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Bending solutions for symmetrical and non
symmetrical generally orthotropic panels (CLT) 

Abstract 

This diploma thesis is focused on the development and verification of numerical models 
for the solution of bending of generally orthotropic plates based on the assumptions of 
CPT , F S D T , S S D T and T S D T theories. The thesis investigates the effect of material and 
axial asymmetry on the laminate stiffness parameters and mechanical response in the 
form of deflection and internal forces. A numerical non-stationary moisture diffusion 
model has been constructed to evaluate the effect of moisture on the wetting time of the 
C L T panel when exposed to rainwater. Subsequently, the effect of such moisture on the 
distribution of internal forces along the thickness of the panel was evaluated. The case of 
a moisture-loaded C L T panel, a panel without moisture loading and experiment 
measurements were compared. The results indicate a significant influence of material 
asymmetry of C L T ceiling panels caused by moisture loading of the panel lamellas in 
contact with pooled rainwater. 

Keywords: analytical method, numerical method, plate theories, cross-laminated timber 
(CLT) , layered composite material 



Řešení ohybu symetrických a nesymetrických obecně 
ortotropních desek (CLT) 

Abstrakt 

Tato diplomová práce se zabývá na sestavení a ověření numerických modelů pro řešení 
ohybu vrstvených obecně ortotropních desek na základě předpokladů teorií CPT, F S D T , 
SSDT a TSDT. Práce zkoumá v l iv materiálové a osové nesymetrie na parametry tuhosti 
laminátu a mechanickou odezvu v podobě průhybu a vnitřních sil. Pro zhodnocení vl ivu 
vlhkosti byl sestaven nestacionární model vlhkostní difúze, kterým byla zhodnocena doba 
navlhání C L T panelu při vystavení dešťové vodě. Následně byl zhodnocen v l iv takové 
vlhkosti na podobu průběhu vnitřních sil po tloušťce desky. B y l porovnán případ 
vlhkostně zatíženého C L T panelu a panelu bez vlhkostního zatížení. Výsledky ukazují na 
významný v l iv materiálové asymetrie stropních panelů C L T způsobené vlhkostním 
zatížením lamel panelů při kontaktu se shromážděnou dešťovou vodou. 

Klíčová slova: analytická metoda, numerická metoda, teorie desek, křížem lepené dřevo 
(CLT) , vrstvený kompozitní materiál. 
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1 Introduction 

The scale of timber construction and its structural technological forms in our climatic 
conditions still do not correspond to European and global trends. There are certainly more 
reasons for this dismal situation, but one of them is certainly the lack of knowledge and 
experience of architects and designers with the aforementioned material base. New 
possibilities of wood application in current construction are clearly linked to the 
development of innovative wood processing technologies that support the development 
of contemporary wood structures (Pavlas, 2016). Timber is a material offering an answer 
to the currently discussed issue of renewable resources and energy efficiency of building 
production. Life cycle assessment ( L C A ) of timber buildings shows significantly lower 
C 0 2 emissions than concrete buildings, after including stored biogenic carbon. The long-
term trend towards low-energy buildings, linked to the process of technological 
innovation and the arrangement of the monitored parameters in accordance with the 
principles of sustainability, may be one of the most important factors (Pavlas, 2016; 
Shaobo Liang et al., 2020). Multi-storey wooden buildings made of C L T panels could be 
the answer to the problem of energy efficiency of building production. For these 
buildings, fire resistance, rigidity and acoustics are crucial issues. In terms of production, 
there is already a product standard, but technical standards need to be developed to give 
designers a basis for designing structures at normal temperatures and under fire 
conditions. In the Czech Republic, there is a significant increase in the number of wood-
based building projects, as well as in multi-storey residential and office buildings. The 
Czech Republic can afford such an increase. Forests cover 34% of the entire territory and 
the wood reserves in these forests have been increasing for a long time. The very interest 
in wooden buildings can be seen in the example of family houses, where wooden 
buildings already account for 15% of the total. (CSU, 2018), (Kuklik, [online]). In order 
to use timber as one of the main construction materials, it is necessary to verify all the 
properties of building products made from solid timber, such as cross-laminated timber 
or C L T panels. One of the performance categories of buildings is durability, which in the 
case of timber can be strongly affected by prolonged exposure to moisture. Because wood 
is a hygroscopic material, it exchanges moisture with the surrounding environment. 

In the design of C T L made buildings, the stiffness and strength of the panels are adjusted 
by modification factors that take on values depending on the moisture content of the C L T 
panels in the structure. However, this modification of the material values is only done in 
relation to the relative humidity and situations where the material is exposed to moisture 
in the liquid state are not considered (With proper construction and maintenance of the 
building, such a situation w i l l not really occur and i f it does, it w i l l only occur for a short 
period of time). During the construction process, C L T ceiling panels in particular are 
more exposed to weather conditions, especially rain and snow. Rainwater can therefore 
remain on C L T panels for up to several weeks. C L T panel lamellas exposed to liquid 
moisture for long periods of time may swell and degrade, and their modulus of elasticity 
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and strength may decrease. A ceiling panel with such degraded surface lamellae does not 
behave as a specially orthotropic panel due to the shifting neutral mid-plane, and the 
essence of the special orthotropy for which the panel was designed is temporarily lost. A t 
the same time, stresses and strains may arise in the panel that are not considered in the 
final structural design. This can have a significant effect on the overall spatial stiffness of 
the structure or on the stiffness of connections that are not designed for such stresses. 

When investigating the possibility of designing such moisture-loaded floor slabs, no 
design tool was found that could be used to perform an analysis of strain and internal 
stresses. Design tools for timber structures such as Dlubal, A x i s V M or Stora Enso's C L T 
panel design tool Calculatis are based on the design and assessment of timber structures 
based on Eurocodes and for instance do not allow for the integration of swelling into the 
calculation. More complex and general finite element tools such as Abaqus or Ansys 
allow working with temperature and its effect on material properties, but do not work 
with the effect of moisture. In this regard, my work aims to develop a tool based on a 
numerical solution to analyse the effect of moisture on laminated panels (which can be 
C L T ceiling panels) in any configuration. 

11 



2 Objectives 

The aim of my thesis is to develop a numerical model which allows for the analysis of 
deflection, deformation and internal stresses of timber panels intended for load-bearing 
structural purposes (CLT) . The models are built on the basis of at least two selected shell 
elasticity plate theories. These theories are the most used for the analysis of isotropic sheet 
materials. One of the sub-objectives w i l l be to define these theories so that they are 
applicable to any generally orthotropic panels in the models. The numerical model must 
be defined in the following terms: 

• Displacement field 

• Stress field 

• Stress resultants 

• Governing equations 

Each of the models w i l l be modified for possible symmetric and non-symmetric plate 
types and compared with each other. The model results for the chosen type of symmetry 
or asymmetry w i l l be verified by experiment. 

Sub-objectives of the thesis: 
1. Development of a numerical model for deflection calculation according to the 

selected theories. 
2. Defining of relations for calculation of internal stresses according to the 

mathematical theory of elasticity, 
3. Experimental verification of numerical models 
4. Defining relationships for integrating moisture or thermal deformations into the 

numerical models, 
5. Defining possible compositions of symmetric and non-symmetric plates, 
6. Comparison and evaluation of the results provided by each numerical model and 

the difference between them, 
7. Proposed practical application of the results. 
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3 Elastic properties of wood 

Wood, like any other material, is made up of atoms and molecules that are randomly or 
lawfully arranged in a given space. The degree of homogeneity of the arrangement of 
atoms and molecules in the volume of wood and the orientation of especially covalent 
and hydrogen bonds determines the magnitude and orientation of mechanical properties 
at the microstructural and macrostructural level. The variation of mechanical properties 
in the volume of wood and their dependence on direction is called anisotropy of 
mechanical properties (Požgaj et al., 1997). Parallel to the fibers, i.e. in the direction of 
the trunk, the strength of the material is particularly high, while perpendicular to the fibers 
the strength properties are low (Horáček, 2010). 

Poisson's ratio 

Poisson's numbers are an important characteristic of the elasticity of wood and are mainly 
used for volume changes due to mechanical tension. When a solid is subjected to 
compression or tension, the solid is elongated or shortened and deformed perpendicular 
to the direction of the tensile/compressive force. Such deformations are called transverse 
deformations. Poisson numbers express the ratio of transverse deformation to longitudinal 
deformation. We assign a positive sign to tensile deformations and a negative sign to 
compressive deformations (Pozgaj et al, 1997). According to Nettles (1994) Poisson 
number pL2\ can be derived as: 

^ 2 1 = 7 ^ 1 2 (1) 

Modulus of elasticity 

The modulus of elasticity expresses the internal resistance of the material to elastic 
deformation. The greater the modulus of elasticity, the greater the stress required to 
induce deformation. O f the basic ones, we distinguish between the elastic moduli E for 
normal stresses such as tension, compression and bending and the elastic moduli G for 
tangential stresses such as torsion or shear. According to Horáček (2010) the relationship 
for calculating the modulus of elasticity under normal stresses is. 

do 
E = — (2) 

as 
where o is the normal stress and e is the normal strain. The relationship for calculating 
the shear modulus is. 

dz 
G = T Y

 ( 3 ) 

Where T is the shear stress and y is the shear strain (Horáček, 2010). 
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Mechanical stress is a defined as a process in which mechanical forces or other stress 
factors interact with the wood. This process results in temporary or permanent changes in 
the shape of the wood. The response of wood to mechanical stresses depends not only on 
the bonds of the chemical components of the wood and their interconnection (cellulose, 
lignin, hemicellulose), but often to a decisive extent on the geometry of the body itself. 
Therefore, each mechanical property of wood must be considered in terms of the 
geometry of the test body itself, inhomogeneity, structure, and chemical composition, as 
well as the resulting anisotropy of properties. The basic types of mechanical stresses are 
distinguished according to the type of stress that occurs in the body as a result of an 
external force. The stress in wood represents the intensity of the internal forces that occur 
in the body in response to external mechanical forces. These forces acting on the body 
can be oriented in different directions in space and can act on up to six mutually 
perpendicular planes. A n example of mechanical stress is axial tension, which acts in only 
one plane of the body (Pozgaj et. al., 1997). The stress a is defined as the magnitude of 
the internal force, which is related per unit area of the body according to the relation. 

' = 5 ( 4 ) 

where F is the external force, S is the area of the body. 

Compression, tension and shear 

If the force pulls the cross-section and the internal forces act perpendicularly to it, we 
refer to tensile stress. Stress and strain is expressed positively. If an external force is 
pushing on the cross-section, compressive stresses are generated. Stress and strain is 
expressed negatively. In the first case the wood fibers are stretched and in the second case 
compressed. When the tensile strength is reached, the wood fibers break and are 
compressed. In tension and compression, the forces act perpendicular to the cross-section. 
If the resultant of external forces mutually displace fibers in their planes, tangential 
stresses are generated. The cross-section shifts. The wood ruptures on shear (Pozgaj et 
al, 1997). 
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4 Moisture properties of wood 

4.1 Wood moisture content 

The presence of water in wood is called the moisture content of the wood. It is expressed 
as the ratio of the weight of water to the weight of the wood in its dry state - absolute 
moisture content wabs, or as the ratio of the weight of water to the weight of wet wood -
relative moisture content wret. The absolute moisture content of wood is used to 
characterize the physical and mechanical properties of wood. Relative moisture content 
is used where it is necessary to know the percentage of water in the total wet weight of 
the timber, e.g., when selling or buying timber (Horáček, 2008). According to Horáček 
(2008), three different threshold values can be distinguished depending on the water 
content of the wood in relation to the dry weight of the wood: 

• Moisture content of dry wood - the steady-state ratio of the weight of water to 
the weight of dry matter when the wood is dried at 103+-2 °C, i.e., there is no 
bound or free water in the wood. This moisture content is expressed in absolute 
dry wood (w0 = 0%). 

• Moisture at cell wall saturation - the microcapillary system in the cell wall is 
filled with water. This moisture is expressed between the cell wall saturation Ce l l 
wall saturation limit or hygroscopicity limit (Cell wall saturation limit = 
Hygroscopicity limit = 22-35%). 

• Moisture saturation of the wood - the micro and macro-capillary system is fully 
saturated with water; the wood contains the maximum amount of water. This 
moisture content is expressed by the maximum moisture content of the wood 

(Wmax = 80 - 400%). 

4.2 Equilibrium wood moisture content 

Wood is a hygroscopic material that has the ability to change its moisture content 
according to the humidity of the surrounding environment through adsorption. Wood is 
also a capillary-porous material. The average porosity of wood, depending on its density, 
is around 50-60%. Adsorption of wood is then understood as the binding of a gaseous or 
liquid substance on the specific internal surface of the wood. The specific internal surface 
of wood is formed by the fibrillar structure of the submicroscopic cell wall . The 
consequence of the considerable porosity is a large internal surface, which, depending on 
the density of the wood, is around 100-300 m 2 . g - 1 dry weight or 20-300 m.cm" 3 for dry 
wood. L ike most porous substances, this substantial internal surface can adsorb water 
vapour contained in the surrounding air and, thanks to capillary transport processes, can 
take up liquids (e.g., water, impregnating agents, adhesives) with which it is in direct 
contact. The internal surface of the wood is determined from the idea that the water in the 
wood is evenly distributed over the entire internal surface of the wood when the sorption 
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sites are hypothetically filled. According to the nature of the forces that cause adsorption, 
we divide adsorption into physical and chemical. In both cases, thermodynamic 
equilibrium must hold in the wood-adsorbent system. The amount of adsorbed substance 
in wood depends on its chemical and physical properties (molecular weight and volume, 
surface tension) and on environmental factors (pressure, temperature, relative humidity, 
air velocity). The dependence of the amount of adsorbed substance on environmental 
factors is expressed by adsorption isotherms. These are mathematical expressions of 
sorption theories that attempt to explain adsorption in terms of its physical or chemical 
nature. The moisture content of wood that w i l l stabilize under given environmental 
conditions (relative humidity and temperature) is called the equilibrium moisture content 
of wood, equilibrium moisture content. The state that is reached is then called the 
equilibrium moisture content. With each change in relative humidity and air temperature, 
the equilibrium moisture content of the wood changes. If the moisture content of the wood 
is lower than the State of moisture balance, the wood takes up (adsorption) water in the 
form of water vapour from the surrounding air until it reaches the State of moisture 
balance. If the moisture content of the wood is higher than the State of moisture balance, 
the opposite process occurs, and the wood loses water (desorption). This process of wood 
moisture content change as a function of relative humidity and ambient temperature is 
reversible, but not along the same curve. For the same relative humidity and air 
temperature, the wood moisture content is higher in desorption than in adsorption, by 2.5 
to 3.5 % over a range of relative humidity (p= 30-90 %. The dependence of Equilibrium 
wood moisture content on relative humidity at constant temperature is called the sorption 
isotherm (Horáček, 2008). 
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Figure 1 - Sorption isotherm at different temperatures (Horáček, 2008) 

4.3 Dimensional changes due to changes in moisture content 

If the moisture content of the wood changes within the range of bound water, the wood 
undergoes dimensional changes - dimensional hygroexpansion. A reduction in the 
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moisture content of wet wood to between hygroscopicity (evaporation of free water) has 
no significant effect on the dimensional change. The shrinking and swelling is localized 
in the cell wall , where the fibrillar structure moves away or closer. This changes the 
dimensions of the individual elements and the wood as a whole. The orientation of the 
fibrils in the cell wall has a major influence on the amount of shrinkage and swelling. The 
longitudinal shrinkage and swelling caused by the inclination of the fibrils is insignificant. 
The small dimensional changes in the longitudinal direction are explained by the fact that 
molecules cannot arise between fibrils to form a valence chain in the longitudinal 
junction, so there is no spacing in this direction. Hygroexpansion of dimensions can be 
described as a reversible process that follows the same trajectory. The different values of 
swelling and shrinkage result only from the definition and mathematical expression of the 
process, not from the nature of the process itself. Desiccation and swelling are processes 
in which the linear, planar or volumetric dimensions of a solid change as a result of a 
change in moisture content. They are defined as the ratio of the relevant dimensional 
change to the original value of the dimension (Horáček, 2008). 

4.4 Swelling 

Swelling a refers to the ability of wood to increase its dimensions by taking up bound 
water in the moisture content range of 0% - Hygroscopicity limit (Cell wall saturation 
limit). We distinguish between linear swelling (in each anatomical direction -
longitudinal, radial, and tangential), surface swelling (change in solid surface area) and 
volumetric swelling (change in solid volume). The swelling of wood from the absolute 
dry state to the hygroscopic limit is called total swelling (maximum). Swelling of wood 
in any smaller interval is called partial swelling. Swelling is expressed as a percentage of 
the change in dimension to the original value and is most often given in %. For practical 
purposes, it is useful to know the percentage change in dimensions, area or volume i f the 
humidity changes by 1%. The calculation and use of the swelling coefficient assumes that 
changes in the dimensions of solids below the hygroscopicity limit are linearly 
proportional to changes in moisture content. This assumption is not entirely accurate, but 
its use is sufficient for practical purposes. Swelling also has an anisotropic character. 
Along the fibers the swelling is very small and does not exceed 1%. The average value of 
total longitudinal swelling for our species is 0.1-0.4%. In the transverse direction the 
wood swells much more, 3-6 % in the radial direction and 6-12 % in the tangential 
direction. Swelling in each anatomical direction is often expressed by the ratio 
a_t:a_r:a_l=20:10:l (Horáček, 2008). 

4.5 Moisture stress 

During drying - evaporation of water from the wood - internal stresses are created in the 
wood during uneven drying, which consist of two components - moisture and residual 
stress. Moisture stresses are due to the existence of a moisture gradient. The 
hygroexpansion of wood is considered to be continuous and the resulting deformations 
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are directly proportional to the stresses due to Hooke's law. Moisture stresses and 
deformations are considered elastic, having a temporary character and disappearing after 
moisture equilibration (Horáček, 2008). 

A change in moisture content is always associated with significant swelling or shrinking 
of the wood. Moisture deformation is therefore only dependent on the change in moisture 
inside the wood. This deformation can be defined as follows (Kollmann and Coté, 1968). 

a = [at ar at o 0 0] T (5) 

Where at, ar, at - material swelling coefficients in individual directions (Ormarsson, 
1998). 

4.6 Effect of moisture on the mechanical properties of wood 

The laws of the influence of bound water on mechanical properties are investigated in 
terms of the use of wood for structural purposes and also in terms of technological 
processes in the manufacture of wood products. Structural timber can reach an 
equilibrium moisture content in the range of 9-22% under our conditions. When the 
moisture content changes by 1% in the water-bound range, the strength of the wood 
changes by an average of 3-4%. This already shows that moisture has a great influence 
on the strength of wood. The change in wood strength has a non-linear pattern depending 
on the change in water content. If we take into account that a change in moisture content 
of 1% in the range of bound water causes a change in wood strength of 2.5% to 3.5%, the 
total decrease wi l l be 30 to 70%. The elastic modulus of wood changes linearly due to 
bound water. A 1 % change in moisture content within the range of bound water causes a 
change in the modulus of elasticity E of 1.5 to 2%. This means that the modulus of 
elasticity E drops by 35 to 50% when the moisture content changes from, for example, 
8% to cell wall saturation limit. The shear elastic moduli of wood (GLR, GLT, GRT) in the 
water-bonded range are closely related to moisture content. A 1% change in moisture 
content represents a 1.5 to 2% change in shear modulus (Požgaj et ah, 1977). 
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Figure 2 - Effect of moisture on wood strength in some wood species, Crushing strength = 
bending strenght (Kollman, 1968) 
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Conversion of the wood strength determined at any moisture content in the interval 5-
25% to the property at 12% moisture content is carried out according to the following 
relation: 

0i2 = Ow ( l + a(w - 12)) (6) 

where w - wood moisture content (%), aw - wood strength (MPa), a - correction factor 
(Horáček, 2008) 

Table 1 - Correction coefficients expressing the effect of moisture on a given property (Horáček, 2010) 
Method of loading Correction coefficients a 
Compression in the direction of the fibers 0,04 
Compression perpendicular to fibers 0,035 
Tension in the direction of the fibers 0,01 
Tension perpendicular to fibers (R) 0,01 
Tension perpendicular to fibers (T) 0,025 
Static bending 0,04 
Shear in fiber direction 0,04 
Modulus of elasticity 0,01-0,02 

4.7 Water movement in wood 

Fluids (liquids and gases) move through wood in two basic ways - volume flow and 
molecular flow. Volumetric flow takes place in meso- and macrocapillaries under the 
influence of a static or capillary pressure gradient. Molecular flow involves the movement 
of gases in the cell lumen across cell wall thinning and the movement of water bound in 
the cell wall microcapillaries. The magnitude of volume flow through wood is determined 
by its permeability. The application of molecular flux is the drying of the wood and the 
movement of the moisture field through the wood element to reach equilibrium moisture 
content. The molecular flow of substances is described by diffusion. 

4.7.1 Mechanism of water movement in the cell wall 

The explanation of the mechanism of movement of water bound in the cell wall is based 
on the theory of sorption and the actual mechanism w i l l be further used to describe the 
diffusion of fluids in wood. The sorption theory assumes that: 

• Water molecules are absorbed at sorption sites (hydroxyl groups) or due to the 
polar nature of water in their proximity by chemical bonds through hydrogen 
bridges and Van der Waals forces, 

• Polymolecular sorption assumes the ability of an isolated sorption site to attract 
1-5 water molecules depending on the equilibrium moisture content of the wood, 

• The range between monomolecular and polymolecular sorption is around 6-8% 
moisture content. 
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Figure 3 - Hypothetical model of the effect of moisture in the cell wall on the thermodynamics of bound water 
- a non-uniform moisture distribution, b uniform moisture distribution - Hv enthalpy of water vapour, Ha enthalpy 
of activated bound water, Hs enthalpy of bound water, delta Hs differential heat of sorption, delta Hv evaporative 

heat of water, Es activation energy of bound water (Siau 1995) 

Assume that we know the number of sorption sites in a given mass or volume unit of 
wood and the number of water molecules (number of water layers) bound per sorption 
site at a given moisture content of the wood. In reality, we only have some idea of the 
magnitude of the binding energy of water in wood from the thermodynamics of sorption 
(e.g., differential heat of sorption, heat of wetting). Let us assume, then, that there is a 
moisture gradient in wood, i.e., that different numbers of water molecules are bound at 
different sorption sites, as shown in Figure 3. The different sorption sites are then 
separated according to the theory of isolated sorption sites via potential pits. We know 
from thermodynamics that water in different states has different enthalpies. The potential 
pit is then an energy barrier between two adjacent sorption sites that must be overcome i f 
the water molecule is to move in the direction of the moisture gradient. The size of the 
potential pit varies with humidity and is already constant above hygroscopicity limit. The 
size of the potential pit is expressed in terms of the activation energy E a , which determines 
the necessary magnitude of energy supplied to the water molecule to overcome the energy 
barrier and move into the adjacent potential pit. The activation energy depends on the 
moisture content of the wood (Horáček, 2008). 

4.7.2 Diffusion of water and gases in wood 

Diffusion characterizes the movement of bound water in wood. If there is an 
uneven distribution of moisture in the wood, water movement - diffusion - is induced to 
compensate for these differences. Diffusion refers to the molecular flux caused by a non
zero concentration gradient where a substance tries to find an equilibrium concentration. 
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No external static pressure is required for this movement, but only the concentration 
gradient is the driving force. The concentration gradient can be thought of as a non-
uniformly distributed moisture in the wood, but also as a non-uniformly distributed 
temperature field or chemical potential of water. Let us consider only the movement of 
water bound across the fibers, e.g. in the radial direction. Water can then move in different 
states through the wood in three ways - (1) across the tangential cell wall as liquid g i , (2) 
across the lumen in the radial direction as water vapor gi, and (3) across the radial cell 
wall as liquid g3. In the tangential direction, the movement of water can be described by 
analogy to the radial flow. The conductivity of path (3) is negligible due to the need to 
travel large distances and the considerable activation energy of the bound water, and the 
general transverse diffusion model is based only on the conductive paths (1) and (2) 

1 1 1 
— = - + — (7) 
9t 9i 92 

where gT is the conductivity of water bound in the transverse direction, g i is the 
conductivity of water through the cell wall , g2 is the conductivity of water vapour through 
the lumen and g i ~ K w i (the moisture conductivity coefficient kg.m^.s" 1). From the 
perspective of water in wood, it is necessary to consider wet wood as a continuum - an 
environment with continuously changing properties. A l l parameters of such an 
environment are then continuous functions of spatial coordinates and time. According to 
its nature, diffusion is divided into isothermal and non-isothermal, stationary and non-
stationary (Horáček, 2008). The general physical notation of water diffusion in wood is: 

/ = -DVc (8) 

where / - flux density (kg.m" 2.s _ 1), D - coefficient of diffusion (m 2.s _ 1) a c - water 
concentration in wood (kg.m"3). 

4.7.2.1 Stationary diffusion 

Under stationary (steady) conditions, i.e. i f the diffusion is constant in time and varies 
only with distance, the process can be described according to Fick's law I: 

m Ac 
— = D— (9) 
tS Ax 

where D - coefficient of diffusion (m 2.s _ 1), m - weight of the diffused liquid (kg), t - time 
(s), S - diffusion area (m 2), Ax distance of different concentrations (m) a Ac difference in 
concentration (kg.m"3) (Dushman, 1962). 

4.7.2.2 Non-stationary diffusion 

In non-stationary diffusion, the fluid flow and its concentration are variables in time and 
space, unlike in stationary diffusion, where both variables are considered constant. 
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Nonstationary fluid flow occurs during heating, impingement, or drying of wood; 
therefore, diffusion of water in wood is often described as a nonstationary process, which 
is derived from a stationary relationship of derivatives by time and distance with a 
simplification to a 1-dimensional Cartesian coordinate system. According to Horáček 
(2008): 

dm fdw\ 

i = « - s ( i ( 1 0 ) 

B y applying 1. Law of Thermodynamics 

Ě1-Ě2=Ě3 (11) 

where Ex - energy flow into the system, Ě2 - energy flow from the system and Ě3 -
energy balance in the system. The equation can be written as: 

/dm\ /dw\ 
1 \dt/in

 w \dx/x 

g /dm\ ^ /dw\ 

V dt Jout \dx/x+hx 

fdm\ fdw\ 

Substituting (12) - (14) into equation (11) and rearranging, we get: 

dw Kw d2w 

î T"W^ ^^^^ 
(15) 

Substituting relation into equation (15) gives an equation for the approximate 
determination of the average diffusion coefficient of water in wood, which is assumed to 
be constant: 

dw _d2w ,,,, 
— = D—r (16) 
dt dxz 

A more accurate solution can be obtained by differentiating the coefficient D by the 
moisture content of the wood and equation (16) in the form: 

— = jL(D—\ (17) 
dt dx\ dxJ 

The partial differential equations (16) and (17) are called II. Fick's law, and by solving 
them partially we obtain the distribution of moisture (or concentration, osmotic pressure, 
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free energy of bound water) as a function of position and time, i.e. w=f(x,t). The general 
form of Fick's law II in the Cartesian coordinate system has the form: 

dw d I dw\ d I dw\ d I dw\ 

dt dx\xdx) dy\ydy) d z \ z d z ) 

When solving these equations, it is necessary to know the boundary conditions for the 
equilibrium moisture content on the surface of the solid, the moisture distribution at the 
initial moment and the target moisture content of the wood (Siau, 1995). 
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5 Thermal properties of wood 

The thermal properties of wood are most often of interest to us when solving practical 
problems related to drying wood and using the thermal insulation properties of wood. For 
example, we are interested in how much heat must be supplied to a wood-water system 
to warm it to the desired temperature, and what is the temperature at a given point in the 
body and at a given time. We are less concerned with questions of changes in the 
dimensions of the solid associated with temperature change (Horáček, 2008). 

5.1 Thermal expansion 

Increasing the temperature of a body causes the energy of its molecules to increase, and 
ultimately the size of the body to increase. Thermal expansion is characterized by the 
coefficient of thermal expansion at, which is defined, similarly to the coefficient of 
swelling and slumping, by the ratio of the change in dimension and the dimension of the 
soil body with a linear dependence on temperature: 

It In 
a '= l^F < 1 9 ) 

where at - coefficient of thermal expansion in i-direction (mm" 1 !" 1 ) , Z0 - initial 
dimension (m) and lT - dimension after temperature change AT (K). 

The coefficient of thermal expansion at, expresses the change in the unit length of wood 
when heated by I K . Due to the anisotropy of the wood, the ratios of at in each direction 
are similar to those of swelling or shrinking, aT: aR: aL = 15 :10 :1 , but the values are 
about 4 orders smaller. Given these low values of the thermal expansion coefficient at, 
we can neglect the thermal dimensional changes in wood compared to moisture content. 
The linear dimension of the body when the temperature changes by A T can be calculated 
according to E q (Horáček, 2008): 

lT = l0 + at AT = Iq(1 + at AT) (20) 

5.1.1 Effect of temperature on the mechanical properties of wood 

Wood is subjected to the effects of temperature in different time modifications during 
different technological processes. Taking into account these heat treatments, it is 
desirable to investigate the changes in the structure of wood in order to influence its 
further use. In addition to temperature, the effect of moisture content must also be taken 
into account in the process of converting wood into a product. The interaction of 
temperature and moisture content of the wood has a more pronounced effect on the 
change in mechanical properties due to the individual action of these factors. The 
torsional modulus G is sensitive to temperature change. A significant decrease in elastic 
modulus due to temperature is generally described by physical and chemical changes in 
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lignin, hemicelluloses or amorphous cellulose. Similar results were found when the effect 
of temperature on the elastic moduli of wood E was also observed. The relationship 
between temperature and tensile modulus E is linear. When observing the effect of 
temperature on the shear strength of wood, there is a more pronounced decrease in 
strength observed at moisture contents around cell wall saturation limit than in the dry 
state. Even at this strength, moisture-temperature interactions are more pronounced. The 
relationship between temperature and strength in the humidity range from 20 to 100°C is 
linear. If the moisture content is greater than cell wall saturation limit, the modulus of 
elasticity no longer changes. The dependence of the elastic modulus on moisture content 
and temperature can be expressed according to the following relationships (Pozgaj et al, 
1997): 

= £zo(l + EiT(T0 --T))+Elw(wf- wa) (21) 

Er = Er0(l + ErT(T0 -- T)) + Erw(wf - wa) (22) 

Et 
= EtQ{\ + EtT(T0 -~ T)) + Etw(wf - Wa) (23) 

Glr • = Giro(l + GirT(T0 ~ T)) + Glrw(wf -Wa) (24) 

Git = G;to(l + GitriTo ~ T)) + Gltw(wf • (25) 

Grt : = G r t o ( l + GrtT(T0 
~ T)) + Grtw(wf -Wa) (26) 

where: 

wa = w if w <Wf (27) 

wa = wf if w > wf (28) 

El0.Er0,Et0,Gir0,Gm,Grt:0 - modulus of elasticity at 20°C (MPa; %); 
Elw,Erw.Etw.Girw,Gltw.Grtw - coefficients describing the effect of humidity and 
temperature (MPa) (Ormarsson, 1998). 
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Figure 4 - Average values of the modulus of elasticity with changes in moisture content and temperature 
(Sulzberger, 1953) 

It is therefore obvious that temperature also has an obvious effect on the mechanical 
properties, namely that the strength of the wood and its elasticity decrease with 
temperature. The smallest effect of temperature can be observed in tension parallel to the 
grain. On the other hand, mechanical properties perpendicular to the grain are more 
sensitive to temperature changes than in the direction of the grain. This can be explained 
by the fact that covalent bonds are less involved in the strength of wood than hydrogen 
bonds when stressed perpendicular to the fibers (Pozgaj et al, 1997). 
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6 Mechanics of plates and fiber-composite materials 

Wood is a natural anisotropic material consisting of fibers of individual cells. Due to its 
fibrous structure, it is considered an orthotropic material in terms of mechanical behavior. 
Such materials lie between isotropic and anisotropic materials, where the degree of 
isotropy depends on the number and orientation of the planes of symmetry. 

The variation in these materials can be observed most clearly in their response to 
different types of loads such as tensile and shear. When a rectangular material sample 
made of isotropic, anisotropic, and orthotropic materials is subjected to uniaxial tensile 
loading, the response w i l l differ among them. The isotropic material sample under 
uniaxial tensile loading wi l l stretch in the loading direction and compress in the transverse 
direction (as shown in the Figure 5), while the angles between the sides of the rectangle 
remain unchanged. However, under pure shear, the angles between the sides w i l l change 
but there w i l l be no elongation or compression. The deformations of an isotropic material 
are thus "direction-independent," meaning that normal deformations are determined by 
normal stresses and are not affected by shear stresses, while shear deformations are 
determined by shear stresses and are not affected by normal stresses. For anisotropic 
materials, we can observe a correlation between the normal load components and shear 
deformations and vice versa. When subjected to normal loads, the material wi l l 
experience both shortening and a change in the angle of the sides. In addition to shear 
deformation, the material w i l l elongate and shorten when subjected to pure shear 
(Agarwal, 2015). 

Uniaxial tension Pure shear 
> 

Figure 5 - Uniaxial tension, pure shear (Agarwal, 2015) 
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6.1 Hooke's law for anisotropic and orthotropic materials 

Normal stress is a measure of force per unit area applied perpendicular to the surface. The 
corresponding displacement is defined as the elongation (or shortening) per unit length 
of material in the direction of loading. In isotropic materials, the relationship between 
stress and strain is direction-independent, requiring only one elastic constant to describe 
the elastic behavior of the material under uniaxial loading. However, in anisotropic 
materials, at least two elastic constants are required to describe the elastic behavior due 
to the dependence of stress and strain on the direction of the applied force (Nettles, 1994). 
When an isotropic material is subjected to normal stress a in a particular direction, only 
the dimensions change, but not the shape. As a result, e = 0 and 7 = 0. However, in the 
case of shear stress, only the shape changes, not the dimensions, so e = 0 and y 0. On 
the other hand, when an anisotropic material is subjected to normal stress a in a particular 
direction, there is a change in both the dimensions and the shape, resulting in e 0 and 
y 0. The same is true when an anisotropic material is subjected to shear stress T (Vrbka, 
2008). 
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Figure 6 - Mechanical behavior of isotropic and anisotropic material (Vrbka, 2008) 

The schematic shown Figure 6 illustrates a solid isotropic material. The material's 
strength is characterized by a single value, the modulus E , which is independent of the 
direction of the load. In contrast, the stiffness of an orthotropic (or anisotropic) material 
requires at least two material constants to describe its properties - one for the fibers' 
direction and another for the direction perpendicular to the fibers. Typically, these are EL 
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(the elastic modulus of the material in the direction of the fibers) and ET (the elastic 
modulus of the material perpendicular to the fibers) (Vrbka, 2008). 

For ease of notation and definition, the subscripts 1 and 2 can be used, where E\ represents 
the elastic modulus in the direction of the fibers (or equivalent) and Ei represents the 
elastic modulus perpendicular to the fibers (or equivalent). Subscripts can also be used to 
indicate stresses, strains, and other elastic moduli. In contrast, for orthotropic materials, 
the directions or orientations must be explicitly specified. If external stresses are applied 
perpendicular or transverse to the fibers of a material, it is considered to be orthotropic in 
a specific way (Nettles, 1994). 

Isotropic Plate 

1 

i 

Orthotropic Plate 

Reinforcing fibers 
aligned in 1-direction 

stiffness in 1-direction = 
= stiffness in 2-direction = 
= stiffness in any direction 

stiffness in 1-direction >> stiffness in 
2-direction + stiffness in any direction 

Figure 7 - Difference between isotropic and orthotropic material (Nettles, 1994) 

6.1.1 General anisotropic material 

It is the most general material model. Hooke's law can be according to Vrbka (2008) 
written in the following tensor form. 

dij — Cjy f c (£ f c ; i,j,k,l — 1,2,3 

possibly in a narrowed form, which we w i l l use hereafter. 

0-j = CijEj 

(29) 

(30) 

For reasons of formal simplicity, Einstein's summation symbolism was used to sum over 
all indices i , j , k, 1 and I, j , respectively. The relation above can be expressed as a matrix. 
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The shear stresses and slope were included in the previous matrix relationship as part of 
the assignment to provide a clear physical interpretation. 

°4 — T 23 > ° 5 — T31 > a6 — T12 (32) 

£4 = 723 ; £5 = 731 ; = 712 (33) 

In simplified matrix form, we express the relationship in symbolic form. 

a = Cs 

In expanded matrix form for plane 12 (xy): 

^66 

For the case of transverse stresses x y z and x x z in expanded matrix form: 

(34) 

ax ~c1± Q2 
Oy = C12 £22 

lQ6 Q6 

- sx 

Ey 

Yxy. 
(35) 

ITXZJ 
44 u45 

Q s Q s [/yz] (36) 

where [cr] is the stress tensor, C is the stiffness matrix, or the matrix of stiffness material 
constants, and [e] is the deformation vector. The matrix of stiffness material constants C 
is therefore a symmetric matrix, which contains a total of 21 independent material 
constants in the case of a general anisotropic material (Vrbka, 2008). According to Nettles 
(1994) some of the matrix's C, can be defined by known material constants: 

Q i • 11 
( l -M12M21) 

Q2 — 
'22 

Q 6 = G 12 Q4 — G 23 Q s = G 

(1 - M12M21) 

13 ; Q2 = Q1M21 

(37) 

(38) 

In some cases, Hooke's law is used in inverse form, which expresses the elements of the 
transformation vector £ as a linear combination of the elements of the stress vector a. The 
corresponding relations are obtained by multiplying Hooke's law in its basic form by the 
internal stiffness matrix [C]- l from the left, i.e. (Vrbka, 2008). 
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C - la = C - ICe (39) 

The inverse of the stiffness matrix [C]" 1 is called the material yield matrix with the 
designation [S], written mathematically (Vrbka, 2008). 

[S] = [C]-1 (40) 

After proper mathematical modifications, we obtain the relation for determining the 
deformations, i.e. 

" E l " 1̂2 $13 s14 $15 $16 -a1-

^2 2̂2 $23 ^24 S2s °2 
£6 S31 ^32 ^33 ^34 S3s S36 <*3 

723 S 4 1 $42 ^43 S44 S45 ^46 
T23 

731 S51 S52 S53 ^54 Sss T 3 1 
7l2 -^61 s62 S63 ^64 S6s s66i -Tl2-

(41) 

The material yield matrix [S] is, like the material stiffness matrix C, a symmetric matrix, 
where the following holds 

Sij = Sji (42) 

6.1.2 Generally orthotropic material 

In general, an orthotropic material must satisfy the condition where the load is oriented 
at an angle to the material other than 0° or 90°. The body is considered generally 
orthotropic, also because the load is not considered in the anatomical directions of the 
material (Nettles, 1994). 

Figure 8 - Main orthotropic coordinate system (Nettles, 1994) 

Stresses and strains in orthotropic material must be transformed into coordinates 
corresponding to the orientation of the fibers in the body, i.e., into anatomical directions. 
The orientations are illustrated in Figure 9 for the case where the forces act in the 1-
direction (Nettles, 1994): 
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Figure 9 - Generally orthotopic body (Nettles, 1994) 

We derive Hooke's law of general orthotropic material in the main orthotropic coordinate 
system from Hooke's law of general anisotropic material considering the characteristics 
of orthotropic axes (Ventsel, 2001): 

01 "C X 1 1̂2 ^13 0 0 0 £1 -

02 2̂1 £22 ^ 2 3 0 0 0 £2 
0 3 Q l £32 Q3 0 0 0 £3 

T23 0 0 0 C44 0 0 723 
*31 0 0 0 0 CSS 0 731 
-Tl2- 0 0 0 0 0 ^66- 7l2-

Taking symmetry into account, a general orthotropic material's stiffness matrix [C] 
comprises 9 independent material constants. Hooke's law for a general orthotropic 
material can be obtained by modifying Hooke's law in inverse form in a similar manner 
as for a general anisotropic material. 

£1 - Slt 1̂2 ^13 0 0 0 • 01-
£2 S21 2̂2 ^23 0 0 0 02 
£3 S31 3̂ 2 3̂3 0 0 0 0 3 

723 0 0 0 S44 0 0 T 2 3 

731 0 0 0 0 Sss 0 T31 
7l2 . 0 0 0 0 0 s 6 6J -T12-

(44) 
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Applying the superposition principle for loading stresses in the main orthotropic 
directions 1, 2 and 3, we obtain relations for the relative strains and slope. The procedure 
is similar to that for isotropic material. 

Figure 10- Loading of an element of a general orthotropic material in the main orthotropic direction 

For relative deformations and slope in the main orthotropic directions we get 

° i ° 2 ° 3 
£i = T r - ^ 2 i T r - ^ 3 i T T (45) 

fil fi2 fi3 
° i ° 2 ° 3 

2̂ = -Ml2 TT + TT - M32 TT (46) 

° i ° 2 ° 3 
3̂ = - l " l3 — - i"23 TT + TT (47) 

C-L C 2

 fi3 

T23 T31 T12 
723 = 7— ; 73i = 7— ; 7i2 = 7 - (48) 

"23 "31 "12 

The main orthotropic directions are indicated by the subscripts of the stress components, 
while the direction of the respective stress is denoted by the first subscript of the Poisson 
numbers and the direction of contraction is indicated by the second subscript. Previous 
equation written in matrix form. 
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£2 
£3 

Y23 
731 
Y12 

1 M21 J"31 

E3 

M12 1 M32 
~ Ei £3 

l"l3 J"23 1 

^2 £3" 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

1 

^2 3 

0 

0 

0 

1 

G 3 1 

0 

0 

0 

1 

631 

• O i -

^2 

<?3 
T 23 

T31 

(49) 

Written in contracted form. 
[e] = [S][a] (50) 

There are a total of 12 material parameters contained within the S yield matrix. The 
material parameters are very significantly related through the symmetry condition of the 
material compliance matrix S. 

M21 _ /*12 
E2 ~ 2 

1*31 _ /*13 

E3 ~ E3 

^32 _ ^23 

E3 ~ E3 

(51) 

Therefore, according to material properties described in Vrbka (2008), a general 
orthotropic material is characterized by 9 independent parameters, namely E\, £2, £3, pin, 

M23, £f3i, G12, G23, and G32, as well as three Poisson's ratios: pin, p.32, and pin. 

6.1.3 Planar orthotropic material 

For a planar orthotropic material where the principal orthotropic axes are the coordinate 
axes 1 and 2, the matrix relation for a general orthotropic material gives rise to the 
following basic form of Hooke's law Vrbka (2008). 

01 ~c1± C12 
°2 = C21 C22 

Tl2. . 0 0 

0 
0 

^66 

-81-

£2 
Y12-

(52) 

As a result, a planar orthotropic material is characterized by four independent material 
constants within its stiffness matrix [C]. According to the previous relations, the inverse 
expression of Hooke's law can be given as follows: 

s1- ^12 

£2 = ^22 

Y12. . 0 0 

0 
0 

See. 

01 

02 

Tl2. 
(53) 

34 



Likewise, in this case, the compliance matrix S consists of four independent elements. 
When the independent elements of S are defined using material constants, the inverse 
Hooke's law can be expressed in the following form: 

£2 
Y12 

1 M21 0 
K E2 

0 
M12 1 0 

" £1 E~2 
0 

0 0 1 
G12-

2̂ 
Tl2 

(54) 

This expression involves four independent material constants, namely E\, E2,1x21, and G12, 

as described in Vrbka (2008). 

6.2 Stress and strain transformations 

When using wood and wood composites, situations often arise where the orientation of 
the fibers in the body does not correspond to a suitable coordinate system. The orientation 
of the fibers in the wood is represented by the anatomical coordinate system. This may 
ideally correspond to the global coordinate system, but in a non-ideal case the fiber 
deflection w i l l be non-zero. In such cases, the directions in which the deformations due 
to stresses occur do not correspond to us and we have to use a transformation. The stress-
strain properties of materials are generally discussed in relation to their non-isotropic 
nature (Bodig & Jayne, 1993). 

In the transformation we w i l l denote two coordinate systems: 

Global coordinate system (global axes) ...xr 
Anatomical coordinate system (anatomical axes)... xi 

6.2.1 Stress transformation 

The transformation matrix T is utilized in the form of a stress transformation. According 

toBodig&Jayne(1993): 

T = 
cos 2 Ö sin 2 ö + 2 ( s i n ö c o s ö ) 
sin 2 8 cos 2 8 — 2 ( s i n ö c o s ö ) 

-(sin8 c o s ö ) + ( s i n ö c o s ö ) (cos2 ö — sin 2 ö ) 
(55) 

In this case, the goniometric functions of sine and cosine that correspond to the deflection 
of fibers in anatomical axes from global axes are expressed using C and S, respectively. 
6 represents the angle of fiber deflection from global axes. The equation for stress 
transformation is expressed as follows: 

[o] = [To][ö] (56) 
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where |rj| is the stress matrix acting in the anatomical axes and \a] is the stress matrix 
acting in the geometrical axes. Then 6 is the angle of deflection of the fibers from the 
global axes. A n alternative to this notation may look like the following: 

(57) 

where ax, oy and axy correspond to the global axes and <7i, 02 and an correspond to the 
anatomical axes. For example, for a material with a fiber offset of 60° from the geometric 
coordinate axes, the notation would be as follows 

01 -ax-
02 = [TFF] Oy 

012. Pxy_ 

"01" 

02 = 
012. 

cos 2 8 s in 2 8 +2(sin0 cos 8) 
s in 2 8 cos 2 8 — 2(sin0 cos 8) 

-(sind cosd) +(sin0 cos8) (cos 2 8 — s in 2 8) 

-ax -
Oy 

Pxy. 
(58) 

Assumptions for stress transformation (Bodig & Jayne, 1993): 

• Invariant, 

• Equilibrium method, 

• The goniometric relations apply, 

• The general form of stress transformation is derived by incorporating goniometric 
relations into the equilibrium method, particularly when all stress components act 
in geometric axes, 

• The components of transformation rotate in a circle (known as Mohr's circle) , 

• The transformation involves the appearance of the trigonometric functions 
sin(2<p) and cos(2<p). 

6.2.2 Transformation of deformations 

To perform stress transformation, we utilize the transformation matrix T, which according 
to Bodig&Jayne (1993) takes the following form: 

T 
1 — 

cos2 8 s in 2 8 +(sin# cosd) 
sin 2 8 cos2 8 — (sinS cosS) 

-2 ( s in0cos0 ) +2(sin0 cos0) (cos 2 8 - s in 2 8) 
(59) 

Here, C and S represent the trigonometric functions of the sine and cosine of the angle 
between the fibers in the anatomical axes and the global axes. The equation for 
deformation transformation is expressed in the following form: 

[e] = [Te][e] 

Here, |£| refers to the deformation matrix operating in the anatomical axes, while \i\refers 
to the deformation matrix operating in the geometric axes. A n alternative to this notation 
may appear as follows. 
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e1-
= [T£] £y 

£12. -£xy_ 

where ex, ey and exy correspond to the global axes and e\, £2 and £12 correspond to the 
anatomical axes (Bodig & Jayne, 1993). 

6.2.3 Transformation of stiffness matrix 

The relation for the stiffness matrix transformation is written in the forms. 

Č l l f = C n cos 4 8 + 2 (C 1 2 + 2C 6 6 ) cos 2 8 sin 2 8 + C22 sin 4 8 

Či2i = (Cn + C22 - 4C66)cos28sin28 + C12(cos48 + sin48) 

Č22i = Cltsin48 + 2 (C 1 2 + 2C66)cos28sin28 + C22cos48 

C 1 6 . = C X 1 — C 1 2 — 2C 6 6 ) cos38sind + ( C 1 2 — C 2 2 + 2C6 6)cos0stn3(5 

Č2 6 i = (Cn - C 1 2 - 2C 6 6)sin 30cos0 + ( C 1 2 - C 2 2 + 2C 6 6)sin0cos 30 (60) 

Č66i = (Cn + C 2 2 - 2 C 1 2 - 2C 6 6 )cos 2 0sin 2 0 + C 6 6 (cos 4 0 + sin 40) 

Č44í = C 4 4 * cos28 + C 5 5 * sin 2 8 

Č45Í = ( c 5 5 - C44)sin0cos6i 

Č55. = C 5 5 cos 2 0 + C 4 4sin 2f3 

Where Qy. is the transformed stiffness matrix, C 5 5 is the non-transformed stiffness 

matrix, 0 is the angle expressing the fiber deflection from the longitudinal direction in the 

transformed laminate layer (Bodig & Jayne, 1993). 
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7 Plate theories 

7.1 Kirchhoff-Love Plate Theory 

Also known as Classical Plate Theory (CPT). The main assumption of Kirchhoff-Love 
Plate Theory is the perpendicularity and straightness of normals to the deformed central 
plane of the plate. The theory neglects shear along the thickness of the plate and works 
only with shear stress in the plane of the plate. Such neglect can lead to a relatively high 
error when applied to thick plates. To adopt this theory, two boundary conditions must be 
satisfied. Given the fact that (as in other cases) this is a shell theory, i.e., a theory that 
does not require a three-dimensional analysis, several assumptions according to Szilard 
(2004) must be satisfied: 

• The plate is thin in the sense that the thickness is small compared to the main 
dimensions, but not so thin that the lateral buckling is comparable to the deflection 

• The thickness of the plate is uniform or varies to such an extent that three-
dimensional stresses are neglected, 

• The applied transverse load is distributed over an area greater than the thickness 
of the plate, 

• The support conditions are such that there are no significant extensions of the 
median plane. 

Displacement field 

The displacement of the plate in the x-axis direction is denoted by u. For the 
displacement of the plate in the y-axis direction, we denote v and for the displacement 
in the z-axis, w. The Figure 11 shows these displacements. 

w, 

y 
Deformed 
shape 

y 
A Deformed 

v 

Original 
shape 

Normal displacement 
Shear displacement 

Bending displacement 

Figure 11 - CPT displacement field (Nettles, 1994) 
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The C P T is according to Nettles (1994) based on the following representation of the 
displacement field: 

u(x,y,z) = u 0 (x ,y ) + ZKx(x,y) (61) 

v (x, y, z) = v0 (x, y) + zKy (x, y ) (62) 

w(x,y,z) = w 0 (x ,y ) (63) 

Where u, v and w are the designations for the displacement components in the x, y and z 
directions, respectively. The displacements in the midplane are denoted by uo, vo, wo. The 
displacement components u and v are functions in the x,y plane. The overall displacement 
in the plate's plane at a particular point is a combination of the normal displacements and 
the displacement caused by bending. Assuming the displacements in the midplane are 
denoted as uo and vo along the x and y axes, respectively, the total displacement can be 
expressed as shown in the Figure 12: 

u = u0 — z 
dw 
dx v = v0 — z 

dw 
dy 

(64) 

It is assumed that there is no strain in the direction of thickness, only displacement. 

z Undeformed edge of plate 
k Top surface of plate 

Midplane 
+z 

-z 

z Deformed edge C o ^ ^ 
of plate +z JjjN 

-z 

+z JjjN 

-z \ ^ 
©Tension 

M— u 

For small cp 

Figure 12 - Total displacements in a plate (Nettles, 1994) 

The full derivation of the relations resulting from the definition of the displacement 
field are presented in the appendix 13.1. 
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7.2 Mindlin-Reissner Plate Theory 

Also known as "First-Order Shear deformation theory" (FSDT). Mindlin-Reissner plate 
theory is a mathematical model utilized for analyzing the behavior of thin and thick plates, 
which are structural components that are typically much thinner in one direction than the 
others. It is a more advanced and precise model than classical plate theory, which assumes 
that plates are infinitely thin. Mindlin-Reissner plate theory considers the plate's thickness 
and material properties, such as its elastic modulus and Poisson's ratio, allowing for more 
accurate predictions of deformation and stress within the plate under external loads. 
Reissner and Mind l in developed a theory that considers shear deformation along the 
thickness of a plate, overcoming the limitations of the Kirchhoff-Love Plate theory and 
enabling analysis of thicker plates (Szilard, 2004). The Kirchhoff-Love Plate theory 
(CPT) disregards the influence of shear deformation across the thickness of the plate, 
which may lead to inaccurate results when dealing with plates of larger thicknesses. The 
definition of thin and thick plates is still a matter of debate and depends on several factors, 
including the stiffness of the individual laminates. Generally, plates considered as thin 
under C P T are those whose length/thickness ratio falls between <5-100>, while plates 
considered as thick have a ratio between <5-10>. The first-order shear deformation theory 
(FSDT) considers shear deformation in the plate thickness by assuming constant shear 
deformation throughout the plate's thickness, requiring the utilization of a shear correction 
factor to satisfy the assumption of zero shear stress on the top and bottom planes of the 
plate (Panyatong, 2015). 

For this theory to be applicable, three boundary conditions must be satisfied. One of these 
involves the deflection, while the other two relate to normal and tangential rotations, 
respectively (Szilard, 2004). 

Mindlin-Reissner Plate theory is according to Bittnar&Sejnoha (1992) based on the 
following assumptions: 

The difference in displacement of the edge points of the plate in the z-axis 
direction (plate compression) is negligible with respect to the absolute value of 
the displacement w, 
The normals to the midplane remain straight after deformation but are no longer 
perpendicular to the midplane surface of the plate. They are therefore called 
pseudonormals of the plate. The Mindlin-Reissner plate theory neglects the 
collapse of the transverse sections, as can be seen in the Figure 13, 
The normal stress of <rz is small compared to the stresses of ox, oy. 
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dw/dy 
x y 

Figure 13 - Assumptions about plate reshaping (Bittnar&Sejnoha, 1992) 

Displacement field 

The F S D T is based on the following representation of the displacement field: 

u(x, y, z) = u0 (x, y) + z<px (x, y) (65) 

v (x, y, z) = v0 (x, y) + z(py (x, y) (66) 

w{x,y,z) = w 0 (x ,y ) (67) 

Where u, v and w are the designations for the displacement components in the x, y and z 
directions, respectively. The displacements of points in the midplane are denoted by uo, 
vrj, wo. A l l displacement components (u, v, <px, <py) are functions in the x,y plane. 
Compared to Kirchhoff-Love Plate theory, the assumption that there is no strain in the 
thickness direction, only displacement, no longer holds. The displacement in the thickness 
direction is now defined by the rotation of the perpendicular to the centerline of the neutral 
axis of the plate, as shown in the Figure 14 (Kolvik, 2012). 

FSDT 

Figure 14 - Displacement of pseudonormals (Abbas, 2013) 

The full derivation of the relations resulting from the definition of the displacement field 
are presented in the appendix 13.2. 
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7.3 Second-Order Shear Deformation Theory 

Second-order shear deformation theory is a mathematical model that is used to describe 
the behavior of thin-walled beams and plates under loading. It is an extension of first-
order shear deformation theory, which only accounts for linear deformations of a beam 
or plate. In contrast, second-order shear deformation theory takes into account the 
nonlinear deformations that can occur in a beam or plate, such as shear and rotation, and 
is therefore more accurate in predicting the behavior of these structures under various 
loads. The theory is typically used in the design of beams and plates in engineering 
applications, such as bridges, buildings, and aircraft. 

Displacement field 

The S S D T is based on the following representation of the displacement field: 

u(x,y, z) = u0(x,y) + z(p1 + z 2 0 2 (68) 

v(x,y,z) = v0(x,y) + z\j)1 + z2xfj2 (69) 

w(x,y,z) = w 0 (x ,y ) (70) 

Where u, v and w are the designations for the displacement components in the x, y and z 
directions, respectively. The displacements of points in the midplane are denoted by uo, 
vO, wo. A l l the displacement components uo, vo, wo, 0 i , 02, tyi, 4*2 a r e functions in the 
xy-plane (Shahrjerdi & Mustapha, 2011). 

Bemoulü Timoshenko 

Figure 15 - Various shear deformation hypotheses (Zhang, 2014) 

The full derivation of the relations resulting from the definition of the displacement 
field are presented in the appendix 13.3. 

7.4 Third-Order Shear Deformation Theory 

Third order shear deformation theory (TODT) is a mathematical model used in structural 
mechanics to analyze the behavior of plates and other structural elements subject to 
external loads. The theory accounts for the nonlinear shear deformations that occur in 
beams due to large deflections, which can cause the plates to twist and bend out of its 
original shape. This is in contrast to traditional plate theory, which assumes that the plate 
remains straight and only experiences small deflections. B y taking into account the 
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nonlinear deformations, third order shear deformation theory can provide more accurate 
predictions of a plate behavior under load, which is important for designing safe and 
effective structures. 

The main difference between the S O D T and T O D T is the level of accuracy they 
provide in predicting the behavior of the beam. Second order shear deformation theory is 
a simpler and less accurate model than third order shear deformation theory. It assumes 
that the plate remains straight and only experiences small deflections, and therefore it 
does not account for the nonlinear shear deformations that occur in the plate due to large 
deflections. This means that second order shear deformation theory is only suitable for 
analyzing plates that are not subject to significant loads or deformations. In contrast, third 
order shear deformation theory takes into account the nonlinear shear deformations that 
occur in the plate due to large deflections, which allows it to provide more accurate 
predictions of the plate's behavior under load. This is important for designing safe and 
effective structures that are subject to large loads or deformations. 

Displacement field 

The T S D T is according to Shokrieh (2017) based on the following representation of the 
displacement field: 

u{x,y,z) = u 0 (x ,y ) + z\px(x,y) + z2<px(x,y) + z3Ax(x,y) (71) 

v(x, y, z) = v0 (x, y) + zipy (x, y) + z2 <py (x, y) + z3Ay (x, y) (72) 

w(x,y,z) = w 0 (x ,y ) (73) 

Where u, v and w are the designations for the displacement components in the x, y and z 
directions, respectively. The displacements in the midplane are denoted by uo, vo, wo. A l l 
the displacement components uo, vo, wo, <px, <py, ipx, ipy, Ax, Ay are functions in the xy 
plane. 

t z,w 

(u,w) ' " . *S 

x,u 

Figure 16- Transfer displacement of plate according to TSDT (Ghiamy, 2022) 

The full derivation of the relations resulting from the definition of the displacement 
field are presented in the appendix 13.4. 
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8 Methodology 

8.1 CLT panel swelling 

One of the problems faced in this work is the possible damage to laminated cross-
laminated timber boards by the effects of rain and snow, respectively by the direct 
exposure to rainwater that is in direct contact with the top lamella of the board. Damage 
to the lamellas in terms of reduction in modulus of elasticity due to increased humidity 
should also be investigated in terms of time. Therefore, it was decided to verify 
numerically the rate of wetting of the top lamella of the plate by continuous water 
exposure. The objective of the verification is to determine for how long the top lamella 
of the plate must be exposed to water in order for the material used to reach the saturation 
limit of the cell wall . The script that has been developed for this purpose is based on the 
knowledge and relationships described in the chapter on water movement in wood. 

the environment T = 20°C 
the environment w = 100°% (rainwater) 

C24 initial material w = 12°% 

C24 initial material w = 12°% 

C24 initial material w = 12°% 

the environment T = 20°C 
the environment w = 16°% 

Figure 17 - Model boundary conditions 

The model is based on the equation of non-stationary moisture diffusion (chapter 
Non-stationary diffusion), i.e.: 

dw d / dw\ d / dw\ d / dw\ 

dt dx\xdx) dy\ydy) d z \ z d z ) 
(74) 

The complete numerical script is part of the appendix 13.6. 

8.2 Extension to hygrothermal stresses in laminates 

We know from the chapters Moisture properties of wood and Thermal properties of wood 
that a change in temperature and moisture of a material causes a change in the dimensions 
of the material in the form of swelling/drying or thermal expansion. In other words, 
changes in moisture content and temperature result in strains. These strains are not the 
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result of an external force acting on the body and are not accompanied by a response of 
the body in the form of the presence of internal forces. This is the case i f the body is not 
constrained in any way and can change its dimensions in the radial, tangential and 
longitudinal direction, or its entire volume without limitation. Internal forces w i l l be 
present in a body which is subjected to changes in temperature or moisture content and is 
restricted in any way in the directions of temperature and moisture deformations. The 
reasoning in relation to laminated materials is well illustrated in Figure 18 by a simple 
material consisting of two different materials with different moisture content and 
temperature properties. When the environmental moisture or temperature increases, one 
of the materials w i l l react with dimensional changes before the other material. If the two 
materials are not bonded together, each w i l l deform separately with respect to the 
environmental temperature and moisture conditions and no internal forces w i l l occur in 
either material. 

Intial state 
(moisture content = w 0 ) 

£ Ml «Ml(w-Wfj) 

Unbonded layers - final 
(moisture content = w) 

1 
1 

i 
£ = £ M1 = £ M2 *• £ M2=l 

J -

Actual final state - strains 
(moisture content = w) m 

Actual final state - stress 
(moisture content = w) 

M2 — £ _ £ M2 

°M1 

* P M 2 

Figure 18 - Moisture change of bounded and unbounded laminate layers (Agarwal, 2015) 

Since the two layers of materials form a single unit (are rigidly bonded), the actual 
deformations in both layers are the same. The magnitude of this deformation w i l l be less 
than that of loose material 1 and greater than that of loose material 2 (if the modulus of 
elasticity Emateriai-i>Emateria-i2). The resulting deformation therefore depends on the elastic 
moduli of each material. If there is no external force acting on the body, the internal forces 
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from the hygrothermal loads balance each other - the net internal force is zero. Since 
hygrothermal changes are linear and reversible, the relationship between dimensional 
changes and moisture or temperature change can be written in the following form: 

eT = aAT (75) 
sH = pAC (76) 

where AT - temperature change, AC - change in moisture content, eT thermal 
deformation, eH moisture deformation, a, /? - coefficients of temperature and moisture 
changes. In the case of an orthotropic material, the coefficients of thermal and moisture 
expansion, like other material properties, depend on the orientation of the fibers. The 
moisture and thermal deformations in the longitudinal and transverse directions are then 
written as follows: 

E[ = aLAT (77) 

Ej = aTAT 

= pTAC 

(78) 

(79) 

(80) 

Where aL, aT, /3L, / ? r are the coefficients of thermal and moisture expansion in the 
longitudinal and transverse directions. These coefficients, like strain and stress, can be 
transformed arbitrarily in the x and y axes as in the case of strains. 

(81) 
ax aL 

CCy = [Te]'1 aT 

CCXy 0 

\Pl] 
i3y = [T^1 

Pt 

fixy . 0 . 
(82) 

Where [TE] is the transformation matrix, which is the same as the transformation matrix 
given in equation (59) for the strain transformation. Therefore, hygrothermal strains can 
be written in terms of strains: 

r T n 'axAT' 
= CtyAT 

T Yxy. axyAT 

E% PXAC 
SH 

y 
= PyAC 

Yxy. PxyAC 

(83) 

(84) 
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Hygrothermals strains themselves do not produce internal forces or moments when the 
body is not restrained against displacement, torsion or bending. When considering the 
laminate as a whole, thermal and moisture changes do not affect the resulting internal 
force and moment. However, the separate laminas are not free and are constrained by the 
remaining laminas. The deformation of each laminate is affected by the deformation of 
the other laminates. Since the hygrothermal deformations of the laminate are of the same 
nature as the deformations induced by external loading, they can be written as the 
resulting mechanical deformations: 

cx 8X 

r T n cx 
8M = £y - T 

4 - £C 

y 
Yxy. k 

Yxy. k 
T .Yxy. k Yxy. 

(85) 

Mechanical stress in k ply is then calculated by: 

0% Qn Ql2 Q16 
cx 

Oy = Ql2 Q22 Q26 EM 

ty 
T-xy_ k Ql6 Q26 Qee. k .Yxy. 

The relationship (86) represents the solution to the combination of mechanical stresses 
combined with moisture and temperature stresses. 

8.3 Effect of moisture and fiber orientation on material constants 

As already mentioned in the chapter dealing with moisture properties of wood and the 
chapter dealing with the transformation of stiffness metric matrices, both fiber orientation 
and moisture have a significant effect on the material constants of wood. It is clear from 
the chapter Moisture properties of wood that a change in moisture content of wood results 
in a change in dimensions, or deformation. This deformation must be included in the 
calculation together with the change in material constants due to moisture. 

The elastic moduli have a major dependence on the change in fiber orientation. The 
modulus of elasticity in the direction of the fibers decreases by more than 90% when the 
orientation of the fibers is changed by 45°, and by up to 96% when the orientation is 
changed by 90°. The shear modulus decreases by approximately 50% with a 45° change 
in fiber orientation. The stiffness matrix parameters C , which are defined by the elastic 
moduli, are similarly dependent. Similarly, a change in wood moisture content from 12% 
to 30% w i l l reduce the stiffness matrix element C I 1 by more than 35%. 

Graphic representations of the dependence of wood material parameters on moisture 
content and grain orientation are included in the appendix 13.5. 
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8.4 Compiling a numeric models 

In this chapter, the principle (workflow) of defining numerical models according to the 
chosen plate theories is described in the Figure 19, This principle is the basis for the 
development of the numerical models, but the models themselves may differ slightly. 
The full form of the numerical models is included in the appendix 13.7-13.10. 

INPUT 

Laminate construction Laminae elastic constants Applied loads 

Laminae stiffness matrices [Ql 

y [Ql for different orientations 

Laminate stiffness 
matrices [A], [B"|, [D], [E],. 

Midplane strains and 
plate curvatures (k) 

Laminae strains (ex, Zy, y x y) 

f 
Laminae hygro (thermal) 
strains (ewx, tw

y, y w

x y ) 

Laminae stresses (cr*, oy, axy) 

Laminae stresses (crL, aT, aL ľ) 4 

Figure 19- Flowchart for laminate stress analysis 
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8.5 Experiment 

8.5.1 Thin plate 

The experiment was performed to verify the numerical model. Since it is well known and 
verified by research that the Kirchhoff-Love Plate Theory is not reliable when applied to 
thick plates and the remaining theories are based on C P T , several thin plates of 19 mm 
thickness, 300 mm width and 1500 mm length (Figure 21) were constructed to verify the 
numerical models. It was constructed of three layers of 6-7-6 mm of C22 strength, with 
the surface layers having an orientation in the direction of the plate length L I . The plates 
were placed on supports 1300 mm apart and loaded with the load-bearing arm of a loading 
machine. 

Q - q 

1111 i i i 11 i i i i i i i 111 ji 1111 n 1111 n 111111 

Figure 20 - Thin plate loading model 

The plate was placed on the supports and gradually loaded with the force arm Q until the 
plate broke. The deflection of the plate was continuously recorded. 

Figure 21 - Tested thin plate samples 

The result of the experiment is the deflections of the plate under a certain load. The same 
load and geometry wi l l be applied for the numerical model of „Special Ax i s and Material 
Symmetry" and the results w i l l be compared. 
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8.5.2 Thick plate 

From the point of view of mechanics, we distinguish between thin and thick plates. While 
thin plates can be examined without taking into account the shear stress along the 
thickness of the plate, in thick plates the shear stress is often the cause of plate failure. 
Similar to the thin plates, the experiment was approached for the purpose of verifying the 
numerical model. Since it is generally known and verified by research that the Kirchhoff-
Love Plate Theory is not reliable when applied to thick plates and the remaining theories 
deviate from C P T , several plates manufactured by Stora Enso, Pfeifer and Naturfor were 
tested for bending to verify the numerical models. The geometry of the tested plates is 
given in the Table 2. 

Table 2 - Selected CUT panel geometry 
Plate Number Layer Orientation 

Plate width 
[mm] 

Plate 
of thicknesses of layers Material 

Plate width 
[mm] 

length 
layers [mm] [°] 

Plate width 
[mm] 

[mm] 
NaturFor 3 30 - 30 - 30 0 - 9 0 - 0 C24 300 1500 
Stora Enso 3 30 - 30 - 30 0 - 9 0 - 0 C24 300 1500 
Pfiefer 3 30 - 30 - 30 0 - 9 0 - 0 C24 300 1500 

As is displayed in the Figure 22 each of the plates was placed on supports and 
progressively loaded with the force Q until the plate broke. The deflection of the plate 
was continuously recorded. The plates were placed on supports 1200 mm apart and loaded 
with the load arm of the tearing machine. 

Q -q 

1 1 1 1 1 1 1 I l i i i i i i i i i i. . i i i i i n i i n i i i i i i i i 

Figure 22 - Loading scheme of the thick plate 

8.6 Model Verification 

Verification of the numerical models was performed in two ways. The first way of 
verification is to compare the results of the numerical models. Since the geometry, loading 
and material characteristics are the same in all models and the fundamentals of the 
numerical models (displacement field, strains and curvatures, equilibrium equations, 
stress-strain relationships, governing plate equations) are different, the numerical models 
should agree in their results when the model is correctly built. 

The second way of verification is to compare the results of deflections from numerical 
models and experimental measurements. Such verification w i l l be performed only for the 
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full symmetry variant, i.e. the variant in which the thickness of the layers is axially 
symmetric and the orientation of the layers is 90°-0°-90° or 0°-90°-0°. Since all numerical 
models are built for generally orthotropic plates, the slightest error can result in different 
results by orders of magnitude. 

8.6.1 Special Axis Symmetry and Material Symmetry 

Special axis and material symmetry refers to the geometry and composition of the panel 
in which the symmetry in the orientation of the layers at angles of 0°-90°-0° and the 
material of the lamellas is maintained, with the plane of symmetry being the neutral and 
geometric centre plane of the panel. Since this is a composition that is typical of 
commercially produced panels, verification was performed in both ways - that is, by 
comparing the deflections of the thick and thin plate experiments with the numerical 
models and by comparing the results from the numerical models with each other. 

+hl+h2/2~ 

+h2/2 

-h2/2 

- h i - h2/2 

0° C24 w = 1 2 ° % 

90° CO A- w—1 / 90° trZ.̂ r w—1L /O / 

0° C24 w = 1 2 ° % \ 

Figure 23 - Geometry of a specially axisymmetric and material-symmetric plate 

8.6.2 General Axis Symmetry 

Special axial and material symmetry refers to the geometry and composition of the panel 
in which symmetry in the orientation of the material layers is maintained, with the plane 
of symmetry being the neutral and geometric centre plane of the panel. The difference 
from special axial and material symmetry is the orientation of the individual laminae, 
which do not necessarily have to be oriented at 0°-90°-0°, but for example 20°-70°-20°. 

\ 
+hl+h2/2 

+h2/2 " — 

-h2/2 

-h l -h2 /2 

] 

20° C24 w = 1 2 ° % 

70° C24 w=12°% 70° C24 w=12°% 

20° C24 w = 1 2 ° % \ 

Figure 24 - Geometry of a generally axisymmetric plate 

8.6.3 Axial Asymmetry 

A x i a l asymmetry refers to the geometry and composition of the panel in which the 
symmetry in the orientation of the lamella material layers is not maintained. The 
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difference from special axial and material symmetry and general axial symmetry is the 
orientation of the individual lamellae, which is not geometrically symmetrical in the panel 
width. A n example of a panel with axisymmetry can be a panel with a 0°-90°-30° fiber 
orientation. 

+hl+h2/2 
0° C24 w = 1 2 ° % ) 

+h2/2 
IN 90° C24 w = 1 2 ° % / 

/ -h2/2 ^~ SZ 90° C24 w = 1 2 ° % / 
/ 

-h l -h2/2 
CO 30° C24 w = 1 2 ° % 

Figure 25 - Geometry of an axially non-symmetrical plate 

8.6.4 Material Asymmetry 

Material asymmetry refers to the geometry and composition of the panel in which the 
symmetry in the orientation of the layers of the lamella material is maintained, but the 
symmetry of the materials of which the material is composed is not maintained. A n 
example would be a panel composed of three laminae, each of which is made of a different 
wood or wood strength. 

( 
+hl+h2/2 1 

.c" 0 ° C24 w = 3 0 ° % 

+h2/2 rj 9 0 ° C24 vv -12 : , % / 
-h2/2 

9 0 ° C24 vv -12 : , % / 

-hl-h2/2 SZ 0 ° C24 w = 1 2 ° % \ 

Figure 26 - Example of a materially unsymmetrical plate 
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9 Results and Discussion 

9.1 CLT panel moisture content change 

In this chapter, the results of a numerical model that investigated the C L T panel moisture 
content change rate are described. The solution was a numerical script constructed based 
on the knowledge of non-stationary diffusion. 

/ 

/ 

/ 

1 2 

Graph 1 - Non-stationary 3D moisture diffusion over time; y- Graph 2 -Non-stationary 3D moisture diffusion - moisture 
axis - moisture content (-), x-axis time (t), a - bottom plane of content in Z-axis (thickness of the plate), y-axis - moisture 
the plate, b - middle plane of the plate, c - top plane of the plate content, x-axis -thickness of the plate [m] 

-U 2 

mm 
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Graph 3 - Non-stationary 3D moisture diffusion moisture distribution in the XZ plane, t = 5.18e5; x axis - length 
of the plate, y axis - thickness of the plate 
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Based on the findings from the Graph 1 and Graph 3, we can conclude that under the 
given boundary conditions, the top lamella of the C L T panel under consideration is 
soaked to the cell wal l saturation limit (28% material moisture) in 143.8 hours, 
respectively 5.7 days. It is important to note that although this is a non-stationary diffusion 
model, it is only a simplified model that does not consider the presence of adhesive in 
C L T panels, which has different diffusion properties than wood. It can be expected that 
the wetting time wi l l be longer i f the glued joint is included in the calculation. The 
moisture gradient along the thickness of the panel would not be linear as in Graph 2, but 
the moisture profile would show large differences in moisture content at the glued joint. 
A n example of such a moisture gradient can be seen in the Graph 4, which represents the 
moisture profile of a three-layer C L T panel with 0.1 mm glued joints. From this graph, 
presented by Gereke (2009), it is clear that there is a jump in moisture content at the glued 
joint. The question remains as to what effect the glued joint has on the wetting rate of a 
unilaterally moisture loaded panel. The answer to this question could be the non-
stationary diffusion model involving the glued joint presented in "Combined loading of 
laminated structural elements" by Valášek (2021). 

30 

25 

1 2 0 

a 

0 
10 12 14 16 18 20 22 24 26 28 30 

Moisture content, co (%) 

Graph 4 - Moisture profiles along the thickness of a CLT panel involving a glued joint with constant glue diffusion 
coefficients compared to measurements; 14 days (Gereke, 2009) 

p 
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The numerical model is not a unified solution, and the result is influenced by a number 
of factors. These factors include the thickness of the layers of the C L T panel, the thickness 
of the adhesive, the type of adhesive, the wood species used to produce the C L T panel, 
the diffusion properties of the adhesive, the method used to calculate the moisture 
distribution, the effect of stationary or non-stationary conditions, or the chosen neglect of 
the effect of temperature on the rate of wetting. The calculation itself was undertaken to 
test the hypothesis that exposure of the ceiling panel to rainwater may lead to significant 
degradation of the material properties of the C L T panel surface. If the construction of a 
timber building using C L T ceiling panels is properly designed and constructed, such 
extreme moisture loading cannot occur during the use of the building. However, what is 
often not included in the calculations and considerations is the construction phase of the 
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rough construction, during which entire floors may become covered with rainwater or 
snow (as can be seen on Figure 27). 

Figure 27 - CLTpanel ceiling exposed to pooled water (Olsson, 2020) 

Such moisture loads are examined from the perspective of protection against mold and 
wood-boring fungi and are not considered from the perspective of reduction or change in 
mechanical properties (Oberg, 2018). The software ( A x i s V M , Abaqus, Dlubal, Ansys) 
used for the design of structures or joints does not allow the inclusion of moisture 
deformations in the calculation ( A x i s V M support [online]; Abaqus Analysis [online]; 
Dlubal manual [online]; Ansys workbench [online]). In the design of timber-based 
structures, the exposure of timber to moisture is only possible through the kdef coefficient 
defined by the service class, which is determined during design for the service stage of 
the structure, not for the design stage (Kozelouh, 1998; Eurocode 5, 1994). 
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9.2 Verification 1 - thin plate 

9.2.1 Experiment 1 

This chapter describes the results of individual measurements and their subsequent 
comparison with numerical models. Specific values of the deflection of the plates are 
described. The results are valid for a plate with a temperature of 20°C and a relative 
humidity of 12%. The results are described and illustrated in graphs and tables. 

•Sample 1 
Sample 4 

• Sample 7 

40 50 
Deflection [mm] 

• Sample 2 
—•— Sample 5 
—•— Sample 8 

90 

• Sample 3 
• Sample 6 
• Sample 9 

Graph 5 - Results of experimental measurement of deflection of thin plates 

In the Graph 5 it can be seen the deflections of individual plate samples depending on the 
applied surface load [N/m 2 ] . It can be seen from the graph that at the highest load 
observed, i.e., at 6900 N / m 2 , the deflection ranged from 71.4 to 81.4 mm. The largest 
deflection at the highest observed load occurred in sample 5. The smallest deflection was 
observed in sample 7. 
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Table 3 - Results of experimental measurement of deflection of a thin plate 

Load 
[N/m2] 

Deformation [mm] 
Arithmetic 

mean 
Load 

[N/m2] Sample 
1 

Sample 
2 

Sample 
3 

Sample 
4 

Sample 
5 

Sample 
6 

Sample 
7 

Sample 
8 

Sample 
9 

Arithmetic 
mean 

700 8.62 8.37 8.23 8.49 8.73 9.36 8.06 9.34 9.62 8.76 

1400 16.46 16.04 15.56 16.18 16.73 18.03 15.4 17.01 17.28 16.52 

2100 24.29 23.54 22.9 23.65 24.73 26.36 22.4 24.68 24.95 24.17 

2800 31.96 31.04 30.06 31.2 33.06 35.03 29.4 32.34 32.62 31.86 

3500 39.79 38.7 37.4 39.6 40.73 43.36 36.4 40.01 40.28 39.59 

4200 47.62 46.37 44.56 46.48 49.06 51.7 43.4 47.68 47.95 47.20 

4900 55.62 54.2 51.9 54.33 57.06 60.03 50.4 55.34 55.62 54.94 

5600 63.62 61.87 59.4 62.02 65.06 - 57.4 63.01 63.28 61.96 

6300 69.98 69.87 66.9 69.98 73.4 - 64.4 70.68 70.95 69.52 

6900 80.62 77.87 74.4 77.97 81.4 - 71.4 78.34 78.28 77.54 

Table 3 shows the results of the experimental measurements together with the arithmetic 
mean used in the subsequent comparison of the values from the numerical calculations. 

9.2.2 Numerical models 

This chapter describes the results resulting from the numerical scripts. The boundary 
conditions and loads that were entered into the scripts were based on the conditions of 
Experiment 1. The deflection was calculated for loads from 0 to 6900 N / m 2 . 

Table 4 - Results of deflection of thin plates from numerical models 

Load 
[N/m2] 

Deformation [mm] 
Standard deviation 

Load 
[N/m2] CPT FOSDT SOSDT TOSDT 

Standard deviation 

700 8.71 8.39 8.42 8.45 0.13 

1400 16.91 16.84 16.87 16.9 0.03 

2100 24.36 24.07 24.1 24.13 0.11 

2800 32.01 31.78 31.81 31.84 0.09 

3500 39.84 39.47 39.5 39.53 0.15 

4200 47.34 47.13 47.16 47.19 0.08 

4900 55.24 54.82 54.85 54.88 0.17 

5600 62.36 61.8 61.83 61.86 0.23 

6300 69.77 69.4 69.43 69.46 0.15 

6900 77.78 77.39 77.42 77.55 0.15 

In the Table 4 we can see that the results of the numerical theories are similar. FOST, 
S O D T and T O D T differ in their deflection results in hundredths of millimeters, while 
C P T differs in tenths of millimeters. Due to the low standard deviation, the results can be 
considered relevant. The smallest deflection at the maximum considered load of 6900 
N / m 2 resulted from F O D T . The highest deformation at the maximum considered load 
resulted from C P T . 
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9.2.3 Comparison of verification results 1 

In this chapter, a comparison between experimental measurements and numerical model 
results is presented. 

Table 5 - Comparison of verification results 1 

Load 
[N/m2] 

Deformation [mm] 
Standard 
deviation 

Load 
[N/m2] Experiment 1 -

average value 
CPT FODT SODT TODT 

Standard 
deviation 

700 8.76 8.71 8.39 8.42 8.45 0.16 

1400 16.52 16.91 16.84 16.87 16.9 0.15 

2100 24.17 24.36 24.07 24.1 24.13 0.10 

2800 31.86 32.01 31.78 31.81 31.84 0.08 

3500 39.59 39.84 39.47 39.5 39.53 0.13 

4200 47.20 47.34 47.13 47.16 47.19 0.07 

4900 54.94 55.24 54.82 54.85 54.88 0.15 

5600 61.96 62.36 61.8 61.83 61.86 0.21 

6300 69.52 69.77 69.4 69.43 69.46 0.13 

6900 77.54 77.78 77.39 77.42 77.55 0.14 

The Table 5 shows the comparison of the results of verification 1, i.e. the comparison of 
the deflection of the plate loaded experimentally measured and numerically calculated. 
The differences between the numerical theories and the experimental measurements are 
in the order of tenths of millimeters to hundredths of millimeters. The standard deviation 
is in the interval from 0.07 to 0.21. Because the standard deviation is so low, we can 
consider the results relevant. 

Referring to results of experimental measurement 1 (measuring the deflection of the thin 
plate) from Graph 5 and Table 3, it can be said that the mechanical response of all 9 plates 
showed the same deflection values. It should be stated that since the numerical models 
derived were only linear Hooke's law based, only the elastic behavior of the plates was 
investigated and therefore the failure is not included in the working graphs from the 
experimental measurements. Based on the results of the numerical models in Table 4, it 
can be concluded that all numerical models agree in the deflection results. Based on the 
findings from Table 5, it can be concluded that the deflection observed in the experimental 
measurements and the deflection given by the numerical theories are in agreement and it 
can be concluded that the numerical theories were correctly derived for the bending of 
the thin plates. 
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9.3 Verification 2 - thick plate 

9.3.1 Experiment 2 

This chapter describes the results of individual measurements and their subsequent 
comparison with numerical models. Specific values of the deflection of the plates are 
described. The results are valid for a plate with a temperature of 20°C and a relative 
moisture content of 12%. The results are described and illustrated in graphs and tables. 

Graph 6 - Results of experimental measurement of deflection of thick plates 

In the Graph 6 it can be seen the deflections of the individual plate samples depending on 
the applied surface load [N/m 2 ] . The graph shows that at the highest observed load, i.e. 
12000 N / m 2 , the deflection ranged from 0.039 to 3.3 mm. The largest deflection at the 
highest observed load was for NaturFor 1 and the smallest for Stora Enso 2. 
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Table 6 - Results of experimental measurement of deflection of a thick plate 

Load 
[N/m2] 

Deformation [mm] 
Arithmetic 

mean 
Standard 
deviation 

Selective 
standard 
deviation 

Load 
[N/m2] NaturFor 

1 
NaturFor 

2 
NaturFor 

3 
NaturFor 

4 
Stora 

Enso 1 
Stora 

Enso 2 
Pfeifer 

1 
Pfeifer 

2 

Arithmetic 
mean 

Standard 
deviation 

Selective 
standard 
deviation 

500 0.517 0.044 0.194 0.049 0.069 0.039 0.214 0.099 0.153 0.152 0.061 

1000 0.809 0.092 0.297 0.093 0.135 0.073 0.357 0.143 0.250 0.232 0.096 

2000 1.192 0.190 0.470 0.185 0.253 0.155 0.543 0.285 0.409 0.323 0.130 

3000 1.475 0.290 0.620 0.290 0.371 0.240 0.710 0.390 0.548 0.383 0.155 

4000 1.692 0.384 0.764 0.384 0.489 0.334 0.856 0.484 0.673 0.423 0.174 

5000 1.900 0.484 0.894 0.492 0.616 0.432 0.989 0.592 0.800 0.456 0.185 

7000 2.292 0.670 1.150 0.698 0.864 0.628 1.253 0.798 1.044 0.517 0.210 

9000 2.675 0.870 1.410 0.911 1.100 0.821 1.539 1.011 1.292 0.576 0.241 

12000 3.300 1.147 1.847 1.212 1.450 1.112 1.979 1.312 1.670 0.685 0.295 

The Table 6 shows the results of the experimental measurements together with the 
arithmetic mean, which is used in the subsequent comparison of the values from the 
numerical calculations. The overall standard deviation takes values up to 1.67. This is 
mainly due to the NaturFor 1 and NaturFor 4 samples, where partial delamination of the 
panel layers occurred. This had a significant effect on the final deflection at the observed 
maximum load. When these specimens are declared unsuitable and excluded from the 
statistics, the sample standard deviation values are such that the results can be declared 
relevant. Samples NaturFor 1 and NaturFor 4 are shown on Figure 28. 

Sample NaturFor 1 Sample NaturFor 4 

Figure 28 - Samples NaturFor 1 and NaturFor 4 excluded from statistics 

9.3.2 Numerical models 

This chapter describes the results resulting from the numerical scripts. The boundary 
conditions and loads that were entered into the scripts were based on the conditions of 
Experiment 2. Deflection was calculated for loads from 0 to 12000 N / m 2 . 
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Table 7 - Deflection results of thick plates from numerical models 

Load 
[N/m2] 

Deformation [mm] Standard 
deviation 

Load 
[N/m2] CPT FOSDT SOSDT TOSDT 

Standard 
deviation 

500 0.0879 0.092 0.092 0.092 0.002 

1000 0.138 0.146 0.145 0.146 0.003 
2000 0.241 0.253 0.251 0.253 0.005 
3000 0.335 0.360 0.337 0.360 0.012 

4000 0.444 0.467 0.435 0.467 0.014 

5000 0.546 0.574 0.531 0.574 0.019 
7000 0.752 0.788 0.743 0.788 0.020 
9000 0.96 1.050 0.950 1.050 0.048 

12000 1.26 1.320 1.270 1.320 0.028 

In the Table 7 the results of the numerical theories are very similar. The results of F O S D T , 
S O S D T and T O S D T are almost identical throughout the measurement period. The C P T 
results start to move away from the other models as the load increases. Due to the low 
standard deviation, the results can be considered relevant. The smallest deformation at 
the maximum considered load of 12000 N / m 2 resulted from C P T . The highest 
deformation at the maximum considered load resulted identically from F O S D T and 
T O S D T . 

9.3.3 Comparison of verification results 2 

In this chapter a comparison between experimental measurements, results of selected 
finite element methods software and results of numerical models is presented. 

Table 8 - Comparison of verification results 2 

Load 
[N/m2] 

Deformation [mm] 
Standard 
deviation 

Load 
[N/m2] Experiment 2 -

Average value 
CPT FOSDT SOSDT TOSDT A x i s V M Abaqus 

Standard 
deviation 

500 0.086 0.0879 0.092 0.092 0.092 0.059 0.054 0.015 
1000 0.149 0.138 0.146 0.145 0.146 0.115 0.107 0.016 
2000 0.269 0.241 0.253 0.251 0.253 0.233 0.213 0.016 
3000 0.382 0.335 0.360 0.337 0.360 0.351 0.320 0.019 
4000 0.488 0.444 0.467 0.435 0.467 0.469 0.426 0.020 
5000 0.601 0.546 0.574 0.531 0.574 0.586 0.539 0.024 
7000 0.819 0.752 0.788 0.743 0.788 0.824 0.753 0.030 
9000 1.042 0.96 1.050 0.950 1.050 1.050 0.959 0.045 
12000 1.369 1.26 1.320 1.270 1.320 1.390 1.279 0.046 

The Table 8 shows the comparison of the results of verification 2, i.e. the comparison of 
the deflection of the plate loaded in area, which was experimentally measured, solved in 
finite element software and numerically calculated by the derived models. The differences 
between numerical theories, experimental measurements and F E M software are in the 

61 



order of tenths of millimeters to hundredths of millimeters. The standard deviation is in 
the interval from 0.015 to 0.046. 

The experimental measurement of the mechanical response of the thick plate in the form 
of deflection was observed only in the elastic behavior region for the same reason as the 
experimental measurement of the thin plate. Based on the findings from Table 6 and 
Graph 6, it can be said that NaturFor 1 and NaturFor 3 a samples achieved significantly 
higher deflection than other samples at the same stress. This significant difference in 
deflection was most likely due to the slight delamination of these samples before the 
experiment was conducted, which was caused by the improper storage of these samples. 
The delamination of these samples is shown in Figure 28, and it can be stated that even a 
small amount of delamination has a significant effect on the mechanical behavior of the 
C L T panels. These samples were considered as defective and excluded from the 
subsequent statistics. Based on Table 7, it can be concluded that the agreement between 
the results of the numerical theories was significantly higher than that of the thin plate 
results, as evidenced by the standard deviations, which reach a maximum value of 0.048 
for the thick plate. For the thick plate verification case, in addition to the experiment, 
modelling was proceeded with the F E M software A x i s V M and Abaqus while the results 
from these software served as further comparison of the results of the numerical scripts. 
Based on the results from Table 8, it can be concluded that the numerical theories were 
derived correctly for the thick plate model case. 

9.4 Results of numerical models 

Depending on the composition of the laminate, there are several types of symmetry and 
non-symmetry - material and axial. Material symmetry refers to a laminate that is 
geometrically symmetrical with respect to the materials used in the individual layers. 
A x i a l symmetry refers to laminates that are symmetrical with respect to the orientation of 
the fibers in the individual plies. A special case may be so-called special orthotropy, by 
which we mean laminates in which the plies are oriented at 90° and 0° angles. In this 
chapter, the stress results of the numerical theories are compared with respect to the 
symmetric or unsymmetric plate under investigation. 

The following notations is used in the following chapters: 

• C P T - Classical plate theory (Kirchhoff-Love Plate Theory), 
• F O S D T - First Order Shear Deformation Theory (Mindlin-Reissner Shear 

Deformation Theory), 

• S O S D T - Second Order Shear Deformation Theory, 

• T O S D T - Third Order Shear Deformation Theory. 

The notation "SI CPTL1/2, L2/2" in graphs indicates the Classical Plate Theory stress ot 

observed in a section through half the length and half the width of the plate. 
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9.4.1 Special Axis Symmetry and Material Symmetry (SASMS) 

This chapter describes the results of the numerical models in the form of stress 
distributions and their comparison between the different numerical theories. The 
geometry and material properties used in the model are derived from the plate geometry 
used in Experiment 2. 
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Graph 7- (SASMS) a± across the thickness of the plate 

Table 9 - (SASMS) o~1 stress comparison 

SI 
[MPa] 

Layer 1 Layer 2 Layer 3 SI 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 

CPT -2,6 -1,734 -0.867 -0.009 0 0.009 0.867 1.734 2.600 

FSDT -2.593 -1.729 -0.864 -0.006 0 0.006 0.864 1.729 2.593 

SSDT -2.593 -1.729 -0.864 -0.006 0 0.006 0.864 1.729 2.593 

TSDT -2.593 -1.729 -0.864 -0.006 0 0.006 0.864 1.729 2.593 

Considering the findings from the Graph 7 and Table 9, it can be stated that all four 
numerical models agree in their results for the specially axially and materially symmetric 
plates for ox stresses (stresses in the fiber direction). The progression of the ox stress 
through the thickness of the plate represents a result that corresponds in form to the stress 
in its shape - that is, the pressure in the upper part of the laminate that is generated by the 
compression of the fibers, and the stress in the bottom layer of the laminate represents the 
tension that corresponds to the bending of the fibers. The stresses in the transversely 
oriented middle layer are minimal or non-existent because there is no stress in the 
direction of the fibers in this layer. Considering the form of the stress distribution ax, it 
can be concluded that the result corresponds to a specially orthotropic plate. 

63 



45 
35 

-g 25 
1 15 
C/L 
U J 
s * 
.a -5 
u -15 
S -25 

-35 
-45 

0^ = 0° w x=12% 

>w:= 1 ?% 

t i l l M M 
AO 

0t3 = 0 w 3 = 12% 

stress Liviťaj 

-0.04 -0.03 
S2 CPTLl/2,L2/2 

-0.02 -0.01 0 
ň—S2 FSDT L1/2.L2/2 —> 

0.01 0.02 
•S2 SSDTLl/2,L2/2 

0.03 0.04 
S2 TSDT Ll/2,L2/2 

Graph 8 - (SASMS) a2 stresses across the fibers across the thickness of the plate 

Table 10 - (SASMS) a2 stress comparison 

S2 
[MPa] 

Layer 1 Layer 2 Layer 3 S2 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 

CPT -0.019 -0.013 -0.006 -0.029 0 0.029 0.006 0.013 0.019 

FSDT -0.017 -0.012 -0.006 -0.029 0 0.029 0.006 0.012 0.017 

SSDT -0.017 -0.012 -0.006 -0.029 0 0.029 0.006 0.012 0.017 

TSDT -0.017 -0.012 -0.006 -0.029 0 0.029 0.006 0.012 0.017 

Considering the results shown in the Graph 8 and Table 10, it can be concluded that all 
four numerical models are consistent with the results for the special axially symmetric 
and material symmetric plates for a2 stresses (stresses across the fibers), only the classical 
plate theory shows a slight deviation from the other theories. This deviation is probably 
due to the computational complexity of the numerical model of Kirchhoff s plate theory, 
which, in its modification for the analysis of generally orthotropic plates, contains fourth-
order partial derivatives that must be solved in the software F l exPDE by using a 
substitution that generates additional variables to allow this substitution. The inaccuracy 
of the calculation is well observed in the progression of the stresses a± and a2 along the 
length of the plate, which is shown in the Graph 9 and Graph 10. The Kirchhoff-Love 
plate theory derived only for specially orthotropic plates does not exhibit these deviations 
(Valášek, 2021), and therefore it can be concluded that Kirchhoff-Love plate theory is not 
suitable for solving general geometric and boundary conditions, and for each specific 
problem it is more appropriate to derive this theory or to choose software that provides 
solutions of partial derivatives of higher than third order. The progression of o2 stresses 
through the thickness of the plate presents a result that is consistent in form with these 
stresses - i.e., minimal or no stresses are generated in the top layer of the laminate due to 
the fact that this layer is not subjected to loads applied across the fibers. The increase in 
stress is observed in the middle layer, which is oriented at 90° to the longitudinal axis of 
the plate and is therefore subject to stresses across the fibers. 
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Graph 11 - (SASMS) a5 stresses by plate thickness 

Table 11 - (SASMS) stress a5 comparison 

S5 
[MPa] 

Layer 1 Layer 2 Layer 3 S5 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - -

FSDT -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 

SSDT -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 

TSDT 0 -0.085 -0.130 -0.130 -0.146 -0.130 -0.130 -0.085 0 

Based on the Graph 11 and the Table 11, it can be said that in the case of a5 stresses, i.e. 
shear stress xz, the first difference in the results of the stress progression through the 
thickness of the plate can be seen, even though these stresses are very small. F S D T and 
T S D T agree in the maximum of the <r5 stress. S S D T deviates slightly from the maximum 
in its value. It can also be seen that the F S D T and S S D T only give maximum stress values. 
T S D T is a more advanced theory in this aspect and can plot the stress distribution from 0 
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to maximum. The T S D T stress distribution is an example of a bending shear stress 
distribution that is zero at the material surface and maximum in the geometric and neutral 
planes. Kirchhoff s plate theory does not allow the calculation of the shear stress and is 
therefore not shown in the Table 11. 

9.4.2 General Axis Symmetry (GAS) 

This chapter describes the results of the numerical models in the form of stress 
distributions and their comparison between the different numerical theories. The 
geometry and material properties used in the model are described in the methodology. 
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Graph 12 - (GAS) Oi across the thickness of the plate 

Table 12 - (GAS) stress ax Comparison 

SI 
[MPa] 

Layer 1 Layer 2 Layer 3 SI 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - -

FSDT -2.83 -1.89 -0.94 -0.13 0 0.13 0.94 1.89 2.83 

SSDT -2.83 -1.89 -0.94 -0.13 0 0.13 0.94 1.89 2.83 

TSDT -2.85 -1.88 -0.94 -0.13 0 0.13 0.94 1.88 2.85 

Based on the findings from the Graph 12 and Table 12 it can be concluded that all four 
numerical models agree in their results for ox stresses (stresses in the fiber direction). The 
progression of the ox stress through the thickness of the plate represents the result that 
corresponds to the stress in its form - that is, the pressure in the top of the laminate 
resulting from the compression of the fibers. The stress in the bottom layer of the laminate 
is tension, which corresponds to the fibers being pulled as laminate bend. The difference 
from the previous case of symmetry can be seen in the stress in the middle layer of the 
laminate, which higher values by an order of magnitude. This stress is due to the 
orientation of the layer itself, which is oriented at 70°, not 90°. 
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Graph 13 - (GAS) a2 Stresses Across Plate Thickness 

Table 13 - (GAS) Stress a2 comparison 

S2 
[MPa] 

Layer 1 Layer 2 Layer 3 S2 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT -0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032 
SSDT -0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032 
TSDT -0.032 -0.021 -0.011 -0.033 0 0.033 0.011 0.021 0.032 

Based on the findings from the Graph 13 and Table 13 it can be concluded that all four 
numerical models match the results for a2 stresses (stresses across fibers). The stress 
maximums in all layers reach similar values due to their orientation, which is close to a 
45° deviation from the 0°-90°-0° laminate orientation, specifically in this case a 20° 
deviation of the fibers in each layer. The internal forces are therefore distributed both in 
the direction of the fibers and across the fibers. The maximum compressive stress is 
observed at the top surface of layer 1 and the top surface of layer 2. The maximum tensile 
stress is then observed on the bottom surface of layer 2 and the bottom surface of layer 3. 
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Table 14 - (GAS) Stress a6 Comparison 

S6 
[MPa] 

Layer 1 Lay er 2 Layer 3 S6 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT 0.131 0.087 0.044 0.043 0 -0.043 -0.044 -0.087 -0.131 
SSDT 0.131 0.087 0.044 0.043 0 -0.043 -0.044 -0.087 -0.131 
TSDT 0.132 0.087 0.044 0.042 0 -0.042 -0.044 -0.087 -0.132 

Based on the findings from the Graph 14 and Table 14 it can be concluded that because 
the geometry and composition of the laminate is different from the special axis and 
material symmetry, shear stresses that result from layer orientations other than 0°-90°-0° 
can be expected. The cr6 stress, respectively the stress in the X Y plane of the plate, is 
observed to be maximum at the surface of the plate and decreasing linearly towards the 
neutral plane of the plate to the bottom surface of the plate where it takes a second 
maximum. The numerical theories agree almost identically in their results, except for the 
T S D T , which deviates in the thousands of the value of the stress in M P a . 

S4 FSDT 0,L2/2 S4 SSDT 0,L2/2 S4 TSDT 0,L2/2 

Graph 15 - (GAS) CT4 stresses by plate thickness 

Table 15 - (GAS) Stress <74 Comparison 
S4 
[MPa] 

Layer 1 Layer 2 Layer 3 S4 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 
SSDT -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 
TSDT -0.002 -0.025 -0.039 -0.039 -0.044 -0.039 -0.039 -0.025 -0.002 

Based on the findings from the Graph 15 and Table 15 it can be concluded that in contrast 
to the previous type of symmetry, in this case it is possible to investigate the a4 stress, 
i.e., the Y Z shear stress. This stress, like <r6, is due to the different orientation of the fibers 
in the individual layers. In this case of general symmetry, F S D T and SSDT correspond 
and express only the maximum value of the stress. The T S D T is expressed by a parabolic 
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progression of stresses from zero values to the maximum. A t the maximum, T S D T differs 
from the other theories. 
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S5FSDT0,L2/2 —A—S5 SSDT 0,L2/2 —•—S5 TSDT 0,L2/2 

Graph 16 - (GAS) a5 stresses by plate thickness 

Table 16- (GAS) Stress a5 Comparison 
S5 
[MPa] 

Layer 1 Layer 2 Layer 3 S5 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 
SSDT -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 
TSDT 0 -0.085 -0.131 -0.131 -0.146 -0.131 -0.131 -0.085 0 

Based on the findings from the Table 16 and Graph 16 it can be concluded that in 
the case of the <r5 stress, i.e. the shear stress xz, the difference in the results of the stress 
progression through the plate thickness is visible, even though these stresses are small. 
F S D T and S S D T agree in the maximum of the as stresses. It can also be seen that F S D T 
and S S D T only give maximum stress values. T S D T is the more advanced theory in this 
regard and is able to plot the stress progression from zero to maximum. The T S D T stress 
progression is an example of a bending shear stress progression which is zero at the 
surface of the material and maximum in the geometric and neutral planes. 

9.4.3 Axis Asymmetry (AA) 

This chapter describes the results of the numerical models in the form of stress 
distributions and their comparison between the different numerical theories. The 
geometry and material properties used in the model are described in the methodology. 
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Table 17 - (AA) Stress ax Comparison 

SI 

[MPa] 

Layer 1 Layer 2 Layer 3 SI 

[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 

CPT - - - - - - - - -

FSDT -3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89 

SSDT -3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89 

TSDT -3.25 -1.69 -0.12 0.00 0.01 0.02 0.53 1.71 2.89 

Based on the findings from the Graph 17 and Table 17 it can be concluded that 
the ox stress (stress along the fibers) in the case of axial non-symmetry reaches 
corresponding values along the thickness of the plate. The highest tensile stress is present 
at the bottom of layer 3 where the fibers are pulled. The highest compressive stress is 
present on the upper surface of layer 1 where the fibers are compressed. The individual 
numerical models agree in their results to within hundredths. 
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Graph 18 - (AA) a2 stresses by plate thickness 
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Table 18 - (AA) a2 Stress Comparison 

S2 
[MPa] 

Layer 1 Layer 2 Layer 3 S2 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT -0.022 -0.011 -0.001 -0.004 0.049 0.102 0.088 0.109 0.130 
SSDT -0.022 -0.011 -0.001 -0.004 0.049 0.102 0.088 0.109 0.130 
TSDT -0.022 -0.011 -0.001 -0.004 0.049 0.102 0.088 0.109 0.130 

Based on the findings from the Table 18 and Graph 18 it can be concluded that 
for the <r2 stress progression through the thickness of the plate (stress across the fibers), 
the highest value of tensile stress can be observed on the bottom surface of layer 3, which 
is oriented at an angle of 30° from the longitudinal x-axis. The highest compressive stress 
is observed on the upper surface of layer 1. In this case of symmetry, it can be seen that 
the compressive and tensile stresses do not reach the same values as in the case of special 
axis and material symmetry. From the Table 18 it can be seen that the neutral plane in 
which the o2 stresses should reach zero values no longer matches the geometric plane. 
The values of all the numerical models compared agree in the result. 
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Graph 19- (AA) a6 stresses by plate thickness 

Table 19- (AA) a6 Stress Comparison 

SI 
[MPa] 

Layer 1 Layer 2 Layer 3 SI 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT -0.252 -0.252 -0.253 0.253 0.253 0.253 -0.291 -0.376 -0.462 
SSDT -0.252 -0.252 -0.253 0.253 0.253 0.253 -0.291 -0.376 -0.462 
TSDT -0.252 -0.252 -0.253 0.253 0.253 0.253 -0.291 -0.376 -0.462 

Based on the findings from the Graph 19 and Table 19 it can be concluded that in 
the case of the <r6 stress progression (stress in the plane of the plate), we can observe a 
large difference between the X Y shear stress in the individual layers. In this case of 
symmetry, the stresses on the upper and lower surfaces of the laminate no longer coincide 
and the zero-shear stress is no longer left in the geometric centre plane. The top layer of 
the laminate, which is not rotated from the longitudinal x-axis, achieves a linear stress 
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progression through the layer thickness. A l l numerical theories agree in the values of the 
results. 
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Graph 20 - (AA) <74 stresses by plate thickness 

Table 20 - (AA) u 4 Stress Comparison 
S4 
[MPa] 

Layer 1 Layer 2 Layer 3 S4 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -

FSDT 0.000 -0.007 -0.014 -0.014 -0.021 -0.029 -0.029 -0.036 -0.043 
SSDT 0.000 -0.007 -0.014 -0.014 -0.021 -0.029 -0.029 -0.036 -0.043 
TSDT 0.000 -0.011 -0.023 -0.023 -0.030 -0.030 -0.030 -0.023 -0 

Based on the findings from the Table 20 and Graph 20 it can be concluded that in 
the case of in the case of <r4, the stress progression across the thickness of the plate is 
significantly different from the previous cases. Whereas in the previous cases the shear 
stress reached a maximum in the middle plane of the plate, in this type of 
symmetry/unsymmetry the shear stress according to F S D T and S S D T reaches a 
maximum value on the bottom surface of layer 3 and a zero value on the top surface of 
layer 1. The shear stress progression was achieved by changing the fiber orientation of 
the third layer by 30°. Also in this case, the results obtained from the different numerical 
models agree in values. 
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Graph 21 - (AA) a5 stresses by plate thickness 

Table 21 - (AA) a5 Stress Comparison 
S5 
[MPa] 

Layer 1 Layer 2 Layer 3 S5 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT -0.150 -0.147 -0.143 -0.143 -0.140 -0.137 -0.137 -0.133 -0.130 
SSDT -0.143 -0.139 -0.134 -0.134 -0.130 -0.126 -0.126 -0.121 -0.117 
TSDT 0.000 -0.098 -0.142 -0.142 -0.155 -0.138 -0.138 -0.090 0.000 

Based on the findings from the Graph 21 and Table 21 it can be concluded that in 
the case of the as stress (shear stress in the X Z plane), we can observe the first variations 
in the stress evolution along the plate thickness according to the individual numerical 
models. F S D T and S S D T show a linear X Z shear stress waveform, while T S D T shows a 
quadratic one. According to T S D T , the minimum stress occurs on the top surface of the 
first layer and on the bottom surface of the third layer. In the shear stress waveform after 
the thickness of the second layer, all numerical models are in agreement. In the case of 
the surface layers, the F S D T and S S D T models differ slightly. 
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9.4.4 Material Asymmetry (MA) 

This chapter describes the results of the numerical models in the form of stress 
distributions and their comparison between the different numerical theories. The 
geometry and material properties used in the model are described in the methodology. 
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Graph 22 - (MA) Stress a1 across the thickness of the plate 

Table 22 - (MA) ax Stress Comparison 

SI 
[MPa] 

Layer 1 Layer 2 Layer 3 SI 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -

FSDT -20.30 -19.60 -18.89 -0.05 -0.02 0.02 0.63 1.73 2.83 
SSDT -20.30 -19.60 -18.90 -0.05 -0.02 0.02 0.62 1.73 2.84 
TSDT -20.32 -19.60 -18.89 -0.05 -0.02 0.02 0.63 1.73 2.87 

In the case of a1 stresses (stresses in the direction of the fibers) in the case of material 
asymmetry, when the elastic moduli of the first layer are reduced to the equivalent of 30% 
of the moisture content of the layer, i.e. a moisture content that corresponds 
approximately to the saturation limit of the fibers, a significant increase in the stresses in 
the first layer of the laminate can be observed from the Graph 22. This increase is due 
not only to the lower elastic moduli but also to the moisture deformations that occur 
naturally when the moisture content of the wood increases (swelling/drying). The Graph 
22 shows that while the stress on the bottom surface of the 3rd layer of the laminate is 
around 2.83 M P a (corresponding to the tensile stress resulting from the bending and 
stretching of the fibers), the stress on the top surface of the first layer reaches a 
compression stress of 20.3 M P a . The table shows that the neutral plane has moved further 
away from the geometric plane of the plate, and according to the stress values from the 
middle plane of the 2nd layer and the bottom plane of the 2nd layer, the neutral plane of 
the plate has moved from the geometric middle plane lower in laminate. 
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Graph 23 - (MA) a2 Stress by Plate Thickness 

Table 23 - (MA) a2 Stress Comparison 

S2 
[MPa] 

Layer 1 Layer 2 Layer 3 S2 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -

FSDT -0.733 -0.729 -0.724 -0.011 -0.003 0.004 0.004 0.012 0.019 
SSDT -0.733 -0.729 -0.724 -0.011 -0.003 0.004 0.004 0.012 0.019 
TSDT -0.733 -0.729 -0.724 -0.010 -0.003 0.004 0.004 0.012 0.019 

Based on the findings from the Table 23 and Graph 23 it can be concluded that in the 
case of in the case of stresses across the fibers (a2 stresses), there is a significant increase 
in stress due to a reduction in the elastic moduli and swelling in the transverse direction 
of the plate. According to the Graph 23 and Table 23, the difference between the stress 
on the bottom surface of layer 3 (0.019 MPa) and the top surface of layer 1 (-0.733 MPa) 
is almost 39 times higher. 
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Graph 24 - (MA) u 5 stress by plate thickness 
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Table 24 - (MA) u 5 Stress Comparison 

S5 
[MPa] 

Layer 1 Layer 2 Layer 3 S5 
[MPa] TOP MID BOT TOP MID BOT TOP MID BOT 
CPT - - - - - - - - -
FSDT -0.087 -0.087 -0.087 -0.136 -0.136 -0.136 -0.136 -0.136 -0.136 
SSDT -0.088 -0.084 -0.079 -0.123 -0.116 -0.108 -0.108 -0.101 -0.093 
TSDT 0.000 -0.071 -0.094 -0.147 -0.155 -0.135 -0.135 -0.087 0.000 

The difference between the models based on different shear theories can be clearly 
observed at Graph 24 (shear stress in the X Z plane). The first (FOSDT) and second 
(SOSDT) order theories show the shear along the plate thickness in the form of linear 
maximums. The third-order theory plots the shear stress along the plate thickness 
parabolically and plots both maxima and minima, maintaining zero stress on the bottom 
surface of layer 3 and the top surface of layer 1. 
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Evaluation of numerical model results 

B y analyzing the stress distribution along the thickness of the plate and based on the 
results, it can be stated that numerical models for the analysis of generally orthotropic 
materials in any configuration, taking into account the effect of moisture, have been 
successfully developed, also in terms of swelling and slumping. However, the numerical 
models (which are included in the appendix 13.5 - 13.10) do not include the effect of 
temperature. The influence of temperature has been neglected mainly because the stresses 
and strains that occur when the temperature of the timber changes are negligible in a 
stationary calculation. The incorporation of the effect of temperature would make sense 
i f connected to the model of non-uniform distribution of moisture and temperature 
described by Valášek (2021) in his thesis, which also deals with the principle of 
mechanosorption. In such a case, the model would be extended by defining temperature 
changes that would look similar to those of moisture with the difference of different 
coefficients (temperature expansion coefficients) and the resulting deformations would 
be added to the superposition with mechanical and moisture deformations. 

Another point that can be noticed is that, apart from the special axis and material 
symmetry, the results do not contain values coming from Kirchhoff s thin plate theory. 
The reason for this is the computational difficulty that results from the presence of fourth 
order partial differential equations and their input into the chosen software for solving 
differential systems, F l exPDE. The software does not allow specifying partial terms in 
fourth order and the input has to be solved by substitution as given in equation (87), where 
the left side of the equation represents the mathematical notation and the right side of the 
equation the syntax of the F lexPDE software. 

d4w0 d2w0 . . 
——- = dxxiwxx) ~ , t = wxx 
dx4 v J dx2 

B y using the substitution term, a new variable wxx is defined in the software for which a 
boundary condition needs to be defined, which was not successfully done and therefore 
for the remaining symmetry/unsymmetry cases the C P T evaluation is not present. It is 
necessary to add that the fourth order partial differential equations occur in the equation 
in product with coupling matrices B , which take zero values in the case of special axis 
and material symmetry. For such a symmetry condition, the C P T is a sufficient solution 
for the analysis of thin plates. From the point of view of the results, the model based on 
the Third Order Shear Deformation Theory seems to be the most suitable model for the 
analysis of timber-based laminated plates. 
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Comparison of SASMS and M A stress distribution 

As mentioned in chapter "9.1 CLT panel moisture content change" a situation where 
moisture content of the top lamella of a C L T panel is high is possible and therefore a 
comparison of the Special Axis and Material Symmetry ( S A S M S ) and Material 
Asymmetry ( M A ) cases was performed. For comparison, only the T O S D T results were 
used. 

Stress [MPa] 
~ H O 0.00 - ' 

-0.2 -0.15 -0.1 -0.05 0 

Graph 25 - Comparison of stress distribution along the laminate thickness of special material & axial symmetry (SASMS) and 
material asymmetry (MA). 

The results obtained from the M A are the results for the extreme case, where the cell wall 
of the first layer of the C L T panel is completely saturated and therefore the largest 
possible decrease in stiffness and strength of this layer occurs. As can be seen from the 
Graph 25, moisture has a major effect on the stress increase. The combination of the 
modulus of elasticity, which decreases by approximately 36% at cell wall saturation limit, 
and the moisture stresses that occur due to the constraints on the movement of the laminae 
in the width and length direction of the panel, resulted in an increase in compressive stress 
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in the fiber direction by 784% in the case of ox stress (17.73 M P a in absolute value, to a 
value of 20.32 MPa) , which is almost the characteristic compressive strength in the fiber 
direction of the C24 material (21 MPa) used for the manufacture of the laminae. In the 
case of the compressive stress across the a2 fibers, the change is from 0.02 M P a to 0.73 
M P a . Surprisingly, for the shear stress <r5, a decrease in stress in the middle and bottom 
planes of the first lamella and, on the contrary, an increase in stress in the middle lamella 
is observed. 

Field fm,k Vm kmad K sys,y m̂,y,d My.d °m,y,d Utilization 

[N/mm2] [-] [-] [-] [N/mm 2] [kNm] [N/mm2] 

1 24.00 1.25 0.60 1 .10 12.67 -0.85 -2.18 17 % 

Field fr,k Vm kmod fr,d V d 
Trcj Utilization 

[N/mm2] H H [N/mm2] [kN] [N/mm2] 

1 1.15 1.25 0.60 0.55 -2.84 0.15 26 % 

1 -ield fv,k Vm Kmod fv,d V d i 'v,d Utilization 

[N/mm2] [-] H [N/mm2] [kN] [N/mm2] 

1 4.00 1.25 0.60 1.92 -2.84 0.15 8 % 

Figure 29 ULS Utilization of analyzed CLTpanel (load = 12 000 Pa) according to Calculatis (Stora Enso 
[online]) 

The internal stresses from Graph 25 are the result for an area load of 12 kN/m2, 
which, according to Calculatis ( S T O R A E N S O [online]), corresponds to 26% of the panel 
load bearing capacity in U L S perspective (Figure 29) after reduction of the elastic moduli 
by 7M- A t a load close to 100% of the load bearing capacity at the moisture limit of the 
cell wall saturation limit (28-30%), the stresses in the first lamella would certainly exceed 
the compressive strength in the grain direction, resulting in the compression thickening 
of the wood grain and possible lamella failure or permanent reduction of the load bearing 
capacity of the C L T panel. 
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9.5 TOSDT Coupling Phenomenon of the ABDEFGH matrix 

For the classical A B D matrix used in the numerical script based on the Kirchhoff-
Love Plate Theory, it is possible to "predict" the laminate behavior based on the 
knowledge of the matrices elements of the ply stiffnesses, the elastic moduli, the ply 
orientation and the Poisson's ratio, without solving higher order partial differential 
equations. When constructing the script for T O S D T and then evaluating the results for 
each symmetry/asymmetry condition, a similar phenomenon was observed for the 
A B D E F G H matrix. This chapter is focused on describing the coupling phenomenon for 
the matrix used in deriving the relations for T O S D T . Denoting matrices from the stress-
strain relation for T O S D T : 

The following figure describes the behavior of the laminate when some elements of the 
matrix are non-zero. The result is a description of the so-called T O S D T coupling 
phenomenon. T O S D T coupling matrix is denoted on Figure 30. 

Ny 

My 

M 

*xy 

xy 
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Figure 30 - Denoting matrices ABDEFGH 
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10 The benefits for science and practice 

Solid timber structures, especially glued C L T panels, have a great potential to 
become an ideal construction material for residential and multi-storey buildings. In 
order for this potential to be fulfilled at least in part, it is first necessary to study the 
behavior of such material under various conditions in the greatest detail. Since 
wood is a hygroscopic material, its properties are largely influenced by moisture. It 
is therefore essential to find out how a given structural element w i l l behave at a 
given moisture content. In order to do this, it is necessary to determine the effect of 
moisture, particularly on laminated wood-based materials, as accurately as possible. 
Current practice uses software that does not go further than the building codes in 
the case of moisture exposure. In the Czech Republic, to date, we do not have 
standards describing the design of C L T elements or standards for the construction 
of timber structures. It is during the construction phase of timber-based buildings 
that most moisture-related problems arise, both in terms of the risk of mould growth 
and the reduction of the mechanical properties of the timber. In fact, Sweden places 
clear requirements in its Building Code to protect construction products and 
construction materials from moisture during the construction phase. For large 
constructions, the law requires documented inspections, measurements, and 
analyses. Material specifications under the legislation require "Wood materials and 
wood products to be protected from moisture during and after assembly to avoid 
microbial growth and other problems" (Olsson, 2020). If we are to take timber 
construction further in the Czech Republic, we need to be inspired by similar 
requirements and enforce the requirements for the protection of timber buildings 
during the construction process by legislation and standards. The results of this 
work provide relevant arguments for stricter protection of building materials during 
construction and can be the basis for the development of suitable standards for the 
implementation of timber buildings. Furthermore, the numerical models can be 
used as a tool to verify the load-bearing capacity of moisture-stressed C L T panels. 

From the point of view of further research, the derived numerical models can 
be used in the design of new laminates made of arbitrary materials (not only wood) 
and the analysis of their behavior using " T O S D T Coupling Phenomena" according 
to the chosen composition and the presence of individual components of the 
A B D E F G H matrix. The model can be modified and freely extended to include other 
variables such as temperature or to incorporate the effect of mechanosorption. The 
model can be modified quite easily for dynamic response and vibration analysis. In 
general, the model offers a solid basis for investigating the behavior of laminates. 
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11 Conclusions 

The thesis deals with the development and validation of computational models for 
the analysis of bending, deformation, and internal stresses of laminated panels 
(CLT) with arbitrarily oriented layers and composed of different materials under 
transverse loading. The numerical models were developed based on four plate 
theories in a form for the analysis of generally orthotropic panels. It was found that: 

• The model based on the Kirchhoff-Love Plate Theory, unlike the other 
models, does not allow for shear stress analysis along the thickness of the 
laminate. In addition to this, it is the most computationally demanding in 
its general form, which places higher requirements on the differential 
solver used and therefore, from this point of view, it is not suitable for the 
analysis of wood-based laminates. 

• The most difficult model to derive and the most suitable in terms of the 
provided results is the model based on Third Order Shear Deformation 
Theory. This model is suitable for the analysis of generally orthotropic 
laminates. 

• The behavior of an arbitrarily composed laminate can be estimated only 
on the basis of the composition of the laminate matrix (in the case of 
T O S D T this is the A B D E F G H matrix). Thus, the torsion, bending or shear 
deformation of the laminate can be predicted without the need to solve a 
system of higher order partial differential equations. 

• Based on the results obtained, it can be argued that a situation where the 
moisture content of the upper lamellas of the C L T panels at the cell wall 
saturation limit can occur. A t such a change in moisture content, internal 
stresses approaching the strength of the material can be generated even at 
relatively low external loads, and even at loads equivalent to 25% of the 
panel load bearing capacity. 

The result of this thesis may help in future efforts to further understand the effect 
of moisture on C L T panels and the effect on the overall load bearing capacity. 
However, it should be taken into account that the numerical models are a stationary 
models and did not take into account the fact that the change and equilibration of 
moisture w i l l occur not only in one laminate but throughout the thickness of the 
laminate as described by the nonstationary diffusion principle. The findings suggest 
that moisture has a significant effect on the load-bearing capacity of the panel and 
that this type of stress must be taken into account in the future when dimensioning 
these structural elements or when carrying out construction. 
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13 Appendix 

13.1 Derivation of relations according to Kirchhoff-Love Plate 
Theory 

13.1.1 Strains and curvatures 

From equations defining displacement field the strains and curvatures are defined 
according to Nettles (1994) as: 
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(90) 

du du0 d2w 

dx dx dx2 

dv dv0 d2w 

dy dy dy2 

du dv du0 dv0 d2w 

Defining: 
du0 

as e 

dy dx dy dx 

dv0 

dxdy 

du0 dv0 

as s" ; — h - — as Yxy 
dx0

 x ' dy0

 y ' dy0 dx0 

To be the midplane strains and defining: 

d2w d2w 

dx2 x dy 2 CLS JCy 
d2w 

2—— as k 
dxy xy 

(91) 

(92) 

to be the plate curvatures wi l l make notation easier. The above equations can be 
expressed in matrix notation as follows: 

' Kx ' 
Sy = Cy + Z Ky 

Yxy. .Yxy. KXy 
(93) 
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As illustrated in the Figure 32, the plate's curvature K x or K y represents the change 
in slope of the bending plate along the x- or y-axis, respectively. The term K x y refers 
to the amount of bending in the x-direction along the y-axis, also known as twisting. 

&]ope = dw/dx at jq ̂  
Rate of change of slope across x-direction = d'w/dx* = Id 

Figure 32 - Definitions of plate curvatures (Nettles, 1994) 

13.1.2 Equilibrium equations 

The Figure 33 illustrates the directions for all stress and moment resultants. The 
double-headed arrow indicates torque in the direction determined by the right-hand 
rule (i.e., point your right-hand thumb in the direction of the double-headed arrows, 
and the direction of the torque's rotation is in the direction your fingers are 
pointing). The M x and M y components w i l l result in the board bending, while the 
M x y component w i l l cause twisting of the board (Nettles, 1994). 
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My+(dMy/dy)dy 

Middle surface 

M+(dMx/dx)dx 

Qy+(dQy/dy)dy QirrfdQx/dxJdx 

M?+(dM3:y/dx)dx 
Detailed illustration 

(qj,+...)dx 
(qx+...)dy 

Schematic illustration 
ment vector 

Figure 33 - External and internal forces on the element of the middle surface (Szilard, 2004) 

Based on the Figure 33 and the strain and curvature relations (as discussed in the 
previous chapter), we can derive the equilibrium equations for shell plates, which 
can be expressed in the following form: 

Equilibrium equation for forces in the x-direction 

dNv \ { dJV. 
-N. 

( aNx \ 
.dy + yNx + —— dxj dy NXydx ~\~ yNXy ~\~ ~~j j x y A d x = •dy 0 (94) 

in reduced form for forces in x, y-direction: 

dNY dNxv dNxv dNv x + _ x y = Q . _ £ y + _ Z = Q 

dx dy dx dy 
(95) 

Equilibrium equation for forces in the z-direction: 

-Rxzdy + (RXZ + d x ) dy -
dR 

dx 

+ p dxdy = 0 

Rvzdx + I RyZ "I-

V dy 
yz dx 

(96) 
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in reduced form: 
dR yz 

dx dy 
+ p = 0 (97) 

Moment equations of equilibrium around the x-axis: 
dMv \ ( dM 

dy ) dx + Mxydy — I Mxy + Mydx - ( M y + d y 
xy 

In reduced form: 

dx 
dR 

dx dy 

+ (Ryz + dyj dxdy + ^ (RXZ + d x ) dy (98) 

dy dy 
— Rxzdy + — p dxdy = 0 

dMx dMxy 

Rxz — 0 dx dy 
Similarly, the moment equations of equilibrium about the y-axis: 

(99) 

dM xy dM,. 

dx + ^ f - ^ = ° ( 1 0 0 ) 

L/C ./v KA, y 

Substituting the (moment) equation into the equilibrium equations in the z-
direction, we can derive the equilibrium equation for the plate: 

d2My 

+ 2-
d 2 M v v d2M,, lxy + + p = 0 (101) 

dx2 dxdy dy2 

These three equilibrium equations serve as the basis for establishing the governing 
plate equations in terms of displacement for the Kirchhoff-Love Plate Theory, 
which w i l l be discussed in the following chapters. 

13.1.3 Orthotropic plate stress-strain relationship 

As previously mentioned (in the Hook's Law chapter), the stress in each lamination 
can be expressed in terms of strain and curvature as follows: 

0% 'Qu Ql2 Q16 
Oy = Ql2 Q22 Q26 

Jxy _ -Ql6 Q26 Qee 

Ex 
e° 
C y 

+ Z 

Yxy. 

Qu Q12 Qie 

Q12 Q22 Q26 

Ql6 Q26 Qö6. 

' Kx ' 
Ky 
KXy 

(102) 

The stresses in each layer may vary due to the thickness of the layer, thus it 
is necessary to define the stresses in terms of equivalent forces acting on the 
midplane of the plate. Referring to the Figure 34, we can observe that the stresses 
acting on the plate can be divided into increments and then summed. The resulting 
relationship in integral form is defined as the stress resultant and is denoted by N ; . 
This stress resultant has a unit force per length and acts in the same direction as the 
applied stress. 
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Figure 34 - Scheme ofmidplane notation 

The figure can be rearranged to represent the components in the y-axis direction 
and the in-plane shear stress as follows: 

rh/2 
Nx = axdz (103) 

J-h/2 

fh/2 
Ny = oydz (104) 

J-h/7 
-h/2 

rh/2 
Nxy = rxydz (105) 

J-h/2 

From the figure presented earlier, it is evident that the applied stress on the 
plate generates a moment in the midline plane of the plate. The magnitude of this 
moment is dependent on the distance z from the midplane. These moments can be 
defined around all axes based on this principle. 

rh/2 
Mx = J axzdz (106) 

'-h/2 
rh/2 

My = I OyZdz (107) 
J-h/2 

rh/2 

Mxy = I Txyzdz (108) 
'-h/2 

These moment resultants have units of torque per unit length. The Figure 35 
illustrates the directions of all stress and moment resultants (Nettles, 1994): 
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Figure 35 - Stress and moment resultants (Nettles, 1994) 

Equations (for N x , N y , N x y ) written in matrix form: 

~NX- rh/2 
Ny 

= [ Oy 

N J-h/2 Jxy _ 

Equations (for M x , M y , M x y ) written in matrix form: 

Mx~ rh/2 Ox 
My = Oy zdz 

MXy J-h/2 Jxy. 

These integral notations must be applied for each individual lamination and added 
together i f there is a discontinuity in the stresses between the layers. 
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Plyn 

Plyn-1 

PLyk+2 

Plyk+1 

Plyk 

Geometric midpJane 

Plyk-1 

Ply 2 

Ply 1 

Figure 36 - Cross section of a laminate 

The equations ( N x , N y , N x y , M y , ...) must be expressed in the form using the figure 
provided above: 

~NX- n 
w 1 Ny = y Oy 

N k=l Jxy. 
dz (111) 

'Mx 
n 

x—l °x 
My = y Oy 

MXy k=l 'hk-i Jxy. 
zdz (112) 

B y substituting the aforementioned equations into the equation for stress, we obtain: 

~NX-
f f * " Ny f f * " 

N k=l V i 

+ 

Qn Qu Qi6 

Ql2 Q22 Q26 

Ql6 Q26 Qö6 

Qu Q12 Q16 

Q12 Q22 Q26 

Ql6 Q26 Qö6 

Ex 

e° 
Cy 

dz 

Yxy. 

' Kx 
Ky zdz > 

KXy J 

(113) 

Since strains and curvatures (eo.Ko) do not vary with z (their values are always 0 in 
the median plane), they do not need to be included in the integration. Additionally, 
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the stiffness matrix of the laminate is constant for each layer and thus w i l l remain 
constant during the integration over the thickness of the laminate. Therefore, 
subtracting these constants before integrating over the thickness yields: 

~NX-
Ny 
N k=l I 

<2n Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qee 

Qn Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qee 

C-y 

Yxy. 

I dz 

+ 
' Kx 
Ky J zdz > 

KXy 
Jhk-i J 

(114) 

~MX- rr 
My 

MXy k=l 1 

+ 

Qn Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qee 

Q11 Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qee 

"I ^x 
e° 
y 

.Yxy. 

r^k 

I zdz 

•V-i 
" Kx fhk ) 
Ky z2dz\ 

KXy 

(115) 

B y performing a simple integration, we get: 

~NX- [\ 
Ny = 1-
N k=l I 

Qn Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qeejk 

Qn Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qee 

°x 
S° 
C-y 

Yxy 

+ K, 

K xy 

(116) 

'Mx rr 
My 
MXy k=l I 

+ 

<2n Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qeejk 

Q11 Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qee 

Yxy 

K xy 
3 (^ -^- 1 ) 

(117) 

Since the deformation and curvature of the shear plane are not part of the sums, the 
laminate stiffness matrix and hk terms that can be seen in Figure 36 can be combined 
to create new matrices. 

n 
AU = ^[Qij]k(hk-hk_1) (118) 

k=l 
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n 

Bij = ^ [ Q i j ] k ( h 2

k - h 2

k _ 1 ) 

k=l 
n 

Dij=l^[Qij]k(h3

k-h3

k_1) 

(119) 

(120) 

The extensional stiffness matrix is denoted as matrix A , the coupling stiffness 
matrix as matrix B , and the bending stiffness matrix as matrix D;j. The bending 
stiffness matrix relates the amount of plate curvatures with the bending moments. 
In matrix notation, stress-strain relationship can be written as: 

r  N* 1 
Ny 
N 

Mx 

My 
- MXy . 

A12 A16 #11 #12 B 

A12 #12 #22 B 

A16 A66 #16 #26 B 

#11 #12 #16 #11 #12 D 

#12 B22 #26 #12 #22 D 

#16 B26 #66 #16 #26 D 

'16 

?26 

?66 

he 
he 
^66 

£x 

C-y 

Yxy 

K xy 

(121) 

13.1.4 Governing plate equations in terms of displacement 

B y substituting the plate equilibrium equations into the stress-strain relations and 
then substituting the equations for strain and curvatures, we can derive the 
governing plate equations in terms of displacement un, vn, and wo. Further 
mathematical manipulations lead to: 

1) Displacement uo (in the x-axis direction): 

d2u0 d2Un 
4 n -r-^-+ 2A 

d uQ 

1 1 dx2 

+ A 

1 6 dxdy 
d2v0 

+ Ae6~dy~2~ + Al6~dx^ 

d2Vn d2Vn 
° + G 4 1 2 + , 4 6 6 ) -dxdy 

26 dy 

_ d3w0 

2 B l 1 dx3 

- ( B 1 2 + 2B66) 

2) Displacement vo 

d3w0 

- 3B 

#26 

d w0  

1 6 dx2dy 

d3w0 

(122) 

(in the y 

d2u0 

dxdy2 dy3 

axis direction) 

= 0 

d2v0 

d2v0 _ d3w0 d3w0 d vQ d w (  

+ A 2 2 ~dy~2~~Bxb~dx3~ 

d3w0 d3w0 

~ZB2b~dx~dy~2~B22~dy~3~ = * 

(123) 
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3) Displacement wo (in the z-axis direction) 

Dn + 4 D 1 6 — + 2 ( D 1 2 + 2 D 6 6 ) — + W 
1 "dx^" d x ^ 1̂2 - 6 6 . ^ 7 2 - ^ 2 6 

d 4 w 0 d 3 u 0 d 3 u 0 

+ Dnn —— S i i ——-=— 36^ ' 2 2 d y 4 ° " d x 3 ° ° 1 6 d x 2 d y 
d 3 u 0 d 3 u 0 d 3 i ? 0 

- ( B 1 2 + 2 S 6 6 ) — - B 2 6 — 3 - - B16 - 7 - 3 -
(124) 

dxdy 2 d y 3 d x ; 

0 d 3 v 0 d3v0 d3vc 

- (B12 + 2Bee) - 3B26 - B 2 2 ^ - H 

13.2 Derivation of relations according to Mindlin-Reissner Plate 
Theory 

13.2.1 Strains and curvatures 

The linear strains associated with the displacement field in Eq . (65), (66) and (67) 
are: 

I ^'Kr£ f ^y ^y ^ ZJCy f ^xy ^xy ^ ^^^xy C^-^^ )̂ 

f yz — ?yz < £xz ~ Yxz (126) 

The strain and curvature displacement equations of linear strain are given by: 

Q_d4x K o = ^ y . Ko =(Wx + Wy 
dx ' y dy ' x y \dy dx K x ~ ^ ; K y ~ ' K x y ~ \ d y + dx) ( 1 2 7 ) 

iu0 Q dv0 Q /du0 dv0\ 

dx~ ' £y=^y~ ' £ x y = VdJ + ^x7) ( 1 2 8 ) 

n dw „ dw 
ry°z = 0 y + ^ ; £ = *r + ^ (129) 

In matrix form: 

[K] = 

xy 

dx 
d<Py 

dy 
d(f>x dcpy 

dy dx 

[£] = 
-%y 

d w 
0y + dy 

dw 
0* + dx-

dlin 
dx 

dv0 

dy 
/du0 dv0\ 

\ dy dx J. 

(130) 

(131) 

97 



13.2.2 Equilibrium equations 

If we do not proceed from the assumptions of Kirchhoff-Love's thin plate theory 
that the shear stresses R x z and R y z are zero over the thickness of the plate, then the 
equations of equilibrium can be rewritten in the following form: 

Equilibrium equation o of forces in the x-axis direction: 

I dNx \ ( dNxv \ 
—Nx dy + \NX + dxj dy - Nxydx + \Nxy + dyj dx = 0 (132) 

in reduced form in x and y-direction: 

dNY dNxv dNxv dNv 

x + _ x y = 0 . _ ^ y + _ ^ = Q ( B 3 ) 

ax dy dx dy 

Equation of balance of forces in the z-axis direction: 
/ dRxz \ ( dRyz \ 

-Rxzdy + yRxz + ——dxj dy — Ryzdx + [Ryz + ——dy J dx 

+ p dxdy = 0 
in reduced form: 

dR, 
l y z + dy 

dy 
— RXzdy + p dxdy = 0 

in reduced form: 
dMx dMxv 

* + _ J Z _ B - 0 

dx dy 

(134) 

—— + —H + p = 0 (135) 
dx dy 

Moment equations of equilibrium around the x-axis: 

/ dMv \ ( dMxy \ 
Mydx - I My + dy\dx + Mxydy - lMxy + ^ dxj dy 

+ {RVy+ ~ ~ dyj dxdy + y (Rxz + dx^j dy (136) 

dx ' dy x z ~ (137) 

Similarly, the moment equations of equilibrium about the y-axis: 

dMxv dMv 

+ -rL-RyZ = o (138) 

These four resulting equilibrium equations are the foundation for the 
establishment of governing plate equations in terms of displacement for Mind l in -
Reissner plate theory in the following chapters. 
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13.2.3 Orthotropic plate stress-strain relationship 

Similar to Kirchhoff-Love plate theory, the stress-strain relationship for an 

orthotropic laminate with layers of different orientations can be written as: 

(139) 

Where Qij is the transformed stiffness matrix. Stress-resultants for Mind l in -

Reissner can be derived, as in Kirchhoff-Love plate theory, from the relations: 

Qn Ql2 0 0 - £x -

Oy Ql2 Q 2 2 Q 2 6 0 0 £y 

= Qie Q26 Qee 0 0 Yxy 
GyZ 0 0 0 Q 44 Č45 Yyz 
axz- 0 0 0 Q45 <?55-k 

Yxz 

rill Z 

{NXi Ny, NXy) = (0X,OyOXy)dZ 
J-h/2 

rh/2 
{MX,My,MXy)=\ [Ox, OyOXy)zdZ 

J-h/2 

rh/2 
[Qx. Qy) = {?xz, Oyz)dz 

J-h/7 

(140) 

(141) 

(142) 

Similar to Kirchhoff-Love plate theory, the stress-strain relationship for an 
orthotropic laminate with layers of different orientations written according to Thai 
(2013) as: 

\Nxi 
Ny 
N 
lsxy Mx 

My 

MXy. 

A12 Ai6 B11 B12 B16 - £ x -

A12 A22 A26 B12 B 22 B 26 £y 

Aie A26 A66 B16 B 26 B66 
£xy 

B11 B12 B16 On D12 D16 Kx 

B12 B 22 B 26 D12 D22 D26 Ky 

-B 16 B 26 B66 D16 D26 D66i -Kxy-

(143) 

Where 
N 

Aij = ^(<2i ; ) ( f c ) (Zfc+ l - Zfe) 

N 

B i j = \ Y s ž i i \ k ^ - z h 
k=l 

N 

k=l 

zk+l zk) 

(144) 

(145) 

(146) 
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In addition, according to Balogh (2013) following laminate constitutive equations: 
dw~\ 

Qy A44 A4s 
-Qx. A45 dw 

(147) 

where 

Aij = YJ(Qij)ik)(zk+1-zk) 
k=l 

13.2.4 Governing plate equations in terms of displacement 

(148) 

After substituting the plate equilibrium equations into the stress-strain relations and 
then replacing the strain curvatures equations, we obtain the governing plate 
equations in terms of displacement uo, vo, wo, (|)x, and (|)y. Further mathematical 
modifications result in: 

1) Equation for displacement uo (in the x-axis direction): 

d uQ 

^11 a „ 9 + -̂ 12 
d2v0 

dx2 dxdy 

+ B16 

+ A 16 
/d2u0 | d2v0\ | n d2(px 

+ • 
\dxdy dx 

d2(py 

1 dx2 +Bl2dxdy 

(d2<px | a 2 0 y \ 
\dxdy dx2 J 

/d2u0 d2v0\ 
+ A66[~d^ + dxty) +  

+ R (d2<Px d2<py\ 

d2Un d2Vn 
+ ^ 1 6 ^ + ^26" ' dxdy 

d2<px 

dy2 

d2<py 

ß l 6 ä x ä ^ + ß 2 6 ^ " 

= 0 

1) Equation for displacement vo (in the y-axis direction): 

d2u0 d2v0 

dx2 ' dxdy 

+ B66 

d2u0 i d2v0\ i n d2(px 

dydx + d x 2 1 + B l 6 dx2 
+ B 26 

d2<Py 

dxdy 

(d2<px | a 2 0 y \ 
\dxdy dx2 ) 

fd2u0 d2v0\ |  

+ A26[~dy^ + dxd^) + 

fd2<px d2<py\_ 
+ B26{~dyT + dx^)-° 

d2Un d2Vn 
+ A12—± + A22-

dxdy 

d2<px 

dy2 

d2<py 

Bl2dxd^ + B 2 2 ^ 

2) Equation for displacement wo (in the z-axis direction): 

d2w\ fdd>Y d2w\ fd(bv d2w 
A 45 

d<pv d2w\ (d<bY 

dx dxdy dx ' dx2 

d2w 

+ A 4 4 \ ^ L + 
dy dy' 

<d<bx d2w\ 
p = 0 

(149) 

(150) 

(151) 
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3) Equation for displacement <px (rotation of the perpendicular to the midplane 
in the zx-plane) 

}2,, p2„ /p2,, p2„ \ p2,A d2(py d u0 d v0 f d u0 d v0\ d (px 

B l l ^ + B l 2 ^ + B l 6 [ ^ + ^ ) + D l l ^ + D 1 2 dxdy 

(152) 
\dxdy dx2 J dxdy dy2 

(d2u0 d2v0\ d2(Px d2<py 

(d2d>x d2(bv\ t dw\ ( dw\ 

+•>« ( i f + J = A t s ( * + w + A s s ( * • + w 

4) Equation for displacement <py (rotation of the perpendicular to the midplane 

in the zy-plane) 

2,, fl2„ /^2, , ^2„ \ ^2^, 3 2 0y 9 u 0 d v0 (d u0 d v0\ d (px 

B i e 'dx2' + 8 2 6 ~dx~d~y + B e e \dxdy~+ 'dx2') + ° 1 6 'dx2' + ° 

(d2<px d2<py\ 
+ D e e \ d x ^ + -dx^) + B 

26dxdy 

d2u0 d2v0 

il2dxty + B22~by: 
2, /d2u0 d2v0\ d2(px d2<pv  

+ B2\w + ^) + D ^ y + D 2 2 ^ ( 1 5 3 ) 

/d2^ £ ^ A 
+ D 2 6 [ d y 2 +dxdy) 

( dw\ ( dw\ 

13.3 Derivation of relations according to Second Order Shear 
Deformation Theory 

13.3.1 Strains and curvatures 

The linear strains associated with the displacement field in Eq . (68), (69) and (70) 
are according to Khdeir (1999): 

Ex Ex + ZKX + Z Kx , Ey Ey + ZKy + Z Ky (154) 

Yyz ~ Yyz "t" Yyz > Yxz ~ Yxz "t" Yxz (155) 

where 
^xy ^xy ^xy ^xy (156) 

P o _ ^ o . Fo_dvo . o o _fduo dvo\ 
£ x ~ dx • E y ~ dy • £ x y ~ Y x y ~ \ d y + dx) ^ n 
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K y 

d<p1 

dx 

d(f)2 

dx 
A — 

dip! 
dy 

dip2 

dy 

x y ~\dy + dx) 

c 1 = 
<*xy 

Yyz = 2l/>2 Yxz 

d42 + dxp2 
dy dx 

dw0 

202 

In matrix form: 

[e°] = 

-xy 

du0 

dx 
dv0 

dy 
fdu0 | dv0\ 
\dy dx I 

dx 
dipt 
dy 

d(pt | dip± 

dy dx 

[k1] = 

d(p2 

dx 
dip2 

dy 
/d<p2 | dxp2\ 
V dy dx J 

[y°] = 
Y°yz 
Y*xz 

[Y1] i l - Yyz \2xp2] 
.Yxz. [20 2J 

(158) 

(159) 

(160) 

(161) 

(162) 

(163) 

(164) 

13.3.2 Equilibrium equations 

Similar to C P T and F S D T , the equation of equilibrium is determined from the forces 
and moments acting in the plane of the plate. 

Stress resultant in x and y-direction: 

dAL dN 
+ 

xy 
dx dy 

Stress resultant in z-direction: 

= 0 
dN xy 
dx + 

dNy 

dy 
= 0 (165) 

dQx | dQy 

dx dy 
+ p(x,y) = 0 (166) 
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Moment resultant about x and y-axis: 

r i M v dM xv Q x = 0 . dM^y + dMy_Q 

dx ' dy x x " ' dx ' dy ~iy ^ 
The components representing second order stress resultants in x and y-direction are 
then written as: 

H ; = 0 ; —; 1 ; 2ffv = 0 
dx dy dx dy 

13.3.3 Orthotropic plate stress-strain relationship 

(168) 

The stress-strain relations for the kth lamina in the laminate coordinates are given 
by: 

(169) 

Qu Ql2 0 0 
Oy Ql2 Q 2 2 Q 2 6 0 0 Sy 

= Qie Q26 Qee 0 0 £xy 
GyZ 0 0 0 Q44 £45 £yz 
axz- (k) 0 0 0 Q45 Qss- (k) 

-£xz-

Where Qij is the transformed stiffness matrix. 

Stress-resultants for S S D T are according to Khdeir (1999) defined as: 

A rh/2 
[Nx,Ny,Nxy) = y {ax,ay,axy)dz 

kHJ~h/2 

{Mx, My, Mxy) = y (ax, ay, axy)zdz 
hiJ~h/2 

{Lx,Ly,Lxy) = y (ox,oyoxy)z2dz 

[Qy. Qx)=y [Pyz~ °xz)dz 
kHJ~h/2 

(Ry, Rx) = y I {ayz> Ox^)zdz 
4—'. J-h/2 

(170) 

(171) 

(172) 

(173) 

(174) 

Substituting equations (170) - (174) into equation (169) we obtain the following 

relations: 
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~NX- "Oil <2l2 <2l6 
Ny \ <?12 <?22 <?26 
N k = l <2l6 C?26 C?66 

£° 
y 

dz 

.cxy. 

+ 

+ 

hk-i 

rh-k 

O n 
Ol2 

Ql6 

Qn 
Q_12 

Qie 

Ql2 

Q_22 
Q26 

Ql2 
Q_22 
Q26 

Ql6 
Q_26 
Qee 

Ql6 

Q_26 
Qee 

Kx 
Ky 

K° 
Axy. 

-
Kx 
Ky 

K1 

."•xy. 

zdz 

z2dz 

Mx 

r 
Q11 Q12 Qie 

My r Q12 Q22 Q26 
MXy k=\ 

Jhk-i 
Ql6 Q26 Qee 

cx 
t y zdz 

.cxy. 

+ 

+ 

Lx " I 
Ly 

= 1] 
LXy fell 

hk 

hk-i 

hk 

h-k-i 

Q11 

Q12 

Qie 

Q11 

Q12 

Qie 

Q12 

Q22 

C?26 

Ql2 

Q_22 

C?26 

Qie 

C?26 

Qee 

Qie 
Q_26 
Qee 

Kx 

0 

vxy. 

z2dz 

z3dz 

z2dz 

z3dz 

z4dz, 

Qy 
Qx 

n r 

+ 

Q44 Q45 

Q45 Qss 

Y«yz 

Yx°z 
[hk 

Q44 Q45 

Q45 Qss 

Ry 
n r •hk 

' h k - i 

+ 

Q44 Q45 

Q~4S QSS 

hk /•hk 

Jhk. 
Q44 Q4S 

Q~4S QSS 

dz 

Yyz 

Yxz 

zdz 

Yyz 

Yxz 

zdz 

z2dz 

(175) 

(176) 

(177) 

(178) 

(179) 

Strains and curvatures (e0, K0) are not a function of z (these values are always 0 in 
the midplane), they need not be part of the integration. A t the same time, the 
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laminate stiffness matrix is constant for a given layer and thus wi l l be constant in 
the laminate thickness integration. B y expelling these constants before the integral 
and then integrating, we obtain: 

~NX-
Ny 

NXy k = l I 
Oil Qi2 Qie 
Ql2 Q22 Q26 

Ql6 Q26 Qb6 -xy 

Qn Q12 Qie Kx 

+ Q12 Q22 Q26 Ky 

-Qie Q26 Qee. k 
K° 

l^xyl 
Qn Q12 Qie Kx 

+ Q12 Q22 Q26 Ky 

-Qie Q26 Qee. k 
K1 

- xy. 

{hk - /ife-i) 

2(^-^-1) 

3(^-^-1) ; 

(180) 

Mx rr 
My 
MXy { 

Q11 Q12 Qie 

Ql2 Q22 (?26 

Qie Q26 Qee 

+ 

+ 

On 

Q12 

Qie 

Q11 

Q12 

Qie 

Q12 

Q22 

Q2e 

Q12 

Q22 

Q2e 

k 

Qie 

Q_26 

Qee 

Qie 

Qje 

Qee 

-xy. 
-0 n 

vxy 

vxy 

3(^-^-1) 

4(^-^-1) : 

(181) 

r\ 
Ly 

=1' 
LXy k = l I 

Q11 Q12 Qie 

Q12 Q22 Q26 

Qie Q26 Qee 

+ 

+ 

Qn 

Q12 

Qie 

Q11 

Q12 

Qie 

Q12 

Q22 

Q2e 

Q12 

Q22 

Q2e 

k 

Qie 

Qje 

Qee 

Qie 

Qje 

Qee 

3(^-^-1) 

vxy. 

4(^-^-1) (182) 

Q44 Q4S 

Q~4S QsS. k Yx°z 
(hk - hk-±) 

+ 
Q44 Q45 

Q45 Qss 

Yyz 

Yxz 
2 ^ - ^ - l ) 

\ R y ] - Y 1 TQ44 Q45 Y$z 
[RX\ fa \ 1Q4S Qss. k YL 

2(^-^-1) 

+ 
Q44 Q4S 

Q4S Q5S 

Yyz 

Yxz 
3(^-^-1) 

(183) 

(184) 
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Since the deformation and curvature of the shear plane are not part of the sums, the 
laminate stiffness matrix and hk terms can be combined to create new matrices. 

it 
Aij = ^j[Qij]kihk-hk_1) 

k=l 
n 

k=l 
n 

Dij = l^j[Qij]k(h3

k-hl_l) 
k=l 

n 

Fa = 

l^iQtjWk-hU) 
k=l 

n 

^[QiiWk-hk-i) 

(185) 

(186) 

(187) 

(188) 

(189) 

Where Atj is extensional stiffness matrix, Btj is extension-bending coupling matrix, 

Dtj is bending stiffness matrix, Etj is second order coupling matrix, Ftj is second 

order stiffness matrix. 
h 

Aij.Bij.Dij.Eij.Fij = J h[Qij] (l,z,z2,z3,z4)dz 
2 (190) 

{Aij.Dij.Fij (j,i = 1,2,4,5,6) 
Eij>Bij (j.i = 1,2,6) x 

Stress-strain relationship in terms of stress resultants in full matrix form according 

to Shahrjerdi & Bayat (2010): 

Nx-
Ny 

NXy 

Mx 

My 

MXy 

Jxy 

"An Al2 Al6 #12 

Al2 A22 A26 #12 #22 

-Aie A26 A66. Sib #26 

#12 #16" \Dn #12 

#12 #22 #16 Dl2 #22 

Sib #26 ^66- Die #26 

\F>n Dl2 Die] "#n #12 

Dl2 D22 Fl2 #22 

-I#i6 026 Fie #26 

"16 

#16 

#66 

#16 

#26 

#66 

#16" 

#26 

#66-

D n D 

Qy A44 A45 

A45 Ass. 
Ry #44 #45 

Rx- #45 #5 5J 

#44 

#45 

#44 

#45 

11 

#12 

#16 

#11 

#12 

#16 

#11 

#12 

#16 

#45 

#55 

#45 

#55 

12 

#22 

#26 

#12 

#22 

#26 

#12 

#22 

#26 

Yyz 

Yxz 

Die -

#26 

#66 

#16" 

#26 

#66-

#16l 

#26 

#66-

(191) 

(192) 

Stress-strain relationship in terms of stress resultants in contracted matrix form: 
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w 
[M] = 
[L] 

[A] [B] [D] 
[B] [D] [E] 
[D] [E] [F] 

\[Q]] \[A] [B]] [[y°]l 
l[R]\ l[B] [D]\ liY1]] 

(193) 

(194) 

13.3.4 Governing plate equations in terms of displacement 

Substitution of the plate equilibrium equations into the previous stress-strain 
relations and subsequent equation substitution (strain curvatures) yields governing 
plate equations in terms of displacement un, vn, wo, 0 i , 4>2, and ifj2. B y further 
mathematical adjustments we obtain: 

1) Equation for displacement uo (in the x-axis direction): 

d2u0 d2v0 (32u0 a 2 v 0 \ d2(Pi d2\\it 

A l l ^ + A l 2 ^ + A l 6 [ ^ + ^ ) + B l l ^ + Bl2d^ 

(d2^ a 2 ^ 5 2 c b 2 d 2 i | / 2 /a 24> 2 a 2i|/_N 

6{dxdy + dx2 ) + D l 1 dx2 +Dl2dxdy + Dl6[dxdy+ dx2 , 

3 2 u 0 d2v0 fd2u0 d2v0\ d2(pt 

l 6 ^ + A 2 6 ^ + A 6 6 [ ^ + ^ ) + Bl6dx~dy' 

+ B 2 6 ^ r + B 6 6 ^ — 

+ B 1 6 ( 

+ Al6dxdy'' " Z b dy2 ' " b b \ d y 2 ' dydxj ' "lbdxdy 
, 2 * i x 3 2 ^ \ d 2cb 2 a 2 i | / 2 

>y2 + dxdy)+ Dl6dxdy+ ° 2 6 dy2 

(d2<\ /d2<p2 + d^h\ = 0 

dxdy) 

(195) 

2) Equation for displacement vo (in the y-axis direction): 

lu0 d2v0 Id2u0 d2v0\ d2(pt d2\p1 

x^ + A 2 6 ^ + A66{^ + ^ ) + B l 6 ^ + B26dxfy 

+ B ("_!__ + ____\ . - 92(P2 . „ d2xp2  

66\dxdy dx2 

. - .9 . \ - .9 - .9 / a 9 

O u 0 

a 2 

+ ^ 6 6 ^ x a y

+ a x 2 J + / l l 2 a x a y ' " 2 2 a y

2 ' " 2 6 V a y

2 

a 2

0 1 a 2 ^ / a 2

0 1 a 2 ^ \ a 2 0 2 

+ ^ 1 2 dxdy'+ 8 2 2 ~W + 8 2 6 \ty + dx~dy:) + ° 1 2 ~dx~dy~ 

+ ^ 2 D Y 2 + D 2 6 y d y 2 + dxdy) - 0 

)x2 2 6 dxdy 

dxty + A 2 2 ~dy~2+A2e\dy2 

a 2 0 2 

d2v0 

dxdy 

(196) 

3) Equation for displacement wo (in the z-axis direction) 
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dx dxdy J 

+ A44 

, 3 0 ! d2w0\ d(2ip2) 3 ( 2 0 2 ) 

dx ' dx2 

di/j1 d2w0 

dx 

+ B 

dy ~*~ dy2 

d ( 2 0 2 ) 

dJwo\ 
+ A ^ [ dy +dxdy) 

+ B 

dx 

d(2ip2) 
4 4 " dy 

45" dy 
= - p ( x , y ) 

(197) 

B 

4) Equation for displacement 4>t (rotation of the perpendicular to the midplane 

in the zx plane) 

d2u0 d2v0 Id2u0 d2v0\ d2(pt d2\p1 

~dx^ + Bl2dxty + B l 6 [dxty + ^ ) + D l l ^ + Dl2dxfy 

_ L n / ^ i ^ \ c ^ 2 (d2<p2 d2xp2\ 
+ D l 6 [ ^ + ^ ) + h l l ^ + h l 2 ^ + hl6[d^ + ^2~) 

d2u0 d2v0 fd2u0 d2v0\ d2(pt 

+ B l 6 ^ + B 2 6 ^ + B 6 6 [ ^ + ^ ) + Dl6frcdj 

d2\px / a 2 0 ! d 2 i M a 2 0 2 a2t/>2  

+ ° 2 6 ~dy2~ + ° 6 6 V a ^ " + dxty) + E l 6 axay" + " 

, p / a 2 0 2 a 2 i /> 2 \ 
+ 6 6 ^ a y

2 + a x a y j 

- ^ 4 5 ( ^ 1 + ^ ) + ^ 5 5 ( 0 1 + ^ ) + B 4 5 2 ^ 2 + B 5 5 2 0 2 : 

(198) 

d y 2 

= 0 

5) Equation for displacement 0 2 (rotation of the perpendicular to the midplane 

in the yx plane) 

d2u0 d2v0  

Bl6~dxz~ + B 2 6 ^ + ' dxdy B 6 6 \ d x ^ + ~dx^) + D  

+ D 6 6 [ d x ^ + -d^) + E 

/ a 2 0 2 a 2 ^ 2 \ 
+ E66{dx^ + ~dx^) + B 

a 2 0 ! 

1 6 dx2 

d2u0 

1 6 dx2 

+ E 2 6 

+ D 26 
a 2 ^ 

axdy 

3 2 0 2 . . d2xp2 

dxdy 

d2vQ 

1 2 dxdy + B 2 2 ay^ 
+ B 26 

a 2 u 0 a 2 v 0 ^ 

a 2 0 ! a 2 ^ 
+ Dl2dlcdy + D22^y2~ 

d2xp2 

+ D 2 6 

2 

d 2 0 i | d2xpA | 

d y 2 d x a y / 

dy2 

2 

axay / 

a 2 0 
•12 dxdy 

+ E22-̂ 2- + E 2 6 ^ a y 2 

^4(̂ 1+ )̂ +̂45 

a 2 0 2 _ a 2 ^ 
+ axay / 

( 0 1 + ^ ) + #442^2 +#45202 = 0 

(199) 
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6) Second order displacement equation xpt (rotation of the perpendicular to the 

midplane in the zx plane) 
d2u0 d2v0 (d2u0 dv0\ 5 2 0 1 

D l 1 ~dx*- + °12 dx^y + °1 6 [toty + dx^) + Ell~dx^ + E l 2 

d2^ 
dxdy 

+ E 
/ a 2 0 ! , a 2 t M , _ a 2 0 2 , _ a2t/>2 , _ / a 2 0 2 

16 + • l a x ^ y dx2 
+ F l i a x 2 

+ F 12 

a 2 u 0 5 2 V 0 

+ ^ 1 6 ^ - ^ + 0 2 6 ^ + 

dxay 
2 

+ F 16 \ axdy 

1 

+ dx2 

3 2 01 
' dxdy 

)2, 
a y 

12. 
dxdy 

2, 

De6\dy2~ + dxfy) + E l 6 

d2\px / a 2 0 ! a 2 t M a 2 0 2 a2t/>2 

E 2 6 ~W + E 6 6

 v " a ^ + -^rTy) + F « ̂  + F 2 6 - ^ 2 -

6 6 l , a y 2 a x a y j 

4 5 
d W n \ / dWn 

+ ^ ) + a 5 5 ( 0 1 + — = 0 

(200) 

7) Second order displacement equation xp2 (rotation of the perpendicular to the 

midplane in the zy plane) 

d2u0 d2v0 I d2u0 d2v0\ 
D l 6 ^ + D26d^ + D 6 6 [ d ^ + ~dx2~) + E 

/ a 2 0 1 + a 2 ^ 1 \ 
\dxdy dx2 J 

3 2 0 i _ a 2 ^ 
+ b 2 6 -

+ E 6 6 

+ F 6 6 

a x 2 

3 2 0 2 . _ d2ip2 

' dxdy 

+ F 26 dxdy 
/ a 2 0 2 | a 2 ^ 2 v 
yaxay a x 2 y 

+ 

+ 

a 2 U n d2Vn 
D i 2 ^ - T L + D 2 2 ^ f + dxdy 

32, 
a y

2 

)2, 

/ a 2 u 0 , 5 2 i ; o \ 
° 2 6

v a y + a x a ^ J + E l 2 

g 2 01 
dxdy 
2, 

+ 

- 2 

a 2 ^ / a 2 0 ! a 2 t M a 2 0 2 a2t/>2  

E 2 2 ~W + E 2 6

 v ~ay" + ~dx~d~y) + F l 2 a*ay~ + p 2 2 ~W 
/ a 2 0 2 a 2 ^ 2 \ 

2 6 \ a y 2 dxdy) 
( dw0\ ( dw0\ 

B44 + — J + B 4 5 (^0! + — j + DAA2xp2 + D45 2 0 ! = 0 

(201) 

13.4 Derivation of relations according to Third-Order Shear 
Deformation Theory 

13.4.1 Strains and curvatures 

The linear strains associated with the displacement field according to Nami (2015): 

Ex = s° + ZK% + Z2K\ + Z3K2 (202) 
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Where 

£y — £y I ZKr-y I Z I 2 

Yyz Yyz zYyz z Yyz 

Yxz = Yxz + ZYxz +Z2Y; 2„2 
xz 

„ _ „o I 7U.o I 72̂ .1 1 73̂ .2 
axy ^xy xy xy xy 

dllr 
EX- = 

.2 _ 

dx 

dx 

d(px 

0 0 
£ y ~ dy ' £ x y ~ ^xy 

dx 

dXx 

dx 

Ky 

Ky — 

.2 _ 

dlpy 
dx 

d<Py 

dy 

dXy 
dy 

K° ~ 
"•xy ~ 

K1 -
"•xy 

.2 

/(in,, dv0\ 
\dy dx J 

dipx dipy 
dy dx 

d(px d(py 

dx 

dXv 

vxy 

dy 

fdXx +  

\ dy dx 

dw0 

dy 

Yyz = 24>y 

Yyz 3Ay 

Yxz = 2<px 

Yxz ~ "iXx 

(203) 

(204) 

(205) 

(206) 

(207) 

(208) 

(209) 

(210) 

(211) 

(212) 

(213) 

In matrix form: 

,0 _ 

-xy. 

,1 — 

vxy 

du0 

dx 
dv0 

dy 
dut 0 dv0 

dy dx 
d<px 

dx 
d<Py 
dy 

d(f>x d(py 

dy dx 

,0 _ 

.0 _ 

.2 _ 

dx 
dlpy 
dx 

d\px dipy 
dy dx 

dXy 
dx 
dXy 
dy 

dXv dX, 
+ • dy dx 

^x + 
dw0 

dx 
dw0 

dy 

(214) 

(215) 

(216) 

110 



,2 _ Yxz 3AX 
• 1,1 — Yxz 2<px 

Xyz. 3 Ay • Y - 2<Py (217) 

I t 

(»o.Wo) 

(a) Initial (b) Deformed 

Figure 37 - Initial and deformed geometries of a laminated composite beam under TSDT assumptions 
(Shafei, 2020) 

13.4.2 Equilibrium equations 

Similar to C P T , F S D T and SSDT, the equation of equilibrium is determined from 

the forces and moments acting in the plane of the plate. 

Stress resultant in x and y-direction: 

dNx dNxy 

dx dy 

Stress resultant in z-direction: 

dNYV dNv 

= o ; — ? y + — y = o 
ax ay 

(218) 

dQx ,
 dQy + -TL + P(x,y) = 0 

dx dy 

Moment resultant about x and y-axis: 

dMY dMrv dMYV dMv 

±-l ^--0 - S = 0 • — H - S = 0 

dx + dy ^x b x U ' dx + dy ^ b y U 

Second order stress resultant in x and y-direction: 

dLx + dLXy_2R^ = Q _ z ^ + ^y_2Rv = 0 
dx dy dx dy 

(219) 

(220) 

(221) 

The components representing third order stress resultants in x and y-direction are 
then written as: 

dx ay dx dy y 
(222) 
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13.4.3 Orthotropic plate stress-strain relationship 

The stress-strain relations for the kth lamina in the laminate coordinates are given 
by: 

Jxy 

On Q12 Qi6 o o 
Q_12 Q_22 Q_26 0 0 

Qie Q26 Qee 0 0 
0 0 0 Q_AA Q_45 

0 0 0 Č45 Qss 

Yxy 
Yyz 
Yxz 

(223) 

Where Qij is the transformed stiffness matrix. Stress-resultants for T S D T are 

defined according to Szekrenyes (2014) as: 

Z rn/ z 
{ax,ay,axy)dz 

k=iJ~h/2 

[Mx,My,Mxy)= Z (oxloyioxy)zdz 

v ( h / 2 

(^Lx,Ly,Lxy^ = y I (JJX, G Y , Gxy^z dz 
hiJ~h/2 

[Px,Py,Pxy)= ) {ax,ay,axy)z2dz 
kťiJ-h/2 

A cm 
{Qy. Qx) = / {Pyz. °xz)dz 

hiJ~h/2 

A r m 
[Ry.Rx)=/ {Oyz.axz)zdz  

kťlJ-h/2 

A cm 
(Sy,Sx) = y (ayz,axz)z2dz 

'. J-h/2 

(224) 

(225) 

(226) 

(227) 

(228) 

(229) 

(230) 

Stress-strain relationship according to Tian (2022) in terms of stress resultants in 
contracted form: 

\[A] [B] [D] [E]l 
[B] [D] [E] [F] 
[D] [E] [F] [G] K1 (231) 

.[E] [F] [G] [H]\ 

\[N]] -

[M] 
[L] 

l[P]\ 

\s°] 
K° 

K1 

-K2 . 

[Q] 
[R] = 
[S] 

[A] [B] [D] 
[B] [D] [E] 
[D] [E] [F] 

\Y°] 
Y1 (232) 

in full form: 
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- -

N y 

NXy 

~MX 

My 

M x y 

"V Ly 
Lxy 
~PX~ 

py 

p 
1 xy 

- A12 A16 ~Bn B12 Bl6~ \ D n D12 Dl6 E n E12 El6 
-

A 2 6 B12 B22 B26 D12 E>22 E>26 E16 E26 ^ 6 6 

A e A66- B16 B26 B 6 6 - Di6 E>26 E>66 -E16 E26 ^ 6 6 -

A i B12 B16 D12 Dl6 E n E12 El6 E n F12 Fl6] 
B22 B26 D12 D22 E>26 E16 E26 ^ 6 6 F12 F22 F26 

-Bl6 B26 #66- -D16 D26 D66 VE16 E26 ^ 6 6 \-Fl6 F 2 6 F66-

A i D12 Dl6 E11 E12 El6 \Fu F12 Fl6] A i G12 G 1 6 

D 1 2 D22 D 2 6 E16 E 2 6 

E 6 6 F12 F22 F26 
G12 G22 G 2 6 

Afi D 2 6 D 6 6 
-E16 E26 ^ 6 6 - \-F16 F 2 6 F66- A e G 2 6 G66-

E n B12 E-16 E n E12 El6] G11 G12 Gl6 
• H u Hl2 Hl6 

El6 B26 B-66 F12 E22 E26 G12 G22 G26 H12 H22 # 2 6 

- A 6 B26 B-66- \-Fl6 E 2 6 E66- G 1 6 G 2 6 G66- EI16 EI26 # 6 6 -

cx 

0 
y 
0 
xy 
0 

Ky 

^xy 

4 
xy 

C2x 
,2 

K 

K 

K 

K 

K 

(233) 

Qy] A 44 A45 B44 B45 D44 D45 
Qxi A45 A 5 5 A s Bss. As Dss 
Ry] B44 B45 D44 E>4S E44 E45 

R x \ A s Bss. A s Dss. A s Ess 

\sy] 
D44 D45 E44 E45 F44 F45I 

A J A s Dss\ A s Ess\ [F4S fssJ 

Y°xz 
Yyz 
Yxz 
Yyz 
Yxz 

(234) 

Where: 

Aij, Bij, Dij, Eij, Fij, Gij, Htj = j (1, z, z2, z3, z 4 , z 5 , z6)dz 

x 
Atj, Bij, Dtj, Eij, F^ (J, i = 1,2,4,5,6) 

Bij, Gij = 1,2,6) 

(235) 

For kth layer of the laminate: 

AiJ = ^[Qij]k(hk-hk_1) 
fe=i 

n 
B y = __£[«y] k ( f t 2- f t 2-i) 

/c=i 
n 

Dij = l^j[Qij]k(h3

k-hl_l) 
fe=i 

n 

fe=i 
n 

fe=i 
n 

fe=l 
n 

Hij = ^[Qij]k(hl-h7

k_1) 

En = 

Fa = 

G„ = 

(236) 

(237) 

(238) 

(239) 

(240) 

(241) 

(242) 
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Where Aij is extensional stiffness matrix, is extension-bending coupling matrix, 

Dtj is bending stiffness matrix, Etj is second order coupling matrix, Ftj is second 

order stiffness matrix, Gtj is third order second order stiffness matrix, Htj is third 

order coupling matrix (Szekrenyes, 2014). 

13.4.4 Governing plate equations in terms of displacement 

Substitution of the plate equilibrium equations into the stress-strain relations above 
and subsequent equation substitution (strain curvatures) yields governing plate 
equations in terms of displacement uo, vo, wo, 4>x, 4>y, ipx, ipy, Ax and Xy. B y further 
mathematical adjustments we obtain: 

1) Equation for displacement uo (in the x-axis direction): 

A l 1 dx2 +Al2dxdy + Al6{dxdy+ dx2) + B l 1 dx2 +Bl2dxdy + Bl6{dxdy+ dx2) 
d2<px d2<py fd2<px d2(j}y\ d2Xx d2Xy 

+ D l 1 Ix^ + ° 1 2 dxty + ° 1 6 [oxty + ^ ) + E l l ^ + E l 2 d x t y 
(d2Xx d2Xy\ d2u0 d2v0 fd2u0 d2v0\ 

+ E l 6 [dxdy + dx2) + A l 6 dxdy + A z 6 dy2 + A f i 6 ^ dy2 + dxdy) 

+ Bl6dxdy + B 2 6 dy2 + B 6 6 [ d y 2 + dxdy) + ° 1 6 dxdy + ° 2 6 dy2 

fd2<px d2<py\ d2Xx d2Xy fd2Xx d2Xy\ _ 
+ °66\dy^ + dxty) + E 1 6 dxty

 + E z 6 3ŷ  + E f i 6
 \W + dxty) ~ ° 

(243) 

2) Equation for displacement vo (in the y-axis direction): 

d2u0

 d 2 v o , . (°2uo d2v0\ a 2 0 x , R

 a 2 0 y , R f 9 ^ d2xpy\ 
A l 6 dx2 + A z e dxdy + Afi6[dxdy + dx2) + B l 6 dx2 +B26dxdy + B66\dxdy+ dx2 ) 

d2<bx d2cbv (d2(bx d2(bv\ d2Xx 

+ D 1 6 -^f + D 2 6 —p + D 6 6 —p + — + E 1 6 — - f + E 
9 x 2 dxdy \dxdy d x 2 / d x 2 dxdy 
fd2Xx d2Xy\ d2u0 d2v0 (d2u0 d2v0\ 

+ h 6 6 [dxdy + dx2 ) + A l 2 dxdy + A l 2 dy2 + A l 6 { dy2 + dxdy) 

d^ d^y (dhPx d2H>y\ d2<Py 
+ B l 2 dxdy + B l 2 dy2 + B l 6 { dy2 + dxdy) + ° 1 2 dxdy + ° 2 2 dy2 

(d2<px d2<py\ d2Xx d2Xv (d2Xx d2Xv\ 
+ ° 2 6 -TT + + E 1 2 ~x~lT~ + E 2 2 „ - f + E z 6 + T I T = 0 

\ 3y2 dxdy J dxdy dy2 \dy2 dxdy J 
(244) 

3) Equation for displacement wo (in the z-axis direction): 
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''JL 
,dx 

2WQ\ d2w0 

+ 2B4S — (py + 2Bss—(px + 3D45 — A ' dx dx dx 

d 
dy 
d 

+ 3D44 ~z—^-v + 3D4.1- ——A 

+ 
d2w0 

9y2 9y 
d2wn\ d d 
^ ) + 2 S 4 4 - 0 y + 2 S 4 5 -

dy dy x = ~p(x,y) 

(245) 

4) Equation for the displacement 4>x (rotation of the perpendicular to the 

midplane in the zx plane) 

dhio ^ 0 , 0 (d2"o , d2v0\ d2ipx d2ipy fd2xpx d2ipy\ 
U l 1 dx2 + B l 2 dxdy

 + B l 6 ̂ axay + dx2) + D l 1 dx2 + U l 2 dxdy
 + U l 6 ̂ xay

 +
 dx2 ) 

d2<px d2cpy (d2cpx a2<M 
+ h l 1 dx2 + h l 2 dxdy + h l 6 [dxdy + dx2 ) + b l 

d2Ar d2Av 

'd2Xx d2Ay\ d2u0 d2v, 
' \dxdy dx2) 1 6 dxdy 

1 1 dx2 T l 1 2 

<d2u 
+ + F16 1 -^7. + -^ZT I + B 1 6 ^Zfy + B 26 ~Q~2 + B66 I 

d2</>% , „ a 2 ^ y , n (d2^x d2xpy\ d2(px d2(py 

l0 

dxdy 
d2vA 

+ Dl6dxdy + D 2 6 dy2 

dy2 dxdy J 

+ °66 I "ĝ T + ^ J + E16 g j ^ + E26 "g^f 

+ E 66 
a2<̂  | a2<M 
9y2 dxdy J ' *lbdxdy ' '*b dy2 

d2Ax d2Av (d2Ax d2A. 
+ F i61^7. + F26 "dr + F 6 6 I + 

3y2 a*ay / a*ay 
A45 [ipy + ~g-) + A55 [xl>x + —J + 2B45(t>y + 2Bsscpx + W45Ay 

/ dw0\ t dw0\ 
D45 yPy + -gyJ + D55 [ipx + — J + 2E45<py + 2Ess<px + 3F45Ay 

= 0 

(246) 

5) Equation for the displacement 4>y (rotation of the perpendicular to the 

midplane in the zy plane) 
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B 16 
d2u0 

dx2 
+ B 

d2v0 (d2u0 d*v0\ d^x d2^ (d^x dhpy\ 
26dxdy + B66[dxdy+ dx2) + D l 6 dx* + °26dxdy + ° 6 6 [dxdy + dx* ) 

d2<px d2<py (d2<px d2<py\ d2Xx d2Xy  

+ El6~d# + E z 6 dxty + Efi6 [dxty + ^ ) + F l 6 ~ ^ + F26dxfy 
d2A. 

. a 66[dxdy 

'x 
+ D 

d2ipx u ujv 

+ F, 

+ D 

^44 [tyy 

+ 
9 2 X 
ax 2 

r32</; 

+ B: 

(d2<Px 

d2u0 

'12 dxdy 
+ B 22 

ax 2 

d2v0 

dy2 
+ B '26 

fd2u0 d2v0\ 
dxdy) 

'26 

d2<P. ' y 92(py\ 
+ a ^ J + F l 2 

d2x 
dy2 dxdyJ E 

a 2 i . 

V ^ y 2 

(d2ipx _ d 2 i / ; y \ u ^ 
l + E l 2 dxdy~ + E 2 2 ^ y ~ 

+ F 
oxoyj dxdy 2 2 dy \ ° y oxoyj 

-Of) + ̂ 45 [l>x + "gj-J + 2 B 4 4 0 y + 2 B 4 5 0 X + 3D 4 4A 

dw 0 \ / dw 0 \ 

- ^ y J + D45 ^ x + — J + 2 £ 4 4 0 y + 2E4S(px + 3F44Ay 

n 

2 i v / a 2 x 
y + F 2 6 ( — dxdy J 

+ 3D45AX 

- D44(ip2 

+ 3F45/L 

'y+ dy 

= 0 

(247) 

6) Equation for second order displacement <px (rotation of the perpendicular to 

the midplane in the zx plane) 

d2u0 

fln^+Di2 
d2v0 

dxdy + « fd2u  

D i 6 krz + • 
d 2 v f 

\dxdy dx 2 
+ E, 92</>* 92</>y 

dx2 E l 2 dxdy 
+ E 16 

x d 2 i / ; y 

d 2 ^ 
+ F n ^ r r + Fi2 

+ G 

dx 2 

/ a 2 / i v 

dxdy + F, 
/ a 2 0 x | d 2 < M 

1 \ d x d y dx 2 y + G 

\dxdy dx2 

d2Xv d2 Xv 

16 
d2/L 

\dxdy dx2 

d 2 u n 9 V n 

92</>* 92</>y 
+ E l 6 d x d y " + E z 6 ^ 

+ £ , 1 6 ^ i + D 2 6 ^ : + D 
dxdy 9 y 2 

d2xpx , d 2 ^ 

1 1 a x 2 

a 2 u 

+ G 

66 + 

L Z dxdy 

9 2 M 
dy 2 dxdy) 

+ E 66 dy 2 • + 
d2tf>* 

a 2 i z 

+ ^16 a . . a . . + ̂ 26 

dxdy/ 
a 2 A y 

ay^ + G e 6 V a y 2 

d 2 0 y 

+ F l 6 dxdy~ + F 2 6 ~ d y ^ 
d 2 A y * 2 

+ 
a 2 i y \ 

dy 2 dxdy) dxdy dy2 \ dy2 dxdy) 

B45 [ipy + -g-J + B 5 5 ^ * + -gj-J + » 4 5 2 0 y + D 5 5 2 0 x + £ 4 5 3A y 

= 0 

(248) 

7) Equation for second order displacement <py (rotation of the perpendicular to 

the midplane in the zy plane) 
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d2u0 d2v0 fd2u0 d2v0\ d2ipx d2xpy (d2ipx d2xpy\ 
E ^ ^ ^ E x 2 ^ ^ E x b ^ ^ ^ ^ y F ^ ^ ^ F x 2 ^ ^ F x b ^ ^ ^ ~ ^ ) 

d2<px d2<py fd2cf>x d2(f>y\ d2Xx d2Xy 

+ G l l ^ + G l 2 ^ + G l 6 [ ^ + ^ ) + H l l ^ + Hl2d^ 
d2X 

+ H16 

+ F 

\dxdy 
d2ip: 

+ 

16 dxdy 

d2<P. 

+ F 

d2x} 

'dx2 

d2ip 

d2u0 

+ E 1 6 ^ + E 
d2v0 

26 

3 dxdy 

dy2 

26 Q y 2 + E, '66 

+ 
2M 

d2Xr 

dxdy J 
d2X 

+ G 16 

dx2 ' " 1 2 dxdy 
d2u0 | d2v0\ 
dy2 dxdy J 

d2<Px , r d2<t>y 
+ ^ 2 6 ^ 7 2 -dxdy 

d2Xy 

dy2 

- + • 
d2X, 

- 3 

dxdy ' " 2 6 dy2 ' "66\dy2 ' dxdy) 
t dw0\ t dw0\ 

D45 yPy + -Q^-J + Dss yPx + J + 2E45<py + 2E55(p. 3F4$Xy 

= 0 

(249) 

8) Equation for the third order displacement Xy (rotation of the perpendicular 

to the midplane in the zy plane) 

d2uQ d2v0 

E\6 ~Z T + ^ 2 6 ~ ~ I" Ef dx2 ' dxdy 

+ G16 

I d2uQ d2vQ\ d2\px  

5 [dxdy + ~dx^J + F^~dxT^ F 

d2xpy 

26dxdy 661dxdy dx2 

+ H. 

d2ct>x 

dx2 

d2X 

+ G 26 

d2<py (d2cp x d2<f> 
——: r ——: :—-

d2X, 

d2X 
dxdy ' "66\dxdy dx2 I 1 6 dx2 

d2u0 d2v 
+ 2̂2 

+ H 
d2X, 

26 ' 

6 6 (dxdy + dx2 ) + E l 2 dxdy dy-
- + E-, 

d2Un 

- + 

dxdy 
d2vA 

dy2 dxdy I 
d2xbx *2 

+ F 1 2 ^ + F 
' dxdy 

r 2 2 dy2 
• + F 26 dy' • + I c * 2 » » 

dxdyI 1 2 dxdy 
+ G 22 

92<Py 
dy2 

d2X„ 
• + H 

d2Xr d2Xy\ (d24>x d24>y\ d2Xx _ 
26\dy2 dxdy) 1 2 dxdy 2 2 dy2 ' "2b\dy2 ' dxdy J 

— 3[Z) 4 4 £y Z + D45exz + E44eyz + E45exz + F44eyz + F45exz\ = 0 

(250) 

9) Equation for the third order displacement Xx (rotation of the perpendicular 

to the midplane in the zx plane) 
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d2u 
° ^ x 

t0 d*Vo fd2u0 d2v0\ d2ipx dhpy fd2ipx d2ipy\ 

^ + D 2 6 ^ + D 6 6 l v ^ + ^ J + E l 6 ^ + E 2 6 a ^ + E66\d^dy- + -dx2~) 

+ Fie d % 2 + F 2 6 d x d y + F 6 6 ̂ — + d x 2 ) + G 1 6 - • + G 2 9x2 2 6 dxdy 

/ a % _ _ M _!_o + D _!_o + D 

+ G f i 6 ^ * a y

 + ax 2 J + ° 1 2 dxdy + D z 2 dy

2 + D z e 1, a y

2 + dxdy) 
dhp d**y fdhl,x d^y\ d2<P d2cPy 

+ hl2dxdy + h 2 2 dy2 + h 2 6 \ d y 2 + dxdy) + *12 dxdy + *22 dy2 

fd2<px d2<py\ d2Xx d2Xy fd2Xx d2Ay\ 
+ F z 6 [~dy^ + drij) + G l 2 dx~dy~+ G z 2 + G z 6 V "dy2 + ~tedy) 

t dw0\ t dw0\ 

ypy + -Qy-J + B45 [ipx + — J + 2D44(py + 2D4S(px + 3E44Xy 

x] = 0 

+ 3E4$A 

(251) 

13.5 Effects of moisture and fiber orientation on material 
parameters of wood 

As can be seen from the Graph 26-Graph 36, the material constants depend 
on both moisture content and fiber orientation. In the case of the stiffness matrix 
C11, the greater the fiber deflection and the greater the moisture content, the more 
the modulus of elasticity decreases. In the case of stiffness matrix Cn=10000 M P a , 
which we transform to an angle of 90° and convert to a material moisture content 
of 30%, then C n is around 212 M P a . The stiffness matrix is therefore reduced by 
98% of its original value. When only the moisture content is changed, the stiffness 
matrix is reduced by 36%. 

The following graphs are expressions of the dependence of the material 
constants on moisture content and fiber deflection separately and the dependence 
on moisture content and fiber deflection simultaneously. 
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13.6 Numerical FlexPDE script - Non-stationary 3D moisture 
diffusion 

TITLE "Non-stationary 3D moisture diffusion at 20°C" 

SELECT 
e r r l i m = l e - 5 
painted 

COORDINATES 
c a r t e s i a n 3 

VARIABLES 
w 

DEFINITIONS 
vyska = 0.1 
delka = 1.0 
tp=273.15+20 
ro=0.450 
w_fin_voda=0.30 
w_fin_vzduch=0.16 

k o e f i c i e n t l = 3 . 5 
k o e f i c i e n t 2 = l 

patm=100000 
rvoda=l 
R=8.341 
rk=ro/(l+0.28*ro) 
Pw=l-rk*(0.653+w) 
Ea=38500-29000*w 
Eo=40600+42.4*(tp-273) 
po=1.3*10 A(ll)*exp(-Eo/(R*tp)) 
rBS=l.53/(1+1.53*w) 
A=7.731706-0.014348*tp 
B=0.008746+0.000567*tp 
dphidw=100*A*B*exp(-100*B*w)*exp(-A*exp(-100*B*w)) 

Da=(2.2/patm)*(tp/273.15) A1.75 
DBT=7*10 A(-6)*exp(-Ea/(R*tp)) 
DV=Da*0.018*po/(rBS*rvoda*R*tp)*dphidw 

DTang=(l/(l-Pw))*(DBT*DV/(DBT+DV*(l-Pw A(l/2))))*koeficientl 
DRad=3/2*DTang 

DBL=2.5*DBT 
DLong=(Pw/(l-Pw))*(DV* DBL/(DBL+0.01*(l-Pw A(l/2))*DV))*koeficient2 

hw_voda=le-6 
hw_vzduch=2e-7 

INITIAL VALUES 
w=0.12 
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EQUATIONS 
dx(DLong*dx(w))+dy(DRad*dy(w))+dz(DTang*dz(w))-dt(w)=0 

EXTRUSION 
z = -vyska/2,vyska/2 

BOUNDARIES 

s u r f a c e 1 natural(w)=hw_vzduch*(w_fin_vzduch-w) 
surfa c e 2 natural(w)=hw_voda*(w_fin_voda-w) 

Region 1 
s t a r t ( - d e l k a / 2 , - d e l k a / 2 ) 

natural(w)=hw_vzduch*(w_fin_vzduch-w) 
l i n e t o (delka/2,-delka/2) 
t o (delka/2,delka/2) 
t o (-delka/2,delka/2) 
t o c l o s e 

TIME 
0 t o 30*86400 

PLOTS 
f o r t = 0 by 1*86400 t o 30*86400 

contour(w) on z=0 as "Moisture d i s t r i b u t i o n i n the plane XY [- ]" 
contour(w) on x=0 as "Moisture d i s t r i b u t i o n i n the plane YZ [- ]" 
contour(w) on y=0 as "Moisture d i s t r i b u t i o n i n the plane XZ [- ]" 
e l e v a t i o n ( w ) from (-delka/2,0,0) t o (delka/2,0,0) as "Moisture content 
- X - a x i s [ - ] " 
el e v a t i o n ( w ) from (0,-delka/2,0) t o (0,delka/2,0) as "Moisture content 
Y - a x i s [ - ] " 
el e v a t i o n ( w ) from (0,0,-vyska/2) t o (0,0,vyska/2) as "Moisture content 
-Z-axis [ - ] " 

HISTORIES 
h i s t o r y ( w ) at (0,0,-0.045) (0,0,0) (0,0,0.045) f i x e d range(0 0.35) as 
"Moisture content change over time [ - ] " 

END 

13.7 Numerical FlexPDE script - CPT 

TITLE 'Bending - 3 LAYERS - CPT' 

SELECT 
ngrid=16 { in c r e a s e i n i t i a l g r i d d i n g } 
e r r l i m =le-4 { in c r e a s e accuracy t o r e s o l v e s t r e s s e s } 
painted { p a i n t a l l contour p l o t s } 

VARIABLES 
u 
v 
w 
wxx 
wyy 
uxx 
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uyy 
vxx 
vyy 

DEFINITIONS { parameter d e f i n i t i o n s } 
E _ l l = 11*10 A9 
E_22 = 0.37*10 A9 
G_12 = 0.69*10 A9 
G_13 = G_12 
G_23 = G_12 

vl2=0.2 
v21 = ( E _ 2 2 / E _ l l ) * v l 2 

! LAMINAE LAYERS, GEOMETRY 
h i = 0.03 
h2 = 0.03 
h3 = 0.03 
h=hl + h2 + h3 

rho = 410 
g=rho*9.81 
L l = l .5 
L2=0 .3 

a l = 0 
a2 = 90 
a3 = 0 

P= - 12000 - (g*h) {N.m-

Q l l = E _ l l / ( l - v l 2 * v 2 1 ) 
Q12 = ( v l 2 * E_22) / (1-
Q16 = 0 
Q26 = 0 
Q22 = E_22 / ( l - v l 2 * v 2 1 ) 
Q66 = G_12 

ml=l !cos(30 degrees) 
nl=0 !sin(30 degrees) 
m2=0 !cos(55 degrees) 
n2=l !sin(55 degrees) 
m3=l !cos(83 degrees) 
n3=0 !sin(83 degrees) 

Q _ l l _ l = Qll*ml A4+2*(Q12+2*Q66)*ml A2*nl A2+Q22*nl A4 
Q_12_l = (Qll+Q22-4*Q66)*ml A2*nl A2+Q12*(ml A4+nl A4) 
Q_22_l = Qll*nl A4+2*(Q12+2*Q66)*ml A2*nl A2+Q22*ml A4 
Q_16_l = (Qll-Q12-2*Q66)*(ml) A3*nl+(Q12-Q22+2*Q66)*ml*(nl) A3 
Q_26_l = (Qll-Q12-2*Q66)*nl A3*ml+(Q12-Q22+2*Q66)*nl*ml A3 
Q_66_l = (Qll+Q22-2*Q12-2*Q66)*ml A2*nl A2+Q66*(ml A4+nl A4) 

Q _ l l _ 2 = Qll*m2 A4+2*(Q12+2*Q66)*m2 A2*n2 A2+Q22*n2 A4 
Q_12_2 = (Qll+Q22-4*Q66)*m2 A2*n2 A2+Q12*(m2 A4+n2 A4) 
Q_22_2 = Qll*n2 A4+2*(Q12+2*Q66)*m2 A2*n2 A2+Q22*m2 A4 
Q_16_2 = (Qll-Q12-2*Q66)*m2A3*n2+(Q12-Q22+2*Q66)*m2*n2A3 
Q_26_2 = (Qll-Q12-2*Q66)*n2 A3*m2+(Q12-Q22+2*Q66)*n2* 
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Q_66_2 = (Qll+Q22-2*Q12-2*Q66)*m2 A2*n2 A2+Q66*(m2 A4+n2 A4) 

Q _ l l _ 3 = Qll*m3 A4+2*(Q12+2*Q66)*m3 A2*n3 A2+Q22*n3 A4 
Q_12_3 = (Qll+Q22-4*Q66)*m3 A2*n3 A2+Q12*(m3 A4+n3 A4) 
Q_22_3 = Qll*n3 A4+2*(Q12+2*Q66)*m3 A2*n3 A2+Q22*m3 A4 
Q_16_3 = (Qll-Q12-2*Q66)*m3A3*n3+(Q12-Q22+2*Q66)*m3*n3A3 
Q_26_3 = (Qll-Q12-2*Q66)*n3A3*m3+(Q12-Q22+2*Q66)*n3*m3A3 
Q_66_3 = (Qll+Q22-2*Q12-2*Q66)*m3 A2*n3 A2+Q66*(m3 A4+n3 A4) 

A l l = Q _ l l 1 * ( (h2/2 + h i ) - h2/2) + Q_n. 2 * ( (h2/2) - ( -h2/2; ) + 
Q_n_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A12 = Q_12_l * ( (h2/2 + h i ) - h2/2) + Q_12. 2 * ( (h2/2) - ( -h2/2; ) + 
Q_12_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A22 = Q_22_l * ( (h2/2 + h i ) - h2/2) + Q_22. 2 * ( (h2/2) - ( -h2/2; ) + 
Q_22_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A16 = Q_16_l * ( (h2/2 + h i ) - h2/2) + Q_16. 2 * ( (h2/2) - ( -h2/2; ) + 
Q_16_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A26 = Q_26_l * ( (h2/2 + h i ) - h2/2) + Q_26. 2 * ( (h2/2) - ( -h2/2; ) + 
Q_26_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A66 = Q_66_l * ( (h2/2 + h i ) - h2/2) + Q_66. 2 * ( (h2/2) - ( -h2/2; ) + 
Q_66_ 3 * ( ( -h2/2) - (-•h2/2 - h3)) 

B l l = 1/2 * ( Q_n_i * ( (h2/2 + h i ) A2 - ;h2/2) A2) + Q _ l l _ 2 * ( 
(h2/2) A2 - ,-h2/2) A2) + Q _ l l 3 * ( ( ,-h2/2; 

A 2 - (-h2/2 - h 3 ) A 2 ) ) 
B12 = 1/2 * ( Q_12_l * ( (h2/2 + h i ) A2 - ;h2/2) A2) + Q_12_2 * ( 
(h2/2) A2 - ,-h2/2) A2) + Q_12_3 * ( ( ,-h2/2; 

A 2 - (-h2/2 - h 3 ) A 2 ) ) 
B22 = 1/2 * ( Q_22_l * ( (h2/2 + h i ) A2 - ;h2/2) A2) + Q_22_2 * ( 
(h2/2) A2 - ,-h2/2) A2) + Q_22_3 * ( ( ,-h2/2; 

A 2 - (-h2/2 - h 3 ) A 2 ) ) 
B16 = 1/2 * ( Q_16_l * ( (h2/2 + h i ) A2 - ;h2/2) A2) + Q_16_2 * ( 
(h2/2) A2 - ,-h2/2) A2) + Q_16_3 * ( ( ,-h2/2; 

A 2 - (-h2/2 - h 3 ) A 2 ) ) 
B26 = 1/2 * ( Q_26_l * ( (h2/2 + h i ) A2 - ;h2/2) A2) + Q_26_2 * ( 
(h2/2) A2 - ,-h2/2) A2) + Q_26_3 * ( ( ,-h2/2; 

A 2 - (-h2/2 - h 3 ) A 2 ) ) 
B66 = 1/2 * ( Q_66_l * ( (h2/2 + h i ) A2 - ;h2/2) A2) + Q_66_2 * ( 
(h2/2) A2 - ,-h2/2) A2) + Q_66_3 * ( ( ,-h2/2; 

A 2 - (-h2/2 - h 3 ) A 2 ) ) 

D i l = 1/3 * ( Q_n_i * ( (h2/2 + h i ) A3 - ;h2/2) A3) + Q _ l l _ 2 * ( 
(h2/2) A3 - ,-h2/2) A3) + Q _ l l 3 * ( ;-h2/2; 

A 3 - (-h2/2 - h 3 ) A 3 ) ) 
D12 = 1/3 * ( Q_12_l * ( (h2/2 + h i ) A3 - ;h2/2) A3) + Q_12_2 * ( 
(h2/2) A3 - ,-h2/2) A3) + Q_12_3 * ( ( ;-h2/2; 

A 3 - (-h2/2 - h 3 ) A 3 ) ) 
D22 = 1/3 * ( Q_22_l * ( (h2/2 + h i ) A3 - ;h2/2) A3) + Q_22_2 * ( 
(h2/2) A3 - ,-h2/2) A3) + Q_22_3 * ( ;-h2/2; 

A 3 - (-h2/2 - h 3 ) A 3 ) ) 
D16 = 1/3 * ( Q_16_l * ( (h2/2 + h i ) A3 - ;h2/2) A3) + Q_16_2 * ( 
(h2/2) A3 - ,-h2/2) A3) + Q_16_3 * ( ( ;-h2/2; 

A 3 - (-h2/2 - h 3 ) A 3 ) ) 
D26 = 1/3 * ( Q_26_l * ( (h2/2 + h i ) A3 - ;h2/2) A3) + Q_26_2 * ( 
(h2/2) A3 - ,-h2/2) A3) + Q_26_3 * ( ;-h2/2; 

A 3 - (-h2/2 - h 3 ) A 3 ) ) 
D66 = 1/3 * ( Q_66_l * ( (h2/2 + h i ) A3 - ;h2/2) A3) + Q_66_2 * ( 
(h2/2) A3 - ,-h2/2) A3) + Q_66_3 * ( ( ,-h2/2; 

A 3 - (-h2/2 - h 3 ) A 3 ) ) 

I 

ex=dx(u) 
ey=dy(v) 
exy=dx(v)+dy(u) 
kx=-dxx(w) 
ky=-dyy(w) 
kxy=-2*( dxy(w) ) 
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{1. 
TOP 

e l _ l _ t o p = ex + (hl+h2/2) * kx 
e2 _ l _ t o p = ey + (hl+h.2/2) * ky 
e6 _ l _ t o p = exy + (hl+h2/2) * kxy 

Sigma_x_l_top = Q _ l l _ l * e l _ l _ t o p + Q_12_l*e2_l_top + Q_16_l*e6_l_top 
Sigma_y_l_top = Q _ 1 2 _ l * e l _ l _ t o p + Q_22_l*e2_l_top + Q_26_l*e6_l_top 
Sigma_xy_l_top = Q _ 1 6 _ l * e l _ l _ t o p + Q_26_l*e2_l_top + Q_66_l*e6_l_top 

{1. 
MID 

e l _ l _ m i d = ex + (hl/2+h2/2) * kx 
e2_l_mid = ey + (hl/2+h2/2) * ky 
e6_l_mid = exy + (hl/2+h2/2) * kxy 

Sigma_x_l_mid = Q _ l l _ l * e l _ l _ m i d + Q_12_l*e2_l_mid + Q_16_l*e6_l_mid 
Sigma_y_l_mid = Q_1 2 _ l * e l _ l _ m i d + Q_22_l*e2_l_mid + Q_26_l*e6_l_mid 
Sigma_xy_l_mid = Q_1 6 _ l * e l _ l _ m i d + Q_26_l*e2_l_mid + Q_66_l*e6_l_mid 

{1. 
BOT  

e l _ l _ b o t = ex + (h2/2) * kx 
e2_l_bot = ey + (h.2/2) * ky 
e6_l_bot = exy + (h2/2) * kxy 

Sigma_x_l_bot = Q _ l l _ l * e l _ l _ b o t + Q_12_l*e2_l_bot + Q_16_l*e6_l_bot 
Sigma_y_l_bot = Q _ 1 2 _ l * e l _ l _ b o t + Q_22_l*e2_l_bot + Q_26_l*e6_l_bot 
Sigma_xy_l_bot = Q _ 1 6 _ l * e l _ l _ b o t + Q_26_l*e2_l_bot + Q_66_l*e6_l_bot 

{2. 
TOP 

e l _ 2 _ t o p = ex + (h2/2) * kx 
e2_2_top = ey + (h2/2) * ky 
e6_2_top = exy + (h.2/2) * kxy 

Sigma_x_2_top = Q _ l l _ 2 * e l _ 2 _ t o p + Q_12_2*e2_2_top + Q_16_2*e6_2_top 
Sigma_y_2_top = Q_12_2*el_2_top + Q_22_2*e2_2_top + Q_26_2*e6_2_top 
Sigma_xy_2_top = Q_16_2*el_2_top + Q_26_2*e2_2_top + Q_66_2*e6_2_top 

{2. 
MID 

el_2_mid = ex + (0) * kx 
e2_2_mid = ey + (0) * ky 
e6_2_mid = exy + (0) * kxy 

Sigma_x_2_mid = Q_l l _ 2 * e l _ 2 _ m i d + Q_12_2*e2_2_mid + Q_16_2*e6_2_mid 
Sigma_y_2_mid = Q_12_2*el_2_mid + Q_22_2*e2_2_mid + Q_26_2*e6_2_mid 
Sigma_xy_2_mid = Q_16_2*el_2_mid + Q_26_2*e2_2_mid + Q_66_2*e6_2_mid 

{2. 
BOT  
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el_2_bot = ex + 
e2_2_bot = ey + 
e6_2_bot = exy 

(-h.2/2) * kx 
(-h.2/2) * ky 

+ (-h.2/2) * kxy 

Sigma_x_2_bot = 
Sigma_y_2_bot = 
Sigma_xy_2_bot 

Q _ l l _ 2 * e l _ 2 _ b o t + Q_12_2*e2_2 
Q_12_2*el_2_bot + Q_22_2*e2_2 
= Q_16_2*el_2_bot + Q_26_2*e2_ 

_bot + Q_16_2*e6_2_bot 
_bot + Q_26_2*e6_2_bot 
2_bot + Q_66_2*e6_2_bot 

{3. 
TOP } 

e l _ 3 _ t o p = ex + 
e2_3_top = ey + 
e6_3_top = exy 

(-h.2/2) * kx 
(-h2/2) * ky 

+ (-h2/2) * kxy 

Sigma_x_3_top = 
Sigma_y_3_top = 
Sigma_xy_3_top 

Q _ l l _ 3 * e l _ 3 _ t o p + Q_12_3*e2_3 
Q_12_3*el_3_top + Q_22_3*e2_3 
= Q_16_3*el_3_top + Q_26_3*e2_ 

_top + 
_top + 
3_top 

Q_16_3*e6_3_top 
Q_26_3*e6_3_top 
+• Q_66_3*e6_3_top 

{3. 
MID } 

el_3_mid = ex + 
e2_3_mid = ey + 
e6_3_mid = exy 

(-hl/2-h2/2) * kx 
(-hl/2-h2/2) * ky 

+ (-hl/2-h2/2) * kxy 

Sigma_x_3_mid = 
Sigma_y_3_mid = 
Sigma_xy_3_mid 

Q_ll_3*el_3_mid + Q_12_3*e2_3 
Q_12_3*el_3_mid + Q_22_3*e2_3 
= Q_16_3*el_3_mid + Q_26_3*e2_ 

_mid + 
_mid + 
3_mid 

Q_16_3*e6_3_mid 
Q_26_3*e6_3_mid 
* Q_66_3*e6_3_mid 

{3. 
BOT } 

el_3_bot = ex + 
e2_3_bot = ey + 
e6_3_bot = exy 

(-hl-h2/2) * kx 
(-hl-h2/2) * ky 

+ (-hl-h2/2) * kxy 

Sigma_x_3_bot = 
Sigma_y_3_bot = 
Sigma_xy_3_bot 

Q _ l l _ 3 * e l _ 3 _ b o t + Q_12_3*e2_3 
Q_12_3*el_3_bot + Q_22_3*e2_3 
= Q_16_3*el_3_bot + Q_26_3*e2_ 

_bot + 
_bot + 
3_bot 

Q_16_3*e6_3_bot 
Q_26_3*e6_3_bot 

H- Q_66_3*e6_3_bot 

INITIAL VALUES 
u = 0 
v = 0 
w = 0 
wxx = 0 
wyy = 0 
uxx = 0 
uyy = 0 
vxx = 0 
vyy = 0 
!wx = 0 
!wy = 0 

EQUATIONS 
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wxx: dxx(w)=wxx 
wyy: dyy(w)=wyy 
uxx: dxx(u)=uxx 
uyy: dyy(u)=uyy 
vxx: dxx(v)=vxx 
vyy: dyy(v)=vyy 

u: 
All*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))-
(Bll*dx(wxx)+B12*dx(wyy)+2*B16*dy(wxx)) + 
A16*dxy(u)+A26*dyy(v)+A66*(dyy(u)+dxy(v)) -
(B16*dy(wxx)+B26*dy(wyy)+2*B66*dx(wyy))=0 

v: 
A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v)) -
(B16*dx(wxx)+B26*dx(wyy)+2*B66*dy(wxx)) + 
A12*dxy(u)+A22*dyy(v)+A26*(dyy(u)+dxy(v)) -
(B12*dy(wxx)+B22*dy(wyy)+2*B26*dx(wyy)) = 0 

w: 
Bll*dx(uxx)+B12*dy(vxx)+B16*(dy(uxx)+dx(vxx)) -
(Dll*dxx(wxx)+D12*dyy(wxx)+2*D16*(dxy(wxx))) + 
B16*dy(uxx)+B26*dx(vyy)+B66*(dx(uyy)+dy(vxx)) -
(D16*dxy(wxx)+D26*dxy(wyy)+2*D66*(dxx(wyy))) + 
B12*dx(uyy)+B22*dy(vyy)+B26*(dy(uyy)+dx(vyy)) -
(D12*dxx(wyy)+D22*dyy(wyy)+2*D26*(dxy(wyy))) = 

BOUNDARY CONDITIONS 

"simply supported y" : 
VALUE(w)=0 
VALUE(wxx)=0 
natural(wyy)=0 
VALUE(v)=0 
VALUE(u)=0 
natural(uxx)=0 
natural(uyy)=0 
VALUE(vxx)=0 
VALUE(vyy)=0 

"free edge x" : 
natural(w)=0 
natural(wxx)=0 
VALUE(wyy)=0 
VALUE(v)=0 
natural(u)=0 
natural(uxx)=0 
natural(uyy)=0 
natural(vxx)=0 
natural(vyy)=0 

BOUNDARIES 
region 1 

s t a r t (0,0) 
USE BC "f r e e edge x" 

l i n e t o (L1,0) 
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USE BC "simply supported y" 
l i n e t o (L1,L2) 

USE BC " f r e e edge x" 
l i n e t o (0,L2) 

USE BC "simply supported y" 
l i n e t o c l o s e 

PLOTS 
contour(w) { show deformed g r i d as s o l u t i o n progresses } 
surface(w) 
ele v a t i o n ( w ) from (0,L2/2) t o (Ll/2,L2/2) 
e l e v a t i o n ( w ) from ( L l / 2 , 0 ) t o (L1/2,L2) 

END 

13.8 Numerical FlexPDE script - FOSDT 

TITLE 'Bending - 3 LAYERS - FOSDT-DE' 

SELECT 
ngrid=21 
cubic 
e r r l i m =le-4 
painted 
!CHANGELIM = 
[STAGES = 36 
lautostage = 
!PREFER_STABILITY=on 
!NONLINEAR=off 

0.1 

on 

{ increase i n i t i a l gridding } 
{ Use Cubic Basis } 

{ increase accuracy to resolve stresses } 
{ paint a l l contour plots } 

VARIABLES 
wxx 
wyy 
w 
u 
V 

F_x_x 
F_x 
F_y_y 
F_y 

DEFINITIONS { parameter definit ions } 
l a y e r _ l _ w = 30 
layer_2_w =12 
layer_3_w = 12 

l a y e r l l = 1 2 {°C} 
la y e r l 2 = l a y e r _ l _ w 
layer21=12 
layer22=layer_2_w 
layer31=12 
layer32=layer_3_w 

a b s _ w _ l = ( l a y e r l l - l a y e r l 2 ) 
abs_w_2=(layer21-layer22) 
abs_w_3=(layer31-layer32) 

! Layer 1 C22 
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E _ l l _ l _ w l 2 = 11*10 A9 
E_22_l_wl2 = 0.37*10 A9 
G_12_l_wl2 = 0.69*10 A9 
G_13_l_wl2 = G_12_l_wl2 
G_23_l_wl2 = G_12_l_wl2 
E _ l l _ l = E _ l l _ l _ w l 2 * ( l + 0 . 0 2 * ( 1 2 - l a y e r _ _l_w)) 
E_22_l = E_22_l_wl2*(l+0.02*(12-layer_ .l_w)) 
G_12_l = G_12_l_wl2*(l+0.02*(12-layer_ _l_w)) 
G_13_l = G_13_l_wl2*(l+0.02*(12-layer_ .l_w)) 
G_23_l = G_23_l_wl2*(l+0.02*(12-layer_ .l_w)) 

vl2_l=0.2 
v 2 1 _ l = ( E _ 2 2 _ l / E _ l l _ l ) * v l 2 _ l 

r h o _ l = 420 !kg/m3 
rho0_l=rho_l/1000 !g/m3 
g_l=rho_l*9.81 

Q l l _ l = E _ l l _ l / (1-V12_1*V21_1) 
Q12_l = ( v l 2 _ l * E_22_l) / ( l - v l 2 _ l * v 2 1 _ l ) 
Q16_l = 0 
Q26_l = 0 
Q22_l = E_22_l / ( l - v l 2 _ l * v 2 1 _ l ) 
Q66_l = G_12_l 
Q44_l = G_23_l 
Q55_l = G_13_l 

! Layer 2 C22 
E _ l l _ 2 _ w l 2 = 11*10 A9 
E_22_2_wl2 = 0.37*10 A9 
G_12_2_wl2 = 0.69*10 A9 
G_13_2_wl2 = G_12_2_wl2 
G_23_2_wl2 = G_12_2_wl2 

E _ l l _ 2 = E_ll_2_wl2*(l+0.02*(12-layer_ .2_w)) 
E_22_2 = E_22_2_wl2*(l+0.02*(12-layer_ .2_w)) 
G_12_2 = G_12_2_wl2*(l+0.02*(12-layer_ _2_w)) 
G_13_2 = G_13_2_wl2*(l+0.02*(12-layer_ .2_w)) 
G_23_2 = G_23_2_wl2*(l+0.02*(12-layer_ .2_w)) 

v l 2 _ 2 =0.2 
v21_2 = ( E _ 2 2 _ 2 / E _ l l _ 2 ) * v l 2 _ 2 

rho_2 = 420 
rho0_2=rho_2/1000 
g_2=rho_2*9.81 

Q l l _ 2 = E _ l l _ 2 / (1 -V l2_2*v21_2) 
Q12_2 = ( v l 2 _ 2 * E_22_2) / (l- v l 2 _ 2 * v 2 1 _ 2 ) 
Q16_2 = 0 
Q26_2 = 0 
Q22_2 = E_22_2 / (l-v l 2 _ 2 * v 2 1 _ 2 ) 
Q66_2 = G_12_2 
Q44_2 = G_23_2 
Q55_2 = G_13_2 

! Layer 3 C22 
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E _ l l _ 3 _ w l 2 = 11*10 A9 
E_22_3_wl2 = 0.37*10 A9 
G_12_3_wl2 = 0.69*10 A9 
G_13_3_wl2 = G_12_3_wl2 
G_23_3_wl2 = G_12_3_wl2 
E _ l l _ 3 = E_ll_3_wl2*(l+0.02*(12-layer_3_w)) 
E_22_3 = E_22_3_wl2*(l+0.02*(12-layer_3_w)) 
G_12_3 = G_12_3_wl2*(l+0.02*(12-layer_3_w)) 
G_13_3 = G_13_3_wl2*(l+0.02*(12-layer_3_w)) 
G_23_3 = G_23_3_wl2*(l+0.02*(12-layer_3_w)) 

v l 2 _ 3 =0.2 
v21_3 = ( E _ 2 2 _ 3 / E _ l l _ 3 ) * v l 2 _ 3 

rho_3 = 420 
rho0_3=rho_3/1000 
g_3=rho_3*9.81 

Q l l _ 3 = E _ l l _ 3 / (1-V12_3*V21_3) 
Q12_3 = (v l 2 _ 3 * E_22_3) / (1-V12_3*V21_3) 
Q16_3 = 0 
Q26_3 = 0 
Q22_3 = E_22_3 / (l-v l 2 _ 3 * v 2 1 _ 3 ) 
Q66_3 = G_12_3 
Q44_3 = G_23_3 
Q55_3 = G_13_3 

! LAMINAE LAYERS THICKNESS, GEOMETRY 
h i = 0.03 
h2 = 0.03 
h3 = 0.03 
h=hl + h2 + h3 

Ll=1.5 
L2=0.3 

p= - 12000 {N.m-2} 

ml=l ! c o s ( a l degrees) 
nl=0 ! s i n ( a l degrees) 
m2=0 !cos(a2 degrees) 
n2=l !sin(a2 degrees) 
m3=l !cos(a3 degrees) 
n3=0 !sin(a3 degrees) 

Q _ l l _ l = Qll_l*ml A4+2*(Q12_l+2*Q66_l)*ml A2*nl A2+Q22_l*nl A4 
Q_12_l = (Qll_l+Q22_l-4*Q66_l)*ml A2*nl A2+Q12_l*(ml A4+nl A4) 
Q_22_l = Qll_l*nl A4+2*(Q12_l+2*Q66_l)*ml A2*nl A2+Q22_l*ml A4 
Q_16_l = (Qll_l-Q12_l-2*Q66_l)*(ml) A3*nl+(Q12_l-Q22_l+2*Q66_l)*ml*(nl) A3 
Q_26_l = (Ql1_1-Ql2_1-2 *Q66_1)* n 1 A 3 * ml+(Ql2_1-Q22_l+2 *Q66_1)* n1* m l A 3 
Q_66_l = (Qll_l+Q22_l-2*Q12_l-2*Q66_l)*ml A2*nl A2+Q66_l*(ml A4+nl A4) 
Q_44_l = Q44_l*ml A2+Q55_l*nl A2 
Q_45_l = (Q55_l-Q44_l)*nl*ml 
Q_55_l = Q55_l*ml A2+Q44_l*nl A2 

Q _ l l _ 2 = Qll_2*m2 A4+2*(Q12_2+2*Q66_2)*m2 A2*n2 A2+Q22_2*n2 A4 
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Q_12_2 = (Qll_2+Q22_2-4*Q66_2)*m2 A2*n2 A2+Q12_2*(m2 A4+n2 A4) 
Q_22_2 = Qll_2*n2 A4+2*(Q12_2+2*Q66_2)*m2 A2*n2 A2+Q22_2*m2 A4 
Q_16_2 = (Qll_2-Q12_2-2*Q66_2)*m2A3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2A3 
Q_26_2 = (Qll_2-Q12_2-2*Q66_2)*n2A3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2A3 
Q_66_2 = (Qll_2+Q22_2-2*Q12_2-2*Q66_2)*m2 A2*n2 A2+Q66_2*(m2 A4+n2 A4) 
Q_44_2 = Q44_2*m2A2+Q55_2*n2A2 
Q_45_2 = (Q55_2-Q44_2)*n2*m2 
Q_55_2 = Q55_2*m2A2+Q44_2*n2A2 

Q _ l l _ 3 = Qll_3*m3 A4+2*(Q12_3+2*Q66_3)*m3 A2*n3 A2+Q22_3*n3 A4 
Q_12_3 = (Qll_3+Q22_3-4*Q66_3)*m3 A2*n3 A2+Q12_3*(m3 A4+n3 A4) 
Q_22_3 = Qll_3*n3 A4+2*(Q12_3+2*Q66_3)*m3 A2*n3 A2+Q22_3*m3 A4 
Q_16_3 = (Qll_3-Q12_3-2*Q66_3)*m3A3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3A3 
Q_26_3 = (Qll_3-Q12_3-2*Q66_3)*n3A3*m3+(Q12_3-Q22_3+2*Q66_3)*n3*m3A3 
Q_66_3 = (Qll_3+Q22_3-2*Q12_3-2*Q66_3)*m3 A2*n3 A2+Q66_3*(m3 A4+n3 A4) 
Q_44_3 = Q44_3*m3A2+Q55_3*n3A2 
Q_45_3 = (Q55_3-Q44_3)*n3*m3 
Q_55_3 = Q55_3*m3A2+Q44_3*n3A2 

A l l = Q _ l l . 1 * ( (h2/2 + h i ) - h2/2) + Q_n. 2 * ( (h2/2) - (-h2/2)] + 

Q_n_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A12 = Q_12. 1 * ( (h2/2 + h i ) - h2/2) + Q_12_ 2 * ( (h2/2) - (-h2/2) + 
Q_12_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A22 = Q_22. 1 * ( (h2/2 + h i ) - h2/2) + Q_22. 2 * ( (h2/2) - (-h2/2) + 
Q_22_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A16 = Q_16. 1 * ( (h2/2 + h i ) - h2/2) + Q_16. 2 * ( (h2/2) - (-h2/2) + 
Q_16_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A26 = Q_26. 1 * ( (h2/2 + h i ) - h2/2) + Q_26. 2 * ( (h2/2) - (-h2/2) + 
Q_26_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A66 = Q_66. 1 * ( (h2/2 + h i ) - h2/2) + Q_66. 2 * ( (h2/2) - (-h2/2) + 
Q_66_ 3 * ( ( -h2/2) - (-•h2/2 - h3)) 

A44 = Q_44. 1 * ( (h2/2 + h i ) - h2/2) + Q_44. 2 * ( (h2/2) - (-h2/2 
Q_44_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A45 = Q_45. 1 * ( (h2/2 + h i ) - h2/2) + Q_45. 2 * ( (h2/2) - (-h2/2 
Q_45_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A55 = Q_55. 1 * ( (h2/2 + h i ) - h2/2) + Q_55. 2 * ( (h2/2) - (-h2/2 
Q_55_ 3 * ( ( -h2/2) - (-•h2/2 - h3)) 

A=matrix((All,A12,A16),(A12,A22 

B l l = 1/2 * ( Q _ l l _ l * ( (h2/2 + h i 
(-h2/2) A2) + Q _ l l _ 3 * ( (-h2/2) A2 -
B12 = 1/2 * ( Q_12_l * ( (h2/2 + h i 
(-h2/2) A2) + Q_12_3 * ( (-h2/2) A2 -
B22 = 1/2 * ( Q_22_l * ( (h2/2 + h i 
(-h2/2) A2) + Q_22_3 * ( (-h2/2) A2 -
B16 = 1/2 * ( Q_16_l * ( (h2/2 + h i 
(-h2/2) A2) + Q_16_3 * ( (-h2/2) A2 -
B26 = 1/2 * ( Q_26_l * ( (h2/2 + h i 
(-h2/2) A2) + Q_26_3 * ( (-h2/2) A2 -
B66 = 1/2 * ( Q_66_l * ( (h2/2 + h i 
(-h2/2) A2) + Q_66_3 * ( (-h2/2) A2 -

A26),(A16,A26,A66)) 

A 2 - (h2/2) A2) + Q _ l l _ 2 
(-h2/2 - h 3 ) A 2 ) ) 
A 2 - (h2/2) A2) + Q_12_2 
(-h2/2 - h 3 ) A 2 ) ) 
A 2 - (h2/2) A2) + Q_22_2 
(-h2/2 - h 3 ) A 2 ) ) 
A 2 - (h2/2) A2) + Q_16_2 
(-h2/2 - h 3 ) A 2 ) ) 
A 2 - (h2/2) A2) + Q_26_2 
(-h2/2 - h 3 ) A 2 ) ) 
A 2 - (h2/2) A2) + Q_66_2 
(-h2/2 - h 3 ) A 2 ) ) 

* ( (h2/2) A2 

* ( (h2/2) A2 

* ( (h2/2) A2 

* ( (h2/2) A2 

* ( (h2/2) A2 

* ( (h2/2) A2 

B=matrix((Bll,B12,B16),(B12,B22,B26),(B16,B26,B66)) 
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D l l = 1/3 * ( Q 11 1 * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_H. 2 * ( (h2/2) A3 -
(-h2/2) A3) + Q 11 3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D12 = 1/3 * ( Q_12 1 * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_12. 2 * ( (h2/2) A3 -
(-h2/2) A3) + Q_12 3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D22 = 1/3 * ( Q_22 1 * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_22. 2 * ( (h2/2) A3 -
(-h2/2) A3) + Q_22 3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D16 = 1/3 * ( Q_16 1 * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_16. 2 ( (h2/2) A3 -
(-h2/2) A3) + Q_16 3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D26 = 1/3 * ( Q_26 1 * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_26_ 2 * ( (h2/2) A3 -
(-h2/2) A3) + Q 26 3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D66 = 1/3 * ( Q 66 1 * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_66. 2 ( (h2/2) A3 -
(-h2/2) A3) + Q 66 3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 

D=matrix((Dll,D12,D16),(D12,D22,D26),(D16,D26,D66)) 

!MOISTURE STRAINS 

KaT_l=(2/3)*rho0_l 
KaR_l=(l/30)*rho0_l 
K a L _ l = ( l / 3 0 ) * r h o 0 _ l 
KaT_2=(2/3)*rho0_2 
KaR_2=(l/30)*rho0_2 
KaL_2=(l/30)*rho0_2 
KaT_3=(2/3)*rho0_3 
KaR_3=(l/30)*rho0_3 
KaL_3=(l/30)*rho0_3 

ewl1_1=(Ka L_l*(ab s_w_l))/100 
ew22_l=(KaR_l*(abs_w_l))/100 

ewll_2=(Ka L_2*(abs_w_2))/100 
ew22_2=(KaR_2*(abs_w_2))/100 

ewll_3=(KaL_3*(abs_w_3))/100 
ew22_3=(KaR_3*(abs_w_3))/100 

i 

Ks = 5/6 ! F i r s t order shear p l a t e theory c o e f f i c i e n t f o r shear s t r e s s 

e x = dx(u) 
e_y = dy(v) 
e_xy = dy(u)+dx(v) 

Kx = dx(F x) 
Ky = dy(F_y) 
Kxy = 2*(dy(F_x)+dx(F_y)) 

eyz = (F_y) +dy(w) 
exz = (F_x) + dx(w) 

{1. TOP > 

e l _ l _ t o p = e_x + (hl+h2/2)*Kx + e w l l _ l 
e 2 _ l _ t o p = e_y + (hl+h2/2)*Ky + ew22_l 
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e4_2_mid = eyz 
e5 2 mid = exz 

Sigmal_2_mid = Q_l l _ 2 * e l _ 2 _ m i d + 
Sigma2_2_mid = Q_12_2*el_2_mid + 
Sigma6_2_mid = Q_16_2*el_2_mid + 
Sigma4_2_mid = Q_44_2 * e4_2_mid 
Sigma5_2_mid = Q_45_2 * e4_2_mid 

Q_12_2*e2_2_mid + Q_16_2*e6_2_mid 
Q_22_2*e2_2_mid + Q_26_2*e6_2_mid 
Q_26_2*e2_2_mid + Q_66_2*e6_2_mid 
+ Q_45_2 * e5_2_mid 
+ Q_55_2 * e5_2_mid 

{2. BOT  

el_2_bot = e_x + (-h2/2)*Kx + ew l l _ 2 
e2_2_bot = e_y + (-h2/2)*Ky + ew22_2 
e6_2_bot = e_xy + (-h2/2)*Kxy 
e4_2_bot = eyz 
e5 2 bot = exz 

Sigmal_2_ _bot = OL". _2*el_2_ _bot + Q_12_2*e2_2_bot + Q_16. _2*e6_ 2 _bot 
Sigma2_2_ _bot = Q_12. _2*el_2_ _bot + Q_22_2*e2_2_bot + Q_26. _2*e6_ 2 _bot 
Sigma6_2_ _bot = Q_16. _2*el_2_ _bot + Q_26_2*e2_2_bot + Q_66. _2*e6_ 2 _bot 
Sigma4_2_ _bot = Q_44. 2 * e4_ _2_bot + Q_45_2 * e5_2_ .bot 
Sigma5 2 bot = Q_45 2 * e4 2 bot + Q_55 2 * e5 2 bot 

{3. TOP 

e l _ 3 _ t o p = e_x + (-h2/2)*Kx + e w l l _ 3 
e2_3_top = e_y + (-h2/2)*Ky + ew22_3 
e6_3_top = e_xy + (-h2/2)*Kxy 
e4_3_top = eyz 
e5_3_top = exz 

Sigmal_3_ top = Q _ l l . _3*el_3_ .top + Q_12_3*e2_3_top + Q_16. _3*e6_ _3_ top 
Sigma2_3_ top = Q_12. _3*el_3_ -top + Q_22_3*e2_3_top + Q_26. _3*e6. _3_ top 
Sigma6_3_ top = Q_16. _3*el_3_ -top + Q_26_3*e2_3_top + Q_66. _3*e6. _3_ top 
Sigma4_3_ top = Q_44. 3 * e4_ -3_top + Q_45_3 * e5_3. -top 
Sigma5_3_ top = Q_45. 3 * e4_ -3_top + Q_55_3 * e5_3. -top 

{3. MID 

el_3_mid = e_x + (-h2/2-h3/2)*Kx + e w l l _ 3 
e2_3_mid = e_y + (-h2/2-h3/2)*Ky + ew22_3 
e6_3_mid = e_xy + (-h2/2-h3/2)*Kxy 
e4_3_mid = eyz 
e5 3 mid = exz 

Sigmal_3_ mid = Q _ l l . _3*el_3_ mid + Q_12_3*e2_3_mid + Q_16. _3*e6. _3_ mid 
Sigma2_3_ mid = Q_12. _3*el_3_ mid + Q_22_3*e2_3_mid + Q_26. _3*e6_ _3_ mid 
Sigma6_3_ mid = Q_16. _3*el_3_ mid + Q_26_3*e2_3_mid + Q_66. _3*e6. _3_ _mid 
Sigma4_3_ mid = Q_44. 3 * e4_ _3_mid + Q_45_3 * e5_3. mid 
Sigma5_3_ mid = Q_45. 3 * e4_ _3_mid + Q_55_3 * e5_3. mid 

{3. BOT } 

el_3_bot = e_x + (-h2/2-h3)*Kx + e w l l _ 3 
e2_3_bot = e_y + (-h2/2-h3)*Ky + ew22_3 
e6_3_bot = e_xy + (-h2/2-h3)*Kxy 
e4_3_bot = eyz 
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e5 3 bot = exz 

Sigmal_3_bot = Q _ l l _ 3 * e l _ 3 _ b o t + Q_12_3*e2_3_bot + Q_16_3*e6_3_bot 
Sigma2_3_bot = Q_12_3*el_3_bot + Q_22_3*e2_3_bot + Q_26_3*e6_3_bot 
Sigma6_3_bot = Q_16_3*el_3_bot + Q_26_3*e2_3_bot + Q_66_3*e6_3_bot 
Sigma4_3_bot = Q_44_3 * e4_3_bot + Q_45_3 * e5_3_bot 
Sigma5_3_bot = Q_45_3 * e4_3_bot + Q_55_3 * e5_3_bot 

INITIAL VALUES 
u = 0 
v = 0 
wxx = 0 
wyy = 0 
w = 0 
F_x_x = 0 
F_y_y = 0 

EQUATIONS 

F_x_x: dx(F_x)=F_x_x 
F_y_y: dy(F_y)=F_y_y 
wxx: dxx(w)=wxx 
wyy: dyy(w)=wyy 

All*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))+Bll*dxx(F_x)+B12*dxy(F_y)+B16*(dx 
y(F_x)+dxx(F_y))+A16*dxy(u)+A26*dyy(v)+A66*(dyy(u)+dxy(v))+B16*dxy(F_x)+B26 
*dyy(F_y)+B66*(dyy(F_x)+dxy(F_y))=0 

A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v))+B16*dxx(F_x)+B26*dxy(F_y)+B66*(dx 
y(F_x)+dxx(F^))^12*dxy(u)+A22*dyy(v)+A26*(dyy(u)+dxy(v))+B12*dxy(F_x)+B22 
*dyy(F_y)+B26*(dyy(F_x)+dxy(F_y))=0 

w: 
Ks*A45*(dx(F_y)+dxy(w))+Ks*A55*(dx(F_x)+dxx(w))+Ks*A44*(dy(F_y)+dyy(w))+Ks* 
A45*(dy(F_x)+dxy(w))=-p 

F_x: 
Bll*dxx(u)+B12*dxy(v)+B16*(dxy(u)+dxx(v))+Dll*dxx(F_x)+D12*dxy(F_y)+D16*(dx 
y(F_x)+dxx(F_y))+B16*dxy(u)+B26*dyy(v)+B66*(dyy(u)+dxy(v))+D16*dxy(F_x)+D26 
*dyy(F_y)+D66*(dyy(F_x)+dxy(F_y))=Ks*A45*(F_y+dy(w))+Ks*A55*(F_x+dx(w)) 

F_y: 
B16*dxx(u)+B26*dxy(v)+B66*(dxy(u)+dxx(v))+D16*dxx(F_x)+D26*dxy(F_y)+D66*(dx 
y(F_x)+dxx(F^))+B12*dxy(u)+B22*dyy(v)+B26*(dyy(u)+dxy(v))+D12*dxy(F_x)+D22 
*dyy(F_y)+D26*(dyy(F_x)+dxy(F_y))=Ks*A44*(F_y+dy(w))+Ks*A45*(F_x+dx(w)) 

BOUNDARIES 
region 1 

{ x } s t a r t (0,0) { X } 

value(F_x_x)=0 
natural(F_y_y)=0 
natural(w)=0 
value(wyy)=0 
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natural(wxx)=0 
natural(u)=0 
value(v)=0 

{ Y } l i n e t o (L1,0) { Y } 

value(F_x_x)=0 
value(F_y_y)=0 
value(w)=0 
natural(wyy)=0 
value(wxx)=0 
natural(u)=0 
natural(v)=0 

{ X } l i n e t o (L1,L2) { X } 

value(F_x_x)=0 
natural(F_y_y)=0 
natural(w)=0 
value(wyy)=0 
natural(wxx)=0 
natural(u)=0 
value(v)=0 

{ Y } l i n e t o (0,L2) { Y } 

value(F_x_x)=0 
value(F_y_y)=0 
value(w)=0 
natural(wyy)=0 
value(wxx)=0 
natural(u)=0 
natural(v)=0 

l i n e t o c l o s e 

PLOTS 
contour(w) { show deformed g r i d as s o l u t i o n progresses } 
surface(w) 
ele v a t i o n ( w ) from (0,L2/2) t o (Ll/2,L2/2) 
ele v a t i o n ( w ) from ( L l / 2 , 0 ) t o (L1/2,L2) 

END 

13.9 Numerical FlexPDE script - SOSDT 

TITLE 'Bending • 3 LAYERS-SOSDT' 

SELECT 
ngrid=31 { increase i n i t i a l gridding } 
cubic { Use Cubic Basis } 
errl im = l e - 4 { increase accuracy to resolve stresses } 
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!painted { pa i n t a l l contour p l o t s } 
!CHANGELIM = 0.1 
ISTAGES = 36 
lautostage = on 
!PREFER_STABILITY=on 
!NONLINEAR=off 

VARIABLES 
w 
u 
V 

F _ l 
F_2 
P _ l 
P_2 
!Mx 
!My 
!Nx 
!Ny 

DEFINITIONS { parameter d e f i n i t i o n s } 
l a y e r _ l _ w = 30 
layer_2_w = 12 
layer_3_w = 12 
l a y e r l l = 1 2 {°C} 
la y e r l 2 = l a y e r _ l _ w 
layer21=12 
layer22=layer_2_w 
layer31=12 
layer32=layer_3_w 

a b s _ w _ l = ( l a y e r l l - l a y e r l 2 ) 
abs_w_2=(layer21-layer22) 
abs_w_3=(layer31-layer32) 

! Layer 1 C22 
E_H_l_wl2 = 11*10 A9 
E_22_l_wl2 = 0.37*10 A9 
G_12_l_wl2 = 0.69*10 A9 
G_13_l_wl2 = G_12_l_wl2 
G 23 1 wl2 = G 12 1 wl2 

E _ l l _ l = E _ l l _ l _ w l 2 * ( l + 0 . 0 2 * ( 1 2 - l a y e r _ l _ w ) ) 
E_22_l = E_22_l_wl2*(l+0.02*(12-layer_l_w)) 
G_12_l = G_12_l_wl2*(l+0.02*(12-layer_l_w)) 
G_13_l = G_13_l_wl2*(l+0.02*(12-layer_l_w)) 
G_23_l = G_23_l_wl2*(l+0.02*(12-layer_l_w)) 

vl2_l=0.2 
v 2 1 _ l = ( E _ 2 2 _ l / E _ l l _ l ) * v l 2 _ l 

r h o _ l = 420 
rho0_l=rho_l/1000 
g_l=rho_l*9.81 

Q l l _ l = E l l l / (1-V12_1*V21_1) 
Q12_l = ( v l 2 _ l * E_22_l) / (1-V12_1*V21_1) 
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Q16_l = 0 
Q26_l = 0 
Q22_l = E_22_l / ( 1 - V l 2 _ l * v 2 1 _ l ) 
Q66_l = G_12_l 
Q44_l = G_23_l 
Q55_l = G_13_l 

! Layer 2 C22 

E _ l l _ 2 _ w l 2 
E_22_2_wl2 
G_12_2_wl2 
G_13_2_wl2 
G 23 2 wl2 

= 11*10 A9 
= 0.37*10 A9 
= 0.69*10 A9 
= G_12_2_wl2 
= G 12 2 wl2 

E _ l l _ 2 = E_ll_2_wl2*(l+0.02*(12-layer_2_w)) 
E_22_2 = E_22_2_wl2*(l+0.02*(12-layer_2_w)) 
G_12_2 = G_12_2_wl2*(l+0.02*(12-layer_2_w)) 
G_13_2 = G_13_2_wl2*(l+0.02*(12-layer_2_w)) 
G_23_2 = G_23_2_wl2*(l+0.02*(12-layer_2_w)) 

v l 2 _ 2 =0.2 
v21_2 = ( E _ 2 2 _ 2 / E _ l l _ 2 ) * v l 2 _ 2 

rho_2 = 420 
rho0_2=rho_2/1000 
g_2=rho_2*9.81 

Q l l _ 2 = E _ l l _ 2 / (l - v l 2 _ 2 * v 2 1 _ 2 ) 
Q12_2 = ( v l 2 _ 2 * E_22_2) / (l-v l 2 _ 2 * v 2 1 _ 2 ) 
Q16_2 = 0 
Q26_2 = 0 
Q22_2 = E_22_2 / (l-v l 2 _ 2 * v 2 1 _ 2 ) 
Q66_2 = G_12_2 
Q44_2 = G_23_2 
Q55_2 = G_13_2 

! Layer 3 C22 

E _ l l _ 3 _ w l 2 = 11*10 A9 
E_22_3_wl2 = 0.37*10 A9 
G_12_3_wl2 = 0.69*10 A9 
G_13_3_wl2 = G_12_3_wl2 
G 23 3 wl2 = G 12 3 wl2 

E _ l l _ 3 = E_ll_3_wl2*(l+0.02*(12-layer_3_w)) 
E_22_3 = E_22_3_wl2*(l+0.02*(12-layer_3_w)) 
G_12_3 = G_12_3_wl2*(l+0.02*(12-layer_3_w)) 
G_13_3 = G_13_3_wl2*(l+0.02*(12-layer_3_w)) 
G_23_3 = G_23_3_wl2*(l+0.02*(12-layer_3_w)) 

v l 2 _ 3 =0.2 
v21_3 = ( E _ 2 2 _ 3 / E _ l l _ 3 ) * v l 2 _ 3 

rho_3 = 420 
rho0_3=rho_3/1000 
g_3=rho_3*9.81 
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Q l l _ 3 = E _ l l _ 3 / (1-V12_3*V21_3) 
Q12_3 = (v l 2 _ 3 * E_22_3) / (1-V12_3*V21_3) 
Q16_3 = 0 
Q26_3 = 0 
Q22_3 = E_22_3 / (l-v l 2 _ 3 * v 2 1 _ 3 ) 
Q66_3 = G_12_3 
Q44_3 = G_23_3 
Q55_3 = G_13_3 

! LAMINAE 
h i = 0.03 
h2 = 0.03 
h3 = 0.03 
h=hl + h2 

LAYERSj 

+ h3 

GEOMETRY 

Ll=1.5 
L2=0.3 

p= - 12000 {N.m-2} 

ml= =1! cos(30 degrees) !1 
nl= =0! si n ( 3 0 degrees) !0 
m2= =0! cos(55 degrees) !0 
n2= =1! sin ( 5 5 degrees) !1 
m3= =1! cos(83 degrees) !1 
n3= =0 !sin(83 degrees) 

!cos(40 degrees) ! c o s ( a l degrees) 
!sin(40 degrees) ! s i n ( a l degrees) 
!cos (20 degrees)!cos(a2 degrees) 
!sin(20 degrees) !sin(a2 degrees) 
!cos(55 degrees) !cos(a3 degrees) 

!0 !sin(55 degrees) !sin(a3 degrees) 

Q _ l l _ l = Qll_l*ml A4+2*(Q12_l+2*Q66_l)*ml A2*nl A2+Q22_l*nl A4 
Q_12_l = (Qll_l+Q22_l-4*Q66_l)*ml A2*nl A2+Q12_l*(ml A4+nl A4) 
Q_22_l = Qll_l*nl A4+2*(Q12_l+2*Q66_l)*ml A2*nl A2+Q22_l*ml A4 
Q_16_l = (Qll_l-Q12_l-2*Q66_l)*(ml) A3*nl+(Q12_l-Q22_l+2*Q66_l)*ml*(nl) A3 
Q_26_l = (Qll_l-Q12_l-2*Q66_l)*nl A3*ml+(Q12_l-Q22_l+2*Q66_l)*nl*ml A3 
Q_66_l = (Qll_l+Q22_l-2*Q12_l-2*Q66_l)*ml A2*nl A2+Q66_l*(ml A4+nl A4) 
Q_44_l = Q44_l*ml A2+Q55_l*nl A2 
Q_45_l = (Q55_l-Q44_l)*nl*ml 
Q_55_l = Q55_l*ml A2+Q44_l*nl A2 

Q _ l l _ 2 = Qll_2*m2 A4+2*(Q12_2+2*Q66_2)*m2 A2*n2 A2+Q22_2*n2 A4 
Q_12_2 = (Qll_2+Q22_2-4*Q66_2)*m2 A2*n2 A2+Q12_2*(m2 A4+n2 A4) 
Q_22_2 = Qll_2*n2 A4+2*(Q12_2+2*Q66_2)*m2 A2*n2 A2+Q22_2*m2 A4 
Q_16_2 = (Qll_2-Q12_2-2*Q66_2)*m2A3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2A3 
Q_26_2 = (Qll_2-Q12_2-2*Q66_2)*n2A3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2A3 
Q_66_2 = (Qll_2+Q22_2-2*Q12_2-2*Q66_2)*m2 A2*n2 A2+Q66_2*(m2 A4+n2 A4) 
Q_44_2 = Q44_2*m2A2+Q55_2*n2A2 
Q_45_2 = (Q55_2-Q44_2)*n2*m2 
Q_55_2 = Q55_2*m2A2+Q44_2*n2A2 

Q _ l l _ 3 = Qll_3*m3 A4+2*(Q12_3+2*Q66_3)*m3 A2*n3 A2+Q22_3*n3 A4 
Q_12_3 = (Qll_3+Q22_3-4*Q66_3)*m3 A2*n3 A2+Q12_3*(m3 A4+n3 A4) 
Q_22_3 = Qll_3*n3 A4+2*(Q12_3+2*Q66_3)*m3 A2*n3 A2+Q22_3*m3 A4 
Q_16_3 = (Qll_3-Q12_3-2*Q66_3)*m3A3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3A3 
Q_26_3 = (Qll_3-Q12_3-2*Q66_3)*n3A3*m3+(Q12_3-Q22_3+2*Q66_3)*n3*m3A3 
Q_66_3 = (Qll_3+Q22_3-2*Q12_3-2*Q66_3)*m3 A2*n3 A2+Q66_3*(m3 A4+n3 A4) 
Q_44_3 = Q44_3*m3A2+Q55_3*n3A2 
Q_45_3 = (Q55_3-Q44_3)*n3*m3 
Q_55_3 = Q55_3*m3A2+Q44_3*n3A2 
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A l l = Q _ l l . 1 * ( (h2/2 + h i ) - (h2/2); + Q _ i i . 2 * ( (h2/2) - ( -h2/2] ) + 
Q _ i i _ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A12 = Q_12. 1 * ( (h2/2 + h i ) - (h2/2); + Q_12. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_12_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A22 = Q_22. 1 * ( (h2/2 + h i ) - (h2/2); + Q_22. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_22_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A16 = Q_16. 1 * ( (h2/2 + h i ) - (h2/2); + Q_16. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_16_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A26 = Q_26. 1 * ( (h2/2 + h i ) - (h2/2); + Q_26. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_26_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A66 = Q_66. 1 * ( (h2/2 + h i ) - (h2/2); + Q_66. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_66_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 

A44 = Q_44. 1 * ( (h2/2 + h i ) - (h2/2); + Q_44. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_44_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A45 = Q_45. 1 * ( (h2/2 + h i ) - (h2/2); + Q_45. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_45_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A55 = Q_55. 1 * ( (h2/2 + h i ) - (h2/2); + Q_55. 2 * ( (h2/2) - ( -h2/2] ) + 
Q_55_ 3 * ( ( -h2/2) - (-•h2/2 - h3)) 

A=matrix((All,A12,A16),(A12,A22,A26),(A16,A26,A66)) 

B l l = 1/2 *(Q_11_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q _ l l _ 2 * ( (h2/2) A2 
h2/2) A2) + Q _ l l _ 3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B12 = 1/2 *(Q_12_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_12_2 * ( (h2/2) A2 
h2/2) A2) + Q_12_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B22 = 1/2 *(Q_22_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_22_2 * ( (h2/2) A2 
h2/2) A2) + Q_22_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B16 = 1/2 *(Q_16_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_16_2 * ( (h2/2) A2 
h2/2) A2) + Q_16_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B26 = 1/2 *(Q_26_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_26_2 * ( (h2/2) A2 
h2/2) A2) + Q_26_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B66 = 1/2 *(Q_66_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_66_2 * ( (h2/2) A2 
h2/2) A2) + Q_66_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 

B44 = 1/2 *(Q_44_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_44_2 * ( (h2/2) A2 
h2/2) A2) + Q_44_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B45 = 1/2 *(Q_45_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_45_2 * ( (h2/2) A2 
h2/2) A2) + Q_45_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B55 = 1/2 *(Q_55_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_55_2 * ( (h2/2) A2 
h2/2) A2) + Q_55_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 

B=matrix((All,A12.A16),(A12,A22,A26),(A16,A26,A66)) 

D i l = 1/3 *( Q _ l l _ l * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q _ l l _ 2 * ( (h2/2) A3 -
(-h2/2) A3) + Q _ l l _ 3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D12 = 1/3 *( Q_12_l * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_12_2 * ( (h2/2) A3 -
(-h2/2) A3) + Q_12_3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D22 = 1/3 *( Q_22_l * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_22_2 * ( (h2/2) A3 -
(-h2/2) A3) + Q_22_3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D16 = 1/3 *( Q_16_l * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_16_2 * ( (h2/2) A3 -
(-h2/2) A3) + Q_16_3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D26 = 1/3 *( Q_26_l * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_26_2 * ( (h2/2) A3 -
(-h2/2) A3) + Q_26_3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
D66 = 1/3 *( Q_66_l * ( (h2/2 + h l ) A 3 - (h2/2) A3) + Q_66_2 * ( (h2/2) A3 -
(-h2/2) A3) + Q =66_3 * ( (-h2/2) A3 - (-h2/2 - h 3 ) A 3 ) ) 
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D44 = 1/3 *( Q_44_l * ( (h.2/2 + h i ; 
A 3 - (h2/2) A3) + Q_44 2 * ( (h2/2; 

A 3 
(-h2/2) A3) + Q_44_3 * ( (-h2/2)

A3 • • (" h2/2 - h 3 ) A 3 ) ) 
D45 = 1/3 *( Q_45_l * ( (h2/2 + h i ; 

A 3 - (h2/2) A3) + Q_45 2 * ( (h2/2; 
A 3 -

(-h2/2) A3) + Q_45_3 * ( (-h2/2)
A3 • • (" h2/2 - h 3 ) A 3 ) ) 

D55 = 1/3 *( Q_55_1 * ( (h2/2 + h i ; 
A 3 - (h2/2) A3) + Q_55 2 * ( (h2/2; 

A 3 -
(-h2/2) A3) + Q_55_3 * ( (-h2/2)

A3 • • (" h2/2 - h 3 ) A 3 ) ) 

D=matrix((Bll,B12,B16),(B12,B22,B26),(B16,B26,B66)) 

E l l = 1/4 *( Q _ l l 1 * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q _ l l . 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q _ l l _ 3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 
E12 = 1/4* ( Q_12_l * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_12_ 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_12_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 
E22 = 1/4* ( Q_22_l * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_22_ 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_22_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 
E16 = 1/4* ( Q_16_l * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_16. 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_16_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 
E26 = 1/4* ( Q_26_l * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_26. 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_26_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 
E66 = 1/4* ( Q_66_l * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_66. 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_66_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 

E44 = 1/4* ( Q_44 1 * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_44_ 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_44_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 
E45 = 1/4* ( Q_45_l * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_45. 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_45_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 
E55 = 1/4* ( Q_55_l * ( (h2/2 + h i ; A 4 - (h2/2) A4) + Q_55. 2 * ( (h2/2; A 4 -
(-h2/2) A4) + Q_55_3 * ( (-h2/2)

A4 • " (" h2/2 - h 3 ) A 4 ) ) 

E = m a t r i x ( ( E l l , E 1 2 J E16),(E12,E22,E26),(E16,E26,E66)) 

F l l = 1/5* ( Q _ l l 1 * ( (h2/2 + h i ; 
A 5 - (h2/2) A5) + Q _ l l 2 * ( (h2/2; 

A 5 -
(-h2/2) A5) + Q _ l l _ 3 * ( (-h2/2)

A5 • • (" h2/2 - h 3 ) A 5 ) ) 
F12 = 1/5* ( Q_12_l * ( (h2/2 + h i ; 

A 5 - (h2/2) A5) + Q_12 2 * ( (h2/2; 
A 5 -

(-h2/2) A5) + Q_12_3 * ( (-h2/2)
A5 • • (" h2/2 - h 3 ) A 5 ) ) 

F22 = 1/5* ( Q_22_l * ( (h2/2 + h i ; 
A 5 - (h2/2) A5) + Q_22 2 * ( (h2/2; 

A 5 -
(-h2/2) A5) + Q_22_3 * ( (-h2/2)

A5 • • (" h2/2 - h 3 ) A 5 ) ) 
F16 = 1/5* ( Q_16_l * ( (h2/2 + h i ; 

A 5 - (h2/2) A5) + Q_16 2 * ( (h2/2; 
A 5 -

(-h2/2) A5) + Q_16_3 * ( (-h2/2)
A5 • • (" h2/2 - h 3 ) A 5 ) ) 

F26 = 1/5* ( Q_26_l * ( (h2/2 + h i ; 
A 5 - (h2/2) A5) + Q_26 2 * ( (h2/2; 

A 5 -
(-h2/2) A5) + Q_26_3 * ( (-h2/2)

A5 • • (" h2/2 - h 3 ) A 5 ) ) 
F66 = 1/5* ( Q_66_l * ( (h2/2 + h i ; 

A 5 - (h2/2) A5) + Q_66 2 * ( (h2/2; 
A 5 -

(-h2/2) A5) + Q_66_3 * ( (-h2/2)
A5 • • (" h2/2 - h 3 ) A 5 ) ) 

F44 = 1/5* ( Q_44 1 * ( (h2/2 + h i ; 
A 5 - (h2/2) A5) + Q_44 2 * ( (h2/2; 

A 5 -
(-h2/2) A5) + Q_44_3 * ( (-h2/2)

A5 • • (" h2/2 - h 3 ) A 5 ) ) 
F45 = 1/5* ( Q_45_l * ( (h2/2 + h i ; 

A 5 - (h2/2) A5) + Q_45 2 * ( (h2/2; 
A 5 -

(-h2/2) A5) + Q_45_3 * ( (-h2/2)
A5 • • (" h2/2 - h 3 ) A 5 ) ) 

F55 = 1/5* ( Q_55_l * ( (h2/2 + h i ; 
A 5 - (h2/2) A5) + Q_55 2 * ( (h2/2; 

A 5 -
(-h2/2) A5) + Q_55_3 * ( (-h2/2)

A5 • • (" h2/2 - h 3 ) A 5 ) ) 

F = m a t r i x ( ( F l l , F 1 2 J F16,0,0),(F12,F22,F26,0,0),(F16,F26,F66,0,0)) 

!MOISTURE 5TRAINS 
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KaT_l=(2/3)*rho0_l 
KaR_l=(l/30)*rho0_l 
K a L _ l = ( l / 3 0 ) * r h o 0 _ l 
KaT_2=(2/3)*rho0_2 
KaR_2=(l/30)*rho0_2 
KaL_2=(l/30)*rho0_2 
KaT_3=(2/3)*rho0_3 
KaR_3=(l/30)*rho0_3 
KaL_3=(l/30)*rho0_3 

e w l l _ l = ( K a L _ l * ( a b s _ w _ l ) ) / 1 0 0 
ew22_l=(KaR_l*(abs_w_l))/100 
ewll_2=(KaL_2*(abs_w_2))/100 
ew22_2=(KaR_2*(abs_w_2))/100 
ewll_3=(KaL_3*(abs_w_3))/100 
ew22_3=(KaR_3*(abs_w_3))/100 

j 

ex=dx(u) 
ey=dy(u) 
exy=dx(v)+dy(u) 
kx=dx(F_l) 
ky=dy(P_l) 
kxy=dx(P_l)+dy(F_l) 
kkx=dx(F_2) 
kky=dy(P_2) 
kkxy=dx(P_2)+dy(F_2) 
eyz=P_l+dy(w) 
exz=F_l+dx(w) 
eeyz=2*P_2 
eexz=2*F_2 

{1. TOP } 

e l _ l _ t o p = ex + (hl+h2/2)*kx+((hl+h2/2) A2)*kkx + e w l l _ l 
e 2 _ l _ t o p = ey + (hl+h2/2)*ky+((hl+h2/2) A2)*kky + ew22_l 
e 6 _ l _ t o p = exy + (hl+h2/2)*kxy + ((hl+h2/2) A2)*kkxy 
e 4 _ l _ t o p = eyz + (hl+h2/2)*eeyz 
e 5 _ l _ t o p = exz + (hl+h2/2)*eexz 

S i g m a l _ l _ t o p = Q _ l l _ l * e l _ l _ t o p + Q_12_l*e2_l_top + Q_16_ _l*e6. .1. top 
Sigma2_l_top = Q _ 1 2 _ l * e l _ l _ t o p + Q_22_l*e2_l_top + Q_26_ _l*e6. .1. top 
Sigma6_l_top = Q _ 1 6 _ l * e l _ l _ t o p + Q_26_l*e2_l_top + Q_66_ _l*e6. X top 
Sigma4_l_top =+ Q_44_l*e4_l_top + Q_45_l*e5_l_top 
Sigma5_l_top =+ Q_45_l*e4_l_top + Q_55_l*e5_l_top 

{1. MID } 

e l _ l _ m i d = ex + (hl/2+h2/2)*kx+((hl/2+h2/2) A2)*kkx + e w l l _ l 
e2_l_mid = ey + (hl/2+h2/2)*ky+((hl/2+h2/2) A2)*kky + ew22_l 
e6_l_mid = exy + (hl/2+h2/2)*kxy + ((hl/2+h2/2) A2)*kkxy 
e4_l_mid = eyz + (hl/2+h2/2)*eeyz 
e5_l_mid = exz + (hl/2+h2/2)*eexz 

Sigmal_l_mid = Q _ l l _ l * e l _ l _ m i d + Q_12_l*e2_l_mid + Q_16_ _l*e6_ .1. _mid 
Sigma2_l_mid = Q _ 1 2 _ l * e l _ l _ m i d + Q_22_l*e2_l_mid + Q_26_ _l*e6_ _1_ mid 
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Sigma6_i_mid = cTÍ6_Í*ei_Í_miď + Q^2li_l*e2_l_miď + Q_66_l*e6_í_miď 
Sigma4_l_mid = + Q_44_l*e4_l_mid + Q_45_l*e5_l_mid 
Sigma5_l_mid = + Q_45_l*e4_l_mid + Q_55_l*e5_l_mid 

{1. BOT_ 

e l _ l _ b o t = ex + (h2/2)*kx+((h2/2) A2)*kkx + e w l l _ l 
e 2_l_bot = ey + (h2/2)*ky+((h2/2) A2)*kky + ew22_l 
e6_l_bot = exy + (h2/2)*kxy + ((h2/2) A2)*kkxy 
e4_l_bot = eyz + (h2/2)*eeyz 
e5_l_bot = exz + (h2/2)*eexz 

Sigmal _ l _ b o t = Q _ l l _ l * e l _ l _ b o t + Q_12_l*e2_l_bot + Q_16_l*e6_l_bot 
Sigma2_l_bot = Q _ 1 2 _ l * e l _ l _ b o t + Q_22_l*e2_l_bot + Q_26_l*e6_l_bot 
Sigma6_l_bot = Q _ 1 6 _ l * e l _ l _ b o t + Q_26_l*e2_l_bot + Q_66_l*e6_l_bot 
Sigma4_l_bot = + Q_44_l*e4_l_bot + Q_45_l*e5_l_bot 
Sigma5_l_bot = + Q_45_l*e4_l_bot + Q_55_l*e5_l_bot 

{2. TOP  

e l _ 2 _ t o p = ex + (h2/2)*kx+((h2/2) A2)*kkx + e w l l _ 2 
e2_2_top = ey + (h2/2)*ky+((h2/2) A2)*kky + ew22_2 
e6_2_top = exy + (h2/2)*kxy + ((h2/2) A2)*kkxy 
e4_2_top = eyz + (h2/2)*eeyz 
e5_2_top = exz + (h2/2)*eexz 

Sigmal_2_top = Q _ l l _ 2 * e l _ 2 _ t o p + Q_12_2*e2_2_top + Q_16_2*e6_2_top 
Sigma2_2_top = Q_12_2*el_2_top + Q_22_2*e2_2_top + Q_26_2*e6_2_top 
Sigma6_2_top = Q_16_2*el_2_top + Q_26_2*e2_2_top + Q_66_2*e6_2_top 
Sigma4_2_top = + Q_44_2*e4_2_top + Q_45_2*e5_2_top 
Sigma5_2_top = + Q_45_2*e4_2_top + Q_55_2*e5_2_top 

{2.MID 

el_2_MID = ex + (0)*kx+((0) A2)*kkx + ew l l _ 2 
e2_2_MID = ey + (0)*ky+((0) A2)*kky + ew22_2 
e6_2_MID = exy + (0)*kxy + ( ( 0 ) A 2 ) * k k x y 
e4_2_MID = eyz + (0)*eeyz 
e5_2_MID = exz + (0)*eexz 

Sigmal_2_MID = Q_ll_2*el_2_MID + Q_12_2*e2_2_MID + Q_16_2*e6_2_MID 
Sigma2_2_MID = Q_12_2*el_2_MID + Q_22_2*e2_2_MID + Q_26_2*e6_2_MID 
Sigma6_2_MID = Q_16_2*el_2_MID + Q_26_2*e2_2_MID + Q_66_2*e6_2_MID 
Sigma4_2_MID = + Q_44_2*e4_2_MID + Q_45_2*e5_2_MID 
Sigma5_2_MID = + Q_45_2*e4_2_MID + Q_55_2*e5_2_MID 

{2. BOT  

el_2_bot = ex + (-h2/2)*kx+((-h2/2) A2)*kkx + e w l l _ 2 
e2_2_bot = ey + (-h2/2)*ky+((-h2/2) A2)*kky + ew22_2 
e6_2_bot = exy + (-h2/2)*kxy + ((-h2/2) A2)*kkxy 
e4_2_bot = eyz + (-h2/2)*eeyz 
e5_2_bot = exz + (-h2/2)*eexz 
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EQUATIONS 

w: 
A45*(dx(P_l)+dxy(w))+A55*(dx(F_l)+dxx(w))+B45*dx(2*P_2)+B55*dx(2*F_2) 
+A44*(dy(P_l)+dyy(w))+A45*(dy(F_l)+dxy(w))+B44*dy(2*P_2)+B45*dy(2*F_2)= -p 

A55*dx(F_l)+A55*dxx(w)+2*B55*dx(F_2)+A44*dy(P_l)+A44*dyy(w)+2*B44*dy(P_2) + 
p=0 

u: 
All*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))+Bll*dxx(F_l)+B12*dxy(P_l)+B16*(dx 
y(F_l)+dxx(P_l))+Dll*dxx(F_2)+D12*dxy(P_2)+D16*(dxy(F_2)+dxx(P_2))+A16*dxy( 
u)+A26*dyy(v)+A66*(dyy(u)+dxy(v))+B16*dxy(F_l)+B26*dyy(P_l)+B66*(dyy(F_l)+d 
xy(P_l))+D16*dxy(F_2)+D26*dyy(P_2)+D66*(dyy(F_2)+dxy(P_2)) = 0 

v: 
A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v))+B16*dxx(F_l)+B26*dxy(P_l)+B66*(dx 
y(F_l)+dxx(P_l))+D16*dxx(F_2)+D26*dxy(P_2)+D66*(dxy(F_2)+dxx(P_2))+A12*dxy( 
u)+A22*dyy(v)+A26*(dyy(u)+dxy(v))+B12*dxy(F_l)+B22*dyy(P_l)+B26*(dyy(F_l)+d 
xy(P_l))+D12*dxy(F_2)+D22*dyy(P_2)+D26*(dyy(F_2)+dxy(P_2)) = 0 

F _ l : 
Bll*dxx(u)+B12*dxy(v)+B16*(dxy(u)+dxx(v))+Dll*dxx(F_l)+D12*dxy(P_l)+D16*(dx 
y(F_l)+dxx(P_l))+Ell*dxx(F_2)+E12*dxy(P_2)+E16*(dxy(F_2)+dxx(P_2))+B16*dxy( 
u)+B26*dyy(v)+B66*(dyy(u)+dxy(v))+D16*dxy(F_l)+D26*dyy(P_l)+D66*(dyy(F_l)+d 
xy(P_l))+E16*dxy(F_2)+E26*dyy(P_2)+E66*(dyy(F_2)+dxy(P_2))-
(A45*(P_l+dy(w))+A55*(F_l+dx(w))+B45*2*P_2+B55*2*F_2)= 0 

F_2: 
B16*dxx(u)+B26*dxy(v)+B66*(dxy(u)+dxx(v))+D16*dxx(F_l)+D26*dxy(P_l)+D66*(dx 
y(F_l)+dxx(P_l))+E16*dxx(F_2)+E26*dxy(P_2)+E66*(dxy(F_2)+dxx(P_2))+B12*dxy( 
u)+B22*dyy(v)+B26*(dyy(u)+dxy(v))+D12*dxy(F_l)+D22*dyy(P_l)+D26*(dyy(F_l)+d 
xy(P_l))+E12*dxy(F_2)+E22*dyy(P_2)+E26*(dyy(F_2)+dxy(P_2)) -
(A44*(P_l+dy(w))+A45*(F_l+dx(w))+B44*2*P_2+B45*2*F_2)= 0 

P _ l : 
Dll*dxx(u)+D12*dxy(v)+D16*(dxy(u)+dxx(v))+Ell*dxx(F_l)+E12*dxy(P_l)+E16*(dx 
y(F_l)+dxx(P_l))+Fll*dxx(F_2)+F12*dxy(P_2)+F16*(dxy(F_2)+dxx(P_2))+D16*dxy( 
u)+D26*dyy(v)+D66*(dyy(u)+dxy(v))+E16*dxy(F_l)+E26*dyy(P_l)+E66*(dyy(F_l)+d 
xy(P_l))+F16*dxy(F_2)+F26*dyy(P_2)+F66*(dyy(F_2)+dxy(P_2))-
(B45*(P_l+dy(w))+B55*(F_l+dx(w))+D45*2*P_2+D55*2*F_2)= 0 

P_2: 
D16*dxx(u)+D26*dxy(v)+D66*(dxy(u)+dxx(v))+E16*dxx(F_l)+E26*dxy(P_l)+E66*(dx 
y(F_l)+dxx(P_l))+F16*dxx(F_2)+F26*dxy(P_2)+F66*(dxy(F_2)+dxx(P_2))+D12*dxy( 
u)+D22*dyy(v)+D26*(dyy(u)+dxy(v))+E12*dxy(F_l)+E22*dyy(P_l)+E26*(dyy(F_l)+d 
xy(P_l))+F12*dxy(F_2)+F22*dyy(P_2)+F26*(dyy(F_2)+dxy(P_2))-
(B44*(P_l+dy(w))+B45*(F_l+dx(w))+D44*2*P_2+D45*2*F_2)= 0 

BOUNDARIES 
region 1 

s t a r t (0,0) 
natural(v)=0 
natural(w)=0 
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n a t u r a l ( P _ l ) = 0 
natural(P_2)=0 
natural(u)=0 
n a t u r a l ( F _ l ) = 0 
natural(F_2)=0 

l i n e t o (L1,0) 
natural(v)=0 
value(w)=0 
n a t u r a l ( P _ l ) = 0 
value(P_2)=0 
natural(u)=0 
n a t u r a l ( F _ l ) = 0 
natural(F_2)=0 

l i n e t o (L1,L2) 
natural(v)=0 
natural(w)=0 
n a t u r a l ( P _ l ) = 0 
natural(P_2)=0 
natural(u)=0 
n a t u r a l ( F _ l ) = 0 
natural(F_2)=0 

l i n e t o (0,L2) 
natural(v)=0 
value(w)=0 
n a t u r a l ( P _ l ) = 0 
value(P_2)=0 
natural(u)=0 
n a t u r a l ( F _ l ) = 0 
natural(F_2)=0 

l i n e t o c l o s e 

PLOTS 
contour(w) { show deformed g r i d as s o l u t i o n progresses } 
surface(w) 
ele v a t i o n ( w ) from (0,L2/2) t o (Ll,L2/2) 
el e v a t i o n ( w ) from ( L l / 2 , 0 ) t o (L1/2.L2) 

END 

13.10 Numerical FlexPDE script - TOSDT 

TITLE 'Bending - 3 LAYERS - TOSDT' 

SELECT 
ngrid=31 { increase i n i t i a l gridding } 
cubic { Use Cubic Basis } 
errlim = l e - 4 { increase accuracy to resolve stresses } 
painted { paint a l l contour plots } 
!CHANGELIM =0.1 
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[STAGES = 36 
lautostage = on 
!PREFER_STABILITY=on 
!NONLINEAR=off 

VARIABLES 
w 
u 
V 

F_x 
F_V 
P_x 
p_y 
L_x 
L_y 

DEFINITIONS { parameter d e f i n i t i o n s } 
l a y e r _ l _ w = 30 
layer_2_w = 12 
layer_3_w = 12 
l a y e r l l = 1 2 {°C} 
la y e r l 2 = l a y e r _ l _ w 
layer21=12 
layer22=layer_2_w 
layer31=12 
layer32=layer_3_w 

a b s _ w _ l = ( l a y e r l l - l a y e r l 2 ) 
abs_w_2=(layer21-layer22) 
abs_w_3=(layer31-layer32) 

! Layer 1 C22 
E _ l l _ l _ w l 2 = 11*10 A9 
E_22_l_wl2 = 0.37*10 A9 
G_12_l_wl2 = 0.69*10 A9 
G_13_l_wl2 = G_12_l_wl2 
G_23_l_wl2 = G_12_l_wl2 
E _ l l _ l = E _ l l _ l _ w l 2 * ( l + 0 . 0 2 * ( 1 2 - l a y e r _ l _ w ) ) 
E_22_l = E_22_l_wl2*(l+0.02*(12-layer_l_w)) 
G_12_l = G_12_l_wl2*(l+0.02*(12-layer_l_w)) 
G_13_l = G_13_l_wl2*(l+0.02*(12-layer_l_w)) 
G_23_l = G_23_l_wl2*(l+0.02*(12-layer_l_w)) 

vl2_l=0.2 
v 2 1 _ l = ( E _ 2 2 _ l / E _ l l _ l ) * v l 2 _ l 

r h o _ l = 420 
rho0_l=rho_l/1000 
g_l=rho_l*9.81 

Q l l _ l = E _ l l _ l / (1-V12_1*V21_1) 
Q12_l = ( v l 2 _ l * E_22_l) / (1-V12_1*V21_1) 
Q16_l = 0 
Q26_l = 0 
Q22_l = E_22_l / ( 1 - V l 2 _ l * v 2 1 _ l ) 
Q66_l = G_12_l 
Q44_i = G_23_l 
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Q55_l = G_13_l 

! Layer 2 C22 
E _ l l _ 2 _ w l 2 = 11*10 A9 
E_22_2_wl2 = 0.37*10 A9 
G_12_2_wl2 = 0.69*10 A9 
G_13_2_wl2 = G_12_2_wl2 
G_23_2_wl2 = G_12_2_wl2 
E _ l l _ 2 = E_ll_2_wl2*(l+0.02*(12-layer_2_w)) 
E_22_2 = E_22_2_wl2*(l+0.02*(12-layer_2_w)) 
G_12_2 = G_12_2_wl2*(l+0.02*(12-layer_2_w)) 
G_13_2 = G_13_2_wl2*(l+0.02*(12-layer_2_w)) 
G_23_2 = G_23_2_wl2*(l+0.02*(12-layer_2_w)) 

v l 2 _ 2 =0.2 
v21_2 = ( E _ 2 2 _ 2 / E _ l l _ 2 ) * v l 2 _ 2 

rho_2 = 420 
rho0_2=rho_2/1000 
g_2=rho_2*9.81 

Q l l _ 2 = E _ l l _ 2 / (1 - V l 2_2*v21_2) 
Q12_2 = ( v l 2 _ 2 * E_22_2) / (l- v l 2 _ 2 * v 2 1 _ 2 ) 
Q16_2 = 0 
Q26_2 = 0 
Q22_2 = E_22_2 / (l-v l 2 _ 2 * v 2 1 _ 2 ) 
Q66_2 = G_12_2 
Q44_2 = G_23_2 
Q55_2 = G_13_2 

! Layer 3 C22 
E _ l l _ 3 _ w l 2 = 11*10 A9 
E_22_3_wl2 = 0.37*10 A9 
G_12_3_wl2 = 0.69*10 A9 
G_13_3_wl2 = G_12_3_wl2 
G_23_3_wl2 = G_12_3_wl2 
E _ l l _ 3 = E_ll_3_wl2*(l+0.02*(12-layer_3_w)) 
E_22_3 = E_22_3_wl2*(l+0.02*(12-layer_3_w)) 
G_12_3 = G_12_3_wl2*(l+0.02*(12-layer_3_w)) 
G_13_3 = G_13_3_wl2*(l+0.02*(12-layer_3_w)) 
G_23_3 = G_23_3_wl2*(l+0.02*(12-layer_3_w)) 

v l 2 _ 3 =0.2 
v21_3 = ( E _ 2 2 _ 3 / E _ l l _ 3 ) * v l 2 _ 3 

rho_3 = 420 
rho0_3=rho_3/1000 
g_3=rho_3*9.81 

Q l l _ 3 = E _ l l _ 3 / (1 - V l 2_3*v21_3) 
Q12_3 = (v l 2 _ 3 * E_22_3) / (l-v l 2 _ 3 * v 2 1 _ 3 ) 
Q16_3 = 0 
Q26_3 = 0 
Q22_3 = E_22_3 / (l-v l 2 _ 3 * v 2 1 _ 3 ) 
Q66_3 = G_12_3 
Q44_3 = G_23_3 
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Q55_3 = G_13_3 

! LAMINAE LAYERS, GEOMETRY 
h i = 0.03 
h2 = 0.03 
h3 = 0.03 
h=hl + h2 + h3 

Ll=1.5 
L2=0.3 

p= -12000 {N.m-2} 

ml=l ! c o s ( a l degrees) 
nl=0 ! s i n ( a l degrees) 
m2=0 !cos(a2 degrees) 
n2=l !sin(a2 degrees) 
m3=l !cos(a3 degrees) 
n3=0 !sin(a3 degrees) 

Q _ l l _ l = Qll_l*ml A4+2*(Q12_l+2*Q66_l)*ml A2*nl A2+Q22_l*nl A4 
Q_12_l = (Qll_l+Q22_l-4*Q66_l)*ml A2*nl A2+Q12_l*(ml A4+nl A4) 
Q_22_l = Qll_l*nl A4+2*(Q12_l+2*Q66_l)*ml A2*nl A2+Q22_l*ml A4 
Q_16_l = (Qll_l-Q12_l-2*Q66_l)*(ml) A3*nl+(Q12_l-Q22_l+2*Q66_l)*ml*(nl) A3 
Q_26_l = (Qll_l-Q12_l-2*Q66_l)*nl A3*ml+(Q12_l-Q22_l+2*Q66_l)*nl*ml A3 
Q_66_l = (Qll_l+Q22_l-2*Q12_l-2*Q66_l)*ml A2*nl A2+Q66_l*(ml A4+nl A4) 
Q_44_l = Q44_l*ml A2+Q55_l*nl A2 
Q_45_l = (Q55_l-Q44_l)*nl*ml 
Q_55_l = Q55_l*ml A2+Q44_l*nl A2 

Q _ l l _ 2 = Qll_2*m2 A4+2*(Q12_2+2*Q66_2)*m2 A2*n2 A2+Q22_2*n2 A4 
Q_12_2 = (Qll_2+Q22_2-4*Q66_2)*m2 A2*n2 A2+Q12_2*(m2 A4+n2 A4) 
Q_22_2 = Qll_2*n2 A4+2*(Q12_2+2*Q66_2)*m2 A2*n2 A2+Q22_2*m2 A4 
Q_16_2 = (Qll_2-Q12_2-2*Q66_2)*m2A3*n2+(Q12_2-Q22_2+2*Q66_2)*m2*n2A3 
Q_26_2 = (Qll_2-Q12_2-2*Q66_2)*n2A3*m2+(Q12_2-Q22_2+2*Q66_2)*n2*m2A3 
Q_66_2 = (Qll_2+Q22_2-2*Q12_2-2*Q66_2)*m2 A2*n2 A2+Q66_2*(m2 A4+n2 A4) 
Q_44_2 = Q44_2*m2A2+Q55_2*n2A2 
Q_45_2 = (Q55_2-Q44_2)*n2*m2 
Q_55_2 = Q55_2*m2A2+Q44_2*n2A2 

Q _ l l _ 3 = Qll_3*m3 A4+2*(Q12_3+2*Q66_3)*m3 A2*n3 A2+Q22_3*n3 A4 
Q_12_3 = (Qll_3+Q22_3-4*Q66_3)*m3 A2*n3 A2+Q12_3*(m3 A4+n3 A4) 
Q_22_3 = Qll_3*n3 A4+2*(Q12_3+2*Q66_3)*m3 A2*n3 A2+Q22_3*m3 A4 
Q_16_3 = (Qll_3-Q12_3-2*Q66_3)*m3A3*n3+(Q12_3-Q22_3+2*Q66_3)*m3*n3A3 
Q_26_3 = (Qll_3-Q12_3-2*Q66_3)*n3A3*m3+(Q12_3-Q22_3+2*Q66_3)*n3*m3A3 
Q_66_3 = (Qll_3+Q22_3-2*Q12_3-2*Q66_3)*m3 A2*n3 A2+Q66_3*(m3 A4+n3 A4) 
Q_44_3 = Q44_3*m3A2+Q55_3*n3A2 
Q_45_3 = (Q55_3-Q44_3)*n3*m3 
Q_55_3 = Q55_3*m3A2+Q44_3*n3A2 

A l l = Q _ l l _ l * ( (h2/2 + h i ) 
Q _ l l _ 3 * ( (-h2/2) - (-h2/2 -
A12 = Q_12_l * ( (h2/2 + h i ) 
Q_12_3 * ( (-h2/2) - (-h2/2 • 
A22 = Q_22_l * ( (h2/2 + h i ) 
Q_22_3 * ( (-h2/2) - (-h2/2 • 

- (h2/2)) 
h3)) 
- (h2/2)) 
h3)) 
- (h2/2)) 
h3)) 

+ Q _ l l _ 2 * ( (h2/2) - (-h2/2))+ 

+ Q_12_2 * ( (h2/2) - (-h2/2))+ 

+ Q_22_2 * ( (h2/2) - (-h2/2))+ 
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A16 = Q_16. 1 * ( (h.2/2 + h i ) - (h2/2)) + Q_16. 2 * ( (h2/2) - ( -h2/2))+ 
Q_16_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A26 = Q_26. 1 * ( (h2/2 + h i ) - (h2/2)) + Q_26. 2 * ( (h2/2) - ( -h2/2))+ 
Q_26_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A66 = Q_66. 1 * ( (h2/2 + h i ) - (h2/2)) + Q_66. 2 * ( (h2/2) - ( -h2/2))+ 
Q_66_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A44 = Q_44. 1 * ( (h2/2 + h i ) - (h2/2)) + Q_44. 2 * ( (h2/2) - ( -h2/2))+ 
Q_44_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A45 = Q_45. 1 * ( (h2/2 + h i ) - (h2/2)) + Q_45. 2 * ( (h2/2) - ( -h2/2))+ 
Q_45_ 3 * ( ( -h2/2) - (• •h2/2 - h3)) 
A55 = Q_55. 1 * ( (h.2/2 + h i ) - (h2/2)) + Q_55. 2 * ( (h2/2) - ( -h2/2))+ 
Q_55_ 3 * ( ( -h2/2) - (-•h2/2 - h3)) 

A=matrix((All,A12,A16),(A12,A22,A26),(A16,A26,A66)) 

B l l = 1/2 *(Q_11_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q _ l l _ 2 * ( (h2/2) A2 
h2/2) A2) + Q _ l l _ 3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B12 = 1/2 *(Q_12_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_12_2 * ( (h2/2) A2 
h2/2) A2) + Q_12_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B22 = 1/2 *(Q_22_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_22_2 * ( (h2/2) A2 
h2/2) A2) + Q_22_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B16 = 1/2 *(Q_16_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_16_2 * ( (h2/2) A2 
h2/2) A2) + Q_16_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B26 = 1/2 *(Q_26_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_26_2 * ( (h2/2) A2 
h2/2) A2) + Q_26_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B66 = 1/2 *(Q_66_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_66_2 * ( (h2/2) A2 
h2/2) A2) + Q_66_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B44 = 1/2 *(Q_44_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_44_2 * ( (h2/2) A2 
h2/2) A2) + Q_44_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B45 = 1/2 *(Q_45_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_45_2 * ( (h2/2) A2 
h2/2) A2) + Q_45_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 
B55 = 1/2 *(Q_55_1 * ( (h2/2 + h l ) A 2 - (h2/2) A2) + Q_55_2 * ( (h2/2) A2 
h2/2) A2) + Q_55_3 * ( (-h2/2) A2 - (-h2/2 - h 3 ) A 2 ) ) 

B=matrix((All,A12,A16),(A12,A22,A26),(A16,A26,A66)) 

D i l = 1/3 Q_n. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_n. _3 * ( (-h2/2) A3 - ( 
D12 = 1/3 *( Q_12. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_12. _3 * ( (-h2/2)

A3 - ( 
D22 = 1/3 *( Q_22. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_22. _3 * ( (-h2/2)

A3 - ( 
D16 = 1/3 *( Q_16. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_16. _3 * ( (-h2/2)

A3 - ( 
D26 = 1/3 *( Q_26. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_26. _3 * ( (-h2/2)

A3 - ( 
D66 = 1/3 *( Q_66. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_66. _3 * ( (-h2/2)

A3 - ( 
D44 = 1/3 *( Q_44. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_44_3 * ( (-h2/2)

A3 - ( 
D45 = 1/3 *( Q_45. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_45. _3 * ( (-h2/2)

A3 - ( 
D55 = 1/3 *( Q_55. .1 * ( (h2/2 + h l ) A 3 
(-h2/2) A3) + Q_55. _3 * ( (-h2/2)

A3 - ( 

- (h2/2) A3) + Q _ l l _ 2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_12_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_22_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_16_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_26_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_66_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_44_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_45_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 
- (h2/2) A3) + Q_55_2 * ( (h2/2) A3 -
h2/2 - h 3 ) A 3 ) ) 

D=matrix((Bll,B12,B16),(B12,B22,B26),(B16,B26,B66)) 
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E l l = 1/4 *( Q _ i i . .1 * ( (h.2/2 + h i ; A 4 

C-h2/2)M) + Q _ i i . _3 * ( (-h2/2)
A4 • • ( 

E12 = 1/4* ( Q_12. .1 * ( (h.2/2 + h i ; 
(-h2/2)M) + Q_12. _3 * ( (-h2/2)

A4 • • ( 
E22 = 1/4* ( Q_22. .1 * ( (h2/2 + h i ; 
(-h2/2)M) + Q_22. _3 * ( (-h2/2)

A4 • • ( 
E16 = 1/4* ( Q_16. .1 * ( (h2/2 + h i ; 
(-h2/2)M) + Q_16. _3 * ( (-h2/2)

A4 • • ( 
E26 = 1/4* ( Q_26. .1 * ( (h2/2 + h i ; A 4 

(-h2/2)M) + Q_26. _3 * ( (-h2/2)
A4 • • ( 

E66 = 1/4* ( Q_66. .1 * ( (h2/2 + h i ; A 4 

(-h2/2)M) + Q_66. _3 * ( (-h2/2)
A4 • • ( 

E44 = 1/4* ( Q_44. .1 * ( (h2/2 + h i ; A 4 

(-h2/2)M) + Q_44_3 * ( (-h2/2)
A4 • • ( 

E45 = 1/4* ( Q_45. .1 * ( (h2/2 + h i ; A 4 

(-h2/2)M) + Q_45. _3 * ( (-h2/2)
A4 • • ( 

E55 = 1/4* ( Q_55. .1 * ( (h2/2 + h i ; A 4 

(-h2/2) A4) + Q_55. _3 * ( (-h2/2)
A4 • - ( 

(h2/2 
72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

E=matrix((Ell,E12,E16),(E12,E22,E26),(E16 

- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -
- (h2/2 
-h2/2 -

F H = 1/5* ( Q _ i i . .1 * ( (h2/2 + h l )
A5 

(-h2/2) A5) + Q _ i i . _3 * ( (-h2/2)
A5 • • ( 

F12 = 1/5* ( Q_12. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_12. _3 * ( (-h2/2)
A5 • • ( 

F22 = 1/5* ( Q_22. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_22. _3 * ( (-h2/2)
A5 • • ( 

F16 = 1/5* ( Q_16. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_16. _3 * ( (-h2/2)
A5 • • ( 

F26 = 1/5* ( Q_26. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_26. _3 * ( (-h2/2)
A5 • • ( 

F66 = 1/5* ( Q_66. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_66. _3 * ( (-h2/2)
A5 • • ( 

F44 = 1/5* ( Q_44. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_44_3 * ( (-h2/2)
A5 • • ( 

F45 = 1/5* ( Q_45. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_45. _3 * ( (-h2/2)
A5 • • ( 

F55 = 1/5* ( Q_55. .1 * ( (h2/2 + h i ; 
A 5 

(-h2/2) A5) + Q_55. _3 * ( (-h2/2)
A5 • - ( 

F=matrix((Fll,F12,F16,0,0),(F12,F22,F26,0 

(h2/2 
72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

72 -
(h2/2 

G H = 1/6* ( Q _ i i . .1 * ( (h2/2 + h l )
A6 

(-h2/2) A6) + Q _ i i . _3 * ( (-h2/2)
A6 - ( 

G12 = 1/6* ( Q_12. .1 * ( (h2/2 + h l )
A6 

(-h2/2) A6) + Q_12. _3 * ( (-h2/2)
A6 - ( 

G22 = 1/6* ( Q_22. .1 * ( (h2/2 + h l )
A6 

(-h2/2) A6) + Q_22. _3 * ( (-h2/2)
A6 - ( 

G16 = 1/6* ( Q_16. .1 * ( (h2/2 + h l )
A6 

(-h2/2) A6) + Q_16. _3 * ( (-h2/2)
A6 - ( 

G26 = 1/6* ( Q_26. .1 * ( (h2/2 + h l )
A6 

(-h2/2) A6) + Q_26. _3 * ( (-h2/2)
A6 - ( 

G66 = 1/6* ( Q_66. .1 * ( (h2/2 + h l )
A6 

(-h2/2) A6) + Q_66. _3 * ( (-h2/2)
A6 - ( 

G44 = 1/6* ( Q_44. .1 * ( (h2/2 + h l )
A6 

(-h2/2) A6) + Q_44. 3 * ( (-h2/2)
A6 - ( 

4) + Q _ l l _ 2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_12_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_22_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_16_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_26_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_66_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_44_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_45_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

4) + Q_55_2 * ( (h2/2) 
h 3 ) A 4 ) ) 

,E26,E66)) 

5) + Q _ l l _ 2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_12_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_22_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_16_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_26_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_66_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_44_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_45_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

5) + Q_55_2 * ( (h2/2) 
h 3 ) A 5 ) ) 

0),(F16,F26,F66,0,0)) 

6) + Q _ l l _ 2 * ( (h2/2) 
h 3 ) A 6 ) ) 

6) + Q_12_2 * ( (h2/2) 
h 3 ) A 6 ) ) 

6) + Q_22_2 * ( (h2/2) 
h 3 ) A 6 ) ) 

6) + Q_16_2 * ( (h2/2) 
h 3 ) A 6 ) ) 

6) + Q_26_2 * ( (h2/2) 
h 3 ) A 6 ) ) 

6) + Q_66_2 * ( (h2/2) 
h 3 ) A 6 ) ) 

6) + Q_44_2 * ( (h2/2) 
h 3 ) A 6 ) ) 
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G45 = 1/6* ( Q_45_l * ( (h.2/2 + h l ) A 6 - (h2/2) A6) + Q_45_2 * ( (h2/2) A6 -
(-h2/2) A6) + Q_45_3 * ( (-h2/2) A6 - (-h.2/2 - h 3 ) A 6 ) ) 
G55 = 1/6* ( Q_55_l * ( (h2/2 + h l ) A 6 - (h2/2) A6) + Q_55_2 * ( (h2/2) A6 -
(-h2/2) A6) + Q_55_3 * ( (-h2/2) A6 - (-h2/2 - h 3 ) A 6 ) ) 

6=matrix((611,612,616,0,0),(612,622,626,0,0),(616,626,666,0,0)) 

H l l = 1/7* ( Q_n_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q 11 2 * ( (h2/2)
A7 -

(-h2/2) A7) + QL.11-_3 * ( (-h2/2)
A7 - (- h2/2 - h 3 ) A 7 ) ) 

H12 = 1/7* ( Q_12_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q_12. 2 * ( (h2/2)
A7 -

(-h2/2) A7) + Q_12_ _3 * ( (-h2/2)
A7 - (- h2/2 - h 3 ) A 7 ) ) 

H22 = 1/7* ( Q_22_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q_22 2 * ( (h2/2)
A7 -

(-h2/2) A7) + Q_22_ _3 * ( (-h2/2)
A7 - (• h2/2 - h 3 ) A 7 ) ) 

H16 = 1/7* ( Q_16_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q_16. 2 * ( (h2/2)
A7 -

(-h2/2) A7) + Q_16_ _3 * ( (-h2/2)
A7 - (• h2/2 - h 3 ) A 7 ) ) 

H26 = 1/7* ( Q_26_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q 26. 2 * ( (h2/2)
A7 -

(-h2/2) A7) + Q 26 _3 * ( (-h2/2)
A7 - (- h2/2 - h 3 ) A 7 ) ) 

H66 = 1/7* ( Q_66_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q 66 2 * ( (h2/2) A7 -
(-h2/2) A7) + Q_66_ _3 * ( (-h2/2)

A7 - (- h2/2 - h 3 ) A 7 ) ) 
H44 = 1/7* ( Q_44_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q_44_ 2 * ( (h2/2)

A7 -
(-h2/2) A7) + Q_44_3 * ( (-h2/2)

A7 - (- h2/2 - h 3 ) A 7 ) ) 
H45 = 1/7* ( Q_45_ 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q_45 2 * ( (h2/2)

A7 -
(-h2/2) A7) + Q_45_ _3 * ( (-h2/2)

A7 - (• h2/2 - h 3 ) A 7 ) ) 
H55 = 1/7* ( Q_55. 1 * ( (h2/2 + h l ) A 7 - (h2/2) A7) + Q_55 2 * ( (h2/2)

A7 -
(-h2/2) A7) + Q_55_ _3 * ( (-h2/2)

A7 - (• h2/2 - h 3 ) A 7 ) ) 

HH=matrix((Hll,H12,H16,0,0),(H12,H22,H26,0,0),(H16,H26,H66,0,0)) 

!MOISTURE STRAINS 

KaT_l=(2/3)*rho0_l 
KaR_l=(l/30)*rho0_l 
K a L _ l = ( l / 3 0 ) * r h o 0 _ l 
KaT_2=(2/3)*rho0_2 
KaR_2=(l/30)*rho0_2 
KaL_2=(l/30)*rho0_2 
KaT_3=(2/3)*rho0_3 
KaR_3=(l/30)*rho0_3 
KaL_3=(l/30)*rho0_3 

e w l l _ l = ( K a L _ l * ( a b s _ w _ l ) ) / 1 0 0 
ew22_l=(KaR_l*(abs_w_l))/100 
ewll_2=(Ka L_2*(abs_w_2))/100 
ew22_2=(KaR_2*(abs_w_2))/100 
ewll_3=(KaL_3*(abs_w_3))/100 
ew22_3=(KaR_3*(abs_w_3))/100 

ex_0=dx(u) 
ey_0=dy(u) 
exy_0=(dx(v)+dy(u)) 
ex_l=dx(P_x) 
ey_l=dy(P_y) 
exy_l=2*(dx(P_y)+dy(P_x)) 

ex_2=dx(F_x) 
ey_2=dy(F_y) 
exy_2=3 *(dx(F_y)+dy(F_x)) 
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ex_3=dx(L_x) 
ey_3=dy(L_y) 
exy_3= 4*(dx(L_y)+dy(L_x)) 
exz_0=(P_x +dx(w)) 
eyz_0=(P_y +dy(w)) 
exz_l= 2*F_x 
eyz_l= 2*F_y 
exz_2= 3*L_x 
eyz_2= 3*L L_y 

{1. TOP. 

e l _ l _ t o p = ex_0 + e x _ l * (hl+h.2/2) + ex_2 * (( hl+h2/2) A2) + ex_3 * (( 
hl+h2/2) A3) + e w l l _ l 
e 2 _ l _ t o p = ey_0 + e y _ l * (hl+h.2/2) + ey_2 * (( hl+h2/2) A2) + ey_3 * (( 
hl+h2/2) A3) + ew22_l 
e 6 _ l _ t o p = exy_0 + e x y _ l * (hl+h2/2) + exy_2 * (( hl+h2/2) A2) + exy_3 * 
(( hl+h2/2) A3) 
e 4 _ l _ t o p = eyz_0 + e y z _ l * (hl+h2/2) + eyz_2 * ((hl+h2/2) A2) 
e 5 _ l _ t o p = exz_0 + e x z _ l * (hl+h2/2) + exz_2 * ((hl+h2/2) A2) 

S i g m a l _ l _ t o p = Q _ l l _ l * e l _ l 
Sigma2_l_top = Q_12_l*el 1 

_top + Q_12_l*e2_l_top + Q_16_l*e6_l_top 
__ 0 _-_-- r _- -____top + Q_22_l*e2_l_top + Q_26_l*e6_l_top 
Sigma6_l_top = Q _ 1 6 _ l * e l _ l _ t o p + Q_26_l*e2_l_top + Q_66_l*e6_l_top 
Sigma4_l_top = + Q_44_l*e4_l_top + Q_45_l*e5_l_top 
Sigma5_l_top = + Q_45_l*e4_l_top + Q_55_l*e5_l_top 

{1. MID_ 

e l _ l _ m i d = ex_0 + e x _ l 
(( hl/2+h2/2) A3) + e w l l 
e2_l_mid = ey_0 + e y _ l 
(( hl/2+h2/2) A3) + ew22 
e6_l_mid = exy_0 + e x y _ l 

* (hl/2+h2/2) + ex_2 * (( hl/2+h2/2) A2) + ex_3 * 
_1 

* (hl/2+h2/2) + ey_2 * (( hl/2+h2/2) A2) + 

(hl/2+h2/2) + exy_2 * (( hl/2+h2/2) A2) 

ey_3 

exy_3 * (( hl/2+h2/2) A3) 
e4_l_mid = eyz_0 + e y z _ l * (hl/2+h2/2) + eyz_2 
e5_l_mid = exz_0 + e x z _ l * (hl/2+h2/2) + exz_2 

* ((hl/2+h2/2) A2) 
* ((hl/2+h2/2) A2) 

Sigmal_l_mid 
Sigma2_l_mid 
Sigma6_l_mid 
Sigma4_l_mid 
Sigma5_l_mid 

{1. BOT  

= Q _ l l _ l * e l _ l _ m i d + Q_12_l*e2_l_mid + Q_16_l*e6_l_mid 
= Q _ 1 2 _ l * e l _ l _ m i d + Q_22_l*e2_l_mid + Q_26_l*e6_l_mid 
= Q _ 1 6 _ l * e l _ l _ m i d + Q_26_l*e2_l_mid + Q_66_l*e6_l_mid 
= + Q_44_l*e4_l_mid + Q_45_l*e5_l_mid 
= + Q_45_l*e4_l_mid + Q_55_l*e5_l_mid 

e l _ l _ b o t = ex_0 + e x _ l * (h2/2) + ex_2 * ( ( h 2 / 2 ) A 2 ) + ex_3 * ( ( h 2 / 2 ) A 3 ) 
+ e w l l _ l 
e 2_l_bot = ey_0 + e y _ l * (h2/2) + ey_2 * ( ( h 2 / 2 ) A 2 ) + ey_3 * ( ( h 2 / 2 ) A 3 ) 
+ ew22_l 
e6_l_bot = exy_0+ e x y _ l * (h2/2) + exy_2 * ( ( h 2 / 2 ) A 2 ) + exy_3 * ( ( h 2 / 2 ) A 3 ) 
e4_l_bot = eyz_0 + e y z _ l * (h2/2) + eyz_2 * ( ( h 2 / 2 ) A 2 ) 
e5_l_bot = exz_0 + e x z _ l * (h2/2) + exz_2 * ( ( h 2 / 2 ) A 2 ) 

Sigmal _ l _ b o t = Q _ l l _ l * e l _ l _ b o t + 
Sigma2_l_bot = Q _ 1 2 _ l * e l _ l _ b o t + 
Sigma6_l_bot = Q _ 1 6 _ l * e l _ l _ b o t + 

Q_12_l*e2_l_bot + Q_16_l*e6_l_bot 
Q_22_l*e2_l_bot + Q_26_l*e6_l_bot 
Q_26_l*e2_l_bot + Q_S6_l*e6_l_bot 
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Sigma5_l_bot = + Q_45_l*e4_l_bot + Q_55_l*e5_l_bot 
{2. TOP 

e l _ 2 _ t o p = ex_0 + e x _ l * (h2/2)+ex_2 * (( h2/2) A2) + ex_3 * (( h2/2) A3) 
+ e w l l _ 2 
e2_2_top = ey_0 + e y _ l * (h2/2)+ey_2 * (( h2/2) A2) + ey_3 * (( h2/2) A3) 
+ ew22_2 
e6_2_top = exy_0 + e x y _ l * (h.2/2) + exy_2 * (( h2/2) A2) + exy_3 * (( 
h2/2) A3) 
e4_2_top = eyz_0 + e y z _ l * (h2/2) + eyz_2 * ((h.2/2) A2) 
e5_2_top = exz_0 + e x z _ l * (h2/2) + exz_2 * ( ( h 2 / 2 ) A 2 ) 

Sigmal_2_top = Q _ l l _ 2 * e l _ 2 _ t o p + Q_12_2*e2_2_top + Q_16_2*e6_2_top 
Sigma2_2_top = Q_12_2*el_2_top + Q_22_2*e2_2_top + Q_26_2*e6_2_top 
Sigma6_2_top = Q_16_2*el_2_top + Q_26_2*e2_2_top + Q_66_2*e6_2_top 
Sigma4_2_top = + Q_44_2*e4_2_top + Q_45_2*e5_2_top 
Sigma5_2_top = + Q_45_2*e4_2_top + Q_55_2*e5_2_top 

{2. MID } 

el_2_mid = ex_0 + e x _ l * (0) + ex_2 * (( 0 ) A 2 ) + ex_3 * (( 0 ) A 3 ) + 
e w l l _ 2 
e2_2_mid = ey_0 + e y _ l * (0) + ey_2 * (( 0 ) A 2 ) + ey_3 * (( 0 ) A 3 ) + 
ew22_2 
e6_2_mid = exy_0 + e x y _ l * (0) + exy_2 * (( 0 ) A 2 ) + exy_3 * (( 0 ) A 3 ) 
e4_2_mid = eyz_0 + e y z _ l * (0) + eyz_2 * ( ( 0 ) A 2 ) 
e5_2_mid = exz_0 + e x z _ l * (0) + exz_2 * ( ( 0 ) A 2 ) 

Sigmal_2_mid = Q _ l l _ 2 * e l _ 2 _ m i d + Q_12_2*e2_2_mid + Q_16_2*e6_2_mid 
Sigma2_2_mid = Q_12_2*el_2_mid + Q_22_2*e2_2_mid + Q_26_2*e6_2_mid 
Sigma6_2_mid = Q_16_2*el_2_mid + Q_26_2*e2_2_mid + Q_66_2*e6_2_mid 
Sigma4_2_mid = + Q_44_2*e4_2_mid + Q_45_2*e5_2_mid 
Sigma5_2_mid = + Q_45_2*e4_2_mid + Q_55_2*e5_2_mid 

{2. BOT } 

el_2_bot = ex_0 + e x _ l * (-h2/2) + ex_2 * (( -h2/2) A2) + ex_3 * (( -
h2/2) A3) + e w l l _ 2 
e2_2_bot = ey_0 + e y _ l * (-h2/2) + ey_2 * (( -h2/2) A2) + ey_3 * (( -
h2/2) A3) + ew22_2 
e6_2_bot = exy_0 + e x y _ l * (-h2/2) + exy_2 * (( -h2/2) A2) + exy_3 * (( -
h2/2) A3) 
e4_2_bot = eyz_0 + e y z _ l * (-h2/2) + eyz_2 * ( ( - h 2 / 2 ) A 2 ) 
e5_2_bot = exz_0 + e x z _ l * (-h2/2) + exz_2 * ( ( - h 2 / 2 ) A 2 ) 

Sigmal_2_bot = Q _ l l _ 2 * e l _ 2 _ b o t + Q_12_2*e2_2_bot + Q_16_2*e6_2_bot 
Sigma2_2_bot = Q_12_2*el_2_bot + Q_22_2*e2_2_bot + Q_26_2*e6_2_bot 
Sigma6_2_bot = Q_16_2*el_2_bot + Q_26_2*e2_2_bot + Q_66_2*e6_2_bot 
Sigma4_2_bot = + Q_44_2*e4_2_bot + Q_45_2*e5_2_bot 
Sigma5_2_bot = + Q_45_2*e4_2_bot + Q_55_2*e5_2_bot 

{3. TOP } 

e l _ 3 _ t o p = ex_0 + e x _ l * (-h2/2) + ex_2 * (( -h2/2) A2) + ex_3 * (( -
h2/2) A3) + e w l l _ 3 
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e2_3_top = ey_0 + e y _ l * (-h.2/2) + ey_2 * (( -h2/2) A2) + ey_3 * (( -
h2/2) A3) + ew22_3 
e6_3_top = exy_0 + e x y _ l * (-h.2/2) + exy_2 * (( -h2/2) A2) + exy_3 * (( -
h2/2) A3) 
e4_3_top = eyz_0 + e y z _ l * (-h2/2) + eyz_2 * (( - h 2 / 2 ) A 2 ) 
e5_3_top = exz_0 + e x z _ l * (-h2/2) + exz_2 * (( - h 2 / 2 ) A 2 ) 

Sigmal_3_top = 
Sigma2_3_top = 
Sigma6_3_top = 
Sigma4_3_top = 
Sigma5_3_top = 

Q _ l l _ 3 * e l _ 3 _ t o p + 
Q_12_3*el_3_top + 
Q_16_3*el_3_top + 
+ Q_44_3*e4_3_top 
+ Q_45_3*e4_3_top 

Q__12_3*e2_3_top + 
Q_22_3*e2_3_top + 
Q_26_3*e2_3_top + 
+ Q_45_3*e5_3_top 
+ Q_55_3*e5_3_top 

Q_16_3*e6_3_top 
Q_26_3*e6_3_top 
Q_66_3*e6_3_top 

{3. MID } 

el_3_mid = ex_0 + e x _ l * (-h2/2-h3/2) + ex_2 * (( -h2/2-h3/2) A2) + ex_3 
* (( -h2/2-h3/2) A3) + ew l l _ 3 
e2_3_mid = ey_0 + e y _ l * (-h2/2-h3/2) + ey_2 * (( -h2/2-h3/2) A2) + ey_3 
* (( -h2/2-h3/2) A3) + ew22_3 
e6_3_mid = exy_0 + e x y _ l * (-h2/2-h3/2) + exy_2 * (( -h2/2-h3/2) A2) + 
exy_3 * (( -h2/2-h3/2) A3) 
e4_3_mid = eyz_0 + e y z _ l * (-h2/2-h3/2) + eyz_2 * ((-h2/2-h3/2) A2) 
e5_3_mid = exz_0 + e x z _ l * (-h2/2-h3/2) + exz_2 * ((-h2/2-h3/2) A2) 

Sigmal_3_mid = Q_ l l _ 3 * e l _ 3 _ m i d + 
Sigma2_3_mid = Q_12_3*el_3_mid + 
Sigma6_3_mid = Q_16_3*el_3_mid + 
Sigma4_3_mid = + Q_44_3*e4_3_mid 
Sigma5_3_mid = + Q_45_3*e4_3_mid 

Q_12_3*e2_3_mid + Q_16_3*e6_3_mid 
Q_22_3*e2_3_mid + Q_26_3*e6_3_mid 
Q_26_3*e2_3_mid + Q_66_3*e6_3_mid 
+ Q_45_3*e5_3_mid 
+ Q_55_3*e5_3_mid 

{3. BOT  

el_3_bot = ex_0 + e x _ l * (-h2/2-h3) + ex_2 * (( -h2/2-h3) A2) + ex_3 * 
(( -h2/2-h3) A3) + ew l l _ 3 
e2_3_bot = ey_0 + e y _ l * (-h2/2-h3) + ey_2 * (( -h2/2-h3) A2) + ey_3 * 
(( -h2/2-h3) A3) + ew22_3 
e6_3_bot = exy_0 + e x y _ l * (-h2/2-h3) + exy_2 * (( -h2/2-h3) A2) + exy_3 
* (( -h2/2-h3) A3) 
e4_3_bot = eyz_0 + e y z _ l * (-h2/2-h3) + eyz_2 * ((-h2/2-h3) A2) 
e5_3_bot = exz_0 + e x z _ l * (-h2/2-h3) + exz_2 * ((-h2/2-h3) A2) 

Sigmal_3_bot = Q _ l l _ 3 * e l _ 3 _ b o t + Q_12_3*e2_3_bot + Q_16_3*e6_3_bot 
Sigma2_3_bot = Q_12_3*el_3_bot + Q_22_3*e2_3_bot + Q_26_3*e6_3_bot 
Sigma6_3_bot = Q_16_3*el_3_bot + Q_26_3*e2_3_bot + Q_66_3*e6_3_bot 
Sigma4_3_bot = + Q_44_3*e4_3_bot + Q_45_3*e5_3_bot 
Sigma5_3_bot = + Q_45_3*e4_3_bot + Q_55_3*e5_3_bot 

INITIAL VALUES 
w=0 
u=0 
v=0 
F_x=0 
F_y=0 
P_x=0 
P_y=0 
L_x=0 
L_y=0 
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EQUATIONS 

w: 
A45*(dx(P_y)+dxy(w))+A55*(dx(P_x)+dxx(w))+2*B45*dx(F_y)+2*B55*dx(F_x)+3*D45 
*dx(L_y)+3*D55*dx(L_x)+A44*(dy(P_y)+dyy(w))+A45*(dy(P_x)+dxy(w))+2*B44*dy(F 
_y)+2*B45*dy(F_x)+3*D44*dy(L_y)+3*D45*dy(L_x)= -p 

u: 
All*dxx(u)+A12*dxy(v)+A16*(dxy(u)+dxx(v))+Bll*dxx(P_x)+B12*dxy(P_y)+B16*(dx 
y(P_x)+dxx(P_y))+Dll*dxx(F_x)+D12*dxy(F_y)+D16*(dxy(F_x)+dxx(F_y))+Ell*dxx( 
L_x)+E12*dxy(L_y)+E16*(dxy(L_x)+dxx(L_y))+A16*dxy(u)+A26*dyy(v)+A66*(dyy(u) 
+dxy(v))+B16*dxy(P_x)+B26*dyy(P_y)+B66*(dyy(P_x)+dxy(P_y))+D16*dxy(F_x)+D26 
*dyy(F_y)+D66*(dyy(F_x)+dxy(F_y))+E16*dxy(L_x)+E26*dyy(L_y )+E66*(dyy(L_x)+d 
xy(L_y))=9 

v: 
A16*dxx(u)+A26*dxy(v)+A66*(dxy(u)+dxx(v))+B16*dxx(P_x)+B26*dxy(P_y)+B66*(dy 
x(P_x)+dxx(P_y))+D16*dxx(F_x)+D26*dxy(F_y)+D66*(dxy(F_x)+dxx(F_y))+E16*dxx( 
L_x)+E26*dxy(L_y )+E66*(dxy(L_x)+dxx(L_y))+A12*dxy(u)+A22*dyy(v)+A26*(dyy(u) 
+dxy(v))+B12*dxy(P_x)+B22*dyy(P_y)+B26*(dyy(P_x)+dxy(P_y))+D12*dxy(F_x)+D22 
*dyy(F_y)+D26*(dyy(F_x)+dxy(F_y))+E12*dxy(L_x)+E22*dyy(L_y)+E26*(dyy(L_x)+d 
xy(L_y))=9 

F_x: 
Bll*dxx(u)+B12*dxy(v)+B16*(dxy(u)+dxx(v))+Dll*dxx(P_x)+D12*dxy(P_y)+D16*(dx 
y(P_x)+dxx(P_y))+Ell*dxx(F_x)+E12*dxy(F_y)+E16*(dxy(F_x)+dxx(F_y))+Fll*dxx( 
L_x)+F12*dxy(L_y)+F16*(dxy(L_x)+dxx(L_y))+B16*dxy(u)+B26*dyy(v)+B66*(dyy(u) 
+dxy(v))+D16*dxy(P_x)+D26*dyy(P_y)+D66*(dyy(P_x)+dxy(P_y))+E16*dxy(F_x)+E26 
*dyy(F_y)+E66*(dyy(F_x)+dxy(F_y))+F16*dxy(L_x)+F26*dyy(L_y)+F66*(dyy(L_x)+d 
x y ( L _ y ) ) -
(A45*(P_y+dy(w))+A55*(P_x+dx(w))+2*B45*F_y+2*B55*F_x+3*D45*L_y+3*D55*L_x)-
(D45*(P_y+dy(w))+D55*(P_x+dx(w))+2*E45*F^+2*E55*F_x+3*F45*L_y+3*F5 

F_y: 
B16*dxx(u)+B26*dxy(v)+B66*(dxy(u)+dxx(v))+D16*dxx(P_x)+D26*dxy(P_y)+D66*(dx 
y(P_x)+dxx(P_y))+E16*dxx(F_x)+E26*dxy(F_y)+E66*(dxy(F_x)+dxx(F_y))+F16*dxx( 
L_x)+F26*dxy(L_y)+F66*(dxy(L_x)+dxx(L_y))+B12*dxy(u)+B22*dyy(v)+B26*(dyy(u) 
+dxy(v))+D12*dxy(P_x)+D22*dyy(P_y)+D26*(dyy(P_x)+dxy(P_y))+E12*dxy(F_x)+E22 
*dyy(F_y)+E26*(dyy(F_x)+dxy(F_y))+F12*dxy(L_x)+F22*dyy(L_y)+F26*(dyy(L_x)+d 
x y ( L _ y ) ) -
(A44*(P_y+dy(w))+A45*(P_x+dx(w))+2*B44*F_y+2*B45*F_x+3*D44*L_y+3*D45*L_x)-
(D44*(P_y+dy(w))+D45*(P_x+dx(w))+2*E44*F_y+2*E45*F_x+3*F44*L_y+ 

P_x: 
Ell*dxx(u)+E12*dxy(v)+E16*(dxy(u)+dxx(v))+Fll*dxx(P_x)+F12*dxy(P_y)+F16*(dx 
y(P_x)+dxx(P_y))+Gll*dxx(F_x)+G12*dxy(F_y)+G16*(dxy(F_x)+dxx(F_y))+Hll*dxx( 
L_x)+H12*dxy(L_y)+H16*(dxy(L_x)+dxx(L_y))+E16*dxy(u)+E26*dyy(v)+E66*(dyy(u) 
+dxy(v))+F16*dxy(P_x)+F26*dyy(P_y)+F66*(dyy(P_x)+dxy(P_y))+G16*dxy(F_x)+G26 
*dyy(F_y)+G66*(dyy(F_x)+dxy(F_y))+H16*dxy(L_x)+H26*dyy(L_y)+H66*(dyy(L_x)+d 
x y ( L _ y ) ) -
3*(D45*(P_y+dy(w))+D55*(P_x+dx(w))+2*E45*F_y+2*E55*F_x+3*F45*L_y+3*F55*L_x) 
=0 

p_y: 
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E16*dxx(u)+E26*dxy(v)+E66*(dxy(u)+dxx(v))+F16*dxx(P_x)+F26*dxy(P_y)+F66*(dx 
y(P_x)+dxx(P_y))+G16*dxx(F_x)+G26*dxy(F_y)+G66*(dxy(F_x)+dxx(F_y))+H16*dxx( 
L_x)+H26*dxy(L_y)+H66*(dxy(L_x)+dxx(L_y))+E12*dxy(u)+E22*dyy(v)+E26*(dyy(u) 
+dxy(v))+F12*dxy(P_x)+F22*dyy(P_y)+F26*(dyy(P_x)+dxy(P_y))+G12*dxy(F_x)+G22 
*dyy(F_y)+G26*(dyy(F_x)+dxy(F_y))+H12*dxy(L_x)+H22*dyy(L_y)+H26*(dyy(L_x)+d 
x y ( L _ y ) ) -
3*(D44*(P_y+dy(w))+D45*(P_x+dx(w))+2*E44*F_y+2*E45*F_x+3*F44*L_y+3*F45*L_x) 
=0 

L_x: 
Dll*dxx(u)+D12*dxy(v)+D16*(dxy(u)+dxx(v))+Ell*dxx(P_x)+E12*dxy(P_y)+E16*(dx 
y(P_x)+dxx(P_y))+Fll*dxx(F_x)+F12*dxy(F_y)+F16*(dxy(F_x)+dxx(F_y))+Gll*dxx( 
L_x)+G12*dxy(L_y)+G16*(dxy(L_x)+dxx(L_y))+D16*dxy(u)+D26*dyy(v)+D66*(dyy(u) 
+dxy(v))+E16*dxy(P_x)+E26*dyy(P_y)+E66*(dyy(P_x)+dxy(P_y))+F16*dxy(F_x)+F26 
*dyy(F_y)+F66*(dyy(F_x)+dxy(F_y))+G16*dxy(L_x)+G26*dyy(L_y)+G66*(dyy(L_x)+d 
x y ( L _ y ) ) -
2*(B45*(P_y+dy(w))+B55*(P_x+dx(w))+2*D45*F_y+2*D55*F_x+3*E45*L_y+3*E55*L_x) 
=0 

L_y: 
D16*dxx(u)+D26*dxy(v)+D66*(dxy(u)+dxx(v))+E16*dxx(P_x)+E26*dxy(P_y)+E66*(dx 
y(P_x)+dxx(P_y))+F16*dxx(F_x)+F26*dxy(F_y)+F66*(dxy(F_x)+dxx(F_y))+G16*dxx( 
L_x)+G26*dxy(L_y)+G66*(dxy(L_x)+dxx(L_y))+D12*dxy(u)+D22*dyy(v)+D26*(dyy(u) 
+dxy(v))+E12*dxy(P_x)+E22*dyy(P_y)+E26*(dyy(P_x)+dxy(P_y))+F12*dxy(F_x)+F22 
*dyy(F_y)+F26*(dyy(F_x)+dxy(F_y))+G12*dxy(L_x)+G22*dyy(L_y)+G26*(dyy(L_x)+d 
x y ( L _ y ) ) -
2*(B44*(P_y+dy(w))+B45*(P_x+dx(w))+2*D44*F_y+2*D45*F_x+3*E44*L_y+3*E45*L_x) 
=0 

BOUNDARIES 
region 1 

(0,0) 
n a t u r a l ; V)=0 
n a t u r a l >)=0 
n a t u r a l ;p x)= =0 
n a t u r a l ;p_y)= =0 
n a t u r a l : L _ X ) = =0 
n a t u r a l :L_y)= =0 
n a t u r a l ;u)=0 
n a t u r a l : F _ X ) = =0 
n a t u r a l ;p_y)= =0 
(L1,0) 
n a t u r a l ; V)=0 
value(w )=0 
n a t u r a l ;p x)= =0 
n a t u r a l ;p_y)= =0 
n a t u r a l : L _ X ) = =0 
n a t u r a l :L_y)= =0 
n a t u r a l ;u)=0 
n a t u r a l : F _ X ) = =0 
n a t u r a l :F_y)= =0 
(L1,L2) 
n a t u r a l ; V)=0 
n a t u r a l >)=0 
n a t u r a l ;p x)= =0 
n a t u r a l ;p_y)= =0 
n a t u r a l : L _ X ) = =0 
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natural(L_y)=0 
natural(u)=0 
natural(F_x)=0 
natural(F_y)=0 

l i n e t o (0,L2) 
natural(v)=0 
value(w)=0 
natural(P_x)=0 
natural(P_y)=0 
natural(L_x)=0 
natural(L_y)=0 
natural(u)=0 
natural(F_x)=0 
natural(F_y)=0 

l i n e t o c l o s e 

PLOTS 
contour(w) { show deformed g r i d as s o l u t i o n progresses } 
surface(w) 
e l e v a t i o n ( w ) from (0,L2/2) t o ( L l , L 2 / 2 ) 
e l e v a t i o n ( w ) from ( L l / 2 , 0 ) t o (L1/2,L2) 

END 
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