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Development of rephrase system using Natural 
Language Processing models 

Abstract 

The thesis is focused on development of rephrase system using Nature Language 

Processing models in Python. The theoretical part starts with origins Artificial Intelligence 

field. After this it shortly defines Machine learning and Deep learning, and describes what 

is it neural network, how it works, why neurons need activation function and types of it. The 

theoretical part goes on to describe main NLP techniques, types of neural networks which 

are used to process human language like R N N and Transformers and ends with brief 

description of tools for NLP engineer. 

The practical part shows to ways of creating rephase system. The first way shows 

how to change sentence using synonyms with libraries like N L T K and spaCy. The second 

way shows more sophisticated way, it takes already pre-trained model of transformer and 

additionally trains it on specific corpus created for rephase tasks. 

Keywords: Deep learning, N L T K , Natural language processing, Machine learning, 

TensorFlow, TextBlob, Pytorch 

7 



Vývoj systému přeformulování textu používají modely 
zpracování přirozeného jazyka 

Abstrakt 

Tato diplomová práce je zaměřená na vývoj systému přeformulování textu používají 

modely zpracování přirozeného jazyka v Pythonu. Teoretická část se začíná s popsaní 

vytvoření oboru Umělá inteligence. Pak stručně charakterizuje strojové a hluboké učení, a 

přechází o popsaní co je neuronové sítě, jak to funguje, proč neurony potřebují aktivační 

funkce a jaké jsou její druhy. Pak teoretická část pokračují v popsaní základních NLP metod, 

druhů neuronových sítí, který se používají při zpracovaní přirozeného jazyka jako R N N a 

Transformers a se ukončuje definicemi nástroji pro NLP vývojáře. 

Praktická část vysvětluje dvě cesty vývoje systému přeformulování. První cesta 

ukazuje, jak je možné změnit větu používají synonyma a knihovny N L T K a spaCy. Druhá 

část směruje na vice sofistikovaný přistup a ukazuje, jak vzít natrénovaný model 

transformeru a dodatečně natrénovat pro specifický úkol přeformulování textu. 

Klíčová slova: Hluboké učení, N L T K , zpracování přirozeného jazyka, strojové učení, 

TensorFlow, TextBlob, Pytorch 
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1 Introduction 

The modern era is the era of computers and ubiquitous digitalization. Thanks to them, we 

were able to solve many applied problems that would otherwise have taken hundreds of years 

to solve. Thanks to this opportunity, people started to change the world with help of 

computers. Nowadays we basically can't live without computer technology and our 

dependence on this technology will grow even more in the future. 

The development of computer technology had led us to the creation of artificial intelligence. 

Thanks to it, we can automate almost any process that requires the presence of a person, such 

as systems used for evaluation and control. Since the field of Artificial Intelligence today is 

quite large and includes many sub-sciences, this thesis will focus only on a selected subset -

the human language processing, i.e., natural language processing. 
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2 Objectives and Methodology 

2.1 Objectives 

The main objective of this thesis is to describe and explain the process of development of 

a rephrase system using various natural learning processing, machine learning and deep 

learning libraries in Python. The second and final objectives is to deploy the rephrase system 

which performs substitution of words on a given text without losing context. 

2.2 Methodology 

The methodology of the thesis is based on analysis of technical and scientific sources 

focusing on artificial intelligence, machine learning, deep learning and natural language 

processing. Based on the synthesis of the knowledge gained, a prototype application will be 

implemented to rephrase text. The application will be written in Python using libraries for 

data science as N L T K , Pandas, NumPy and many others. The application will be tested and 

assessed in terms of performance and replacement quality. 
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3 Literature Review 

3.1 Artificial Intelligence 

For the last two decades, many systems, services, and functions that use AI technology have 

been developed: recommending a cafe based on individual preferences, building the best 

route, deciphering medical data - the list is almost endless. A l l of this has been made possible 

thanks to the efforts of scientists from around the world. Following sections of this thesis 

will therefore focus on origins of Artificial Intelligence and its fundamental concepts, 

without which current achievements would not be possible. 

3.1.1 Creation of a field of artificial intelligence 

In 1936, Alan Turing, now considered the founder of AI theory and the American 

mathematician Alonzo Church, independently of each other made the claim that there is no 

algorithm that decides whether a given statement is deducible from some set of mathematical 

axioms, now known as the "Church-Turing thesis". (Penrose, 1989) 

In "On Computable Numbers, with an Application to the Entscheidungsproblem", Turing 

developed the notion of an abstract digital computing machine, later called a Turing 

machine, capable of simulating (with an appropriate program) any machine whose actions 

consist of of moving from one discrete state to another, to solve a given task. (Penrose, 1989) 

In his next paper "Computing Machinery and Intelligence" published in the journal Mind in 

1950, Turing set forth a mental experiment (later called the Turing test) in which two players, 

talk to a third player separated from them by a wall through a channel that excludes voice. 

The aim of third player is to determine, by indirect questions, the sex of each of players he 

is talking to. Turing changed rules of the game -he assumed what if a machine took part 

instead of one player and now the task for the third player will be to determine who is 

machine and who is not. The question what arising simultaneously with such change of the 

rules - "Can a machine think?" or more specifically, "Can machines do what we (as thinking 

entities) can do? (Penrose, 1989) 

The next and final step in creation of the new field was The Dartmouth Seminar. It was a 

conference on Artificial Intelligence held at Dartmouth College in the summer of 1956. The 
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conference was important for the new-founded science: it introduced scientists interested in 

modelling the human mind to each other, approved the emergence of a new field of science, 

and gave it a name - Artificial Intelligence. (Stuart, et a l , 2002) 

3.1.2 Subsets of Artificial Intelligence 

With time, two subfields of Artificial Intelligence were created: 

• Machine Learning 

• Deep Learning 

Figure 1 - Subsets of Artificial Intelligence (Wolfewicz, 2021) 

3.1.3 Machine learning 

Machine Learning refers to a variety of mathematical, statistical, and computational 

methods for developing algorithms that can solve a problem not by a direct way, but by 

searching for patterns in input data. The solution is calculated not by an explicit formula, 

but by an established dependence of the results on a particular set of features and their 

values. 
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3.1.4 Deep learning 

Deep learning is a machine learning technique that involves independently building 

(training) general rules in the form of an artificial neural network, which trains on 

examples of data during the learning process. 

3.1.5 Neural networks 

When scientists started thinking about Artificial Intelligence, the first thing they did was to 

study the nature around them. One of the main components of any system in nature is a 

neural network. They are found everywhere. Their main function is to control various parts 

of the body in response to changing environmental conditions. As an example, we can 

consider the mechanism of pupil contraction and dilation depending on the level of light. 

Our eye has sensors that pick up the amount of light entering through the pupil at the back 

of the eye. They convert this information into electrical impulses and transmit them to the 

attached nerve endings. This signal then travels through a network of neurons which decide 

whether this amount of light is harmful to the eye, whether it is sufficient for the eye to 

clearly recognize visual information, and whether, based on these factors, the amount of light 

needs to be reduced or increased. 

At the output of this network are the muscles responsible for pupil dilation or constriction, 

and they actuate these mechanisms depending on the signal received from the neural 

network. And there are a huge number of such mechanisms in the body of any living being 

with a nervous system. 

Scientist tried to replicate this system using mathematics and mathematical functions. 

So, we have an input layer of neurons, which, in fact, are the sensors of our system. They 

are needed to get information from the environment and pass it further to the neural network. 

We also have several layers of neurons, each of which receives information from all the 

neurons in the previous layer, processes it in some way, and passes it on to the next layer. 

Finally, we have output neurons. Based on signals coming from them, we can judge the 

decision made by the neural network. Simple version of a neuron is called a perceptron. 

17 
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Figure 2 - Perceptron model (Sharma, 2017) 

A l l neurons are essentially the same and decide how strong the signal to transmit next 

using the same algorithm. This algorithm is called an activation function . At the input, it 

receives the sum of the values of the input signals, and at the output it transmits the value 

of the output signal. 

But in this case, it turns out that all neurons of any layer will receive the same signal and 

give the same value. Thus, we could replace our entire network with one neuron. To 

eliminate this problem, we will assign a certain weight to the input of each neuron. This 

weight will indicate how important the signal received from another neuron is for each 

particular neuron. 

To make the neural network work correctly, we must first train it. Neural network training 

is the process of selecting input weights for each neuron in such a way that the output 

signal is as close as possible to expectations. 

One of possible approach is to assign the random weights to the feature inputs, after this 

feed datato the input of the neural network, for which the result are known. Next, the result 

that the neural network gives is compared with the expected result, the error is calculated, 

and the weights of the neurons adjusted in a way which minimizes this error. This action is 

repeated for a needed number of times for a large number of input and output data, so that 

the network understands which signals on which neuron are more important to it, and 

which ones are less important. This approach is called supervised learning. If the problem 

is well represented by dataset - the bigger that dataset is - the better. If the neural network 

would encounter more observations - it could learn more information. 
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The structure of neural network generally consists of 3 types of layers: 

• Input layer - accepts data inputs 

• Hidden layers - perform mathematical calculations with input data 

• Output layer - gives output 

Input Layer Hidden Layer #1 Hidden Layer #2 Output Layer 

Figure 3 - Simple Neural Network (Wolfewicz, 2021) 

Neurons in neural networks differ from each other by activation function. 

3.1.6 Activation functions 

Today exist many different activation functions. The activation function of a neuron can be 

any function that exists on the entire range of values produced by the output of the neuron 

and the input data. 

The first one is sigmoid function. 
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Figure 4 - Sigmoid function (Sharma, 2017) 

This activation function works well only in binary classification and it is practically not 

used in practice nowadays. 

The second one is an improved version of sigmoid function - Tanh or hyperbolic tangent 

activation function. This function is mainly used in classification tasks with only two 

possible classes. 

1 

0.5 
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-0.5 
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i • r 

Sigmoid 
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Figure 5 - Tahn activation function compared to the sigmoid function (Sharma, 2017) 

The next one is ReLU activation function. This function is very popular today and used in 

deep learning. 
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Figure 6 - ReLUfunction compared to Sigmoid (Sharma, 2017) 

The ReLU activation function has one problem which known as a dying neuron or a dead 

neuron problem. I the input to a ReLU neuron is negative, the output would be zero. (Lu, et 

a l , 2019) 

To deal with this problem, the Leaky ReLU activation function was developed. 

fiy) 

Figure 7 - Leaky ReLU (right) compared to ReLU (Sharma, 2017) 

3.2 Natural Language Processing 

To create a program which can understand human language and obtain meaning from a 

text is needed to use Natural Language Processing. Therefore the next part of this thesis 

will define what is NLP and describe the main techniques which it utilizes. 

"NLP refers to a set of techniques involving the application of statistical methods, with or 

without insights from linguistics, to understand text for the sake of solving real-world 
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tasks. This "understanding" of text is mainly derived by transforming texts to useable 

computational representations, which are discrete or continuous combinatorial structures 

such as vectors or tensors, graphs, and trees." (McMahan, et a l , 2019) 

The common techniques of NLP include: 

• Tokenization -splitting the text into tokens, or words 

• Removing the stop words - removing words which are used only to build a 

sentence and do not carry a semantic meaning 

• Embeddings - transformation the text into numerical data 

• Part-of-speech tagging - every tokenized word can be tagged as a part of speech: a 

noun, verb, or adjective 

• Word and phrase frequencies - mostly used to analyze large blocks of text; in this 

technique is checked how often appear every word or phrase of interest 

• N-grams - dividing a text into sequences of words of a set length: 

o unigram - a single word 

o bigrams - two words 

o trigram - three words 

o n-grams - any number of words 

• Noun phrase extraction - in most sentences a noun is a subject of phrase, so noun 

extraction is common task in NLP when attempting to understand the meaning of a 

sentence 

• Sentiment analysis -analyzes how positive or negative is a sentence or text 

• Inflection - enables to get the singular or plural form of the word 

• Lemmatization - a lemma is the root or headword for a set of words 

3.2.1 Tokenization 

Tokenization is technique which divide input text into small chunks which could refer to 

words, sentences and called tokens. With tokenization and tokens, we can better 

understand the context of text and interpret it the right way. For instance, the text "I read 

book" can be broken into following tokens: "I", "read," "book." 

We can apply tokenization to separate words or sentences. If the text is split into words, it 

is called word tokenization and when it is split to sentences - sentence tokenization. 

22 



There are different tokenization techniques which can be applied to the text based on the 

aim and language of text: 

• White Space Tokenization - one of the simplest techniques. It divides text into 

tokens based on white spaces between worlds. It is effective with languages in 

which has white spaces between words, like English, Czech, or German. 

• Dictionary Based Tokenization - in this technique a pre-made dictionary is 

available based which is the tokenization is performed., If some world is not found 

in dictionary, then program applies special rules to tokenize it. 

• Rule Based Tokenization - in this method is created a set of rules, and the 

tokenization is performed based on the rules. 

• Regular Expression Tokenizer - this method uses regular expression to perform the 

tokenization process. 

• Penn Treebank Tokenization - is tokenization which is done based on Treebank. 

Treebank is a parsed text corpus that annotates syntactic or semantic sentence 

structure. 

• Subword Tokenization - the idea of this relies on the principle that frequently used 

words should not be split into smaller sub words, but rare words should be 

decomposed into meaningful sub words. Therefore, algorithm divides words by 

frequency. If the word appears quite often, it does not divide the word and gives to 

it unique id, but if the word appears rarely it tries to divide it into sub words. For 

instance, if the word "refactoring" appears rarely in text algorithm divide it for next 

sub words - "re," "factor," "ing." This helps the model to find out similar words 

and better understand the meaning of text. 

Today if we want to tokenize text, we have many various approaches to do it. For example, 

below you can see rule based tokenization using N L T K library in Python 

from n l t k . t o k e n i z e impor t w o r d t o k e n i z e 

sentence = ' T o k e n i z e t h i s s en t ence ' 

p r i n t ( w o r d t o k e n i z e ( s e n t e n c e ) ) 

[i] V 3.7s 

[ " T o k e n i z e " , " t h i s " , ' s e n t e n c e ' ] 

Figure 8 - Tokenization in Python using NLTK library 
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3.2.2 Removing the stop words 

Stop words are frequently used words that do not add any additional information to the 

text. Words like "the", "is", "a" have no value and only add noise to the data. Another 

benefit of stop word removal is that it reduces the size of the data set and the time taken in 

training the model. If we want to remove stop words from this text: 

"The film Arrival is one of those tapes that analyses an already hackneyed topic from a 

side that no one has approached yet. The film is based on the story of how twelve alien 

ships flew to Earth and landed at different places on the planet. After that, the film does 

not turn into a story about the occupation of the Earth or about the rapid exchange of 

technologies and the development of mankind. No, the emphasis is on trying to contact 

aliens and understand their purpose. The central figure in the plot is a linguist played by 

Amy Adams, who is assigned to study the language of aliens who are not cliched 

humanoids, which is why speech is radically different., " we can use the Python snippet 

listed in Figure 9. The result of removing stop words you can see below: 

f r o m n l t k . c o r p u s i m p o r t s t o p w o r d s 

s t o p _ w o r d s = s t o p w o r d s . w o r d s ( ' e n g l i s h ' ) 

t e x t = "The f i l m A r r i v a l i s one o f t h o s e t a p e s t h a t a n a l y s e s an a l r e a d y h a c k n e y e d t o p i c f r o m a s i d e t h a t no one ha s a p p r o a c h e d y e t . The f i l m i s b a s e d ot 

t e x t _ t o k e n i z e = w o r d _ t o k e n i z e ( t e x t ) 

r e m o v e _ s t o p _ w o r d s = [wo rd f o r wo rd i n t e x t _ t o k e n i z e i f n o t w o r d . l o w e r Q i n s t o p _ w o r d s ] 

p r i n t ( r e m o v e s t o p w o r d s ) 

•y 0.3s Pythoi 

[ " f i l m " , ' A r r i v a l ' , ' o n e ' , ' t a p e s ' , ' a n a l y s e s ' , ' a l r e a d y ' , ' h a c k n e y e d ' , " t o p i c ' , " s i d e ' , " o n e " , " a p p r o a c h e d " , " y e t ' , ' . " , ' f i l m " , ' b a s e d ' , ' s t o r y " , 

' t w e l v e " , " a l i e n ' s h i p s ' , ' f l e w ' , ' E a r t h ' , ' l a n d e d ' , " d i f f e r e n t ' , " p l a c e s ' , ' p l a n e t ' , ' . ' , ' , ' , ' f i l m ' , " t u r n " , ' s t o r y ' , ' o c c u p a t i o n ' , " E a r t h ' , ' r a p i d ' , 

' e x c h a n g e " , " t e c h n o l o g i e s ' , ' d e v e l o p m e n t ' , ' m a n k i n d ' , ' . ' , ' , ' , ' e m p h a s i s ' , " t r y i n g " , " c o n t a c t " , " a l i e n s " , " u n d e r s t a n d " , " p u r p o s e " , ' . " , " c e n t r a l " , 

' f i g u r e " , " p l o t " , " l i n g u i s t ' , ' p l a y e d ' , ' A m y " , ' A d a m s ' , ' , ' , ' a s s i g n e d ' , ' s t u d y " , " l a n g u a g e " , " a l i e n s ' , " c l i c h e d " , ' h u m a n o i d s ' , ' , ' , ' s p e e c h ' , ' r a d i c a l l y ' , 

' d i f f e r e n t " , ' r ' ] 

Figure 9 - Removing stop words in Python using NLTK library 

3.2.3 Embeddings 

Because computers cannot understand data in a non-numerical format, we need to 

somehow transform our non-numerical data to numerical form. 

"An embedding is a mapping of a discrete — categorical — variable to a vector of 

continuous numbers. In the context of neural networks, embeddings are low-dimensional, 

learned continuous vector representations of discrete variables. Neural network 

embeddings are useful because they can reduce the dimensionality of categorical variables 

and meaningfully represent categories in the transformed space." (Koehrsen, 2018) 

Depending on the task, different approaches can be applied. 
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First one is One-Hot encoding. It is an unsupervised technique which helps to represent 

categorical non-numerical variables in word of digits. For instance, we have the category 

"Color" where there are three colors: red, green, and yellow. To transform this information 

to digits, One-Hot encoding needs to be applied. It is performed via mapping, creating a 

vector the same size as a quantity of categories. Example of it can be seen below: 

from sklearn.preprocessing import OneHotEncoder 

enc = OneHotEncoder(handle_unknown='ignore") 
category = [["red"., "green"_, "yellow"]] 
category = enc.fittransform(category) 
print(category) 

V 0.7s 

Figure 10 - Simple encoding of words in Python using scikit-learn library 

The next and final method of embedding is word embedding. This is an approach to 

represent text in natural language processing. It allows algorithms to understand the 

meaning of words. 
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Word Embeddings for Movie Review Sentiment Model 

today 

enjoyertjeafoazjng 

fantastic 
h i g ( l l^erfect 

favorite 

definitely loved 
'yable 

family 
beautiful enjoyabh 

liked 

good him 

action 

entertaining 
time hilarious 

her. 
comedy 

disappointment 

poorly 

annoying 

worse disappointing 

boring 

horrible 
-ible terrible 

awful 

jnfortjnately 

dull 

Figure 11- Example of word embedding (Koehrsen, 2018) 

Nowadays the most effective tool to perform word embedding is Word2vec. It implements 

two main architectures - Continuous Bag of Words (CBOW) and Skip-gram. The corpus 

of text is fed as input, and a set of vectors of words is obtained as output. 

The principle of operation is finding links between word contexts under the assumption 

that words in similar contexts tend to mean similar things, i.e., be semantically related. 

More formally, the problem is: maximizing the cosine proximity between vectors of words 

(the dot product of vectors) that appear next to each other and minimizing the cosine 

proximity between vectors of words that do not appear next to each other. Near each other 

in this case means in close contexts. 
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For example, the words "analysis" and "research" often appear in similar contexts, such as 

"Scientists have analyzed algorithms" or "Scientists have conducted research on 

algorithms." Word2vec analyzes these contexts and concludes that the words "analysis" 

and "research" are close in meaning. Since Word2vec draws such conclusions based on a 

large amount of text, the conclusions are quite adequate. Based on the example above, it 

can be concluded that to train a good quality Word2vec model a very large corpus of text is 

needed. 

3.2.4 Parsing and part-of-speech tagging 

Part-of-speech (POS) tagging is a stage of automatic text processing, the task of which is to 

determine the part of speech and grammatical characteristics of words in the text (corpus) 

with the assignment of appropriate tags to them. POS tagging is one of the first stages of 

computer text analysis. 

import spacv 
n i p = spacy. load("en_core_web_sm") 

t e x t = ' S o f t s k i l l s l i k e s ha r i n g and n e g o t i a t i n g w i l l be c r u c i a l . ' 
doc = n l p ( t e x t ) 
f o r token i n doc: 

printj(|token.pos_, t o k e n . t e x t } token. tag j ) ] 

• 0.4s 

ADJ S o f t 31 

NOUN s k i l l s NNS 

ADP l i k e IN 

VERB sha r i ng VBG 

CCOND and CC 

NOUN n e g o t i a t i n g NN 

AUX w i l l MD 

AUX be VB 

AD] c r u c i a l J ] 

PUNCT . . 

Figure 12 - Part-of-speech tagging in Python using spaCy library 

3.2.5 Word and phrase frequencies 

This approach finds the words which appear more frequently in a document and 

determines the importance of such words. But it has a problem - the words with the 
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highest frequency have the highest score. These words however may not have as much 

information gain for the model as the less frequent words. One way to fix the situation is to 

lower the score of a word that occurs frequently in all similar documents. This is called 

term frequency - inverse document frequency (TF-IDF). 

TF-IDF is a statistical measure for evaluating the importance of a word in a document that 

is part of a collection or a corpus. 

The TF-IDF scoring increases in proportion to the frequency with which the word appears 

in the document, but this is offset by the number of documents containing the word. 

For example, if we have three documents of text: 

1. The elephant sneezed at the sight of potatoes. 

2. Bats can see via echolocation. See the bat sight sneeze! 

3. Wondering, she opened the door to the studio. 

And applying to them TF-IDF scoring, for the third document more significant will be 

words studio, door, and wonder. 

The elephant sneezed 
at the sight of potatoes. 

Bats can see via 
echolocation. S e e t h e 

bat sight sneeze! 

Wondering, she opened 
thedoorto the studio. 

E E 0.3 0,3 0.3 0.4 0 0 

Figure 13- Example of applying TF-IDF scoring for multiple texts (Bengfort, et al, 2018) 

3.2.6 N-grams 

An N-gram is a sequence of entities (words, letters, numbers, digits, etc.). In the context of 

language corpora, an N-gram is usually understood as a sequence of words. A unigram is 

one word, a bigram is a sequence of two words, a trigram is three words, and so on. The 
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number N denotes how many grouped words are included in an N-gram. The model does 

not include all possible N-grams, but only those that appear in the corpus. 

3.2.7 Sentiment analysis 

This technique can be used to determine whether the text is positive, negative, or neutral. 

Sentiment analysis helps to understand the emotional undertones of language. This, in turn, 

helps to automatically sort out the opinions behind reviews, social media discussions, 

comments, etc. 

3.2.8 Lemmatization and stemming 

Typically, texts contain different grammatical forms of the same word, and may also 

contain homonymic words. Aim of lemmatization and stemming is to bring all occurring 

word forms to the same, normal dictionary form. 

Lemmatization and stemming are special cases of normalization. Stemming is a crude 

heuristic process that cuts off the "extra" from the word root, often resulting in the loss of 

word-formation suffixes. Lemmatization is a more sophisticated process that uses 

dictionary and morphological analysis to bring a word to its canonical form - the lemma. 

3.3 Neural networks for NLP 

A l l techniques discussed above stand for preparational part of text processing from letters 

to digits. But how can computers obtain some information from this structured array of 

digits? 

This is where neural networks come in. Today, many different types of neural networks 

exist each of which is designed to solve a special type of problem. Among them all, two 

main types of neural networks for NLP problem solving can be highlighted: 

• Recurrent Neural Network, and 

• Transformer. 

3.3.1 Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNN) are a type of neural networks that specializes in 

sequence processing. They are often used in N L P tasks because of their effectiveness in 

text analysis. 
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One of the nuances of working with neural networks, is that they work with predefined 

parameters. They take input data with fixed dimensions and output the result, which also 

has fixed dimension. The plus side of R N N is that they can work with sequences with 

variable lengths for both input and output. 

0 
• 

Recurrent Neural Network Input Layer Hidden Layers Output Layer 

Figure 14 - RNN compared to a simple neural network (Biswal, 2022) 

Due to the structure of recurrent neural network, a neuron in it receives some data about 

the previous state of the network in addition to incoming data. In this way the network 

implements "memory", which fundamentally changes the nature of its operation and allows 

to analyze any sequence of data, like audio recordings, text, or stock quotes, in which is 

important the order of values. 

© © © © © 
L J I 1 
A A A A M M A A 

Xt) (Xo) (Xi) 

Figure 15 - An unrolled recurrent neural network (Olah, 2015) 

Until 2017, engineers used deep learning to understand text using recurrent neural 

networks. 

For example, when translating a sentence from English into Czech, an R N N would take an 

English sentence as input, process the words one by one, and then sequentially produce 

their Czech analogs. The key word here is "sequential". In a language, the order of words is 

important, and you cannot just mix them up. 

This is where RNNs encounter several problems. First, they try to handle large sequences 

of text. By the time they get to the end of a paragraph, they "forget" the content of the 
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beginning. For example, an RNN-based translation model may have trouble remembering 

the gender of a long text object. Second, RNNs are difficult to train. They are known to be 

prone to the so-called vanishing/exploding gradient problem. (Or, 2020) Third, they 

process words sequentially, a recurrent neural network is difficult to parallelize. This 

means that it is impossible to accelerate learning using more GPUs. Consequently, it 

cannot be trained on a large amount of data. 

To solve these problems, a new type of neural network was created - Transformer 

3.3.2 Transformer 

Transformer is a relatively new type of neural network aimed at solving sequences with 

easy processing of long-range dependencies. Today, it is the most advanced technique in 

the field of natural language processing. 

They can be used to translate text, write poems and articles, and even generate computer 

code. Unlike RNN, transformers do not process sequences in order. For example, if the 

input data is text, they do not need to process the end of a sentence after processing the 

beginning. Due to this, such a neural network can be parallelized and trained much faster. 

Transformer was first described by engineers at Google Brain in "Attention Is A l l You 

Need" in 2017. (Vaswani, et a l , 2017) 

One of the main differences from existing data processing methods is that the input 

sequence can be transmitted in parallel, so that the graphical processor can be used 

efficiently, and the learning speed can be increased, cannot 

The main components of transformers are an encoder and a decoder. 
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Figure 16-Model of transformer (Vaswani, et ah, 2017) 

The encoder converts the incoming information (e.g., text) and converts it into a vector (a 

set of numbers). The decoder, in its turn, decodes it as a new sequence (e.g., the answer to 

a question) of words in another language, depending on what purpose the neural network 

was created for. 

Other innovations underlying transformers can be summarized in three main concepts: 
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• Positional Encodings 

• Attention 

• Self-Attention 

Position encoders take all the words in the input sequence, in this case an English 

sentence, and add a number to each in its order. Therefore, the transformer network works 

with following input: 

[("Today", 1), ("is", 2), ("a", 3), ("good", 4), ("day", 5), ("to", 6), ("swim", 7)] 

Conceptually, this can be seen as shifting the process of understanding word order from the 

structure of the neural network to the data itself. 

At first, before transformers learn from any information, they do not know how to interpret 

these positional encodings. But as the model sees more and more examples of sentences 

and their encodings, it learns to use them effectively. 

The structure presented above is given in an oversimplified way -the authors of the 

"Attention Is A l l You Need" used sinusoidal functions to produce positional encodings 

rather than the prime integers, but the idea is the same. By keeping the word order as data 

rather than structure, the neural network is easier to train. (Vaswani, et a l , 2017) 

Attention is a neural network structure introduced into the context of machine translation 

in 2015. (Bahdanau, et al., 2015) Imagine that we need to translate a phrase into French: 

The agreement on the European Economic Area was signed in August 1992. 

The French equivalent of the phrase is as follows: L'accord sur la zone economique 

europeenne a ete signe en aout 1992. 

The worst translation option is a direct search for English words in French, one by one. 

This cannot be done for several reasons. First, some of the words in the French translation 

are reversed: "European Economic Area" versus "la zone economique europeenne." 

Second, the French language is rich in gender words. To match the feminine object "la 

zone," the adjectives "economique" and "europeenne" must also be put in the feminine 
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gender. Attention helps to avoid such situations. Its mechanism allows the text model to 

"look" at each word in the original sentence when deciding how to translate them. 

(Bahdanau, et a l , 2015) The visualization from the original article demonstrates this: 

Figure 17'— Visualization of how model the understand similarity in meaning between two sentences (Bahdanau, et al, 
2015) 

This heat map in Figure 17 shows what the model "pays attention to" when it translates 

each word in a French sentence. As you might expect, when the model outputs the word 

"europeenne," it largely considers both input words, "European" and "Economic. 

Learning which words to "pay attention to" at each step helps the model learn from training 

data. By observing thousands of English and French sentences, the algorithm learns 

interdependent word types. It learns to consider gender, plurality, and other rules of 

grammar. 
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The last part of the transformers is a self-attention. While attention helps aligning words 

when translating from one language to another, self-attention allows the model to 

understand the meaning and patterns of language. For example, consider these two 

sentences: 

"The animal did not cross the street because it was too tired. " 

"The animal did not cross the street because it was too wide. " 

The word "it" here refers to two different subjects, which we humans, knowing the 

situation, can understand. Self-attention allows the neural network to understand a word in 

the context of the words around it. Therefore, when the model processes the word "it" in 

the first sentence, it can refer it to "animal" and understand that too tired was animal not a 

street and understand what in second sentence "it" what refers to the street. 

3.4 Tools for NLP engineer 

After successfully introducing some of the algorithms and principles of NLP, the next part 

focuses on tools and environment which are necessary to develop applications in N L P area. 

3.4.1 Python 

"Python is an interpreted, high-level, general-purpose programming language. Created by 

Guido van Rossum and first released in 1991, It is used for both learning and real-life 

programming. It is easy to learn as most of the commands are similar to normal word used 

by humans (e.g., To print any statement or any value we simply write "print (statements)"). 

Many of the famous application are developed using python (e.g., Instagram, Dropbox.)." 

(Rana, 2019) 

Following advantages of Python helped it to become popular and one of the main tools for 

development NLP systems: 

• Easy to write and read code - Python code looks like simple English words and, in 

most cases, is set in the usual text-reading order. No semicolons or brackets are 

used, and indents define a block of code. 

• Huge number of modules and packages - in addition to the standard Python 

libraries, there are simply countless additional modules and libraries available to 
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everyone. There are libraries for working with images, databases, unit testing, data 

analysis, data engineering, Artificial Intelligence, and many other features. 

• Portable and versatile - Python is portable in the sense that the same code can be 

used on different machines. Suppose you write Python code on a Mac. If you want 

to run it on Windows or Linux later, you do not need to make any changes to it. 

That way you do not have to write the program multiple times for multiple 

platforms. 

• Extensible - programming language is called extensible if it can be translated into 

other languages. Python code can also be written in other languages, such as C++, 

making it a very extensible language. 

To create a program in Python, you first need to determine which packages will be used to 

create it, so next I would like to describe Python packages that allow you to solve NLP 

tasks. 

3.4.2 NumPy 

NumPy is a Python library that is used for mathematical calculations: from basic functions 

to linear algebra. This library has several important features that have made it popular. 

First, its source code is freely available on GitHub, which is why NumPy is called an open-

source module for Python. Second, the library is written in C and Fortran. This makes 

computing much faster and more efficient. This makes this library indispensable for 

Artificial Intelligence tasks. 

3.4.3 Scikit-learn 

Scikit-learn is one of the most widely used Python packages for Data Science and Machine 

Learning. It allows to perform many operations and provides many algorithms. Scikit-learn 

also offers excellent documentation about its classes and methods , as well as descriptions 

of the algorithms used. 

Scikit-learn supports: 

• data preprocessing 

• dimensionality reduction 

• model selection 

• regressions 
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• classifications 

• cluster analysis 

Scikit-learn does not have functionality directly for Deep Learning tasks, but it can help 

with data preprocessing. 

3.4.4 Pandas 

Pandas is a statistical data processing package close in functionality to SQL and R. It 

includes functionality for working with databases and Excel tables. 

3.4.5 NLTK 

N L T K (Natural Language Toolkit) is the leading platform for creating N L P programs in 

Python. It has easy-to-use interfaces for many language corpora, as well as text processing 

libraries for classification, tokenization, stemming, markup, filtering, and semantic 

reasoning. 

3.4.6 Textblob 

Textblob is a text processing library written in Python. It can be used for part-of-speech 

labeling, parsing, sentiment analysis, spelling corrections, and translation. 

Textblob relies on the Google Translate API in translation tasks. This means that it 

requires an active Internet connection to perform translations. 

3.4.7 SpaCy 

SpaCy is an open-source library for NLP written in Python and Cython. It is analogous to 

NLTK. But unlike N L T K , which is widely used for teaching and research, spaCy focuses 

on providing software for development. 

3.4.8 TensorFlow 

TensorFlow is a machine learning library developed by Google to build and train neural 

networks. TensorFlow is excellent for automatic image retrieval and classification, as the 

quality of recognition is close to human perception. TensorFlow can run in parallel mode 

on multiple processors: both CPUs and GPUs. The GPUs use C U D A for general purpose 

computations. This provides high speed training and operation of trained models. The 

TensorFlow library includes various APIs for building at scale deep learning architectures 

such as C N N or RNN. 
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4 Practical Part 

4.1 Designing rephase system 

The initial step in creation any program, application or system is to define the final goal, 

algorithm of working and the list of technologies to be used to help accomplish the tasks at 

hand. 

4.1.1 The final goal of system 

Two systems will be created in this thesis. First system is based on searching synonyms to 

words in phrase, which allows to save meaning and simultaneously change the given 

sentence. The second system is based on modern approach to dealing with N L P tasks -

transformers. The given pre-trained model will be additionally train on new special corpus 

of text which will help it to better understand the paraphrase task and give more meaningful 

outputs. 

4.1.2 Defining needed technologies and algorithm 

Chosen technologies and their purpose for the first project: 

• Python as language in which system will be written 

• Visual Studio Code as IDE for writing Python code 

• N L T K library for finding word antonyms and text processing 

• Spacy library for finding word synonyms and text processing 

• Datamuse API is API which allows to find similar words, so it will be used for their 

direct purpose - to find synonyms 

• Urllib library - to send requests to the API 

• JSON library - since the Datamuse API sends JSON file, will be needed to use the 

JSON library for Python to extract the necessary information from it 

Algorithm of first system: 

1. Obtain input sentences from txt file 

2. Tokenize words in sentence 

3. Get synonyms from Datamuse API 

4. Get synonyms from N L T K library 

5. Get score of similarity between initial word and synonyms 
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6. Choose best synonym by score 

7. Change words in sentence 

8. Print new sentence 

9. Repeat step 2 

Chosen technologies and their purpose for the second project: 

• Python as language in which system will be written 

• Google Collaboratory as IDE for writing Python code 

• Transformers, torch, tqdm, collection and random libraires for process of training 

model 

• Pandas, NumPy and csv libraries for data manipulating 

• Os library for saving model 

• Opusparcus_vlas corpus, on which model will be trained, this corpus is 

consisting of paraphrase pair of subtitles 

• Rut5-base-multitask is already pre-trained transformer, which will be 

additionally trained to handle with rephase task 

For the second system the algorithm of work will not be provided as it will rely on neural 

network. 

4.2 Creating first system 

4.2.1 Installing packages for the first system 

The first phase is to install all needed packages, for this task, pip package manager will be 

used. 

pip install nltk. spacyf 
Figure 18 - Installing needed libraries 

The second phase is to download all datasets from N L T K library, which helps to find 

antonyms for text. 

import nltk 
nltk.download() 

Figure 19 - Installing needed packages from NLTK library 
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After running this code in new window is needed to select and download packages. 

<jf NLTK Downloader - • X 

File View Sort Help 

Collections I Corpora I Models 
Identifier Name Size Status 

all All packages n/a installed 

all-corpora 
all-nltk 
book 
popular 
tests 
third-party 

All the corpora 
All packages available on nltk_data gh-pages bran 
Everything used in the NLTK Book 
Popular packages 
Packages for running tests 
Third-party data packages 

n/a 
n/a 
n/a 
n/a 
n/a 
n/a 

installed 
installed 
installed 
installed 
installed 
installed 

Download j Refresh 

Server index: h t t p s : / /raw. githubus e r content. com/nl1 
Figure 20 - Downloading window for packages 

Now is needed to download trained model from SpaCy library which helps us to find 

synonyms for words. 

python spacy download en core web l g 

Figure 21 - Downloading needed package from spaCy library 

4.2.2 Implementing first system 

Firstly, we need to import all needed libraries. 

from n i t k . co rpu s import wordnet as wd 

import spacy 

import u r l l i b . r e q u e s t 

import j son 

n ip = s p a c y . l o a d ( ' e n c o r e w e b l g 1 ) 

Figure 22 - Importing libraries and downloading the model from spaCy 
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After this step is completed in directory in which script is placed will be placed txt file 

with phrase which needed to be rephase. The script needed to open this txt file and read all 

information from it. 

wi th o p e n ( ' t e x t . t x t ' ) as f : 

contents = f . r e a d l i n e s Q 

Figure 23 - Opening and reading the file with text 

After its script runs loop which takes every phrase from file and tries to rephase it. 

f o r content i n content s : 

newconten t = Rewr i te (content ) .work ( ) 

p r i n t ( n e w c o n t e n t ) 

Figure 24 - Starting to rephase every sentence from text file 

c l a s s R e w r i t e : 

def i n i t ( s e l f j s e n t e n c e ) : 

s e l f . s e n t e n c e = sen tence 

def w o r k ( s e l f ) : 

r e w r i t e _ t y p e s = [ u ' N N ' , u ' NNS ' , u ' D J ' j u 'DUS ' ] 

p o s _ t o k e n i z e r = n l p ( s e l f . s e n t e n c e ) 

words = [ 

f o r t o ken i n p o s t o k e n i z e r : 

i f t o k e n . t a g ^ i n r e w r i t e t y p e s : 

w o r d s . a p p e n d ( t o k e n . t e x t ) 

r e w r i t t e n s e n t e n c e = s e l f . s e n t e n c e 

f o r word i n words: 

w o r d s y n = Synonym(word).compare()[1] 
r e w r i t t e n _ s e n t e n c e = r e w r i t t e n _ s e n t e n c e . r e p l a c e ( w o r d , word_syn) 

r e t u r n r e w r i t t e n s e n t e n c e 

def _ d e l _ ( s e l f ) : 

s e l f . s e n t e n c e = F a l s e 

Figure 25 - First class which defines parameters of rephasing 

At the start need to be defined which words by token script can take for changing and 

performing tokenization using spaCy functionality. I have defined which words can be 

changed by next tokens: 

• N N - noun, singular 

42 



• NNS - noun, plural 

• JJ - adjective 

• JJS - adjective, superlative 

def w o r k ( s e l f ) : 

r e w r i t e t y p e s = [ u ' N N ' , u ' NNS ' , u ' D D ' j u ' J J S * ] 

p o s t o k e n i z e r = n i p ( s e l f . s e n t e n c e ) 

words = | 

Figure 26 - Choosing which words can be changed by their token 

After its script creates list of changeable words. 

f o r token i n p o s t o k e n i z e r : 
i f t o ken . t ag_ i n r e w r i t e t y p e s : 

words.append(token.text) 
r e w r i t t e n sentence = s e l f . s e n t e n c e 

Figure 27 - Adding word what will be changed into list 

And sends it to another class 

for word in words: 
wordsyn = Synonym(word).compare()[1] 
rewrittensentence = rewrittensentence.replace(word } wordsyn) 

return rewritten sentence 

Figure 28 - Ruining class which will obtain synonyms from Datamuse API 

In this class is going comparison between words. In first, script is sending words to 

Datamuse API with aim to obtain from its synonyms to these words. 

def i n i t ( s e l f j word): 
s e l f .wo rd = word 
s e l f . b e s t s c o r e = 0 . 0 
s e l f . b e s t c h o i c e = " " 

def compare ( se l f ) : 
w o r d s l i s t = s e l f . s y n o n y m l i s t ( ) 

Figure 29 - Initializing score of similarity 
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def s y n o n y m _ l i s t { s e l f ) : 

path = "h t tp s ://ap i .datamuse .com/words ?ml= " + s e l f . w o r d 

ou tpu t = u r l l i b . r e q u e s t . u r l o p e n ( p a t h ) 

d a t a = o u t p u t . r e a d Q . d e c o d e ( " u t f - 8 " ) 

j s o n d a t a = j s o n . l o a d s ( d a t a ) 

w o r d s l i s t = [] 

f o r i i n j s o n d a t a : 

w o r d s l i s t . a p p e n d ( i [ 1 wo rd " ] ) 

r e t u r n words l i s t 

Figure 30 - Getting synonyms from Datamuse API 

After obtaining the list of similar words, we want to find another synonymous from N L T K 

datasets and compare these words and find the best matching by score. 

In first script tries to obtain synonyms from using N L T K library. 

def compare ( se l f ) : 

w o r d s l i s t = s e l f . s y n o n y m l i s t ( ) 

f o r synjwondi i n w o r d s l i s t : 

u s e n l t k = True 

t r y : 

n l t k r a w w o r d = wd. synse t s ( se l f .word ) [0 ] 

n 1 1 k s y n w o r d = wd.synsets(syn_word)[0] 

except: 

u s e n l t k = Fa l se 

Figure 31 - Finding synonyms for base word and already synonymized by Datamuse API 

After it obtains synonyms from N L T K , it computes the similarity score between initial 

word and synonym from Datamuse using spaCy library and similarity score for synonymic 

words obtaining from N L T K using N L T K functionality. 
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s p a c y s c o r e = s p a c y _ r a w _ w o r d . s i m i l a r i t y ( s p a c y s y n w o r d ) 

i f ( u s e n l t k == True): 

n l t k s c o r e = n l t k s y n w o r d . w u p _ s i m i l a r i t y ( n l t k _ r a w _ w o r d ) 
i f ( n l t k s c o r e == None): 

n i t k _ s co re = 9 

score = (n ltk_score+spacy_score)/2 
e l s e : 

score = s p a c y s c o r e 

Figure 32 - Computing the score of similarity 

The next step is comparing by score. Scripts compares scores and finds the best match 

which return to initial function. 

i f ( score > s e l f . b e s t s c o r e ) : 

s e l f . b e s t s c o r e = score 

s e l f . b e s t c h o i c e = s y nwo rd 

r e s u l t = [ s e l f . b e s t s c o r e , s e l f . b e s t c h o i c e ] 

r e tu rn r e s u l t 

Figure 33 - Comparing the score 

After it, script replaces words in text by their synonyms. 

r ew r i t e e n s e n t e n c e = r e w r i t t e re sentence , rep lace (word t w o r d s y n ) 

re tu rn r e w r i t t e n sentence 

Figure 34 - Returning the rewritten sentence 

The final step is just to print the rephased sentences. 

f o r content i n content s : 

newconten t = Rewr i te (content ) .work ( ) 

p r i n t ( n e w c o n t e n t ) 

Figure 35 - Printing rephased sentences 

4.3 Creating second system 

For the second system as IDE, I have chosen Google Collaboratory This choice was made 

to use pretrained transformer model and additionally train it to rephrase task on new 

dataset. Because the script will run on servers which already have the necessary basic 

programs to run the neural model training process., Setting up IDE and installing packages 

for the second system. 
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First initial step is setting up IDE. Google Collaboratory allows to choose on which 

hardware the neural network can be trained, the faster way is to train it on GPU. To do it 

you need to go to runtime and change runtime type to GPU. 

Notebook settings 

Hardware accelerator 
GPU ^ (?) 

To get the most out of Colab, avoid using a GPU unless you need 

one. Learn more 

I I Background execution 

Want your notebook to keep running even after you 

close your browser? U pgrade to Colab Pro+ 

] Omit code cell output when saving this notebook 

Save 

Figure 36 - Changing runtime type 

After it is settled, we mounted up drive in order to create checkpoint for saving model. 

from goog le .co lab import d r i v e 

d r i ve .moun t ( ' / gd ' ) 

Figure 37 - Creating checkpoint 

Next step is installing needed packages to the environment. 

Q !pip install transformers sentencepiece datasets 

f% Collecting transformers 
Downloading transformers-4.17.0-py3-none-any.whl (3.8 MB) 

| | 3.8 MB 5.2 MB/S 
Collecting sentencepiece 

Downloading sentencepiece-8.1.96-cp37-cp37m-manylinux_2_17_x86_64.manylinux2814_x86_64.whl (1.2 MB) l l l l 1-2 MB 38.5 MB/s 
Collecting datasets 

Figure 38 - Installing packages 

4.3.1 Implementing second system 

The first step, as always, is to import all needed libraries. 
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from transformers import ( 
AdamW, 
TSForConditionalGeneration, 
T5Tokenizerj 
g e t l i nea rsched ulewithwarmu p 

) 
import torch 
#from datasets import loaddataset 
from tqdm.auto import tqdnij trange 
from collections import Counterj defaultdict 
import random 

import pandas as pd 
import os 
import csv 
import numpy as np 
pd.options.display.maxcolwidth = 300 

Figure 39 - Importing libraries for the second system 

After it, the script downloads corpus of text on which model will be trained and unzippes 

it. 

Q Iwget https://korp.csc.f i/download/opusparcus/opusparcus_en.z ip 
!unzip opusparcus_en.zip 
!bzip2 -dk opuspa rcu s_v l /en/ t ra in/en - t ra i n . t x t .bz2 

r% --2022-04-63 09:53:42-- h t t p s : / / k o r p . c s c . f i / d 
Resolv ing k o r p . c s c . f i ( k o r p . c s c . f i ) . . . 195.148.2 
Connecting t o k o r p . c s c . f i (korp.csc. f i )|195.148.22.239|:443.. . connectei 
HTTP request sent, awa i t ing response... 260 OK 
Length: 536916707 (512M) [ a p p l i c a t i o n / z i p ] 
Saving t o : f opusparcus_en.z ip J 

>] 512.04M 17.6MB/S opusparcus_en.zip ieQX[======: 

2022-04-03 09:54:14 (16.3 MB/s) - r opusparcus_en.z ip J saved [536916707/536916707] 

Figure 40 - Downloading and unzipping the corpus of data 

At first, we need to see the size of dataset to understand how many sequences it has and for 

additional verification that everything was downloaded successfully 

opus = p d . r e a d _ c s v ( " o p u s p a r c u s _ v l / e n / t r a i n / e n - t r a i n . t x t ' , s e p = T \ t ' , header=None) 

opus.columns = [ ' i d x ' , ' t e x t l ' , ' t e x t 2 ' j " p r a i ' j ' n a l i g n ' , " n l a n g ' , " e d i t d i s t a n c e " ] 

p r i n t ( o p u s . s h a p e ) 

(40653996, 7) 

Figure 41 - Dataset size 

https://korp.csc.fi/download/opusparcus/opusparcus_en.zip
https://korp.csc.fi/d
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And the distribution of dataset 

opus.pmi-sample(1009). s o r t i n d e x Q . p l o t ( ) 

Figure 42 - Distribution of dataset 

We do not need all this data, so next step is to choose best parts of corpus. 

opus = opus[opus.pmi > 13].copy() 

p r in t (opus . shape) 

Figure 43 - Choosing best parts of corpus 

Lest see how now looks the corpus 

A opus.sample(ie) 

• • • I 0.250000 1 14 

5304109 en-N5304109 I do not want children , okay ? What if we 're making a mistake , right ? 13.7264 0.083333 1 22 

1321785 en-N1321785 Was there anything else ? Is there anything else ? 19.9318 0.092332 2 1 

6386712 en-N6386712 Did you hit him at all ? No passage beyond this point without passports . 13.3349 0.029412 1 16 

7345399 en-N7345399 Did you steal that ? Were you the one who stole . 13.0546 0.066667 1 12 

1082554 en-N1082554 Hi, son . Howdy, son . 21.5710 0.378573 2 2 

1706572 en-N1706572 He's working for me . Works for me. 17.4810 0.314102 2 4 

4140083 en-N4140083 I mean , they " re , like , perfect. They 're perfection . 14.2654 0.142857 1 9 

556830 en-N556830 I go with you . I'm going with you . 26.4697 0.055935 3 3 

2764749 en-N2764749 Can't be many. Couldn't be many. 15.1259 0.666667 1 2 

Figure 44 - sample of corpus 

The next part is initializing a batch on which model will be trained 
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Q def getbatch(mult=l): 
Batch size is 10 x mult 

XX = [] 
yy = [] 
idx - np.random.randint(opus.shape[0]j size=2 * mult); xx.extend(opus.textl[idx]); yy.extend{opus.text2[idx]) 
return xx, yy 

I xx, yy - get_batch(mult=3) 
print(len(xx)) 

yy - get_batch(mult=3) 
print(len(xx)) 

Figure 45 - Creating batch 

Now it is time to download the model in notebook. 

# take the model from t h i s f o l d e r 
rawmodel = ' c o i n t e g r a t e d / r u t S - b a s e - m u l t i t a s k ' 

# save the t r a i n e d model t o t h i s f o l d e r 
MODELNAME = '/gd/MyDrive/models/mt5-base-rephase' 
i f os .path.ex ists (MODELNAME): 

p r i n t ( ' l o a d from l o c a l c h e c k p o i n t ' ) 
rawjnodel = MODEL_NAME 

model = TBForCond i t iona lGenerat ion . f rom_pretrairied(raw_model) 
t o k e n i z e r = T5Tokenizer . f rotn_pretrained( rawjnodel) 

load f r a l checkpoint 

Figure 46 - loading model 

Because the model trains for a huge amount of time, checkpoints are crucial. So, for this it 

checks if the model has been trained before. 

Now, it is time to setting up the train condition for model. 

# d e v i c e = t o r c h . d e v i c e ( " c u d a j 

device = t o r c h . d e v i c e ( 1 c p u ' ) 

model.to(device) 

(EncDecAttention): TSAttentionl 
(q): Linear{in_features=768, out features= =768, bias=False) 
(k): Linear( in_features=768, out features= =768j bias=False) 
(v) : Linear( in_features=768, out features= -768j bias=False) 
(o): Linear( in_features=768, out features= —768j bias=False) 

Figure 47 - Choosing hardware type 

Next step is a choose optimizer for model and see how long text samples in data is. 
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Figure 48 - Choosing optimizer and checking the length of samples in part of corpus 

Adam is the best optimizer right now, because it combines the best properties of the 

adaptive gradient and root mean square propagation algorithms to provide an optimization 

algorithm that can handle sparse gradients on noisy problems. Therefore, I have chosen it. 

Length will help in future to tune model. 

To prevent hitting in the model some previous computations, next step is to clear cache. 

import gc 

def cleanup(): 
gc.collect() 

torch.cuda.empty_cache() 

cleanup() 
Figure 49 - Cleaning cache 

Also, we need to prevent training of layers from pre-trained model. 

optimizer.param_groups [ 0 ]['In'] = l e - 5 

Figure 50 - Excluding pre-trained layers from training process 

The next step is setting up the training process and its parameters. 

• Mult - this variable is needed to easily perform a changes in model, by default is 

equal to 1 

• Batch_size - defines the size of input layer, for optimization purposes sets by 8 

• Max_len - defines the maximal length of tokenized text. In dataset mostly of 

sentences have length less than 102 symbols, transformer performs subword 

tokenization therefore is needed to set max_len at least in one and a half times 
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more than length of sentences. But in case a larger sentence is possible is required 

to make it higher than 161 symbols, therefore is equal to 384 

• Epochs, tq - set the number of training cycles. Because the training process on 

such a big corpus takes huge amount of time (using Google Collaborator^ to train 

model on all corpus takes approximately one month) was selected 500 000 cycles 

• Accumulation_steps - is responsible for how often will be updating parameters of 

model. During the tests, model worked the best than a value of accumulation_steps 

was equal to 32 

• Save_steps - is responsible for how often model will be saving into Google Drive. 

Any number is possible here. But since the model made four thousand steps per 

hour in average, a value of four thousand was chosen for this variable. 

m o d e l . t r a i n ( ) ; 

mu l t = 1 

b a t c h s i z e = mu l t * 8 

m a x l e n = 384 

epochs = 5 

a c c u n i u l a t i o n s t e p s = 32 

s a v e s t e p s = 4000 

window = 100 

ewm = 9 

e r r o r s = 6 

t q = t r a n g e ( i n t ( l _ 0 0 0 0 0 * epochs / m u l t ) ) 

c l e a n u p ( ) 

f o r i i n t q : 
x x > yy = g e t _ b a t c h ( m u l t = m u l t ) 

t r y : 

x = t o k e n i z e r ( x x , r e t u r n _ t e n s o r s = ' p t ' , padd ing=True, t r u n c a t i o n = T r u S j m a x _ l e n g t h = m a x _ l e n ) . t o ( d e v i c e ) 

y = t o k e n i z e r ( y y , r e t u r n t e n s o r s = ' p t ' , padd ing=True, t r u n c a t i o n = T r u e j max length=max l e n ) . t o ( d e v i c e ) 
y . i n p u t _ i d s [ y . i n p u t _ i d s = = 0 ] = -100 

Figure 51 - First part of model 
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l o s s = model( 

i n p u t _ i d s = x . i n p u t _ i d S j 

a t t e n t i o n _ m a s k = x . a t t e n t i o n _ m a s k , 

l a b e l s = y . i n p u t i d s , 

d e c o d e r _ a t t e n t i o n _ m a s k = y . a t t e n t i o n m a s k , 

r e t u r n _ d i c t = T r u e 

) . l o s s 

l o s s . b a c k w a r d ( ) 

e x c ep t Run t imeE r r o r as e: 

e r r o r s += 1 

l o s s = None 

c l e a n u p Q 

c o n t i n u e 

w = 1 / m i n ( i + l , window) 

ewm = ewm * (1-w) + l o s s . i t e m ( ) * w 

t q . s e t _ d e s c r i p t i o n ( f ' l o s s : {ewm}') 

i f i % a c c u m u l a t i o n s t ep s == O: 

o p t i m i z e r . s t e p ( ) 

o p t i m i z e r . z e r o j » r a d ( ) 

c l e a n u p Q 

Figure 52 - Second part of model 

i f i % w i n d o w == 0 and i > 0 : 

p r i n t ( e w m , e r r o r s ) 

e r r o r s = e 

c l e a n u p O 

i f i % s a v e s t e p s == 0 and i > 0 : 

m o d e l . s a v e _ p r e t r a i n e d ( M O D E L N A M E ) 

t o k e n i z e r . s a v e p r e t r a i n e d ( M O D E t N A M E ) 

p r i n t ( ' s a v i n g . . . ' , i , o p t i m i z e r . p a r a m _ g r o u p s [ 0 ] [ ' l r ' ] ) 

2.03154761465819! 

2 . 0 8 7 3 4 7 3 9 3 7 6 8 9 9 3 0 

2 . 0 6 1 2 6 7 4 3 7 9 4 6 4 9 0 6 

2 . 0 8 8 0 7 0 6 1 6 3 7 3 9 5 0 

2 . 1 2 5 7 7 2 2 8 5 0 5 5 7 0 3 5 

2 . 0 7 9 9 6 9 1 5 6 2 9 0 0 5 6 3 

2 . 0 9 4 2 9 6 0 0 0 5 3 7 7 3 5 0 

Figure 53 - Third part of model 

The final part is evaluating the model. 
model.eval(); 

def p a r a p h r a s e ( t e x t ) : 
x = t o k e n i z e r f t e x t , r e t u r n tensors='pt', padding=True).to(model.device) 
max s i z e = i n t ( x . i n p u t i d s . s h a p e [ l ] * 1.5 + 10) 
out = model.generate(**x, encoder no repeat ngram size=4, do sample=False, num beams=ie, max length=max s i z e , no repeat ngram size=4,) 
re t u r n t o k enizer.decode(out[e], s k i p s p e c i a l tokens=True) 

f o r t e x t l , t e x t 2 i n z i p ( x x , y y ) : 
p r i n t ( t e x t l ) 
p r i n t ( p a r a p h r a s e ( t e x t l ) ) 
p r i n t ( t e x t 2 ) 
p r i n t ( ) 

I t 's only going t o upset you . 
However, i t would only upset you. 
I t 's only gonna upset you . 

Taste some . 
These are some of the best, 
would you at l e a s t t r y t h i s ? 

In output we can see the initial sentence, rephased sentence and pair for initial sentence. 
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5 Results and Discussion 

5.1 Evaluating both systems 

This part focuses on testing the systems and comparing their outputs. For testing purposes, 

I have created two text files. One text file includes random sentences and the second random 

sentences from dialogues. 
D u r i n g t h e c l a s s we saw a s h o r t an ima ted mov ie . 
The movie was about a boy and h i s mother . 
They were v e r y p o o r . 
What t i m e a r e you g o i n g on duty ? 
The cow was t o o o l d t o p roduce m i l k . 
On t h e way t o t h e market boy saw a m y s t e r i o u s l o o k i n g man who wanted t o buy h i s cow f o r t h e p r i c e o f a bean. 
He c o n v i n c e d t h e boy t h a t t h e bean i s not j u s t a norma l bean. I t i s a m a g i c a l bean. 
Boy s o l d h i s cow t o t h e man and r e t u r n e d home. 
When h i s mother a sked him t h a t how much d i d he g o t f o r t h e cow. 
He showed up t h e bean. H i s mother y e l l e d a t him f o r b e i n g f o o l . 

Figure 54 - Txt file with random sentences 

Hey, I am s t a r v i n g . 
How about a g r i l l e d cheese? 
Walter, your dad and I have something we 
I have always done business w i t h c e r t a i n 
So are you gonna be at work tomorrow? 
I'd r e a l l y look i n t o some c o u n s e l l i n g . 
Best of l u c k t o you f o l k s . 

Figure 55 - Txt file with sentences from dialogues 

These two text files have created because when assessing the quality of work rephase 

system there is no algorithm to confidently evaluate quality of output and is needed to use 

heuristic method. One of them contains random sentences and is aimed to understand how 

second system will handle types of sentences she has not faced in additional training on 

corpus of paraphrase pair of sentences from subtilties. And second one contains group of 

sentences which is generated from subtitles to evaluate how second system will handle 

types of sentences which it is familiar. 

5.1.1 Testing the first system 

At first let us test the first system. 

need t o d i s c u s s , 
l o c a l manufacturers. 
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with o p e n ( ' t e x t . t x t 1 ) as f : 
contents = f . r e a d l i n e s ( ) 

f o r content i n content s : 
new_content = Rewr i te (content ) .work ( ) 
p r i n t ( n e w c o n t e n t ) 

Figure 56 - Processing first txt file to the first system 

During the s o c i a l c l a s s we also saw a short and sweet animated f i l m . 

The f i l m was about a k i d and his mom. 

They were very needy. 

What clock time are you going on obligation? 

The moo-cow was too past t o produce soya milk. 

On the way of l i f e t o the marketplace k i d saw a c r y p t i c looking f o r guy who wanted to buy h i s moo-cow f o r the price tag of a sieva bean. 

He convinced the k i d that the sieva sieva sieva bean i s not j u s t a mean sieva sieva sieva bean. I t i s a magical power sieva sieva sieva bean. 

Boy sold his moo-cow to the guy and returned home. 

When his mom asked him that how so much did he got f o r the moo-cow. 

He showed up the sieva bean. His mom y e l l e d at him f o r being f o o l away. 

Figure 57 - Rephased sentences from the firs txt by first system 

Judging from the output, the first system acceptably rephased only one sentence. And only 

one sentence looks like it was written by human. So, it can be said what for the random 

sentences systems based on algorithm of finding synonyms and changing by them words in 

sentence performs badly. 

Second phase of testing is to test the first system on the second text file, which includes 

simpler sentences taken from dialogues. 

with o p e n ( ' t e x t 2 . t x t " ) as f : 
contents = f . r e a d l i n e s ( ) 

f o r content i n content s : 
newconten t = Rewr i te (content ) .work ( ) 
p r i n t ( n e w c o n t e n t ) 

Figure 58 - Processing second txt file to the first system 
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Hey, I am starving. 

How about a grilled cheddar cheese? 

Walter, your father and I have anything we need to discuss. 

I have always done business enterprise with these local anaesthetic automakers. 

So are you gonna be at do work day? 

I'd really look into some guidance. 

help of luck out to you everyone. 
Figure 59 - Rephased sentences from the firs txt by first system 

The first system performed a little bit better on the second text file. The first system made 

acceptable rephase of two sentences. 

5.1.2 Testing the second system 

Let us see how performs second system. 

def paraphrase(text, beams=5, grains=4): 
x = tokenizer(text, return tensors="pt 1, padding=True).to(model*device) 
max size = int (x. input ids.shape[l] * 1.5 + 10) 
out - model.generate(**x, encoder no repeat ngram size=grams, num beams=beamsj max_length=maxsize) 
return tokenizer.decode(out[6] } skip_special_tokens=True) 

with open( 'text.txt 1 ) as f: 
contents = f.readlines() 

for content in contents: 
print(paraphrase(content)) 

What time do you go on duty? 
The cow's too old to make milk. 
I saw a man looking for a cow. 
He convinced him that the bean's not a normal. 
They sold him to the man, and he returned home. 
When she asked him how much he got for a cow. 
He's a foo l . 

Figure 60 - Processing first txt file to the second system 

The result of second system is better than results produced by the first system. 

The second system makes almost all rephased sentences in human-like style, but it did not 

rephase forth sentence and almost all sentences lost some detail and have a more general 

description of the context. 

Let us see how it deals this the second text file. 
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Figure 61 - Processing second txt file to the second system 

For the second task seconds system performs well. It did not adequately rephase third 

sentence and we can see strong trend to generalize the meaning of sentences, but other 

sentences are rephased quite good. 

5.1.3 Comparison of the two systems 

Based on the results of the two systems shown, we can say that the approach of a trivial 

search for synonyms and replace the originals with them works rather poorly. This is due 

to the fact that often when a word is changed to its synonym, the structure of the sentence 

also changes. Therefore, if the rephrase system uses only algorithm to replace words in a 

sentence with their synonyms, it cannot produce good outputs. Out of seventeen sentences 

it was able to rephase only three of them correctly. Therefore, it is safe to say that the idea 

of simply replacing words with synonyms will not give the desired effect even for very 

simple phrases. 

The second system, based on the pre-trained Transformer and additionally trained on a 

corpus of paraphrased subtitles from movies, works much better. Out of seventeen 

sentences it was able to rephase fifteen of them. It can also be noted that the system has a 

clear tendency to generalize sentences, which leads to loss of context and generalization of 

meaning. This is due to the fact that the system was trained on relatively short sentences. 

To improve the performance of such a system it is necessary to train it on a more diverse 

corpus of text. 
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6 Conclusions 

This thesis aims to show possible approaches to text rephrasing using NLP methods in 

Python. The theoretical part of the thesis is devoted to Artificial Intelligence, neural 

networks, and basic NLP methods. The theoretical part also pays attention to a more 

detailed description of RNNs and Transformers and briefly describes the main tools of 

NLP engineer. 

The practical part demonstrates two possible approaches to the creation of rephrasing 

systems. The first one was created using the usual algorithm using neural networks only 

for embedding words. This approach showed its great inefficiency and proved that even for 

simple tasks in NLP, the usual algorithm is simply not enough. The second approach used 

a relatively new development in the field of NLP - Transformers. 

The second system was based on an already pre-trained Transformer and additionally 

trained on a corpus of text, which contained pairs of paraphrased sentences taken from 

subtitles. This approach turned out to be effective, but it should also be noted that 

additional training of transformers on only one dataset, which includes similar sentences 

with similar structure, is problematic. To create a better Transformer, it is necessary to 

choose a more diverse dataset. 

As of today, the potential of transformers is still unexplored. They have already proven 

themselves in word processing, but recently this kind of neural network is being considered 

in other tasks, such as computer vision. 

At the end of 2020, C V models showed good results in some popular benchmarks, such as 

object detection on the COGO dataset or image classification on ImageNet. In October 2020, 

researchers from Facebook AI Research published an article describing the Data-efficient 

Image Transformers model based on Transformers. According to the authors, they found a 

way to train the algorithm without a huge set of marked-up data and obtained a high accuracy 

of image recognition - 85%. (Touvron, et a l , 2020) 

In May 2021, Facebook AI Research presented DINO, an open-source computer vision 

algorithm that automatically segments objects in photos and videos without manual markup. 

It is also based on transformers, and segmentation accuracy has reached 80%. (Bojanowski, 
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et a l , 2021) We can conclude what in addition to NLP, transformers are increasingly finding 

use in other tasks as well. 

7 References 

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan 
N. Gomez, Lukasz Kaiser, Illia Polosukhin. 2017. Attention Is All You Need. 2017. 
Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda. 2018. Applied Text Analysis with 
Python. 2018. 978-1-491-96304-3. 
Biswal, Avijeet. 2022. Recurrent Neural Network (RNN) Tutorial: Types, Examples, 
L S T M and More. Simplilearn. [Online] 21. 02 2022. [Citace: 27. 03 2022.] 
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn. 
Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. 2015. Neural Machine 
Translation by Jointly Learning to Align and Translate. 2015. 
Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre 
Sablayrolles, Hervé Jégou. 2020. Training data-efficient image transformers & 
distillation through attention. 2020. 
Koehrsen, Will. 2018. Neural Network Embeddings Explained. Towards Data Science. 
[Online] 2. 10 2018. [Citace: 20. 3 2022.] https://towardsdatascience.com/neural-network-
embeddings-explained-4d028e6f0526. 
Lu, Lu, a další. 2019. Dying ReLU and Initialization: Theory and Numerical, místo 
neznámé : Global Science Press, 2019. Sv. 28. DOI: 
https://doi.org/10.48550/arXiv.1903.06733. 
McMahan, Delip Rao and Brian. 2019. Natural Language Processing with PyTorch. 
s.l. : O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, C A 95472., 
2019. 
Olah, Christopher. 2015. Understanding L S T M Networks, colah's blog. [Online] 27. 8 
2015. [Citace: 29. 3 2022.] 
Or, Barrak. 2020. The Exploding and Vanishing Gradients Problem in Time Series. 
Towards Data Science . [Online] 10. 10 2020. [Citace: 10. 03 2022.] 
https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-
series-6b87d558d22. 
Penrose, Roger. 1989. The Emperor's New Mind: Concerning Computers, Minds and The 
Laws of Physics. 1989.01401.45346. 
Piotr Bojanowski, Mike Rabbat, Armand Joulin, Nicolas Ballas, Mathilde Caron, 
Mahmoud Assran. 2021. Advancing the state of the art in computer vision with self-
supervised Transformers and lOx more efficient training. MetaAI. [Online] 30. 04 2021. 
[Citace: 1. 4 2022.] https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-
supervised-transformers-and-1 Ox-more-efficient-training/. 
Rana, Yogesh. 2019. Python: Simple though an Important Programming language. 
International Research Journal of Engineering and Technology . 2019, Sv. 06, 02. 
Russel, Stuart a Norvig, Peter. 2002. Artificial Intelligence: A Modern Approach (2nd 
Edition), místo neznámé : Prentice Hall, 2002. 0-13-790395-2. 
Sharma, Sagar. 2017. Activation Functions in Neural Networks. Towards Data Science. 
[Online] 06. 09 2017. [Citace: 12. 1 2022.] 

60 

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://towardsdatascience.com/neural-network-
https://doi.org/10.48550/arXiv.1903.06733
https://towardsdatascience.com/the-exploding-and-vanishing-gradients-problem-in-time-
https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-


. 2017. What the Hell is Perceptron? Towards Data Science. [Online] 09. 09 2017. 
[Citace: 10. 01 2022.] 
Wolfewicz, Arne. 2021. Deep learning vs. machine learning - What's the difference? 
Levity. [Online] 09. 11 2021. [Citace: 12. 03 2022.] https://levity.ai/blog/difference-
machine-learning-deep-learning. 

61 

https://levity.ai/blog/difference-


8 Appendix 

First_system.py 

Text.txt 

Text2.txt 

Link to Google Collaboratory  

Link to the Transformer  

Link to the training corpus 


