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1. Introduction 


Transcriptome assemblies are a useful tool in researching organisms. A variety of analyses 

are based on transcriptome assemblies, like “differential gene expression analysis, metabolic 

pathway reconstruction, novel gene discovery or metabolic flux analysis” (Voshall & 

Moriyama, 2018). With the new sequencing and assembly techniques it is possible to assem-

bly a full transcriptome of an organism relatively fast (Voshall & Moriyama, 2018). A com-

plete transcriptome assembly can give insights on a variety of biological and evolutionary 

questions (Hölzer & Marz, 2019).  

In this project RNA sequences from samples from different tissues of the carnivorous plant 

Utricularia vulgaris were analysed. The plant Utricularia vulgaris is an aquatic carnivorous 

plant that catches its prey with ultra-fast suction traps (Vincent & Marmottant, 2011; West-

ermeier et al., 2017). It has a very small genome size, with very few studies focusing on the 

actively transcribed genes during plant growth. For performing any kind of analysis with 

RNA sequencing data it is important to first evaluate the quality of the sequence reads and 

perform certain procedures to improve the quality of the data before further sequence pro-

cessing (e.g. assembly). In several steps before the actual analysis, during the collection of 

the data, several errors can be incorporated into the analysis. Especially the application of 

Next Generation sequencing (NGS) technologies, which were used for the sequencing of this 

dataset, leads to these errors (Patel & Jain, 2012). There is a number of sequence artefacts 

that are likely to be incorporated, like read errors, poor quality reads, and primer or adapter 

contamination (Patel & Jain, 2012). All these examples decrease the quality of the reads 

which can later lead to problems in the analysis. Especially for the later usage of this dataset 

it is very important to have good quality reads, because bad quality can negatively influence 

the results of for example sequence analysis and gene expression studies (Patel & Jain, 

2012). Therefore it is very important to perform a good quality control, filtering and trim-

ming of the sequence, in order to avoid time-intensive problems due to sequencing errors, in 

the later analysis. To show the importance of this quality control tools several of these tools 

are tested in this work on a small part of the previously mentioned dataset. The quality con-

trol is applied on the sequences and then the results of a sequence assembly of those correct-

ed sequences is compared to the sequence assembly results of the same uncorrected se-

2



quences. Additionally to testing different quality control tools, several different assemblers 

with different algorithms and principles should be used to choose the best assembly pipeline 

and diminish the risk of possible faulty assemblies. Regarding the huge amount of algo-

rithms and pipelines existing, this thesis aims to distinguish important steps in common qual-

ity control pipelines and evaluate different tools based on their differing approaches.  

2. Literary Review


2.1.Comparison of different quality control pipe-
lines 

As mentioned before there are a variety of issues in regard of the quality of RNA sequences. 

To overcome these difficulties it is recommended to evaluate the quality of a RNA sequenc-

ing (RNA-seq) experiment which can be done on two independent levels (Li, Nair, Wang & 

Wang, 2015). The first technique is based on the raw sequencing reads and does not involve 

further processing, like sequence alignment (Li, Nair, Wang & Wang, 2015). Therefore it is 

often described as a “low-level” strategy, as it is assessing the condition of the data based on 

the efficiency of the sequencing technologies and might oversee the biological reliability of 

the data(Li, Nair, Wang & Wang, 2015). It is suggested that this part of the quality control 

alone can cause flawed understanding of the data (Sheng et al., 2017). Hence additional 

evaluation on “higher level” is recommended to ensure correct results, like additional statis-

tic evaluation, comparison with similar datasets etc. (Li, Nair, Wang & Wang, 2015).  

A common technique to evaluate the quality of raw sequences is to estimate the probability 

of an error for each specific base-call in the sequencing read (Brent & Green, 1998). There-

fore Phred quality score (q) is used which is working with “log-transformed error probabili-

ties” and is defined as following  

 

with p being the “estimated error probability for that base call” (Brent & Green, 1998). A 

highere quality score shows a higher probability of a correctly identified base at that posi-

q = − 10 × log10(p)
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tion. In general, a q score above 30 stands for good quality, whereas below 20 suggests poor 

quality, with everything in between being acceptable (Li, Nair, Wang & Wang, 2015). After 

the calculation of the per nucleotide quality score it is common to compute the “average 

quality score per read” (Li, Nair, Wang & Wang, 2015). In fact there are several ways to use 

Phred score for quality filtering in RNA sequences. It is possible to use the average quality 

score per read and filter out reads under a specific threshold. Another possibility is to use a 

so called “sliding-window” technique, where a window of a specific size is selected and then 

moved over the read (Bolger, Lohse & Usadel, 2014). If the average quality score in this 

window drops under a certain value the region is filtered out of the sequence. Finally, the last 

option is to asses the “per tile sequence quality” as the sequencing is performed on flow cells 

which are separated into tiles. By assessing this feature it is possible to cut out bad regions of 

a tile if their quality scores are below a selected limit. Finally, the performance of these pro-

grams will be evaluated based on the effects of them on the assemblies as well as on the 

alignment, to make sure that not only the raw sequences are tested on condition but their bio-

logical reliability will be inspected as well.  

2.2.Comparison of different assembly strategies 

Once the quality of the sequences is assured, sequence assembly is the next step the data is 

going through. The process joins overlapping sequences together to form larger contigs 

(Saraswathy & Ramalingam, 2011). There are two main methods to create an assembly, one 

option is the DeNovo Asssembly, another is the Reference Assembly (Voshall & Moriyama, 

2018). For the latter approach a reference genome/transcriptome is needed, which is not al-

ways available. In this paper, only DeNovo Assembly will be describe. In this assembly the 

contigs are based directly on the data retrieved from sequencing and quality control, without 

making use of reference sequences (Voshall & Moriyama, 2018). In the majority of DeNovo 

assembly programs De Bruijn graphs are used to create the assembly (Martin & Wang, 

2011). First the assembly program creates k-mers from the reads which are later used to con-

struct the De Bruijn graph (Tjaden, 2015). K-mers are short subsequences from the original 

reads of a given length k (Voshall & Moriyama, 2018). By overlapping these sequnces, with 
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the help of the De Bruijn graph, the original sequences can be recreated (Voshall & Moriya-

ma, 2018). With assemblies one major limitation has to be noticed, because of the necessity 

of a k-mer “to start at every position along the original sequence in order for the graph to 

cover the full sequence.” (Voshall & Moriyama, 2018). This problem may result in either of 

the two most common and detrimental assembly errors. When k-mers are shorter likelihood 

that the full sequence is covered rises but so does the likelihood that one k-mer “corresponds 

to multiple reads from multiple transcripts.” (Voshall & Moriyama, 2018). This issue can be 

avoided by choosing longer k-mers but at the same time the “entire sequence of some tran-

scripts” may not be covered (Voshall & Moriyama, 2018). The first problem results in an 

error called “Chimeras”, the second in an error called “Fragmentation” (Voshall & Moriya-

ma, 2018).  

In general it is important to pick a good algorithm that will be able to create a high quality 

assembly, while not requiring too many computational resources.  

The first aim of this project is to test programs for all of the three previously mentioned qual-

ity filtering approaches to use Phred score for quality filtering in RNA sequences.  

The second aim is to test the influence of several assembly algorithms and pipelines and 

their influence on assembly results.  

3. Methodology


First, the control tool FastQC was used, to evaluate the quality of the Illumina reads (Version 

0.11.8,Andrews, 2010). FastQC is able to detect problems resulting from the sequencing as 

well as from the starting library material (Version 0.11.8,Andrews, 2010). As output FastQC 

creates a report of the tested sequences. In the report the all operations that were run are dis-

played, including with a summary and a short evaluation of the results (Version 0.11.8,An-

drews, 2010). The report shows Basic Statistics of the processed fastq file, the Per Base se-

quence quality, Per Tile sequence quality, Per tile sequence quality, Per sequence quality 

scores and several more parameters. As the collected data of the experiments contains for-

ward and reversed reads resulting from pair-end sequencing, there are two FastQC reports 

per read pair, which were used for a first evaluation of the quality of the data. Especially in-
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teresting in the FastQC reports were the Per tile sequence quality, as one of the quality filter-

ing tools later is based on this plot. Errors commonly displayed here are “bubbles going 

through the flow cell” , “smudges on the flow cell” or “debris inside the flow cell” (Version 

0.11.8,Andrews, 2010). Aim of the tool Filter by Tile, which will be described later, was es-

pecially to remove such errors as displaced here.  

Afterwards, Fast Length Adjustment of Short reads (FLASH) was used to merge the paired 

end reads (Version 1.2.11, Magoč & Salzberg, 2011; The Center for Computational Biology 

at John Hopkins University [CCB], n.d.). By the use of this software longer reads are created 

which may improve the result of transcriptomic assemblies (CCB, n.d.).  After Flash, 

FastQC was run again, but only on the samples that seemed particularly interesting for this 

project, in order to have a more detailed evaluation for the merged-reads. Instead of two 

FastQC reports per file, this number was diminished to only one FastQC report for the files, 

which were going to be analysed further.  

As the first evaluation of the data, as well as the merging of forward and reversed reads has 

been created, the next step consists of the testing of several different quality control tools. 

Out of the high diversity of quality control tools for RNA sequences three different programs 

were created, with three different approaches to filter the data. For all three quality control 

tools, the output from Flash was used as the provided input sequences.  

As a first quality control tool PRINSEQ was used for reformatting, filtering and trimming of 

the RNA sequences (Version 0.20.4, Schmieder & Edwards, 2011). As and addition, a short 

summary, which is created after the execution of the program, is provided  (Version 0.20.4, 

Schmieder & Edwards, 2011). The tool is able to evaluate data on several parameters like, 

GC content, ambiguous bases, Poly-A/T tails or Taq sequences and filters, reformats and 

trims the sequences dependent on the selected options  (Version 0.20.4, Schmieder & Ed-

wards, 2011). In this case the tool was used to filter out sequences with a low average quality 

score. As PRINSEQ provides another summary about the filtered sequences, the final selec-

tion of files for the rest of the work was made. In total five different files were completely 
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analysed, selected based on their FastQc reports as well as the results provided by PRIN-

SEQ.  

Alternatively to PRINSEQ the tool Trimmomatic was used on the five different files that 

were previously selected (Version 0.39, Bolger, Lohse & Usadel, 2014). For this tool the 

sliding window approach was used for filtering of the data, which scans reads from 5’ to 3’ 

direction and deletes the 3’ end of the read if the average quality score of a specified group 

of bases, the window, falls under the described threshold (Version 0.39, Bolger, Lohse & Us-

adel, 2014).  

As a third option for quality filtering, Filter By Tile was used, which is part of the package 

BBMap (Version 38.21, Bushnell, 2014). The main part of this software consists of an 

alignment tool, but the incorporated script Filter By Tile, is a quality control tool that uses 

the per tile sequence quality score for filter of sequencing reads.  

Finally, to evaluate the success of the quality control and filtering, assemblies were created 

using two different assemblers. For all five reads, the output sequences of first Flash, then 

Prinseq, Trimmomatic and finally FilterByTille were run.  

The first assembler, that was run for evaluation was Velvet, an assembly program using de 

Brujin graphs mainly used for genetic sequence assembly “ideal for high coverage, very 

short read (25-50bp) data sets” (Version 1.2.10, Zerbino & Birney, 2008). Velvet especially 

was created with the aim to eliminate experimental errors and repeats, by using a two step 

approach (Version 1.2.10, Zerbino & Birney, 2008). First, sequencing merging performed by 

an “error correction algorithm”, then a “repear solver” to distinguish “paths sharing local 

overlaps (Version 1.2.10, Zerbino & Birney, 2008).  

To also test a second approach for the assembly creation the software MEGAHIT was used 

(Version1.2.9, Li et al., 2015). This software utilises “succinct de Bruijn graphs which are a 

compressed version of de Bruijn graphs” (Version1.2.9, Li et al., 2015). MEGAHIT espe-

cially was created with the aim to “assemble large and complex” dataset, while efficiently 
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managing good performance with as little as possible expensive resources (Version1.2.9, Li 

et al., 2015). The tool focuses on created high quality assemblies in a short time, with rela-

tively small computer memory usage (Version1.2.9, Li et al., 2015).  

Following the successful completion of assemblies for all files and all different quality con-

trol and filtering tools, the results from both Velvet and MEGAHIT were evaluated using the 

Quality Assessment Tool QUAST (Version 5.0.2, Gurevich et al., 2013). QUAST computes 

various metrics for evaluation of assemblies and visualises them for easier comparison of 

different assemblies (Version 5.0.2, Gurevich et al., 2013).  

After all the QUAST evaluations for the assemblies were created, the output was used to 

create further statistics to compare the results and the differences resulting out of different 

quality control and filtering as well as varying assembly strategies.  

4. Results 


4.1. Selection of Files  
As one of the first steps of the project five files had to be selected to be tested in full. In total 

the complete dataset included 18 different files from different tissues of the plant. Aim of the 

selection was to show the different behaviour of the tools dependent on the differing files. 

Some of the earlier mentioned tests were run beforehand on the full dataset, to help with the 

final selection. In order to easily identify them in further research the files were not renamed 

in this project. To display the highest amount of diversity, the chosen files have differing 

length and based on first evaluation a very differing quality based on different criteria. This 

can be observed in the following sections.  

4.2. FastQC and Flash  

FastQC creates a report for every tested file that can be viewed in html format and down-

loaded. In the beginning of the report a short summary with basic statistics about the tested 
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dataset is shown, containing the number of total sequences, the amount of sequences flagged 

as poor quality, the sequence length and finally the GC content as a percentage. A short 

summary, is shown in the figure below (Tab. 1). There only forward reads (R1) are consid-

ered as the basic summary is very similar for the forward and reversed reads (R2) , with only 

the GC content slightly differing between R1 and R2 for each file. From this part of the 

analysis the total amount of sequences was most important, as it was crucial to select differ-

ing files, in order to be able to evaluate how the file size might impact later results.  

 

The next part of the report illustrated the per base sequence quality. Quality scores highlight-

ed green in the graph illustrate good scores across these position, whereas quality scores 

printed in red illustrate bad scores across these positions. Above the graph there is also a 

small icon indicating wether the per base sequence quality appears to be acceptable or not. 

For all files, forward as well as reversed reads, the data in the graphs was mainly illustrated 

in the green part, indicating a good per base sequence quality for all files. As an example, the 

graph for the File 6 - R1 is added in thee figure below (Fig 1).  

File 6- R1 File 8- R1 File 10- R1 File 11- R1 File 15- R1

Total se-
quences

17720809 54193881 6317255 22152877 35392415

Sequences 
flagged as 
poor quality 

0 0 0 0 0

Sequence 
length 

101 101 101 101 101

% GC 44 44 42 46 47
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Table 1: Basic statistics of all five tested fasqt files - forward reads (R1) 



As the data for this project were sequenced by an Illumina sequencing machine the next part 

of the report shows the per tile sequence quality. The plot displays the “deviation from the 

average quality for each tile” (Version 0.11.8,Andrews, 2010). In case a tile shows a “Phred 

score more than 2 less than the mean for that base across all tiles” a warning will be dis-

played  (Version 0.11.8,Andrews, 2010). Overall majority of the plot should be blue when 

the tiles have good quality, with warmer colours displaying worse quality. In this dataset the 

reports of all files, with both forward and reversed reads, issued a warning in this part of the 

report. With some files showing worse results than others. As displayed the merging of se-

quencing with FLASH in the next step improved the results for some files a little, but the 

overall per tile sequence quality is still problematic. This is shown here with the example of 

dataset 15, were R1(Fig 2A) and R2 (Fig 2B)  both display problematic regions in the plot. 

The merging of these two reads displays improvement in quality but as visible in the last 

figure (Fig 2C), the problematic regions are still noticeable.   

The per sequence quality scores show a good distribution for all files and reads and don’t 

show any sign of errors, like air-bubbles.  
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Fig 1: Per base sequence quality for File 6- R1 



In contrast to this the per base sequence content showed several warnings. However, none of 

these warning were red. In this part, most files had relatively similar results, showing only a 

little variation. As an example the plot for file 10- R1 is provided in the figure below (Fig 3). 
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Fig 2A: Per tile sequence quality for file 
15 - R1 

Fig 2B: Per tile sequence quality for 
file 15 - R2

Fig 2C: Per tile sequence quality for 
file 15 - with reads merged via Flash 



The per sequence GC content results show significant variation across all files. For all of 

them a warning was issued, in either yellow or red. Even after Flash the results did not im-

prove for the files, as both reads showed more or less the same distribution. The two figures 

below illustrate the differences between two files, and how diverse these are for different 

parts of the dataset. In the first figure, the GC distribution of file 8 - R1 is displayed, where 

the distribution is still quite similar to the theoretical one (Fig 4A). The graph of file 15 - R1 

on the other hand, shows a distribution differing quite significantly to the theoretical distrib-

ution (Fig 4B).   
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Fig 3: Per base sequence content for file 10 - R1 

Fig 4A: Per sequence GC content for file 8 - R1



 

The next point in the report, the per base N content, appears to be more or less unobtrusive 

for all five files, with only small signs of variation across the datasets.  

After this, the Sequence length distribution, is again similar for all five files. In none of the 

reports a warning was issued, indicating good quality sequences in regard of these values. 

Another part of the report, which illustrated higher variation across all files is the Sequence 

Duplication level. Most files except for file 10 (Fig 5A) showed a red warning here, as visi-

ble in the figures below on the example of file 8(Fig 5B). 
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Fig 4B: Per sequence GC content for file 15 - R1

Fig 5A: Sequence Duplication levels for file 10 - R1



 

The FastQC reports also contained lists with overrepresented sequences, displayed with a 

count, a percentage and a possible source. Majority of the files issued a warning here. How-

ever the only file that displayed a red warning was file 6 - R1.  

The last part of the report, illustrated the adapter content for several specific adapters. In this 

case, the presence of none of these adapters could be recognised.  

In general it is visible that all five files, display significant difference in quality measured on 

the previously mentioned assessed parameters. In the following part of the work other quali-

ty control and filtering methods were applied, in order to eliminate some of the errors illus-

trated by the FastQC reports.  
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Fig 5B: Sequence Duplication levels for file 8 - R1



4.3. Results from the quality control tools  

4.3.1. Prinseq 
The first quality filtering tool that was tested was Prinseq. It was run with the usage of the 

automatically applied settings. As output, Prinseq delivers the trimmed and filtered se-

quences in fastqc format. Additionally a summary is provided to illustrate the amount of se-

quences that were filtered. In the table below the main parts of this summary for all five files 

is provided (Tab. 2).  According to Prinseq File 8 has the smallest amount of bad sequences 

whereas the File 6 had the largest amount of bad sequences. The other files, 10, 11 and 15 all 

had a similar amount of bad sequences, around 20 percent.  

 

4.3.2. Trimmomatic 
The tool Trimmomatic was used to test the sliding window approach of quality filtering 

tools. The size of the window was set to 50 base pairs (bp) and the required quality score to 

25. In general, it seems like Trimmomatic only filtered out a very small amount of reads for 

all files, by application of the previously specified parameters, as the percentage of dropped 

reads always stayed significantly under one. A summary of the amount of filtered out reads 

is provided in the figure below (Tab. 3). 

File 6 File 8 File 10 File 11 File 15

Input se-
quences

2 490 593 18 524 857 3 133 942 4 642 630 13 026 613

Bad se-
quences

730 506 2 471 606 725 256 1 031 097 2 371 940

Bad se-
quences in %

29.33 13.34 23.14 22.21 18.21
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Table 2: Summary of the Prinseq output for all five fastq files 



4.3.3. Filter by Tile 
As a last quality filtering tool Filter by Tile was applied. Because it is based on the per tile 

sequence quality, FastQC was used to visualise the differences between the original Flash 

file, and the file after filtering it with this software. As visible in the figure below, the Per 

Tile sequence quality graph shows more red regions as it did before. It suggests that particu-

larly those parts of the file have been fully deleted due to bad per tile sequence quality. The 

first figure (Fig 6A)  shows the FastQC per tile sequence quality for file 6, with merged 

reads R1 and R2, whereas the second figure (Fig 6B) shows the per tile sequence quality of 

the same file after application of Filter by Tile. It can be seen how especially in the region 

where the per tile sequence quality of file 6 displayed problematic regions, a large amount of 

reads were deleted. 

File 6 File 8 File 10 File 11 File 15

Input reads 2 490 593 18 524 857 3 133 942 4 642 630
 13 026 613

Dropped 
reads

3 612 26 089 5 447 7 653 54 598

Dropped 
reads in %

0.15 0.14 0.17 0.16 0.42
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Fig 6A: Per tile sequence quality of file 6 with merged reads

Table 3: Summary of the Trimmomatic output for all five fastq files 



4.4.Comparison of the different assemblies for all 
quality filtering tools  

After the quality control all resulting sequencing files were assembled using Velvet and 

MEGAHIT. Both assemblers were run with the preset parameters from the software. The 

resulting fasta files were then evaluated using QUAST. The output of this evaluation tool is 

described in the following part of the thesis, ordered by file. QUAST created statistics that 

include the number of contigs, their length and several other parameters. In the following 

three values were used to illustrate differences between quality filtering tools and assembly 

algorithms. First, the total number of contigs was observed, regardless of their length. Sec-

ond, the amounts of contigs with a size bigger or equal to 500 bp were compared. Finally, 

the lengths of the largest contigs created by the assemblies was evaluated. For better visuali-

sation, several graphs were constructed.  

4.4.1. Differences in contig amounts  
For File 6 the first significant difference that is observable is the number of contigs created 

by Velvet compared to MEGAHIT. Velvet created a significantly larger amount of contigs 

than Megahit (Fig 7A). This discrepancy changes with the size of contigs increasing. For 

contigs larger or equal to 500 bp MEGAHIT  produces notably more contigs than Velvet (Fig 

10B). This is one of the differences, observable for all five files. Velvet constructs a very 
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Fig 6B: Per tile sequence quality of file 6 after application of Filter 



large amount of contigs, which are however relatively small. Even though MEGAHIT over-

all assembles less contigs, the majority of them is larger. The largest contig is also in all five 

files created by MEGAHIT, as is also visible on the example of file 6 (Fig 7C).  
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Fig 7A: Total amount 
of contigs with a size 
equal or larger to 0 bp 
for file 6

Fig 7B: Total amount of 
contigs with a size 
equal or larger to 500 
bp for file 6

Fig 7C: Largest contigs 
for file 6



Moving further to the quality control tools, it becomes clear that the amount of contigs di-

minished by application of any of the previously mentioned quality control tools. This ob-

servation holds for the total amount of contigs (Fig 7A), as well as for the amount of contigs 

equal or larger than 500 bp (Fig 7B). The most noticeable difference between quality control 

tools can be seen with the change in size of the largest contig assembled by MEGAHIT. Af-

ter application of Filter By Tile, the largest contig grew significantly larger as can be ob-

served in the figure below (Fig 7C). This improvement however, can not be severed for the 

assembly produced by Velvet. 

  

4.4.2. Increase in largest contig sizes 
For File 8 the observations made, were quite similar to the ones from File 6. Velvet creates 

the larger amount of contigs in general (Fig 8A), whereas MEGAHIT produces larger con-

tigs (Fig 8B) as well as a significantly higher value of the largest contig assembled.  Here it 

is especially noticeable how the quality filtering produced by PRINSEQ always results in a 

decrease in values, even in comparison to the completely unfiltered version. Again, especial-

ly for the value of the largest contig assembled by MEGAHT a significant increase after ap-

plication of Filter By Tile can be observed (Fig 8C). Whereas PRINSEQ as well as Filter by 

Tile, seem to change the result of the assemblies so far, the same can not be said about 

Trimmomatic. For File 6 as well as for File 8 the application of Trimmomatic does not 

change the results very much, they are more or less equal or at least comparable to the as-

semblies from the files without filtering.   
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Fig 8A: Total amount of contigs 
with a size equal or larger to 0 bp 
for file 8

Fig 8B: Total amount of contigs with a size equal 
or larger to 500 bp for file 8



4.4.3.Differences between different samples  
For File 10 most of the observations previously made still apply. The only noticeable differ-

ence is that the growth of the largest contig assembled by MEGAHIT after application of 

Filter by Tile can not be observed. Instead the values stays similar as the ones no application 

of a quality control tool or after the application of either PRINSEQ or Trimmomatic (Fig 9).  

4.4.4. Comparison to previous results  
The results from file 11, seem very similar to the previous ones, which is the reason for no 

provided figure in this case. Again, similar to file 10, a growth of the largest contig assem-

bled by MEGAHIT after application of Filter by Tile can not be observed.  

20

Fig 8C: Largest contigs for 
file 8

Fig 9: Largest contigs for file 10



4.4.5.Number of contigs differences and com-
parison of N50  

Finally the results for File 15 are again, very similar to the two files, File 10 and File 11, 

from before. The only difference here is visible in case of the total number of contigs. Here 

the number of contigs assembled by Velvet is significantly smaller when no quality filtering 

is applied (Fig 10). This however is only the case for contigs bigger or equal to a size of 0 bp 

not for contigs bigger or equal the size of 500 bp. 

To get even better inside in the different results from the assemblies. The N50 size, which is 

also included in the QUAST evaluation, was used for further comparison. The N50 “equals 

the length of the scaffold (or contig) overlapping the midpoint of the length-order concatena-

tion of scaffolds (contigs).” (Mäkinen, Salmela & Ylinen, 2013).As visible in the figure be-

low for file 15 (Tab. 4) the N50 values for MEGAHIT are significantly larger than the ones 

for Velvet. Again, the application of the quality control and filtering tools, did not change the 

N50 values much. For Velvet there was a small value increase after quality filleting, for 

Megahit in the case of application of PRINSEQ the value even grew smaller. In regard of the 

other files, a similar observation can be made while evaluating the N50 values. MEGAHIT 

usually has a notably higher one compared to the value produced by Velvet. The application 

of quality filtering on the other hand, creates only small variation in the data.  
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Fig 10: Largest contigs for file 15



 

5. Discussion


First of all, all results show quite significant differences in their assemblies provided by ei-

ther MEGAHIT or VELVET. Where VELVET produces a larger amount of small contigs, 

MEGAHIT creates viewer but longer ones. This output may be due to some basic limitations 

from the software. VELVET is a program created to assemble very short reads, with a rela-

tively short k-mer size (Version 1.2.10, Zerbino & Birney, 2008). On the other hand, it 

should be able to create quite long assemblies as well (Version 1.2.10, Zerbino & Birney, 

2008).  

Another noticeable difference between the two tested assemblers is the discrepancy in their 

N50 values. N50 is “a typical measure to assess how well the assembly has 

succeeded” (Mäkinen, Salmela & Ylinen, 2013). Across all files, Velvet produces signifi-

cantly smaller N50 values than MEGAHIT.  

In regard to usability, both MEGAHIT as well as Velvet are easy to work with, with clear 

instructions provided in the manual. Most of the time MEGAHIT performed the assembly 

faster than Velvet, this however did not seem significant in this case. The faster performance 

might only be considered, in case of a very large dataset, to safe resources.  

In summarisation, the assemblies produced by Velvet seemed to be worse than those pro-

duced by MEGAHIT. At least on this dataset, MEGAHITs aim to produce larger and faster 

assemblies seemed to be confirmed (Version1.2.9, Li et al., 2015). Of course, it is necessary 

to note that MEGAHIT is a newer program and therefore might benefit from a more success-

ful implementation of its algorithms.  

Flash (no filter-
ing)

Prinseq Trimmomatic Filter by Tile 

MEGAHIT 820 800 822 819

Velvet 586 599 602 607
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Table 4: N50 statistics for file 15 



In regard to the quality control and filtering, it is important to take the first realisation about 

the data in regard. Overall the sequences seemed to have a high overall quality, as can be 

easily observed in the exceptionalness good outputs of the per base sequence quality in the 

FastQC reports. This may have resulted in very little filtering performed from especially 

Trimmomatic and PRINSEQ. As described earlier, Trimmomatic filtered out under one per-

cent of reads for each file. This means that the average quality in a window of 50 bp was 

above the threshold in majority of cases. Therefore, this indicates a very good quality dataset 

again. On the other hand, it is also explanation why, the results of the assemblies were most 

of the time quite similar to those created after no application of any quality control and filter-

ing tool. Finally, for file 15 were Trimmomatic performed the largest amount of filtering in 

its performance over the dataset, it is interesting to note, how different the results look from 

the unfiltered version in this case. This result may suggest a significant improvement of 

quality for file 15. In total, it is possible that Trimmomatic, did not apply a lot of filtering for 

most files as the dataset by itself had very good quality in most cases.  

Even though PRINSEQ filtered out more data than Trimmomatic, the results are still very 

similar to the unfiltered ones, a lot of times even worse. The filtering applied by Prinseq may 

have been a little too strict resulting in not only faulty sequences but also good ones to be 

deleted.  

As suggested in literature the most important part when it comes to quality control of RNA 

sequencing data is a good sample collection and well performed sequencing and not neces-

sarily the quality control performed by software afterwards (Sheng et al., 2017). In this case 

the dataset seemed to have a good overall quality, and majority of the filtering applied later 

on was not inevitably necessary.  

The only part where this dataset showed signs of inferior quality were the per tile sequence 

qualities. The data displaced by FastQC showed signs of errors, like “bubbles going through 

the flow cell” (Version 0.11.8,Andrews, 2010). With the application of the quality control 

tool Filter by Tile, a possible improvement of these errors was tested. The improvement of 

the size of the largest contig for both file 6 and file 8 suggest that such a correction has been 

made. As the results for other files are differing to this observation and the N50 values for 

both file 6 and file 8 do not show a similar improvement after application of Filter by Tile it 

is difficult to evaluate wether the program made a significant difference.  
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6. Conclusion  


In general, it can be said that especially the selection of a suitable assembly program for the 

specific dataset is very important. There are vast differences in created assemblies by differ-

ent tools, and as the assembly is a relatively time consuming step, the selection should be 

made with caution and research. At this point, majority of assemblers have advantages for 

some specific kind of dataset and disadvantages for another. Therefore, it is advisable to 

identify the dataset first, and collect information about it before selecting a suitable assembly 

program. A tool like FastQC can be very useful, to have a first look on the data to come to a 

decision how the particular sequences can be analysed best, and if quality control has to be 

applied. Additionally, it may help to select the right quality control tool, that will show most 

significant improvement for the dataset. 

Further research is needed to determine effects of other assemblers on the results or to test 

other quality control tools. It would be also interesting to apply a similar pipeline on a 

dataset, that shows signs of notably worse quality as that may lead to more differences be-

tween filtered and unfiltered data.  
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