
B R N O UNIVERSITY OF T E C H N O L O G Y

Faculty of Electrical Engineering

and Communication

M A S T E R ' S THESIS

Brno, 2023 Be. Samuel Kopecký

T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND

COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

MODULAR NETWORK COMMUNICATION USING POST-
QUANTUM CRYPTOGRAPHY
MODULÁRNÍ KOMUNIKACE POSTAVENÁ NA POSTKVANTOVÉ KRYPTOGRAFII

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Samuel Kopecký
AUTOR PRÁCE

SUPERVISOR Ing. David Smékal
VEDOUCÍ PRÁCE

BRNO 2023

T BRNO FACULTY OF ELECTRICAL
UNIVERSITY ENGINEERING
OF TECHNOLOGY AND COMMUNICATION

Master's Thesis
Master's study program Information Security

Department of Telecommunications
Student: Be. Samuel Kopecky ID: 211799
Year of

2
study:

Academic year: 2022/23

TITLE OF THESIS:

Modular network communication using post-quantum cryptography

INSTRUCTION:

The topic of the thesis is focused on the implementation of the library of post-quantum algorithms for key
exchange, public key encryption and digital signature. The student implements at least one algorithm from the
selected category.
In the diploma thesis, the student implements algorithm from each category and implements post-quantum client-
server communication. The client part of the application will contain an API for downloading and uploading files
and exchanging messages with other users.
The thesis will compare the speeds and performances with other implementations of post-quantum algorithms.

RECOMMENDED LITERATURE:

Podle pokynů vedoucího práce

Date of project Deadline for
6.2.2023 19.5.2023

specification: submission:

Supervisor: Ing. David Smékal

doc. Ing. Jan Hajný, Ph.D.
Chair of study program board

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

ABSTRACT
Current cryptography primitives, which are described at the begging of this thesis will be
broken by future quantum computers. How they will be broken is described by this
thesis along with a very basic descript ion of quantum mechanics which are key to func­
t ional quantum computers. Avai lable solut ions like post-quantum cryptography are also
introduced. More specif ical ly code-based, hash-based and latt ice-based cryptography.
Latt ice-based cryptography is described in most detail and specif ic N I S T standardized
algori thms are introduced - Kyber and Di l i th ium. A long with the theoretical descript ion,
an implementat ion is provided for both of the algorithms and a comparison to exist ing
implementat ions in the programing language Go. Pract ica l ut i l ization of these algo­
ri thms is realized with a modular quantum-resistant communicat ion appl icat ion. It can
send arbitrary data through a quantum-resistant secured channel and is well adjusted
to the U N I X universal text interface. Notably it is able to exchange files between two
users and also create a Terminal User Interface with which the users can communicate.
The underlying protocol that is responsible for creat ing the secure channel is well de­
fined in the latter chapters of this thesis. The modulari ty of the appl icat ions also allows
users to remove o r /and add any Key Exchange Mechanism or Digi tal signature which
are responsible for the creation of the secure channel with very few code changes and
good integration to the existing components of the appl icat ion.

KEYWORDS
post-quantum cryptography, programming language Go, network communicat ion , termi­
nal user interface, latt ice-based cryptography

ABSTRAKT
Súčasné kryptograf ické primitíva, ktoré sú popísané na začiatku tejto práce budú prelo­
mené budúcimi kvantovými počí tačmi. Tá to práca popisuje proces lámania súčasnej kry-
pografie spolu so základným popisom kvantovej mechaniky, ktorá je kľúčom k funkčným
kvantovým počí tačom. Takt iež predstavuje dostupné riešenia, ako je postkvantová kryp­
tograf ia. Konkrétnejšie je predstavená kryptografia založená na kódoch, hašoch mriež­
kach. Najpodrobnejšie je opísaná kryptografia založená na mriežkach a sú predstavené
špecifické N I S T štandardizované a l g o r i t m y - K y b e r a Di l i th ium. Spolu s teoret ickým po­
pisom je poskytnutá implementácia pre obidve algoritmy a porovnanie s existujúcimi
implementáciami v programovacom jazyku Go. Prakt ické využit ie týchto algoritmov je
realizované modulárnou kvantovo odolnou komunikačnou aplikáciou. Je schopná posielať
ľubovoľné dáta cez kvantovo odolný zabezpečený kanál a je dobre prispôsobená univer­
zálnemu textovému rozhraniu U N I X systmémoch. V iac špecificky, aplikácia je schopná
vymieňať súbory medzi dvoma používateľmi a t iež vytvárať terminálové používateľské
rozhranie, s ktorým môžu používatelia komunikovať. Pro toko l , ktorý je zodpovedný za
vytvorenie zabezpečeného kanála, je dobre definovaný v posledných kapitolách tejto
práce. Modular i ta aplikácie tiež umožňuje používateľom odstrániť a /a lebo pridať aký­
koľvek mechanizmus výmeny kľúčov alebo digi tálny podpis, ktoré sú zodpovedné za
vytvorenie zabezpečeného kanála s veľmi malými zmenami kódu a dobrou integráciou do
existujúcich komponentov aplikácie.

KĽÚČOVÉ SLOVÁ
post-kvantová kryptograf ia, programovací jazyk Go, sieťová komunikácia, terminálové
uživatelské rozhranie, kryptografia založená na mriežkach

Typeset by the thesis package, version 4.07; ht tp: / / la tex.feec.vutbr .cz

http://latex.feec.vutbr.cz

K O P E C K Ý , Samuel . Modulární komunikace postavená na postkvantové kryptografii.

Brno: Brno University of Technology, Fakul ta elektrotechniky a komunikačních tech­

nologií, Ústav telekomunikací, 2023, 91 p. Master 's Thesis. Advised by Ing. David

Smékal

Author's Declaration

Author: Be. Samuel Kopecký

Author's ID: 211799

Paper type: Master 's Thesis

Academic year: 2022 /23

Topic: Modulární komunikace postavená na

postkvantové kryptografi i

I declare that I have writ ten this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibl iography at the end of the paper.

A s the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and /o r ownership rights.

In this context, I am fully aware of the consequences of breaking Regulat ion § 11 of the

Copyright Ac t No. 121 /2000 Co l l . of the Czech Republ ic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Ac ts such as the Intellectual Property Ac t or the Cr iminal Code, Ac t No . 40 /2009 Col l .

of the Czech Republ ic, Sect ion 2, Head VI , Part 4.

Brno

author 's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to thank the supervisor of the thesis, Ing. David Smeka l , for his professional

guidance, consultat ions, patience, suggestions and ideas.

Contents

Introduction 14

1 Current state of cryptography 15

1.1 Symmetric cryptography 15

1.1.1 Block ciphers 15

1.1.2 Stream ciphers 17

1.2 Hash functions 17

1.3 Asymmetric cryptography 19

1.3.1 Underlying principles 20

1.4 K e y exchange protocols 21

2 Quantum supremacy 22

2.1 Quantum data representation 22

2.2 Shor's algorithm 23

2.3 Grover's algorithm 25

2.4 Threat to modern cryptography 25

3 Post-quantum cryptography 27

3.1 Lattice-based cryptography 27

3.1.1 G G H public key cryptosystem 28

3.1.2 N T R U and L W E public key cryptosystems 30

3.1.3 Digi ta l signature schemes 30

3.2 Code-based cryptography 31

3.3 Hash-based cryptography 31

3.4 N I S T Standardization 34

3.5 Disadvantages of post-quantum cryptography 34

4 Network basics 36

4.1 T C P and U D P protocols 36

4.2 Communication paradigms 38

4.3 End- to-End Encrypt ion 38

5 Application introduction 40

5.1 Philosophy behind the application 40

5.1.1 Small traffic overhead 40

5.1.2 Text-based interface 41

5.1.3 Modular i ty 41

5.1.4 Extensibil i ty 41

5.2 The Go programming language 42

5.3 Choice of cryptography algorithms 42

6 C R Y S T A L S - K y b e r 44

6.1 Implementing Kyber 44

6.2 Theoretical background 45

6.3 Encoding, Compression and randomness 46

6.4 K e y generation 46

6.5 Encapsulation 47

6.6 Decapsulation 48

7 C R Y S T A L S - D i l i t h i u m 50

7.1 Implementing Di l i th ium 50

7.2 B i t manipulation 51

7.2.1 Reducing the public key 52

7.3 Theoretical basics and bit packing 52

7.4 K e y generation 53

7.5 Signature creation 53

7.6 Signature verification 55

8 Application capabilities 57

8.1 Commands and flags 57

8.2 Communication 58

8.2.1 Chat command 59

8.2.2 Receive command 59

8.2.3 Send command 60

8.3 Configuration 60

8.4 Completion and help 61

8.5 Algor i thm modularity 61

8.6 Benchmarking 62

8.7 Optimizat ion process 63

8.8 Measuring results 65

9 Network communication and security 66

9.1 Protocol definition 66

9.1.1 Initialization 67

9.1.2 Other communication 69

9.2 Protection against attacks 70

9.2.1 Repeat attack 70

Conclusion 72

Bibliography 73

Symbols and abbreviations 77

List of appendices 79

A Lattice-based algorithms diagrams 80

B G o program instructions 82

B . l How to build 82

B.2 How to run 82

B.3 Examples 83

B.3.1 Chat mode 83

B.3.2 Fi le exchange mode 83

B.4 How to test 84

B.5 How to benchmark 84

C Available algorithms and benchmarks 85

D Performance 86

E Directories 89

F Wireshark integration 90

G Application T U I 91

List of Figures
1.1 Simplified symmetric cipher 16

1.2 Substitution-permutation network 17

1.3 Symplified asymmetric encryption cipher 19

1.4 Simplified digital signature scheme 20

2.1 Representation of a qubit 22

3.1 2-dimensional lattice 28

3.2 Closest Vector Problem 29

3.3 Merkel tree 33

3.4 Merkel tree - signature verification 33

4.1 Three-way handshake 37

5.1 Compiler 42

6.1 Kyber key generation 47

6.2 Kyber encryption function 48

6.3 Kyber decryption algorithm 49

7.1 B i t packing for vectors s\ and S2 52

7.2 Di l i th ium key generation 54

7.3 Di l i th ium signature creation 55

7.4 Di l i th ium signature verification 56

8.1 Example command tree 57

8.2 Command tree 58

8.3 Configuartion file keys 60

9.1 Protocol header 66

9.2 Client inicialization message 68

9.3 Server inicialization message 68

9.4 Error message 69

9.5 Content message 69

A . l Kyber block scheme 80

A . 2 Di l i th ium block scheme 81

F . l Captured client init 90

F.2 Captured server init 90

F.3 Captured error 90

F . 4 Captured data 90

G . l Dark theme application T U I 91

G.2 Light theme application T U I 91

List of Tables
1.1 Modern hash functions [8] [9] 18

2.1 Example of a function period 25

2.2 Impact of quantum computers on classical cryptography[l] [7] 26

3.1 Standardized post-quantum algorithms [18] 34

3.2 Fourth round of N I S T submissions [18] 34

3.3 K e y size comparisons [24] [25] [26] 35

4.1 T C P / I P protocol suite [27] 36

5.1 Choosen algorithms 43

6.1 Kyber security levels [25] 45

7.1 Di l i th ium security levels [26] 51

8.1 K E M s preformance summary 65

8.2 Digi ta l signatures preformance summary 65

D . l Processor details 86

D.2 P q C o m Kyber performance 86

D.3 C i r c l Kyber performance 87

D.4 P q C o m Di l i th ium performance 87

D.5 C i r c l Di l i th ium performance 88

Listings
7.1 MakeHint implementation 52

8.1 K E M interface 62

8.2 Signature interface 62

8.3 K E M algorithms map 62

8.4 Byte decomposition using division and modulo 64

8.5 Byte decomposition using A N D and bit shifting 64

Introduction
Unt i l now the ever-increasing amount of computer power available was met wi th

increased key or parameter sizes for existing cryptographic algorithms. For exam­

ple, a few years ago it was sufficient enough to use R S A (Rivest Shamir Adleman)

wi th 2048 bits of security, now 3072 bits of security are needed. The development

of quantum computers is the next big step in technology evolution and brings many

new possibilities for improvement but also many dangers to modern cryptography

algorithms. For example, Shor's algorithm is capable of breaking modern asymmet­

ric cryptography, which includes popular algorithms like R S A , E C D H (Eli t ic Curve

Diffie-Hellman), and E C D S A (Digital Signature Algori thm).

A new approach to competing wi th the increasing computational power and new

technologies had to be introduced. To combat the problem of possible quantum

supremacy happening a new area of research has been created called post-quantum

cryptography. It consists of cryptographic algorithms that are resistant to attacks

using quantum algorithms or classical algorithms. One such group of post-quantum

algorithms is lattice-based algorithms. They are the most promising group of post-

quantum algorithms for standardization by N I S T (National Insititue of Standards

and Technology). N I S T has so far led three rounds of the standardization process.

During the writ ing of this thesis, the third round of N I S T standardization ended

and some of the winning algorithms are Kyber and Di l i th ium. Kyber is a K E M (Key

Encapsulating Mechanism) and Di l i th ium servers as a digital signature algorithm.

These algorithms are implemented in this thesis. There is also a 4th round where al­

gorithms from the families of hash-based cryptography and code-based cryptography

are competing.

The implementation language used for Kyber and Di l i th ium is Go. It was chosen

because it creates a good balance between performance and simplicity. The perfor­

mance is owned by the fact that it is a compiled language like C and shares many of

its features. However, it also frees the programmer of many difficult and error-prone

properties like memory management. In Go, it's solved using a garbage collector.

To introduce the basic idea of these implemented algorithms, simplified block dia­

grams explaining the processes of Kyber and Di l i th ium are located in Appendix A .

Since these post-quantum algorithms have just been standardized recently, there

aren't that many useful applications and programs that utilize them. A good first

step would be to create a simple chat application or file-sharing application to show­

case the security of these algorithms. One such application is introduced in this

thesis.

14

1 Current state of cryptography
Cryptography is an essential part of Internet communication. It makes sure an es­

tablished connection has three required properties [1]

• confidentiality - data can't be read by 3rd parties.

• integrity - data can't be edited by 3rd parties.

• authenticity - communicating parties can't be impersonated.

Many cryptographic primitives, algorithms and specifications exist in cryptography

to ensure the aforementioned properties. The most commonly used protocol that

utilizes these algorithms and specifications is T L S (Transport Layer Security).

Bui ld ing blocks for cryptographic algorithms are cryptographic primitives. These

are mathematical problems that can be solved in polynomial time (0(nx)) wi th

the knowledge of some secret. Without the knowledge of this secret, the problem can

only be solved in exponential time (0(xn)). This means if a new algorithm is found

that can solve the problem without the knowledge of the secret in polynomial time,

the underlying cryptographic primitive is broken and can no longer be safely used

in any cryptographic algorithms or specifications. [2]

Cryptography can be split into symmetric cryptography and asymmetric cryptog­

raphy. These groups and their underlying cryptographic primitives wi l l be described

in more detail in the following sections (Sections 1.1 and 1.3).

1.1 Symmetric cryptography

Symmetric cryptography is used for maintaining the confidentiality of data that

is being transferred over a communication medium. The general idea of symmetric

ciphers is that they are fast ciphers (compared to the asymmetric ones) that only use

one secret (the secret key) to encrypt data. This key needs to be either pre-shared

before the communication starts or a K E P (Key Exchange Protocol) has to be used

(see Section 1.4). [3]

How symmetric ciphers work is illustrated in Figure 1.1. In a situation where

Alice wants to send Bob a document (plaintext), Al ice first needs to encrypt the

document wi th the shared secret key. She then sends Bob the encrypted document

(ciphertext) and Bob can decrypt it again with a shared key. Symmetric ciphers

can be split into block and stream ciphers.

1.1.1 Block ciphers

Block ciphers operate on blocks of data and use padding to handle situations when

a message can't be perfectly split into blocks. The same key is used for each block.

15

Secret key

Alice

•
" 5 > Bob

•
—

Encryption Decryption

Document Encrypted document Decrypted document

Fig . 1.1: Simplified symmetric cipher

Symmetric block ciphers can also use different modes of operation to add additional

context to individual blocks from previous blocks. This process is important for

the security of symmetric block ciphers because a block cipher without any mode

of operation or an E C B (Electronic Code Book) mode generates the same output

from the same input. This means an attacker could delete or add any block in an

encrypted message without the receiver's knowledge. Some examples of a secure

mode of operations for block ciphers are [4]

. O F B (Output Feedback),

. C F B (Cipher Feedback),

. G C M (Galois/Counter Mode).

Block ciphers are based on a substitution-permutation network (see Figure 1.2),

which consists of two layers, a substitution layer and a permutation layer as the name

implies. The substitution layer introduces confusion to the data. Confusion creates

a correlation between the key and the ciphertext, where one changed bit in the key

wi l l generate a change for many bits in the ciphertext. In practice, a substitution

layer just substitutes one byte wi th the help of a substitution table. This table is

predefined and used for every operation. O n the other hand, the permutation layer

introduces diffusion, which means that a changed bit in the plaintext wi l l dissipate

into more changed bits in the ciphertext. In other words, it functions by scrambling

the order of bytes randomly. A n example can be seen in Figure 1.2 of a permutation

layer. [4] [5]

Of course, in practice, a cipher needs a lot more than just a simple substitution-

permutation network. Good examples of block ciphers that use this principle are

A E S (Advanced Encrypt ion Standard) and D E S (Data Encrypt ion Standard). D E S

is no longer deemed secure and should not be used [6]. A E S on the other hand is

still considered secure even to attacks from quantum computers if longer keys are

used [7].

16

Fig . 1.2: Substitution-permutation network

1.1.2 Stream ciphers

Unlike block ciphers, stream ciphers encrypt one bit at a time instead of blocks.

The main principle behind stream ciphers is the bit operation X O R and a P R N G

(Pseudo Random Number Generator). The key is randomly generated by the P R N G

function. Then the message is X O R e d with the generated key. The X O R operation

can also be rewritten as mod 2 and thus the encryption process can be described in

Equation 1.1

c = E{p) EE p + k mod2 (1.1)

and the decryption process in Equation 1.2

p = D(c) = c + k mod2 (1.2)

for c as the ciphertext, p as the plaintext, k as the secret key E and D as the

encryption and decryption functions respectively [4].

Examples of stream ciphers include R C 4 , Salsa20 or ChaCha20. It is no longer

recommended to use the R C 4 cipher. Salsa20 is a newer stream cipher and is con­

sidered to be resident even against quantum computers. [1] [3]

1.2 Hash functions

Hash functions work by digesting a message of arbitrary size into a fixed-sized output

or a variable-sized output (S H A K E family hash function) called the hash value. The

digest process can also be described as a transformation of bits into another set of

bits

tf(M):{0,l}fc^{0,l}d, (1.3)

where k stands for the size of the input message and d stands for the output size.

17

For a hash function to be secure it also must possess these three properties [4]:

• preimage resistance it is computationally infeasible to find the input of

an already generated hash value.

• second preimage resistance for a given hash value, it is computationally

infeasible to generate two inputs that map to the same hash value,

• collision resistance-there mustn't exist two different inputs that generate

the same hash value.

How the digest process works internally depends on the specific hash function

being used, it doesn't have a single definition. For example, a hash function can

be based on a Merkle-Damagard construction. This construction and many more

use compression functions, which take in the input of some size and reduce it into

an output of a smaller size. In the Merkle-Damgard construction, the message is

firstly split into blocks. W i t h the help of a compression function, the blocks are

then consumed one by one. The output of one compressed block is then fed back to

the input of another round of compression unti l all the blocks are consumed [2].

Other types of constructions are also used such as hash functions based on the

K E C C E K construction also called the sponge construction. The main idea behind

the sponge construction is that after each round of compression, several bits are

firstly absorbed by the compression function and then some bits are taken out of

each compression iteration. These bits then make up the final hash value. How

many bits are absorbed or taken out is dictated by the hash function parameters.

[8]

Examples of specific hash functions are listed in Table 1.1. Since S H A K E can

generate any sized output, its hash value size is dictated by the parameter d.

Tab. 1.1: Modern hash functions [8] [9]

Algor i thm Underlying construction Hash value size (bit)

SHA-256 Merkle-Damgard 256

SHA-512 Merkle-Damgard 512

SHA3-256 K E C C A K 256

SHA3-512 K E C C A K 512

S H A K E 1 2 8 K E C C A K d

S H A K E 2 5 6 K E C C A K d

Hash functions are used in many areas of cryptography. A s an example, they

are used in digital signature schemes (Section 1.3), message authentication codes

(M A C) , pseudo-random number generators and even public-key quantum-resistant

cryptography [7].

18

1.3 Asymmetric cryptography

The other important type of cryptography is asymmetric cryptography also called

public key cryptography. Compared to symmetric (see Section 1.1), asymmetric

algorithms are most often slower, require bigger-sized keys and use two keys instead

of one key. One of the keys that can be shared is the public key, the second key that

has to be kept secret is called the private key. Depending on the use of these keys,

asymmetric cryptography can be used in two ways - as an encryption cipher or as

a digital signature scheme.

The principle of an encryption algorithm can be seen in Figure 1.3. Alice can

encrypt a document using Bob's public key since the public key is shared wi th

everyone and because Bob wants anyone to be able to send h im encrypted messages.

After receiving the encrypted document Bob can decrypt it wi th his private key since

he is the only one that owns it. [2]

Bobs public key

Bobs private key

Alice Bob

Encryption Decryption Encryption Decryption

Document Encrypted document Original document

Fig . 1.3: Symplified asymmetric encryption cipher

Digi ta l signature schemes serve as a tool to verify the origin of data. The follow­

ing process is illustrated by Figure 1.4. If Bob wants anyone who receives his docu­

ment to be able to verify that he was the one who created it, he signs the document

wi th his private key. Everyone else including Al ice can check whether the document

came from Bob by verifying the signature wi th his public key. If the verification

succeeds the verifier can be sure that Bob generated the signature because he is the

only that posses the private key that generated the signature. [4]

In practice, Bob would be signing a hash of the document instead of the document

itself, and would also send an unsigned document. Al ice would then be comparing

a hash of the document with the verified signature. This is because as mentioned

before asymmetric algorithms are slow relative to symmetric algorithms and signing

all of the data is unnecessary when signing the hash of some data servers the same

purpose. Hash functions are described in the previous Section 1.2 of this chapter.

19

- Bobs public key

- Bobs private key

Boh • Alice • fl>|
Signing Signiture verification

Document Signed document Signed document

Fig . 1.4: Simplified digital signature scheme

1.3.1 Underlying principles

One of the underlying principles used in asymmetric cryptography is the integer

factorization problem (IFP) . This problem utilizes the idea that factorizing a big

integer n composing of two prime numbers (more than 3072 bits) is impossible

to compute on today's computers in polynomial time [4]. But producing n from two

prime numbers p and q is t r ivial and fast

n = p* q. (1.4)

where p and q are the unique prime numbers. I F P together wi th modular arithmetic

create the R S A (Rivest Shamir Adleman) cipher that is one of the most used ciphers

used today for creating digital signatures. The private and public keys are derived

from the integer n.

The other principle that is used often in today's asymmetric cryptography is the

discrete logarithm problem (D L P) . It heavily relies on the use of modular arithmetic

and cyclic groups in which there are a finite amount of integer values. This is possible

because it uses the modulo operation together with other operations to stay inside

this cyclic group. In this group, it is very easy (in polynomial time) to compute j3

with

ax = (3modp (1.5)

while knowing the values for x and a, but very hard (in exponential time on present-

day computers) to compute x using this formula

x = loga(3 modp (1.6)

wi th the knowledge of only a and (3, where p is a prime number wi th a bit size of at

least 3072 [4]. D S A (Digital Signature Algori thm) utilizes this problem for creating

digital signatures. A n alternative algorithm exists that uses elliptic curves instead

20

of cyclic groups called E C D S A (Elitpic curve Digi ta l Signature Algori thm). This is

because the D L P equivalent in elliptic curves is more secure while using the same

size for parameters such as x which is the private key [3]. This property allows the

use of smaller keys while staying on the same level of security.

1.4 Key exchange protocols

A s mentioned in Section 1.1, secret keys first need to be shared between the com­

municating entities before any encryption can begin. That is where a K E P (Key

Exchange Protocol) is utilized. A subcategory of a K E P is a K E M (Key Encapsulat­

ing Mechanism). A s they are a subset of asymmetric cryptography, many algorithms

or ciphers used for asymmetric encryption can be converted to a K E M , for exam­

ple, R S A [3]. How the key exchange works is illustrated by Figure 1.3, but instead

of Al ice encrypting and sending documents, she sends Bob a randomly generated

encrypted key.

Another alternative of a K E P utilizes a dedicated key exchange method, such as

the Diffie-Hellman protocol. It also works on the principle of having a public, private

key pair like R S A , but each entity exchanges its public key with the other entity and

then they calculate the shared secret key from the knowledge of their private key

and the opposite entity's public key. Instead of relying on IFP , it relies on the D L P

(see Subsection 1.3.1). This brings an advantage because the D H method can be

then upgraded to El i t i c Curve Diffie-Hellman (E C D H) , which is a faster method for

exchanging keys than plain D H [3].

21

2 Quantum supremacy
Modern cryptography described in Chapter 1 was designed wi th the assumption that

the adversary would only have access to a classical computer. It turns out many

of the algorithms and schemes used in modern cryptography are extremely vulnera­

ble to quantum computers given the quantum computer has enough computational

power [10]. Reaching a threshold of a powerful enough quantum computer is also

called quantum supremacy. The following sections wi l l explain what are quantum

computers, how can they break classical cryptography and exactly which parts are

vulnerable to quantum computers.

2.1 Quantum data representation

Quantum computers as the name implies, are based on the special properties of

quantum mechanics. One of these many properties that quantum computers work

wi th is the superposition of states. A t very small sizes (sizes of individual particles)

objects can be in such a state. Unlike ordinary objects of ordinary sizes, they can

exist in more than one location at the same time. This phenomenon only occurs if

the object is not being seen (is not being measured). However, this means whenever

an object is measured in such a state the position of the object collapses into a single

point in space. [11]

bit

Fig . 2.1: Representation of a qubit

This unique property is what allows data to be represented in a quantum com­

puter. In a classical computer, data is represented using bits. These only have 2

distinct values 0 or 1. Quantum computers don't work wi th bits but quantum bits

or qubits in short. A qubit is represented by two pairs of complex numbers Co and c\.

22

Complex numbers can be converted into real numbers po and p\ using Equation 2.1

(2.1)
PO = | CO I ;

pi = N 2 ,
in this form they represent the probability of a qubit collapsing (after a measure­

ment) into discrete values 0 or 1 and becoming a classical bit [11]. This concept is

also illustrated in Figure 2.1 where the pointing arrows illustrate the qubit being

measured.

B y using complex numbers to represent qubits, they can be represented using

the bra-ket notation

|V> = co|0> + c i | l > (2.2)

where ip represents the particle in a superposition of all possible states. A quantum

computer can hold more than one qubit in a state of superposition. Unlike classical

computers which always have one state, quantum computers can use the property of

superposition and be in many states at the same time. This means it can evaluate

a function for many values at the same time, which leads to great parallelism of

quantum algorithms. However, a quantum algorithm doesn't work like a classical

algorithm. It starts wi th a single position for a l l the qubits in the input. During

the algorithm, the qubits are manipulated in their superposition state. When the

algorithm finishes the state is then measured. A t no point during the algorithm,

the state can be measured, because then the superposition would be lost due to the

qubits collapsing into a single state. [11]

2.2 Shor's algorithm

The biggest threat to modern cryptography is Shor's algorithm. It can be used for

factoring prime numbers (TV) in time complexity of 0(n2 l ogn log logn) where n is

the number of bits required to represent TV [11]. One of the fundamental problems

used in modern cryptography is the I F P (see Subsection 1.3.1) used in R S A , which

can be broken by Shor's algorithm in polynomial time. Shor's algorithm can be split

into two parts. The first part can easily be computed on a classical computer, and

the second part can also theoretically be done on a classical computer but it would

take much longer than on a quantum computer.

The first part of Shor's algorithms is as follows. Generate a random number a

in the range of a G { 2 , . . . , TV — 1} which is co-prime to N, or

G C D (a , A 0 = l , (2.3)

fortunately, we can use Euclid 's algorithm to compute the G C D (Greatest Common

Divisor) very fast even on a classical computer. From there the order of a has to be

23

found. The order is the smallest number such that

ar = 1 mod N. (2.4)

Finding the order of a is computationally infeasible in polynomial time using a

classical computer, that's why a quantum computer is needed to find r and wi l l be

explained later. If r is odd it is discarded and a new r is found by generating a new

a. After the correct a is found, the Equation 2.4 can now be altered by subtracting

1 from both sides

a r - 1 = OmodAT, (2.5)

and now can be rewritten as

ar - 1 = kN, (2.6)

where k is some integer. W i t h the help of x2 — y2 = (x + y) (x — y) the previous

equation can be written as

(v 7 ^ 7 + l)(VaT - 1) = kN, (2.7)

or even a more readable version as

(a r / 2 + l) (a r / 2 - l) = kN. (2.8)

Equation 2.8 can now be used to find at least one nontrivial factor of N by calculating

G C D ((a r / 2 + 1),N),
V V , 1 1 (2.9)

G C D ((a r / 2 - l) , A 0 ,
and by dividing N wi th the first factor the second factor can be calculated and thus

break any algorithm or cipher that depends on the IFP . After some modifications,

it can also be used for breaking the D L P . [11] [12]

The second part of the algorithm as mentioned is used for finding the order of a.

A n order of a number can also be represented as a period of the function / a j jv(x)

fatN(x) EE ax mod N, (2.10)

where its output values are repeated at regular intervals of size r [11]. The Table

2.1 shows an example for N = 15, a = 2 and x G {0,1, 2,3,4, 5}, where it is shown

that the period (order) of a is r = 4. The repeating outputs can also be seen for

x G {5,6}. A s mentioned earlier, computing this on a classical computer for large

is infeasible but a quantum computer can evaluate a function for many values at

the same time (see Section 2.1). This property is used in finding the order of a. It

firstly calculates the repeating sequence of outputs for the function fa>N all at the

same time. Using the Q F T (Quantum Fourier Transform) the period is found which

is the number r, then it can be used in the rest of the algorithm. [13]

24

Tab. 2.1: Example of a function period

X 0 1 2 3 4 5 6

fa,N(x) 1 2 4 8 1 2 4

2.3 Grover's algorithm

Symmetric cryptography and hash functions can also be broken by another algorithm

named Grover's algorithm. It is categorized as a search algorithm so instead of

solving any mathematical problem, it just searches through all the possible options.

Given a set of bits, {0,1}™ where n is the size of the set a classical computer wi l l

search for a specific binary string of length n in 0(2") time. Grover's algorithm can

search for the same binary string in 0{2n/2) time. [11]

Symmetric cryptography keys are also binary strings created from a set of bits

size n , where Grover's algorithm can be used to find a key by trying all possible

values. Similarly, hash functions also output a binary string from a set of bits.

Grover's algorithm can be used to try to generate all the possible hash values inside

a quantum computer and when a match is found it can retrospectively find the

output that generated the hash value [14]. Since Grover's algorithm is not as efficient

as Shor's algorithm in finding solutions that break ciphers or algorithms, key/hash

value sizes can be increased to prevent these kinds of attacks [7].

2.4 Threat to modern cryptography

The future impact of quantum computers on classical cryptography can be seen

in Table 2.2. E C C (Eli t ic Cruve Cryptography) algorithms and R S A aren't safe

from quantum computers with a sufficient amount of physical qubits using Shor's

algorithm. Currently, it is estimated that the required amount of qubits for Shor's

algorithm to be efficient enough is in the tens of millions [1][15]. I B M managed to

create a 433 physical qubit quantum processor in 2022 so humanity is not yet at the

point where everyday internet communication using public key cryptography can

be broken using quantum computers [16]. However, the threat is stil l there since

traffic encrypted today using modern cryptography can still be broken later using

quantum computers.

I B M has projected in their new roadmap to a practical quantum computer, that

by 2025 they expect to have working quantum computers that contain around 4 158

physical qubits [17]. If this grows exponentially, a replacement for the current public

key algorithms needs to be found. Each of the new candidates wi l l be discussed in

detail in Chapter 3.

25

Symmetric cryptography and hash functions on the other hand are much more

resistant to quantum computers. For the current ciphers and algorithm to be

quantum-resistant only the symmetric key size and digest size for hash functions

needs to increase. For example, in the case of AES-128, it is sufficient enough to

switch to AES-256 where the performance hit is negligible [1].

Tab. 2.2: Impact of quantum computers on classical cryptography[l][7]

Algor i thm Type Impact

AES-128 Symmetric Larger key sizes needed

Salsa20 Symmetric Larger key sizes needed

G M A C M A C No impact

Polyl305 M A C No impact

SHA2-256 Hash function Larger output needed

SHA3-256 Hash function Larger output needed

RSA-3072 Publ ic key No longer secure

E C D H - 2 5 6 Publ ic key No longer secure

E C D S A - 2 5 6 Publ ic key No longer secure

26

3 Post-quantum cryptography
Quantum supremacy may not be happening right now but may happen in the future.

New public key algorithms need to be standardized so they can be used as replace­

ments for quantum vulnerable algorithms such as R S A and E C D H . N I S T (National

Insititue of Standards and Technology) has begun the first standardization process

for post-quantum algorithms, which are algorithms that are resistant to the future

threat of quantum computers [7]. The main candidates that wi l l be described in

individual sections are

• lattice-based,

• code-based,

• hash-based.

Lattice-based cryptography is said to be the most promising replacement for public

key cryptography since two of them have already been standardized by the N I S T

(see Section 3.4) [18]. A lattice can be described as an infinite set of points in an

n dimensional space. The space generated by these points is a periodic structure,

an example can be seen in Figure 3.1. A la t t ice- the points in i t - i s generated by

n linearly independent vectors which can also be called a base for the lattice [19].

Linearly independent vectors have the special property of not being a combination

of any other vectors from the set of all vectors. A n example of these vectors is

illustrated in Figure 3.1. Vectors that generate a lattice can also be written in

mathematical notation as

where C(B) denotes a lattice created by a basis B. The basis is created from vectors

(6 i , . . . ,&„).

To use lattices for cryptographic constructions, a vector v in a lattice has to be

defined with coordinates from the set of all integers Z . If every coordinate is then

reduced with the operation defined as

where q is also an integer from Z , the lattice is then called a q-ary lattice [10].

A cryptographic construction in lattices additionally needs a mathematical prob­

lem to be defined that can easily be calculated given in input but difficult to invert

and calculate back the input that was given, in other words, a one-way function

3.1 Lattice-based cryptography

v EE v mod q (3.2)

27

• <

» 4

i

A <

» 4

i /
w

i t

» /
/

/

T «
/

/

V l
I m a

V

1 t

» /
/

/

T «
/

/

r

i
0,0

(

\
\

\

H

1

0,0

(

\
\

\

H

1
\

\

w T

A »

<

4

>

k
1

•
»

<

4

> • t

1

•
Fig . 3.1: 2-dimensional lattice

has to exist. One-way functions may also be described as a computational prob­

lem. In lattice-based cryptography there exist many computational problems, some

of them are [10]

• S V P - Shortest Vector Problem,

• C V P - C l o s e s t Vector Problem,

• L W E - Learning W i t h Errors.

How these computational problems are used and in which cryptographic algorithms

or cryptosystems wi l l be described in the following sections.

3.1.1 GGH public key cryptosystem

A s mentioned in Figure 1.4 K E M (Key Encapsulating Mechanism) is one way of

creating a K E P . In the case of lattice cryptography, an algorithm for creating a

dedicated key exchange method like D H hasn't been found, so the only choice is

to use a K E M . A K E M needs a public key encryption scheme to work, fortunately,

many of them that use lattices have been discovered, so they can be used as key

encapsulating mechanisms.

One of the first public key encryption schemes was the G G H cryptosystem which

was named after its inventors Goldreich, Goldwasser and Halevi. Booth, the private

and public keys are vector basis B and H respectively. A basis can also be written as

a matrix where the columns of the matrix consist of the basis vectors. Addit ional ly

they form the same lattice C(B) = C(H). The basis B is a good lattice and generates

orthogonal or nearly orthogonal vectors. Basis H is called the bad basis and is

28

(3.3)

derived from basis B using a matrix T where

BT = H,

HT'1 = B.

This transformation of B into H creates an orthogonality defect, which means the

generated vectors by the basis are no longer orthogonal or close to orthogonal,

this fact wi l l be important later. The message to be encrypted is encoded into a

vector v which is a lattice point in. Next a small noise vector e is chosen that

is not a lattice point. Given these values the ciphertext c can be computed wi th

c = Hv+e. The vector v or the plaintext can be extracted from c given v = T |_-B _ 1 c] .

The rounding operation is very important here since it removes the error that was

added by vector e. [10] [20]

• i » •
i

4 , v '' Ä
Mk

W

>t v+e W W

//

* M a 1
w 1 t

0,0

• 1 •
• < • • • < • •

M i
w 1 9

• < i » •
Fig . 3.2: Closest Vector Problem

Finding the original vector from the ciphertext is called the Closest Vector Prob­

lem (C V P) and is illustrated by Figure 3.2. The goal of this problem is to find the

closest vector that is on a lattice point using a vector that isn't on a lattice point.

The security of G G H relies on the fact that the C V P is easily computed while using

the good basis B, but hard in the bad basis H. A s mentioned earlier, a good basis

is orthogonal and finding the closest vector is easily done using Babai 's algorithm.

However, this algorithm is inefficient in a basis that is not orthogonal, which in this

case is the basis H. Based on this fact it can be assumed that only the owner of the

good basis (private key) can decrypt a message. [20]

The only problem wi th G G H is that for it to be secure enough, it needs to have

very big keys and as a result the computations are too slow. That is why this

algorithm can't be used in practice [10].

29

3.1.2 NTRU and LWE public key cryptosystems

Another post-quantum K E M scheme is N T R U or N- th degree Truncated Polynomial

Ring. It is one of the most efficient public key encryption schemes since instead

of using a basis for its public key, it uses a polynomial consisting of p coefficients

h = h0 + hix + h2x2 H h / i p - i x ^ " 1 . (3.4)

Like G G H this scheme is based on the C V P , so it uses a similar concept for the

key exchange. Additionally, it generates the public key h where it is very efficient

when preforming required operations. The use of polynomials makes N T R U much

faster than the G G H cryptosystem and was considered heavily for post-quantum

standardization by N I S T [1].

L W E is not a cryptosystem by itself, but many cryptosystems are based on it.

The problem is based on modular linear equations for example

3si + 6s 2 + 7s 3 + 2s 4 = 10 mod 11, (3.5)

10si + 8s 2 + 3s 3 + 5s 4 = 1 mod 11, (3.6)

5si + s2 + 7s3 + 10s 4 = 8 mod 11, (3.7)

6si + 8s 2 + 3s 3 + 4s 4 = 7 mod 11, (3.8)

where the goal is to find si, s2, S3, s 4 . This is easily solvable even for big n amount

of equations with the Gaussian elimination, but if an error is added to the right side

of each equation (-1 or +1 in this case)

3si + 6s 2 + 7s 3 + 2s 4 = 9 mod 11, (3.9)

10si + 8s 2 + 3s 3 + 5s 4 = 2 mod 11, (3.10)

5si + s2 + 7s3 + 10s 4 = 9 mod 11, (3.11)

6si + 8s 2 + 3s 3 + 4s 4 = 6 mod 11, (3.12)

for big n it becomes a significantly harder problem. [21]

Unlike other mentioned lattice-based post-quantum cryptosystems, LWE-based

cryptosystems are supported by a theoretical proof of security [10]. This makes them

a very good candidate for standardization by NIST , more specifically the algorithm

C R Y S T A L S - K y b e r (see Section 3.4).

3.1.3 Digital signature schemes

A s described in Figure 1.3, digital signatures are another branch of public key cryp­

tography. Many of the same cryptosystems used for public key encryption can

be converted into digital signature schemes, for example, booth G G H and N T R U .

30

However, the basic versions of these signature schemes have some security flaws that

cause them to unusable in practice. [10]

The situation wi th an LWE-based cryptosystem is different. Digi ta l signature

schemes that use the L W E problem or a modified version of it called M L W E (Module

Learning with Errors) are also very good candidates for standardization by NIST , for

example, the digital signature scheme C R Y S T A L S - D i l i t h i u m [22]. More information

on the topic of standardization can be found in Section 3.4.

3.2 Code-based cryptography

This family of post-quantum cryptography utilizes error correction codes. These

are codes that can either detect or correct an error in some binary string by adding

additional bits. However, they can correct/detect an error up to a threshold. If a

big enough error is introduced, the code may no longer be able to detect or correct

it.

The first ever code-based scheme was introduced by Robert J . McEliece in 1978

and so the scheme got the name from its inventor McEliece. The private key is

defined as a random Goppa code which can correct errors in a coded sequence of

bits. The public key is a matrix G and the plaintext m is a bit string. Additionally,

another bit string is randomly created called e. The ciphertext c is then calculated

wi th

c = mG + e. (3.13)

Only the owner of the aforementioned Goppa code can extract m and e from c since

the code was designed to efficiently correct errors added by the bit string e. [1]

Since this cryptosystem was introduced in 1978, it is well understood and has

never been successfully broken. However for the system to be secure the private/pub­

lic keys have to be relatively large compared to the keys of modern cryptography

like E C D S A . O n the other hand, they are very fast compared to the other algo­

rithms submitted to the N I S T standardization process. That is why 3 code-based

algorithms are still being considered in the 4th round. [7]

3.3 Hash-based cryptography

Hash-based cryptography is mainly used for post-quantum digital signatures. A n y

hash function can be used inside a hash-based cipher as long as they are collision

resistant. That means they don't rely on any hard mathematical problems, which

makes their security requirement very low. Also because of this fact, every hash-

based cipher can have many alternatives using many different hash functions. [10]

31

The first hash-based scheme was proposed by Leslie Lamport in 1975. If the

output of the chosen hash function h is 256 bits, the private key x consists of 256

pairs of random bit strings, where each string is 256 bits long. The public key y is

then generated by hashing every random bit string. A t this point the public and

private keys are

x = (xo,o, #o,i5 £i,o, • • •, 2;256,o> ̂ 256,1); (3-14)

y = (h(x0fi), Kxo,i), h(xifl), h(x1A),h(x256,o), h(x256:1)). (3.15)

Given a message m which at first is hashed, the signature a consists of either x 0,o

if the first bit of the message hash is 0 or x 0 , i if its 1- This repeats for every bit of

the hashed message. The resulting signature for a given message is

h(m) = (0 1 . . . 0) 2 5 6 , (3.16)

a = (x0fl, x1A,..., x 2 5 6 , o) 2 5 6 - (3.17)

The verifier also hashes the message, generating the same hash. He then chooses

hash values from the public key depending on the bit string of the message hash and

creates yp. Then he hashes each hash of the signature and generates h(a), which is

h(a) = (h(x0,0), h(xhl),..., M*256,o)) 2 5 6, (3.18)

yp = (h(x0,o), h(xltl),h(x256fi))256. (3.19)

If h(p) = yp then the signature is verified. However, the signer cannot reuse the

same private key since it was already used. That is why this algorithm is called

Lamport 's one-time signature. [1]

The solution to one-time hash-based signatures was introduced by Ralph Merkle

in 1979 and is called Merkle's tree signature scheme. K e y generation starts wi th

generating a binary tree which always has 2n leaves, this is the master private key.

Each leaf corresponds to a hash of Lamport 's public key. Every two neighboring

nodes are hashed together to create their parent node. In Figure 3.3 an example

can be given for A ^ and N2 where

Ns = h(NuN2). (3.20)

After the tree is generated the master public key is the root of the tree, in this

case, A ^ i 5 . To sign a message, the signer chooses some random leaf node and signs

a message wi th Lamport 's one-time signature using the corresponding private key.

In this case N5. To verify this signature, at first, the one-time signature is verified

using Lamport 's public key. The signature is verified but the public key also has

to be verified. That is why the signer also sent the least amount of hashes needed

32

Fig . 3.3: Merkel tree

to compute the root. In this case he sent JV4, JV3, N14 as seen in Figure 3.4. To

calculate JV15, the verifier has to calculate

N6 = h(NA,N5) (3.21)

N7 = h(Ne,N3) (3.22)

N15 = h(Nu,N7). (3.23)

If the calculated 7Vi 5 equals the master public key, the signature is verified. [10]

F ig . 3.4: Merkel tree - signature verification

A s mentioned earlier, the security requirements for hash-based ciphers are very

low and the principles that they are based on are very well understood. This makes

them excellent candidates in the N I S T standardization process. However, one flaw

of these ciphers is that the signer has to keep a record of previously signed messages

because they can produce only a limited amount of signatures. Al though one sig­

nature has been standardized by N I S T in the 3rd round and that is S P H I N C S + ,

which is based on the aforementioned Merkle's tree signature.

33

3.4 NIST Standardization

N I S T (National Insititue of Standards and Technology) started a standardization

process in 2017 for the field of post-quantum public-key cryptography. The first call

for submissions was initiated in December 2016, where 69 post-quantum algorithms

were accepted into the first round of standardization. A s of writ ing this thesis the

latest round- the third round-ended on July 2022. The result was a standardization

of 1 K E M protocol and 3 Digi ta l signature protocols, for more details refer to Table

3.1. Additionally, four more post-quantum algorithms wi l l be advancing to the

fourth round of standardization, more information can be found in Table 3.2. [18]

Tab. 3.1: Standardized post-quantum algorithms [18]

Algor i thm Type Based-on

C R Y S T A L S - K y b e r

C R Y S T A L S - D i l i t h i u m

Falcon

S P H I N C S +

K E M

Digi ta l signature

Digi ta l signature

Digi ta l signature

Lattice-based 3.1

Lattice-based 3.1

Lattice-based 3.1

Hash-based 3.3

Tab. 3.2: Fourth round of N I S T submissions [18]

Algor i thm Type Based-on

B I K E K E M Code-based 3.2

Classic McEliece K E M Code-based 3.2

H Q C K E M Code-based 3.2

S I K E K E M Isogeny-based

3.5 Disadvantages of post-quantum cryptography

Replacing modern cryptography like R S A with post-quantum algorithms is not as

easy as it might seem. Quantum-resistant algorithms are certainly needed to prepare

for the thread for quantum computers but one big disadvantage of these algorithms

compared to modern cryptography is their computational requirements. Since they

use more complicated structures and principles they also require more memory and

processing power to compute. Some embedded devices might even take too long

to compute some post-quantum algorithm to be useful or might just fail since they

don't have enough memory. Another problem is the key sizes of these algorithms.

They are a lot bigger as can be seen in Table 3.3 compared to modern cryptography.

The chosen security parameters for the algorithms mentioned in the table below

34

correspond to the N I S T security level of 3. Level 3 is defined as a security level that

is only breakable by an attack that can break the A E S algorithm wi th a key size

of 192 bits or less [23]. Some embedded devices also have a very limited network

bandwidth because they are battery-powered. These are the reasons why adapting

post-quantum cryptography might not be as seamless as it might seem.

Tab. 3.3: K e y size comparisons [24] [25] [26]

Name Public key [B Private key[B] S ignature/Ciphertext [B]

R S A 7680 960 960 960

E C D H 384 48 48 48

Kyber 768 1 184 2 400 1 088

Di l i th ium 3 1 952 4 000 3 293

35

4 Network basics
To fully understand how any application that creates a communication channel

between two entities works, it is important to first look at the concepts of net­

work basics. The contents of this chapter wi l l focus on topics such as the T C P / I P

(Transmission Control Protocol/Internet Protocol) protocol suite, T C P , U D P (User

Datagram Protocol) protocols and differences between client-server and peer-to-peer

communications.

The T C P / I P protocol suite consists of 5 layers as can be seen in Table 4.1.

Each layer is defined by one or more protocols. A protocol defines strict rules for

what, how and when should an entity communicate [27]. Each layer in the T C P / I P

suite contains at least one protocol, which again dictates how the communication

should proceed on that layer. A protocol layer communicates vertically with other

protocol layers using P D U s (Protocol Data Uni t) , each P D U is either encapsulated

or de-encapsulated into another P D U , depending on the way the data is flowing

through the T C P / I P layers. During this process, a new header is added or removed.

A header contains important information for that specific layer. For example, the

IP address is contained in the header for the network layer. The layers also com­

municate horizontally using either physical channels (physical and data link layers)

or vir tual channels (all other layers). Physical channels are created between a phys­

ical medium through which the bits travel, vir tual channels on the other hand are

created between applications on devices. Channels on each layer use a different

identifier to differentiate between them. The aforementioned information for each

layer can be found in Table 4.1.

Tab. 4.1: T C P / I P protocol suite [27]

(#) Layer P D U Identifier Protocols

(5) Appl icat ion - - H T T P , F T P , S M T P , . . .

(4) Transport Segment/Datagram Port T C P , U D P , S C T P

(3) Network Packet IP address IP, . . .

(2) Data link Frame M A C address Ethernet, . . .

(1) Physical B i t - -

4.1 TCP and UDP protocols

T C P and U D P are transport layer protocols in the T C P / I P protocol suite. The

transport layer is responsible for creating connections between applications, where

each application is identified with a port number which is stored in the transport

36

layer header. A port number can be any number in the range of 0-65535 [27]. For

an application to be available it must listen on a port number so a client knows

where to send his data. Similarly, if a client connects to an application he is also

given a port number so that the server knows where to send his data. Booth T C P

and U D P work wi th port numbers but an application can listen on the same port

for both T C P and U D P protocols at the same time.

The U D P protocol was designed to be fast and unreliable [27]. It possesses

these properties because it is a connection-less protocol. That means that there

is no guarantee that the data that is being transferred wi l l arrive as intended and

without errors. It also means that the data can be sent faster and has less overhead

communication compared to T C P . This model fits very well while sending very small

amounts of data very quickly, like in the case of D N S translation. Before any data

can be transferred, it has to be split into datagrams of smaller sizes. These are then

sent one by one to the targeted entity.

The T C P protocol on the other hand is connection-oriented. Before data can

be transferred between two entities first a connection has to be established using

the three-way handshake (Figure 4.1) [27]. It works by setting bit flags in the

T C P header, in this case, the S Y N and A C K flags. After a connection has been

established, the data transfer can begin. Unlike U D P , T C P is also numbering its

segments which means it can detect if a segment was lost while being transferred,

and then it can try to transfer it again. Another feature of T C P is flow control, which

can be used for controlling how much data the communication entities can exchange

at one time [27]. A l l of these features bring a much bigger overhead to each segment

since more information needs to be tracked. This takes a tol l on how fast segments

can be transferred and also increases the size of the segments, which results in a

slower but more reliable protocol than U D P . A n example of good usage for the T C P

is the H T T P protocol where a website needs to be transferred exactly as intended

without any errors.

S Y N

S Y N , A C K

A C K

Fig . 4.1: Three-way handshake

37

4.2 Communication paradigms

Two of the most used communication paradigms to provide services to users are

client-server and peer-to-peer, where the former is more commonly used in the In­

ternet [27]. A s the name implies a service is hosted on a server, and a client or more

clients can connect to this server to consume the hosted service. Most of the time

the server is a more powerful computer system so that it can handle more requests

at the same time. Services may consist of providing some content to one user, for

example, a simple website that provides H T M L content. It can also provide a con­

nection between two users so that they can communicate. For this, to work the

server has to create multiple connections, one wi th each of the users. If the com­

munication is encrypted, the server has to first decrypt an encrypted message, read

it, encrypt it again and send it to the second user. The content of the exchanged

messages was also seen by the server, which implies the users have to trust the server

to not store or log their exchanged messages anywhere. However, if the client-server

paradigm is enhanced wi th end-to-end encryption, the server doesn't have to de­

crypt/encrypt anything and just forwards the messages. For more information on

end-to-end encryption see Section 4.3.

The second communication paradigm, peer-to-peer relies on the fact that if two

entities want to communicate they wi l l create a connection between them only, which

eliminates the problem with the client-server paradigm of connecting two users. Each

entity consists of a server and a client, since both of them need to be able to listen

for incoming connections and also accept connections from other listening entities.

This makes it also a derivative of the client-server paradigm just without the middle

entity. It also makes it easier to implement end-to-end encryption.

The issue wi th using peer-to-peer for communicating wi th users is that each user

needs to have an open port. Since most users on the internet are behind a N A T (Net­

work Address Translation), it is not always easily solvable. This issue is mitigated

by using the client-server paradigm since the clients can initialize the connections

wi th the server which then transfers the messages between the initialized connec­

tions. However, as mentioned before this leaves the messages open and readable by

the server if end-to-end encryption is not used. A comprise has to be made between

the ease of use and the amount of trust one is wil l ing to give.

4.3 End-to-End Encryption

E 2 E E (End-to-End Encryption) is a concept that allows data to be transmitted

from one end user to another end user without being revealed or being tampered

wi th along the way. It is mostly used in messaging apps. It is relatively simple to

38

implement using the peer-to-peer parading. Before communication starts, each of

the end users converges on some private key using some key exchange protocol. One

user uses this key to encrypt the data and the other user can then decrypt it. Of

course in a real-life scenario where third parties try to attack this communication a

lot of other things have to be considered like the integrity of the data and authenticity

of the users.

However, in the client-server paradigm, it's a bit trickier to implement E 2 E E ,

since there is always some other entity between two end users. If the middle entity is

a malicious one, it could easily use a man-in-the-middle attack on the key exchange

protocol. Despite this, some protocols provide E 2 E E that ensures no third entity

can utilize such an attack. One such example is the Signal protocol which uses the

Double Ratchet Algor i thm [28].

39

5 Application introduction
One of the goals of this thesis is to create an application capable of exchanging

messages or files between two users. Secured only using quantum-resistant cryptog­

raphy while relying only on the console environment for controlling the application.

To exchange messages the application uses the peer-to-peer paradigm. However,

there is st i l l one peer called the user and one peer called the server to differentiate

between the two peers. That is why in some places like the implementation code,

client and server are used instead of peers. It is also important to mention that

the application uses T C P as its transport layer protocol. It is implemented in the

Go programming language. A s the public key algorithms, C R Y S T A L S - K y b e r and

C R Y S T A L S - D i l i t h i u m are chosen. A E S is chosen as the symmetric key encryption

algorithm. Addi t ional sections in this chapter explain why these choices were made

and shortly introduce the chosen tools. The keyword modular in the thesis name sig­

nifies algorithm modularity in its implementation (explained further in Subsection

5.1.3).

5.1 Philosophy behind the application

The main philosophy of this application was inspired by a network protocol called

Wireguard [29] and a book The A r t of U N I X Programming [30]. It is meant to

be a simple and small application for sending arbitrary amounts of data using only

post-quantum cryptography. The four main ideas that are incorporated into the

application are

• small traffic overhead,

• text-based interface,

• modularity,

• extensibility.

These ideas are introduced in the following sections.

5.1.1 Small traffic overhead

To achieve a small traffic overhead, this application uses the smallest header possible.

The header only contains the data size and type. For a more detailed description

of the header see Chapter 9. This makes the traffic overhead very low. Another

mechanism that reduces traffic overhead is the number of initialization messages

at the start of the connection. For example, the protocol T L S v l . 2 uses handshake

messages to negotiate on a cipher suite and then create a shared key using some key

exchange protocol [3]. The protocol created in this application uses a pre-configured

40

cryptography suite and doesn't have to spend time negotiating it like T L S and only

sends necessary messages to establish a secret key. This results in the protocol

needing 1 round trip to initialize a connection. Aga in more information on the

protocol flow can be found in Chapter 9.

However, one flaw is that this application uses T C P . To minimize traffic overhead

U D P would be a better fit since it doesn't require connection initialization via the

three-way handshake. It would also mean that things like flow control, error han­

dling, synchronization and more would have to be solved in the application layer.

T C P was chosen over U D P because it has been designed to do these things well and

efficiently A s a result, the application needs 2 round trips to initialize a connection

including the T C P handshake.

5.1.2 Text-based interface

From the start, this application was designed to be mostly used in Unix-l ike sys­

tems (but also supports other platforms like Windows). Most Un ix programs and

applications use a text-based interface, this way it's very easy to redirect an output

of one program to the input of another program and vice versa. That is why this

application is also designed to use the universal text interface so that it can easily

interact wi th other U N I X programs. The data to send can be redirected via a pipe

into the application. Received data can be saved to a file by redirecting its output.

For more information about the capabilities of this application refer to Chapter 8.

5.1.3 Modularity

Modular i ty in the case of this application means that any other post-quantum algo­

r i thm can be easily plugged into the application without any massive code changes.

This allows anyone to just add their preferred algorithm to the application in a rela­

tively short time and without the knowledge of the whole code base. How algorithms

can be added is detailed in Section 8.5.

5.1.4 Extensibility

This application is made to be extensible, which means it is very easy to use the un­

derlying communication protocol for sending arbitrary amounts of data and extend­

ing it wi th additional functionality. For example, if another programmer wants to

implement a new G U I (Graphical User interface), the application was programmed

in a way where it's easy to use the underlying secure communication protocol. The

programmer doesn't have to understand how the protocol works, he just needs to

know how to use it. More specifically it uses a Go feature called channels for sending

41

and receiving data. When data is sent to the channel it is automatically encrypted

and similarly, if some data is received from a channel it is already verified and

decrypted.

5.2 The Go programming language

The first iteration of the Go programming language was created at Google. It is

an open-source programming language and has many similarities wi th C . That

means it is a compiled language and a statically typed language [31]. In a statically

typed language, a variable has to have a type assigned to it before the compilation

process. A s can be seen in Figure 5.1 a compiler translates the source program

into an executable, which can run multiple times without the need to compile again

[32]. This makes Go faster than most of the interpreted languages like Python since

an interpreter needs to translate the source code every time it has to run.

Source Program Compiler Compiler •> Target Program

Fig . 5.1: Compiler

However unlike C, it has a garbage collector, which means it is capable of auto­

matic memory management [31]. In C a programmer has to manage memory on his

own, allocate and free it by using functions. Go and its garbage collector takes care

of allocating and freeing memory which makes it a lot less error-prone when it comes

to memory management. Together wi th good overall performance, Go was also de­

signed to make high-performance network applications that's why it was chosen for

this thesis.

5.3 Choice of cryptography algorithms

A s mentioned in Section 3.4 a group of three lattice-based algorithms has been

standardized by NIST , of which Kyber and Di l i th ium are a part of. That is the

main reason why they are chosen as the public key algorithms for this thesis. Since

the application is modular any security level of Kyber and Di l i th ium can be used but

the default choice is Kyber l024 and Dil i thium5. Other possible choices for these

algorithms can be seen in Appendix C. Each of them has its respective Chapter

(6 and 7) which describes some implementation aspects and also introduces some

theoretical background that makes them secure.

42

Tab. 5.1: Choosen algorithms

Type Algor i thm

Digi ta l signature

K e y exchange/Public key encryption

Symmetric encryption

Hash function

Dil i thium5

Kyber l024

A E S

S H A K E - 1 2 8 / 2 5 6 , SHA3-512

A s for symmetric cryptography, A E S is chosen wi th a key size of 256 bits. A E S

is used in modern cryptography as the main symmetric cipher and is also usable

in post-quantum cryptography but requires bigger-sized keys, due to the threat of

Grover's algorithm. Used hash functions in this application are S H A K E - 1 2 8 / 2 5 6 for

the implementation of Kyber and Di l i th ium following the author's recommendations.

SHA3-512 is used by the networking part of the application. A summary of the

chosen cryptographic algorithms can be found in the Table 5.1.

43

6 CRYSTALS-Kyber
C R Y S T A L S (Cryptographic Suite for Algebraic Lattices) Kyber is a quantum resis­

tant K E M standardized in the 3rd round of the N I S T standardization process. It

is based on a modified version of the L W E problem (Section 3.1.2) called M L W E

(Module Learning wi th Errors). Lattices have a solid theoretical security founda­

tion because they have been researched for a long time and are not a new invention.

N I S T has concluded in their report of their 3rd round of standardization that Kyber

has sufficient security against quantum computer attacks. Even in the worst-case

scenario where the development of quantum computers is underestimated. A s to

performance, it has been shown that Kyber is the fastest algorithm amongst the

other lattice K E M N I S T finalists when it comes to key generation, encapsulation

and decapsulation in software and hardware. [22] [18]

6.1 Implementing Kyber

The implementation of Kyber in this thesis is done using only the standard Go

library except for one external library called crypto 1 which is required for the im­

plementations of the hash functions S H A K E - 1 2 8 / 2 5 6 (refer to Section 1.2 for hash

functions). Figure A . l illustrates a very simplified block diagram of how Kyber

works. Individual blocks in this figure represent a mathematical structure or a vari­

able in a program. This structure is almost always composed of polynomials which

represent a ring and is described in Section 6.2. A collection of polynomials can

also be called a vector of polynomials. The small letter or number at the start of an

arrow coming from the structures denotes the size of the structure. In the case of

a vector, it denotes the number of polynomials the vector contains. So for example

the letter k denotes that a vector consists of k polynomials.

A s to the process of how Kyber works, firstly the public and private keys need

to be generated. A random message m is then encrypted by one communicating

entity using the public key. The encrypted message is then decrypted by the other

communicating entity and m becomes the shared key K. The following subsections

wi l l explain each sub-algorithm of the block diagram in more detail. The Go code in

the practical part is also a great reference to understand how Kyber works. These

functions are then wrapped by another set of three functions which are also key

generation, encapsulation and decapsulation. This is done to provide additional

security for the Kyber scheme.

xhttps://pkg.go.dev/golang.org/x/crypto

44

https://pkg.go.dev/golang.org/x/crypto

Tab. 6.1: Kyber security levels [25]

n k q Vi V2
Kyber512 256 2 3329 3 2 (10,4)

Kyber768 256 3 3329 2 2 (10,4)

Kyber l024 256 4 3329 2 2 (11,5)

Kyber uses a set of parameters to define its security level, of which it has three

as seen in Table 6.1. Kyber in this thesis is implemented for a l l the parameter levels.

What individual parameters mean wi l l be explained in further subchapters.

6.2 Theoretical background

Kyber uses a structure called rings, more specifically the ring Rq denoted as

Zq[X}/(Xn + l). (6.1)

A ring contains a polynomial of n elements, where the coefficients of this polynomial

are integers reduced modulo q and the powers of the polynomial are reduced (X n + 1) .

The parameters n and q are defined in Table 6.1. A n example of a polynomial wi th

elements from the ring Rq is

h = 1564 + 2189a; + 258x 2 + • • • + 655xn~2 + 2587X™- 1. (6.2)

A vector of size k consists of k polynomials wi th coefficients from the ring Rq.

The parameter k can be found in Table 6.1. The the polynomial t\ from the previous

example together wi th a new polynomial t<i

t2 = 2408 + 1932a; + 420a;2 + • • • + 3256 n " 2 + 2399™" 1, (6.3)

form a vector of polynomials T = (t i , ^) - A matrix of size k x k consists of k2

polynomials from the ring Rq aligned as a square 2-dimensional matrix. [25]

The addition of elements from a ring is just adding the individual polynomials

and is relatively fast. Mul t ip l ica t ion of vectors or matrices the usual way (multiply­

ing each element by each element of the other polynomial) is computationally much

more demanding with big n. In this case where n — 256 the number of computa­

tions would be n2 = 262144. A more efficient way to calculate the multiple of two

polynomials is using an N T T (Number Theoretic Transform) where the number of

operations is only nlog(n) = 1387. This transformation is a more specific version of

the F F T (Fast Furier Transform). However, before doing the N T T multiplication it

is first required to transform the polynomial into N T T form. Do the calculation wi th

45

some other polynomial in N T T form and then do the inverse N T T transformation

on the result. In this thesis structures that are converted to N T T are denoted wi th

a hat, for example, A. [33]

6.3 Encoding, Compression and randomness

To transfer polynomials over the network they need to be serialized into bytes.

Kyber defines two functions for this purpose:

• encode(p, /) - convert a polynomial into 32 * I bytes,

• decode(B, I) - convert 32 * I bytes into a polynomial.

Since these functions only work on a polynomial, if they are to be applied to a vector

of polynomials, every polynomial is processed separately.

Another functionality of Kyber is the compression of polynomials that are en­

coded. Because Kyber is based on L W E , the calculations don't have to be precise

just close enough. This is why a compression mechanism that discards some low-

order bits from encoded polynomials can be utilized. Two more functions are defined

by Kyber for compressing and decompressing bytes

• compress(x, d) -compress a number into the range of { 0 , . . . , 2d — 1},

• decompress(x, d) -decompress a number while loosing some low-order bits.

In order to apply this transformation to a polynomial vector each polynomial is

transformed separately. The functions are used on each coefficient of the polynomial.

The parameters du and dv are used as the inputs for these functions.

Polynomials need to be randomly generated in Kyber . A C B D (Centrail Bioni -

mal Distribution) function is defined which takes as an input in a byte array of some

parameter rj multiplied by 64. It then generates a fixed length polynomial of size

n. This function is also used in generating random vectors where each polynomial

is again generated separately. The input r\ value can either be r\\ or 772 defined in

Table 6.1.

6.4 Key generation

The key generation functions starts by generating random parameters (illustrated by

Figure 6.1). A random seed p is used to generate the matrix A. It is publicly known

to everyone and needs to be shared. However, since the function that generates

it is deterministic only p needs to be shared instead of the whole matrix. This

mechanism saves a lot of network traffic because the matrix A would consume a lot

more network traffic than just sending p. Two vectors s and e are generated from

a different random seed. In this case, the seed is not shared since s and e need to

46

remain secret. After transforming the generated vectors into the N T T domain, A

and s are multiplied. The vector e is then added to the result and creates the public

key. The encoded vector s is then used as the private key.

kxk k k

public key private key

Fig . 6.1: Kyber key generation

6.5 Encapsulation

The encapsulation process relies on the encryption function (Figure 6.2) and wi l l

be explained further. Fi rs t ly the parameters have to be set up. The public key

is decoded into i. The matrix A is generated from p which is also a part of the

public key. A random polynomial vector r is created and transformed into the N T T

domain. Parameters e\ and e<i are also randomly generated where the first one is

another polynomial vector and is just a single polynomial. The last required

parameter is the randomly generated message m.

A and f are multiplied and e\ is added to the result. Afterwards, it is transformed

from the N T T domain since booth factors are in the N T T domain. The result of

these operations is u which forms a part of the ciphertext. The message m is decoded

to create a polynomial from it and decompressed. A polynomial is calculated using

the factor of t and f and is again similarly transformed from the N T T domain.

Then the polynomial e<i is added to it together wi th the decoded message. To create

the ciphertext booth u and v are compressed and encoded to get them ready for

47

network transfer. The parameters used in the compression and encoding processes

are du and dv reference in Table 6.1.

After the encapsulation process is done the entity that generated the random

m uses it to generate a random K that wi l l be used for some other purpose like a

secret key for symmetric encryption.

A r t ei e 2
m

kxk

4 1 •

U

Fig . 6.2: Kyber encryption function

6.6 Decapsulation

Similarly, as wi th the encapsulation process, the decapsulation process requires

the decryption function to be defined. The decryption process contains only a few

calculations and is illustrated by a figure, specifically 6.3. It begins wi th decoding

and decompressing the parameters u and v from the ciphertext. Additionally, u is

transformed into the N T T domain. The private key is also decoded into the vector s.

The actual decryption begins by mult iplying s and u and transforming the product

from the N T T domain. It is then subtracted from v compressed and decoded to get

the original message m. After the message is decrypted it can be used to generate

the same key K that wi l l be used further.

48

u V

Fig . 6.3: Kyber decryption algorithm

49

7 CRYSTALS-Dilithium
Another algorithm from the group of lattice-based cryptography is the C R Y S T A L S -

Di l i th ium signature scheme. It was also standardized during the 3rd round of the

N I S T standardization process on post-quantum cryptography. It is based on the

Fiat-Shamir paradigm which means a prover can convince a verifier of the fact

that they hold a private key without actually revealing it. Similarly, Kyber is also

based on the M L W E problem. Di l i th ium also has a binding property that allows

a signature to be linked wi th a unique public key and a message. When it comes

to the security of Di l i th ium, it is proven that a signature is unforgeable by classical

and quantum computers. N I S T mentioned in their report on the 3rd round of

standardization that Di l i th ium has a strong security basis and along wi th Falcon is

one of the most efficient signature algorithms. [18]

7.1 Implementing Dilithium

A s wi th Kyber , D i l i th ium is implemented using only the standard go libraries and

one external library named crypto 1 that contains implementations for S H A K E - 1 2 8

and S H A K E - 2 5 6 hash functions. Di l i th ium can be implemented in two ways, the

first one is by using a bigger public key. This implementation of Di l i th ium is also

simpler overall. The other option is implementing a more complex algorithm that

has a smaller public key by a factor of more than half. For this thesis, a more complex

implementation was chosen. How this alternative differs from the simpler one and

wi l l be explained in Subsection 7.2.1. The algorithms as a whole are described

in Figure A . 2 . Analogous to the Kyber algorithm figure, each square represents a

mathematical structure or a program variable, where the structures mostly represent

a vector of polynomials. The small letters at the beginning of the arrows denote the

number of polynomials that the resulting structure consists of.

The process of signing in Di l i th ium follows a well-defined order as with many

other digital signatures. Firs t ly the public/private keys are generated and the private

key is used in the signing process. This is key is not shared and kept secret by the

signer. The result of a signing process is a signature that can be verified by anyone

who owns the related public key. Since the public key is shared, it is not kept secret

by the signer. The following sections wi l l explain all of these steps in more detail. For

an even more detailed description of Di l i th ium, check the algorithm implementation

in the practical part of this thesis.

xhttps://pkg.go.dev/golang.org/x/crypto

50

https://pkg.go.dev/golang.org/x/crypto

Tab. 7.1: D i l i th ium security levels [26]

n q d r 7 i 72 (M) 77 /5 UJ

Di l i th ium 2 256 831 mi7 13 39 2 1 7 - l)/88 (4,4) 2 78 80
Di l i th ium 3 256 831 30417 13 49 219 (8 - l)/32 (6,5) 4 196 55
Di l i th ium 5 256 831 30417 13 60 219 (9 - l)/32 (8,7) 2 120 75

Table 7.1 displays the individual parameters for each of the Di l i th ium parameter

sets. The implementation in this thesis contains all D i l i th ium security modes. When

a parameter is relevant to the process being explained it wi l l be mentioned and

explained in that scenario instead of all the parameters explained in this section.

7.2 Bit manipulation

Di l i th ium employs some helper functions which are used in both the simple and

more complex versions of Di l i th ium. The first one is Decompose and can be well

explained using an example

Decompose(5687946, 1735) = 3278 * 1735 + 616. (7.1)

A s can be see in Equation 7.1 the Decompose function splits a number into two

smaller numbers ry = 3278 and ro = 616. The number ry is the closest multiple of

the second input parameter a = 1735 to the input number. The second returned

number ro is what remains after the division of a. This function is wrapped by two

additional functions HighBits and LowBits. LowBits returns only ro and HighBits
returns only ry. A similar function Power2Round does basically the same but instead

of taking any a as the divisor it takes a parameter d which is then used for calculating

a power of 2 that is used as the divisor. Booth function output the same number

for parameters d — 13 and a = 8192 as seen bellow

Power2Round(5687946, 13) = 694 * 8192 + 2698, (7.2)
Decompose(5687946, 8192) = 694 * 8192 + 2698. (7.3)

Functions MakeHint and UseHint make use of the aforementioned functions to

create and consume hints. These functions are only used in the more complex

implementation. Their role is to reduce the size of the public key without sacrificing

security. Firs t ly the MakeHint function is used to check whether the addition of z

and r would change its high bits. If it, would the returned value is true and a hint is

made. If is small enough to not change the high bits a hint isn't made. This process

can be seen in Lis t ing 7.1 which describes its implementation.

51

List ing 7.1: MakeHint implementation

1 r e t u r n h i g h B i t s (r , alpha) != h i g h B i t s (r + z , alpha)

Now that the hints are created, they can be consumed with the function UseHint.
This function is capable of reconstructing only the high bits of r + z using the created

hints without knowing z. It works by adding or subtracting 1 from ry depending on

the sign of ro if a hint for that number was made. If it was not made ry stays the

same. This concept can also be described by Equation 7.4.

UseHint (MakeHint (z, r, a), r, a) = HighBits (r + z, a). (7.4)

7.2.1 Reducing the public key

A s mentioned the functions described in Section 7.2 are used in the complex im­

plementation of di l i thium to reduce the size of the public while providing the same

security. Some of the bits from the public key are transferred to the private key.

This makes the private key bigger but also makes the public key smaller. However

now when verifying a signature, the calculations are not precise enough when only

using the cut of the public key. However, during the signing process, hints are made

using the MakeHints function. This is possible because some bits of the public key

are stored in the private key. This is what allows the verification calculation to be

just precise enough to correctly decide whether the verification is correct. [26]

7.3 Theoretical basics and bit packing

Di l i th ium uses the same theoretical background as Kyber (see Section 6.2) which

includes rings, N T T transformation, polynomials and even uses the same n as can

be seen in Table 7.1. However, the parameter q is different.

Byte 2 Byte 1

Fig . 7.1: B i t packing for vectors sy and S2

Since Di l i th ium needs to transfer polynomials over the network a very efficient

bit-packing method can be used. For example the polynomial vectors Sy and S2

consist of values that are from the interval {—2, —1,0, 1,2} while using rj = 2. This

52

means only 3 bits are required to pack a single coefficient into bit form (illustrated

in Figure 7.1). However, the coefficients firstly need to be mapped into an interval

{0, 1, 2, 3 ,4} while packing and moved back to {—2, —1,0, 1,2} in the unpacking

process. A s a result one polynomial of the mentioned vectors only takes up 96 B and

the whole polynomial vector only takes up 384 B . This is a big difference compared

to simple packing where one byte contains one value. A very similar process is used

for packing other polynomial vectors in Di l i th ium, the only difference being the size

of the coefficient interval. Using a slightly different packing method for each kind of

coefficient interval is what makes the bit packing/unpacking a very efficient method

for encoding/decoding data that has to be sent over a network. This method is also

used when a vector needs to be consumed by a hash function since it can only accept

a byte array as its input.

7.4 Key generation

The di l i thium key generation process starts by generating random seeds p and p'. p

is used for generating the matrix A where its dimension are k x /. For generating

the error vectors Si and s2, p' is used. The range of values in these vectors depends

on the parameter rj. Similarly, as wi th Kyber , only p is sent over the network since

the function to generate A is deterministic. The product of A and si to which s2 is

added is passed to the aforementioned function Power2Round together with d which

is a parameter defined in Table 7.1. This function splits the results (t) into t\ and

to. This is the splitting that is talked out about in Subsection 7.2.1.

Variable t\ is used as the public key together with the randomly generated K.

The private key consists of a hash (in the Figure 7.2 this a block wi th H) of the

public key tr, private parameters si, s2, to and the random seed p. Polynomial

vectors are additionally packed into bytes for easy transfer over the network. This

process is illustrated by Figure 7.2.

7.5 Signature creation

A t the beginning of the Di l i th ium signing process, the private key has to be parsed

into variables that it consists of. This is done by unpacking the bytes into useful

data (see Section 7.3), more specifically the vectors si, s2, tr and to. The vectors

s i , s2 need to be converted to the N T T form but this can be precomputed ahead

of time to increase the speed of singing. The parameter A is generated from the

shared seed p. The message to be signed is hashed together with tr which is used

for generating the vector y. However, for the sake of simplicity and clarity, this

53

Si s 2

kxl

9 •
P 2 R k H

\ \i

V V V

private key public key

Fig . 7.2: Di l i th ium key generation

generation process is not described in Figure 7.3 and the parameter y is just shown

as one of the inputs. Next the product of A and y which is denoted w is calculated.

High bits of w (hb(k) in Figure 7.3) are hashed together wi th the hash used for

generating y, to create the polynomial c. It is first used for mult iplying vectors si

and S2- After that is used as a part of the signature. The vector y is added to cs\

(csi is si scaled by c) and creates another part of the signature, the vector z. The

subtraction of the vectors w and cs 2 (vector r) is added together wi th the scaled

vector ct0. The result of this process is used as the second input for the function

MakeHint. The first input is cto but negated. MakeHint functions return the final

value for the signature. These hints wi l l then be used to calculate the missing part

of the public key as described in 7.2.1.

However, before the signature creation is finalized, a few conditions have to be

met. If these conditions are not met, most of the signing process is repeated. Some

of the conditions mention parameters defined in Table 7.1. These conditions are

• the polynomial coefficients in z can't be bigger than 71 — (3,

• the polynomial coefficients in ro (LowBits of r) can't be bigger then 72 — (3,

• the polynomial coefficients in cto can't be bigger then 72,

• number of created hints can't be more than 00.

54

7.6 Signature verification

The verification process for Di l i th ium starts by unpacking the required variables

from the public key and the signature. A is generated the same way as in the

signature generation algorithm, it is then multiplied by the vector z from the public

key and called Az. The public parameter t\ is at first scaled by 2d where d is defined

by Table 7.1. This is making up for the lost bits during the key generation. It is

then scaled again by c which is parsed from the signature. The result of subtracting

ct\ from Az is used as the first input for the UseHint function. The second input

parameter is h from the signature. Lastly, the hash of the signed message and t\

is hashed together with the result of UseHint. If the result of this operation is

equal to c the process succeeded and the signature is verified, if they don't equal

the verification failed. See Figure 7.4 for the summary of the process.

A y Sl s 2 tr M
kxl I I

hb(k)

k 1

d
H H H r 1 H

^—• M H

* to * k to

Fig . 7.3: Di l i th ium signature creation

55

A z c tl h M

kxl

3->

H

U H H U H
k w

H

Fig . 7.4: Di l i th ium signature verification

56

8 Application capabilities
Many C L I applications programmed in Go use a framework to parse input arguments

as options or commands to alter the usage of an application. This framework is called

Cobra 1 . Go also has a buil t- in library for parsing input arguments but it isn't as

future rich as Cobra, which contains a lot more useful tools. The following section

in this chapter wi l l explain how the Go application in this thesis utilizes it.

The application is mainly split into four groups of capabilities where each group

gets a section characterizing it. The parts are

• communication,

• configuration,

• other commands,

• benchmarking.

Command usage examples for some of these capabilities can be found in Appendix B .

Additionally, this chapter describes the process adding of new algorithms and ex­

tending them. The implementation results of Kyber and Di l i th ium are also presented

in a separate section of this chapter.

8.1 Commands and flags

The Cobra library is able to split an application into logical parts and execution

paths, also called commands. A group of commands form a hierarchical structure,

which implies that a command can only be used if its parent commands were used

beforehand. A n example of a group of commands is shown in Figure 8.1.

app
f oo
J baz
qux

Fig . 8.1: Example command tree

In this case the command baz can only be used if f oo has been used before

app foo baz.

O n the other hand baz can't be used if it doesn't have the required parent commands

present, so the Cobra parser would throw an error if given this set of commands

app qux baz.
xhttps://cobra.dev

57

https://cobra.dev

Additionally, Cobra allows the programmer to add a flag to a command that

alters the command in some way. Flags can be inherited by other commands so

that they don't have to be defined in every command separately. A good example of

an inherited flag is the — l o g flag which enables a level of logging for the application.

A s this flag is created in the root of the command hierarchy of this application, al l

of the subcommands wi l l share it. A n example of using a flag other wi th commands

using the previous command structure can look like this

app foo baz — l o g info.

The full list of commands for this application is presented in Figure 8.2. Each

command has more flags that alter its execution path. Individual commands and

flags can be explored in more detail by using the application. The commands that are

greyed out don't alter the execution path by themselves but are needed for creating

a parent for its subcommands so that flags can be shared amongst the command

children. Another use for them is just having a parent command to logically group

the command children. That means if they are run by themselves, the application

just prints the output of the help command.

pqcom
— app

chat
receive

J send
completion
config
— gen
L l i s t
help

Fig . 8.2: Command tree

8.2 Communication

The main purpose of this application is to create a secure post-quantum communi­

cation channel, through which users can send data. The communication mode can

be used by invoking the command app together wi th the 3 sub-commands which are

described in subsections. Additionally, every subcommand contains 4 shared flags

where 3 of the 4 flags are used for altering the addressing, so ports and addresses.

One of the flags is used to alter the configuration of the application (see Section

8.3 for configuration options). A configuration file path can be specified in 3 ways

58

• environmental variable PQCOM_CONFIG-this variable can be set to point to the

configuration file.

• the —conf i g flag-a relative or absolute path to the configuration file.

• default p a t h - i f the above two are not specified a default configuration path

wi l l be used, it is listed as the config directory in Appendix E .

8.2.1 Chat command

A n interactive mode where users can send text messages asynchronously. B y running

the application using this command, the T U I (Terminal User interface) is utilized.

A T U I is very similar to a G U I (Graphical User interface) where the only difference

is that it doesn't require any desktop environment and only requires a terminal

interface to work. The created T U I is very easy to control, the user types in a

message into the text field and can send that message to the other peer by pressing

enter. The sent message wi l l then appear in the window above together wi th any

messages that were sent to him. To quit the application the user can press either

escape or ctrl+c. The T U I is also responsive to any window size changes since it

is implemented via the bubbletea 2 T U I framework. Examples of light and dark

terminal themes can be found in Appendix G .

The underlying application protocol works differently depending on whether the

user is a client or a server. The role of the user can be chosen by using either the

-c flag to act as a user or the -1 flag to act as the server.

8.2.2 Receive command

In this mode, the application is run in read-only mode and can only display or save

sent data. A s the data is read it can either be

• redirected through the stdout (standard output) of the terminal to a different

command via the pipe (|) operator or redirected to a file v ia the redirect

operator (>),

• saved directly to a new file, by supplying the destination directory where the

new files wi l l be created.

To choose one of these options command flags have to be used, if no flag is supplied

the data is sent to stdout. B y supplying the flag — d i r [directory] the second

option can be used. The supplied directory can be either an absolute or relative

path.

2https://github.com/charmbracelet/bubbletea

59

https://github.com/charmbracelet/bubbletea

8.2.3 Send command

This mode is the opposite of the receive command since it is a write-only mode,

where the user can send data to another user. Similarly, the user can choose to send

data in two ways

• using the output of another command as the input via the pipe (|) operator,

• reading the contents of a file by supping the path to it.

Again the default approach when flags are not supplied is uti l izing the first option.

The flag — f i l e [path] is used for supplying the file path to the input file.

8.3 Configuration

To choose what post-quantum algorithms wi l l the application use, a configuration

file is used. It is in a J S O N format and 4 keys can be configured

• kem_alg - K E M used for key exchange between clients,

• s i g n _ a l g - digital signature algorithm for creating/verifying signatures during

the ini t ial communication,

• public_key -base64 encoded string of the public key,

• private_key - a l s o a base64 encoded string of the private key.

Similarly, as wi th the app command the conf i g command servers to logically sep­

arate subcommands. In this case, it 's the l i s t and gen commands. The latter is

used for generating a new configuration file with a l l of the keys filled out and the

former is for listing available algorithm names. These algorithms can be seen in

Appendix C.

Whi le generating a configuration file the first two keys for the choice of algorithms

can be configured using flags —kern and —sign. B y supplying a string parameter to

these flags the algorithm name is chosen. The selection of algorithms is generated

from the source code which defines the algorithms and their functions. To get a

^ v ^ - Clients public key

^ v ^ - Clients private key

^ v ^ - Servers public key

- Servers private key

Fig . 8.3: Configuartion file keys

60

better understanding of how these algorithms are defined in code, refer to Section

8.5. The other two keys for the public/private key are generated depending on the

choice of algorithms. If no algorithms are selected, default algorithms are used.

Finally, two configuration files are generated one for the client and one for the

server. The client's configuration file contains the public key of the server and his

private key. The same can be said for the server where he has the client's public

key and his private key (illustrated by Figure 8.3). This is necessary for the ini t ial

communication establishment phase of the underlying protocol. See Chapter 9 for

more information.

8.4 Completion and help

These two commands are present in any Cobra application by default. The command

help is self-explanatory and provides information about a given command, like its

description and flags. Another default command is the completion command which

provides scripts that add the autocomplete feature to the application's commands.

Autocomplete provides the user wi th the completion of available commands when

pressing the tab key. The installation of the autocomplete functionality depends on

the environment. For example if on Linux the running shell is bash, the output of

the completion command needs to be copied to the .bashrc file. After reloading

the terminal autocomplete should now work on the compiled binary.

8.5 Algorithm modularity

A n y key encapsulation method or digital signature can be added to this application.

Modular i ty in this application works by implementing methods of a Go interface.

A n interface serves as a definition of methods, their parameters and return types

without actually giving them an implementation. A l l of the interface methods need

to be implemented for an algorithm to be a valid choice. Defined methods for

the K E M interface are listed in 8.1. The first three methods are self-explanatory.

Method EkLen needs to return the size of the public key, CLen returns the size of

the ciphertext. I d needs to return a random number, which is not already returned

by any other algorithms ranging from 0 to 255. If an ID is already taken by another

K E M , the application wi l l throw an error asking the user to change the ID.

The interface for signatures is shown in Lis t ing 8.2. A s with the K E M inter­

face, the signature interface apart from the first three methods also needs a method

that returns an ID, private/public key length and the signature length. After im­

plementing these interfaces they need to be added to a shared map contained in

61

either crypto/kem.go or crypto/sign.go files. The key for the map entry is the

algorithm name that wi l l be used in the configuration file and the value is a pointer

to the implemented interface (a Go struct). See the listing below for an example.

Lis t ing 8.1: K E M interface

type KemAlgorithm i n t e r f a c e {
KeyGenO (puK, prK [] b y t e)
Dec(c, prK [] b y t e) (key [] b y t e)
Enc(puK [] b y t e) (c , key [] b y t e)
EkLen() (ekLen i n t)
CLen() (cLen i n t)
Id() (i d u i n t 8)

List ing 8.2: Signature interface

type S i g n A l g o r i t h m i n t e r f a c e {
KeyGenO (puK , prK [] b y t e)
V e r i f y (puK, msg, s i g n a t u r e [] b y t e) bool
S i g n (p r K , msg [] b y t e) (s i g n a t u r e [] b y t e)
S i g n L e n O (s i g n L e n i n t)
PuKLenO (pkLen i n t)
PrKLenO (skLen i n t)
Id() (i d u i n t 8)

List ing 8.3: K E M algorithms map

var kems = map [s t r i n g] K e m A l g o r i t h m {
"PqComKyber512": &kem.PqComKyber512{>,
" C i r c l K y b e r 5 1 2 " : &kem.CirclKyber512{>,

}

8.6 Benchmarking

A speed performance benchmark can be run on all of the post-quantum algorithms -

digital signatures and key encapsulation methods- that are added to the application

using the modularity system. Benchmarking is done using the standard Go library.

This approach has many advantages over building a custom benchmarking tool. It

is very precise meaning it only measures the actual time it took to run a function.

It also integrates very well wi th another tool called benchstat 3. It is used for

3https://pkg.go.dev/golang.org/x/perf/cmd/benchstat

62

https://pkg.go.dev/golang.org/x/perf/cmd/benchstat

summarizing the resulting benchmark and providing a variance to the resulting

measurements. The list of available benchmarks can be found in C. A guide on how

to benchmark can be found in Appendix B.5 .

B y default, the go benchmark command runs a function or a piece of code as

long as the complete execution time is 1 second. Then it divides the total amount

of time it took to execute by the number of iterations ran. The result is the time

it took to run one iteration. However, this setting can be changed by appending a

parameter. For example in order to run a function for 2 seconds, the parameter

• -benchtime=2s
can be provided. One benchmark of a function can also be run multiple times by

using the

• -count=x
parameter and supplying x repetitions. If the number of repetitions is six or more

benchstat can provide a variance to the resulting time of one iteration. To choose

what benchmarks should be run, the parameter

• -bench=regex
can be used provided with a regex expression. There is a possibility that the bench­

marking/testing processes exists before finishing. This is because the default timeout

is 10 minutes. If a benchmark wi l l take longer than 10 seconds the timeout needs

to be overwritten by supplying the

• -timeout=24h
command. In this example, the timeout is set to 24 hours.

8.7 Optimization process

In order to maximize the performance of Kyber and Di l i th ium the implementation

Go code needs to be optimized. However, before the optimization process can begin

a benchmarking process has to be established in order to create a baseline to compare

to. The benchmarking process is described in Section 8.6 and was used during the

optimization process. The measured speed of algorithms is rarely going to be the

same ten times in a row or even two times in a row, especially Kyber and Di l i th ium,

where the speed of calculations depends on the generated keys. Even more when the

generation of the keys is dependent on pseudo-randomly generated values which in

this case it is. This is why the result is going to be different every time a benchmark

is run. So even if a code change that speeds up the algorithm is implemented the

result might be worse. To combat this a benchmark is run multiple times in a row

to generate more data which then can be used to calculate the mean of those runs.

The tool benchstat is able to calculate the mean and even the statistical deviance

of the mean by using data from a benchmark run. This way it is possible to tell

63

whether a change in the code was beneficial to the performance of the algorithm or

if it was just a statistical fluke.

Now that a proper baseline and a benchmarking process has been established

the optimization can begin. Preallocation instead of appending is one of the best

ways to optimize a Go program especially Kyber and Di l i th ium where the program

has to iterate over large arrays. When appending to an array in Go, the array size

is increased dynamically depending on the number of elements in it. This means

every time the size of the array is exceeded a new array has to be allocated and the

contents of the old array has to be moved. This takes up a lot of instructions. A

better way of appending in this situation is to preallocate the required amount of

memory for the array and just insert elements into the array.

Another important thing to keep in mind while optimizing is that division is a

much more time consuming operation than others. It is always preferable to use

multiplication or bit shifting together with basic binary operations like A N D and

O R when possible over division. A good example is byte decomposition since this

operation is used a lot in Kyber and Di l i th ium. One of the straightforward solutions

might be to divide a number by the powers of 2 up to 8 and then reduce the result

modulo two to get the bit in that position (see List ing 8.4).

Lis t ing 8.4: Byte decomposition using division and modulo

f o r i = 0; i < 8; i++ {
b i t s [i] = i n t (num/K<i) % 2

}

This approach is slow compared to some other possible approaches because it uses

division which is a slow operation. Additionally, the result is converted to an integer

which wastes all the instructions that were used to calculate the decimal points of

the division result. A better approach would be to first shift the number right for

each bit of the number. So for an 8 bit number (a byte) shift the number by the bit

position. Then A N D the shifted number wi th a mask of value 0x1. The result wi l l

be the bit in the position of the shift count. So for example by shifting the number

5 times and A N D i n g it wi th 0x1 the result wi l l be the fifth least significant bit of the

number. This implementation can be seen in List ing 8.5. Many more optimizations

are used in the implementation of Kyber and Di l i th ium in this thesis and can be

seen by viewing the implementation source code.

Lis t ing 8.5: Byte decomposition using A N D and bit shifting

f o r i = 0; i < 8; i++ {
b i t s [i] = (num >> i) & 0x1

}

64

8.8 Measuring results

The results of the optimization process described in Section 8.7 for booth Kyber

and Di l i th ium can be seen in Tables 8.1 and 8.2. The tables compare the average

speed of each algorithm measured using benchmarks for two implementations. The

C i r c l 4 implementation is a cryptography library created by Cloudflare. The imple­

mentation of Kyber and Di l i th ium in this thesis is called P q C o m . The process of

benchmarking included key generation, encapsulation, decapsulation for Kyber and

key generation, signature creation, and verification for Di l i th ium. The benchmarks

were run on an A M D Ryzen 5 3600 processor.

Tab. 8.1: K E M s preformance summary

P q C o m Average [us C i r c l Average [us]

Kyber512

Kyber768

Kyber l024

459.9 ± 1 %

707.9 ± 1%

1019 ± 1 %

109.7 ± 2 %

171.7 ± 2 %

267.4 ± 2%

Tab. 8.2: Digi ta l signatures preformance summary

P q C o m Average [us C i r c l Average [us]

Dil i thium2

Dil i thium3

Dil i thium5

1986 ± 1 %

3206 ± 2%

4130 ± 1 %

472.9 ± 1 %

7 8 8 . 1 ± 0 %

1054 ± 1 %

More detailed benchmarks can also be found in Appendix D where each table

contains the performance information about one implementation of an algorithm, all

of its modes and also measurements of its sub algorithms. Each table also contains

comparisons to other models of processors. The exact command that was used to

benchmark is

• go test -bench="Kem|Signature" -run=~# -count=20 -timeout=24h \
./... | tee out.txt

This command runs benchmarks defined in Appendix C . Each benchmark is run 20
times to reduce the amount of statistical noise. The output is written to the file

out .txt. This file is then parsed wi th benchstat application mentioned in Section

8.6.

4https://github.com/cloudflare/circl

65

https://github.com/cloudflare/circl

9 Network communication and security
The underlying communication protocol that was created for this application is

described in this chapter. More specifically the header structure, types of messages

and the connection initialization. The second part of this chapter wi l l describe

possible approaches to attacking this protocol and techniques that prevent such

attacks.

A Wireshark dissector script has been created for the protocol that wi l l be de­

scribed in this chapter. This is a L u a script that can parse raw data into a defined

protocol structure in Wireshark. Examples of captured messages and a guide on

using Wireshark together wi th this L u a script can be found in Appendix F .

9.1 Protocol definition

A s wi th any modern L 7 protocol, the messages in this protocol consist of a header

the actual data that is being sent also referred to as a payload. The data can either

be used for initializing the connection or just for sending arbitrary data. The header

is very simple and consists of only two fields the length of the payload and the type

of the payload. A s can be seen in Figure 9.1, the type is an 8 bit integer and the

length is a 16 bit integer.

Len Type
2 B 1 B

Fig . 9.1: Protocol header

From the possible 255 types only 4 types of payloads are implemented:

• ClientlnitT- i n i t i a l i z a t i o n message for the client side,

• ServerInitT- initialization message for the server side,

• ContentT-generic data payload type,

• ErrorT- error messages.

The initialization together wi th the client and server init types is detailed in the

following Subsection 9.1.1. The rest of the types are mentioned in Subsection 9.1.2.

Apar t from the headers of the message types all of the data is encrypted using a

quantum-resistant symmetric cipher, more specifically A E S - G C M with a keys size

of 256 b. The G C M block mode also computes a M A C which is used for validating

the authentication and integrity of the encrypted message [4].

66

9.1.1 Initialization

Before the initialization process can start client and server need to share each other's

public keys, this can easily be done by first generating a pair of config files wi th the

command pqcom config gen. Then one of the config files is moved to a peer that

wants to connect to the other peer. Another approach would be to share each other's

public key. However, it is very important to share either the public key or the config

file out of the band or by using another authenticated and secure communication

channel.

After public keys have been exchanged, the process starts with the client sending

the C l i e n t l n i t T message which is illustrated by Figure 9.2. This is the biggest

message out of the four defined messages. It contains six fields in total.

• Header - I t serves the same purpose as in any other message, to provide a

message type and to dictate the payload length.

• K E M and Sign T y p e - T h e s e two fields exist for checking whether the two

peers have the same algorithm IDs configured in their configuration files. K E M

Type stores the id for the key encapsulation method and the Sign Type stores

the digital signature algorithm. The ids that are used in these fields are defined

while implementing algorithms v ia the modularity system (see Section 8.5).

Booth of the fields are 1 byte long so for each algorithm type there are 255

possible algorithms.

• Timestamp - To prevent repeat attacks, a timestamp is always sent by the

client. It contains the Epoch time in microseconds and is defined wi th a size

of 8 bytes. How exactly this timestamp is used to prevent repeat attacks is

described in Subsection 9.2.1.

• Public Encryption K e y - This field enables the server to encrypt a randomly

generated symmetric key when he receives the client init message. The client

can then decrypt the randomly generated encrypted symmetric key in order

to establish a shared key for the symmetric cipher. The length of the public

key is defined by the K E M Type field.

• Signature - To secure the above-mentioned fields a digital signature is created

to protect the authenticity of the whole message. Only the client can create

a signature since he holds the private key in his configuration file. The public

key was shared wi th the server beforehand so he can easily check whether

a client init message was created by the client. The size of the signature is

defined by the Sign Type field.

Once the server receives the client init message it first verifies its signature. Then

it checks the timestamp and saves it to a predefined location if nessescery, again to

see how exactly this helps prevent the replay attack see Subsection 9.2.1. Next, it

67

Header
3 B

K E M Type
1 B

Sign Type
1 B

Timestamp
8 B

Publ ic Encryption Key

Signature

Fig . 9.2: Client inicialization message

checks if the algorithm types are the same as the ones in its configuration file. If

all these checks are positive a random symmetric key is generated and encrypted

using the public encryption key the client sent. The ServerlnitT message contains

3 fields as can be seen in Figure 9.3.

• Header - Defines message type and length.

• K e y Ciphertext -Encryp ted symmetric key generated by the server. Only

the client can decrypt it since the keys were generated by him. There is no

fixed length for the ciphertext since its size depends on the K E M type field.

• Signature - In order to provide two-way authentication the server has to dig­

itally sign the server init message wi th the pre-configured private key. The

signature can then be verified by the client who has the corresponding public

key configured. A s wi th the client init message signature, this signature size

also depends on the received and configured Sign Type field.

Header
3 B

Key Ciphertext

Signature

Fig . 9.3: Server inicialization message

Upon receiving the server init message, the client first verifies its signature and

decrypts the symmetric key with his private encryption key. Then the encrypted

communication can start using a symmetric cipher and the shared symmetric key.

68

9.1.2 Other communication

The other two message types are relatively simple. The first one is ErrorT message

which is used for sending error messages. For example in a situation where the

client's configured algorithms are not the same as the server's algorithms, the server

sends an error message to the client, stating that there has been a misconfiguration.

This message type can be seen in Figure 9.4.

Header
3 B

Error Reason

Fig . 9.4: Error message

The last defined message type is the plain data message Content! (see Figure

9.5). This message is used for sending any data that the users want to exchange be

it a file or just plain text messages. It can be deduced from the header fields that

the maximum payload size is 65 523 or 2 1 6 — 1 — 12 bytes long. The header length

is 16 bits long which dictates the maximum payload size to 65535. The nonce used

in this message type is 12 bytes long so that has to be deducted from the maximum

payload size. This means that in the chat mode, users can exchange a message up

to 65 523 bytes long. Whi le in the file sending mode, the file that is being read is

read by chunks, these chunks are then sent, so the maximum file size is theoretically

infinite. A s mentioned beforehand the nonce is also a part of this type of message

and is randomly generated for every new message. It is used as the initialization

vector for the G C M operation mode while using A E S .

Header
3 B

Nonce
12 B
Data

Fig . 9.5: Content message

69

9.2 Protection against attacks

The most obvious approach to attacking this application would be to eavesdrop on

the communication channel and just capture and read the traffic. This is not possible

since as mentioned beforehand all traffic apart from the header and initialization

messages is encrypted using symmetric cipher A E S - G C M - 2 5 6 .

However, more complex approaches could be used for breaking the security of

this application. One of those approaches is the impersonation of a communicating

entity, in this case, one of the peers. The use of public key cryptography, more

specifically digital signatures prevents the use of this approach. A n attacker im­

personating the client can't create a valid client init message since he can't create

a digital signature that would be verifiable by the server. Only the real client can

create that signature since he has the private key. Similarly, if the attacker would

impersonate the server, he can't create a valid server init message since only the

client holds the valid private key to the shared public key.

Another type of attack is the M i t M (Man in the Middle) attack. It happens

when an attacker manages to create two simultaneous connections between the user

and the server. The peers think they are communicating with each other, in t ruth

the attacker is just forwarding their messages back and forth while being able to read

them. To prevent this type of attack, the digital signature is again used together

wi th the preconfigured keys. If the attacker wants to create a separate connection

wi th the server after receiving the client init message from the client, the only thing

he can do is forward it through to the server, which is harmless. He can't edit it

or change the value for example of the public encryption key since he can't create

a new signature. He is also unable to impersonate the server since he doesn't know

his private key.

9.2.1 Repeat attack

If the attacker would be able to eavesdrop on the communication between two peers

let's say, Alice and Bob, he could save the client init message and resend it again

at a later time to initialize the connection again. Now Bob would think that he is

accepting a connection from Alice , while in t ruth he's making a connection wi th the

attacker.

To neutralize this type of attack a prevention mechanism is used in the form of

timestamp cookies. A s mentioned in 9.1.1 the client init message contains a 64 b

timestamp. In order to prevent time zone synchronization errors the Epoch time is

used. When a server receives a client init, he first creates a name associated wi th

the client's public key hash. If there is no cookie wi th this name, the server saves

70

the timestamp in local storage together wi th the received timestamp. The cookie is

always saved to a cookie directory listed in Appendix E . If a new client init message

comes in from the same client containing a timestamp that is newer - meaning a

higher number, meaning ahead of the current timestamp - the cookie is no longer

created just updated wi th the new timestamp. O n the other hand, if the server

receives a client init wi th the same or older timestamp, he drops the connection

since the timestamp was not updated with a newer one. This prevents the attack

from repeating a client init message. Of course, this works only at the assumption

that the first-ever connection from that client is a legitimate one.

71

Conclusion
Post-quantum algorithms Kyber and Di l i th ium are successfully implemented in this

thesis using the Go programming language. They are also described in this thesis

along with other families of post-quantum cryptography. The measured performance

of the implementations was compared to a cryptographic library created by Cloud-

flare. The conclusion is that Cloudflare's implementation of the algorithms is on

average about 4.2 times faster than the implementation done in this thesis.

Along wi th the implementations of Kyber and Di l i th ium, this thesis also in­

troduces a quantum-safe modular communication application. The modularity is

achieved by allowing any post-quantum algorithms implemented in Go to be added

wi th very minimal code changes and good integration into the application. For ex­

ample, if an algorithm is added it is automatically included in the benchmark suite

of tests, where its performance can be compared to other implementations. The

final state of the applications uses Kyber which is used to create a session key and

Di l i th ium used for digital signatures. The user of this application can easily change

which algorithm he desires simply by editing the configuration file or by generating

a new one. Configuration files can be generated by the application and similarly,

as wi th the benchmarking test suites, any added algorithm implementation is seam­

lessly included configuration option.

The underlying protocol which the application uses is very well defined in this

thesis and also supports a custom dissector script. This script can be used together

wi th Wireshark to observe the protocol in real traffic scenarios. Methods for pre­

venting common network attacks like M a n in the Middle or repeat attacks are also

included in the protocol. The application that uses this protocol was designed to be

used only in a terminal/console environment. It contains two basic functionalities

first it allows the application to send or receive arbitrary data. This data can take a

form of a file which can be transmitted between two users. A l l of this data transfer

is of course done over a secured channel. This channel is established using post-

quantum cryptography, implied by the aforementioned algorithms. The encryption

used during the channel is also quantum-safe since it uses AES-256. The applica­

tion can also be used as a chatting application. To create a compromise between

maintaining a universal text interface and ease of use, the application in this mode

runs in a terminal user interface instead of a graphical user interface.

One of the main goals moving forward would be to improve the performance

of the affirmation algorithms. To improve the security of the underlying protocol,

a formal verification would be required to theoretically prove its security. A d d i ­

tionally implementing Go unit and integration tests would also help strengthen the

protocol security.

72

Bibliography
[1] B E R N S T E I N , Daniel J . and Tanja L A N G E . Post-quantum cryptography. Na­

ture [online]. 2017, 14.9, 2017(549), 188-194 [cit. 2022-10-09]. Available from:

dolhttps://doi.org/10.1038/nature23461

[2] S M A R T , Nigel. Cryptography: An Introduction [online]. 3rd. ed. M c G r a w - H i l l

College, 2004 [cit. 2020-10-18]. I S B N 978-0077099879. Available from: https:
//www.cs.umd.edu/~waa/414-Fll/IntroToCrypto.pdf

[3] R I S T I C , Ivan. Bulletproof SSL and TLS: Understanding and Deploying SS-

L/TLS and PKI to Secure Servers and Web Applications Ivan Ristic. 6 Acan-

tha Court, Montpelier Road, London W5 2QP, Uni ted Kingdom: Feisty Duck,

2014. I S B N 978-1-907117-04-6.

[4] P A A R , Christof and Jan P E L Z L . Understanding Cryptography: A Textbook for

Students and Practitioners. 2nd edition. London New York: Springer Heidelberg

Dordrecht, 2010, 382 s. I S B N 978-3-642-44649-8.

[5] S H A N N O N , Claude E . Communication Theory of Secrecy Systems. Bell System

Technical Journal. 1949, 4(28), 656-715.

[6] B A R K E R , Elaine and Nicky M O U H A . Recommendation for the Triple

Data Encryption Algorithm (TDEA) Block Cipher. 2nd ed. N I S T Pubs,

2017, 32 s. Available from: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-67r2.pdf

[7] C H E N , Li ly , Stephen J O R D A N , Y i - K a i L I U , Dust in M O O D Y , Rene P E R -

A L T A , Ray P E R L N E R and Daniel S M I T H - T O N E . N I S T I R 8105. Report

on Post-Quantum Cryptography. N I S T , 2016, 15 s. Available from: http:
//dx.doi.org/10.6028/NIST.IR.8105

[8] F I P S P U B 202. SHA-3 standard: permutation-based hash and extendable output

functions. Gaithersburg, U S A : N I S T , 2015, 37 s. Available from: http://dx.
doi.org/10.6028/NIST.FIPS.202

[9] F I P S P U B 180-4. Secure Hash Standard. Gaithersburg, U S A : N I S T , 2015, 36 s.

Available from: http: //dx. doi . org/10.6028/NIST. FIPS. 180-4

[10] B E R N S T E I N , Daniel J . , Johannes B U C H M A N N and Er ik D A H M E N . Post-

Quantum Cryptography. Berl in: Springer-Verlag, 2009, 248 s. I S B N 978-3-540-
88701-0.

73

https://doi.org/10.1038/nature23461
http://www.cs.umd.edu/~waa/414-Fll/IntroToCrypto.pdf
https://nvlpubs.nist.gov/nistpubs/
http://dx

[11] Y A N O F S K Y , Noson S. and Mirco A . M A N N U C C I . Qunatum computing for

cumputer scientists. New York: Cambridge university press, 2008, 402 s. I S B N

978-0-521-87996-5.

[12] P I T T E N G E R , Ar thur O. An Introduction to Quantum Computing Algorithms.

Boston: Birkhauser, 2000, 150 s. I S B N I S B N 0-8176-4127-0.

[13] M C M A H O N , David . Quantum computing explained. New Jersey: John Wiley

& Sons, 2008, 351 s. I S B N 978-0-470-09699-4.

[14] P R E T S O N , Richard. Applying Grover-s Algorithm to Hash Functions: A Soft­

ware Perspective. Bedford: The M I T R E Corporation, 2022. Available from:

https://arxiv.org/pdf / 2 2 0 2 . 1 0 9 8 2 .pdf

[15] M O S C A , Michele. Cybersecurity in an era with quantum computers: will we be

ready?. Ontario: Cryptology ePrint Archive, 2015, 4 s. Available from: https:
//eprint.iacr.org / 2 0 1 5 / 1 0 7 5

[16] I B M Unveils 400 Qubit-Plus Quantum Processor and Next-Generation

I B M Quantum System Two. I B M . IBM Newsroom [online]. 2022 [cit. 2023-

03-20]. Available from: https://newsroom.ibm.com/2022-ll-09-IBM-
Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-
IBM- Quantum-System-Two

[17] G A M B E T T A , Jay. Expanding the I B M Quantum roadmap to anticipate

the future of quantum-centric supercomputing. I B M . IBM research [online].

2021 [cit. 2022-10-26]. Available from: https://research.ibm.com/blog/
ibm-quantum-roadmap-2025

[18] A L A G I C , Gorjan, Daniel A P O N , David C O O P E R , et al. N I S T IR 8413-UPD1.

Status Report on the Third Round of the NIST Post-Quantum Cryptography

Standardization Process. NIST , 2022, 102 s. Available from: https ://doi.
org/10.6028/NIST.IR.8413-updl

[19] A J A T I , Miklos . Generating hard instances of lattice problems. Proceedings of

the twenty-eighth annual ACM symposium on Theory of Computing [online].

1996, 99-108 [cit. 2022-11-01]. Available from: doi:https://doi . org / 1 0 . 1 1 4 5 /

237814.237838

[20] G O L D R E I C H , Obed, Shafi G O L D W A S S E R and Shai H A L E V I . Public-key

cryptosystems from lattice reduction problems. Advances in Cryptology -

CRYPTO '97 [online]. Heidelberg: Springer Berl in Heidelberg, 1997, 112-131

[cit. 2022-11-02]. Available from: doi:10.1007/BFb0052231

74

https://arxiv.org/pdf/2202.10982.pdf
https://newsroom.ibm.com/2022-ll-09-IBM-
https://research.ibm.com/blog/
https://doi

[21] R E G E V , Oded. O n lattices, learning with errors, random linear codes, and

cryptography. Proceedings of the thirty-seventh annual ACM symposium on

Theory of computing [online]. 2005, 5, 84-93 [cit. 2022-11-03]. Available from:

doi:10.1145/1060590.1060603

[22] G R I M E S , Roger A . Cryptography Apocalypse: Preparing for the Day When

Quantum Computing Breaks Today-s Crypto. Canada: John Wi ley & Sons,

2020, 263 s. I S B N 978-1-119-61819-5.

[23] Submission Requirements and Evaluation Criteria for the Post-

Quantum Cryptography Standardization Process. 2017, 25 s. Available

from: https://csrc.nist.gov/CSRC/media/Proj ects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

[24] B A R K E R , Elaine. N I S T 800-57. Recommendation for Key Management: Part 1

- General. 5th edition. National Institute of Standards and Technology, 2020,

171 s. Available from: https://doi.org /10.6028/NIST.SP.800-57ptlr5

[25] A V A N Z I , Roberto, Joppe B O S , Leo D U C A S , et al. CRYSTALS-Kyber: Al­

gorithm Specifications And Supporting Documentation. 3rd ed. 43 s. Avai l ­

able from: https : / / p q-crystals.org/kyber/data/kyber-specification-
round3-20210804.pdf

[26] B A I , Shi, Leo D U C A S , Eike K I L T Z , Tancrede L E P O I N T , Va idm L Y U B A -

S H E V K S Y , Peter S C H W A B E , Gregor S E I L E R and Damien S T E H L E .

CRYSTALS-Dilithium: Algorithm Specifications and Supporting Documenta­

tion. 3rd ed. 38 s. Available from: h t t p s : / / p q - c r y s t a l s . o r g / d i l i t h i u m /
data/dilithium-specification-round3-20210208.pdf

[27] F O R O U Z A N , Behrouz. TCP/IP Protocol Suite. 4th edition. Raghothaman

Srinivasan: M c G r a w - H i l l , 2010, 1029 s. I S B N 978-0-07-337604-2.

[28] M A R L I N S P I K E , Moxie. The Double Ratchet Algorithm. 2016, 35 s. Available

from: https://www.signal.org/docs/specifications/doubleratchet/
doubleratchet.pdf

[29] D O N E N F E L D , Jason A . WireGuard: Next Generation Kernel Network Tunnel.

2020, 20 s. Available from: https: //www. wireguard. com/papers/wireguard.
pdf

[30] R A Y M O N D , Er ic . The Art of UNIX Programming. Addison-Wesley, 2003.

I S B N 978-0131429017.

75

https://csrc.nist.gov/CSRC/media/Proj
https://doi.org/10.6028/NIST.SP.800-57ptlr5
https://pq-crystals.org/kyber/data/kyber-specification-
https://pq-crystals.org/dilithium/
https://www.signal.org/docs/specifications/doubleratchet/

[31] D O N O V A N , A l a n A . A . and Br ian W . K E R N I G H A N . The Go Programming

Language. 2nd edition. Crawfordsville, Indiana: Addison-Wesley, 2016, 399 s.

I S B N 978-0-13-419044-0.

[32] A H O , Alfred V . , Monica S. L A M , Rav i S E T H I and Jeffrey D . U L L M A N .

Compilers Principles, Techniques, & Tools. 2nd edition. Addison-Wesley, 2006,

1035 s. I S B N 0-321-48681-1.

[33] L I A N G , Zhichuang, Shiyu S H E N , Yuantao SHI, Dongni S U N , Chongxuan

Z H A N G , Guoyun Z H A N G , Yunlei Z H A O and Zhixiang Z H A O . Number The­

oretic Transform: Generalization, Optimization, Concrete Analysis and A p p l i ­

cations. Information Security and Cryptology [online]. Springer, Cham, 2021,

12612, 415-432 [cit. 2022-11-17]. Available from: doi:10.1007/978-3-030-71852-

7 28

76

Symbols and abbreviations
A E S Advanced Encrypt ion Standard

C B D Centrai l Bionimal Distribution

C F B Cipher Feedback

C L I Command Line Interface

C R Y S T A L S Cryptographic Suite for Algebraic Lattices

C V P Closest Vector Problem

D E S Da ta Encrypt ion Standard

D H Diffle-Hellman

D L P Discrete Logari thm Problem

D S A Digi ta l Signature Algor i thm

E 2 E E End- to-End Encrypt ion

E C B Electronic Code Book

E C C E l i t i c Cruve Cryptography

E C D H E l i t i c Curve Diffle-Hellman

E C D S A El i tp ic curve Digi ta l Signature Algor i thm

F F T Fast Furier Transform

G C D Greatest Common Divisor

G C M Galois/Counter Mode

G U I Graphical User interface

I F P Integer Factorization Problem

IP Internet Protocol

K D F K e y Derivation Fucntion

K E M K e y Encapsulating Mechanism

K E P K e y Exchange Protocol

77

L W E Learning W i t h Errors

M A C Message Authentication Code

M I T M M a n in the Middle

M L W E Module Learning wi th Errors

N A T Network Address Translation

N I S T National Insititue of Standards and Technology

N T R U N- th degree Truncated Polynomial Ring

N T T Number Theoretic Transform

O F B Output Feedback

P D U Protocol Data Uni t

P R N G Pseudo Random Number Generator

Q F T Quantum Fourier Transform

R S A Rivest Shamir Adleman

S V P Shortest Vector Problem

T C P Transmission Control Protocol

T L S Transport Layer Security

T U I Terminal User interface

U D P User Datagram Protocol

78

List of appendices

A Lattice-based algorithms diagrams 80

B G o program instructions 82

B . l How to build 82

B.2 How to run 82

B.3 Examples 83

B.3.1 Chat mode 83

B.3.2 Fi le exchange mode 83

B.4 How to test 84

B.5 How to benchmark 84

C Available algorithms and benchmarks 85

D Performance 86

E Directories 89

F Wireshark integration 90

G Application T U I 91

79

A Lattice-based algorithms diagrams

public key private key

A r t e i e 2
m

kxk k k k l

Fig . A . l : Kyber block scheme

80

S i

, Ts I CD

?—p •

i r i r i r H

P2R H k w H

private key

S l

public key

M —h

H H H 1 H

to « -

9 — • MH

A z c t l h M

i f

UH H UH H

Fig . A . 2 : Di l i th ium block scheme

81

B Go program instructions
This appendix contains the necessary information for building the go program, run­

ning it and then instructions on how to run the provided tests.

B.l How to build

Go supports most of the well-known operating systems such as Linux, Windows and

Mac. This application supports the Linux and Windows operating systems. It was

not tested on a Mac system but theoretically, it should also work on it. First of all

download the latest version of the go binary from this link

• h t t p s : / / g o . d e v / d o c / i n s t a l l .

The minimum required Go version is 1.18. Once go is installed the binary executable

file for this thesis can be built by running

• go b u i l d - v - o pqcom

or for Windows

• go b u i l d - v - o pqcom .exe

inside a command line interface. The command also has to be run inside the root

directory of the project. The output of this command should yield a file named

pqcom or pqcom .exe respectively. From now on only the Linux binary wi l l be used

for examples but the same examples also apply to the Windows executable.

B.2 How to run

Once the binary is built it can be run just like any other binary. R u n wi th

• ./pqcom

in the command line interface. To run the Windows executable run

• pqcom .exe

Refer to Chapter 8 for application capabilities or run

• ./pqcom —help

to see what commands are available. Additionally, every command has a short

description of what it does on top of available commands or flags. For example to

see information about the app command run

• ./pqcom app —help

82

https://go.dev/doc/install

B.3 Examples

Before commands that create quantum-resistant connections can be used a config­

uration file is needed. To generate configuration files for both of the peers run

• ./pqcom config gen
To use different algorithms for the configuration check the Section 8.3. To use a

created configuration file use one of the three options defined in Section 8.2.

In order to receive all log messages the option — l o g debug can be appended to

the commands to enable logging at the debug level. B y default, the logging wi l l be

output to the stderr channel of the terminal. However, while the application uses

the chat mode, log messages are instead saved to a file located in the log directory

listed in Appendix E .

B.3.1 Chat mode

Now that configuration files are generated, the application can be used to create

connections, for example using the chat command. Firs t ly the server has to start

listening. B y default command

• ./pqcom app chat -1 — c o n f i g pqcom_server.json
wil l start listening on port 4040 and on address 1 2 7 . 0 . 0 . 1 . Now a client has to

connect by running

• ./pqcom app chat -c — c o n f i g pqcom_client.json
where the default remote port is again 4040 wi th the IP address 1 2 7 . 0 . 0 . 1 . If

everything was done correctly a T U I should open where users can send messages to

each other.

B.3.2 File exchange mode

To run the application in send/receive mode for file exchange one of the peers first

has to run

• ./pqcom app receive — c o n f i g pqcom_server.json > output.txt
and the other peer has to run

• cat input.txt | ./pqcom app send — c o n f i g pqcom_client.json
When the commands are run in the correct order, the client wi l l send the contents

of the input. t x t file to the server who wi l l save the file in a file named output. txt.
However, these two commands wi l l only work on Unix-like systems. To create a file

exchange between two Windows systems run the following commands. The server

side has to run

• ./pqcom app receive — c o n f i g pqcom_server.json — d i r .

83

and the client needs to run

• ./pqcom app send — c o n f i g pqcom_server.json — f i l e input.txt
The received file wi l l be written in the given directory and named pqcom_temp_xxxxx
where the five x characaters are replaced by random characters.

B.4 How to test

Tests that check whether the implementations are working correctly can be run by

entering

• go test -v ./...
into the command line interface in the root directory of the project. These tests

check whether the implementations of the Kyber and Di l i th ium are functional.

B.5 How to benchmark

In order to launch benchmarks for all available post-quantum algorithms, meaning

all K E M and digital signature algorithms provided via the modularity system, run

this command

• go test -bench="Kem$|Signature$" -run=~# ./... I tee out.txt
In order to use benchstat for a better analysis of the results, first it has to be

installed inside the go binary folder by running

• go i n s t a l l golang.org/x/perf/cmd/benchstat@latest
In order to use the installed binary the Go binary directory has to be added to

the system path environment. The location of Go binary installations is located

at $H0ME/go/bin by default. A new benchmark file has to be generated so that

benchstat can produce valid statistical data. It can be generated by running

• go test -count=8 -bench="Kem$I Signatures" -run=~# ./... I \
tee out.txt

After installing benchstat it can be used on the generated file by running

• benchstat out.txt
In order to only test the algorithms implemented in this thesis run

• go test -bench="PqCom\w+All" -run=~# ./... I tee out.txt
Similarly as before the count be increased so that the results can be analyzed using

benchstat.

84

C Available algorithms and benchmarks
List of available algorithms that can be configured in this application taken from

the pqcom conf i g l i s t command. Algori thms prefixed with PqCom are implemen­

tations described in this thesis. The prefix C i r c l denotes algorithms from the

Cloudflare cryptography library.

Key encapsulation methods
_PqComKyber512
_PqComKyber768
_PqComKyberl024
_CirclKyber512
_CirclKyber768
_ C i r c l K y b e r l 0 2 4

D i g i t a l signatures
_ PqComDilithium2

PqComDilithium3
PqComDilithium5

_ C i r c l D i l i t h i u m 2
C i r c l D i l i t h i u m 3
C i r c l D i l i t h i u m 5

A list of available benchmarks can be found below where every benchmark from

a category can be applied to any algorithm or any algorithm security level included

in that category.

Key encapsulation methods
Key Generation
Encapsulation
Decapsulation
Key Generation+Encapsulation+Decapsulation

D i g i t a l signatures
Key Generation
Signature creation
V e r i f i c a t i o n
Key Generation+Signature creation+Verification

85

D Performance

Tab. D . l : Processor details

Name Ful l name Base Clock [GHz] M a x . Boost Clock [GHz]

A M D 3600 A M D Ryzen 5 3600 3.6 4.2

Intel 2300 Intel Core i5-2300 2.8 3.1

Intel 10610u Intel Core i7-10610u 1.8 4.9

Tab. D.2: P q C o m Kyber performance

Processor K e y G e n [us] Enc [us] Dec [us] A l l [us]

Kyber512

A M D 3600

Intel 2300

Intel 10610u

115.6 ± 0 %

235.2 ± 1 %

96.65 ± 10%

151.0 ± 0 %

302.9 ± 1 %

92.27 ± 2 %

205.4 ± 0 %

421.2 ± 0 %

132.5 ± 1 %

459.9 ± 1 %

948.2 ± 1 %

277.9 ± 1 %

Kyber768

A M D 3600

Intel 2300

Intel 10610u

185.0 ± 1 %

368.8 ± 0 %

138.6 ± 7 %

237.8 ± 0 %

455 ± 1 %

144 ± 1 %

309.3 ± 1 %

618.1 ± 0 %

191.1 ± 0 %

707.9 ± 1 %

1442 ± 1 %

420.3 ± 1 %

Kyber l024

A M D 3600

Intel 2300

Intel 10610u

277.3 ± 1 %

547.9 ± 0 %

250.2 ± 17%

318.5 ± 1 %

659.6 ± 0 %

209.8 ± 1 %

433.9 ± 0 %

863 ± 1 %

268.4 ± 0%

1019 ± 1 %

2074 ± 0%

607.2 ± 1 %

86

Tab. D.3: C i rc l Kyber performance

Processor K e y G e n [us] Enc [us] Dec [us] A l l [us]

Kyber512

A M D 3600

Intel 2300

Intel 10610u

33.9 ± 2 %

88.98 ± 2 %

19.4 ± 1 0 %

39.6 ± 1 %

102.4 ± 2 %

22.4 ± 0 %

39.3 ± 1 %

1 1 1 . 8 ± 4 %

21.2 ± 1 %

109.7 ± 2 %

297 ± 2 %

60.5 ± 1 %

Kyber768

A M D 3600

Intel 2300

Intel 10610u

56.2 ± 2 %

154.2 ± 1 %

31.8 ± 6 %

63.5 ± 0 %

165 ± 3%

35.1 ± 1 %

61.9 ± 0 %

182.2 ± 4 %

33.3 ± 0 %

1 7 1 . 7 ± 2%

494.9 ± 3 %

89.2 ± 1 %

Kyber l024

A M D 3600

Intel 2300

Intel 10610u

83.7 ± 1 %

233.2 ± 2 %

46.1 ± 7 %

92.02 ± 0 %

245.7 ± 1 %

49.3 ± 0 %

88.7 ± 0 %

265.9 ± 2 %

48.1 ± 1 %

267.4 ± 2 %

727.8 ± 3 %

130.1 ± 1 %

Tab. D.4: P q C o m Di l i th ium performance

Processor K e y G e n [us] Sign [us] Verify [us] A l l [us]

Dil i thium2

A M D 3600

Intel 2300

Intel 10610u

335.4 ± 0 %

661.6 ± 0 %

292.6 ± 2 2 %

1299 ± 2 %

2996 ± 5%

1009 ± 3 %

337 ± 0 %

705.8 ± 0 %

234.9 ± 7 %

1986 ± 1%

4445 ± 2%

1528 ± 4 %

Dil i thium3

A M D 3600

Intel 2300

Intel 10610u

555.7 ± 0 %

1073 ± 0%

498.2 ± 10%

2066 ± 3%

4980 ± 3%

1842 ± 11%

520.1 ± 0 %

1085 ± 0 %

403 ± 7%

3206 ± 2%

7072 ± 1%

2518 ± 4 %

Dil i th iumö

A M D 3600

Intel 2300

Intel 10610u

809.5 ± 0 %

1596 ± 1 %

633.2 ± 2 6 %

2461 ± 2 %

5860 ± 6%

2247 ± 1 1 %

803.9 ± 0 %

1656 ± 0 %

619.4 ± 5 %

4130 ± 1 %

9060 ± 3%

3358 ± 10%

87

Tab. D.5: C i r c l D i l i th ium performance

Processor K e y G e n [us] Sign [us] Verify [us] A l l [us]

Dil i thium2

A M D 3600

Intel 2300

Intel 10610u

99.6 ± 0 %

344.4 ± 1 %

60.44 ± 5 %

291.9 ± 1 %

904.0 ± 3 %

137.8 ± 2 %

84.3 ± 1 %

230.1 ± 3 %

43.3 ± 1 %

472.9 ± 1 %

1455 ± 4%

235.8 ± 1 %

Dil i thium3

A M D 3600

Intel 2300

Intel 10610u

189.5 ± 0 %

587.5 ± 2 %

139.2 ± 6 %

467.6 ± 1 %

1546 ± 3 %

215.5 ± 1 %

135.2 ± 0 %

448.9 ± 1 %

69.1 ± 1 %

788.1 ± 0 %

2530 ± 4%

384 ± 1 %

Dil i thium5

A M D 3600

Intel 2300

Intel 10610u

256.7 ± 0 %

891.9 ± 1 %

172.2 ± 9 %

574.9 ± 1 %

1994 ± 2 %

269 ± 1 %

217.7 ± 0 %

736.9 ± 1 %

110.2 ± 0 %

1054 ± 1 %

3733 ± 4%

509.6 ± 1 %

88

E Directories
This application uses some fixed directory paths to store or load files. Their location

depends on the operating system the application is running on. The directories that

are used on Unix-l ike systems are:

• config - $H0ME/. conf ig/pqcom
• cookie -$H0ME/. cache/pqcom
• log-$H0ME/. local/state/pqcom

O n Windows systems these directories are:

• config - $H0ME\. conf ig\pqcom
• cookie - $H0ME\.cache\pqcom
• log-$HOME\.pqcom\logs

89

file:///pqcom

F Wireshark integration
To run Wireshark together wi th the custom L u a script for dissecting the protocol

defined in this thesis run

• wireshark -X lua_script:wireshark/dissector.lua
while in the root directory of the project. However, this dissector only works if the

application is using the default port 4040. Below are some captured examples.

• Post-Quantum Communication P r o t o c o l
Length: 6173
Type: C l i e n t l n i t T (0)
KEM Type: PqComKyberl624 (5)
Signature Type: PqComDilithiumS (5)
Timestamp: Thu 23 Mar 2623 11:30:58 AM CET (1679567458135061)
P u b l i c E n c r y p t i o n Key: 574699f3e461b2b50dl2d83231Ocb5853619584456cc5753b34ac50a40b21
Signature: d95cda8afe83el4275f7db4afde5c9de5077d3d92dd6a83eaaelcea758eea890f6dl50bl...

Fig . F . l : Captured client init

Post-Quantum Communication P r o t o c o l
Length: 6163
Type: S e r v e r l n i t T (1)
Key c i p h e r t e x t : 7f21f99de461fe91667cee066f8a8bb509e021d863cac225443b57eebal284a43edb
Signature: 003ab5154bf59de57754d684668501O16bb94971cb3d4c2b38d44389e360e889b8caO0e3...

Fig . F.2: Captured server init

Post-Quantum Communication P r o t o c o l
Length: 26
Type: ErrorT (3)
Er r o r reason: Config a l g o r i t h m mismtatch

Fig . F .3: Captured error

Post-Quantum Communication P r o t o c o l
Length: 7113
Type: ContentT (2)
Nonce: 95ea01358111f2d0509891cf
Data: abc6168aa9973d4fedbe9f75d3cc5c8cldeO91c573a7be870ccf7c9c5339429565d7fb65...

Fig . F.4: Captured data

90

G Application TUI

[you]: H i !
[127.0.0.1:59276]: He l l o !
[you]: This i s a t e s t message.
[127.0.0.1:59276]: This i s another t e s t message.

Send a message.

Fig . G . l : Dark theme application T U I

[127.0 0.1:4040]: Hi!
[you]: Hello!
[127.0 0.1:4040]: This i s a t e s t message.
[you]: This i s another t e s t message.

Send a message...

ctrl+c quit

Fig . G.2: Light theme application T U I

91

