
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Engineering

(" d

Master's Thesis

Development of rephrase system using Natural
Language Processing models

Ivan Tsvietkov

© 2022 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

Syste ms E

Iva

jneering and Informatics

Informatics

n Tsvietkov

Thesis title

Development of rephrase system using Nature Language Processing models

Objectives of thesis

The main objective of this thesis is to describe and explain process of development of a rephrase system
using various natural learning processing, machine learning and deep learning libraries in Python. The
second and final objectives is to deploy the rephrase system which performs substitution of words on
a given text without losing context.

Methodology

The methodology of the thesis is based on analysis of technical and scientific sources focusing on artificial
intelligence, machine learning, deep learning and natural language processing. Based on the synthesis of
the knowledge gained, a prototype application will be implemented to rephrase text. The application will be
written in Python using libraries for data science as NLTK, Pandas, NumPyand many others. The application
will be tested and assessed in terms of performance and replacement quality.

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

The proposed extent of the thesis

60-80 pages

Keywords

Deep learning, NLTK, Natural language processing, Machine learning, TensorFlow, TextBlob, Pytorch

Recommended information sources

BENGFORT, Benjamin, Rebecca BILBRO a Tony OJEDA. Applied text analysis with Python: enabling
language-aware data products with machine learning. 3rd ed. Sebastopol, CA: O'Reilly Media, 2018.
ISBN 978-1491963043.

RAO, Delip and Brian MCMAHAN, 2019. Natural Language Processing with PyTorch: Build Intelligent
Language Applications Using Deep Learning. O'Reilly Media. ISBN 978-0321898388.

RUSSELL, Stuart J. and Peter NORVIG and Ernest DAVIS. Artificial intelligence: a modern approach. 4th ed.
Upper Saddle River: Prentice Hall, 2020. ISBN 1292401133

Expected date of thesis defence

2021/22 W S - F E M

The Diploma Thesis Supervisor

Ing. Petr Hanzlfk, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 1. 3. 2022

Ing. Martin Pelikan, Ph.D.

Head of department

Electronic approval: 7. 3. 2022

doc. Ing. Tomáš Šubrt, Ph.D.

Dean

Prague on 14. 04. 2022

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my master's thesis titled "Development of rephrase

system using Nature Language Processing models" by myself and I have used only the

sources mentioned at the end of the thesis. As the author of the master's thesis, I declare that

the thesis does not break any copyrights.

In Prague on 11.04.2022

Acknowledgement

I would like to thank my thesis supervisor Ing. Petr Hanzhk, Ph.D. for his advice,

support and time which helped me a lot with writing this thesis, and my good friend Be.

Illia Prazdnyk for motivation.

Development of rephrase system using Natural
Language Processing models

Abstract

The thesis is focused on development of rephrase system using Nature Language

Processing models in Python. The theoretical part starts with origins Artificial Intelligence

field. After this it shortly defines Machine learning and Deep learning, and describes what

is it neural network, how it works, why neurons need activation function and types of it. The

theoretical part goes on to describe main NLP techniques, types of neural networks which

are used to process human language like R N N and Transformers and ends with brief

description of tools for NLP engineer.

The practical part shows to ways of creating rephase system. The first way shows

how to change sentence using synonyms with libraries like N L T K and spaCy. The second

way shows more sophisticated way, it takes already pre-trained model of transformer and

additionally trains it on specific corpus created for rephase tasks.

Keywords: Deep learning, N L T K , Natural language processing, Machine learning,

TensorFlow, TextBlob, Pytorch

7

Vývoj systému přeformulování textu používají modely
zpracování přirozeného jazyka

Abstrakt

Tato diplomová práce je zaměřená na vývoj systému přeformulování textu používají

modely zpracování přirozeného jazyka v Pythonu. Teoretická část se začíná s popsaní

vytvoření oboru Umělá inteligence. Pak stručně charakterizuje strojové a hluboké učení, a

přechází o popsaní co je neuronové sítě, jak to funguje, proč neurony potřebují aktivační

funkce a jaké jsou její druhy. Pak teoretická část pokračují v popsaní základních NLP metod,

druhů neuronových sítí, který se používají při zpracovaní přirozeného jazyka jako R N N a

Transformers a se ukončuje definicemi nástroji pro NLP vývojáře.

Praktická část vysvětluje dvě cesty vývoje systému přeformulování. První cesta

ukazuje, jak je možné změnit větu používají synonyma a knihovny N L T K a spaCy. Druhá

část směruje na vice sofistikovaný přistup a ukazuje, jak vzít natrénovaný model

transformeru a dodatečně natrénovat pro specifický úkol přeformulování textu.

Klíčová slova: Hluboké učení, N L T K , zpracování přirozeného jazyka, strojové učení,

TensorFlow, TextBlob, Pytorch

8

Table of content

1 Introduction 13

2 Objectives and Methodology 14

2.1 Objectives 14

2.2 Methodology 14

3 Literature Review 15

3.1 Artificial Intelligence 15

3.1.1 Creation of a field of artificial intelligence 15

3.1.2 Subsets of Artificial Intelligence 16

3.1.3 Machine learning 16

3.1.4 Deep learning IV

3.1.5 Neural networks 17

3.1.6 Activation functions 19

3.2 Natural Language Processing 21

3.2.1 Tokenization 22

3.2.2 Removing the stop words 24

3.2.3 Embeddings 24

3.2.4 Parsing and part-of-speech tagging 27

3.2.5 Word and phrase frequencies 27

3.2.6 N-grams 28

3.2.7 Sentiment analysis 29

3.2.8 Lemmatization and stemming 29

3.3 Neural networks for NLP 29

3.3.1 R N N 29

3.3.2 Transformer 31

3.4 Tools for NLP engineer 35

3.4.1 Python 35

3.4.2 NumPy 36

3.4.3 Scikit-learn 36

3.4.4 Pandas 37

3.4.5 N L T K 37

3.4.6 Textblob 37

3.4.7 SpaCy 37

3.4.8 TensorFlow 37

9

Practical Part 39

3.5 Designing rephase system 39

3.5.1 The final goal of system 39

3.5.2 Defining needed technologies and algorithm 39

3.6 Creating first system 40

3.6.1 Installing packages for the first system 40

3.6.2 Implementing first system 41

3.7 Creating second system 45

3.7.1 Setting up IDE and installing packages for the second system 45

3.7.2 Implementing second system 46

Results and Discussion 54

3.8 Evaluating both systems 54

3.8.1 Testing the first system 54

3.8.2 Testing the second system 56

3.8.3 Comparison of two systems 57

Conclusion 59

4 References Error! Bookmark not defined.

5 Appendix 62

List of pictures
Figure 1 - Subsets of Artificial Intelligence (Wolfewicz, 2021) 16

Figure 2 - Perceptron model (Sharma, 2017) 18

Figure 3 - Simple Neural Network (Wolfewicz, 2021) 19

Figure 4 - Sigmoid function (Sharma, 2017) 20

Figure 5 - Tahn activation function (Sharma, 2017) 20

Figure 6 - ReLU function with compared to Sigmoid (Sharma, 2017) 21

Figure 7 - Leaky ReLU with compared to ReLU (Sharma, 2017) 21

Figure 8 - Tokenization in Python using N L T K library 23

Figure 9 - Removing stop words in Python using N L T K library 24

Figure 10 - Simple encoding of words in Python using scikit-learn library 25

Figure 11- Example of word embedding (Koehrsen, 2018) 26

Figure 12 - Part-of-speech tagging in Python using spaCy library 27

10

Figure 13- Example of applying TF-IDF scoring for multiple texts (Benjamin Bengfort,

2018) 28

Figure 14 - R N N with compare to simple neural network (Biswal, 2022) 30

Figure 15 - An unrolled recurrent neural network (Olah, 2015) 30

Figure 16 - Model of transformer (Ashish Vaswani, 2017) 32

Figure 17 - Visualization of how model the understand similarity in meaning between two

sentence (Dzmitry Bahdanau, 2015) 34

Figure 18 - Installing needed libraries 40

Figure 19 - Installing needed packages from N L T K library 40

Figure 20 - Downloading window for packages 41

Figure 21 - Downloading needed package from spaCy library 41

Figure 22 - Importing libraries and downloading the model from spaCy 41

Figure 23 - Opening and reading the file with text 42

Figure 24 - Starting to rephase every sentence from text file 42

Figure 25 - First class which defines parameters of rephasing 42

Figure 26 - Choosing which words can be changed by their token 43

Figure 27 - Adding word what will be changed into list 43

Figure 28 - Ruining class which will obtain synonyms from Datamuse API 43

Figure 29 - Initializing score of similarity 43

Figure 30 - Getting synonyms from Datamuse API 44

Figure 31 - Finding synonyms for base word and already synonymized by Datamuse API

44

Figure 32 - Computing the score of similarity 45

Figure 33 - Comparing the score 45

Figure 34 - Returning the rewritten sentence 45

Figure 35 - Printing rephased sentences 45

Figure 36 - Changing runtime type 46

Figure 37 - Creating checkpoint 46

Figure 38 - Installing packages 46

Figure 39 - Importing libraries for the second system 47

Figure 40 - Downloading and unzipping the corpus of data 47

Figure 41 - Dataset size 47

Figure 42 - Distribution of dataset 48

11

Figure 43 - Choosing best parts of corpus 48

Figure 44 - sample of corpus 48

Figure 45 - Creating batch 49

Figure 46 - loading model 49

Figure 47 - Choosing hardware type 49

Figure 48 - Choosing optimizer and checking the length of samples in part of corpus 50

Figure 49 - Cleaning cache 50

Figure 50 - Excluding pre-trained layers from training process 50

Figure 51 - First part of model 51

Figure 52 - Second part of model 52

Figure 53 - Third part of model 52

Figure 54 - Txt file with random sentences 54

Figure 55 - Txt file with sentences from dialogues 54

Figure 56 - Processing first txt file to the first system 55

Figure 57 - Rephased sentences from the firs txt by first system 55

Figure 58 - Processing second txt file to the first system 55

Figure 59 - Rephased sentences from the firs txt by first system 56

Figure 60 - Processing first txt file to the second system 56

Figure 61 - Processing second txt file to the second system 57

List of abbreviations
NLP - Nature Language Processing

AI - Artificial Intelligence

POS - Part-of-speech

R N N - Recurrent Neural Network

12

1 Introduction

The modern era is the era of computers and ubiquitous digitalization. Thanks to them, we

were able to solve many applied problems that would otherwise have taken hundreds of years

to solve. Thanks to this opportunity, people started to change the world with help of

computers. Nowadays we basically can't live without computer technology and our

dependence on this technology will grow even more in the future.

The development of computer technology had led us to the creation of artificial intelligence.

Thanks to it, we can automate almost any process that requires the presence of a person, such

as systems used for evaluation and control. Since the field of Artificial Intelligence today is

quite large and includes many sub-sciences, this thesis will focus only on a selected subset -

the human language processing, i.e., natural language processing.

13

2 Objectives and Methodology

2.1 Objectives

The main objective of this thesis is to describe and explain the process of development of

a rephrase system using various natural learning processing, machine learning and deep

learning libraries in Python. The second and final objectives is to deploy the rephrase system

which performs substitution of words on a given text without losing context.

2.2 Methodology

The methodology of the thesis is based on analysis of technical and scientific sources

focusing on artificial intelligence, machine learning, deep learning and natural language

processing. Based on the synthesis of the knowledge gained, a prototype application will be

implemented to rephrase text. The application will be written in Python using libraries for

data science as N L T K , Pandas, NumPy and many others. The application will be tested and

assessed in terms of performance and replacement quality.

14

3 Literature Review

3.1 Artificial Intelligence

For the last two decades, many systems, services, and functions that use AI technology have

been developed: recommending a cafe based on individual preferences, building the best

route, deciphering medical data - the list is almost endless. A l l of this has been made possible

thanks to the efforts of scientists from around the world. Following sections of this thesis

will therefore focus on origins of Artificial Intelligence and its fundamental concepts,

without which current achievements would not be possible.

3.1.1 Creation of a field of artificial intelligence

In 1936, Alan Turing, now considered the founder of AI theory and the American

mathematician Alonzo Church, independently of each other made the claim that there is no

algorithm that decides whether a given statement is deducible from some set of mathematical

axioms, now known as the "Church-Turing thesis". (Penrose, 1989)

In "On Computable Numbers, with an Application to the Entscheidungsproblem", Turing

developed the notion of an abstract digital computing machine, later called a Turing

machine, capable of simulating (with an appropriate program) any machine whose actions

consist of of moving from one discrete state to another, to solve a given task. (Penrose, 1989)

In his next paper "Computing Machinery and Intelligence" published in the journal Mind in

1950, Turing set forth a mental experiment (later called the Turing test) in which two players,

talk to a third player separated from them by a wall through a channel that excludes voice.

The aim of third player is to determine, by indirect questions, the sex of each of players he

is talking to. Turing changed rules of the game -he assumed what if a machine took part

instead of one player and now the task for the third player will be to determine who is

machine and who is not. The question what arising simultaneously with such change of the

rules - "Can a machine think?" or more specifically, "Can machines do what we (as thinking

entities) can do? (Penrose, 1989)

The next and final step in creation of the new field was The Dartmouth Seminar. It was a

conference on Artificial Intelligence held at Dartmouth College in the summer of 1956. The

15

conference was important for the new-founded science: it introduced scientists interested in

modelling the human mind to each other, approved the emergence of a new field of science,

and gave it a name - Artificial Intelligence. (Stuart, et a l , 2002)

3.1.2 Subsets of Artificial Intelligence

With time, two subfields of Artificial Intelligence were created:

• Machine Learning

• Deep Learning

Figure 1 - Subsets of Artificial Intelligence (Wolfewicz, 2021)

3.1.3 Machine learning

Machine Learning refers to a variety of mathematical, statistical, and computational

methods for developing algorithms that can solve a problem not by a direct way, but by

searching for patterns in input data. The solution is calculated not by an explicit formula,

but by an established dependence of the results on a particular set of features and their

values.

16

3.1.4 Deep learning

Deep learning is a machine learning technique that involves independently building

(training) general rules in the form of an artificial neural network, which trains on

examples of data during the learning process.

3.1.5 Neural networks

When scientists started thinking about Artificial Intelligence, the first thing they did was to

study the nature around them. One of the main components of any system in nature is a

neural network. They are found everywhere. Their main function is to control various parts

of the body in response to changing environmental conditions. As an example, we can

consider the mechanism of pupil contraction and dilation depending on the level of light.

Our eye has sensors that pick up the amount of light entering through the pupil at the back

of the eye. They convert this information into electrical impulses and transmit them to the

attached nerve endings. This signal then travels through a network of neurons which decide

whether this amount of light is harmful to the eye, whether it is sufficient for the eye to

clearly recognize visual information, and whether, based on these factors, the amount of light

needs to be reduced or increased.

At the output of this network are the muscles responsible for pupil dilation or constriction,

and they actuate these mechanisms depending on the signal received from the neural

network. And there are a huge number of such mechanisms in the body of any living being

with a nervous system.

Scientist tried to replicate this system using mathematics and mathematical functions.

So, we have an input layer of neurons, which, in fact, are the sensors of our system. They

are needed to get information from the environment and pass it further to the neural network.

We also have several layers of neurons, each of which receives information from all the

neurons in the previous layer, processes it in some way, and passes it on to the next layer.

Finally, we have output neurons. Based on signals coming from them, we can judge the

decision made by the neural network. Simple version of a neuron is called a perceptron.

17

Constant l
Weights

inputs

X

'n-1
w. n-1 Step Function

Figure 2 - Perceptron model (Sharma, 2017)

A l l neurons are essentially the same and decide how strong the signal to transmit next

using the same algorithm. This algorithm is called an activation function . At the input, it

receives the sum of the values of the input signals, and at the output it transmits the value

of the output signal.

But in this case, it turns out that all neurons of any layer will receive the same signal and

give the same value. Thus, we could replace our entire network with one neuron. To

eliminate this problem, we will assign a certain weight to the input of each neuron. This

weight will indicate how important the signal received from another neuron is for each

particular neuron.

To make the neural network work correctly, we must first train it. Neural network training

is the process of selecting input weights for each neuron in such a way that the output

signal is as close as possible to expectations.

One of possible approach is to assign the random weights to the feature inputs, after this

feed datato the input of the neural network, for which the result are known. Next, the result

that the neural network gives is compared with the expected result, the error is calculated,

and the weights of the neurons adjusted in a way which minimizes this error. This action is

repeated for a needed number of times for a large number of input and output data, so that

the network understands which signals on which neuron are more important to it, and

which ones are less important. This approach is called supervised learning. If the problem

is well represented by dataset - the bigger that dataset is - the better. If the neural network

would encounter more observations - it could learn more information.

18

The structure of neural network generally consists of 3 types of layers:

• Input layer - accepts data inputs

• Hidden layers - perform mathematical calculations with input data

• Output layer - gives output

Input Layer Hidden Layer #1 Hidden Layer #2 Output Layer

Figure 3 - Simple Neural Network (Wolfewicz, 2021)

Neurons in neural networks differ from each other by activation function.

3.1.6 Activation functions

Today exist many different activation functions. The activation function of a neuron can be

any function that exists on the entire range of values produced by the output of the neuron

and the input data.

The first one is sigmoid function.

19

i a

0.5

Ů.0

1

-2 0

Figure 4 - Sigmoid function (Sharma, 2017)

This activation function works well only in binary classification and it is practically not

used in practice nowadays.

The second one is an improved version of sigmoid function - Tanh or hyperbolic tangent

activation function. This function is mainly used in classification tasks with only two

possible classes.

1

0.5

ě 0

-0.5

-1

i • r

Sigmoid
Tanh

- 3 - 2 - 1 0 1 2 3
x

Figure 5 - Tahn activation function compared to the sigmoid function (Sharma, 2017)

The next one is ReLU activation function. This function is very popular today and used in

deep learning.

20

-10 -!j 0 5 IE -10 -5 0 5 ID

Figure 6 - ReLUfunction compared to Sigmoid (Sharma, 2017)

The ReLU activation function has one problem which known as a dying neuron or a dead

neuron problem. I the input to a ReLU neuron is negative, the output would be zero. (Lu, et

a l , 2019)

To deal with this problem, the Leaky ReLU activation function was developed.

fiy)

Figure 7 - Leaky ReLU (right) compared to ReLU (Sharma, 2017)

3.2 Natural Language Processing

To create a program which can understand human language and obtain meaning from a

text is needed to use Natural Language Processing. Therefore the next part of this thesis

will define what is NLP and describe the main techniques which it utilizes.

"NLP refers to a set of techniques involving the application of statistical methods, with or

without insights from linguistics, to understand text for the sake of solving real-world

21

tasks. This "understanding" of text is mainly derived by transforming texts to useable

computational representations, which are discrete or continuous combinatorial structures

such as vectors or tensors, graphs, and trees." (McMahan, et a l , 2019)

The common techniques of NLP include:

• Tokenization -splitting the text into tokens, or words

• Removing the stop words - removing words which are used only to build a

sentence and do not carry a semantic meaning

• Embeddings - transformation the text into numerical data

• Part-of-speech tagging - every tokenized word can be tagged as a part of speech: a

noun, verb, or adjective

• Word and phrase frequencies - mostly used to analyze large blocks of text; in this

technique is checked how often appear every word or phrase of interest

• N-grams - dividing a text into sequences of words of a set length:

o unigram - a single word

o bigrams - two words

o trigram - three words

o n-grams - any number of words

• Noun phrase extraction - in most sentences a noun is a subject of phrase, so noun

extraction is common task in NLP when attempting to understand the meaning of a

sentence

• Sentiment analysis -analyzes how positive or negative is a sentence or text

• Inflection - enables to get the singular or plural form of the word

• Lemmatization - a lemma is the root or headword for a set of words

3.2.1 Tokenization

Tokenization is technique which divide input text into small chunks which could refer to

words, sentences and called tokens. With tokenization and tokens, we can better

understand the context of text and interpret it the right way. For instance, the text "I read

book" can be broken into following tokens: "I", "read," "book."

We can apply tokenization to separate words or sentences. If the text is split into words, it

is called word tokenization and when it is split to sentences - sentence tokenization.

22

There are different tokenization techniques which can be applied to the text based on the

aim and language of text:

• White Space Tokenization - one of the simplest techniques. It divides text into

tokens based on white spaces between worlds. It is effective with languages in

which has white spaces between words, like English, Czech, or German.

• Dictionary Based Tokenization - in this technique a pre-made dictionary is

available based which is the tokenization is performed., If some world is not found

in dictionary, then program applies special rules to tokenize it.

• Rule Based Tokenization - in this method is created a set of rules, and the

tokenization is performed based on the rules.

• Regular Expression Tokenizer - this method uses regular expression to perform the

tokenization process.

• Penn Treebank Tokenization - is tokenization which is done based on Treebank.

Treebank is a parsed text corpus that annotates syntactic or semantic sentence

structure.

• Subword Tokenization - the idea of this relies on the principle that frequently used

words should not be split into smaller sub words, but rare words should be

decomposed into meaningful sub words. Therefore, algorithm divides words by

frequency. If the word appears quite often, it does not divide the word and gives to

it unique id, but if the word appears rarely it tries to divide it into sub words. For

instance, if the word "refactoring" appears rarely in text algorithm divide it for next

sub words - "re," "factor," "ing." This helps the model to find out similar words

and better understand the meaning of text.

Today if we want to tokenize text, we have many various approaches to do it. For example,

below you can see rule based tokenization using N L T K library in Python

from n l t k . t o k e n i z e impor t w o r d t o k e n i z e

sentence = ' T o k e n i z e t h i s s en t ence '

p r i n t (w o r d t o k e n i z e (s e n t e n c e))

[i] V 3.7s

[" T o k e n i z e " , " t h i s " , ' s e n t e n c e ']

Figure 8 - Tokenization in Python using NLTK library

23

3.2.2 Removing the stop words

Stop words are frequently used words that do not add any additional information to the

text. Words like "the", "is", "a" have no value and only add noise to the data. Another

benefit of stop word removal is that it reduces the size of the data set and the time taken in

training the model. If we want to remove stop words from this text:

"The film Arrival is one of those tapes that analyses an already hackneyed topic from a

side that no one has approached yet. The film is based on the story of how twelve alien

ships flew to Earth and landed at different places on the planet. After that, the film does

not turn into a story about the occupation of the Earth or about the rapid exchange of

technologies and the development of mankind. No, the emphasis is on trying to contact

aliens and understand their purpose. The central figure in the plot is a linguist played by

Amy Adams, who is assigned to study the language of aliens who are not cliched

humanoids, which is why speech is radically different., " we can use the Python snippet

listed in Figure 9. The result of removing stop words you can see below:

f r o m n l t k . c o r p u s i m p o r t s t o p w o r d s

s t o p _ w o r d s = s t o p w o r d s . w o r d s (' e n g l i s h ')

t e x t = "The f i l m A r r i v a l i s one o f t h o s e t a p e s t h a t a n a l y s e s an a l r e a d y h a c k n e y e d t o p i c f r o m a s i d e t h a t no one ha s a p p r o a c h e d y e t . The f i l m i s b a s e d ot

t e x t _ t o k e n i z e = w o r d _ t o k e n i z e (t e x t)

r e m o v e _ s t o p _ w o r d s = [wo rd f o r wo rd i n t e x t _ t o k e n i z e i f n o t w o r d . l o w e r Q i n s t o p _ w o r d s]

p r i n t (r e m o v e s t o p w o r d s)

•y 0.3s Pythoi

[" f i l m " , ' A r r i v a l ' , ' o n e ' , ' t a p e s ' , ' a n a l y s e s ' , ' a l r e a d y ' , ' h a c k n e y e d ' , " t o p i c ' , " s i d e ' , " o n e " , " a p p r o a c h e d " , " y e t ' , ' . " , ' f i l m " , ' b a s e d ' , ' s t o r y " ,

' t w e l v e " , " a l i e n ' s h i p s ' , ' f l e w ' , ' E a r t h ' , ' l a n d e d ' , " d i f f e r e n t ' , " p l a c e s ' , ' p l a n e t ' , ' . ' , ' , ' , ' f i l m ' , " t u r n " , ' s t o r y ' , ' o c c u p a t i o n ' , " E a r t h ' , ' r a p i d ' ,

' e x c h a n g e " , " t e c h n o l o g i e s ' , ' d e v e l o p m e n t ' , ' m a n k i n d ' , ' . ' , ' , ' , ' e m p h a s i s ' , " t r y i n g " , " c o n t a c t " , " a l i e n s " , " u n d e r s t a n d " , " p u r p o s e " , ' . " , " c e n t r a l " ,

' f i g u r e " , " p l o t " , " l i n g u i s t ' , ' p l a y e d ' , ' A m y " , ' A d a m s ' , ' , ' , ' a s s i g n e d ' , ' s t u d y " , " l a n g u a g e " , " a l i e n s ' , " c l i c h e d " , ' h u m a n o i d s ' , ' , ' , ' s p e e c h ' , ' r a d i c a l l y ' ,

' d i f f e r e n t " , ' r ']

Figure 9 - Removing stop words in Python using NLTK library

3.2.3 Embeddings

Because computers cannot understand data in a non-numerical format, we need to

somehow transform our non-numerical data to numerical form.

"An embedding is a mapping of a discrete — categorical — variable to a vector of

continuous numbers. In the context of neural networks, embeddings are low-dimensional,

learned continuous vector representations of discrete variables. Neural network

embeddings are useful because they can reduce the dimensionality of categorical variables

and meaningfully represent categories in the transformed space." (Koehrsen, 2018)

Depending on the task, different approaches can be applied.

24

First one is One-Hot encoding. It is an unsupervised technique which helps to represent

categorical non-numerical variables in word of digits. For instance, we have the category

"Color" where there are three colors: red, green, and yellow. To transform this information

to digits, One-Hot encoding needs to be applied. It is performed via mapping, creating a

vector the same size as a quantity of categories. Example of it can be seen below:

from sklearn.preprocessing import OneHotEncoder

enc = OneHotEncoder(handle_unknown='ignore")
category = [["red"., "green"_, "yellow"]]
category = enc.fittransform(category)
print(category)

V 0.7s

Figure 10 - Simple encoding of words in Python using scikit-learn library

The next and final method of embedding is word embedding. This is an approach to

represent text in natural language processing. It allows algorithms to understand the

meaning of words.

25

Word Embeddings for Movie Review Sentiment Model

today

enjoyertjeafoazjng

fantastic
h i g (l l^erfect

favorite

definitely loved
'yable

family
beautiful enjoyabh

liked

good him

action

entertaining
time hilarious

her.
comedy

disappointment

poorly

annoying

worse disappointing

boring

horrible
-ible terrible

awful

jnfortjnately

dull

Figure 11- Example of word embedding (Koehrsen, 2018)

Nowadays the most effective tool to perform word embedding is Word2vec. It implements

two main architectures - Continuous Bag of Words (CBOW) and Skip-gram. The corpus

of text is fed as input, and a set of vectors of words is obtained as output.

The principle of operation is finding links between word contexts under the assumption

that words in similar contexts tend to mean similar things, i.e., be semantically related.

More formally, the problem is: maximizing the cosine proximity between vectors of words

(the dot product of vectors) that appear next to each other and minimizing the cosine

proximity between vectors of words that do not appear next to each other. Near each other

in this case means in close contexts.

26

For example, the words "analysis" and "research" often appear in similar contexts, such as

"Scientists have analyzed algorithms" or "Scientists have conducted research on

algorithms." Word2vec analyzes these contexts and concludes that the words "analysis"

and "research" are close in meaning. Since Word2vec draws such conclusions based on a

large amount of text, the conclusions are quite adequate. Based on the example above, it

can be concluded that to train a good quality Word2vec model a very large corpus of text is

needed.

3.2.4 Parsing and part-of-speech tagging

Part-of-speech (POS) tagging is a stage of automatic text processing, the task of which is to

determine the part of speech and grammatical characteristics of words in the text (corpus)

with the assignment of appropriate tags to them. POS tagging is one of the first stages of

computer text analysis.

import spacv
n i p = spacy. load("en_core_web_sm")

t e x t = ' S o f t s k i l l s l i k e s ha r i n g and n e g o t i a t i n g w i l l be c r u c i a l . '
doc = n l p (t e x t)
f o r token i n doc:

printj(|token.pos_, t o k e n . t e x t } token. tag j)]

• 0.4s

ADJ S o f t 31

NOUN s k i l l s NNS

ADP l i k e IN

VERB sha r i ng VBG

CCOND and CC

NOUN n e g o t i a t i n g NN

AUX w i l l MD

AUX be VB

AD] c r u c i a l J]

PUNCT . .

Figure 12 - Part-of-speech tagging in Python using spaCy library

3.2.5 Word and phrase frequencies

This approach finds the words which appear more frequently in a document and

determines the importance of such words. But it has a problem - the words with the

27

highest frequency have the highest score. These words however may not have as much

information gain for the model as the less frequent words. One way to fix the situation is to

lower the score of a word that occurs frequently in all similar documents. This is called

term frequency - inverse document frequency (TF-IDF).

TF-IDF is a statistical measure for evaluating the importance of a word in a document that

is part of a collection or a corpus.

The TF-IDF scoring increases in proportion to the frequency with which the word appears

in the document, but this is offset by the number of documents containing the word.

For example, if we have three documents of text:

1. The elephant sneezed at the sight of potatoes.

2. Bats can see via echolocation. See the bat sight sneeze!

3. Wondering, she opened the door to the studio.

And applying to them TF-IDF scoring, for the third document more significant will be

words studio, door, and wonder.

The elephant sneezed
at the sight of potatoes.

Bats can see via
echolocation. S e e t h e

bat sight sneeze!

Wondering, she opened
thedoorto the studio.

E E 0.3 0,3 0.3 0.4 0 0

Figure 13- Example of applying TF-IDF scoring for multiple texts (Bengfort, et al, 2018)

3.2.6 N-grams

An N-gram is a sequence of entities (words, letters, numbers, digits, etc.). In the context of

language corpora, an N-gram is usually understood as a sequence of words. A unigram is

one word, a bigram is a sequence of two words, a trigram is three words, and so on. The

28

number N denotes how many grouped words are included in an N-gram. The model does

not include all possible N-grams, but only those that appear in the corpus.

3.2.7 Sentiment analysis

This technique can be used to determine whether the text is positive, negative, or neutral.

Sentiment analysis helps to understand the emotional undertones of language. This, in turn,

helps to automatically sort out the opinions behind reviews, social media discussions,

comments, etc.

3.2.8 Lemmatization and stemming

Typically, texts contain different grammatical forms of the same word, and may also

contain homonymic words. Aim of lemmatization and stemming is to bring all occurring

word forms to the same, normal dictionary form.

Lemmatization and stemming are special cases of normalization. Stemming is a crude

heuristic process that cuts off the "extra" from the word root, often resulting in the loss of

word-formation suffixes. Lemmatization is a more sophisticated process that uses

dictionary and morphological analysis to bring a word to its canonical form - the lemma.

3.3 Neural networks for NLP

A l l techniques discussed above stand for preparational part of text processing from letters

to digits. But how can computers obtain some information from this structured array of

digits?

This is where neural networks come in. Today, many different types of neural networks

exist each of which is designed to solve a special type of problem. Among them all, two

main types of neural networks for NLP problem solving can be highlighted:

• Recurrent Neural Network, and

• Transformer.

3.3.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are a type of neural networks that specializes in

sequence processing. They are often used in N L P tasks because of their effectiveness in

text analysis.

29

One of the nuances of working with neural networks, is that they work with predefined

parameters. They take input data with fixed dimensions and output the result, which also

has fixed dimension. The plus side of R N N is that they can work with sequences with

variable lengths for both input and output.

0
•

Recurrent Neural Network Input Layer Hidden Layers Output Layer

Figure 14 - RNN compared to a simple neural network (Biswal, 2022)

Due to the structure of recurrent neural network, a neuron in it receives some data about

the previous state of the network in addition to incoming data. In this way the network

implements "memory", which fundamentally changes the nature of its operation and allows

to analyze any sequence of data, like audio recordings, text, or stock quotes, in which is

important the order of values.

© © © © ©
L J I 1
A A A A M M A A

Xt) (Xo) (Xi)

Figure 15 - An unrolled recurrent neural network (Olah, 2015)

Until 2017, engineers used deep learning to understand text using recurrent neural

networks.

For example, when translating a sentence from English into Czech, an R N N would take an

English sentence as input, process the words one by one, and then sequentially produce

their Czech analogs. The key word here is "sequential". In a language, the order of words is

important, and you cannot just mix them up.

This is where RNNs encounter several problems. First, they try to handle large sequences

of text. By the time they get to the end of a paragraph, they "forget" the content of the

30

beginning. For example, an RNN-based translation model may have trouble remembering

the gender of a long text object. Second, RNNs are difficult to train. They are known to be

prone to the so-called vanishing/exploding gradient problem. (Or, 2020) Third, they

process words sequentially, a recurrent neural network is difficult to parallelize. This

means that it is impossible to accelerate learning using more GPUs. Consequently, it

cannot be trained on a large amount of data.

To solve these problems, a new type of neural network was created - Transformer

3.3.2 Transformer

Transformer is a relatively new type of neural network aimed at solving sequences with

easy processing of long-range dependencies. Today, it is the most advanced technique in

the field of natural language processing.

They can be used to translate text, write poems and articles, and even generate computer

code. Unlike RNN, transformers do not process sequences in order. For example, if the

input data is text, they do not need to process the end of a sentence after processing the

beginning. Due to this, such a neural network can be parallelized and trained much faster.

Transformer was first described by engineers at Google Brain in "Attention Is A l l You

Need" in 2017. (Vaswani, et a l , 2017)

One of the main differences from existing data processing methods is that the input

sequence can be transmitted in parallel, so that the graphical processor can be used

efficiently, and the learning speed can be increased, cannot

The main components of transformers are an encoder and a decoder.

31

Output
Probabilities

, i ,
I Softmax

L C

Nx

fc
•I Add & Norm 1

Feed
Forward

1 Add& Norm]
Multi-
Attei

Head
ition

Positional
Encoding

Linear]
[Add & NorrrTH-̂

Feed
Forward

I Add&Norrrn-
Multi-Head
Attention

[Add & Norm
Masked

Multi-Head
Attention

Input
Embedding

Nx

^ n / O v Positional
Encoding

Output
Embedding

1
Inputs Outputs

(shifted right)

Figure 16-Model of transformer (Vaswani, et ah, 2017)

The encoder converts the incoming information (e.g., text) and converts it into a vector (a

set of numbers). The decoder, in its turn, decodes it as a new sequence (e.g., the answer to

a question) of words in another language, depending on what purpose the neural network

was created for.

Other innovations underlying transformers can be summarized in three main concepts:

32

• Positional Encodings

• Attention

• Self-Attention

Position encoders take all the words in the input sequence, in this case an English

sentence, and add a number to each in its order. Therefore, the transformer network works

with following input:

[("Today", 1), ("is", 2), ("a", 3), ("good", 4), ("day", 5), ("to", 6), ("swim", 7)]

Conceptually, this can be seen as shifting the process of understanding word order from the

structure of the neural network to the data itself.

At first, before transformers learn from any information, they do not know how to interpret

these positional encodings. But as the model sees more and more examples of sentences

and their encodings, it learns to use them effectively.

The structure presented above is given in an oversimplified way -the authors of the

"Attention Is A l l You Need" used sinusoidal functions to produce positional encodings

rather than the prime integers, but the idea is the same. By keeping the word order as data

rather than structure, the neural network is easier to train. (Vaswani, et a l , 2017)

Attention is a neural network structure introduced into the context of machine translation

in 2015. (Bahdanau, et al., 2015) Imagine that we need to translate a phrase into French:

The agreement on the European Economic Area was signed in August 1992.

The French equivalent of the phrase is as follows: L'accord sur la zone economique

europeenne a ete signe en aout 1992.

The worst translation option is a direct search for English words in French, one by one.

This cannot be done for several reasons. First, some of the words in the French translation

are reversed: "European Economic Area" versus "la zone economique europeenne."

Second, the French language is rich in gender words. To match the feminine object "la

zone," the adjectives "economique" and "europeenne" must also be put in the feminine

33

gender. Attention helps to avoid such situations. Its mechanism allows the text model to

"look" at each word in the original sentence when deciding how to translate them.

(Bahdanau, et a l , 2015) The visualization from the original article demonstrates this:

Figure 17'— Visualization of how model the understand similarity in meaning between two sentences (Bahdanau, et al,
2015)

This heat map in Figure 17 shows what the model "pays attention to" when it translates

each word in a French sentence. As you might expect, when the model outputs the word

"europeenne," it largely considers both input words, "European" and "Economic.

Learning which words to "pay attention to" at each step helps the model learn from training

data. By observing thousands of English and French sentences, the algorithm learns

interdependent word types. It learns to consider gender, plurality, and other rules of

grammar.

34

The last part of the transformers is a self-attention. While attention helps aligning words

when translating from one language to another, self-attention allows the model to

understand the meaning and patterns of language. For example, consider these two

sentences:

"The animal did not cross the street because it was too tired. "

"The animal did not cross the street because it was too wide. "

The word "it" here refers to two different subjects, which we humans, knowing the

situation, can understand. Self-attention allows the neural network to understand a word in

the context of the words around it. Therefore, when the model processes the word "it" in

the first sentence, it can refer it to "animal" and understand that too tired was animal not a

street and understand what in second sentence "it" what refers to the street.

3.4 Tools for NLP engineer

After successfully introducing some of the algorithms and principles of NLP, the next part

focuses on tools and environment which are necessary to develop applications in N L P area.

3.4.1 Python

"Python is an interpreted, high-level, general-purpose programming language. Created by

Guido van Rossum and first released in 1991, It is used for both learning and real-life

programming. It is easy to learn as most of the commands are similar to normal word used

by humans (e.g., To print any statement or any value we simply write "print (statements)").

Many of the famous application are developed using python (e.g., Instagram, Dropbox.)."

(Rana, 2019)

Following advantages of Python helped it to become popular and one of the main tools for

development NLP systems:

• Easy to write and read code - Python code looks like simple English words and, in

most cases, is set in the usual text-reading order. No semicolons or brackets are

used, and indents define a block of code.

• Huge number of modules and packages - in addition to the standard Python

libraries, there are simply countless additional modules and libraries available to

35

everyone. There are libraries for working with images, databases, unit testing, data

analysis, data engineering, Artificial Intelligence, and many other features.

• Portable and versatile - Python is portable in the sense that the same code can be

used on different machines. Suppose you write Python code on a Mac. If you want

to run it on Windows or Linux later, you do not need to make any changes to it.

That way you do not have to write the program multiple times for multiple

platforms.

• Extensible - programming language is called extensible if it can be translated into

other languages. Python code can also be written in other languages, such as C++,

making it a very extensible language.

To create a program in Python, you first need to determine which packages will be used to

create it, so next I would like to describe Python packages that allow you to solve NLP

tasks.

3.4.2 NumPy

NumPy is a Python library that is used for mathematical calculations: from basic functions

to linear algebra. This library has several important features that have made it popular.

First, its source code is freely available on GitHub, which is why NumPy is called an open-

source module for Python. Second, the library is written in C and Fortran. This makes

computing much faster and more efficient. This makes this library indispensable for

Artificial Intelligence tasks.

3.4.3 Scikit-learn

Scikit-learn is one of the most widely used Python packages for Data Science and Machine

Learning. It allows to perform many operations and provides many algorithms. Scikit-learn

also offers excellent documentation about its classes and methods , as well as descriptions

of the algorithms used.

Scikit-learn supports:

• data preprocessing

• dimensionality reduction

• model selection

• regressions

36

• classifications

• cluster analysis

Scikit-learn does not have functionality directly for Deep Learning tasks, but it can help

with data preprocessing.

3.4.4 Pandas

Pandas is a statistical data processing package close in functionality to SQL and R. It

includes functionality for working with databases and Excel tables.

3.4.5 NLTK

N L T K (Natural Language Toolkit) is the leading platform for creating N L P programs in

Python. It has easy-to-use interfaces for many language corpora, as well as text processing

libraries for classification, tokenization, stemming, markup, filtering, and semantic

reasoning.

3.4.6 Textblob

Textblob is a text processing library written in Python. It can be used for part-of-speech

labeling, parsing, sentiment analysis, spelling corrections, and translation.

Textblob relies on the Google Translate API in translation tasks. This means that it

requires an active Internet connection to perform translations.

3.4.7 SpaCy

SpaCy is an open-source library for NLP written in Python and Cython. It is analogous to

NLTK. But unlike N L T K , which is widely used for teaching and research, spaCy focuses

on providing software for development.

3.4.8 TensorFlow

TensorFlow is a machine learning library developed by Google to build and train neural

networks. TensorFlow is excellent for automatic image retrieval and classification, as the

quality of recognition is close to human perception. TensorFlow can run in parallel mode

on multiple processors: both CPUs and GPUs. The GPUs use C U D A for general purpose

computations. This provides high speed training and operation of trained models. The

TensorFlow library includes various APIs for building at scale deep learning architectures

such as C N N or RNN.

37

38

4 Practical Part

4.1 Designing rephase system

The initial step in creation any program, application or system is to define the final goal,

algorithm of working and the list of technologies to be used to help accomplish the tasks at

hand.

4.1.1 The final goal of system

Two systems will be created in this thesis. First system is based on searching synonyms to

words in phrase, which allows to save meaning and simultaneously change the given

sentence. The second system is based on modern approach to dealing with N L P tasks -

transformers. The given pre-trained model will be additionally train on new special corpus

of text which will help it to better understand the paraphrase task and give more meaningful

outputs.

4.1.2 Defining needed technologies and algorithm

Chosen technologies and their purpose for the first project:

• Python as language in which system will be written

• Visual Studio Code as IDE for writing Python code

• N L T K library for finding word antonyms and text processing

• Spacy library for finding word synonyms and text processing

• Datamuse API is API which allows to find similar words, so it will be used for their

direct purpose - to find synonyms

• Urllib library - to send requests to the API

• JSON library - since the Datamuse API sends JSON file, will be needed to use the

JSON library for Python to extract the necessary information from it

Algorithm of first system:

1. Obtain input sentences from txt file

2. Tokenize words in sentence

3. Get synonyms from Datamuse API

4. Get synonyms from N L T K library

5. Get score of similarity between initial word and synonyms

39

6. Choose best synonym by score

7. Change words in sentence

8. Print new sentence

9. Repeat step 2

Chosen technologies and their purpose for the second project:

• Python as language in which system will be written

• Google Collaboratory as IDE for writing Python code

• Transformers, torch, tqdm, collection and random libraires for process of training

model

• Pandas, NumPy and csv libraries for data manipulating

• Os library for saving model

• Opusparcus_vlas corpus, on which model will be trained, this corpus is

consisting of paraphrase pair of subtitles

• Rut5-base-multitask is already pre-trained transformer, which will be

additionally trained to handle with rephase task

For the second system the algorithm of work will not be provided as it will rely on neural

network.

4.2 Creating first system

4.2.1 Installing packages for the first system

The first phase is to install all needed packages, for this task, pip package manager will be

used.

pip install nltk. spacyf
Figure 18 - Installing needed libraries

The second phase is to download all datasets from N L T K library, which helps to find

antonyms for text.

import nltk
nltk.download()

Figure 19 - Installing needed packages from NLTK library

40

After running this code in new window is needed to select and download packages.

<jf NLTK Downloader - • X

File View Sort Help

Collections I Corpora I Models
Identifier Name Size Status

all All packages n/a installed

all-corpora
all-nltk
book
popular
tests
third-party

All the corpora
All packages available on nltk_data gh-pages bran
Everything used in the NLTK Book
Popular packages
Packages for running tests
Third-party data packages

n/a
n/a
n/a
n/a
n/a
n/a

installed
installed
installed
installed
installed
installed

Download j Refresh

Server index: h t t p s : / /raw. githubus e r content. com/nl1
Figure 20 - Downloading window for packages

Now is needed to download trained model from SpaCy library which helps us to find

synonyms for words.

python spacy download en core web l g

Figure 21 - Downloading needed package from spaCy library

4.2.2 Implementing first system

Firstly, we need to import all needed libraries.

from n i t k . co rpu s import wordnet as wd

import spacy

import u r l l i b . r e q u e s t

import j son

n ip = s p a c y . l o a d (' e n c o r e w e b l g 1)

Figure 22 - Importing libraries and downloading the model from spaCy

41

After this step is completed in directory in which script is placed will be placed txt file

with phrase which needed to be rephase. The script needed to open this txt file and read all

information from it.

wi th o p e n (' t e x t . t x t ') as f :

contents = f . r e a d l i n e s Q

Figure 23 - Opening and reading the file with text

After its script runs loop which takes every phrase from file and tries to rephase it.

f o r content i n content s :

newconten t = Rewr i te (content) .work ()

p r i n t (n e w c o n t e n t)

Figure 24 - Starting to rephase every sentence from text file

c l a s s R e w r i t e :

def i n i t (s e l f j s e n t e n c e) :

s e l f . s e n t e n c e = sen tence

def w o r k (s e l f) :

r e w r i t e _ t y p e s = [u ' N N ' , u ' NNS ' , u ' D J ' j u 'DUS ']

p o s _ t o k e n i z e r = n l p (s e l f . s e n t e n c e)

words = [

f o r t o ken i n p o s t o k e n i z e r :

i f t o k e n . t a g ^ i n r e w r i t e t y p e s :

w o r d s . a p p e n d (t o k e n . t e x t)

r e w r i t t e n s e n t e n c e = s e l f . s e n t e n c e

f o r word i n words:

w o r d s y n = Synonym(word).compare()[1]
r e w r i t t e n _ s e n t e n c e = r e w r i t t e n _ s e n t e n c e . r e p l a c e (w o r d , word_syn)

r e t u r n r e w r i t t e n s e n t e n c e

def _ d e l _ (s e l f) :

s e l f . s e n t e n c e = F a l s e

Figure 25 - First class which defines parameters of rephasing

At the start need to be defined which words by token script can take for changing and

performing tokenization using spaCy functionality. I have defined which words can be

changed by next tokens:

• N N - noun, singular

42

• NNS - noun, plural

• JJ - adjective

• JJS - adjective, superlative

def w o r k (s e l f) :

r e w r i t e t y p e s = [u ' N N ' , u ' NNS ' , u ' D D ' j u ' J J S *]

p o s t o k e n i z e r = n i p (s e l f . s e n t e n c e)

words = |

Figure 26 - Choosing which words can be changed by their token

After its script creates list of changeable words.

f o r token i n p o s t o k e n i z e r :
i f t o ken . t ag_ i n r e w r i t e t y p e s :

words.append(token.text)
r e w r i t t e n sentence = s e l f . s e n t e n c e

Figure 27 - Adding word what will be changed into list

And sends it to another class

for word in words:
wordsyn = Synonym(word).compare()[1]
rewrittensentence = rewrittensentence.replace(word } wordsyn)

return rewritten sentence

Figure 28 - Ruining class which will obtain synonyms from Datamuse API

In this class is going comparison between words. In first, script is sending words to

Datamuse API with aim to obtain from its synonyms to these words.

def i n i t (s e l f j word):
s e l f .wo rd = word
s e l f . b e s t s c o r e = 0 . 0
s e l f . b e s t c h o i c e = " "

def compare (se l f) :
w o r d s l i s t = s e l f . s y n o n y m l i s t ()

Figure 29 - Initializing score of similarity

43

def s y n o n y m _ l i s t { s e l f) :

path = "h t tp s ://ap i .datamuse .com/words ?ml= " + s e l f . w o r d

ou tpu t = u r l l i b . r e q u e s t . u r l o p e n (p a t h)

d a t a = o u t p u t . r e a d Q . d e c o d e (" u t f - 8 ")

j s o n d a t a = j s o n . l o a d s (d a t a)

w o r d s l i s t = []

f o r i i n j s o n d a t a :

w o r d s l i s t . a p p e n d (i [1 wo rd "])

r e t u r n words l i s t

Figure 30 - Getting synonyms from Datamuse API

After obtaining the list of similar words, we want to find another synonymous from N L T K

datasets and compare these words and find the best matching by score.

In first script tries to obtain synonyms from using N L T K library.

def compare (se l f) :

w o r d s l i s t = s e l f . s y n o n y m l i s t ()

f o r synjwondi i n w o r d s l i s t :

u s e n l t k = True

t r y :

n l t k r a w w o r d = wd. synse t s (se l f .word) [0]

n 1 1 k s y n w o r d = wd.synsets(syn_word)[0]

except:

u s e n l t k = Fa l se

Figure 31 - Finding synonyms for base word and already synonymized by Datamuse API

After it obtains synonyms from N L T K , it computes the similarity score between initial

word and synonym from Datamuse using spaCy library and similarity score for synonymic

words obtaining from N L T K using N L T K functionality.

44

https://api.datamuse.com/words?ml=

s p a c y s c o r e = s p a c y _ r a w _ w o r d . s i m i l a r i t y (s p a c y s y n w o r d)

i f (u s e n l t k == True):

n l t k s c o r e = n l t k s y n w o r d . w u p _ s i m i l a r i t y (n l t k _ r a w _ w o r d)
i f (n l t k s c o r e == None):

n i t k _ s co re = 9

score = (n ltk_score+spacy_score)/2
e l s e :

score = s p a c y s c o r e

Figure 32 - Computing the score of similarity

The next step is comparing by score. Scripts compares scores and finds the best match

which return to initial function.

i f (score > s e l f . b e s t s c o r e) :

s e l f . b e s t s c o r e = score

s e l f . b e s t c h o i c e = s y nwo rd

r e s u l t = [s e l f . b e s t s c o r e , s e l f . b e s t c h o i c e]

r e tu rn r e s u l t

Figure 33 - Comparing the score

After it, script replaces words in text by their synonyms.

r ew r i t e e n s e n t e n c e = r e w r i t t e re sentence , rep lace (word t w o r d s y n)

re tu rn r e w r i t t e n sentence

Figure 34 - Returning the rewritten sentence

The final step is just to print the rephased sentences.

f o r content i n content s :

newconten t = Rewr i te (content) .work ()

p r i n t (n e w c o n t e n t)

Figure 35 - Printing rephased sentences

4.3 Creating second system

For the second system as IDE, I have chosen Google Collaboratory This choice was made

to use pretrained transformer model and additionally train it to rephrase task on new

dataset. Because the script will run on servers which already have the necessary basic

programs to run the neural model training process., Setting up IDE and installing packages

for the second system.

45

First initial step is setting up IDE. Google Collaboratory allows to choose on which

hardware the neural network can be trained, the faster way is to train it on GPU. To do it

you need to go to runtime and change runtime type to GPU.

Notebook settings

Hardware accelerator
GPU ^ (?)

To get the most out of Colab, avoid using a GPU unless you need

one. Learn more

I I Background execution

Want your notebook to keep running even after you

close your browser? U pgrade to Colab Pro+

] Omit code cell output when saving this notebook

Save

Figure 36 - Changing runtime type

After it is settled, we mounted up drive in order to create checkpoint for saving model.

from goog le .co lab import d r i v e

d r i ve .moun t (' / gd ')

Figure 37 - Creating checkpoint

Next step is installing needed packages to the environment.

Q !pip install transformers sentencepiece datasets

f% Collecting transformers
Downloading transformers-4.17.0-py3-none-any.whl (3.8 MB)

| | 3.8 MB 5.2 MB/S
Collecting sentencepiece

Downloading sentencepiece-8.1.96-cp37-cp37m-manylinux_2_17_x86_64.manylinux2814_x86_64.whl (1.2 MB) l l l l 1-2 MB 38.5 MB/s
Collecting datasets

Figure 38 - Installing packages

4.3.1 Implementing second system

The first step, as always, is to import all needed libraries.

46

from transformers import (
AdamW,
TSForConditionalGeneration,
T5Tokenizerj
g e t l i nea rsched ulewithwarmu p

)
import torch
#from datasets import loaddataset
from tqdm.auto import tqdnij trange
from collections import Counterj defaultdict
import random

import pandas as pd
import os
import csv
import numpy as np
pd.options.display.maxcolwidth = 300

Figure 39 - Importing libraries for the second system

After it, the script downloads corpus of text on which model will be trained and unzippes

it.

Q Iwget https://korp.csc.f i/download/opusparcus/opusparcus_en.z ip
!unzip opusparcus_en.zip
!bzip2 -dk opuspa rcu s_v l /en/ t ra in/en - t ra i n . t x t .bz2

r% --2022-04-63 09:53:42-- h t t p s : / / k o r p . c s c . f i / d
Resolv ing k o r p . c s c . f i (k o r p . c s c . f i) . . . 195.148.2
Connecting t o k o r p . c s c . f i (korp.csc. f i)|195.148.22.239|:443.. . connectei
HTTP request sent, awa i t ing response... 260 OK
Length: 536916707 (512M) [a p p l i c a t i o n / z i p]
Saving t o : f opusparcus_en.z ip J

>] 512.04M 17.6MB/S opusparcus_en.zip ieQX[======:

2022-04-03 09:54:14 (16.3 MB/s) - r opusparcus_en.z ip J saved [536916707/536916707]

Figure 40 - Downloading and unzipping the corpus of data

At first, we need to see the size of dataset to understand how many sequences it has and for

additional verification that everything was downloaded successfully

opus = p d . r e a d _ c s v (" o p u s p a r c u s _ v l / e n / t r a i n / e n - t r a i n . t x t ' , s e p = T \ t ' , header=None)

opus.columns = [' i d x ' , ' t e x t l ' , ' t e x t 2 ' j " p r a i ' j ' n a l i g n ' , " n l a n g ' , " e d i t d i s t a n c e "]

p r i n t (o p u s . s h a p e)

(40653996, 7)

Figure 41 - Dataset size

https://korp.csc.fi/download/opusparcus/opusparcus_en.zip
https://korp.csc.fi/d
http://korp.csc.fi
http://korp.csc.fi
http://korp.csc.fi

And the distribution of dataset

opus.pmi-sample(1009). s o r t i n d e x Q . p l o t ()

Figure 42 - Distribution of dataset

We do not need all this data, so next step is to choose best parts of corpus.

opus = opus[opus.pmi > 13].copy()

p r in t (opus . shape)

Figure 43 - Choosing best parts of corpus

Lest see how now looks the corpus

A opus.sample(ie)

• • • I 0.250000 1 14

5304109 en-N5304109 I do not want children , okay ? What if we 're making a mistake , right ? 13.7264 0.083333 1 22

1321785 en-N1321785 Was there anything else ? Is there anything else ? 19.9318 0.092332 2 1

6386712 en-N6386712 Did you hit him at all ? No passage beyond this point without passports . 13.3349 0.029412 1 16

7345399 en-N7345399 Did you steal that ? Were you the one who stole . 13.0546 0.066667 1 12

1082554 en-N1082554 Hi, son . Howdy, son . 21.5710 0.378573 2 2

1706572 en-N1706572 He's working for me . Works for me. 17.4810 0.314102 2 4

4140083 en-N4140083 I mean , they " re , like , perfect. They 're perfection . 14.2654 0.142857 1 9

556830 en-N556830 I go with you . I'm going with you . 26.4697 0.055935 3 3

2764749 en-N2764749 Can't be many. Couldn't be many. 15.1259 0.666667 1 2

Figure 44 - sample of corpus

The next part is initializing a batch on which model will be trained

48

Q def getbatch(mult=l):
Batch size is 10 x mult

XX = []
yy = []
idx - np.random.randint(opus.shape[0]j size=2 * mult); xx.extend(opus.textl[idx]); yy.extend{opus.text2[idx])
return xx, yy

I xx, yy - get_batch(mult=3)
print(len(xx))

yy - get_batch(mult=3)
print(len(xx))

Figure 45 - Creating batch

Now it is time to download the model in notebook.

take the model from t h i s f o l d e r
rawmodel = ' c o i n t e g r a t e d / r u t S - b a s e - m u l t i t a s k '

save the t r a i n e d model t o t h i s f o l d e r
MODELNAME = '/gd/MyDrive/models/mt5-base-rephase'
i f os .path.ex ists (MODELNAME):

p r i n t (' l o a d from l o c a l c h e c k p o i n t ')
rawjnodel = MODEL_NAME

model = TBForCond i t iona lGenerat ion . f rom_pretrairied(raw_model)
t o k e n i z e r = T5Tokenizer . f rotn_pretrained(rawjnodel)

load f r a l checkpoint

Figure 46 - loading model

Because the model trains for a huge amount of time, checkpoints are crucial. So, for this it

checks if the model has been trained before.

Now, it is time to setting up the train condition for model.

d e v i c e = t o r c h . d e v i c e (" c u d a j

device = t o r c h . d e v i c e (1 c p u ')

model.to(device)

(EncDecAttention): TSAttentionl
(q): Linear{in_features=768, out features= =768, bias=False)
(k): Linear(in_features=768, out features= =768j bias=False)
(v) : Linear(in_features=768, out features= -768j bias=False)
(o): Linear(in_features=768, out features= —768j bias=False)

Figure 47 - Choosing hardware type

Next step is a choose optimizer for model and see how long text samples in data is.

49

Figure 48 - Choosing optimizer and checking the length of samples in part of corpus

Adam is the best optimizer right now, because it combines the best properties of the

adaptive gradient and root mean square propagation algorithms to provide an optimization

algorithm that can handle sparse gradients on noisy problems. Therefore, I have chosen it.

Length will help in future to tune model.

To prevent hitting in the model some previous computations, next step is to clear cache.

import gc

def cleanup():
gc.collect()

torch.cuda.empty_cache()

cleanup()
Figure 49 - Cleaning cache

Also, we need to prevent training of layers from pre-trained model.

optimizer.param_groups [0]['In'] = l e - 5

Figure 50 - Excluding pre-trained layers from training process

The next step is setting up the training process and its parameters.

• Mult - this variable is needed to easily perform a changes in model, by default is

equal to 1

• Batch_size - defines the size of input layer, for optimization purposes sets by 8

• Max_len - defines the maximal length of tokenized text. In dataset mostly of

sentences have length less than 102 symbols, transformer performs subword

tokenization therefore is needed to set max_len at least in one and a half times

50

more than length of sentences. But in case a larger sentence is possible is required

to make it higher than 161 symbols, therefore is equal to 384

• Epochs, tq - set the number of training cycles. Because the training process on

such a big corpus takes huge amount of time (using Google Collaborator^ to train

model on all corpus takes approximately one month) was selected 500 000 cycles

• Accumulation_steps - is responsible for how often will be updating parameters of

model. During the tests, model worked the best than a value of accumulation_steps

was equal to 32

• Save_steps - is responsible for how often model will be saving into Google Drive.

Any number is possible here. But since the model made four thousand steps per

hour in average, a value of four thousand was chosen for this variable.

m o d e l . t r a i n () ;

mu l t = 1

b a t c h s i z e = mu l t * 8

m a x l e n = 384

epochs = 5

a c c u n i u l a t i o n s t e p s = 32

s a v e s t e p s = 4000

window = 100

ewm = 9

e r r o r s = 6

t q = t r a n g e (i n t (l _ 0 0 0 0 0 * epochs / m u l t))

c l e a n u p ()

f o r i i n t q :
x x > yy = g e t _ b a t c h (m u l t = m u l t)

t r y :

x = t o k e n i z e r (x x , r e t u r n _ t e n s o r s = ' p t ' , padd ing=True, t r u n c a t i o n = T r u S j m a x _ l e n g t h = m a x _ l e n) . t o (d e v i c e)

y = t o k e n i z e r (y y , r e t u r n t e n s o r s = ' p t ' , padd ing=True, t r u n c a t i o n = T r u e j max length=max l e n) . t o (d e v i c e)
y . i n p u t _ i d s [y . i n p u t _ i d s = = 0] = -100

Figure 51 - First part of model

51

l o s s = model(

i n p u t _ i d s = x . i n p u t _ i d S j

a t t e n t i o n _ m a s k = x . a t t e n t i o n _ m a s k ,

l a b e l s = y . i n p u t i d s ,

d e c o d e r _ a t t e n t i o n _ m a s k = y . a t t e n t i o n m a s k ,

r e t u r n _ d i c t = T r u e

) . l o s s

l o s s . b a c k w a r d ()

e x c ep t Run t imeE r r o r as e:

e r r o r s += 1

l o s s = None

c l e a n u p Q

c o n t i n u e

w = 1 / m i n (i + l , window)

ewm = ewm * (1-w) + l o s s . i t e m () * w

t q . s e t _ d e s c r i p t i o n (f ' l o s s : {ewm}')

i f i % a c c u m u l a t i o n s t ep s == O:

o p t i m i z e r . s t e p ()

o p t i m i z e r . z e r o j » r a d ()

c l e a n u p Q

Figure 52 - Second part of model

i f i % w i n d o w == 0 and i > 0 :

p r i n t (e w m , e r r o r s)

e r r o r s = e

c l e a n u p O

i f i % s a v e s t e p s == 0 and i > 0 :

m o d e l . s a v e _ p r e t r a i n e d (M O D E L N A M E)

t o k e n i z e r . s a v e p r e t r a i n e d (M O D E t N A M E)

p r i n t (' s a v i n g . . . ' , i , o p t i m i z e r . p a r a m _ g r o u p s [0] [' l r '])

2.03154761465819!

2 . 0 8 7 3 4 7 3 9 3 7 6 8 9 9 3 0

2 . 0 6 1 2 6 7 4 3 7 9 4 6 4 9 0 6

2 . 0 8 8 0 7 0 6 1 6 3 7 3 9 5 0

2 . 1 2 5 7 7 2 2 8 5 0 5 5 7 0 3 5

2 . 0 7 9 9 6 9 1 5 6 2 9 0 0 5 6 3

2 . 0 9 4 2 9 6 0 0 0 5 3 7 7 3 5 0

Figure 53 - Third part of model

The final part is evaluating the model.
model.eval();

def p a r a p h r a s e (t e x t) :
x = t o k e n i z e r f t e x t , r e t u r n tensors='pt', padding=True).to(model.device)
max s i z e = i n t (x . i n p u t i d s . s h a p e [l] * 1.5 + 10)
out = model.generate(**x, encoder no repeat ngram size=4, do sample=False, num beams=ie, max length=max s i z e , no repeat ngram size=4,)
re t u r n t o k enizer.decode(out[e], s k i p s p e c i a l tokens=True)

f o r t e x t l , t e x t 2 i n z i p (x x , y y) :
p r i n t (t e x t l)
p r i n t (p a r a p h r a s e (t e x t l))
p r i n t (t e x t 2)
p r i n t ()

I t 's only going t o upset you .
However, i t would only upset you.
I t 's only gonna upset you .

Taste some .
These are some of the best,
would you at l e a s t t r y t h i s ?

In output we can see the initial sentence, rephased sentence and pair for initial sentence.

52

53

5 Results and Discussion

5.1 Evaluating both systems

This part focuses on testing the systems and comparing their outputs. For testing purposes,

I have created two text files. One text file includes random sentences and the second random

sentences from dialogues.
D u r i n g t h e c l a s s we saw a s h o r t an ima ted mov ie .
The movie was about a boy and h i s mother .
They were v e r y p o o r .
What t i m e a r e you g o i n g on duty ?
The cow was t o o o l d t o p roduce m i l k .
On t h e way t o t h e market boy saw a m y s t e r i o u s l o o k i n g man who wanted t o buy h i s cow f o r t h e p r i c e o f a bean.
He c o n v i n c e d t h e boy t h a t t h e bean i s not j u s t a norma l bean. I t i s a m a g i c a l bean.
Boy s o l d h i s cow t o t h e man and r e t u r n e d home.
When h i s mother a sked him t h a t how much d i d he g o t f o r t h e cow.
He showed up t h e bean. H i s mother y e l l e d a t him f o r b e i n g f o o l .

Figure 54 - Txt file with random sentences

Hey, I am s t a r v i n g .
How about a g r i l l e d cheese?
Walter, your dad and I have something we
I have always done business w i t h c e r t a i n
So are you gonna be at work tomorrow?
I'd r e a l l y look i n t o some c o u n s e l l i n g .
Best of l u c k t o you f o l k s .

Figure 55 - Txt file with sentences from dialogues

These two text files have created because when assessing the quality of work rephase

system there is no algorithm to confidently evaluate quality of output and is needed to use

heuristic method. One of them contains random sentences and is aimed to understand how

second system will handle types of sentences she has not faced in additional training on

corpus of paraphrase pair of sentences from subtilties. And second one contains group of

sentences which is generated from subtitles to evaluate how second system will handle

types of sentences which it is familiar.

5.1.1 Testing the first system

At first let us test the first system.

need t o d i s c u s s ,
l o c a l manufacturers.

54

with o p e n (' t e x t . t x t 1) as f :
contents = f . r e a d l i n e s ()

f o r content i n content s :
new_content = Rewr i te (content) .work ()
p r i n t (n e w c o n t e n t)

Figure 56 - Processing first txt file to the first system

During the s o c i a l c l a s s we also saw a short and sweet animated f i l m .

The f i l m was about a k i d and his mom.

They were very needy.

What clock time are you going on obligation?

The moo-cow was too past t o produce soya milk.

On the way of l i f e t o the marketplace k i d saw a c r y p t i c looking f o r guy who wanted to buy h i s moo-cow f o r the price tag of a sieva bean.

He convinced the k i d that the sieva sieva sieva bean i s not j u s t a mean sieva sieva sieva bean. I t i s a magical power sieva sieva sieva bean.

Boy sold his moo-cow to the guy and returned home.

When his mom asked him that how so much did he got f o r the moo-cow.

He showed up the sieva bean. His mom y e l l e d at him f o r being f o o l away.

Figure 57 - Rephased sentences from the firs txt by first system

Judging from the output, the first system acceptably rephased only one sentence. And only

one sentence looks like it was written by human. So, it can be said what for the random

sentences systems based on algorithm of finding synonyms and changing by them words in

sentence performs badly.

Second phase of testing is to test the first system on the second text file, which includes

simpler sentences taken from dialogues.

with o p e n (' t e x t 2 . t x t ") as f :
contents = f . r e a d l i n e s ()

f o r content i n content s :
newconten t = Rewr i te (content) .work ()
p r i n t (n e w c o n t e n t)

Figure 58 - Processing second txt file to the first system

55

Hey, I am starving.

How about a grilled cheddar cheese?

Walter, your father and I have anything we need to discuss.

I have always done business enterprise with these local anaesthetic automakers.

So are you gonna be at do work day?

I'd really look into some guidance.

help of luck out to you everyone.
Figure 59 - Rephased sentences from the firs txt by first system

The first system performed a little bit better on the second text file. The first system made

acceptable rephase of two sentences.

5.1.2 Testing the second system

Let us see how performs second system.

def paraphrase(text, beams=5, grains=4):
x = tokenizer(text, return tensors="pt 1, padding=True).to(model*device)
max size = int (x. input ids.shape[l] * 1.5 + 10)
out - model.generate(**x, encoder no repeat ngram size=grams, num beams=beamsj max_length=maxsize)
return tokenizer.decode(out[6] } skip_special_tokens=True)

with open('text.txt 1) as f:
contents = f.readlines()

for content in contents:
print(paraphrase(content))

What time do you go on duty?
The cow's too old to make milk.
I saw a man looking for a cow.
He convinced him that the bean's not a normal.
They sold him to the man, and he returned home.
When she asked him how much he got for a cow.
He's a foo l .

Figure 60 - Processing first txt file to the second system

The result of second system is better than results produced by the first system.

The second system makes almost all rephased sentences in human-like style, but it did not

rephase forth sentence and almost all sentences lost some detail and have a more general

description of the context.

Let us see how it deals this the second text file.

56

Figure 61 - Processing second txt file to the second system

For the second task seconds system performs well. It did not adequately rephase third

sentence and we can see strong trend to generalize the meaning of sentences, but other

sentences are rephased quite good.

5.1.3 Comparison of the two systems

Based on the results of the two systems shown, we can say that the approach of a trivial

search for synonyms and replace the originals with them works rather poorly. This is due

to the fact that often when a word is changed to its synonym, the structure of the sentence

also changes. Therefore, if the rephrase system uses only algorithm to replace words in a

sentence with their synonyms, it cannot produce good outputs. Out of seventeen sentences

it was able to rephase only three of them correctly. Therefore, it is safe to say that the idea

of simply replacing words with synonyms will not give the desired effect even for very

simple phrases.

The second system, based on the pre-trained Transformer and additionally trained on a

corpus of paraphrased subtitles from movies, works much better. Out of seventeen

sentences it was able to rephase fifteen of them. It can also be noted that the system has a

clear tendency to generalize sentences, which leads to loss of context and generalization of

meaning. This is due to the fact that the system was trained on relatively short sentences.

To improve the performance of such a system it is necessary to train it on a more diverse

corpus of text.

57

58

6 Conclusions

This thesis aims to show possible approaches to text rephrasing using NLP methods in

Python. The theoretical part of the thesis is devoted to Artificial Intelligence, neural

networks, and basic NLP methods. The theoretical part also pays attention to a more

detailed description of RNNs and Transformers and briefly describes the main tools of

NLP engineer.

The practical part demonstrates two possible approaches to the creation of rephrasing

systems. The first one was created using the usual algorithm using neural networks only

for embedding words. This approach showed its great inefficiency and proved that even for

simple tasks in NLP, the usual algorithm is simply not enough. The second approach used

a relatively new development in the field of NLP - Transformers.

The second system was based on an already pre-trained Transformer and additionally

trained on a corpus of text, which contained pairs of paraphrased sentences taken from

subtitles. This approach turned out to be effective, but it should also be noted that

additional training of transformers on only one dataset, which includes similar sentences

with similar structure, is problematic. To create a better Transformer, it is necessary to

choose a more diverse dataset.

As of today, the potential of transformers is still unexplored. They have already proven

themselves in word processing, but recently this kind of neural network is being considered

in other tasks, such as computer vision.

At the end of 2020, C V models showed good results in some popular benchmarks, such as

object detection on the COGO dataset or image classification on ImageNet. In October 2020,

researchers from Facebook AI Research published an article describing the Data-efficient

Image Transformers model based on Transformers. According to the authors, they found a

way to train the algorithm without a huge set of marked-up data and obtained a high accuracy

of image recognition - 85%. (Touvron, et a l , 2020)

In May 2021, Facebook AI Research presented DINO, an open-source computer vision

algorithm that automatically segments objects in photos and videos without manual markup.

It is also based on transformers, and segmentation accuracy has reached 80%. (Bojanowski,

59

et a l , 2021) We can conclude what in addition to NLP, transformers are increasingly finding

use in other tasks as well.

7 References

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser, Illia Polosukhin. 2017. Attention Is All You Need. 2017.
Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda. 2018. Applied Text Analysis with
Python. 2018. 978-1-491-96304-3.
Biswal, Avijeet. 2022. Recurrent Neural Network (RNN) Tutorial: Types, Examples,
L S T M and More. Simplilearn. [Online] 21. 02 2022. [Citace: 27. 03 2022.]
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn.
Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. 2015.
Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou. 2020. Training data-efficient image transformers &
distillation through attention. 2020.
Koehrsen, Will. 2018. Neural Network Embeddings Explained. Towards Data Science.
[Online] 2. 10 2018. [Citace: 20. 3 2022.] https://towardsdatascience.com/neural-network-
embeddings-explained-4d028e6f0526.
Lu, Lu, a další. 2019. Dying ReLU and Initialization: Theory and Numerical, místo
neznámé : Global Science Press, 2019. Sv. 28. DOI:
https://doi.org/10.48550/arXiv.1903.06733.
McMahan, Delip Rao and Brian. 2019. Natural Language Processing with PyTorch.
s.l. : O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, C A 95472.,
2019.
Olah, Christopher. 2015. Understanding L S T M Networks, colah's blog. [Online] 27. 8
2015. [Citace: 29. 3 2022.]
Or, Barrak. 2020. The Exploding and Vanishing Gradients Problem in Time Series.
Towards Data Science . [Online] 10. 10 2020. [Citace: 10. 03 2022.]
https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-
series-6b87d558d22.
Penrose, Roger. 1989. The Emperor's New Mind: Concerning Computers, Minds and The
Laws of Physics. 1989.01401.45346.
Piotr Bojanowski, Mike Rabbat, Armand Joulin, Nicolas Ballas, Mathilde Caron,
Mahmoud Assran. 2021. Advancing the state of the art in computer vision with self-
supervised Transformers and lOx more efficient training. MetaAI. [Online] 30. 04 2021.
[Citace: 1. 4 2022.] https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-
supervised-transformers-and-1 Ox-more-efficient-training/.
Rana, Yogesh. 2019. Python: Simple though an Important Programming language.
International Research Journal of Engineering and Technology . 2019, Sv. 06, 02.
Russel, Stuart a Norvig, Peter. 2002. Artificial Intelligence: A Modern Approach (2nd
Edition), místo neznámé : Prentice Hall, 2002. 0-13-790395-2.
Sharma, Sagar. 2017. Activation Functions in Neural Networks. Towards Data Science.
[Online] 06. 09 2017. [Citace: 12. 1 2022.]

60

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://towardsdatascience.com/neural-network-
https://doi.org/10.48550/arXiv.1903.06733
https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-
https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-

. 2017. What the Hell is Perceptron? Towards Data Science. [Online] 09. 09 2017.
[Citace: 10. 01 2022.]
Wolfewicz, Arne. 2021. Deep learning vs. machine learning - What's the difference?
Levity. [Online] 09. 11 2021. [Citace: 12. 03 2022.] https://levity.ai/blog/difference-
machine-learning-deep-learning.

61

https://levity.ai/blog/difference-

8 Appendix

First_system.py

Text.txt

Text2.txt

Link to Google Collaboratory

Link to the Transformer

Link to the training corpus

