝑦
+

𝑑𝜓2

𝑑𝑥
) (159) 

𝛾𝑦𝑧
0 = (𝜓1 +

𝑑𝑤0

𝑑𝑦
)   ;    𝛾𝑥𝑧

0 = (𝜙1 +
𝑑𝑤0

𝑑𝑥
) (160) 

𝛾𝑦𝑧
1 = 2𝜓2   ;    𝛾𝑥𝑧

1 = 2𝜙2 (161) 

In matrix form: 

[𝜀0] = [

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

] =

[
 
 
 
 
 
 

𝑑𝑢0

𝑑𝑥
𝑑𝑣0

𝑑𝑦

(
𝑑𝑢0

𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
)
]
 
 
 
 
 
 

   ;    [𝜅0] = [

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

] =

[
 
 
 
 
 
 

𝑑𝜙1

𝑑𝑥
𝑑𝜓1

𝑑𝑦

(
𝑑𝜙1

𝑑𝑦
+

𝑑𝜓1

𝑑𝑥
)
]
 
 
 
 
 
 

 (162) 

[𝜅1] = [

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

] =

[
 
 
 
 
 
 

𝑑𝜙2

𝑑𝑥
𝑑𝜓2

𝑑𝑦

(
𝑑𝜙2

𝑑𝑦
+

𝑑𝜓2

𝑑𝑥
)
]
 
 
 
 
 
 

 
(163) 

[𝛾0] = [
𝛾𝑦𝑧

0

𝛾𝑥𝑧
0

] =

[
 
 
 (𝜓1 +

𝑑𝑤0

𝑑𝑦
)

(𝜙1 +
𝑑𝑤0

𝑑𝑥
)]
 
 
 

   [𝛾1] = [
𝛾𝑦𝑧

1

𝛾𝑥𝑧
1

] = [
2𝜓2

2𝜙2
] 

(164) 

13.3.2 Equilibrium equations 

Similar to CPT and FSDT, the equation of equilibrium is determined from the forces 

and moments acting in the plane of the plate. 

Stress resultant in x and y-direction: 

 
𝑑𝑁𝑥

𝑑𝑥
+

𝑑𝑁𝑥𝑦

𝑑𝑦
= 0   ;    

𝑑𝑁𝑥𝑦

𝑑𝑥
+

𝑑𝑁𝑦

𝑑𝑦
= 0 (165) 

Stress resultant in z-direction: 

 
𝑑𝑄𝑥

𝑑𝑥
+

𝑑𝑄𝑦

𝑑𝑦
+ 𝑝(𝑥, 𝑦) = 0 (166) 
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Moment resultant about x and y-axis: 

 
𝑑𝑀𝑥

𝑑𝑥
+

𝑑𝑀𝑥𝑦

𝑑𝑦
− 𝑄𝑥 = 0   ;   

𝑑𝑀𝑥𝑦

𝑑𝑥
+

𝑑𝑀𝑦

𝑑𝑦
− 𝑄𝑦 = 0 (167) 

The components representing second order stress resultants in x and y-direction are 

then written as: 

 
𝑑𝐿𝑥

𝑑𝑥
+

𝑑𝐿𝑥𝑦

𝑑𝑦
− 2𝑅𝑥 = 0   ;   

𝑑𝐿𝑥𝑦

𝑑𝑥
+

𝑑𝐿𝑦

𝑑𝑦
− 2𝑅𝑦 = 0 (168) 

13.3.3 Orthotropic plate stress-strain relationship 

The stress-strain relations for the kth lamina in the laminate coordinates are given 

by:  

 

[
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧]
 
 
 
 

(𝑘)

=

[
 
 
 
 
 
𝑄̅11 𝑄̅12

𝑄̅12 𝑄̅22

𝑄̅16

𝑄̅26

0 0
0 0

𝑄̅16 𝑄̅26 𝑄̅66 0 0

0 0
0 0

0
0

𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55]
 
 
 
 
 

(𝑘)

[
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑥𝑦

𝜀𝑦𝑧

𝜀𝑥𝑧]
 
 
 
 

 (169) 

Where 𝑄̅𝑖𝑗 is the transformed stiffness matrix.  

Stress-resultants for SSDT are according to Khdeir (1999) defined as: 

 (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) = ∑ ∫ (𝜎𝑥 , 𝜎𝑦, 𝜎𝑥𝑦)𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (170) 

 (𝑀𝑥,𝑀𝑦, 𝑀𝑥𝑦) = ∑ ∫ (𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦)𝑧𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (171) 

 (𝐿𝑥 , 𝐿𝑦, 𝐿𝑥𝑦) = ∑ ∫ (𝜎𝑥, 𝜎𝑦𝜎𝑥𝑦)𝑧2𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (172) 

 (𝑄𝑦, 𝑄𝑥) = ∑ ∫ (𝜎𝑦𝑧, 𝜎𝑥𝑧)𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (173) 

 (𝑅𝑦, 𝑅𝑥) = ∑ ∫ (𝜎𝑦𝑧, 𝜎𝑥𝑧)𝑧𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (174) 

 

Substituting equations (170) - (174) into equation (169) we obtain the following 

relations: 
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[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∑ {∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

] 𝑑𝑧

𝑛

𝑘=1

+ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

] 𝑧𝑑𝑧

+ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

] 𝑧2𝑑𝑧} 

(175) 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑ {∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

] 𝑧𝑑𝑧

𝑛

𝑘=1

+ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

] 𝑧2𝑑𝑧

+ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

] 𝑧3𝑑𝑧} 

(176) 

 

[

𝐿𝑥

𝐿𝑦

𝐿𝑥𝑦

] = ∑ {∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

] 𝑧2𝑑𝑧

𝑛

𝑘=1

+ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

] 𝑧3𝑑𝑧

+ ∫ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]
ℎ𝑘

ℎ𝑘−1 

[

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

] 𝑧4𝑑𝑧} 

(177) 

 

[
𝑄𝑦

𝑄𝑥
] = ∑ {∫ [

𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

] [
𝛾𝑦𝑧

0

𝛾𝑥𝑧
0

] 𝑑𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

ℎ𝑘−1

+ ∫ [
𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

] [
𝛾𝑦𝑧

1

𝛾𝑥𝑧
1

] 𝑧𝑑𝑧
ℎ𝑘

ℎ𝑘−1

} 

(178) 

 

[
𝑅𝑦

𝑅𝑥
] = ∑ {∫ [

𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

] [
𝛾𝑦𝑧

0

𝛾𝑥𝑧
0

] 𝑧𝑑𝑧
ℎ𝑘

ℎ𝑘−1

𝑛

ℎ𝑘−1

+ ∫ [
𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

] [
𝛾𝑦𝑧

1

𝛾𝑥𝑧
1

] 𝑧2𝑑𝑧
ℎ𝑘

ℎ𝑘−1

} 

(179) 

Strains and curvatures (𝜀0, 𝜅0) are not a function of z (these values are always 0 in 

the midplane), they need not be part of the integration. At the same time, the 
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laminate stiffness matrix is constant for a given layer and thus will be constant in 

the laminate thickness integration. By expelling these constants before the integral 

and then integrating, we obtain: 

[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

] = ∑ {[

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

] (ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

]
1

2
(ℎ𝑘

2 − ℎ𝑘−1
2 )

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

]
1

3
(ℎ𝑘

3 − ℎ𝑘−1
3 )} 

(180) 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑ {[

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

]
1

2
(ℎ𝑘

2 − ℎ𝑘−1
2 )

𝑛

𝑘=1

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

]
1

3
(ℎ𝑘

3 − ℎ𝑘−1
3 )

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

]
1

4
(ℎ𝑘

4 − ℎ𝑘−1
4 )} 

(181) 

[

𝐿𝑥

𝐿𝑦

𝐿𝑥𝑦

] = ∑ {[

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

]
1

3
(ℎ𝑘

3 − ℎ𝑘−1
3 )

𝑛

𝑘=1

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

]
1

4
(ℎ𝑘

4 − ℎ𝑘−1
4 )

+ [

𝑄̅11 𝑄̅12 𝑄̅16

𝑄̅12 𝑄̅22 𝑄̅26

𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘

[

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

]
1

5
(ℎ𝑘

5 − ℎ𝑘−1
5 )} 

(182) 

[
𝑄𝑦

𝑄𝑥
] = ∑ {[

𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

]
𝑘

[
𝛾𝑦𝑧

0

𝛾𝑥𝑧
0

] (ℎ𝑘 − ℎ𝑘−1)

𝑛

ℎ𝑘−1

+ [
𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

] [
𝛾𝑦𝑧

1

𝛾𝑥𝑧
1

]
1

2
(ℎ𝑘

2 − ℎ𝑘−1
2 )} 

(183) 

[
𝑅𝑦

𝑅𝑥
] = ∑ {[

𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

]
𝑘

[
𝛾𝑦𝑧

0

𝛾𝑥𝑧
0

]
1

2
(ℎ𝑘

2 − ℎ𝑘−1
2 )

𝑛

ℎ𝑘−1

+ [
𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55

] [
𝛾𝑦𝑧

1

𝛾𝑥𝑧
1

]
1

3
(ℎ𝑘

3 − ℎ𝑘−1
3 )} 

(184) 
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Since the deformation and curvature of the shear plane are not part of the sums, the 

laminate stiffness matrix and hk terms can be combined to create new matrices. 

 𝐴𝑖𝑗 = ∑[𝑄̅𝑖𝑗]𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

 (185) 

 𝐵𝑖𝑗 =
1

2
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

2 − ℎ𝑘−1
2 )

𝑛

𝑘=1

 (186) 

 𝐷𝑖𝑗 =
1

3
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

3 − ℎ𝑘−1
3 )

𝑛

𝑘=1

 (187) 

 𝐸𝑖𝑗 =
1

4
∑[𝑄̅𝑖𝑗]𝑘(

ℎ𝑘
4 − ℎ𝑘−1

4 )

𝑛

𝑘=1

 (188) 

 𝐹𝑖𝑗 =
1

5
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

5 − ℎ𝑘−1
5 )

𝑛

𝑘=1

 (189) 

Where 𝐴𝑖𝑗 is extensional stiffness matrix, 𝐵𝑖𝑗 is extension-bending coupling matrix, 

𝐷𝑖𝑗 is bending stiffness matrix, 𝐸𝑖𝑗 is second order coupling matrix, 𝐹𝑖𝑗 is second 

order stiffness matrix. 

 

𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗, 𝐸𝑖𝑗 , 𝐹𝑖𝑗 = ∫ [𝑄̅𝑖𝑗]

ℎ
2

−
ℎ
2

(1, 𝑧, 𝑧2, 𝑧3, 𝑧4)𝑑𝑧     

×  {
𝐴𝑖𝑗, 𝐷𝑖𝑗, 𝐹𝑖𝑗    (𝑗, 𝑖 = 1,2,4,5,6)

𝐸𝑖𝑗 , 𝐵𝑖𝑗   (𝑗, 𝑖 = 1,2,6)
 

(190) 

Stress-strain relationship in terms of stress resultants in full matrix form according 

to Shahrjerdi & Bayat (2010): 

[
 
 
 
 
 
 
 
 
 
[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

]

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

]

[

𝐿𝑥

𝐿𝑦

𝐿𝑥𝑦

]

]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
[

𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

] [

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵16

𝐵16 𝐵26 𝐵66

] [

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

]

[

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵16

𝐵16 𝐵26 𝐵66

] [

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

𝐸11 𝐸12 𝐸16

𝐸12 𝐸22 𝐸26

𝐸16 𝐸26 𝐸66

]

[

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

𝐸11 𝐸12 𝐸16

𝐸12 𝐸22 𝐸26

𝐸16 𝐸26 𝐸66

] [

𝐹11 𝐹12 𝐹16

𝐹12 𝐹22 𝐹26

𝐹16 𝐹26 𝐹66

]
]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
[

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

]

[

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

]

[

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

]

]
 
 
 
 
 
 
 
 
 
 

 (191) 

 

[
 
 
 [

𝑄𝑦

𝑄𝑥
]

[
𝑅𝑦

𝑅𝑥
]
]
 
 
 
= [

[
𝐴44 𝐴45

𝐴45 𝐴55
] [

𝐵44 𝐵45

𝐵45 𝐵55
]

[
𝐵44 𝐵45

𝐵45 𝐵55
] [

𝐷44 𝐷45

𝐷45 𝐷55
]
]

[
 
 
 
 [

𝛾𝑦𝑧
0

𝛾𝑥𝑧
0

]

[
𝛾𝑦𝑧

1

𝛾𝑥𝑧
1

]
]
 
 
 
 

 (192) 

Stress-strain relationship in terms of stress resultants in contracted matrix form: 
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[

[𝑁]
[𝑀]

[𝐿]
] = [

[𝐴] [𝐵] [𝐷]
[𝐵] [𝐷] [𝐸]

[𝐷] [𝐸] [𝐹]
] [

[𝜀0]

[𝜅0]

[𝜅1]

] 
(193) 

 [
[𝑄]

[𝑅]
] = [

[𝐴] [𝐵]
[𝐵] [𝐷]

] [
[𝛾0]

[𝛾1]
] (194) 

13.3.4 Governing plate equations in terms of displacement 

Substitution of the plate equilibrium equations into the previous stress-strain 

relations and subsequent equation substitution (strain curvatures) yields governing 

plate equations in terms of displacement u0, v0, w0, 𝜙1, 𝜙2, 𝜓1 and 𝜓2. By further 

mathematical adjustments we obtain: 

1) Equation for displacement u0 (in the x-axis direction): 

A11

∂2u0

∂x2
+ A12

∂2v0

∂x ∂y
+ A16 (

∂2u0

∂x∂y
+

∂2v0

∂x2 ) + B11

∂2ϕ1

∂x2
+ B12

∂2ψ1

∂x ∂y

+ B16 (
∂2ϕ1

∂x ∂y
+

∂2ψ1

∂x2 ) + D11

∂2ϕ2

∂x2
+ D12

∂2ψ2

∂x ∂y
+ D16 (

∂2ϕ2

∂x ∂y
+

∂2ψ2

∂x2 )

+ A16

∂2u0

∂x ∂y
+ A26

∂2v0

∂y2
+ A66 (

∂2u0

∂y2
+

∂2v0

∂y∂x
) + B16

∂2ϕ1

∂x ∂y

+ B26

∂2ψ1

∂y2
+ B66 (

∂2ϕ1

∂y2
+

∂2ψ1

∂x ∂y
) + D16

∂2ϕ2

∂x ∂y
+ D26

∂2ψ2

∂y2

+ D66 (
∂2ϕ2

∂y2
+

∂2ψ2

∂x ∂y
) = 0 

 (195) 

2) Equation for displacement v0 (in the y-axis direction): 

𝐴16

𝜕2𝑢0

𝜕𝑥2
+ 𝐴26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴66 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2 ) + 𝐵16

𝜕2𝜙1

𝜕𝑥2
+ 𝐵26

𝜕2𝜓1

𝜕𝑥𝜕𝑦

+ 𝐵66 (
𝜕2𝜙1

𝜕𝑥𝜕𝑦
+

𝜕2𝜓1

𝜕𝑥2 ) + 𝐷16

𝜕2𝜙2

𝜕𝑥2
+ 𝐷26

𝜕2𝜓2

𝜕𝑥𝜕𝑦

+ 𝐷66 (
𝜕2𝜙2

𝜕𝑥𝜕𝑦
+

𝜕2𝜓2

𝜕𝑥2 ) + 𝐴12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴22

𝜕2𝑣0

𝜕𝑦2
+ 𝐴26 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ 𝐵12

𝜕2𝜙1

𝜕𝑥𝜕𝑦
+ 𝐵22

𝜕2𝜓1

𝜕𝑦2
+ 𝐵26 (

𝜕2𝜙1

𝜕𝑦2
+

𝜕2𝜓1

𝜕𝑥𝜕𝑦
) + 𝐷12

𝜕2𝜙2

𝜕𝑥𝜕𝑦

+ 𝐷22

𝜕2𝜓2

𝜕𝑦2
+ 𝐷26 (

𝜕2𝜙2

𝜕𝑦2
+

𝜕2𝜓2

𝜕𝑥𝜕𝑦
) = 0 

 (196) 

3) Equation for displacement w0 (in the z-axis direction) 
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𝐴45 (
𝜕𝜓1

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) + 𝐴55 (

𝜕𝜙1

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 ) + 𝐵45

𝜕(2𝜓2)

𝜕𝑥
+ 𝐵55

𝜕(2𝜙2)

𝜕𝑥

+ 𝐴44 (
𝜕𝜓1

𝜕𝑦
+

𝜕2𝑤0

𝜕𝑦2 ) + 𝐴45 (
𝜕𝜙1

𝜕𝑦
+

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) + 𝐵44

𝜕(2𝜓2)

𝜕𝑦

+ 𝐵45

𝜕(2𝜙2)

𝜕𝑦
= −𝑝(𝑥, 𝑦) 

 (197) 

4) Equation for displacement 𝜙1 (rotation of the perpendicular to the midplane 

in the zx plane) 

𝐵11

𝜕2𝑢0

𝜕𝑥2
+ B12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ B16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2 ) + D11

𝜕2𝜙1

𝜕𝑥2
+ D12

𝜕2𝜓1

𝜕𝑥𝜕𝑦

+ D16 (
𝜕2𝜙1

𝜕𝑥𝜕𝑦
+

𝜕2𝜓1

𝜕𝑥2 ) + E11

𝜕2𝜙2

𝜕𝑥2
+ E12

𝜕2𝜓2

𝜕𝑥𝜕𝑦
+ E16 (

𝜕2𝜙2

𝜕𝑥𝜕𝑦
+

𝜕2𝜓2

𝜕𝑥2 )

+ 𝐵16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ B26

𝜕2𝑣0

𝜕𝑦2
+ B66 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + D16

𝜕2𝜙1

𝜕𝑥𝜕𝑦

+ D26

𝜕2𝜓1

𝜕𝑦2
+ D66 (

𝜕2𝜙1

𝜕𝑦2
+

𝜕2𝜓1

𝜕𝑥𝜕𝑦
) + E16

𝜕2𝜙2

𝜕𝑥𝜕𝑦
+ E26

𝜕2𝜓2

𝜕𝑦2

+ E66 (
𝜕2𝜙2

𝜕𝑦2
+

𝜕2𝜓2

𝜕𝑥𝜕𝑦
)

− [𝐴45 (𝜓1 +
𝜕𝑤0

𝜕𝑦
) + 𝐴55 (𝜙1 +

𝜕𝑤0

𝜕𝑥
) + 𝐵452𝜓2 + 𝐵552𝜙2] = 0 

 (198) 

5) Equation for displacement 𝜙2 (rotation of the perpendicular to the midplane 

in the yx plane) 

𝐵16

𝜕2𝑢0

𝝏𝒙𝟐
+ B26

𝜕2𝑣0

𝜕𝑥𝝏𝒚
+ B66 (

𝜕2𝑢0

𝜕𝑥𝝏𝒚
+

𝜕2𝑣0

𝝏𝒙𝟐 ) + D16

𝜕2𝜙1

𝝏𝒙𝟐
+ D26

𝜕2𝜓1

𝜕𝑥𝝏𝒚

+ D66 (
𝜕2𝜙1

𝜕𝑥𝝏𝒚
+

𝜕2𝜓1

𝝏𝒙𝟐 ) + E16

𝜕2𝜙2

𝝏𝒙𝟐
+ E26

𝜕2𝜓2

𝜕𝑥𝝏𝒚

+ E66 (
𝜕2𝜙2

𝜕𝑥𝝏𝒚
+

𝜕2𝜓2

𝝏𝒙𝟐 ) + 𝐵12

𝜕2𝑢0

𝝏𝒙𝜕𝑦
+ B22

𝜕2𝑣0

𝝏𝒚𝟐
+ B26 (

𝜕2𝑢0

𝝏𝒚𝟐
+

𝜕2𝑣0

𝝏𝒙𝜕𝑦
)

+ D12

𝜕2𝜙1

𝝏𝒙𝜕𝑦
+ D22

𝜕2𝜓1

𝝏𝒚𝟐
+ D26 (

𝜕2𝜙1

𝝏𝒚𝟐
+

𝜕2𝜓1

𝝏𝒙𝜕𝑦
) + E12

𝜕2𝜙2

𝝏𝒙𝜕𝑦

+ E22

𝜕2𝜓2

𝝏𝒚𝟐
+ E26 (

𝜕2𝜙2

𝝏𝒚𝟐
+

𝜕2𝜓2

𝝏𝒙𝜕𝑦
)

− [𝐴44 (𝜓1 +
𝜕𝑤0

𝜕𝑦
) + 𝐴45 (𝜙1 +

𝜕𝑤0

𝜕𝑥
) + 𝐵442𝜓2 + 𝐵452𝜙2] = 0 

 

 
(199) 
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6) Second order displacement equation 𝜓1 (rotation of the perpendicular to the 

midplane in the zx plane) 

𝐷11

𝜕2𝑢0

𝝏𝒙𝟐
+ D12

𝜕2𝑣0

𝜕𝑥𝝏𝒚
+ D16 (

𝜕2𝑢0

𝜕𝑥𝝏𝒚
+

𝜕𝑣0

𝝏𝒙𝟐) + E11

𝜕2𝜙1

𝝏𝒙𝟐
+ E12

𝜕2𝜓1

𝜕𝑥𝝏𝒚

+ E16 (
𝜕2𝜙1

𝜕𝑥𝝏𝒚
+

𝜕2𝜓1

𝝏𝒙𝟐 ) + F11

𝜕2𝜙2

𝝏𝒙𝟐
+ F12

𝜕2𝜓2

𝜕𝑥𝝏𝒚
+ F16 (

𝜕2𝜙2

𝜕𝑥𝝏𝒚
+

𝜕2𝜓2

𝝏𝒙𝟐 )

+ 𝐷16

𝜕2𝑢0

𝝏𝒙𝜕𝑦
+ D26

𝜕2𝑣0

𝝏𝒚𝟐
+ D66 (

𝜕2𝑢0

𝝏𝒚𝟐
+

𝜕2𝑣0

𝝏𝒙𝜕𝑦
) + E16

𝜕2𝜙1

𝝏𝒙𝜕𝑦

+ E26

𝜕2𝜓1

𝝏𝒚𝟐
+ E66 (

𝜕2𝜙1

𝝏𝒚𝟐
+

𝜕2𝜓1

𝝏𝒙𝜕𝑦
) + F16

𝜕2𝜙2

𝝏𝒙𝜕𝑦
+ F26

𝜕2𝜓2

𝝏𝒚𝟐

+ F66 (
𝜕2𝜙2

𝝏𝒚𝟐
+

𝜕2𝜓2

𝝏𝒙𝜕𝑦
)

− 2 [𝐵45 (𝜓1 +
𝜕𝑤0

𝜕𝑦
) + 𝐵55 (𝜙1 +

𝜕𝑤0

𝜕𝑥
) + 𝐷452𝜓2 + 𝐷552𝜙1] = 0 

 (200) 

7) Second order displacement equation 𝜓2 (rotation of the perpendicular to the 

midplane in the zy plane) 

[𝐷16

𝜕2𝑢0

𝝏𝒙𝟐
+ D26

𝜕2𝑣0

𝜕𝑥𝝏𝒚
+ D66 (

𝜕2𝑢0

𝜕𝑥𝝏𝒚
+

𝜕2𝑣0

𝝏𝒙𝟐 ) + E16

𝜕2𝜙1

𝝏𝒙𝟐
+ E26

𝜕2𝜓1

𝜕𝑥𝝏𝒚

+ E66 (
𝜕2𝜙1

𝜕𝑥𝝏𝒚
+

𝜕2𝜓1

𝝏𝒙𝟐 ) + F16

𝜕2𝜙2

𝝏𝒙𝟐
+ F26

𝜕2𝜓2

𝜕𝑥𝝏𝒚

+ F66 (
𝜕2𝜙2

𝜕𝑥𝝏𝒚
+

𝜕2𝜓2

𝝏𝒙𝟐 )]

+ [𝐷12

𝜕2𝑢0

𝝏𝒙𝜕𝑦
+ D22

𝜕2𝑣0

𝝏𝒚𝟐
+ D26 (

𝜕2𝑢0

𝝏𝒚𝟐
+

𝜕2𝑣0

𝝏𝒙𝜕𝑦
) + E12

𝜕2𝜙1

𝝏𝒙𝜕𝑦

+ E22

𝜕2𝜓1

𝝏𝒚𝟐
+ E26 (

𝜕2𝜙1

𝝏𝒚𝟐
+

𝜕2𝜓1

𝝏𝒙𝜕𝑦
) + F12

𝜕2𝜙2

𝝏𝒙𝜕𝑦
+ F22

𝜕2𝜓2

𝝏𝒚𝟐

+ F26 (
𝜕2𝜙2

𝝏𝒚𝟐
+

𝜕2𝜓2

𝝏𝒙𝜕𝑦
)]

− 2 [𝐵44 (𝜓1 +
𝜕𝑤0

𝜕𝑦
) + 𝐵45 (𝜙1 +

𝜕𝑤0

𝜕𝑥
) + 𝐷442𝜓2 + 𝐷452𝜙1] = 0 

 (201) 

13.4 Derivation of relations according to Third-Order Shear 

Deformation Theory 

13.4.1 Strains and curvatures 

The linear strains associated with the displacement field according to Nami (2015): 

 𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝜅𝑥

0 + 𝑧2𝜅𝑥
1 + 𝑧3𝜅𝑥

2 (202) 
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 𝜀𝑦 = 𝜀𝑦
0 + 𝑧𝜅𝑦

0 + 𝑧2𝜅𝑦
1 + 𝑧3𝜅𝑦

2 (203) 

 𝛾𝑦𝑧 = 𝛾𝑦𝑧
0 + 𝑧𝛾𝑦𝑧

1 + 𝑧2𝛾𝑦𝑧
2  (204) 

 𝛾𝑥𝑧 = 𝛾𝑥𝑧
0 + 𝑧𝛾𝑥𝑧

1 + 𝑧2𝛾𝑥𝑧
2  (205) 

 𝜀𝑥𝑦 = 𝜀𝑥𝑦
0 + 𝑧𝜅𝑥𝑦

0 + 𝑧2𝜅𝑥𝑦
1 + 𝑧3𝜅𝑥𝑦

2  (206) 

Where 

 𝜀𝑥
0 =

𝑑𝑢0

𝑑𝑥
   ;    𝜀𝑦

0 =
𝑑𝑣0

𝑑𝑦
   ;  𝜀𝑥𝑦

0 = 𝛾𝑥𝑦 = (
𝑑𝑢0

𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
) (207) 

 𝜅𝑥
0 =

𝑑𝜓𝑥

𝑑𝑥
   ;    𝜅𝑦

0 =
𝑑𝜓𝑦

𝑑𝑥
   ;    𝜅𝑥𝑦

0 = (
𝑑𝜓𝑥

𝑑𝑦
+

𝑑𝜓𝑦

𝑑𝑥
) (208) 

 𝜅𝑥
1 =

𝑑𝜙𝑥

𝑑𝑥
   ;    𝜅𝑦

1 =
𝑑𝜙𝑦

𝑑𝑦
   ;   𝜅𝑥𝑦

1 = (
𝑑𝜙𝑥

𝑑𝑦
+

𝑑𝜙𝑦

𝑑𝑥
) (209) 

 𝜅𝑥
2 =

𝑑𝜆𝑥

𝑑𝑥
   ;    𝜅𝑦

2 =
𝑑𝜆𝑦

𝑑𝑦
   ;    𝜅𝑥𝑦

2 = (
𝑑𝜆𝑥

𝑑𝑦
+

𝑑𝜆𝑦

𝑑𝑥
) (210) 

 𝛾𝑦𝑧
0 = (𝜓𝑦 +

𝑑𝑤0

𝑑𝑦
)   ;    𝛾𝑥𝑧

0 = (𝜓𝑥 +
𝑑𝑤0

𝑑𝑥
) (211) 

 𝛾𝑦𝑧
1 = 2𝜙𝑦   ;    𝛾𝑥𝑧

1 = 2𝜙𝑥 (212) 

 𝛾𝑦𝑧
2 = 3𝜆𝑦   ;    𝛾𝑥𝑧

2 = 3𝜆𝑥 (213) 

In matrix form: 

𝜀0 = [

𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

] =

[
 
 
 
 
 
 

𝑑𝑢0

𝑑𝑥
𝑑𝑣0

𝑑𝑦

(
𝑑𝑢0

𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
)
]
 
 
 
 
 
 

   ;    𝜅0 = [

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

] =

[
 
 
 
 
 
 

𝑑𝜓𝑥

𝑑𝑥
𝑑𝜓𝑦

𝑑𝑥

(
𝑑𝜓𝑥

𝑑𝑦
+

𝑑𝜓𝑦

𝑑𝑥
)
]
 
 
 
 
 
 

 (214) 

𝜅1 = [

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

] =

[
 
 
 
 
 
 

𝑑𝜙𝑥

𝑑𝑥
𝑑𝜙𝑦

𝑑𝑦

(
𝑑𝜙𝑥

𝑑𝑦
+

𝑑𝜙𝑦

𝑑𝑥
)
]
 
 
 
 
 
 

   ;    𝜅2 = [

𝜅𝑥
2

𝜅𝑦
2

𝜅𝑥𝑦
2

] =

[
 
 
 
 
 
 

𝑑𝜆𝑥

𝑑𝑥
𝑑𝜆𝑦

𝑑𝑦

(
𝑑𝜆𝑥

𝑑𝑦
+

𝑑𝜆𝑦

𝑑𝑥
)
]
 
 
 
 
 
 

 (215) 

 𝛾0 = [
𝛾𝑥𝑧

0

𝛾𝑦𝑧
0 ] =

[
 
 
 (𝜓𝑥 +

𝑑𝑤0

𝑑𝑥
)

(𝜓𝑦 +
𝑑𝑤0

𝑑𝑦
)
]
 
 
 

 (216) 
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𝛾2 = [

𝛾𝑥𝑧
2

𝛾𝑦𝑧
2 ] = [

3𝜆𝑥

3𝜆𝑦
]   ;    𝛾1 = [

𝛾𝑥𝑧
1

𝛾𝑦𝑧
1 ] = [

2𝜙𝑥

2𝜙𝑦
] 

(217) 

 
Figure 37 - Initial and deformed geometries of a laminated composite beam under TSDT assumptions 

(Shafei, 2020) 

13.4.2 Equilibrium equations 

Similar to CPT, FSDT and SSDT, the equation of equilibrium is determined from 

the forces and moments acting in the plane of the plate. 

Stress resultant in x and y-direction: 

 
𝑑𝑁𝑥

𝑑𝑥
+

𝑑𝑁𝑥𝑦

𝑑𝑦
= 0   ;    

𝑑𝑁𝑥𝑦

𝑑𝑥
+

𝑑𝑁𝑦

𝑑𝑦
= 0 (218) 

Stress resultant in z-direction: 

 
𝑑𝑄𝑥

𝑑𝑥
+

𝑑𝑄𝑦

𝑑𝑦
+ 𝑝(𝑥, 𝑦) = 0 (219) 

Moment resultant about x and y-axis: 

𝑑𝑀𝑥

𝑑𝑥
+

𝑑𝑀𝑥𝑦

𝑑𝑦
− 𝑄𝑥 − 𝑆𝑥 = 0   ;    

𝑑𝑀𝑥𝑦

𝑑𝑥
+

𝑑𝑀𝑦

𝑑𝑦
− 𝑄𝑦 − 𝑆𝑦 = 0 (220) 

Second order stress resultant in x and y-direction: 

𝑑𝐿𝑥

𝑑𝑥
+

𝑑𝐿𝑥𝑦

𝑑𝑦
− 2𝑅𝑥 = 0   ;   

𝑑𝐿𝑥𝑦

𝑑𝑥
+

𝑑𝐿𝑦

𝑑𝑦
− 2𝑅𝑦 = 0 (221) 

The components representing third order stress resultants in x and y-direction are 

then written as: 

 
𝑑𝑃𝑥

𝑑𝑥
+

𝑑𝑃𝑥𝑦

𝑑𝑦
− 3𝑆𝑥 = 0   ;   

𝑑𝑃𝑥𝑦

𝑑𝑥
+

𝑑𝑃𝑦

𝑑𝑦
− 3𝑆𝑦 = 0 (222) 
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13.4.3 Orthotropic plate stress-strain relationship 

The stress-strain relations for the kth lamina in the laminate coordinates are given 

by:  

 

[
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧]
 
 
 
 

=

[
 
 
 
 
 
𝑄̅11 𝑄̅12

𝑄̅12 𝑄̅22

𝑄̅16

𝑄̅26

0 0
0 0

𝑄̅16 𝑄̅26 𝑄̅66 0 0

0 0
0 0

0
0

𝑄̅44 𝑄̅45

𝑄̅45 𝑄̅55]
 
 
 
 
 

[
 
 
 
 
𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

𝛾𝑦𝑧

𝛾𝑥𝑧]
 
 
 
 

 (223) 

Where 𝑄̅𝑖𝑗 is the transformed stiffness matrix. Stress-resultants for TSDT are 

defined according to Szekrényes (2014) as: 

 (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) = ∑ ∫ (𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦)𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (224) 

 (𝑀𝑥, 𝑀𝑦,𝑀𝑥𝑦) = ∑ ∫ (𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦)𝑧𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (225) 

 (𝐿𝑥 , 𝐿𝑦, 𝐿𝑥𝑦) = ∑ ∫ (𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦)𝑧2𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (226) 

 (𝑃𝑥 , 𝑃𝑦, 𝑃𝑥𝑦) = ∑ ∫ (𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦)𝑧2𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (227) 

 (𝑄𝑦, 𝑄𝑥) = ∑ ∫ (𝜎𝑦𝑧, 𝜎𝑥𝑧)𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (228) 

 (𝑅𝑦, 𝑅𝑥) = ∑ ∫ (𝜎𝑦𝑧, 𝜎𝑥𝑧)𝑧𝑑𝑧
ℎ/2

−ℎ/2

𝑁

𝑘=1

 (229) 

 (𝑆𝑦, 𝑆𝑥) = ∑ ∫ (𝜎𝑦𝑧, 𝜎𝑥𝑧)𝑧
2𝑑𝑧

ℎ/2

−ℎ/2

𝑁

𝑘=1

 (230) 

Stress-strain relationship according to Tian (2022) in terms of stress resultants in 

contracted form: 

 
[

[𝑁]
[𝑀]
[𝐿]
[𝑃]

] = [

[𝐴] [𝐵]
[𝐵] [𝐷]

[𝐷] [𝐸]
[𝐸] [𝐹]

[𝐷] [𝐸]
[𝐸] [𝐹]

[𝐹] [𝐺]
[𝐺] [𝐻]

] [

𝜀0

𝜅0

𝜅1

𝜅2

] 
(231) 

 [

[𝑄]
[𝑅]

[𝑆]
] = [

[𝐴] [𝐵] [𝐷]
[𝐵] [𝐷] [𝐸]

[𝐷] [𝐸] [𝐹]
] [

𝛾0

𝛾1

𝛾2

] (232) 

in full form: 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
[

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

]

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

]

[

𝐿𝑥

𝐿𝑦

𝐿𝑥𝑦

]

[

𝑃𝑥

𝑃𝑦

𝑃𝑥𝑦

]

]
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
[

𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66

] [

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

]

[

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

] [

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

]

[

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

𝐸11 𝐸12 𝐸16

𝐸16 𝐸26 𝐸66

𝐸16 𝐸26 𝐸66

]

[

𝐸11 𝐸12 𝐸16

𝐸16 𝐸26 𝐸66

𝐸16 𝐸26 𝐸66

] [

𝐹11 𝐹12 𝐹16

𝐹12 𝐹22 𝐹26

𝐹16 𝐹26 𝐹66

]

[

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66

] [

𝐸11 𝐸12 𝐸16

𝐸16 𝐸26 𝐸66

𝐸16 𝐸26 𝐸66

]

[

𝐸11 𝐸12 𝐸16

𝐸16 𝐸26 𝐸66

𝐸16 𝐸26 𝐸66

] [

𝐹11 𝐹12 𝐹16

𝐹12 𝐹22 𝐹26

𝐹16 𝐹26 𝐹66

]

[

𝐹11 𝐹12 𝐹16

𝐹12 𝐹22 𝐹26

𝐹16 𝐹26 𝐹66

] [

𝐺11 𝐺12 𝐺16

𝐺12 𝐺22 𝐺26

𝐺16 𝐺26 𝐺66

]

[

𝐺11 𝐺12 𝐺16

𝐺12 𝐺22 𝐺26

𝐺16 𝐺26 𝐺66

] [

𝐻11 𝐻12 𝐻16

𝐻12 𝐻22 𝐻26 
𝐻16 𝐻26 𝐻66

]
]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜀𝑥

0

𝜀𝑦
0

𝜀𝑥𝑦
0

𝜅𝑥
0

𝜅𝑦
0

𝜅𝑥𝑦
0

𝜅𝑥
1

𝜅𝑦
1

𝜅𝑥𝑦
1

𝜅𝑥
2

𝜅𝑥
2

𝜅𝑥
2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 (233) 

 

[
 
 
 
 
 
 [

𝑄𝑦

𝑄𝑥
]

[
𝑅𝑦

𝑅𝑥
]

[
𝑆𝑦

𝑆𝑥
]
]
 
 
 
 
 
 

=

[
 
 
 
 
 [

𝐴44 𝐴45

𝐴45 𝐴55
] [

𝐵44 𝐵45

𝐵45 𝐵55
] [

𝐷44 𝐷45

𝐷45 𝐷55
]

[
𝐵44 𝐵45

𝐵45 𝐵55
] [

𝐷44 𝐷45

𝐷45 𝐷55
] [

𝐸44 𝐸45

𝐸45 𝐸55
]

[
𝐷44 𝐷45

𝐷45 𝐷55
] [

𝐸44 𝐸45

𝐸45 𝐸55
] [

𝐹44 𝐹45

𝐹45 𝐹55
]
]
 
 
 
 
 

[
 
 
 
 
 
 
𝛾𝑦𝑧

0

𝛾𝑥𝑧
0

𝛾𝑦𝑧
1

𝛾𝑥𝑧
1

𝛾𝑦𝑧
2

𝛾𝑥𝑧
2 ]
 
 
 
 
 
 

 (234) 

Where: 

 

𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐸𝑖𝑗 , 𝐹𝑖𝑗 , 𝐺𝑖𝑗 , 𝐻𝑖𝑗 = ∫ [𝐶𝑖𝑗]

ℎ
2

−
ℎ
2

(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6)𝑑𝑧     

×  {
𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗, 𝐸𝑖𝑗 , 𝐹𝑖𝑗    (𝑗, 𝑖 = 1,2,4,5,6)

𝐻𝑖𝑗, 𝐺𝑖𝑗    (𝑗, 𝑖 = 1,2,6)
 

(235) 

For kth layer of the laminate: 

 𝐴𝑖𝑗 = ∑[𝑄̅𝑖𝑗]𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

 (236) 

 𝐵𝑖𝑗 =
1

2
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

2 − ℎ𝑘−1
2 )

𝑛

𝑘=1

 (237) 

 𝐷𝑖𝑗 =
1

3
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

3 − ℎ𝑘−1
3 )

𝑛

𝑘=1

 (238) 

 𝐸𝑖𝑗 =
1

4
∑[𝑄̅𝑖𝑗]𝑘(

ℎ𝑘
4 − ℎ𝑘−1

4 )

𝑛

𝑘=1

 (239) 

 𝐹𝑖𝑗 =
1

5
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

5 − ℎ𝑘−1
5 )

𝑛

𝑘=1

 (240) 

 𝐺𝑖𝑗 =
1

6
∑[𝑄̅𝑖𝑗]𝑘(ℎ𝑘

6 − ℎ𝑘−1
6 )

𝑛

𝑘=1

 (241) 

 𝐻𝑖𝑗 =
1

7
∑[𝑄̅𝑖𝑗]𝑘

(ℎ𝑘
7 − ℎ𝑘−1

7 )

𝑛

𝑘=1

 (242) 
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Where 𝐴𝑖𝑗 is extensional stiffness matrix, 𝐵𝑖𝑗 is extension-bending coupling matrix, 

𝐷𝑖𝑗 is bending stiffness matrix, 𝐸𝑖𝑗 is second order coupling matrix, 𝐹𝑖𝑗 is second 

order stiffness matrix, 𝐺𝑖𝑗 is third order second order stiffness matrix, 𝐻𝑖𝑗 is third 

order coupling matrix (Szekrényes, 2014).  

13.4.4 Governing plate equations in terms of displacement 

Substitution of the plate equilibrium equations into the stress-strain relations above  

and subsequent equation substitution (strain curvatures) yields governing plate 

equations in terms of displacement u0, v0, w0, 𝜙𝑥, 𝜙𝑦, 𝜓𝑥, 𝜓𝑦, 𝜆𝑥 and 𝜆𝑦. By further 

mathematical adjustments we obtain: 

1) Equation for displacement u0 (in the x-axis direction): 

𝐴11

𝜕2𝑢0

𝜕𝑥2
+ A12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ A16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + B11

𝜕2𝜓𝑥

𝜕𝑥2
+ B12

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ B16 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ D11

𝜕2𝜙𝑥

𝜕𝑥2
+ D12

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ D16 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + 𝐸11

𝜕2𝜆𝑥

𝜕𝑥2
+ E12

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ E16 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐴16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ A26

𝜕2𝑣0

𝜕𝑦2
+ A66 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ B16

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ B26

𝜕2𝜓𝑦

𝜕𝑦2
+ B66 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + D16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ D26

𝜕2𝜙𝑦

𝜕𝑦2

+ D66 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + 𝐸16

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ E26

𝜕2𝜆𝑦

𝜕𝑦2
+ E66 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
) = 0 

 (243) 

2) Equation for displacement v0 (in the y-axis direction): 

𝐴16

𝜕2𝑢0

𝜕𝑥2
+ A26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ A66 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + B16

𝜕2𝜓𝑥

𝜕𝑥2
+ B26

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ B66 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ D16

𝜕2𝜙𝑥

𝜕𝑥2
+ D26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ D66 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + E16

𝜕2𝜆𝑥

𝜕𝑥2
+ E26

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ E66 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐴12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ A22

𝜕2𝑣0

𝜕𝑦2
+ A26 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ B12

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ B22

𝜕2𝜓𝑦

𝜕𝑦2
+ B26 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + D12

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ D22

𝜕2𝜙𝑦

𝜕𝑦2

+ D26 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + E12

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ E22

𝜕2𝜆𝑦

𝜕𝑦2
+ E26 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
) = 0 

 

 
(244) 

 

3) Equation for displacement w0 (in the z-axis direction): 
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[𝐴45 (
𝜕

𝜕𝑥
𝜓𝑦 +

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) + 𝐴55 (

𝜕

𝜕𝑥
𝜓𝑥 +

𝜕2𝑤0

𝜕𝑥2
) + 2𝐵45

𝜕

𝜕𝑥
𝜙𝑦 + 2𝐵55

𝜕

𝜕𝑥
𝜙𝑥 + 3𝐷45

𝜕

𝜕𝑥
𝜆𝑦

+ 3𝐷55

𝜕

𝜕𝑥
𝜆𝑥]

+ [𝐴44 (
𝜕

𝜕𝑦
𝜓𝑦 +

𝜕2𝑤0

𝜕𝑦2
) + 𝐴45 (

𝜕

𝜕𝑦
𝜓𝑥 +

𝜕2𝑤0

𝜕𝑥𝜕𝑦
) + 2𝐵44

𝜕

𝜕𝑦
𝜙𝑦 + 2𝐵45

𝜕

𝜕𝑦
𝜙𝑥

+ 3𝐷44

𝜕

𝜕𝑦
𝜆𝑦 + 3𝐷45

𝜕

𝜕𝑦
𝜆𝑥] = −𝑝(𝑥, 𝑦) 

 (245) 

4) Equation for the displacement 𝜓𝑥 (rotation of the perpendicular to the 

midplane in the zx plane) 

𝐵11

𝜕2𝑢0

𝜕𝑥2
+ B12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ B16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + D11

𝜕2𝜓𝑥

𝜕𝑥2
+ D12

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ D16 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ E11

𝜕2𝜙𝑥

𝜕𝑥2
+ E12

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ E16 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + F11

𝜕2𝜆𝑥

𝜕𝑥2
+ F12

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ F16 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐵16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ B26

𝜕2𝑣0

𝜕𝑦2
+ B66 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ D16

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ D26

𝜕2𝜓𝑦

𝜕𝑦2
+ D66 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + E16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ E26

𝜕2𝜙𝑦

𝜕𝑦2

+ E66 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + F16

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ F26

𝜕2𝜆𝑦

𝜕𝑦2
+ F66 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
)

− [𝐴45 (𝜓𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐴55 (𝜓𝑥 +

𝜕𝑤0

𝜕𝑥
) + 2𝐵45𝜙𝑦 + 2𝐵55𝜙𝑥 + 3𝐷45𝜆𝑦

+ 3𝐷55𝜆𝑥]

− [𝐷45 (𝜓𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐷55 (𝜓𝑥 +

𝜕𝑤0

𝜕𝑥
) + 2𝐸45𝜙𝑦 + 2𝐸55𝜙𝑥 + 3𝐹45𝜆𝑦

+ 3𝐹55𝜆𝑥] = 0 

 (246) 

5)  Equation for the displacement 𝜓𝑦 (rotation of the perpendicular to the 

midplane in the zy plane) 
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𝐵16

𝜕2𝑢0

𝜕𝑥2
+ B26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ B66 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + D16

𝜕2𝜓𝑥

𝜕𝑥2
+ D26

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ D66 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ E16

𝜕2𝜙𝑥

𝜕𝑥2
+ E26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ E66 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + F16

𝜕2𝜆𝑥

𝜕𝑥2
+ F26

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ F66 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐵12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ B22

𝜕2𝑣0

𝜕𝑦2
+ B26 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ D12

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ D22

𝜕2𝜓𝑦

𝜕𝑦2
+ D26 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + E12

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ E22

𝜕2𝜙𝑦

𝜕𝑦2

+ E26 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + F12

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ F22

𝜕2𝜆𝑦

𝜕𝑦2
+ F26 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
)

− [𝐴44 (𝜓𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐴45 (𝜓𝑥 +

𝜕𝑤0

𝜕𝑥
) + 2𝐵44𝜙𝑦 + 2𝐵45𝜙𝑥 + 3𝐷44𝜆𝑦

+ 3𝐷45𝜆𝑥]

− [𝐷44 (𝜓𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐷45 (𝜓𝑥 +

𝜕𝑤0

𝜕𝑥
) + 2𝐸44𝜙𝑦 + 2𝐸45𝜙𝑥 + 3𝐹44𝜆𝑦

+ 3𝐹45𝜆𝑥] = 0 

 (247) 

6) Equation for second order displacement 𝜙𝑥 (rotation of the perpendicular to 

the midplane in the zx plane) 

𝐷11

𝜕2𝑢0

𝜕𝑥2
+ D12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ D16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + E11

𝜕2𝜓𝑥

𝜕𝑥2
+ E12

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ E16 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ F11

𝜕2𝜙𝑥

𝜕𝑥2
+ F12

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ F16 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + G11

𝜕2𝜆𝑥

𝜕𝑥2
+ G12

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ G16 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐷16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ D26

𝜕2𝑣0

𝜕𝑦2
+ D66 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ E16

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ E26

𝜕2𝜓𝑦

𝜕𝑦2
+ E66 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + F16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ F26

𝜕2𝜙𝑦

𝜕𝑦2

+ F66 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + G16

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ G26

𝜕2𝜆𝑦

𝜕𝑦2
+ G66 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
)

− 2 [𝐵45 (𝜓𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐵55 (𝜓𝑥 +

𝜕𝑤0

𝜕𝑥
) + 𝐷452𝜙𝑦 + 𝐷552𝜙𝑥 + 𝐸453𝜆𝑦

+ 𝐸553𝜆𝑥] = 0 

 (248) 

7) Equation for second order displacement 𝜙𝑦 (rotation of the perpendicular to 

the midplane in the zy plane) 
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𝐸11

𝜕2𝑢0

𝜕𝑥2
+ 𝐸12

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐸16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + 𝐹11

𝜕2𝜓𝑥

𝜕𝑥2
+ 𝐹12

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ 𝐹16 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ 𝐺11

𝜕2𝜙𝑥

𝜕𝑥2
+ 𝐺12

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐺16 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + 𝐻11

𝜕2𝜆𝑥

𝜕𝑥2
+ 𝐻12

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ 𝐻16 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐸16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐸26

𝜕2𝑣0

𝜕𝑦2
+ 𝐸66 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ 𝐹16

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ 𝐹26

𝜕2𝜓𝑦

𝜕𝑦2
+ 𝐹66 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + 𝐺16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐺26

𝜕2𝜙𝑦

𝜕𝑦2

+ 𝐺66 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + 𝐻16

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ 𝐻26

𝜕2𝜆𝑦

𝜕𝑦2
+ 𝐻66 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
)

− 3 [𝐷45 (𝜓𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐷55 (𝜓𝑥 +

𝜕𝑤0

𝜕𝑥
) + 2𝐸45𝜙𝑦 + 2𝐸55𝜙𝑥 + 3𝐹45𝜆𝑦

+ 3𝐹55𝜆𝑥] = 0 

 (249) 

8) Equation for the third order displacement 𝜆𝑦 (rotation of the perpendicular 

to the midplane in the zy plane) 

𝐸16

𝜕2𝑢0

𝜕𝑥2
+ 𝐸26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐸66 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + 𝐹16

𝜕2𝜓𝑥

𝜕𝑥2
+ 𝐹26

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ 𝐹66 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ 𝐺16

𝜕2𝜙𝑥

𝜕𝑥2
+ 𝐺26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐺66 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + 𝐻16

𝜕2𝜆𝑥

𝜕𝑥2
+ 𝐻26

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ 𝐻66 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐸12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐸22

𝜕2𝑣0

𝜕𝑦2
+ 𝐸26 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ 𝐹12

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ 𝐹22

𝜕2𝜓𝑦

𝜕𝑦2
+ 𝐹26 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + 𝐺12

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐺22

𝜕2𝜙𝑦

𝜕𝑦2

+ 𝐺26 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + 𝐻12

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ 𝐻22

𝜕2𝜆𝑦

𝜕𝑦2
+ 𝐻26 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
)

− 3[𝐷44𝜀𝑦𝑧
0 + 𝐷45𝜀𝑥𝑧

0 + 𝐸44𝜀𝑦𝑧
1 + 𝐸45𝜀𝑥𝑧

1 + 𝐹44𝜀𝑦𝑧
2 + 𝐹45𝜀𝑥𝑧

2 ] = 0 

 (250) 

9) Equation for the third order displacement 𝜆𝑥 (rotation of the perpendicular 

to the midplane in the zx plane) 
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𝐷16

𝜕2𝑢0

𝜕𝑥2
+ D26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ D66 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥2
) + E16

𝜕2𝜓𝑥

𝜕𝑥2
+ E26

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
+ E66 (

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜓𝑦

𝜕𝑥2
)

+ F16

𝜕2𝜙𝑥

𝜕𝑥2
+ F26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ F66 (

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜙𝑦

𝜕𝑥2
) + G16

𝜕2𝜆𝑥

𝜕𝑥2
+ G26

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦

+ G66 (
𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝜆𝑦

𝜕𝑥2
) + 𝐷12

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ D22

𝜕2𝑣0

𝜕𝑦2
+ D26 (

𝜕2𝑢0

𝜕𝑦2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)

+ E12

𝜕2𝜓𝑥

𝜕𝑥𝜕𝑦
+ E22

𝜕2𝜓𝑦

𝜕𝑦2
+ E26 (

𝜕2𝜓𝑥

𝜕𝑦2
+

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) + F12

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ F22

𝜕2𝜙𝑦

𝜕𝑦2

+ F26 (
𝜕2𝜙𝑥

𝜕𝑦2
+

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
) + G12

𝜕2𝜆𝑥

𝜕𝑥𝜕𝑦
+ G22

𝜕2𝜆𝑦

𝜕𝑦2
+ G26 (

𝜕2𝜆𝑥

𝜕𝑦2
+

𝜕2𝜆𝑦

𝜕𝑥𝜕𝑦
)

− 2 [𝐵44 (𝜓𝑦 +
𝜕𝑤0

𝜕𝑦
) + 𝐵45 (𝜓𝑥 +

𝜕𝑤0

𝜕𝑥
) + 2𝐷44𝜙𝑦 + 2𝐷45𝜙𝑥 + 3𝐸44𝜆𝑦

+ 3𝐸45𝜆𝑥] = 0 
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13.5 Effects of moisture and fiber orientation on material 

parameters of wood  

As can be seen from the Graph 26-Graph 36, the material constants depend 

on both moisture content and fiber orientation. In the case of the stiffness matrix 

C11, the greater the fiber deflection and the greater the moisture content, the more 

the modulus of elasticity decreases. In the case of stiffness matrix C11=10000 MPa, 

which we transform to an angle of 90° and convert to a material moisture content 

of 30%, then C11 is around 212 MPa. The stiffness matrix is therefore reduced by 

98% of its original value. When only the moisture content is changed, the stiffness 

matrix is reduced by 36%. 

The following graphs are expressions of the dependence of the material 

constants on moisture content and fiber deflection separately and the dependence 

on moisture content and fiber deflection simultaneously. 
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Graph 26 - the dependence of the elastic moduli 

E11 and E22 on the fibre deflection 
Graph 27 - the dependence of the elastic moduli 
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Graph 30 - the dependence of the stiffness parameter C_ij on the fiber deflection 
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13.6 Numerical FlexPDE script – Non-stationary 3D moisture 

diffusion 

TITLE 'Non-stationary 3D moisture diffusion at 20°C' 
 
SELECT 
errlim=1e-5 
painted  
 
COORDINATES 
cartesian3     
 
VARIABLES 
w 
 
DEFINITIONS 
vyska = 0.1       
delka = 1.0       
tp=273.15+20      
ro=0.450        
w_fin_voda=0.30    
w_fin_vzduch=0.16    
 
koeficient1=3.5 
koeficient2=1 
 
patm=100000 
rvoda=1 
R=8.341 
rk=ro/(1+0.28*ro) 
Pw=1-rk*(0.653+w) 
Ea=38500-29000*w 
Eo=40600+42.4*(tp-273) 
po=1.3*10^(11)*exp(-Eo/(R*tp)) 
rBS=1.53/(1+1.53*w) 
A=7.731706-0.014348*tp 
B=0.008746+0.000567*tp 
dphidw=100*A*B*exp(-100*B*w)*exp(-A*exp(-100*B*w)) 
 
Da=(2.2/patm)*(tp/273.15)^1.75 
DBT=7*10^(-6)*exp(-Ea/(R*tp)) 
DV=Da*0.018*po/(rBS*rvoda*R*tp)*dphidw 
 
DTang=(1/(1-Pw))*(DBT*DV/(DBT+DV*(1-Pw^(1/2))))*koeficient1 
DRad=3/2*DTang 
 
DBL=2.5*DBT 
DLong=(Pw/(1-Pw))*(DV* DBL/(DBL+0.01*(1-Pw^(1/2))*DV))*koeficient2 
 
hw_voda=1e-6 
hw_vzduch=2e-7 
 
INITIAL VALUES 
w=0.12     
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EQUATIONS 
dx(DLong*dx(w))+dy(DRad*dy(w))+dz(DTang*dz(w))-dt(w)=0 
 
EXTRUSION 
z = -vyska/2,vyska/2           
 
BOUNDARIES 
 
   surface 1 natural(w)=hw_vzduch*(w_fin_vzduch-w)      
   surface 2 natural(w)=hw_voda*(w_fin_voda-w)     
 
    Region 1    
         start(-delka/2,-delka/2) 
            natural(w)=hw_vzduch*(w_fin_vzduch-w)       
         line to (delka/2,-delka/2) 
         to (delka/2,delka/2) 
         to (-delka/2,delka/2) 
         to close 
 
TIME  
0 to 30*86400                 
 
PLOTS 
    for t = 0 by 1*86400 to 30*86400 
contour(w) on z=0  as "Moisture distribution in the plane XY [-]" 
contour(w) on x=0  as "Moisture distribution in the plane YZ [-]" 
contour(w) on y=0  as "Moisture distribution in the plane XZ [-]" 
elevation(w) from (-delka/2,0,0) to (delka/2,0,0) as "Moisture content 
- X-axis [-]" 
elevation(w) from (0,-delka/2,0) to (0,delka/2,0) as "Moisture content 
Y-axis [-]" 
elevation(w) from (0,0,-vyska/2) to (0,0,vyska/2) as "Moisture content 
-Z-axis [-]" 
 
HISTORIES 
history(w) at (0,0,-0.045) (0,0,0) (0,0,0.045) fixed range(0.1,0.35) as 
"Moisture content change over time [-]" 
     
END 

13.7 Numerical FlexPDE script – CPT 

TITLE 'Bending - 3 LAYERS - CPT'    
 
SELECT 
ngrid=16  { increase initial gridding }   
errlim =1e-4   { increase accuracy to resolve stresses } 
painted              { paint all contour plots } 
 
VARIABLES 
u  
v  
w  
wxx 
wyy 
uxx 
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uyy 
vxx 
vyy 
 
DEFINITIONS    { parameter definitions } 
E_11  = 11*10^9   
E_22 = 0.37*10^9 
G_12 = 0.69*10^9 
G_13 = G_12 
G_23 = G_12 
     
v12=0.2 
v21 = (E_22/E_11)*v12   
 
! LAMINAE LAYERS, GEOMETRY 
h1 = 0.03 
h2 = 0.03 
h3 = 0.03 
h=h1 + h2 + h3 
    
rho = 410   
g=rho*9.81    
L1=1.5 
L2=0.3 
 
a1 = 0         
a2 = 90    
a3 = 0     
 
p= - 12000 - (g*h)  {N.m-2} 
         
Q11 = E_11 / (1-v12*v21) 
Q12 = (v12 * E_22) / (1-v12*v21) 
Q16 = 0 
Q26 = 0 
Q22 = E_22 / (1-v12*v21) 
Q66 = G_12 
 
m1=1 !cos(30 degrees)   
n1=0 !sin(30 degrees)   
m2=0 !cos(55 degrees)  
n2=1 !sin(55 degrees)  
m3=1 !cos(83 degrees)  
n3=0 !sin(83 degrees)   
 
Q_11_1 = Q11*m1^4+2*(Q12+2*Q66)*m1^2*n1^2+Q22*n1^4 
Q_12_1 = (Q11+Q22-4*Q66)*m1^2*n1^2+Q12*(m1^4+n1^4) 
Q_22_1 = Q11*n1^4+2*(Q12+2*Q66)*m1^2*n1^2+Q22*m1^4 
Q_16_1 = (Q11-Q12-2*Q66)*(m1)^3*n1+(Q12-Q22+2*Q66)*m1*(n1)^3 
Q_26_1 = (Q11-Q12-2*Q66)*n1^3*m1+(Q12-Q22+2*Q66)*n1*m1^3 
Q_66_1 = (Q11+Q22-2*Q12-2*Q66)*m1^2*n1^2+Q66*(m1^4+n1^4) 
 
Q_11_2 = Q11*m2^4+2*(Q12+2*Q66)*m2^2*n2^2+Q22*n2^4 
Q_12_2 = (Q11+Q22-4*Q66)*m2^2*n2^2+Q12*(m2^4+n2^4) 
Q_22_2 = Q11*n2^4+2*(Q12+2*Q66)*m2^2*n2^2+Q22*m2^4 
Q_16_2 = (Q11-Q12-2*Q66)*m2^3*n2+(Q12-Q22+2*Q66)*m2*n2^3 
Q_26_2 = (Q11-Q12-2*Q66)*n2^3*m2+(Q12-Q22+2*Q66)*n2*m2^3 
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Q_66_2 = (Q11+Q22-2*Q12-2*Q66)*m2^2*n2^2+Q66*(m2^4+n2^4) 
 
Q_11_3 = Q11*m3^4+2*(Q12+2*Q66)*m3^2*n3^2+Q22*n3^4 
Q_12_3 = (Q11+Q22-4*Q66)*m3^2*n3^2+Q12*(m3^4+n3^4) 
Q_22_3 = Q11*n3^4+2*(Q12+2*Q66)*m3^2*n3^2+Q22*m3^4 
Q_16_3 = (Q11-Q12-2*Q66)*m3^3*n3+(Q12-Q22+2*Q66)*m3*n3^3 
Q_26_3 = (Q11-Q12-2*Q66)*n3^3*m3+(Q12-Q22+2*Q66)*n3*m3^3 
Q_66_3 = (Q11+Q22-2*Q12-2*Q66)*m3^2*n3^2+Q66*(m3^4+n3^4) 
 
A11 = Q_11_1 * ( (h2/2 + h1) - h2/2) + Q_11_2 * ( (h2/2) - (-h2/2)) + 
Q_11_3 * ( (-h2/2) - (-h2/2 - h3)) 
A12 = Q_12_1 * ( (h2/2 + h1) - h2/2) + Q_12_2 * ( (h2/2) - (-h2/2)) + 
Q_12_3 * ( (-h2/2) - (-h2/2 - h3)) 
A22 = Q_22_1 * ( (h2/2 + h1) - h2/2) + Q_22_2 * ( (h2/2) - (-h2/2)) + 
Q_22_3 * ( (-h2/2) - (-h2/2 - h3)) 
A16 = Q_16_1 * ( (h2/2 + h1) - h2/2) + Q_16_2 * ( (h2/2) - (-h2/2)) + 
Q_16_3 * ( (-h2/2) - (-h2/2 - h3)) 
A26 = Q_26_1 * ( (h2/2 + h1) - h2/2) + Q_26_2 * ( (h2/2) - (-h2/2)) + 
Q_26_3 * ( (-h2/2) - (-h2/2 - h3)) 
A66 = Q_66_1 * ( (h2/2 + h1) - h2/2) + Q_66_2 * ( (h2/2) - (-h2/2)) + 
Q_66_3 * ( (-h2/2) - (-h2/2 - h3)) 
   
B11 = 1/2 * ( Q_11_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_11_2 * ( 
(h2/2)^2 - (-h2/2)^2) + Q_11_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B12 = 1/2 * ( Q_12_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_12_2 * ( 
(h2/2)^2 - (-h2/2)^2) + Q_12_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B22 = 1/2 * ( Q_22_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_22_2 * ( 
(h2/2)^2 - (-h2/2)^2) + Q_22_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B16 = 1/2 * ( Q_16_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_16_2 * ( 
(h2/2)^2 - (-h2/2)^2) + Q_16_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B26 = 1/2 * ( Q_26_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_26_2 * ( 
(h2/2)^2 - (-h2/2)^2) + Q_26_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B66 = 1/2 * ( Q_66_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_66_2 * ( 
(h2/2)^2 - (-h2/2)^2) + Q_66_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
 
D11 = 1/3 * ( Q_11_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_11_2 * ( 
(h2/2)^3 - (-h2/2)^3) + Q_11_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D12 = 1/3 * ( Q_12_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_12_2 * ( 
(h2/2)^3 - (-h2/2)^3) + Q_12_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D22 = 1/3 * ( Q_22_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_22_2 * ( 
(h2/2)^3 - (-h2/2)^3) + Q_22_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D16 = 1/3 * ( Q_16_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_16_2 * ( 
(h2/2)^3 - (-h2/2)^3) + Q_16_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D26 = 1/3 * ( Q_26_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_26_2 * ( 
(h2/2)^3 - (-h2/2)^3) + Q_26_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D66 = 1/3 * ( Q_66_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_66_2 * ( 
(h2/2)^3 - (-h2/2)^3) + Q_66_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
         
!_____________________________________________ 
 
ex=dx(u) 
ey=dy(v) 
exy=dx(v)+dy(u) 
kx=-dxx(w) 
ky=-dyy(w) 
kxy=-2*( dxy(w) ) 
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{1. 
TOP___________________________________________________________________} 
 
e1_1_top = ex + (h1+h2/2) * kx 
e2_1_top = ey + (h1+h2/2) * ky 
e6_1_top = exy + (h1+h2/2) * kxy 
 
Sigma_x_1_top = Q_11_1*e1_1_top + Q_12_1*e2_1_top + Q_16_1*e6_1_top 
Sigma_y_1_top = Q_12_1*e1_1_top + Q_22_1*e2_1_top + Q_26_1*e6_1_top 
Sigma_xy_1_top = Q_16_1*e1_1_top + Q_26_1*e2_1_top + Q_66_1*e6_1_top 
            
{1. 
MID___________________________________________________________________} 
 
e1_1_mid = ex + (h1/2+h2/2) * kx 
e2_1_mid = ey + (h1/2+h2/2) * ky 
e6_1_mid = exy + (h1/2+h2/2) * kxy 
 
Sigma_x_1_mid = Q_11_1*e1_1_mid + Q_12_1*e2_1_mid + Q_16_1*e6_1_mid 
Sigma_y_1_mid = Q_12_1*e1_1_mid + Q_22_1*e2_1_mid + Q_26_1*e6_1_mid 
Sigma_xy_1_mid = Q_16_1*e1_1_mid + Q_26_1*e2_1_mid + Q_66_1*e6_1_mid 
 
{1. 
BOT___________________________________________________________________} 
 
e1_1_bot = ex + (h2/2) * kx 
e2_1_bot = ey + (h2/2) * ky 
e6_1_bot = exy + (h2/2) * kxy 
 
Sigma_x_1_bot = Q_11_1*e1_1_bot + Q_12_1*e2_1_bot + Q_16_1*e6_1_bot 
Sigma_y_1_bot = Q_12_1*e1_1_bot + Q_22_1*e2_1_bot + Q_26_1*e6_1_bot 
Sigma_xy_1_bot = Q_16_1*e1_1_bot + Q_26_1*e2_1_bot + Q_66_1*e6_1_bot 
 
{2. 
TOP___________________________________________________________________} 
 
e1_2_top = ex + (h2/2) * kx 
e2_2_top = ey + (h2/2) * ky 
e6_2_top = exy + (h2/2) * kxy 
 
Sigma_x_2_top = Q_11_2*e1_2_top + Q_12_2*e2_2_top + Q_16_2*e6_2_top 
Sigma_y_2_top = Q_12_2*e1_2_top + Q_22_2*e2_2_top + Q_26_2*e6_2_top 
Sigma_xy_2_top = Q_16_2*e1_2_top + Q_26_2*e2_2_top + Q_66_2*e6_2_top 
 
{2. 
MID___________________________________________________________________} 
 
e1_2_mid = ex + (0) * kx 
e2_2_mid = ey + (0) * ky 
e6_2_mid = exy + (0) * kxy 
 
Sigma_x_2_mid = Q_11_2*e1_2_mid + Q_12_2*e2_2_mid + Q_16_2*e6_2_mid 
Sigma_y_2_mid = Q_12_2*e1_2_mid + Q_22_2*e2_2_mid + Q_26_2*e6_2_mid 
Sigma_xy_2_mid = Q_16_2*e1_2_mid + Q_26_2*e2_2_mid + Q_66_2*e6_2_mid 
 
{2. 
BOT___________________________________________________________________} 
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e1_2_bot = ex + (-h2/2) * kx 
e2_2_bot = ey + (-h2/2) * ky 
e6_2_bot = exy + (-h2/2) * kxy 
 
Sigma_x_2_bot = Q_11_2*e1_2_bot + Q_12_2*e2_2_bot + Q_16_2*e6_2_bot 
Sigma_y_2_bot = Q_12_2*e1_2_bot + Q_22_2*e2_2_bot + Q_26_2*e6_2_bot 
Sigma_xy_2_bot = Q_16_2*e1_2_bot + Q_26_2*e2_2_bot + Q_66_2*e6_2_bot 
 
{3. 
TOP___________________________________________________________________} 
 
e1_3_top = ex + (-h2/2) * kx 
e2_3_top = ey + (-h2/2) * ky 
e6_3_top = exy + (-h2/2) * kxy 
 
Sigma_x_3_top = Q_11_3*e1_3_top + Q_12_3*e2_3_top + Q_16_3*e6_3_top 
Sigma_y_3_top = Q_12_3*e1_3_top + Q_22_3*e2_3_top + Q_26_3*e6_3_top 
Sigma_xy_3_top = Q_16_3*e1_3_top + Q_26_3*e2_3_top + Q_66_3*e6_3_top 
 
{3. 
MID___________________________________________________________________} 
 
e1_3_mid = ex + (-h1/2-h2/2) * kx 
e2_3_mid = ey + (-h1/2-h2/2) * ky 
e6_3_mid = exy + (-h1/2-h2/2) * kxy 
 
Sigma_x_3_mid = Q_11_3*e1_3_mid + Q_12_3*e2_3_mid + Q_16_3*e6_3_mid 
Sigma_y_3_mid = Q_12_3*e1_3_mid + Q_22_3*e2_3_mid + Q_26_3*e6_3_mid 
Sigma_xy_3_mid = Q_16_3*e1_3_mid + Q_26_3*e2_3_mid + Q_66_3*e6_3_mid 
 
{3. 
BOT___________________________________________________________________} 
 
e1_3_bot = ex + (-h1-h2/2) * kx 
e2_3_bot = ey + (-h1-h2/2) * ky 
e6_3_bot = exy + (-h1-h2/2) * kxy 
 
Sigma_x_3_bot = Q_11_3*e1_3_bot + Q_12_3*e2_3_bot + Q_16_3*e6_3_bot 
Sigma_y_3_bot = Q_12_3*e1_3_bot + Q_22_3*e2_3_bot + Q_26_3*e6_3_bot 
Sigma_xy_3_bot = Q_16_3*e1_3_bot + Q_26_3*e2_3_bot + Q_66_3*e6_3_bot 
 
 
INITIAL VALUES 
u = 0 
v = 0  
w  = 0 
wxx = 0 
wyy = 0 
uxx = 0 
uyy = 0 
vxx = 0 
vyy = 0 
!wx = 0 
!wy = 0 
    
EQUATIONS 
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wxx: dxx(w)=wxx 
wyy: dyy(w)=wyy 
uxx: dxx(u)=uxx 
uyy: dyy(u)=uyy 
vxx: dxx(v)=vxx 
vyy: dyy(v)=vyy 
  
u:  
A11*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))-
(B11*dx(wxx)+B12*dx(wyy)+2*B16*dy(wxx)) +  
A16*dxy(u)+A26*dyy(v)+A66*(dyy(u)+dxy(v)) - 
(B16*dy(wxx)+B26*dy(wyy)+2*B66*dx(wyy))=0 
 
v: 
A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v)) - 
(B16*dx(wxx)+B26*dx(wyy)+2*B66*dy(wxx)) +  
A12*dxy(u)+A22*dyy(v)+A26*(dyy(u)+dxy(v)) - 
(B12*dy(wxx)+B22*dy(wyy)+2*B26*dx(wyy)) = 0 
 
w: 
B11*dx(uxx)+B12*dy(vxx)+B16*(dy(uxx)+dx(vxx)) - 
(D11*dxx(wxx)+D12*dyy(wxx)+2*D16*(dxy(wxx))) + 
B16*dy(uxx)+B26*dx(vyy)+B66*(dx(uyy)+dy(vxx)) - 
(D16*dxy(wxx)+D26*dxy(wyy)+2*D66*(dxx(wyy))) + 
B12*dx(uyy)+B22*dy(vyy)+B26*(dy(uyy)+dx(vyy)) - 
(D12*dxx(wyy)+D22*dyy(wyy)+2*D26*(dxy(wyy))) = -p 
 
BOUNDARY CONDITIONS 
 
"simply supported y" : 
        VALUE(w)=0  
            VALUE(wxx)=0 
            natural(wyy)=0 
            VALUE(v)=0 
            VALUE(u)=0 
            natural(uxx)=0 
            natural(uyy)=0 
            VALUE(vxx)=0 
            VALUE(vyy)=0 
            
"free edge x" : 
        natural(w)=0  
            natural(wxx)=0 
            VALUE(wyy)=0 
            VALUE(v)=0 
            natural(u)=0 
            natural(uxx)=0 
            natural(uyy)=0 
            natural(vxx)=0 
            natural(vyy)=0 
 
BOUNDARIES    
 region 1      
     start (0,0) 
         USE BC "free edge x" 
  line to (L1,0) 
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         USE BC "simply supported y" 
       line to (L1,L2) 
         USE BC "free edge x" 
       line to (0,L2) 
         USE BC "simply supported y" 
line to close  
          
PLOTS   
      contour(w)    { show deformed grid as solution progresses } 
       surface(w) 
        elevation(w) from (0,L2/2) to (L1/2,L2/2) 
        elevation(w) from (L1/2,0) to (L1/2,L2) 
 
END 

13.8 Numerical FlexPDE script – FOSDT 

TITLE 'Bending - 3 LAYERS - FOSDT-DE'    
 
SELECT 
ngrid=21            { increase initial gridding } 
cubic            { Use Cubic Basis } 
errlim =1e-4           { increase accuracy to resolve stresses } 
painted                  { paint all contour plots } 
!CHANGELIM = 0.1 
!STAGES = 36 
!autostage = on 
!PREFER_STABILITY=on 
!NONLINEAR=off               
 
VARIABLES 
wxx 
wyy 
w 
u 
v 
F_x_x 
F_x 
F_y_y 
F_y 
 
DEFINITIONS    { parameter definitions } 
    layer_1_w = 30 
    layer_2_w = 12 
    layer_3_w = 12 
      layer11=12       {°C} 
 layer12= layer_1_w 
 layer21=12 
 layer22=layer_2_w 
 layer31=12 
 layer32=layer_3_w 
    abs_w_1=(layer11-layer12) 
    abs_w_2=(layer21-layer22) 
    abs_w_3=(layer31-layer32) 
 
! Layer 1   C22 
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E_11_1_w12 = 11*10^9   
E_22_1_w12 = 0.37*10^9 
G_12_1_w12 = 0.69*10^9 
G_13_1_w12 = G_12_1_w12 
G_23_1_w12 = G_12_1_w12 
E_11_1 = E_11_1_w12*(1+0.02*(12-layer_1_w))  
E_22_1 = E_22_1_w12*(1+0.02*(12-layer_1_w))  
G_12_1 = G_12_1_w12*(1+0.02*(12-layer_1_w))  
G_13_1 = G_13_1_w12*(1+0.02*(12-layer_1_w))  
G_23_1 = G_23_1_w12*(1+0.02*(12-layer_1_w))  
 
v12_1=0.2 
v21_1 = (E_22_1/E_11_1)*v12_1   
 
rho_1 = 420 !kg/m3 
rho0_1=rho_1/1000 !g/m3 
g_1=rho_1*9.81  
 
Q11_1 = E_11_1 / (1-v12_1*v21_1) 
Q12_1 = (v12_1 * E_22_1) / (1-v12_1*v21_1) 
Q16_1 = 0 
Q26_1 = 0 
Q22_1 = E_22_1 / (1-v12_1*v21_1) 
Q66_1 = G_12_1 
Q44_1 = G_23_1 
Q55_1 = G_13_1 
 
! Layer 2   C22 
E_11_2_w12 = 11*10^9   
E_22_2_w12 = 0.37*10^9 
G_12_2_w12 = 0.69*10^9 
G_13_2_w12 = G_12_2_w12 
G_23_2_w12 = G_12_2_w12 
     
E_11_2 = E_11_2_w12*(1+0.02*(12-layer_2_w))  
E_22_2 = E_22_2_w12*(1+0.02*(12-layer_2_w))  
G_12_2 = G_12_2_w12*(1+0.02*(12-layer_2_w))  
G_13_2 = G_13_2_w12*(1+0.02*(12-layer_2_w))  
G_23_2 = G_23_2_w12*(1+0.02*(12-layer_2_w))   
 
v12_2 = 0.2 
v21_2 = (E_22_2/E_11_2)*v12_2   
 
rho_2 = 420 
rho0_2=rho_2/1000 
g_2=rho_2*9.81  
 
Q11_2 = E_11_2 / (1-v12_2*v21_2) 
Q12_2 = (v12_2 * E_22_2) / (1-v12_2*v21_2) 
Q16_2 = 0 
Q26_2 = 0 
Q22_2 = E_22_2 / (1-v12_2*v21_2) 
Q66_2 = G_12_2 
Q44_2 = G_23_2 
Q55_2 = G_13_2 
 
! Layer 3   C22 
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E_11_3_w12 = 11*10^9   
E_22_3_w12 = 0.37*10^9 
G_12_3_w12 = 0.69*10^9 
G_13_3_w12 = G_12_3_w12 
G_23_3_w12 = G_12_3_w12 
E_11_3 = E_11_3_w12*(1+0.02*(12-layer_3_w))  
E_22_3 = E_22_3_w12*(1+0.02*(12-layer_3_w))  
G_12_3 = G_12_3_w12*(1+0.02*(12-layer_3_w))  
G_13_3 = G_13_3_w12*(1+0.02*(12-layer_3_w))  
G_23_3 = G_23_3_w12*(1+0.02*(12-layer_3_w))  
 
v12_3 = 0.2 
v21_3 = (E_22_3/E_11_3)*v12_3   
 
rho_3 = 420 
rho0_3=rho_3/1000 
g_3=rho_3*9.81  
 
Q11_3 = E_11_3 / (1-v12_3*v21_3) 
Q12_3 = (v12_3 * E_22_3) / (1-v12_3*v21_3) 
Q16_3 = 0 
Q26_3 = 0 
Q22_3 = E_22_3 / (1-v12_3*v21_3) 
Q66_3 = G_12_3 
Q44_3 = G_23_3 
Q55_3 = G_13_3 
 
! LAMINAE LAYERS THICKNESS, GEOMETRY 
h1 = 0.03 
h2 = 0.03 
h3 = 0.03 
h=h1 + h2 + h3 
 
L1=1.5 
L2=0.3 
 
p= - 12000 {N.m-2} 
       
m1=1 !cos(a1 degrees) 
n1=0 !sin(a1 degrees) 
m2=0 !cos(a2 degrees) 
n2=1 !sin(a2 degrees) 
m3=1 !cos(a3 degrees) 
n3=0 !sin(a3 degrees) 
 
Q_11_1 = Q11_1*m1^4+2*(Q12_1+2*Q66_1)*m1^2*n1^2+Q22_1*n1^4 
Q_12_1 = (Q11_1+Q22_1-4*Q66_1)*m1^2*n1^2+Q12_1*(m1^4+n1^4) 
Q_22_1 = Q11_1*n1^4+2*(Q12_1+2*Q66_1)*m1^2*n1^2+Q22_1*m1^4 
Q_16_1 = (Q11_1-Q12_1-2*Q66_1)*(m1)^3*n1+(Q12_1-Q22_1+2*Q66_1)*m1*(n1)^3 
Q_26_1 = (Q11_1-Q12_1-2*Q66_1)*n1^3*m1+(Q12_1-Q22_1+2*Q66_1)*n1*m1^3 
Q_66_1 = (Q11_1+Q22_1-2*Q12_1-2*Q66_1)*m1^2*n1^2+Q66_1*(m1^4+n1^4) 
Q_44_1 = Q44_1*m1^2+Q55_1*n1^2 
Q_45_1 = (Q55_1-Q44_1)*n1*m1 
Q_55_1 = Q55_1*m1^2+Q44_1*n1^2 
 
Q_11_2 = Q11_2*m2^4+2*(Q12_2+2*Q66_2)*m2^2*n2^2+Q22_2*n2^4 
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Q_12_2 = (Q11_2+Q22_2-4*Q66_2)*m2^2*n2^2+Q12_2*(m2^4+n2^4) 
Q_22_2 = Q11_2*n2^4+2*(Q12_2+2*Q66_2)*m2^2*n2^2+Q22_2*m2^4 
Q_16_2 = (Q11_2-Q12_2-2*Q66_2)*m2^3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2^3 
Q_26_2 = (Q11_2-Q12_2-2*Q66_2)*n2^3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2^3 
Q_66_2 = (Q11_2+Q22_2-2*Q12_2-2*Q66_2)*m2^2*n2^2+Q66_2*(m2^4+n2^4) 
Q_44_2 = Q44_2*m2^2+Q55_2*n2^2 
Q_45_2 = (Q55_2-Q44_2)*n2*m2 
Q_55_2 = Q55_2*m2^2+Q44_2*n2^2 
 
Q_11_3 = Q11_3*m3^4+2*(Q12_3+2*Q66_3)*m3^2*n3^2+Q22_3*n3^4 
Q_12_3 = (Q11_3+Q22_3-4*Q66_3)*m3^2*n3^2+Q12_3*(m3^4+n3^4) 
Q_22_3 = Q11_3*n3^4+2*(Q12_3+2*Q66_3)*m3^2*n3^2+Q22_3*m3^4 
Q_16_3 = (Q11_3-Q12_3-2*Q66_3)*m3^3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3^3 
Q_26_3 = (Q11_3-Q12_3-2*Q66_3)*n3^3*m3+(Q12_3-Q22_3+2*Q66_3)*n3*m3^3 
Q_66_3 = (Q11_3+Q22_3-2*Q12_3-2*Q66_3)*m3^2*n3^2+Q66_3*(m3^4+n3^4) 
Q_44_3 = Q44_3*m3^2+Q55_3*n3^2 
Q_45_3 = (Q55_3-Q44_3)*n3*m3 
Q_55_3 = Q55_3*m3^2+Q44_3*n3^2 
 
A11 = Q_11_1 * ( (h2/2 + h1) - h2/2) + Q_11_2 * ( (h2/2) - (-h2/2)) + 
Q_11_3 * ( (-h2/2) - (-h2/2 - h3)) 
A12 = Q_12_1 * ( (h2/2 + h1) - h2/2) + Q_12_2 * ( (h2/2) - (-h2/2)) + 
Q_12_3 * ( (-h2/2) - (-h2/2 - h3)) 
A22 = Q_22_1 * ( (h2/2 + h1) - h2/2) + Q_22_2 * ( (h2/2) - (-h2/2)) + 
Q_22_3 * ( (-h2/2) - (-h2/2 - h3)) 
A16 = Q_16_1 * ( (h2/2 + h1) - h2/2) + Q_16_2 * ( (h2/2) - (-h2/2)) + 
Q_16_3 * ( (-h2/2) - (-h2/2 - h3)) 
A26 = Q_26_1 * ( (h2/2 + h1) - h2/2) + Q_26_2 * ( (h2/2) - (-h2/2)) + 
Q_26_3 * ( (-h2/2) - (-h2/2 - h3)) 
A66 = Q_66_1 * ( (h2/2 + h1) - h2/2) + Q_66_2 * ( (h2/2) - (-h2/2)) + 
Q_66_3 * ( (-h2/2) - (-h2/2 - h3)) 
 
A44 = Q_44_1 * ( (h2/2 + h1) - h2/2) + Q_44_2 * ( (h2/2) - (-h2/2)) + 
Q_44_3 * ( (-h2/2) - (-h2/2 - h3)) 
A45 = Q_45_1 * ( (h2/2 + h1) - h2/2) + Q_45_2 * ( (h2/2) - (-h2/2)) + 
Q_45_3 * ( (-h2/2) - (-h2/2 - h3)) 
A55 = Q_55_1 * ( (h2/2 + h1) - h2/2) + Q_55_2 * ( (h2/2) - (-h2/2)) + 
Q_55_3 * ( (-h2/2) - (-h2/2 - h3)) 
     
    A=matrix((A11,A12,A16),(A12,A22,A26),(A16,A26,A66)) 
 
B11 = 1/2 * ( Q_11_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_11_2 * ( (h2/2)^2 - 
(-h2/2)^2) + Q_11_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B12 = 1/2 * ( Q_12_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_12_2 * ( (h2/2)^2 - 
(-h2/2)^2) + Q_12_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B22 = 1/2 * ( Q_22_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_22_2 * ( (h2/2)^2 - 
(-h2/2)^2) + Q_22_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B16 = 1/2 * ( Q_16_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_16_2 * ( (h2/2)^2 - 
(-h2/2)^2) + Q_16_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B26 = 1/2 * ( Q_26_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_26_2 * ( (h2/2)^2 - 
(-h2/2)^2) + Q_26_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B66 = 1/2 * ( Q_66_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_66_2 * ( (h2/2)^2 - 
(-h2/2)^2) + Q_66_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
     
    B=matrix((B11,B12,B16),(B12,B22,B26),(B16,B26,B66)) 
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D11 = 1/3 * ( Q_11_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_11_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_11_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D12 = 1/3 * ( Q_12_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_12_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_12_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D22 = 1/3 * ( Q_22_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_22_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_22_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D16 = 1/3 * ( Q_16_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_16_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_16_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D26 = 1/3 * ( Q_26_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_26_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_26_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D66 = 1/3 * ( Q_66_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_66_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_66_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
     
    D=matrix((D11,D12,D16),(D12,D22,D26),(D16,D26,D66)) 
     
 
    
!MOISTURE STRAINS__________ 
 
KaT_1=(2/3)*rho0_1 
KaR_1=(1/30)*rho0_1      
KaL_1=(1/30)*rho0_1     
KaT_2=(2/3)*rho0_2 
KaR_2=(1/30)*rho0_2       
KaL_2=(1/30)*rho0_2 
KaT_3=(2/3)*rho0_3 
KaR_3=(1/30)*rho0_3    
KaL_3=(1/30)*rho0_3 
 
ew11_1=(KaL_1*(abs_w_1))/100    
ew22_1=(KaR_1*(abs_w_1))/100 
 
ew11_2=(KaL_2*(abs_w_2))/100 
ew22_2=(KaR_2*(abs_w_2))/100 
 
ew11_3=(KaL_3*(abs_w_3))/100 
ew22_3=(KaR_3*(abs_w_3))/100 
 
!_________ 
 
Ks =  5/6 ! First order shear plate theory coefficient for shear stress 
 
e_x = dx(u) 
e_y = dy(v) 
e_xy = dy(u)+dx(v) 
 
Kx = dx(F_x) 
Ky = dy(F_y) 
Kxy = 2*(dy(F_x)+dx(F_y)) 
 
eyz = (F_y) +dy(w) 
exz = (F_x) + dx(w) 
 
{1. TOP___________________________________________________________________} 
 
e1_1_top = e_x + (h1+h2/2)*Kx + ew11_1 
e2_1_top = e_y + (h1+h2/2)*Ky + ew22_1 
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e6_1_top = e_xy + (h1+h2/2)*Kxy 
e4_1_top = eyz 
e5_1_top = exz 
 
Sigma1_1_top = Q_11_1*e1_1_top + Q_12_1*e2_1_top + Q_16_1*e6_1_top 
Sigma2_1_top = Q_12_1*e1_1_top + Q_22_1*e2_1_top + Q_26_1*e6_1_top 
Sigma6_1_top = Q_16_1*e1_1_top + Q_26_1*e2_1_top + Q_66_1*e6_1_top 
Sigma4_1_top = Q_44_1 * e4_1_top + Q_45_1 * e5_1_top 
Sigma5_1_top =Q_45_1 * e4_1_top + Q_55_1 * e5_1_top 
 
{1. MID___________________________________________________________________} 
 
e1_1_mid = e_x + (h1/2+h2/2)*Kx + ew11_1 
e2_1_mid = e_y + (h1/2+h2/2)*Ky + ew22_1 
e6_1_mid = e_xy + (h1/2+h2/2)*Kxy 
e4_1_mid = eyz 
e5_1_mid = exz 
 
Sigma1_1_mid = Q_11_1*e1_1_mid + Q_12_1*e2_1_mid + Q_16_1*e6_1_mid 
Sigma2_1_mid = Q_12_1*e1_1_mid + Q_22_1*e2_1_mid + Q_26_1*e6_1_mid 
Sigma6_1_mid = Q_16_1*e1_1_mid + Q_26_1*e2_1_mid + Q_66_1*e6_1_mid 
Sigma4_1_mid = Q_44_1 * e4_1_mid + Q_45_1 * e5_1_mid 
Sigma5_1_mid =Q_45_1 * e4_1_mid + Q_55_1 * e5_1_mid 
 
{1. BOT___________________________________________________________________} 
 
e1_1_bot = e_x + (h2/2)*Kx + ew11_1 
e2_1_bot = e_y + (h2/2)*Ky + ew22_1 
e6_1_bot = e_xy + (h2/2)*Kxy 
e4_1_bot = eyz 
e5_1_bot = exz 
 
Sigma1_1_bot = Q_11_1*e1_1_bot + Q_12_1*e2_1_bot + Q_16_1*e6_1_bot 
Sigma2_1_bot = Q_12_1*e1_1_bot + Q_22_1*e2_1_bot + Q_26_1*e6_1_bot 
Sigma6_1_bot = Q_16_1*e1_1_bot + Q_26_1*e2_1_bot + Q_66_1*e6_1_bot 
Sigma4_1_bot = Q_44_1 * e4_1_bot + Q_45_1 * e5_1_bot 
Sigma5_1_bot =Q_45_1 * e4_1_bot + Q_55_1 * e5_1_bot 
 
{2. TOP___________________________________________________________________} 
 
e1_2_top = e_x + (h2/2)*Kx + ew11_2 
e2_2_top = e_y + (h2/2)*Ky + ew22_2 
e6_2_top = e_xy + (h2/2)*Kxy 
e4_2_top = eyz 
e5_2_top = exz 
 
Sigma1_2_top = Q_11_2*e1_2_top + Q_12_2*e2_2_top + Q_16_2*e6_2_top 
Sigma2_2_top = Q_12_2*e1_2_top + Q_22_2*e2_2_top + Q_26_2*e6_2_top 
Sigma6_2_top = Q_16_2*e1_2_top + Q_26_2*e2_2_top + Q_66_2*e6_2_top 
Sigma4_2_top = Q_44_2 * e4_2_top + Q_45_2 * e5_2_top 
Sigma5_2_top =Q_45_2 * e4_2_top + Q_55_2 * e5_2_top 
 
{2. MID___________________________________________________________________} 
 
e1_2_mid = e_x + (0)*Kx + ew11_2 
e2_2_mid = e_y + (0)*Ky + ew22_2 
e6_2_mid = e_xy + (0)*Kxy 
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e4_2_mid = eyz 
e5_2_mid = exz 
 
Sigma1_2_mid = Q_11_2*e1_2_mid + Q_12_2*e2_2_mid + Q_16_2*e6_2_mid 
Sigma2_2_mid = Q_12_2*e1_2_mid + Q_22_2*e2_2_mid + Q_26_2*e6_2_mid 
Sigma6_2_mid = Q_16_2*e1_2_mid + Q_26_2*e2_2_mid + Q_66_2*e6_2_mid 
Sigma4_2_mid = Q_44_2 * e4_2_mid + Q_45_2 * e5_2_mid 
Sigma5_2_mid = Q_45_2 * e4_2_mid + Q_55_2 * e5_2_mid 
 
{2. BOT___________________________________________________________________} 
 
e1_2_bot = e_x + (-h2/2)*Kx + ew11_2 
e2_2_bot = e_y + (-h2/2)*Ky + ew22_2 
e6_2_bot = e_xy + (-h2/2)*Kxy 
e4_2_bot = eyz 
e5_2_bot = exz 
 
Sigma1_2_bot = Q_11_2*e1_2_bot + Q_12_2*e2_2_bot + Q_16_2*e6_2_bot 
Sigma2_2_bot = Q_12_2*e1_2_bot + Q_22_2*e2_2_bot + Q_26_2*e6_2_bot 
Sigma6_2_bot = Q_16_2*e1_2_bot + Q_26_2*e2_2_bot + Q_66_2*e6_2_bot 
Sigma4_2_bot = Q_44_2 * e4_2_bot + Q_45_2 * e5_2_bot 
Sigma5_2_bot = Q_45_2 * e4_2_bot + Q_55_2 * e5_2_bot 
 
{3. TOP___________________________________________________________________} 
 
e1_3_top = e_x + (-h2/2)*Kx + ew11_3 
e2_3_top = e_y + (-h2/2)*Ky + ew22_3 
e6_3_top = e_xy + (-h2/2)*Kxy 
e4_3_top = eyz 
e5_3_top = exz 
 
Sigma1_3_top = Q_11_3*e1_3_top + Q_12_3*e2_3_top + Q_16_3*e6_3_top 
Sigma2_3_top = Q_12_3*e1_3_top + Q_22_3*e2_3_top + Q_26_3*e6_3_top 
Sigma6_3_top = Q_16_3*e1_3_top + Q_26_3*e2_3_top + Q_66_3*e6_3_top 
Sigma4_3_top = Q_44_3 * e4_3_top + Q_45_3 * e5_3_top 
Sigma5_3_top = Q_45_3 * e4_3_top + Q_55_3 * e5_3_top 
 
{3. MID___________________________________________________________________} 
 
e1_3_mid = e_x + (-h2/2-h3/2)*Kx + ew11_3 
e2_3_mid = e_y + (-h2/2-h3/2)*Ky + ew22_3 
e6_3_mid = e_xy + (-h2/2-h3/2)*Kxy 
e4_3_mid = eyz 
e5_3_mid = exz 
 
Sigma1_3_mid = Q_11_3*e1_3_mid + Q_12_3*e2_3_mid + Q_16_3*e6_3_mid 
Sigma2_3_mid = Q_12_3*e1_3_mid + Q_22_3*e2_3_mid + Q_26_3*e6_3_mid 
Sigma6_3_mid = Q_16_3*e1_3_mid + Q_26_3*e2_3_mid + Q_66_3*e6_3_mid 
Sigma4_3_mid = Q_44_3 * e4_3_mid + Q_45_3 * e5_3_mid 
Sigma5_3_mid = Q_45_3 * e4_3_mid + Q_55_3 * e5_3_mid 
 
{3. BOT___________________________________________________________________} 
 
e1_3_bot = e_x + (-h2/2-h3)*Kx + ew11_3 
e2_3_bot = e_y + (-h2/2-h3)*Ky + ew22_3 
e6_3_bot = e_xy + (-h2/2-h3)*Kxy 
e4_3_bot = eyz 
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e5_3_bot = exz 
 
Sigma1_3_bot = Q_11_3*e1_3_bot + Q_12_3*e2_3_bot + Q_16_3*e6_3_bot 
Sigma2_3_bot = Q_12_3*e1_3_bot + Q_22_3*e2_3_bot + Q_26_3*e6_3_bot 
Sigma6_3_bot = Q_16_3*e1_3_bot + Q_26_3*e2_3_bot + Q_66_3*e6_3_bot 
Sigma4_3_bot = Q_44_3 * e4_3_bot + Q_45_3 * e5_3_bot 
Sigma5_3_bot = Q_45_3 * e4_3_bot + Q_55_3 * e5_3_bot 
 
INITIAL VALUES 
u = 0 
v = 0 
wxx = 0 
wyy = 0 
w = 0 
F_x_x = 0 
F_y_y = 0 
 
EQUATIONS 
 
F_x_x: dx(F_x)=F_x_x 
F_y_y: dy(F_y)=F_y_y 
wxx: dxx(w)=wxx 
wyy: dyy(w)=wyy 
 
u: 
A11*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))+B11*dxx(F_x)+B12*dxy(F_y)+B16*(dx
y(F_x)+dxx(F_y))+A16*dxy(u)+A26*dyy(v)+A66*(dyy(u)+dxy(v))+B16*dxy(F_x)+B26
*dyy(F_y)+B66*(dyy(F_x)+dxy(F_y))=0 
 
v: 
A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v))+B16*dxx(F_x)+B26*dxy(F_y)+B66*(dx
y(F_x)+dxx(F_y))+A12*dxy(u)+A22*dyy(v)+A26*(dyy(u)+dxy(v))+B12*dxy(F_x)+B22
*dyy(F_y)+B26*(dyy(F_x)+dxy(F_y))=0 
 
w: 
Ks*A45*(dx(F_y)+dxy(w))+Ks*A55*(dx(F_x)+dxx(w))+Ks*A44*(dy(F_y)+dyy(w))+Ks*
A45*(dy(F_x)+dxy(w))=-p 
 
F_x: 
B11*dxx(u)+B12*dxy(v)+B16*(dxy(u)+dxx(v))+D11*dxx(F_x)+D12*dxy(F_y)+D16*(dx
y(F_x)+dxx(F_y))+B16*dxy(u)+B26*dyy(v)+B66*(dyy(u)+dxy(v))+D16*dxy(F_x)+D26
*dyy(F_y)+D66*(dyy(F_x)+dxy(F_y))=Ks*A45*(F_y+dy(w))+Ks*A55*(F_x+dx(w)) 
 
F_y: 
B16*dxx(u)+B26*dxy(v)+B66*(dxy(u)+dxx(v))+D16*dxx(F_x)+D26*dxy(F_y)+D66*(dx
y(F_x)+dxx(F_y))+B12*dxy(u)+B22*dyy(v)+B26*(dyy(u)+dxy(v))+D12*dxy(F_x)+D22
*dyy(F_y)+D26*(dyy(F_x)+dxy(F_y))=Ks*A44*(F_y+dy(w))+Ks*A45*(F_x+dx(w)) 
 
BOUNDARIES      
 region 1 
  
{---------X----------} start (0,0) {----------X---------} 
 
value(F_x_x)=0 
natural(F_y_y)=0 
natural(w)=0 
value(wyy)=0 
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natural(wxx)=0 
natural(u)=0 
value(v)=0 
 
{---------Y----------} line to (L1,0)  {----------Y---------} 
 
value(F_x_x)=0 
value(F_y_y)=0 
value(w)=0 
natural(wyy)=0 
value(wxx)=0 
natural(u)=0 
natural(v)=0 
 
{---------X----------} line to (L1,L2) {---------X----------} 
 
value(F_x_x)=0 
natural(F_y_y)=0 
natural(w)=0 
value(wyy)=0      
natural(wxx)=0 
natural(u)=0 
value(v)=0 
 
{----------Y---------} line to (0,L2) {----------Y---------} 
 
value(F_x_x)=0 
value(F_y_y)=0 
value(w)=0 
natural(wyy)=0 
value(wxx)=0 
natural(u)=0 
natural(v)=0 
 
line to close     
        
     
PLOTS   
      contour(w)    { show deformed grid as solution progresses } 
       surface(w) 
        elevation(w) from (0,L2/2) to (L1/2,L2/2) 
        elevation(w) from (L1/2,0) to (L1/2,L2) 
 
END    
 

 

13.9 Numerical FlexPDE script – SOSDT 

 
TITLE 'Bending - 3 LAYERS-SOSDT'    
 
SELECT 
ngrid=31      { increase initial gridding } 
cubic           { Use Cubic Basis } 
errlim = 1e-4      { increase accuracy to resolve stresses } 
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!painted              { paint all contour plots } 
!CHANGELIM = 0.1 
!STAGES = 36 
!autostage = on 
!PREFER_STABILITY=on 
!NONLINEAR=off                 
 
VARIABLES 
w 
u 
v 
F_1 
F_2 
P_1 
P_2 
!Mx 
!My 
!Nx 
!Ny 
 
DEFINITIONS    { parameter definitions } 
layer_1_w = 30 
layer_2_w = 12 
layer_3_w = 12 
layer11=12       {°C} 
layer12= layer_1_w 
layer21=12 
layer22=layer_2_w 
layer31=12 
layer32=layer_3_w 
     
abs_w_1=(layer11-layer12) 
abs_w_2=(layer21-layer22) 
abs_w_3=(layer31-layer32) 
 
! Layer 1   C22 
E_11_1_w12 = 11*10^9   
E_22_1_w12 = 0.37*10^9 
G_12_1_w12 = 0.69*10^9 
G_13_1_w12 = G_12_1_w12 
G_23_1_w12 = G_12_1_w12    
 
E_11_1 = E_11_1_w12*(1+0.02*(12-layer_1_w))  
E_22_1 = E_22_1_w12*(1+0.02*(12-layer_1_w))  
G_12_1 = G_12_1_w12*(1+0.02*(12-layer_1_w))  
G_13_1 = G_13_1_w12*(1+0.02*(12-layer_1_w))  
G_23_1 = G_23_1_w12*(1+0.02*(12-layer_1_w))  
 
v12_1=0.2 
v21_1 = (E_22_1/E_11_1)*v12_1   
 
rho_1 = 420 
rho0_1=rho_1/1000 
g_1=rho_1*9.81  
 
Q11_1 = E_11_1 / (1-v12_1*v21_1) 
Q12_1 = (v12_1 * E_22_1) / (1-v12_1*v21_1) 
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Q16_1 = 0 
Q26_1 = 0 
Q22_1 = E_22_1 / (1-v12_1*v21_1) 
Q66_1 = G_12_1 
Q44_1 = G_23_1 
Q55_1 = G_13_1 
 
! Layer 2   C22 
 
E_11_2_w12 = 11*10^9   
E_22_2_w12 = 0.37*10^9 
G_12_2_w12 = 0.69*10^9 
G_13_2_w12 = G_12_2_w12 
G_23_2_w12 = G_12_2_w12 
     
E_11_2 = E_11_2_w12*(1+0.02*(12-layer_2_w))  
E_22_2 = E_22_2_w12*(1+0.02*(12-layer_2_w))  
G_12_2 = G_12_2_w12*(1+0.02*(12-layer_2_w))  
G_13_2 = G_13_2_w12*(1+0.02*(12-layer_2_w))  
G_23_2 = G_23_2_w12*(1+0.02*(12-layer_2_w))  
 
v12_2 = 0.2 
v21_2 = (E_22_2/E_11_2)*v12_2   
 
rho_2 = 420 
rho0_2=rho_2/1000 
g_2=rho_2*9.81  
 
Q11_2 = E_11_2 / (1-v12_2*v21_2) 
Q12_2 = (v12_2 * E_22_2) / (1-v12_2*v21_2) 
Q16_2 = 0 
Q26_2 = 0 
Q22_2 = E_22_2 / (1-v12_2*v21_2) 
Q66_2 = G_12_2 
Q44_2 = G_23_2 
Q55_2 = G_13_2 
 
! Layer 3   C22 
 
E_11_3_w12 = 11*10^9   
E_22_3_w12 = 0.37*10^9 
G_12_3_w12 = 0.69*10^9 
G_13_3_w12 = G_12_3_w12 
G_23_3_w12 = G_12_3_w12 
     
E_11_3 = E_11_3_w12*(1+0.02*(12-layer_3_w))  
E_22_3 = E_22_3_w12*(1+0.02*(12-layer_3_w))  
G_12_3 = G_12_3_w12*(1+0.02*(12-layer_3_w))  
G_13_3 = G_13_3_w12*(1+0.02*(12-layer_3_w))  
G_23_3 = G_23_3_w12*(1+0.02*(12-layer_3_w))  
 
v12_3 = 0.2 
v21_3 = (E_22_3/E_11_3)*v12_3   
 
rho_3 = 420 
rho0_3=rho_3/1000 
g_3=rho_3*9.81  
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Q11_3 = E_11_3 / (1-v12_3*v21_3) 
Q12_3 = (v12_3 * E_22_3) / (1-v12_3*v21_3) 
Q16_3 = 0 
Q26_3 = 0 
Q22_3 = E_22_3 / (1-v12_3*v21_3) 
Q66_3 = G_12_3 
Q44_3 = G_23_3 
Q55_3 = G_13_3 
 
! LAMINAE LAYERS, GEOMETRY 
h1 = 0.03 
h2 = 0.03 
h3 = 0.03 
h=h1 + h2 + h3 
 
L1=1.5 
L2=0.3 
 
p= - 12000 {N.m-2} 
 
m1=1! cos(30 degrees)  !1 !cos(40 degrees) !cos(a1 degrees) 
n1=0! sin(30 degrees)  !0 !sin(40 degrees) !sin(a1 degrees) 
m2=0! cos(55 degrees) !0 !cos (20 degrees)!cos(a2 degrees) 
n2=1! sin(55 degrees) !1 !sin(20 degrees)  !sin(a2 degrees) 
m3=1! cos(83 degrees) !1 !cos(55 degrees) !cos(a3 degrees) 
n3=0 !sin(83 degrees)  !0 !sin(55 degrees) !sin(a3 degrees) 
 
Q_11_1 = Q11_1*m1^4+2*(Q12_1+2*Q66_1)*m1^2*n1^2+Q22_1*n1^4 
Q_12_1 = (Q11_1+Q22_1-4*Q66_1)*m1^2*n1^2+Q12_1*(m1^4+n1^4) 
Q_22_1 = Q11_1*n1^4+2*(Q12_1+2*Q66_1)*m1^2*n1^2+Q22_1*m1^4 
Q_16_1 = (Q11_1-Q12_1-2*Q66_1)*(m1)^3*n1+(Q12_1-Q22_1+2*Q66_1)*m1*(n1)^3 
Q_26_1 = (Q11_1-Q12_1-2*Q66_1)*n1^3*m1+(Q12_1-Q22_1+2*Q66_1)*n1*m1^3 
Q_66_1 = (Q11_1+Q22_1-2*Q12_1-2*Q66_1)*m1^2*n1^2+Q66_1*(m1^4+n1^4) 
Q_44_1 = Q44_1*m1^2+Q55_1*n1^2 
Q_45_1 = (Q55_1-Q44_1)*n1*m1 
Q_55_1 = Q55_1*m1^2+Q44_1*n1^2 
 
Q_11_2 = Q11_2*m2^4+2*(Q12_2+2*Q66_2)*m2^2*n2^2+Q22_2*n2^4 
Q_12_2 = (Q11_2+Q22_2-4*Q66_2)*m2^2*n2^2+Q12_2*(m2^4+n2^4) 
Q_22_2 = Q11_2*n2^4+2*(Q12_2+2*Q66_2)*m2^2*n2^2+Q22_2*m2^4 
Q_16_2 = (Q11_2-Q12_2-2*Q66_2)*m2^3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2^3 
Q_26_2 = (Q11_2-Q12_2-2*Q66_2)*n2^3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2^3 
Q_66_2 = (Q11_2+Q22_2-2*Q12_2-2*Q66_2)*m2^2*n2^2+Q66_2*(m2^4+n2^4) 
Q_44_2 = Q44_2*m2^2+Q55_2*n2^2 
Q_45_2 = (Q55_2-Q44_2)*n2*m2 
Q_55_2 = Q55_2*m2^2+Q44_2*n2^2 
 
Q_11_3 = Q11_3*m3^4+2*(Q12_3+2*Q66_3)*m3^2*n3^2+Q22_3*n3^4 
Q_12_3 = (Q11_3+Q22_3-4*Q66_3)*m3^2*n3^2+Q12_3*(m3^4+n3^4) 
Q_22_3 = Q11_3*n3^4+2*(Q12_3+2*Q66_3)*m3^2*n3^2+Q22_3*m3^4 
Q_16_3 = (Q11_3-Q12_3-2*Q66_3)*m3^3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3^3 
Q_26_3 = (Q11_3-Q12_3-2*Q66_3)*n3^3*m3+(Q12_3-Q22_3+2*Q66_3)*n3*m3^3 
Q_66_3 = (Q11_3+Q22_3-2*Q12_3-2*Q66_3)*m3^2*n3^2+Q66_3*(m3^4+n3^4) 
Q_44_3 = Q44_3*m3^2+Q55_3*n3^2 
Q_45_3 = (Q55_3-Q44_3)*n3*m3 
Q_55_3 = Q55_3*m3^2+Q44_3*n3^2 
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A11 = Q_11_1 * ( (h2/2 + h1) - (h2/2)) + Q_11_2 * ( (h2/2) - (-h2/2))+ 
Q_11_3 * ( (-h2/2) - (-h2/2 - h3)) 
A12 = Q_12_1 * ( (h2/2 + h1) - (h2/2)) + Q_12_2 * ( (h2/2) - (-h2/2))+ 
Q_12_3 * ( (-h2/2) - (-h2/2 - h3)) 
A22 = Q_22_1 * ( (h2/2 + h1) - (h2/2)) + Q_22_2 * ( (h2/2) - (-h2/2))+ 
Q_22_3 * ( (-h2/2) - (-h2/2 - h3))  
A16 = Q_16_1 * ( (h2/2 + h1) - (h2/2)) + Q_16_2 * ( (h2/2) - (-h2/2))+ 
Q_16_3 * ( (-h2/2) - (-h2/2 - h3))  
A26 = Q_26_1 * ( (h2/2 + h1) - (h2/2)) + Q_26_2 * ( (h2/2) - (-h2/2))+ 
Q_26_3 * ( (-h2/2) - (-h2/2 - h3))  
A66 = Q_66_1 * ( (h2/2 + h1) - (h2/2)) + Q_66_2 * ( (h2/2) - (-h2/2))+ 
Q_66_3 * ( (-h2/2) - (-h2/2 - h3)) 
 
A44 = Q_44_1 * ( (h2/2 + h1) - (h2/2)) + Q_44_2 * ( (h2/2) - (-h2/2))+ 
Q_44_3 * ( (-h2/2) - (-h2/2 - h3))  
A45 = Q_45_1 * ( (h2/2 + h1) - (h2/2)) + Q_45_2 * ( (h2/2) - (-h2/2))+ 
Q_45_3 * ( (-h2/2) - (-h2/2 - h3))  
A55 = Q_55_1 * ( (h2/2 + h1) - (h2/2)) + Q_55_2 * ( (h2/2) - (-h2/2))+ 
Q_55_3 * ( (-h2/2) - (-h2/2 - h3)) 
 
    A=matrix((A11,A12,A16),(A12,A22,A26),(A16,A26,A66)) 
 
B11 = 1/2 *(Q_11_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_11_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_11_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B12 = 1/2 *(Q_12_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_12_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_12_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B22 = 1/2 *(Q_22_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_22_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_22_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B16 = 1/2 *(Q_16_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_16_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_16_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B26 = 1/2 *(Q_26_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_26_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_26_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B66 = 1/2 *(Q_66_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_66_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_66_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
 
B44 = 1/2 *(Q_44_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_44_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_44_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B45 = 1/2 *(Q_45_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_45_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_45_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B55 = 1/2 *(Q_55_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_55_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_55_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
 
    B=matrix((A11,A12,A16),(A12,A22,A26),(A16,A26,A66)) 
 
D11 = 1/3 *( Q_11_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_11_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_11_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D12 = 1/3 *( Q_12_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_12_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_12_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D22 = 1/3 *( Q_22_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_22_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_22_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D16 = 1/3 *( Q_16_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_16_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_16_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D26 = 1/3 *( Q_26_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_26_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_26_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D66 = 1/3 *( Q_66_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_66_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_66_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 



143 

   
D44 = 1/3 *( Q_44_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_44_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_44_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D45 = 1/3 *( Q_45_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_45_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_45_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D55 = 1/3 *( Q_55_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_55_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_55_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
   
    D=matrix((B11,B12,B16),(B12,B22,B26),(B16,B26,B66)) 
 
E11 = 1/4 *( Q_11_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_11_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_11_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E12 = 1/4* ( Q_12_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_12_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_12_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E22 = 1/4* ( Q_22_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_22_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_22_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E16 = 1/4* ( Q_16_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_16_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_16_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E26 = 1/4* ( Q_26_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_26_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_26_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E66 = 1/4* ( Q_66_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_66_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_66_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
 
E44 = 1/4* ( Q_44_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_44_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_44_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E45 = 1/4* ( Q_45_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_45_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_45_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E55 = 1/4* ( Q_55_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_55_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_55_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
 
    E=matrix((E11,E12,E16),(E12,E22,E26),(E16,E26,E66)) 
 
F11 = 1/5* ( Q_11_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_11_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_11_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F12 = 1/5* ( Q_12_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_12_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_12_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F22 = 1/5* ( Q_22_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_22_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_22_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F16 = 1/5* ( Q_16_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_16_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_16_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F26 = 1/5* ( Q_26_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_26_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_26_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F66 = 1/5* ( Q_66_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_66_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_66_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
 
F44 = 1/5* ( Q_44_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_44_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_44_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F45 = 1/5* ( Q_45_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_45_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_45_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F55 = 1/5* ( Q_55_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_55_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_55_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
 
    F=matrix((F11,F12,F16,0,0),(F12,F22,F26,0,0),(F16,F26,F66,0,0)) 
 
 
!MOISTURE STRAINS__________________________________________________________ 
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KaT_1=(2/3)*rho0_1 
KaR_1=(1/30)*rho0_1    
KaL_1=(1/30)*rho0_1     
KaT_2=(2/3)*rho0_2 
KaR_2=(1/30)*rho0_2       
KaL_2=(1/30)*rho0_2 
KaT_3=(2/3)*rho0_3 
KaR_3=(1/30)*rho0_3         
KaL_3=(1/30)*rho0_3 
 
ew11_1=(KaL_1*(abs_w_1))/100        
ew22_1=(KaR_1*(abs_w_1))/100 
ew11_2=(KaL_2*(abs_w_2))/100 
ew22_2=(KaR_2*(abs_w_2))/100 
ew11_3=(KaL_3*(abs_w_3))/100 
ew22_3=(KaR_3*(abs_w_3))/100 
 
!_________________ 
 
ex=dx(u) 
ey=dy(u) 
exy=dx(v)+dy(u) 
kx=dx(F_1) 
ky=dy(P_1) 
kxy=dx(P_1)+dy(F_1) 
kkx=dx(F_2) 
kky=dy(P_2) 
kkxy=dx(P_2)+dy(F_2) 
eyz=P_1+dy(w) 
exz=F_1+dx(w) 
eeyz=2*P_2 
eexz=2*F_2 
 
{1. TOP__________________________________________________________________} 
 
e1_1_top = ex + (h1+h2/2)*kx+((h1+h2/2)^2)*kkx + ew11_1 
e2_1_top = ey + (h1+h2/2)*ky+((h1+h2/2)^2)*kky + ew22_1 
e6_1_top = exy + (h1+h2/2)*kxy + ((h1+h2/2)^2)*kkxy 
e4_1_top = eyz + (h1+h2/2)*eeyz 
e5_1_top = exz + (h1+h2/2)*eexz 
 
Sigma1_1_top = Q_11_1*e1_1_top + Q_12_1*e2_1_top + Q_16_1*e6_1_top 
Sigma2_1_top = Q_12_1*e1_1_top + Q_22_1*e2_1_top + Q_26_1*e6_1_top 
Sigma6_1_top = Q_16_1*e1_1_top + Q_26_1*e2_1_top + Q_66_1*e6_1_top 
Sigma4_1_top =+ Q_44_1*e4_1_top + Q_45_1*e5_1_top 
Sigma5_1_top =+ Q_45_1*e4_1_top + Q_55_1*e5_1_top 
 
{1. MID___________________________________________________________________} 
 
e1_1_mid = ex + (h1/2+h2/2)*kx+((h1/2+h2/2)^2)*kkx  + ew11_1 
e2_1_mid = ey + (h1/2+h2/2)*ky+((h1/2+h2/2)^2)*kky + ew22_1 
e6_1_mid = exy + (h1/2+h2/2)*kxy + ((h1/2+h2/2)^2)*kkxy 
e4_1_mid = eyz + (h1/2+h2/2)*eeyz 
e5_1_mid = exz + (h1/2+h2/2)*eexz 
 
Sigma1_1_mid = Q_11_1*e1_1_mid + Q_12_1*e2_1_mid + Q_16_1*e6_1_mid 
Sigma2_1_mid = Q_12_1*e1_1_mid + Q_22_1*e2_1_mid + Q_26_1*e6_1_mid 
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Sigma6_1_mid = Q_16_1*e1_1_mid + Q_26_1*e2_1_mid + Q_66_1*e6_1_mid 
Sigma4_1_mid = + Q_44_1*e4_1_mid + Q_45_1*e5_1_mid 
Sigma5_1_mid = + Q_45_1*e4_1_mid + Q_55_1*e5_1_mid 
 
{1. BOT___________________________________________________________________} 
 
e1_1_bot = ex + (h2/2)*kx+((h2/2)^2)*kkx + ew11_1 
e2_1_bot = ey + (h2/2)*ky+((h2/2)^2)*kky + ew22_1 
e6_1_bot = exy + (h2/2)*kxy + ((h2/2)^2)*kkxy 
e4_1_bot = eyz + (h2/2)*eeyz 
e5_1_bot = exz + (h2/2)*eexz 
 
Sigma1_1_bot = Q_11_1*e1_1_bot + Q_12_1*e2_1_bot + Q_16_1*e6_1_bot 
Sigma2_1_bot = Q_12_1*e1_1_bot + Q_22_1*e2_1_bot + Q_26_1*e6_1_bot 
Sigma6_1_bot = Q_16_1*e1_1_bot + Q_26_1*e2_1_bot + Q_66_1*e6_1_bot 
Sigma4_1_bot = + Q_44_1*e4_1_bot + Q_45_1*e5_1_bot 
Sigma5_1_bot = + Q_45_1*e4_1_bot + Q_55_1*e5_1_bot 
 
{2. TOP___________________________________________________________________} 
 
e1_2_top = ex + (h2/2)*kx+((h2/2)^2)*kkx + ew11_2 
e2_2_top = ey + (h2/2)*ky+((h2/2)^2)*kky + ew22_2 
e6_2_top = exy + (h2/2)*kxy + ((h2/2)^2)*kkxy 
e4_2_top = eyz + (h2/2)*eeyz 
e5_2_top = exz + (h2/2)*eexz 
 
 
Sigma1_2_top = Q_11_2*e1_2_top + Q_12_2*e2_2_top + Q_16_2*e6_2_top 
Sigma2_2_top = Q_12_2*e1_2_top + Q_22_2*e2_2_top + Q_26_2*e6_2_top 
Sigma6_2_top = Q_16_2*e1_2_top + Q_26_2*e2_2_top + Q_66_2*e6_2_top 
Sigma4_2_top = + Q_44_2*e4_2_top + Q_45_2*e5_2_top 
Sigma5_2_top = + Q_45_2*e4_2_top + Q_55_2*e5_2_top 
 
{2.MID____________________________________________________________________} 
 
e1_2_MID = ex + (0)*kx+((0)^2)*kkx + ew11_2 
e2_2_MID = ey + (0)*ky+((0)^2)*kky + ew22_2 
e6_2_MID = exy + (0)*kxy + ((0)^2)*kkxy 
e4_2_MID = eyz + (0)*eeyz 
e5_2_MID = exz + (0)*eexz 
 
 
Sigma1_2_MID = Q_11_2*e1_2_MID + Q_12_2*e2_2_MID + Q_16_2*e6_2_MID 
Sigma2_2_MID = Q_12_2*e1_2_MID + Q_22_2*e2_2_MID + Q_26_2*e6_2_MID 
Sigma6_2_MID = Q_16_2*e1_2_MID + Q_26_2*e2_2_MID + Q_66_2*e6_2_MID 
Sigma4_2_MID = + Q_44_2*e4_2_MID + Q_45_2*e5_2_MID 
Sigma5_2_MID = + Q_45_2*e4_2_MID + Q_55_2*e5_2_MID 
 
{2. BOT___________________________________________________________________} 
 
e1_2_bot = ex + (-h2/2)*kx+((-h2/2)^2)*kkx + ew11_2 
e2_2_bot = ey + (-h2/2)*ky+((-h2/2)^2)*kky + ew22_2 
e6_2_bot = exy + (-h2/2)*kxy + ((-h2/2)^2)*kkxy 
e4_2_bot = eyz + (-h2/2)*eeyz 
e5_2_bot = exz + (-h2/2)*eexz 
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Sigma1_2_bot = Q_11_2*e1_2_bot + Q_12_2*e2_2_bot + Q_16_2*e6_2_bot 
Sigma2_2_bot = Q_12_2*e1_2_bot + Q_22_2*e2_2_bot + Q_26_2*e6_2_bot 
Sigma6_2_bot = Q_16_2*e1_2_bot + Q_26_2*e2_2_bot + Q_66_2*e6_2_bot 
Sigma4_2_bot = + Q_44_2*e4_2_bot + Q_45_2*e5_2_bot 
Sigma5_2_bot = + Q_45_2*e4_2_bot + Q_55_2*e5_2_bot 
 
 
{3. TOP___________________________________________________________________} 
 
e1_3_top = ex + (-h2/2)*kx+((-h2/2)^2)*kkx + ew11_3 
e2_3_top = ey + (-h2/2)*ky+((-h2/2)^2)*kky + ew22_3 
e6_3_top = exy + (-h2/2)*kxy + ((-h2/2)^2)*kkxy 
e4_3_top = eyz + (-h2/2)*eeyz 
e5_3_top = exz + (-h2/2)*eexz 
 
Sigma1_3_top = Q_11_3*e1_3_top + Q_12_3*e2_3_top + Q_16_3*e6_3_top 
Sigma2_3_top = Q_12_3*e1_3_top + Q_22_3*e2_3_top + Q_26_3*e6_3_top 
Sigma6_3_top = Q_16_3*e1_3_top + Q_26_3*e2_3_top + Q_66_3*e6_3_top 
Sigma4_3_top = + Q_44_3*e4_3_top + Q_45_3*e5_3_top 
Sigma5_3_top = + Q_45_3*e4_3_top + Q_55_3*e5_3_top 
 
{3. MID___________________________________________________________________} 
 
e1_3_mid = ex + (-h3/2-h2/2)*kx+((-h3/2-h2/2)^2)*kkx + ew11_3 
e2_3_mid = ey + (-h3/2-h2/2)*ky+((-h3/2-h2/2)^2)*kky + ew22_3 
e6_3_mid = exy + (-h3/2-h2/2)*kxy + ((-h3/2-h2/2)^2)*kkxy 
e4_3_mid = eyz + (-h3/2-h2/2)*eeyz 
e5_3_mid = exz + (-h3/2-h2/2)*eexz 
 
Sigma1_3_mid = Q_11_3*e1_3_mid + Q_12_3*e2_3_mid + Q_16_3*e6_3_mid 
Sigma2_3_mid = Q_12_3*e1_3_mid + Q_22_3*e2_3_mid + Q_26_3*e6_3_mid 
Sigma6_3_mid = Q_16_3*e1_3_mid + Q_26_3*e2_3_mid + Q_66_3*e6_3_mid 
Sigma4_3_mid = + Q_44_3*e4_3_mid + Q_45_3*e5_3_mid 
Sigma5_3_mid = + Q_45_3*e4_3_mid + Q_55_3*e5_3_mid 
 
{3. BOT___________________________________________________________________} 
 
e1_3_bot = ex + (-h2/2-h3)*kx+((-h2/2-h3)^2)*kkx + ew11_3 
e2_3_bot = ey + (-h2/2-h3)*ky+((-h2/2-h3)^2)*kky + ew22_3 
e6_3_bot = exy + (-h2/2-h3)*kxy + ((-h2/2-h3)^2)*kkxy 
e4_3_bot = eyz + (-h2/2-h3)*eeyz 
e5_3_bot = exz + (-h2/2-h3)*eexz 
 
Sigma1_3_bot = Q_11_3*e1_3_bot + Q_12_3*e2_3_bot + Q_16_3*e6_3_bot 
Sigma2_3_bot = Q_12_3*e1_3_bot + Q_22_3*e2_3_bot + Q_26_3*e6_3_bot 
Sigma6_3_bot = Q_16_3*e1_3_bot + Q_26_3*e2_3_bot + Q_66_3*e6_3_bot 
Sigma4_3_bot = + Q_44_3*e4_3_bot + Q_45_3*e5_3_bot 
Sigma5_3_bot = + Q_45_3*e4_3_bot + Q_55_3*e5_3_bot 
 
INITIAL VALUES 
w=0 
u=0 
v=0 
F_1=0 
F_2=0 
P_1=0 
P_2=0 
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EQUATIONS 
     
w:    
A45*(dx(P_1)+dxy(w))+A55*(dx(F_1)+dxx(w))+B45*dx(2*P_2)+B55*dx(2*F_2) 
+A44*(dy(P_1)+dyy(w))+A45*(dy(F_1)+dxy(w))+B44*dy(2*P_2)+B45*dy(2*F_2)= -p 
 
    
A55*dx(F_1)+A55*dxx(w)+2*B55*dx(F_2)+A44*dy(P_1)+A44*dyy(w)+2*B44*dy(P_2) + 
p=0 
 
u:     
A11*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))+B11*dxx(F_1)+B12*dxy(P_1)+B16*(dx
y(F_1)+dxx(P_1))+D11*dxx(F_2)+D12*dxy(P_2)+D16*(dxy(F_2)+dxx(P_2))+A16*dxy(
u)+A26*dyy(v)+A66*(dyy(u)+dxy(v))+B16*dxy(F_1)+B26*dyy(P_1)+B66*(dyy(F_1)+d
xy(P_1))+D16*dxy(F_2)+D26*dyy(P_2)+D66*(dyy(F_2)+dxy(P_2)) = 0 
 
v:        
A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v))+B16*dxx(F_1)+B26*dxy(P_1)+B66*(dx
y(F_1)+dxx(P_1))+D16*dxx(F_2)+D26*dxy(P_2)+D66*(dxy(F_2)+dxx(P_2))+A12*dxy(
u)+A22*dyy(v)+A26*(dyy(u)+dxy(v))+B12*dxy(F_1)+B22*dyy(P_1)+B26*(dyy(F_1)+d
xy(P_1))+D12*dxy(F_2)+D22*dyy(P_2)+D26*(dyy(F_2)+dxy(P_2)) = 0 
    
F_1:        
B11*dxx(u)+B12*dxy(v)+B16*(dxy(u)+dxx(v))+D11*dxx(F_1)+D12*dxy(P_1)+D16*(dx
y(F_1)+dxx(P_1))+E11*dxx(F_2)+E12*dxy(P_2)+E16*(dxy(F_2)+dxx(P_2))+B16*dxy(
u)+B26*dyy(v)+B66*(dyy(u)+dxy(v))+D16*dxy(F_1)+D26*dyy(P_1)+D66*(dyy(F_1)+d
xy(P_1))+E16*dxy(F_2)+E26*dyy(P_2)+E66*(dyy(F_2)+dxy(P_2))-
(A45*(P_1+dy(w))+A55*(F_1+dx(w))+B45*2*P_2+B55*2*F_2)= 0 
 
F_2:        
B16*dxx(u)+B26*dxy(v)+B66*(dxy(u)+dxx(v))+D16*dxx(F_1)+D26*dxy(P_1)+D66*(dx
y(F_1)+dxx(P_1))+E16*dxx(F_2)+E26*dxy(P_2)+E66*(dxy(F_2)+dxx(P_2))+B12*dxy(
u)+B22*dyy(v)+B26*(dyy(u)+dxy(v))+D12*dxy(F_1)+D22*dyy(P_1)+D26*(dyy(F_1)+d
xy(P_1))+E12*dxy(F_2)+E22*dyy(P_2)+E26*(dyy(F_2)+dxy(P_2)) -
(A44*(P_1+dy(w))+A45*(F_1+dx(w))+B44*2*P_2+B45*2*F_2)= 0 
 
P_1:      
D11*dxx(u)+D12*dxy(v)+D16*(dxy(u)+dxx(v))+E11*dxx(F_1)+E12*dxy(P_1)+E16*(dx
y(F_1)+dxx(P_1))+F11*dxx(F_2)+F12*dxy(P_2)+F16*(dxy(F_2)+dxx(P_2))+D16*dxy(
u)+D26*dyy(v)+D66*(dyy(u)+dxy(v))+E16*dxy(F_1)+E26*dyy(P_1)+E66*(dyy(F_1)+d
xy(P_1))+F16*dxy(F_2)+F26*dyy(P_2)+F66*(dyy(F_2)+dxy(P_2))-
(B45*(P_1+dy(w))+B55*(F_1+dx(w))+D45*2*P_2+D55*2*F_2)= 0 
 
P_2:   
D16*dxx(u)+D26*dxy(v)+D66*(dxy(u)+dxx(v))+E16*dxx(F_1)+E26*dxy(P_1)+E66*(dx
y(F_1)+dxx(P_1))+F16*dxx(F_2)+F26*dxy(P_2)+F66*(dxy(F_2)+dxx(P_2))+D12*dxy(
u)+D22*dyy(v)+D26*(dyy(u)+dxy(v))+E12*dxy(F_1)+E22*dyy(P_1)+E26*(dyy(F_1)+d
xy(P_1))+F12*dxy(F_2)+F22*dyy(P_2)+F26*(dyy(F_2)+dxy(P_2))-
(B44*(P_1+dy(w))+B45*(F_1+dx(w))+D44*2*P_2+D45*2*F_2)= 0 
 
BOUNDARIES      
 region 1         
 
  start (0,0)   
        natural(v)=0 
        natural(w)=0 
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        natural(P_1)=0 
        natural(P_2)=0 
        natural(u)=0 
        natural(F_1)=0 
        natural(F_2)=0 
 
 
line to (L1,0) 
        natural(v)=0 
        value(w)=0 
        natural(P_1)=0 
        value(P_2)=0 
        natural(u)=0 
        natural(F_1)=0 
        natural(F_2)=0 
                                
line to (L1,L2)  
        natural(v)=0 
        natural(w)=0 
        natural(P_1)=0 
        natural(P_2)=0 
        natural(u)=0 
        natural(F_1)=0 
        natural(F_2)=0 
 
line to (0,L2)  
        natural(v)=0 
        value(w)=0 
        natural(P_1)=0 
        value(P_2)=0 
        natural(u)=0 
        natural(F_1)=0 
        natural(F_2)=0 
                              
line to close     
        
PLOTS   
      contour(w)    { show deformed grid as solution progresses } 
      surface(w) 
       elevation(w) from (0,L2/2) to (L1,L2/2) 
       elevation(w) from (L1/2,0) to (L1/2,L2) 
    
END    
 

13.10 Numerical FlexPDE script – TOSDT 

 
TITLE 'Bending - 3 LAYERS - TOSDT'    
 
SELECT 
ngrid=31    { increase initial gridding } 
cubic          { Use Cubic Basis } 
errlim = 1e-4     { increase accuracy to resolve stresses } 
painted              { paint all contour plots } 
!CHANGELIM = 0.1 
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!STAGES = 36 
!autostage = on 
!PREFER_STABILITY=on 
!NONLINEAR=off                 
 
VARIABLES 
w 
u 
v 
F_x 
F_y 
P_x 
P_y 
L_x 
L_y 
 
DEFINITIONS    { parameter definitions } 
layer_1_w = 30 
layer_2_w = 12 
layer_3_w = 12 
layer11=12       {°C} 
layer12= layer_1_w 
layer21=12 
layer22=layer_2_w 
layer31=12 
layer32=layer_3_w 
     
abs_w_1=(layer11-layer12) 
abs_w_2=(layer21-layer22) 
abs_w_3=(layer31-layer32) 
     
! Layer 1   C22 
E_11_1_w12 = 11*10^9   
E_22_1_w12 = 0.37*10^9 
G_12_1_w12 = 0.69*10^9 
G_13_1_w12 = G_12_1_w12 
G_23_1_w12 = G_12_1_w12 
E_11_1 = E_11_1_w12*(1+0.02*(12-layer_1_w))  
E_22_1 = E_22_1_w12*(1+0.02*(12-layer_1_w))  
G_12_1 = G_12_1_w12*(1+0.02*(12-layer_1_w))  
G_13_1 = G_13_1_w12*(1+0.02*(12-layer_1_w))  
G_23_1 = G_23_1_w12*(1+0.02*(12-layer_1_w))  
 
v12_1=0.2  
v21_1 = (E_22_1/E_11_1)*v12_1   
 
rho_1 = 420 
rho0_1=rho_1/1000 
g_1=rho_1*9.81  
 
Q11_1 = E_11_1 / (1-v12_1*v21_1) 
Q12_1 = (v12_1 * E_22_1) / (1-v12_1*v21_1) 
Q16_1 = 0 
Q26_1 = 0 
Q22_1 = E_22_1 / (1-v12_1*v21_1) 
Q66_1 = G_12_1 
Q44_1 = G_23_1 
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Q55_1 = G_13_1 
 
 
! Layer 2   C22 
E_11_2_w12 = 11*10^9   
E_22_2_w12 = 0.37*10^9 
G_12_2_w12 = 0.69*10^9 
G_13_2_w12 = G_12_2_w12 
G_23_2_w12 = G_12_2_w12 
E_11_2 = E_11_2_w12*(1+0.02*(12-layer_2_w))  
E_22_2 = E_22_2_w12*(1+0.02*(12-layer_2_w))  
G_12_2 = G_12_2_w12*(1+0.02*(12-layer_2_w))  
G_13_2 = G_13_2_w12*(1+0.02*(12-layer_2_w))  
G_23_2 = G_23_2_w12*(1+0.02*(12-layer_2_w))  
 
v12_2 = 0.2 
v21_2 = (E_22_2/E_11_2)*v12_2   
 
rho_2 = 420 
rho0_2=rho_2/1000 
g_2=rho_2*9.81  
 
Q11_2 = E_11_2 / (1-v12_2*v21_2) 
Q12_2 = (v12_2 * E_22_2) / (1-v12_2*v21_2) 
Q16_2 = 0 
Q26_2 = 0 
Q22_2 = E_22_2 / (1-v12_2*v21_2) 
Q66_2 = G_12_2 
Q44_2 = G_23_2 
Q55_2 = G_13_2 
 
! Layer 3   C22 
E_11_3_w12 = 11*10^9   
E_22_3_w12 = 0.37*10^9 
G_12_3_w12 = 0.69*10^9 
G_13_3_w12 = G_12_3_w12 
G_23_3_w12 = G_12_3_w12 
E_11_3 = E_11_3_w12*(1+0.02*(12-layer_3_w))  
E_22_3 = E_22_3_w12*(1+0.02*(12-layer_3_w))  
G_12_3 = G_12_3_w12*(1+0.02*(12-layer_3_w))  
G_13_3 = G_13_3_w12*(1+0.02*(12-layer_3_w))  
G_23_3 = G_23_3_w12*(1+0.02*(12-layer_3_w))  
 
v12_3 = 0.2 
v21_3 = (E_22_3/E_11_3)*v12_3   
 
rho_3 = 420 
rho0_3=rho_3/1000 
g_3=rho_3*9.81  
 
Q11_3 = E_11_3 / (1-v12_3*v21_3) 
Q12_3 = (v12_3 * E_22_3) / (1-v12_3*v21_3) 
Q16_3 = 0 
Q26_3 = 0 
Q22_3 = E_22_3 / (1-v12_3*v21_3) 
Q66_3 = G_12_3 
Q44_3 = G_23_3 
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Q55_3 = G_13_3 
 
 
! LAMINAE LAYERS, GEOMETRY 
h1 = 0.03 
h2 = 0.03 
h3 = 0.03 
h=h1 + h2 + h3 
 
L1=1.5 
L2=0.3 
 
p= -12000 {N.m-2} 
         
m1=1 !cos(a1 degrees) 
n1=0 !sin(a1 degrees) 
m2=0 !cos(a2 degrees) 
n2=1 !sin(a2 degrees) 
m3=1 !cos(a3 degrees) 
n3=0 !sin(a3 degrees) 
 
Q_11_1 = Q11_1*m1^4+2*(Q12_1+2*Q66_1)*m1^2*n1^2+Q22_1*n1^4 
Q_12_1 = (Q11_1+Q22_1-4*Q66_1)*m1^2*n1^2+Q12_1*(m1^4+n1^4) 
Q_22_1 = Q11_1*n1^4+2*(Q12_1+2*Q66_1)*m1^2*n1^2+Q22_1*m1^4 
Q_16_1 = (Q11_1-Q12_1-2*Q66_1)*(m1)^3*n1+(Q12_1-Q22_1+2*Q66_1)*m1*(n1)^3 
Q_26_1 = (Q11_1-Q12_1-2*Q66_1)*n1^3*m1+(Q12_1-Q22_1+2*Q66_1)*n1*m1^3 
Q_66_1 = (Q11_1+Q22_1-2*Q12_1-2*Q66_1)*m1^2*n1^2+Q66_1*(m1^4+n1^4) 
Q_44_1 = Q44_1*m1^2+Q55_1*n1^2 
Q_45_1 = (Q55_1-Q44_1)*n1*m1 
Q_55_1 = Q55_1*m1^2+Q44_1*n1^2 
 
Q_11_2 = Q11_2*m2^4+2*(Q12_2+2*Q66_2)*m2^2*n2^2+Q22_2*n2^4 
Q_12_2 = (Q11_2+Q22_2-4*Q66_2)*m2^2*n2^2+Q12_2*(m2^4+n2^4) 
Q_22_2 = Q11_2*n2^4+2*(Q12_2+2*Q66_2)*m2^2*n2^2+Q22_2*m2^4 
Q_16_2 = (Q11_2-Q12_2-2*Q66_2)*m2^3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2^3 
Q_26_2 = (Q11_2-Q12_2-2*Q66_2)*n2^3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2^3 
Q_66_2 = (Q11_2+Q22_2-2*Q12_2-2*Q66_2)*m2^2*n2^2+Q66_2*(m2^4+n2^4) 
Q_44_2 = Q44_2*m2^2+Q55_2*n2^2 
Q_45_2 = (Q55_2-Q44_2)*n2*m2 
Q_55_2 = Q55_2*m2^2+Q44_2*n2^2 
 
Q_11_3 = Q11_3*m3^4+2*(Q12_3+2*Q66_3)*m3^2*n3^2+Q22_3*n3^4 
Q_12_3 = (Q11_3+Q22_3-4*Q66_3)*m3^2*n3^2+Q12_3*(m3^4+n3^4) 
Q_22_3 = Q11_3*n3^4+2*(Q12_3+2*Q66_3)*m3^2*n3^2+Q22_3*m3^4 
Q_16_3 = (Q11_3-Q12_3-2*Q66_3)*m3^3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3^3 
Q_26_3 = (Q11_3-Q12_3-2*Q66_3)*n3^3*m3+(Q12_3-Q22_3+2*Q66_3)*n3*m3^3 
Q_66_3 = (Q11_3+Q22_3-2*Q12_3-2*Q66_3)*m3^2*n3^2+Q66_3*(m3^4+n3^4) 
Q_44_3 = Q44_3*m3^2+Q55_3*n3^2 
Q_45_3 = (Q55_3-Q44_3)*n3*m3 
Q_55_3 = Q55_3*m3^2+Q44_3*n3^2 
 
A11 = Q_11_1 * ( (h2/2 + h1) - (h2/2)) + Q_11_2 * ( (h2/2) - (-h2/2))+ 
Q_11_3 * ( (-h2/2) - (-h2/2 - h3)) 
A12 = Q_12_1 * ( (h2/2 + h1) - (h2/2)) + Q_12_2 * ( (h2/2) - (-h2/2))+ 
Q_12_3 * ( (-h2/2) - (-h2/2 - h3)) 
A22 = Q_22_1 * ( (h2/2 + h1) - (h2/2)) + Q_22_2 * ( (h2/2) - (-h2/2))+ 
Q_22_3 * ( (-h2/2) - (-h2/2 - h3))  
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A16 = Q_16_1 * ( (h2/2 + h1) - (h2/2)) + Q_16_2 * ( (h2/2) - (-h2/2))+ 
Q_16_3 * ( (-h2/2) - (-h2/2 - h3))  
A26 = Q_26_1 * ( (h2/2 + h1) - (h2/2)) + Q_26_2 * ( (h2/2) - (-h2/2))+ 
Q_26_3 * ( (-h2/2) - (-h2/2 - h3))  
A66 = Q_66_1 * ( (h2/2 + h1) - (h2/2)) + Q_66_2 * ( (h2/2) - (-h2/2))+ 
Q_66_3 * ( (-h2/2) - (-h2/2 - h3)) 
A44 = Q_44_1 * ( (h2/2 + h1) - (h2/2)) + Q_44_2 * ( (h2/2) - (-h2/2))+ 
Q_44_3 * ( (-h2/2) - (-h2/2 - h3))  
A45 = Q_45_1 * ( (h2/2 + h1) - (h2/2)) + Q_45_2 * ( (h2/2) - (-h2/2))+ 
Q_45_3 * ( (-h2/2) - (-h2/2 - h3))  
A55 = Q_55_1 * ( (h2/2 + h1) - (h2/2)) + Q_55_2 * ( (h2/2) - (-h2/2))+ 
Q_55_3 * ( (-h2/2) - (-h2/2 - h3)) 
 
    A=matrix((A11,A12,A16),(A12,A22,A26),(A16,A26,A66)) 
 
B11 = 1/2 *(Q_11_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_11_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_11_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B12 = 1/2 *(Q_12_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_12_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_12_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B22 = 1/2 *(Q_22_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_22_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_22_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B16 = 1/2 *(Q_16_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_16_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_16_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B26 = 1/2 *(Q_26_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_26_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_26_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B66 = 1/2 *(Q_66_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_66_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_66_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B44 = 1/2 *(Q_44_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_44_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_44_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B45 = 1/2 *(Q_45_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_45_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_45_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
B55 = 1/2 *(Q_55_1 * ( (h2/2 + h1)^2 - (h2/2)^2) + Q_55_2 * ( (h2/2)^2 - (-
h2/2)^2) + Q_55_3 * ( (-h2/2)^2 - (-h2/2 - h3)^2)) 
 
    B=matrix((A11,A12,A16),(A12,A22,A26),(A16,A26,A66)) 
 
D11 = 1/3 *( Q_11_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_11_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_11_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D12 = 1/3 *( Q_12_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_12_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_12_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D22 = 1/3 *( Q_22_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_22_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_22_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D16 = 1/3 *( Q_16_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_16_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_16_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D26 = 1/3 *( Q_26_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_26_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_26_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D66 = 1/3 *( Q_66_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_66_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_66_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D44 = 1/3 *( Q_44_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_44_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_44_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D45 = 1/3 *( Q_45_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_45_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_45_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
D55 = 1/3 *( Q_55_1 * ( (h2/2 + h1)^3 - (h2/2)^3) + Q_55_2 * ( (h2/2)^3 - 
(-h2/2)^3) + Q_55_3 * ( (-h2/2)^3 - (-h2/2 - h3)^3)) 
   
    D=matrix((B11,B12,B16),(B12,B22,B26),(B16,B26,B66)) 
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E11 = 1/4 *( Q_11_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_11_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_11_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E12 = 1/4* ( Q_12_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_12_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_12_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E22 = 1/4* ( Q_22_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_22_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_22_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E16 = 1/4* ( Q_16_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_16_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_16_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E26 = 1/4* ( Q_26_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_26_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_26_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E66 = 1/4* ( Q_66_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_66_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_66_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E44 = 1/4* ( Q_44_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_44_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_44_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E45 = 1/4* ( Q_45_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_45_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_45_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
E55 = 1/4* ( Q_55_1 * ( (h2/2 + h1)^4 - (h2/2)^4) + Q_55_2 * ( (h2/2)^4 - 
(-h2/2)^4) + Q_55_3 * ( (-h2/2)^4 - (-h2/2 - h3)^4)) 
 
    E=matrix((E11,E12,E16),(E12,E22,E26),(E16,E26,E66)) 
 
F11 = 1/5* ( Q_11_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_11_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_11_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F12 = 1/5* ( Q_12_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_12_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_12_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F22 = 1/5* ( Q_22_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_22_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_22_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F16 = 1/5* ( Q_16_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_16_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_16_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F26 = 1/5* ( Q_26_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_26_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_26_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F66 = 1/5* ( Q_66_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_66_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_66_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F44 = 1/5* ( Q_44_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_44_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_44_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F45 = 1/5* ( Q_45_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_45_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_45_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
F55 = 1/5* ( Q_55_1 * ( (h2/2 + h1)^5 - (h2/2)^5) + Q_55_2 * ( (h2/2)^5 - 
(-h2/2)^5) + Q_55_3 * ( (-h2/2)^5 - (-h2/2 - h3)^5)) 
 
    F=matrix((F11,F12,F16,0,0),(F12,F22,F26,0,0),(F16,F26,F66,0,0)) 
     
G11 = 1/6* ( Q_11_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_11_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_11_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
G12 = 1/6* ( Q_12_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_12_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_12_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
G22 = 1/6* ( Q_22_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_22_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_22_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
G16 = 1/6* ( Q_16_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_16_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_16_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
G26 = 1/6* ( Q_26_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_26_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_26_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
G66 = 1/6* ( Q_66_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_66_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_66_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
G44 = 1/6* ( Q_44_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_44_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_44_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
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G45 = 1/6* ( Q_45_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_45_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_45_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
G55 = 1/6* ( Q_55_1 * ( (h2/2 + h1)^6 - (h2/2)^6) + Q_55_2 * ( (h2/2)^6 - 
(-h2/2)^6) + Q_55_3 * ( (-h2/2)^6 - (-h2/2 - h3)^6)) 
 
    G=matrix((G11,G12,G16,0,0),(G12,G22,G26,0,0),(G16,G26,G66,0,0)) 
 
H11 = 1/7* ( Q_11_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_11_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_11_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H12 = 1/7* ( Q_12_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_12_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_12_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H22 = 1/7* ( Q_22_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_22_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_22_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H16 = 1/7* ( Q_16_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_16_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_16_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H26 = 1/7* ( Q_26_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_26_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_26_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H66 = 1/7* ( Q_66_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_66_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_66_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H44 = 1/7* ( Q_44_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_44_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_44_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H45 = 1/7* ( Q_45_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_45_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_45_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
H55 = 1/7* ( Q_55_1 * ( (h2/2 + h1)^7 - (h2/2)^7) + Q_55_2 * ( (h2/2)^7 - 
(-h2/2)^7) + Q_55_3 * ( (-h2/2)^7 - (-h2/2 - h3)^7)) 
 
    HH=matrix((H11,H12,H16,0,0),(H12,H22,H26,0,0),(H16,H26,H66,0,0)) 
 
!MOISTURE STRAINS_________________________________________________________ 
 
KaT_1=(2/3)*rho0_1 
KaR_1=(1/30)*rho0_1       
KaL_1=(1/30)*rho0_1      
KaT_2=(2/3)*rho0_2 
KaR_2=(1/30)*rho0_2       
KaL_2=(1/30)*rho0_2 
KaT_3=(2/3)*rho0_3 
KaR_3=(1/30)*rho0_3       
KaL_3=(1/30)*rho0_3 
 
ew11_1=(KaL_1*(abs_w_1))/100    
ew22_1=(KaR_1*(abs_w_1))/100 
ew11_2=(KaL_2*(abs_w_2))/100 
ew22_2=(KaR_2*(abs_w_2))/100 
ew11_3=(KaL_3*(abs_w_3))/100 
ew22_3=(KaR_3*(abs_w_3))/100 
 
ex_0=dx(u) 
ey_0=dy(u) 
exy_0=(dx(v)+dy(u)) 
ex_1=dx(P_x) 
ey_1=dy(P_y) 
exy_1=2*(dx(P_y)+dy(P_x)) 
 
ex_2=dx(F_x) 
ey_2=dy(F_y) 
exy_2=3*(dx(F_y)+dy(F_x)) 
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ex_3=dx(L_x) 
ey_3=dy(L_y) 
exy_3= 4*(dx(L_y)+dy(L_x)) 
exz_0=(P_x +dx(w)) 
eyz_0=(P_y +dy(w)) 
exz_1= 2*F_x 
eyz_1= 2*F_y 
exz_2= 3*L_x 
eyz_2= 3*L_y 
 
{1. TOP___________________________________________________________________} 
 
e1_1_top = ex_0  + ex_1 * (h1+h2/2) + ex_2 * (( h1+h2/2)^2) + ex_3 * (( 
h1+h2/2)^3)    + ew11_1 
e2_1_top = ey_0  + ey_1 * (h1+h2/2) + ey_2 * (( h1+h2/2)^2) + ey_3 * (( 
h1+h2/2)^3)    + ew22_1 
e6_1_top = exy_0 + exy_1 * (h1+h2/2) + exy_2 * (( h1+h2/2)^2) + exy_3 * 
(( h1+h2/2)^3)   
e4_1_top = eyz_0 + eyz_1 * (h1+h2/2) + eyz_2 * ((h1+h2/2)^2) 
e5_1_top = exz_0 + exz_1 * (h1+h2/2) +  exz_2 * ((h1+h2/2)^2) 
 
Sigma1_1_top = Q_11_1*e1_1_top + Q_12_1*e2_1_top + Q_16_1*e6_1_top 
Sigma2_1_top = Q_12_1*e1_1_top + Q_22_1*e2_1_top + Q_26_1*e6_1_top 
Sigma6_1_top = Q_16_1*e1_1_top + Q_26_1*e2_1_top + Q_66_1*e6_1_top 
Sigma4_1_top = + Q_44_1*e4_1_top + Q_45_1*e5_1_top 
Sigma5_1_top = + Q_45_1*e4_1_top + Q_55_1*e5_1_top 
 
{1. MID___________________________________________________________________} 
 
e1_1_mid = ex_0  + ex_1 * (h1/2+h2/2) + ex_2 * (( h1/2+h2/2)^2) + ex_3 * 
(( h1/2+h2/2)^3)     + ew11_1 
e2_1_mid = ey_0  + ey_1 * (h1/2+h2/2) + ey_2 * (( h1/2+h2/2)^2) + ey_3 * 
(( h1/2+h2/2)^3)     + ew22_1 
e6_1_mid = exy_0 + exy_1 * (h1/2+h2/2) + exy_2 * (( h1/2+h2/2)^2) + 
exy_3 * (( h1/2+h2/2)^3)   
e4_1_mid = eyz_0 + eyz_1 * (h1/2+h2/2) + eyz_2 * ((h1/2+h2/2)^2) 
e5_1_mid = exz_0 + exz_1 * (h1/2+h2/2) + exz_2 * ((h1/2+h2/2)^2) 
 
Sigma1_1_mid = Q_11_1*e1_1_mid + Q_12_1*e2_1_mid + Q_16_1*e6_1_mid 
Sigma2_1_mid = Q_12_1*e1_1_mid + Q_22_1*e2_1_mid + Q_26_1*e6_1_mid 
Sigma6_1_mid = Q_16_1*e1_1_mid + Q_26_1*e2_1_mid + Q_66_1*e6_1_mid 
Sigma4_1_mid = + Q_44_1*e4_1_mid + Q_45_1*e5_1_mid 
Sigma5_1_mid = + Q_45_1*e4_1_mid + Q_55_1*e5_1_mid 
 
{1. BOT___________________________________________________________________} 
 
e1_1_bot = ex_0 + ex_1 * (h2/2) + ex_2 * ((h2/2)^2) + ex_3 * ((h2/2)^3)      
+ ew11_1 
e2_1_bot = ey_0 + ey_1 * (h2/2) + ey_2 * ((h2/2)^2) + ey_3 * ((h2/2)^3)     
+ ew22_1  
e6_1_bot = exy_0+ exy_1 * (h2/2) + exy_2 * ((h2/2)^2) + exy_3 * ((h2/2)^3)   
e4_1_bot = eyz_0 + eyz_1 * (h2/2) + eyz_2 * ((h2/2)^2) 
e5_1_bot = exz_0 + exz_1 * (h2/2) + exz_2 * ((h2/2)^2) 
 
Sigma1_1_bot = Q_11_1*e1_1_bot + Q_12_1*e2_1_bot + Q_16_1*e6_1_bot 
Sigma2_1_bot = Q_12_1*e1_1_bot + Q_22_1*e2_1_bot + Q_26_1*e6_1_bot 
Sigma6_1_bot = Q_16_1*e1_1_bot + Q_26_1*e2_1_bot + Q_66_1*e6_1_bot 
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Sigma4_1_bot = + Q_44_1*e4_1_bot + Q_45_1*e5_1_bot 
Sigma5_1_bot = + Q_45_1*e4_1_bot + Q_55_1*e5_1_bot 
{2. TOP___________________________________________________________________} 
 
e1_2_top = ex_0 + ex_1 * (h2/2)+ex_2 * (( h2/2)^2) + ex_3 * (( h2/2)^3)       
+ ew11_2 
e2_2_top = ey_0 + ey_1 * (h2/2)+ey_2 * (( h2/2)^2) + ey_3 * (( h2/2)^3)       
+ ew22_2  
e6_2_top = exy_0 + exy_1 * (h2/2) + exy_2 * (( h2/2)^2) + exy_3 * (( 
h2/2)^3)   
e4_2_top = eyz_0 + eyz_1 * (h2/2) + eyz_2 * ((h2/2)^2) 
e5_2_top = exz_0 + exz_1 * (h2/2) + exz_2 * ((h2/2)^2) 
 
Sigma1_2_top = Q_11_2*e1_2_top + Q_12_2*e2_2_top + Q_16_2*e6_2_top 
Sigma2_2_top = Q_12_2*e1_2_top + Q_22_2*e2_2_top + Q_26_2*e6_2_top 
Sigma6_2_top = Q_16_2*e1_2_top + Q_26_2*e2_2_top + Q_66_2*e6_2_top 
Sigma4_2_top = + Q_44_2*e4_2_top + Q_45_2*e5_2_top 
Sigma5_2_top = + Q_45_2*e4_2_top + Q_55_2*e5_2_top 
 
{2. MID___________________________________________________________________} 
 
e1_2_mid = ex_0 + ex_1 * (0) + ex_2 * (( 0)^2) + ex_3 * (( 0)^3)         + 
ew11_2 
e2_2_mid = ey_0 + ey_1 * (0) + ey_2 * (( 0)^2) + ey_3 * (( 0)^3)        + 
ew22_2  
e6_2_mid = exy_0 + exy_1 * (0) + exy_2 * (( 0)^2) + exy_3 * (( 0)^3)   
e4_2_mid = eyz_0 + eyz_1 * (0) + eyz_2 * ((0)^2) 
e5_2_mid = exz_0 + exz_1 * (0) + exz_2 * ((0)^2) 
 
Sigma1_2_mid = Q_11_2*e1_2_mid + Q_12_2*e2_2_mid + Q_16_2*e6_2_mid 
Sigma2_2_mid = Q_12_2*e1_2_mid + Q_22_2*e2_2_mid + Q_26_2*e6_2_mid 
Sigma6_2_mid = Q_16_2*e1_2_mid + Q_26_2*e2_2_mid + Q_66_2*e6_2_mid 
Sigma4_2_mid = + Q_44_2*e4_2_mid + Q_45_2*e5_2_mid 
Sigma5_2_mid = + Q_45_2*e4_2_mid + Q_55_2*e5_2_mid 
 
{2. BOT___________________________________________________________________} 
 
e1_2_bot = ex_0  + ex_1 * (-h2/2) + ex_2 * (( -h2/2)^2) + ex_3 * (( -
h2/2)^3)           + ew11_2 
e2_2_bot = ey_0  + ey_1 * (-h2/2) + ey_2 * (( -h2/2)^2) + ey_3 * (( -
h2/2)^3)         + ew22_2  
e6_2_bot = exy_0 + exy_1 * (-h2/2) + exy_2 * (( -h2/2)^2) + exy_3 * (( -
h2/2)^3)   
e4_2_bot = eyz_0 + eyz_1 * (-h2/2) + eyz_2 * ((-h2/2)^2) 
e5_2_bot = exz_0 + exz_1 * (-h2/2) + exz_2 * ((-h2/2)^2) 
 
Sigma1_2_bot = Q_11_2*e1_2_bot + Q_12_2*e2_2_bot + Q_16_2*e6_2_bot 
Sigma2_2_bot = Q_12_2*e1_2_bot + Q_22_2*e2_2_bot + Q_26_2*e6_2_bot 
Sigma6_2_bot = Q_16_2*e1_2_bot + Q_26_2*e2_2_bot + Q_66_2*e6_2_bot 
Sigma4_2_bot = + Q_44_2*e4_2_bot + Q_45_2*e5_2_bot 
Sigma5_2_bot = + Q_45_2*e4_2_bot + Q_55_2*e5_2_bot 
 
{3. TOP___________________________________________________________________} 
 
e1_3_top = ex_0  + ex_1 * (-h2/2) + ex_2 * (( -h2/2)^2) + ex_3 * (( -
h2/2)^3)            + ew11_3 
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e2_3_top = ey_0  + ey_1 * (-h2/2) + ey_2 * (( -h2/2)^2) + ey_3 * (( -
h2/2)^3)          + ew22_3 
e6_3_top = exy_0 + exy_1 * (-h2/2) + exy_2 * (( -h2/2)^2) + exy_3 * (( -
h2/2)^3)   
e4_3_top = eyz_0 + eyz_1 * (-h2/2) + eyz_2 * ((-h2/2)^2) 
e5_3_top = exz_0 + exz_1 * (-h2/2) + exz_2 * ((-h2/2)^2) 
 
Sigma1_3_top = Q_11_3*e1_3_top + Q_12_3*e2_3_top + Q_16_3*e6_3_top 
Sigma2_3_top = Q_12_3*e1_3_top + Q_22_3*e2_3_top + Q_26_3*e6_3_top 
Sigma6_3_top = Q_16_3*e1_3_top + Q_26_3*e2_3_top + Q_66_3*e6_3_top 
Sigma4_3_top = + Q_44_3*e4_3_top + Q_45_3*e5_3_top 
Sigma5_3_top = + Q_45_3*e4_3_top + Q_55_3*e5_3_top 
 
{3. MID___________________________________________________________________} 
 
e1_3_mid = ex_0  + ex_1 * (-h2/2-h3/2) + ex_2 * (( -h2/2-h3/2)^2) + ex_3 
* (( -h2/2-h3/2)^3)             + ew11_3 
e2_3_mid = ey_0  + ey_1 * (-h2/2-h3/2) + ey_2 * (( -h2/2-h3/2)^2) + ey_3 
* (( -h2/2-h3/2)^3)          + ew22_3  
e6_3_mid = exy_0 + exy_1 * (-h2/2-h3/2) + exy_2 * (( -h2/2-h3/2)^2) + 
exy_3 * (( -h2/2-h3/2)^3)   
e4_3_mid = eyz_0 + eyz_1 * (-h2/2-h3/2) + eyz_2 * ((-h2/2-h3/2)^2) 
e5_3_mid = exz_0 + exz_1 * (-h2/2-h3/2) + exz_2 * ((-h2/2-h3/2)^2) 
 
Sigma1_3_mid = Q_11_3*e1_3_mid + Q_12_3*e2_3_mid + Q_16_3*e6_3_mid 
Sigma2_3_mid = Q_12_3*e1_3_mid + Q_22_3*e2_3_mid + Q_26_3*e6_3_mid 
Sigma6_3_mid = Q_16_3*e1_3_mid + Q_26_3*e2_3_mid + Q_66_3*e6_3_mid 
Sigma4_3_mid = + Q_44_3*e4_3_mid + Q_45_3*e5_3_mid 
Sigma5_3_mid = + Q_45_3*e4_3_mid + Q_55_3*e5_3_mid 
 
{3. BOT___________________________________________________________________} 
 
e1_3_bot = ex_0  + ex_1 * (-h2/2-h3) + ex_2 * (( -h2/2-h3)^2) + ex_3 * 
(( -h2/2-h3)^3)               + ew11_3 
e2_3_bot = ey_0  + ey_1 * (-h2/2-h3) + ey_2 * (( -h2/2-h3)^2) + ey_3 * 
(( -h2/2-h3)^3)           + ew22_3 
e6_3_bot = exy_0 + exy_1 * (-h2/2-h3) + exy_2 * (( -h2/2-h3)^2) + exy_3 
* (( -h2/2-h3)^3)   
e4_3_bot = eyz_0 + eyz_1 * (-h2/2-h3) + eyz_2 * ((-h2/2-h3)^2) 
e5_3_bot = exz_0 + exz_1 * (-h2/2-h3) + exz_2 * ((-h2/2-h3)^2) 
 
Sigma1_3_bot = Q_11_3*e1_3_bot + Q_12_3*e2_3_bot + Q_16_3*e6_3_bot 
Sigma2_3_bot = Q_12_3*e1_3_bot + Q_22_3*e2_3_bot + Q_26_3*e6_3_bot 
Sigma6_3_bot = Q_16_3*e1_3_bot + Q_26_3*e2_3_bot + Q_66_3*e6_3_bot 
Sigma4_3_bot =  + Q_44_3*e4_3_bot + Q_45_3*e5_3_bot 
Sigma5_3_bot =  + Q_45_3*e4_3_bot + Q_55_3*e5_3_bot 
 
INITIAL VALUES 
w=0 
u=0 
v=0 
F_x=0 
F_y=0 
P_x=0 
P_y=0 
L_x=0 
L_y=0 
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EQUATIONS 
       
w:    
A45*(dx(P_y)+dxy(w))+A55*(dx(P_x)+dxx(w))+2*B45*dx(F_y)+2*B55*dx(F_x)+3*D45
*dx(L_y)+3*D55*dx(L_x)+A44*(dy(P_y)+dyy(w))+A45*(dy(P_x)+dxy(w))+2*B44*dy(F
_y)+2*B45*dy(F_x)+3*D44*dy(L_y)+3*D45*dy(L_x)= -p    
 
u:     
A11*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))+B11*dxx(P_x)+B12*dxy(P_y)+B16*(dx
y(P_x)+dxx(P_y))+D11*dxx(F_x)+D12*dxy(F_y)+D16*(dxy(F_x)+dxx(F_y))+E11*dxx(
L_x)+E12*dxy(L_y)+E16*(dxy(L_x)+dxx(L_y))+A16*dxy(u)+A26*dyy(v)+A66*(dyy(u)
+dxy(v))+B16*dxy(P_x)+B26*dyy(P_y)+B66*(dyy(P_x)+dxy(P_y))+D16*dxy(F_x)+D26
*dyy(F_y)+D66*(dyy(F_x)+dxy(F_y))+E16*dxy(L_x)+E26*dyy(L_y)+E66*(dyy(L_x)+d
xy(L_y))=0 
 
v:     
A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v))+B16*dxx(P_x)+B26*dxy(P_y)+B66*(dy
x(P_x)+dxx(P_y))+D16*dxx(F_x)+D26*dxy(F_y)+D66*(dxy(F_x)+dxx(F_y))+E16*dxx(
L_x)+E26*dxy(L_y)+E66*(dxy(L_x)+dxx(L_y))+A12*dxy(u)+A22*dyy(v)+A26*(dyy(u)
+dxy(v))+B12*dxy(P_x)+B22*dyy(P_y)+B26*(dyy(P_x)+dxy(P_y))+D12*dxy(F_x)+D22
*dyy(F_y)+D26*(dyy(F_x)+dxy(F_y))+E12*dxy(L_x)+E22*dyy(L_y)+E26*(dyy(L_x)+d
xy(L_y))=0 
 
F_x:    
B11*dxx(u)+B12*dxy(v)+B16*(dxy(u)+dxx(v))+D11*dxx(P_x)+D12*dxy(P_y)+D16*(dx
y(P_x)+dxx(P_y))+E11*dxx(F_x)+E12*dxy(F_y)+E16*(dxy(F_x)+dxx(F_y))+F11*dxx(
L_x)+F12*dxy(L_y)+F16*(dxy(L_x)+dxx(L_y))+B16*dxy(u)+B26*dyy(v)+B66*(dyy(u)
+dxy(v))+D16*dxy(P_x)+D26*dyy(P_y)+D66*(dyy(P_x)+dxy(P_y))+E16*dxy(F_x)+E26
*dyy(F_y)+E66*(dyy(F_x)+dxy(F_y))+F16*dxy(L_x)+F26*dyy(L_y)+F66*(dyy(L_x)+d
xy(L_y))-
(A45*(P_y+dy(w))+A55*(P_x+dx(w))+2*B45*F_y+2*B55*F_x+3*D45*L_y+3*D55*L_x)-
(D45*(P_y+dy(w))+D55*(P_x+dx(w))+2*E45*F_y+2*E55*F_x+3*F45*L_y+3*F55*L_x)=0 
 
F_y:    
B16*dxx(u)+B26*dxy(v)+B66*(dxy(u)+dxx(v))+D16*dxx(P_x)+D26*dxy(P_y)+D66*(dx
y(P_x)+dxx(P_y))+E16*dxx(F_x)+E26*dxy(F_y)+E66*(dxy(F_x)+dxx(F_y))+F16*dxx(
L_x)+F26*dxy(L_y)+F66*(dxy(L_x)+dxx(L_y))+B12*dxy(u)+B22*dyy(v)+B26*(dyy(u)
+dxy(v))+D12*dxy(P_x)+D22*dyy(P_y)+D26*(dyy(P_x)+dxy(P_y))+E12*dxy(F_x)+E22
*dyy(F_y)+E26*(dyy(F_x)+dxy(F_y))+F12*dxy(L_x)+F22*dyy(L_y)+F26*(dyy(L_x)+d
xy(L_y))-
(A44*(P_y+dy(w))+A45*(P_x+dx(w))+2*B44*F_y+2*B45*F_x+3*D44*L_y+3*D45*L_x)-
(D44*(P_y+dy(w))+D45*(P_x+dx(w))+2*E44*F_y+2*E45*F_x+3*F44*L_y+3*F45*L_x)=0 
 
P_x:   
E11*dxx(u)+E12*dxy(v)+E16*(dxy(u)+dxx(v))+F11*dxx(P_x)+F12*dxy(P_y)+F16*(dx
y(P_x)+dxx(P_y))+G11*dxx(F_x)+G12*dxy(F_y)+G16*(dxy(F_x)+dxx(F_y))+H11*dxx(
L_x)+H12*dxy(L_y)+H16*(dxy(L_x)+dxx(L_y))+E16*dxy(u)+E26*dyy(v)+E66*(dyy(u)
+dxy(v))+F16*dxy(P_x)+F26*dyy(P_y)+F66*(dyy(P_x)+dxy(P_y))+G16*dxy(F_x)+G26
*dyy(F_y)+G66*(dyy(F_x)+dxy(F_y))+H16*dxy(L_x)+H26*dyy(L_y)+H66*(dyy(L_x)+d
xy(L_y))-
3*(D45*(P_y+dy(w))+D55*(P_x+dx(w))+2*E45*F_y+2*E55*F_x+3*F45*L_y+3*F55*L_x)
=0 
 
P_y:   
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E16*dxx(u)+E26*dxy(v)+E66*(dxy(u)+dxx(v))+F16*dxx(P_x)+F26*dxy(P_y)+F66*(dx
y(P_x)+dxx(P_y))+G16*dxx(F_x)+G26*dxy(F_y)+G66*(dxy(F_x)+dxx(F_y))+H16*dxx(
L_x)+H26*dxy(L_y)+H66*(dxy(L_x)+dxx(L_y))+E12*dxy(u)+E22*dyy(v)+E26*(dyy(u)
+dxy(v))+F12*dxy(P_x)+F22*dyy(P_y)+F26*(dyy(P_x)+dxy(P_y))+G12*dxy(F_x)+G22
*dyy(F_y)+G26*(dyy(F_x)+dxy(F_y))+H12*dxy(L_x)+H22*dyy(L_y)+H26*(dyy(L_x)+d
xy(L_y))-
3*(D44*(P_y+dy(w))+D45*(P_x+dx(w))+2*E44*F_y+2*E45*F_x+3*F44*L_y+3*F45*L_x)
=0 
 
L_x:   
D11*dxx(u)+D12*dxy(v)+D16*(dxy(u)+dxx(v))+E11*dxx(P_x)+E12*dxy(P_y)+E16*(dx
y(P_x)+dxx(P_y))+F11*dxx(F_x)+F12*dxy(F_y)+F16*(dxy(F_x)+dxx(F_y))+G11*dxx(
L_x)+G12*dxy(L_y)+G16*(dxy(L_x)+dxx(L_y))+D16*dxy(u)+D26*dyy(v)+D66*(dyy(u)
+dxy(v))+E16*dxy(P_x)+E26*dyy(P_y)+E66*(dyy(P_x)+dxy(P_y))+F16*dxy(F_x)+F26
*dyy(F_y)+F66*(dyy(F_x)+dxy(F_y))+G16*dxy(L_x)+G26*dyy(L_y)+G66*(dyy(L_x)+d
xy(L_y))-
2*(B45*(P_y+dy(w))+B55*(P_x+dx(w))+2*D45*F_y+2*D55*F_x+3*E45*L_y+3*E55*L_x)
=0 
 
L_y:   
D16*dxx(u)+D26*dxy(v)+D66*(dxy(u)+dxx(v))+E16*dxx(P_x)+E26*dxy(P_y)+E66*(dx
y(P_x)+dxx(P_y))+F16*dxx(F_x)+F26*dxy(F_y)+F66*(dxy(F_x)+dxx(F_y))+G16*dxx(
L_x)+G26*dxy(L_y)+G66*(dxy(L_x)+dxx(L_y))+D12*dxy(u)+D22*dyy(v)+D26*(dyy(u)
+dxy(v))+E12*dxy(P_x)+E22*dyy(P_y)+E26*(dyy(P_x)+dxy(P_y))+F12*dxy(F_x)+F22
*dyy(F_y)+F26*(dyy(F_x)+dxy(F_y))+G12*dxy(L_x)+G22*dyy(L_y)+G26*(dyy(L_x)+d
xy(L_y))-
2*(B44*(P_y+dy(w))+B45*(P_x+dx(w))+2*D44*F_y+2*D45*F_x+3*E44*L_y+3*E45*L_x) 
=0 
 
BOUNDARIES      
 region 1          
  start (0,0) 
        natural(v)=0 
        natural(w)=0 
        natural(P_x)=0 
        natural(P_y)=0 
        natural(L_x)=0 
        natural(L_y)=0 
        natural(u)=0 
        natural(F_x)=0 
        natural(F_y)=0 
line to (L1,0) 
        natural(v)=0 
        value(w)=0 
        natural(P_x)=0 
        natural(P_y)=0 
        natural(L_x)=0 
        natural(L_y)=0 
        natural(u)=0 
        natural(F_x)=0 
        natural(F_y)=0                            
line to (L1,L2) 
        natural(v)=0 
        natural(w)=0 
        natural(P_x)=0 
        natural(P_y)=0 
        natural(L_x)=0 
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        natural(L_y)=0 
        natural(u)=0 
        natural(F_x)=0 
        natural(F_y)=0 
line to (0,L2) 
        natural(v)=0 
        value(w)=0 
        natural(P_x)=0 
        natural(P_y)=0 
        natural(L_x)=0 
        natural(L_y)=0 
        natural(u)=0 
        natural(F_x)=0 
        natural(F_y)=0     
line to close     
        
PLOTS   
      contour(w)    { show deformed grid as solution progresses } 
       surface(w) 
        elevation(w) from (0,L2/2) to (L1,L2/2) 
        elevation(w) from (L1/2,0) to (L1/2,L2) 
 
END 
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