
Palacký University, Olomouc

Faculty of Arts

Department of Sociology, Andragogy and Cultural Anthropology

KNOWLEDGE PRODUCTION IN FREE AND OPEN

SOURCE SOFTWARE DEVELOPMENT

Dissertation thesis

Author: Tomáš Karger

Advisor: Doc. PhDr. Dušan Lužný, Dr.

Olomouc

2015

I declare that this thesis is my own original work. Where other people’s work has been used,

this has been properly acknowledged and referenced in accordance with departmental

requirements.

Olomouc, May 27th, 2015 …………………………………………..

I would like to express my gratitude to those, who influenced the shape of this work:

Doc. Dušan Lužný for providing me with opportunities to grow,

Prof. Libora Oates-Indruchová and Prof. Gerlinda Šmausová for their guidance,

Dr. Jan Kalenda for all the discussions,

my family and friends for their support and understanding.

Annotation (CZ)
Svobodný software představuje formu kooperativní produkce, která je založena na redukci
transakčních nákladů, jíž je dosaženo pomocí neformálních způsobů organizace a využívání
internetové infrastruktury. Cílem práce je zachycení dynamiky vědění v projektech svobodného
softwaru, aby tak mohla popsat roli, kterou vědění hraje v této konkrétní formě kooperativní
produkce. Přístup ke svobodnému softwaru je založen na konceptualizaci programování (ústřední
aktivity ve vývoji softwaru) jako aktivity založené na specifických typech vědění. Dále rozlišuji
mezi věděním a informacemi, což mi umožňuje formulovat problém dekontextualizace.
Předpokládám, že konfigurace aktérů a artefaktů, jenž se promítá do kognitivních procesů, má
podobu sítí. K jejich analýze je pak využit jazyk sociologické teorie označované jako Actor-
Network Theory, konkrétně koncept mediace specifikovaný jeho čtyřmi významy: kompozice
(composition), překlad (translation), delegace (delegation) a zneprůhlednění (black-boxing).

Metodologicky je práce ukotvena v přístupech technické etnografie, etnografie infrastruktury
a multi-sited etnografie. Sběr dat proběhl v rámci terénní práce (která zahrnovala zúčastněné
pozorování a analýzu dokumentů) v projektu svobodného softwaru – působil jsem v roli autora
dokumentace vyvíjeného softwaru. Na základě pozorování popisuji programování jako druh praxe,
v rámci které je jednání stabilizováno, sestavováno a delegováno (prostřednictvím zkompilovaných
programů) na množství míst (počítače uživatelů). Softwarové nástroje v tomto procesu slouží k
transformaci nestabilního průběhu práce do standardizovaných jednotek, jenž jsou delegovány na
veřejná místa a jsou uzpůsobeny tak, aby bylo možné je zahrnout do jiných kompozic. Taková
konfigurace pak značně redukuje transakční náklady kooperativní produkce.

I když ale licencování typické pro svobodný software záměrně a systematicky tlumí práva (na
přístup, modifikaci a redistribuci) tradičně vázané na vlastnictví tím, že je připisuje každému,
činnosti, které tato práva definují, jsou v praxi vykonávána jen malou skupinou aktérů, jenž jsou
nositeli určitých typů vědění. V důsledku toho se pak zdá, že v tomto prostředí existuje těsný vztah
mezi vlastnictvím (na praktické úrovni) a věděním. Toto zjištění na první pohled potvrzuje
předpoklady entuziastických očekávání, vztahujících se k potenciálu kyberprostoru a digitálních
technologií obecně, že vědění se stalo nejvýznamnějším faktorem produkce. V této práci se ale
snažím ukázat, že vědění je stále umístěno v rozsáhlejších systémech produkce, jenž mají materiální
povahu a že požadavky, které tyto systémy ukládají aktérům, limitují jejich domněle volnou
interakci.

Table of Contents
Preface
Introduction...1
1. FOSS and Utopian Virtualism...4
2. Software and Knowledge..21

2.1. Network Shaped Knowledge Distribution..29
3. Methodology...41

3.1. Analysis and Interpretation Through Indexing and Writing..45
3.2. Research Field...48
3.3. Research Sample...51

4. Dismantling Pitivi, the Video Editor...54
4.1. Knowledge Channeling...69
4.2. Debugging...81
4.3. Revision Tracking..87
4.4. Rules of Mediation..95

4.4.1. Composition...96
4.4.2. Translation and Delegation..101
4.4.3. Black-boxing..114

4.5. Resources Propelling Development..119
5. Assembling a FOSS Project..133
References...141
Appendix 1: An Example of Scripting..152
Appendix 2: Pitivi Architecture..154
Appendix 3: Pitivi Interface..155
Appendix 4: Overview of Projects Developing Video Editors...156
Appendix 5: History Log of a MediaWiki Page...157
Appendix 6: Display of Differences Among Two Versions of a MediaWiki Page.................158
Appendix 7: A Git Commit...159

Preface

The original topic of my dissertation research was quite a different one. It should have been a

theoretical work about the concept of self-organization (or emergence, spontaneous order) and

its use in the social sciences. Having a technological background in my education, I was

fascinated by the language of Cybernetics and Systems Theory (Niklas Luhmann’s theory in

particular) and by the images of spontaneously emerging order. The reader can still trace these

influences in number of footnotes through the work. It was only during the first year of my

Ph.D. studies that I realized that I could put my education to use in a different way. I could do

participant observation in a field where not many sociologists or anthropologists would feel at

home. This went hand in hand with the fact, that I found two fields to be repeatedly listed as

empirical examples of self-organization: science and free and open source software

development. The former has been researched for quite some time now with a substantial

body of literature on record. But the latter has only about a decade and a half on its record

with a significantly smaller body of literature. This was an area I could make a good

contribution to. Moreover, I was a user interested in the latest development in free and open

source software since high school (where I studied electrotechnical engineering), which

provided me with a rough picture of the field’s most basic dividing lines.

All of this led to my decision to officially change the topic of my dissertation, leaving

me with a lot to catch up on but also with an advantage of my prior everyday knowledge

which, of course, must have undergone a thorough reflection. Eventually, my findings led me

to a rather critical position towards the images associated with self-organization as I

uncovered their limited relevance and the utopic valence they carry. There is a little irony in

the fact that one of the points of this work is to show the limitations of the images which

initially fascinated me and have drawn me to the topic. But I take this as a sign that I did not

succumb to my initial preconceptions. How much this work will transform the knowledge in

the relevant fields of study remains to be seen. However, a different transformation has

already taken place, that of its author.

Introduction

For some, software development is an activity obscure enough that it should nicely connect to

the anthropological tradition of studying exotic cultures covered with mystery. Others may

find it as boring as reading through telephone books – a different kind of information

infrastructure. However, reading and writing of source code (which is the primary activity

behind software development) has been, by many influential individuals, recently pronounced

to be a new form of literacy.1 The atmosphere induced by this assumption has spread

considerably. Software developers tend to criticize it2 while the officials endorse it – to name

the most glaring example, Barack Obama became the first US president to write a line of

source code.3 Without trying to position myself in the discussion about the legitimacy of the

literacy status of programming, I want to point out that the spread and significance of

activities associated with software development have risen considerably. From the times when

computers could be afforded by few and the knowledge necessary to operate them was held

by even fewer to the times when GitHub, a web service designed to share source code belongs

among the top 100 most visited sites on the Internet.4

This development went hand-in-hand with another process – the shift in which free and

open source software (as a movement or as a software development methodology) established

itself against the traditional proprietary model. It could suffice to reiterate the glaring

difference between the 1970s and the present day, pointing at the scale of involvement of

significant players of the technological industry in open source software.5 However, there is a

more illustrative way of showing the gradual establishment of free and open source software.

In 2001, the Microsoft CEO Steve Ballmer famously stated that “Linux is a cancer that

attaches itself in an intellectual property sense to everything it touches.”6 For a long time, the

1 See the Code.org initiative which revolves precisely around this assumption and is supported by the likes of
Bill Gates or Mark Zuckerberg.

2 Coding is not the new literacy. Blog post of a well known software developer relayed by Slashdot, a popular
user curated news site. Published: 2015-01-26. Accessed: 2015-04-30. Available at: http://www.chris-
granger.com/2015/01/26/coding-is-not-the-new-literacy/.

3 President Obama Is the First President to Write a Line of Code. Article published by The White House Blog.
Published: 2014-12-10. Accessed: 2015-04-22. Available at:
https://www.whitehouse.gov/blog/2014/12/10/president-obama-first-president-write-line-code.

4 How Github Conquered Google, Microsoft, and Everyone Else. An article in the Wired magazine. Published:
2015-03-12. Accessed: 2015-04-21. Available at: http://www.wired.com/2015/03/github-conquered-google-
microsoft-everyone-else/.

5 Among top contributors to the development of Linux Kernel, the hallmark of open source software, there are
companies such as Intel, Samsung, IBM, or Google (Corbet, Kroah-Hartman, & McPherson, 2015, p. 11).

6 Microsoft CEO takes lunch break with the Sun-Times. Interview published by Chicago Sun Times. Published:
2001-06-01. Accessed: 2015-04-22. Available at:

1

http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
https://www.whitehouse.gov/blog/2014/12/10/president-obama-first-president-write-line-code
http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/
http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/

Microsoft company was seen as an arch enemy of free and open source software. This

relationship occasionally culminated in statements like Ballmer’s or, from the other side of the

barricade, pokes by Linus Torvalds: “Really, I’m not out to destroy Microsoft. That will just

be a completely unintentional side effect.”7 This was in 2003. One decade later, in October

2014, a Microsoft CEO Satya Nadella says that “Microsoft loves Linux.”8 In February 2015,

Microsoft releases its important .NET framework on GitHub under an open source license.9

And in April 2015, Mark Russinovich, one of Microsoft’s top engineers publicly states that

open sourcing Windows, the company’s core product, is “definitely possible”.10

These statements mark a shift during which the open source approach to software

development rose from a challenger to the one who sets the tone. Microsoft, a company that

has embodied the success of proprietary approach to software development, is the one who

has to catch up, as Nadella openly admits.11 Indeed, free and open source software became

ubiquitous in the world of digital technology, in large part because other companies like

Google learned to build their business models around this type of software development.12

The shift was also recognized in the world of Linux distributions, where Ubuntu, one of the

most popular distributions had a long standing bug in its issue tracking database (filed in

2004, it was actually the first bug in the database) which was labeled “Microsoft has a

majority market share”.13 The bug served as a mission statement – that Ubuntu was intended

to provide an alternative which could possibly end the dominance. Eventually, the role played

by Ubuntu in the shift was not essential, but the shift took place nevertheless. Mark

Shuttleworth, the founder of Ubuntu, closed the bug in May 2013, noting that Microsoft no

http://www.linuxtoday.com/infrastructure/2001060100920OPMS.
7 The Way We Live Now: Questions for Linus Torvalds. Interview published by The New York Times

Magazine. Published: 2003-09-28. Accessed: 2015-04-22. Available at:
http://www.nytimes.com/2003/09/28/magazine/the-way-we-live-now-9-28-03-questions-for-linus-torvalds-
the-sharer.html.

8 Why Microsoft CEO Satya Nadella Loves What Steve Ballmer Once Despised. Article published by the Wired
magazine. Published: 2014-10-21. Accessed: 2015-04-22. Available at:
http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/.

9 .NET Core is Open Source. Blog post on the Microsoft Developer Network website (msdn.com). Published:
2014-11-12. Accessed: 2015-04-22. Available at: http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-
core-is-open-source.aspx.

10 Microsoft: An Open Source Windows Is ‘Definitely Possible’. Article published by the Wired magazine.
Published: 2015-04-03. Accessed: 2015-04-22. Available at: http://www.wired.com/2015/04/microsoft-open-
source-windows-definitely-possible/.

11 Why Microsoft CEO Satya Nadella Loves What Steve Ballmer Once Despised. Article published by the Wired
magazine. Published: 2014-10-21. Accessed: 2015-04-22. Available at:
http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/.

12 For example, Google’s Android, currently the most popular mobile operating system, is based on Linux.
13 Microsoft has a majority market share. Bug in Ubuntu’s issue tracker at launchpad.com. Published: 2004-08-

20. Accessed: 2015-04-23. Available at: https://bugs.launchpad.net/ubuntu/+bug/1.

2

https://bugs.launchpad.net/ubuntu/+bug/1
http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/
http://www.wired.com/2015/04/microsoft-open-source-windows-definitely-possible/
http://www.wired.com/2015/04/microsoft-open-source-windows-definitely-possible/
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx
http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/
http://www.nytimes.com/2003/09/28/magazine/the-way-we-live-now-9-28-03-questions-for-linus-torvalds-the-sharer.html
http://www.nytimes.com/2003/09/28/magazine/the-way-we-live-now-9-28-03-questions-for-linus-torvalds-the-sharer.html
http://www.linuxtoday.com/infrastructure/2001060100920OPMS

longer had a dominant market share in computing platforms.

With this introduction, I do not intend to argue that free and open source software

development is superior to the other development models or that it is the future of computing.

My intention was merely to show the relevance of this topic – that while the practices and

cultural aspects of free and open source software may seem unusual, they do not involve just a

few hobbyists at the periphery of the computing industry. It is now heavily involved in

developing and maintaining the information infrastructure that became so important during

the last decades. The subculture became heavily intertwined with current capitalist practices,

changing the nature of both in the process. And it is the aim of this work to describe free and

open source software development precisely in this context.

The text is structured as a research report. In the first chapter, I give a review of research

on FOSS relevant for this text and formulate the problem I attempt to approach. In the second

chapter, I elaborate software and programming from a theoretical perspective and relate them

to knowledge. Subsequently, I work out a conceptual grid that I use in my analysis and

reformulate the problem at hand in terms introduced by this chapter. In the third chapter, I

develop a methodological approach (including sampling criteria) that matches the

assumptions of previous chapters. In the fourth chapter, I describe the most significant

elements and practices of a FOSS project and use the conceptual grid to make visible the

characteristics of mediation and resource allocation. In the fifth concluding chapter, I

assemble the entities dismantled by the analysis into an overall picture of a FOSS project and

attempt to relate the findings to the problem outlined in the first chapter.

3

1. FOSS and Utopian Virtualism

Free and open source software development began to be systematically researched by the turn

of the millennium. According to Christopher Kelty, who has been studying it consistently

during the first decade after the turn, it can be defined as:

software whose source code (the code humans read and write) is made freely available
(generally on the Internet, without restriction) through the use of a special copyright
license. The software is copyrighted by its creator and then distributed under one of
several standard licenses that allow the licensee to use the software, to distribute it, to
copy it, and even to modify it for his/her own purposes. Some licenses require that if the
software is re-distributed, any changes need to be released under the same license used to
offer it in the first place (this is variously referred to as reciprocal, recursive, or viral).
The most famous of these licenses is the GNU General Public License created by the Free
Software Foundation. (Kelty, 2004, p. 501)

Many of the characteristics that Kelty describes in his definition were inherited from the

practices established around UNIX, a very successful operating system from the 1970s. Its

success is attributed to fact that it could run on affordable computers, that its source code was

distributed together with its binaries and that its license permitted modifications to source

code and even sharing of those modifications among licensees (Söderberg, 2008, p. 15).

Retrospectively, we14 can see that the main characteristics of the development model central to

free and open source software was present already in practices related to the predecessor

(direct or indirect) of many of today’s widespread operating systems including a variation of

BSDs (Berkley Software Distribution), Linux-based distributions or Mac OS X.

However, in 1980s, the AT&T company attempted to enforce ownership rights over

UNIX which, according to Söderberg, resulted in the informal programmer community

established around UNIX becoming skeptical of the existing intellectual property regime

(Söderberg, 2008, p. 19). This led Richard Stallman to found the Free Software Foundation

(FSF) in 1984 – an organization dedicated to allowing computer users to operate without

proprietary programs. The break with the privatized UNIX system is represented by the

acronym GNU (GNU is Not UNIX), that is used to label all software and licenses (as in GNU

C Compiler, or GNU General Public License) that the FSF produces. The endeavors of FSF

included development of a operating system kernel (called GNU Hurd) as a substitution for

14 In this text I employ one rule concerning the use of personal pronouns consistently: I use “we” when I take
into consideration the reader following my description or argumentation; “I” is used in every other case,
often indicating that I take responsibility for particular decisions or the unfolding of the text in general.

4

UNIX. However, the work has been significantly delayed due to licensing issues with the

Mach microkernel, which was to be released by the Carnegie Mellon University under a

suitable license and thus was proposed by Stallman to be used as a basis for development.15

Another reaction to privatization of UNIX came from the researchers of Berkeley

University who participated heavily on UNIX development. They resorted to removing every

line of code from UNIX that AT&T claimed and replaced them with their own code. The

result is known as the Berkeley Software Distribution (BSD) and is still actively developed in

several versions. However, in early 1990s, AT&T sued Berkeley University for infringement,

which led to a trial that was eventually lost by AT&T, but that, in the meantime drove

developers away with fear that their work could end up being claimed by the company

(Söderberg, 2008, p. 24). Instead, the developers started contributing to another kernel project

written from scratch by Linus Torvalds and licensed purely under the GNU GPL. This project,

today known as Linux, established a strong position during the rest of the 1990s and became

(together with other successful projects such as the Apache web server) the hallmark of the

new software development model (Kelty, 2004, p. 503). The conclusion that Söderberg draws

from this historical development is that Linux succeeded “not because it was backed by the

highest concentration of capital, but to the contrary, because under the GPL it had the purest

absence of private property relations [emphasis original]” (Söderberg, 2008, p. 24).

However, in spite of the success of several projects, free software was predominantly

perceived as hostile to private businesses – a result of the value system developed by Stallman

and the FSF, which considered free software a moral standard and which was very critical of

anyone using or developing proprietary software. To capitalize on the success of free software

projects, Eric Raymond and Bruce Perens founded the Open Source Initiative in 1998 to

redefine the existing development model with this new term. In doing so, they attempted to

play down the moral and political associations that free software was bundled with and

instead to emphasize the practical advantages of the development model (Kelty, 2004, p.

15 Source: https://www.gnu.org/software/hurd/history.html.

5

https://www.gnu.org/software/hurd/history.html

503).1617 Since then, there has been a spread of business models revolving around open source

software.

But the significance of FOSS goes beyond successful software development projects.

Broadly speaking, Kelty grasps Free software as a movement with several defining

characteristics: sharing source code, emphasizing and conceptualizing openness, using

copyleft licenses and collaborative practices (Kelty, 2008, p. 14). Within those loose

boundaries, there are varying practices that can be deemed conventional or experimental. This

leads Kelty to postulate a system of thresholds discovered by collective experimentation

within the movement. However, sometimes the experiments consist in attempts to apply

conventional FOSS practices to other areas of production. In these cases, Kelty speaks of

“modulations” of FOSS practices (Kelty, 2008, p. 16). As Kelty notes, FOSS values and

practices have spread to or inspired other realms of life in recent years (Kelty, 2008, p. 2).

These include hardware design and manufacture (Open Hardware18), science (Open Access19),

media (Creative Commons20), knowledge management (Wikipedia21), visual arts (Processing

language22) or even ecological engineering (Open Source Ecology23). What all these initiatives

have in common is, according to Kelty, that they use Internet as a key infrastructural element

while attempting to reorient knowledge and power (Kelty, 2008, p. 16). Taken together, this

historical development exemplifies the “cultural significance of free software” (which is the

16 At that time, this also meant going against a widely influential premise formulated by Fred Brooks. In his
book, The Mythical Man-Month, Brooks argued that: “Cost does indeed vary as the product of the number of
men and the number of months. Progress does not. Hence the man-month as a unit for measuring the size of a
job is a dangerous and deceptive myth. It implies that men and months are interchangeable. Men and months
are interchangeable commodities only when a task can be partitioned among many workers with no
communication among them (…). This is true of reaping wheat or picking cotton; it is not even
approximately true of systems programming.” (Brooks, 1995, p. 16) From this argument, Brooks deduced the
famous Brooks’ Law: “Adding manpower to a late software project makes it later.” (Brooks, 1995, p. 25)
After formulating the premise, Brooks argued that, for teams of software developers, the only organizational
form which can assure efficiency and conceptual integrity is the one modeled after surgical teams where
problem solving is reserved for one person while everyone else provides necessary support (Brooks, 1995, p.
32). However, the FOSS software development model is based on exactly opposite model of organization
involving volunteer association, work self-assignment and occasional contributions. Therefore, at that time,
the FOSS model existed as an unexplained alternative.

17 In this text I use the expression “free and open source software” (FOSS) to denote both branches of the
movement represented by the Free Software Foundation and the Open Source Initiative respectively. I can
allow myself to amalgamate the branches, because most of the time, I am not concerned with their value
differences (and where I am, I differentiate between them), but with practices associated with them, which, as
Kelty notes, are common: “for all the ideological distinctions at the level of discourse, they are doing exactly
the same thing at the level of practice” (Kelty, 2008, p. 14).

18 http://www.ohwr.org
19 http://www.doaj.org
20 http://www.creativecommons.org
21 http://www.wikipedia.org
22 http://www.processing.org
23 http://www.opensourceecology.org

6

http://www.opensourceecology.org/
http://www.processing.org/
http://www.wikipedia.org/
http://www.creativecommons.org/
http://www.doaj.org/
http://www.ohwr.org/

subtitle of Kelty’s book).

Inside the FOSS movement, the predominant personal identity is that of a hacker.24 The

corresponding verb “hacking” designates work that, as Pekka Himanen claims, is tied to a

specific ethic. Himanen describes the hacker work ethic as being primarily based on passion

and opposed to what has been with reference to Max Weber’s work called the Protestant work

ethic (Himanen, Castells, & Torvalds, 2001, p. 6). Work is seen by hackers as intrinsically

interesting, inspiring, and joyous. On the other hand, Protestant ethic perceives work as a

calling – work is a duty which is an end in itself and must be done as well as possible. This

rendering of the hacker work ethic resonates with several later studies which emphasize the

key role of intrinsic motivation for volunteer involvement. For example, one of the findings in

a study by Sonali Shah is that while initial contributions to software development projects

often serve to satisfy a need for improved functionality of the software, many of those who

stay involved do so because they enjoy the work (Shah, 2006, p. 1010). Correspondingly,

Stephanie Freeman claims that although life situation of contributors vary widely, the

commonality is that the boundary between work and hobby is blurred in their involvement

(Freeman, 2007, p. 73). Furthermore, Margit Osterloh and Sandra Rota identify two

institutional preconditions for establishing intrinsic motivation within FOSS projects: enabled

self-determination and conditional cooperation (contributing when others are too) (Osterloh &

Rota, 2004, p. 291–292). Osterloh and Rota further claim that intrinsic motivation of project

members translates into trustworthiness of the project for those outside of it (Osterloh & Rota,

2004, p. 296).

But motivation is not the only determinant of participation in FOSS projects. The

demographic characteristics of a typical contributor, as summarized by Söderberg show that

FOSS projects are populated mainly by “middle-class males living in the West” (Söderberg,

2008, p. 28).25 This situation has, according to the author, its origins in the early days of

computing when access to computers was highly restricted. However, these restrictions have

been considerably lowered as the prices of computers declined. Currently, Söderberg sees the

24 In this context, the term “hacker” has a positive connotation and denotes someone who cleverly takes
advantage of a formal or automated system. However, this does not necessarily involve criminal activities. To
differentiate themselves, the free and open source software hackers use the term cracking or crackers to
denote those who perform hacking with criminal intent.

25 A more detailed, though older, summary is offered by Holtgrewe, who draws on the surveys by Ghosh et al.
(2002) and Lakhani et al. (2002): “developers are youngish with an average age below 30 years. They are
almost exclusively male (98 – 99%). 60 – 70% are university or college graduates, 20 – 30% are students.
Around 80% are IT professionals, which leaves roughly a fifth of amateurs in the sense that they have
nothing to do with the IT industry” (Holtgrewe, 2004, p. 10).

7

main cost in the amounts of leisure time that need to be spent in order to contribute to a

project (Söderberg, 2008, p. 28) – a resource that is distributed along different lines than

wealth and that, as a result, privileges aggregates such as students or the unemployed.

It is perhaps not surprising that there is a significant gender imbalance in FOSS projects.

But this, according to Söderberg, cannot be explained by an active struggle for economic

resources, as many of the projects are predominantly volunteer oriented.26 On the other hand,

there is not much preference, across FOSS projects, to actively seek and support joining of

underrepresented groups. The projects are declaratively and practically open, but the emphasis

placed on meritocracy leads to the position that it is up to the underrepresented groups to exert

effort and join the activities (Söderberg, 2008, p. 29).27

This leads us back to the topic of values forming the hacker ethic. As such, the hacker

ethic can be summarized as adhering to seven basic values (Himanen et al., 2001, p. 139–

141):

1. passion – hackers work on tasks intrinsically interesting for them and enjoy their

realization

2. freedom – hackers organize their life around creative work and other passions, they

oppose routine and monotonous work

3. social worth – hackers are aiming to create something valuable and be recognized for

that by their peers

4. openness – hackers allow further usage, development or testing of their creations by

anyone

5. activity – hackers prefer active pursuit of passion over passive receptiveness

6. caring – hackers perceive concern for others as an end in itself

7. creativity – hackers respect the imaginative use of abilities and providing new and

original contributions.

Some of these values can be clustered into more general areas of conduct. According to

Himanen (2001, p. 140), the values of passion and freedom constitute the hacker work ethic,

the values of social worth and openness form the hacker money ethic and the values of

26 Again, a more detailed description can be found in Holtgrewe (2004, p. 10): “Between half and 80% of
FS/OS developers are volunteers. For the majority, involvement is limited to the extent of a more or less
time-consuming hobby. Roughly two thirds of developers spend less than 10 hours per week on FS/OS
development.”

27 Although there are exceptions, such as the Outreachy program originating from the activities that took place
already in 2006 under the patronage of the GNOME Foundation. The project’s website can be found at:
https://www.gnome.org/outreachy/

8

https://www.gnome.org/outreachy/

activity and caring serve as a basis for hacker network ethic, or “nethic”, while creativity, the

seventh value, permeates all of these areas. With reference to concrete activities, Katherine

Stewart and Sanjay Gosain found four types of values present in F/OSS communities:

collaborative values (helping, sharing, cooperation), individual values (learning, technical

knowledge, reputation), process values (bug fixing, code quality, status attainment) and

freedom values (free information, free software) (Stewart & Gosain, 2006, p. 303). Based on

their research, these authors claim that in most cases, these values have positive impact on

trust and communication quality (Stewart & Gosain, 2006, p. 303), which means that they are

functional with regard to community building and technical performance.

Overall, the hacker ethic seems to imply the abolition of the distinction between work

and leisure. Meaning cannot arise from duty bound work or unproductive leisure, it can be

found only in the intrinsic value of an activity which an individual is passionate about

(Himanen et al., 2001, p. 151). These values are, of course, not uniformly applicable to the

movement as a whole so that the actions of every member would be generally determined by

them. There are significant differences, most notably for example between the adherents of

free software or open source software. But these values indicate the overall spirit the

movement as such represents.

We can see that the norms are predominantly concerned with regulating the process of

software development. This is indicative of what Kelty emphasizes by calling Free software a

recursive public, that is, a public “that is vitally concerned with the material and practical

maintenance and modification of the technical, legal, practical, and conceptual means of its

own existence as a public; it is … capable of speaking to existing forms of power through the

production of actually existing alternatives” (Kelty, 2008, p. 3). In other words, this type of

public is able to develop and deploy its own infrastructure, be it technical, legal, or

conceptual. Because of this, it can enjoy a significant amount of independence.

In FOSS, the technical recursivity is achieved primarily by preference of FOSS software

to be used as tools. Therefore, FOSS projects build on existing FOSS software to develop new

programs. As Matt Ratto notes, in terms of FOSS development projects, there is a difference

between software as a compiled tool and software as object of work (Ratto, 2007, p. 96). But

considering the distinction between mutable and immutable mobiles, introduced to the FOSS

studies by Mary Darking and Edgar Whitley (Darking & Whitley, 2007, p. 24), the developed

software (object of work) and the used software (tools) differ in the nature of their presence in

9

FOSS projects. While software tools could be characterized as immutable mobiles which

maintain their shape despite the configuration of relations they enter, the developed software

could be characterized as a mutable mobile – unstable, situation dependent, or even “fluid”

object. This is so because all the information and knowledge necessary to meddle with the

developed software is actually and readily available in a given project, while for software

used as tool (and developed at another place) this is available only as a potentiality.

The distinction between hacker and protestant ethics seems also to be historically

embedded in different spheres of life. Himanen (2001, p. 6) argues, that the historical

precursor of hacker work ethic was the work ethic employed in the antique academia with its

intrinsic interest in knowledge, search for inspiration and joy of discovery. Protestant work

ethic is supposed to have its precursor in work ethic present in medieval monastery and its

emphasis of duty fulfillment. The Protestant work ethic, as shown by Weber, was eventually

embraced by capitalism, which stripped it from the religious context and preserved the

emphasis on duty fulfillment. As the hacker work ethic is fundamentally different from the

Protestant work ethic, Himanen (2001, p. 12) argues that its existence and spread poses a

challenge for the present-day capitalism.

This is why the hacker work ethic is significant and worthwhile, but it still needs to be

elaborated in more detail. First, it is a work ethic so it must be distinguished from the utopian

images of life without doing anything. The hacker work ethic is characteristic for preference

of tasks, which are found to be interesting, inspiring and for the completion of which the

hacker is willing even to go through not so joyful parts (Himanen et al., 2001, p. 19).

Furthermore, the hacker ethic involves the belief that the use and optimization of machines

should lead to a less routine and machinelike human life. There is an implied emphasis on

creativity which can not flourish under the conditions of time pressure and monotonous tasks.

Work is seen as a part of continuously ongoing life and workers as multi-dimensional human

beings. In this way, the hacker ethic constitutes the image of a worthy life (Himanen et al.,

2001, p. 39).

The hacker ethic also emphasizes openness through information-sharing (Himanen et

al., 2001, p. 39). This goes together rather well with what is considered the prevalent

motivation force – peer recognition. Only when the results of one’s work are traceable and

widely accessible can peer recognition work. This characteristic has the potential to collide in

certain cases with the concept of ownership which forms the basis of capitalism. This issue is

10

further explored by Gabriella Coleman. She claims that the emphasis put by hackers on

making the results of their work available not only to themselves, but also to anyone

interested, is evocative of Karl Marx’s critique of estranged labor (Coleman, 2013, p. 13).

However, hackers do not follow the line of reasoning of radically leftist critique of capitalism.

As Coleman shows, they establish their critique by playing one aspect of liberalism against

another by claiming that source code should be associated with freedoms related to speech,

not with those related to private property (Coleman, 2013, p. 6). Hence, the central value

expressed by Coleman as “code is speech” (Coleman, 2009, 2013, p. 147). This is also

reflected in a saying hackers developed to distinguish between the two kinds of freedom: free

as in speech/free as in beer.

Johan Söderberg goes as far as claiming that the hacker movement is a part of a broader

revolt against commodification of labor (Söderberg, 2008, p. 44) and a continuation of the

labor struggle (Dafermos & Söderberg, 2009). In recent years, software development

contributed significantly to deskilling workforce in many occupations. And the routinisation is

paradoxically starting to affect also the professions related to software development itself.

However, Söderberg argues that the knowledge workers have a specific position in the

struggle (Söderberg, 2008, p. 46). They can either engage in hacking, that is, using their skills

to build viable alternatives, or resort to cracking – using their skills for conducting actions of

resistance that could be considered illegal. According to Söderberg, this resistance cannot be

undermined by deskilling the workforce – a strategy that could have been applied everywhere

else: “At this point, however, Taylorism runs into its own limits. There is no easy way to

deprive ‘knowledge workers’ of knowledge and still have them working” (Söderberg, 2008, p.

46).

However, the hacker ethic can not be considered wholly anti-capitalistic. It does not

oppose the idea of making profit, it opposes the idea of making profit by constraining specific

kinds of information. In fact, there is significant involvement of private businesses in FOSS

projects that are strategically positioned. In this regard, Joel West and Siobhán O’Mahony

distinguish between autonomous and sponsored communities. These authors claim that the

licensing and access to the source code are provided in the same way by both types of

communities. They differ, however, in that the governance is more pluralistic in autonomous

communities while in sponsored communities, the control exerted by the sponsor prevails.

This is outweighed by the assurance of continued existence – autonomous communities that

11

don’t attract volunteers cease to exist. In sponsored communities, the core developers are

usually employed by the sponsor – which safeguards continuity (West & O’Mahony, 2008, p.

14–15). On the other hand, companies may benefit from involvement with a community by

extending their resource base, as Linus Dahlander and Mats Magnusson suggest in general

terms (Dahlander & Magnusson, 2008, p. 638).

Moreover, by combining business and community involvement, sponsored communities

are placed at the intersection of formal and informal economies. But in this case, the

informality is not associated with downgraded labor, breaching a link that Manuel Castells

made in one of his older works (Castells & Portes, 1989, p. 26). Although it may share the

status of being undeclared or invisible, which is the case, as Bonnie Nardi and Yrjö

Engeström (1999) show, with much of the work in the postindustrial society. In this sense,

autonomous FOSS projects may represent a specific kind of informal economy.

Correspondingly, some authors claim that FOSS projects are structured according to a

symbolic economy of their own. According to Magnus Bergquist and Jan Ljungberg, the

economy is based on gift giving (Bergquist & Ljungberg, 2001, p. 312).28 Here, software

developers are seen as gift givers to those that accept the gifts – users. This constitutes a

relationship where software developers gain power by systematically giving away the results

of their work. The only way for users to even up their position is to give back by contributing.

But this is not only a matter of decision. The presence of peer review for contributions means

that the current developers assess and select contributions to be used and therefore, in a sense,

select users who will be allowed to give back (Bergquist & Ljungberg, 2001, p. 314).

However, as Bergquist and Ljungberrg point out, this relationship works only when the parties

share a framework of meaning (e.g. the users know that the software they use was developed

by volunteers and appreciate it) (Bergquist & Ljungberg, 2001, p. 314).

Focusing on the developer side of the relationship, we can find more elaborate status

hierarchies explored by Daniel Stewart. This author claims that status is based on references

that other members give and that in FOSS communities, it is largely based on reciprocity and

collaboration (Stewart, 2005, p. 834). In other words, developers tend to give references for

those they work with and also give references back when they receive some. Furthermore, as

28 Alternatively, one could construct a similar explanation along the lines of spending attention. The
conceptualization of attention as a resource was done already by Herbert Simon (Simon, 1971, p. 40) and the
relation between attention economy and the Internet was drawn later by Michael Goldhaber (Goldhaber,
2006; Goldhaber, 1997) or Philippe Aigrain (Aigrain, 1997). However, the concept of attention is too general
and underspecified in the sociological or anthropological traditions of thought and so it can’t be readily used.

12

Stewart argues, the references form a self-reinforcing cycle, which means that the more

references of a sort a members receives, the smaller is the probability of receiving references

that counter the previous ones (Stewart, 2005, p. 835). However, the most interesting point

made by Stewart is his identification of peer evaluation as predominantly endogenous

(Stewart, 2005, p. 838). This means that status is derived mostly from endorsement of work

undertaken within the community and external forces are not taken taken into account (at least

not directly).29 This makes the community embedded in its own rules but it also provides

foundations for its compatibility with a broad range of organizations and worldviews.

Part of the hacker ethic is also its perception of authority. In this way the hacker ethic

once again resembles the academic, because one of its key components is that anyone can use,

criticize, or develop the objects produced by other hackers (Himanen et al., 2001, p. 68).30 It is

this model of open development and self-correction that is perceived as desirable in contrast

with models that keep knowledge constrained and goals authoritatively set. However, this

does not mean that the hacker work ethic asserts absence of any kind of structures (Himanen

et al., 2001, p. 72). As we have seen, there are structures at least in terms of status hierarchies,

but browsing the studies published during the last decade reveals more.

Siobhán O’Mahony and Fabrizio Ferraro studied the process of governance

establishment in the Debian Linux distribution. These authors found out that in the long run,

the community preferred leaders with organizational competence over ones with purely

technical (O’Mahony & Ferraro, 2007, p. 1100). This provides a correction for the description

of the status building process – status does not have to be based on endorsement of technical

work only. Furthermore, even though the community initially placed many checks on the

power of elected leaders, eventually, those that broadened their sphere of influence were

preferred (O’Mahony & Ferraro, 2007, p. 1100).

With regard to power and influence, Didier Demaziére et al. distinguish between

29 This tendency can be observed also in other online constituted communities such as Wikipedia (for example,
with its restrictions on original research and not taking into account the professional researcher status of some
of its contributors (Luyt, 2011, p. 1063; Rosenzweig, 2006, p. 140)), or as John Shiga notes in the case of
mash-up communities (Shiga, 2007, p. 97).

30 In this sense, Eric Raymond, the author of a highly influential essay The Cathedral and the Bazaar points out
that the already mentioned Brooks’ Law (a premise, well known among software developers, implying that
adding developers to a late software project makes it later) needs to be corrected with the concept of egoless
programming: “Gerald Weinberg’s classic The Psychology Of Computer Programming supplied what, in
hindsight, we can see as a vital correction to Brooks. In his discussion of ‘egoless programming’, Weinberg
observed that in shops where developers are not territorial about their code, and encourage other people to
look for bugs and potential improvements in it, improvement happens dramatically faster than elsewhere.”
(Raymond, 1999, p. 39).

13

centralized control – which ensures a consistent performance over time and serves as a

guarantee that time invested by volunteers will not be lost – and distributed regulation –

influence distributed according to the presence (number of contributions or amount of time

invested) of individuals in the area (Demazière, Horn, & Zune, 2007, p. 51). These findings

point to the fact that power and influence are dispersed among individuals with high levels of

involvement – a fact that is used by the communities to label themselves as meritocratic.

However, as Nicolas Ducheneaut shows in his analysis inspired by Bruno Latour, FOSS

projects recede from the ideals of openness and meritocracy in situations when newcomers are

attempting to join and influence a project. Ducheneaut identified a series of stages that a

newcomer goes through – from passive monitoring of the development activities to making

substantial modifications to the developed software.31 But as he notes, most newcomers stop

at the initial stages and very few of them reach the advanced ones. Ducheneaut attributes this

to several characteristics of FOSS projects. According to this author, FOSS projects represent

black-boxes for newcomers – they need to uncover the relationships forming the project

network in order to identify how they can interact with it and where could they start with their

contribution. Furthermore, Ducheneaut claims that the network naturally resists change,

which means that a newcomer has to mobilize human and non-human allies in order to insert

himself into a position from which he can make a substantial modification (Ducheneaut, 2005,

p. 353–355).

Such situations typically lead newcomers to perform what could be called autonomous

learning. In this process newcomers make use of the available sources of information – which

in FOSS projects are abundant and which, according to Andrea Hemetsberger and Christian

Reinhardt enable re-experiencing rationales and past events. These authors argue that the

archived traces left after past interactions (for example in mailing lists) combined with

information sources specifically aimed at newcomers (user or developer documentation) form

a transactive memory that can be explored independently of the actors that created it

(Hemetsberger & Reinhardt, 2006, p. 195–199).32 This phenomenon is further supported by

the self-documenting tendencies in the FOSS culture. Hackers usually produce accounts

(typically in the form of blog posts) of the learning processes that they undergo. These records

31 Drawing on Ducheneaut’s work Israr Qureshi and Yulin Fang later developed a model of four classes of
“joiners” differentiated according to the volume of interaction with core developers (Qureshi & Fang, 2010,
p. 223).

32 Already in 2003, Gwendolyn Lee and Robert Cole pointed out that the reuse of mailing list communication
and peer review observation is at the heart of the knowledge generating processes in Linux kernel
development (Lee & Cole, 2003, p. 644).

14

are publicly available so that others can make use of them in or develop them further. This

leads to a continuous creation and re-creation of learning resources for any topic that is

deemed to be interesting or worthwhile. In this sense, learning of one individual can teach

others.

Similarly to learning, work in FOSS projects exhibits an emphasis on autonomy. Kevin

Crowston et al. found that self-assignment is the most frequent type of work assignment in

FOSS projects (Crowston, Li, Wei, Eseryel, & Howison, 2007, p. 6). This finding is further

supported by Giampaolo Garzarelli and Ricardo Fontanella, who additionally clarify, that self-

assignment is made possible by the modular architecture of the projects, allowing for

individuals to work in parallel (Garzarelli & Fontanella, 2011, p. 930–936). Keeping in mind

that FOSS projects are often run by volunteers, so that there is little or no leverage to enforce

work assignment, this should not come as a surprise. Overall, Crowston et al. characterize the

FOSS projects as “self-organized” and compare the coordination mechanisms to those

identified by Karin Knorr–Cetina in high energy physics (Crowston et al., 2007, p. 11).33

Athina Karatzogianni and George Michaelides further characterize self-organized FOSS

projects by noting that they typically exhibit a two-tier (core and periphery) structure

distinguishing maintainers and occasional contributors and that the overall distribution of the

projects follows power law (frequency of an event is inversely proportional to its magnitude),

which translates to the fact that there are few projects that attract large numbers of developers

while there are many projects that attract only a small number of developers (Karatzogianni &

Michaelides, 2009, p. 148–149).

The two-tier structure observed by Karatzogianni and Michaelides points to the issue of

participation inequality noted by several authors (Holtgrewe, 2004; Krishnamurthy, 2002;

Kuk, 2006; McInerney, 2009). The study by George Kuk is of particular interest here, because

it links participation inequality with knowledge sharing. This author claims that besides

collaborative interactions, FOSS developers also perform epistemic interactions, that is, place

inquiries on each others knowledge. However, these inquiries can be demanding and so they

may easily turn from exploration to exploitation. Kuk’s point then is that participation

inequality is functional in that it reduces the load of epistemic interaction by restricting it to a

33 Knorr–Cetina herself characterizes self-organization in the following way: “Self-organization, in turn, keeps
social relations liquid (and presupposes their liquidity): there is the fluidity of everyone’s readiness to
become drawn into temporary engagements with others in voluntaristic collaborations, a fluidity aided by the
breakup of forces of individuation and the holistic competence of individuals trained in object circuits.”
(Cetina, 1999, p. 179) Here, self-organization consists in work self-assignment made possible by even
distribution of knowledge.

15

narrow group of core developers (Kuk, 2006, p. 1039). Taken to a more general level, this

finding supports Ursula Holtgrewe’s criticism of sweeping claims that characterize the

Internet as an “undifferentiated mass of simultaneous and arbitrary information” (Holtgrewe,

2004, p. 14). Indeed, Holtgrewe points to FOSS development to demonstrate that meaningful

action is not drowned in the abundance of digital information.

Moreover, Kuk’s claim is consistent with the finding of Georg von Krogh et al., who

claim that core developers usually avoid narrow specialization (Von Krogh, Spaeth, &

Lakhani, 2003, p. 1230). Their activity spread across number of modules then requires

exploration with epistemic interaction as one of its forms. We can expect higher levels of

socialization present by occasional contributors as their motivations and actions are aligned

with the project only in certain respects. However, these specialized occasional contributions

do not cause disturbances in the development process. As Hemetsberger and Reinhardt point

out, FOSS projects are able to integrate individual actions with their overall activities,

regardless of their nature as general maintenance or specialized contribution. Therefore, these

authors characterize FOSS projects as “coat-tailing work systems” (Hemetsberger &

Reinhardt, 2009, p. 1003).

On a more general level, Yochai Benkler includes free and open source software

development under the umbrella of new forms of peer production. This author claims that the

defining characteristics of these forms of production stem from reduced transaction costs.34

Benkler argues that market transactions differ from non-market social exchange (such as gift-

giving) in that the calculations or definitions (calculating prices or drafting agreements, for

example) necessary for market transactions place significant burden on all parties. However,

non-market social exchange is exempted from these costs because it does not involve explicit

calculation or definition (Benkler, 2004, p. 307, 2006, p. 109). These non-market exchanges

traditionally reached only a scope of locally and temporally restricted interactions but the

advancements made in information technologies achieved in the past decades made possible

the rise of what Benkler calls “effective, large-scale cooperative efforts – peer production of

information, knowledge, and culture” (Benkler, 2006, p. 5). Given that this new form of

production is based on the non-market social exchange, Benkler claims that it not only has a

systemic advantage in the form of reduced transaction costs or better allocation and

motivation of workforce, but that it also improves the practical capacities of individuals by

34 In this regard, Benkler bases his argumentation on the classical work of Ronald Coase (Coase, 1937, 1960).

16

opening to them a broader scope of production activities without the restrictions placed by

traditional models involving price calculation or strict hierarchical organization (Benkler,

2002, p. 376, 2006, p. 8).

This optimism is intensified in some of the works surrounding the concept of collective

intelligence, which has been developed at least since the early 1970s (Wechsler, 1971).

Collective intelligence can be defined as the “ability of virtual communities to leverage the

combined expertise of their members” (Jenkins in Uspenski, 2013, p. 142). While Uspenski

proceeds to a heuristically inspiring distinction between collective intelligence (based on

mutual evaluation of meaning) and mass intelligence (based on aggregation of data)

(Uspenski, 2013, p. 148), the rest of the discourse is interwoven with utopistic visions of

future. For example, Pierre Lévy foretells the coming of planet-wide civilization through

collective intelligence based in cyberspace and proceeds further to claim that television will

be replaced by omnivision, allowing all humans to watch any place at any time (Lévy, 2005,

p. 189, 191). In his most known work, Lévy claims that the historical development which the

emergence of cyberspace has triggered implies “a new humanism”, one that promotes

individual intelligence to a collective level. From this, “new forms of democracy, better suited

to the complexity of contemporary problems than conventional forms of representation, could

then come into being” (Lévy & Bonomo, 1999, p. 18). Other authors associate the term

collective intelligence with images of “harnessing crowds” (Malone, Laubacher, &

Dellarocas, 2010) or “creating a prosperous world at peace” (Tovey, 2008) directly in the

headings of their works.35 This demonstrates the positive valence with which the terms

“collective intelligence” or “cyberspace” are charged.

Furthermore, such claims can be also found in constitutive texts of the FOSS

movement. The essay The Cathedral and the Bazaar from Eric Raymond can serve as a good

example:

That is, that while coding remains an essentially solitary activity, the really great hacks
come from harnessing the attention and brainpower of entire communities. (Raymond,
1999, p. 39)

The Linux world behaves in many respects like a free market or an ecology, a collection
of selfish agents attempting to maximize utility which in the process produces a self-

35 Furthermore, Francis Heylighen, former physicist who is attempting to formulate a general model of the
Internet as a system of collective intelligence (Heylighen, 1999; Heylighen & Bollen, 1996; Heylighen,
Heath, & Van, 2004), explicitly formulates his utopistic vision in that the Internet has introduced a cognitive
system on a planetary level, a global brain, and that this super-organism can be conceived as a higher level in
human evolution (Heylighen, 2002, p. 2).

17

correcting spontaneous order more elaborate and efficient than any amount of central
planning could have achieved. (Raymond, 1999, p. 40)

The basic claim made by Raymond in the text is that taking advantage of the Internet

infrastructure and employing a certain set of cooperative customs leads to establishment of

spontaneous order which is more efficient than central planning in that it allows to harness the

brainpower of entire communities.36 Additionally, for Jan Ljungberg, the specific ways of

knowledge sharing and work coordination signify the forms of organization of the future

(Ljungberg, 2000), while for Georg von Krogh and Eric von Hippel, free and open source

software development represent a new model of innovation that should spread to other fields

of production (Von Krogh & Von Hippel, 2006, p. 982). Finally, Cory Ondrejka stays within

the boundaries of cyberspace and elaborates upon the possibilities of establishing

“metaverse”, an alternative reality of unmatched complexity (Ondrejka, 2004, p. 81).

These visions are symptomatic of the enthusiastic anticipations37 of what cyberspace can

offer, which are placed under elaborate criticism by David Hakken.38 Hakken argues that these

anticipations are based on the assumption that knowledge has replaced capital, labor and

natural resources as central productive forces (Hakken, 2003, p. 9). Indeed, Lévy starts his

book on collective intelligence with a claim that the “prosperity of a nation, geographical

region, business, or individual regions depends on their ability to navigate the knowledge

space” while “power is now conferred through optimal management of knowledge” (Lévy &

Bonomo, 1999, p. 1). Correspondingly, Hakken argues that there is a broader tendency of

uncritically accepting the “knowledge society” label:

Rather than carefully articulating their view of the proper way to conceptualize the
knowledge revolution and then going on to make their case for it, most performers merely
jump on a generally conceded “knowledge society” bandwagon. (Hakken, 2003, p. 9)

As Hakken demonstrates, this tendency is also present in the works prominent authors such as

that of Karin Knorr-Cetina (Hakken, 2003, p. 9). Furthermore, if we look at the notable work

of Manuel Castells, we can identify the tendency (provided we acknowledge the link between

36 The contraposition of “free market” and “spontaneous order” against “central planning” evidently hints at
certain positioning within a political spectrum. However, leading the analysis in this direction would diverge
the current text from it purpose.

37 To be sure, there are also pessimistic expectations with regard to cyberspace, as, for example, Mark Davis
(Davis, 2013, p. 162) shows. But it seems that these did not gain such momentum with regard to claims about
the discontinuity of knowledge-related processes introduced by cyberspace.

38 The utopistic tendencies in Lévy’s work were critically noted also by László Fekete (Fekete, 2006, p. 742). A
more systematic account of the discussion about the utopistic tendencies surrounding digital technologies can
be found in a dissertation thesis written by Jakub Macek (2011, p. 84–93).

18

mind, cognitive processes and knowledge) in his more radical claims such as the one that:

“for the first time in history, the human mind is a direct productive force, not just a decisive

element of the production system” (Castells, 2010a, p. 31). While this claim was made in the

first part of a first volume of Castells’ trilogy (Castells, 2010a, 2010b, 2010c) on the

information age, in the concluding part of the third volume, we can find the following

statement:

The promise of the Information Age is the unleashing of unprecedented productive
capacity by the power of the mind. I think, therefore I produce. In so doing, we will have
the leisure to experiment with spirituality, and the opportunity of reconciliation with
nature, without sacrificing the material well-being of our children. The dream of the
Enlightenment, that reason and science would solve the problems of humankind, is within
reach. Yet there is an extraordinary gap between our technological overdevelopment and
our social underdevelopment. (Castells, 2010c, p. 395)

A notable difference between the two statements is that the former constitutes a claim about

the actual state of labor organization while the latter represents an expression of a potential

state that could be reached. This ambiguity is further supplemented by claims of

discontinuity: “I do believe that there is a new world emerging at this turn of millennium. In

the three volumes of this book I have tried to provide information and ideas in support of this

statement.” (Castells, 2010c, p. 372) As we will shortly see, these characteristics are typical

for a speech mode that is closely related to the utopistic visions I elaborated earlier.

Hakken identifies a speech mode, which he calls the “optative form”, that is indicative

of the sweeping claims emphasizing discontinuity in their images of cyberspace.39 According

to this author, the optative form’s predominant characteristic is that it mixes statements about

what is and what is hoped to be, it blurs the distinction between present and future (Hakken,

2003, p. 27). In other words, when using the optative form, authors see the future potential of

things as their essence. This corresponds to the initial definition that Rob Shields uses in his

elaborate work on the term “virtual” – “that which is so in essence but not actually so”

(Shields, 2003, p. 2). However, Shields is also wary of the uncritical acceptance of the

expectations surrounding the virtual:

The hype around digital virtuality over the past decade has been more about myth and
less about actual cyberspaces. As a fad and myth, virtualism is itself virtual. Symptoms of

39 Further critique of the positions emphasizing discontinuity can be found in the work of Steve Woolgar (2002,
p. 17) or Marylin Strathern (2002, p. 311). Both authors claim that the dichotomy between the virtual and the
actual (or “real”) does not constitute a mutually exclusive binary opposition. On the contrary, they argue that
the virtual and the actual are mutually co-extensive.

19

virtualism include exaggerated expectations of anything described as ‘virtual’, and
unrealistic expectations that digital technologies will solve social problems. The boom in
technology stocks and enthusiasm for virtual reality hinted at the ongoing expectations of
the virtual. In line with its historical definitions, it carries a certain promise of positive
potential or virtue. Portrayed as enabling a human virtuosity beyond the limits of the
body or gravity, the legacy of the baroque echos through the claims of Silicon Valley
entrepreneurs. (Shields, 2003, p. 15)

Already in his older work, Hakken claims that the images around the so-called computer

revolution should be bracketed as a myth in the anthropological sense (Hakken, 1999, p. 18).

The logical implication of this position is a call, made by Hakken, to examine in more detail

the knowledge-related processes taking place in the cyberspace (Hakken, 2003, p. 29). This

work aims to answer this call in a specific sense: informed by this critique, the aim of this

work is to explore closely the processes of knowledge production in free and open source

software development, an area of practice which Benkler deemed to be typifying the new

form of cyberspace enabled peer production. For this purpose, Hakken offers three ways of

conceptualizing the knowledge related changes taking place in cyberspace:

1. Quantitative growth in knowledge,

2. Change in its quality/character, or

3. Change in its social functions, perhaps involving quantity, quality, or both. (Hakken,

2003, p. 29)

The present work focuses on the third option by attempting to show how the social function of

knowledge is altered in the environment of FOSS projects by its interrelatedness with

practicing of rights that were traditionally associated with ownership. Furthermore, I try to

show the knowledge-related limitations of the images, associated with utopian virtualism, of

frictionless interaction of individuals spontaneously emerging around problems to solve them.

These claims are supported by an elaborate analysis of mediation and resource flows that take

place inside a FOSS project. This whole construction stands on a basis formed by thick

description of selected incidents I recorded during my participant observation and other

involvement in the field.

20

2. Software and Knowledge

Software is a general designation for the sum of all programs that can be run on a computer. It

represents one side of the software/hardware distinction where hardware designates tangible

computer components on which software operates. It is common to say that software consists

of ones and zeros, that is, of digital information. However, ones and zeros represent the end

product that is readable only for machines. When developing software, programmers are not

dealing with ones and zeros, they use one of many programming languages to produce a

strictly formalized text – the source code. After the source code of a program is written, it is

turned into a machine readable binary file consisting of ones and zeros through an act called

compilation. Compilation represents an event in which readable and modifiable text is

transformed into a solid thing that behaves according to its own logic. It is the act of

materialization of an object.

What interests me, however, is what happens before compilation: the process in which

humans and nonhumans are organized in a manner that results in an object that can be

executed and purposefully utilized by its users. That is to say, I am interested in associational

processes that take place during software development. As claimed by Jacob Nørbjerg and

Philip Kraft, software production typically involves a “complex mix” of organizational

structures, work practices or even politics (Nørbjerg & Kraft, 2002, p. 218).40 From this

perspective, software is relevantly defined by Arne Raeithel:

Computer science or informatics appears in this perspective as one of the sciences of
human self-regulation, mainly concerned with electronic and virtual machines used in this
process. Software objects may consequently be seen as predefined constraining contexts
(‘forms’) for sign processes (semioses) mediating between human actors, while at the
same time presenting virtual objects and instruments (‘means’) for self-determined use by
the cooperating persons. (Raeithel, 1992, p. 391).

There are two important points in this definition. First, software is seen as a constraining

context, a digital environment which determines the options its users have. Any action the

user can take has to be pre-conceived by software developers and implemented in a given

program. Second, software represents an instrument, a tool that can be used for purposes its

developers have not envisioned and that can be combined with other tools to produce

unexpected results.41

40 This is why ethnography is suggested by several authors for studying it (Dittrich, 2002; Klischewski, 2002;
Rönkkö, 2002; Westrup, 2002).

41 These two points can be found also in Christiane Floyd’s work (Floyd, 1992, p. 15). The common point is

21

Software development is carried out by a practice called programming. According to

Peter Naur, programming is “matching some significant part and aspect of an activity in the

real world to the formal symbol manipulation that can be done by a program running on a

computer” (Naur, 1985).42 However, Naur further conditions programming by knowledge

building: a programmer must craft a theory of what is to be matched and in what way.43

Theory, in this sense, represents a support for action not limited only to know-how, but

including also explanations and justifications of what is to be done. The programmer has to be

able to explain how the important characteristics of the real world activities are mapped into

the program and subsequently justify his decision and choices. In this way, the knowledge

needed for software development transcends what is recorded in the final product. This

knowledge is needed for every modification of a program in order for those modifications to

form an integrated whole (Naur, 1985).

Naur further elaborates a model of three phases a program can go through. First,

program life designates a phase when a team of programmers actively develops a program,

providing all modifications. Second, program death represents a phase in which the program

is no longer actively developed by the team. Third, program revival marks a phase in which a

new team of developers take up the development and tries to reconstruct the theory with

which the program was originally developed. Naur’s main point is that the theory can be

maintained only when the new developers get the chance to work with the original developers

and receive the theory from them. According to Naur, “reestablishing the theory of a program

merely from the documentation, is strictly impossible” (Naur, 1985). I will further explore this

issue as a theoretical problem of decontextualization of knowledge.

In a similar way, Pelle Ehn describes software development as a process of designing a

computer artifact. According to this author, design is an activity and a form of knowledge in

which artifacts and their use are anticipated and which deals with the distinction

tradition/transcendence (Ehn, 1988, p. 161). This means that designing technological objects

that software, while it represents instrumental means to achieve goals, constitutes some kind of constraining
context for its users.

42 According to Reinhard Keil-Slawik, a new quality emerges from this process. Sequences of activities that
need to be performed to achieve a certain action can be condensed into a single object or operation. These
objects and operations can then be further combined without the constraints of enforced sequentiality they
previously had. As Keil-Slawik puts it: “prescriptive temporal structures are dissolved by creating physical
objects and corresponding spatial structures” (Keil-Slawik, 1992, p. 182). Thus, matching real world
activities does not mean mirroring them, it means distilling them into objects or operations that are not
limited by the constraints their original models had.

43 In this sense, Catharina Landström et al. write about “forming an understanding” with regard to software
development (Landström, Whatmore, & Lane, 2011).

22

is a process which draws its resources from what is currently available and attempts to

overcome it. It represents a situation in which human creativity is needed in order to produce

something new using everything that is already there. However, human creativity, albeit

important, is hardly the only thing that counts. The technological artifacts already there play a

vital role in the process.4445

According to Ehn, the importance of artifacts lies in the fact that they are able to

augment or replace human activity and can do so with regard to both communicative and

instrumental activities (Ehn, 1988, p. 162–163). With this general characteristic, I hold that

Ehn has one particular type of artifacts on his mind, the one that is commonly grouped under

the label “tools”. But in software development, tools too take the form of software. Therefore,

we must consider developers of certain software to be simultaneously users of other

software.46 And as users, they are dependent on the interface of the software-used-as-tool as it

determines the options available for exploiting the provided functionality.

Furthermore, one other type of artifacts is introduced by Ehn: “design artifacts”. These

can be defined as objects (for example descriptions, models, or prototypes) which mediate the

design process. Ehn’s characterization of this type of artifacts is worth quoting at length:

The role of design artifacts in the language game of design is as reminders and as
paradigm cases for our reflections on existing and future computer artifacts and their use.
The use of design artifacts brings earlier experiences to our mind and it bends our way of
thinking about the future. I think it is in this sense we should understand them as re-
presentations. … I see descriptions or models as design artifacts to objectify experiences,
visions, and ideas relevant for communication in the design process. … These kind of
artifacts support reflection. … Another category of design artifacts is prototypes, mock-
ups, scenarios with role playing, etc. They differ from descriptions and models in the
sense that they also allow for involved practical experience, not just detached reflections.
(Ehn, 1988, p. 169)

There are three important characteristics that Ehn attributes to design artifacts. First, he shows

44 This is consistent with how Bruno Latour connects his theory with that of Peter Sloterdijk. “Dasein ist
design” says the quote in one of Latour’s texts. And he further elaborates his position: “There is not the
slightest chance of understanding Being once it has been cut out from the vast numbers of apparently trifling
and superficial little beings that make it exist from moment to moment” (Latour, 2009, p. 139).

45 The importance of things already there is highlighted by Reinhard Keil-Slawik’s claim that preservation of
tools (not their construction) is what differentiates humans from animals. As he states: “This is essential,
because only then does it become possible to compare a previously built tool with a new one, to
communicate about tools, and to use them as a means for education” (Keil-Slawik, 1992, p. 181).

46 In the terminology used by Susan Leigh Star, software tools are boundary objects, that is, objects that have
varying use or purpose depending on the location they appear in. Thus, their purpose is ambiguous in general,
but clear in particular cases (Star, 2002). Specifically, the dual nature of software as a development target and
as a tool is consistent with Star’s claim that we can read information infrastructure as a material artifact (tool)
or a trace of activities (development target) (Star, 1999, p. 387).

23

that representations do not have to be necessarily symbolic. In the design process, there are

objects that are created specifically with the purpose to represent something, to prove a point.

Second, these artifacts provide snapshots of experiences and make them intentionally

reproducible so that more time can be allocated at reflection. Third, they also provide new

experience through interaction with the latest version of the desired product.

Correspondingly, Mike Reay considers conscious reflection and new experience as two

main sources of learning, the activity which dynamizes knowledge. Furthermore, Reay

distinguishes two types of knowledge distribution. Horizontal distribution of knowledge is

based on distribution of experience in space and time. Vertical distribution, on the other hand,

means distribution of knowledge into conscious and unconscious layers differentiated by

presence or absence of reflection. Differences in distribution of experience and reflection can

lead to stable patterns of ignorance or mis-perception. The barriers leading to this “knowledge

insulation” can be overcome only with mobilization of new experience or further reflection

(Reay, 2010, p. 100). These processes are key for social arrangements focusing on knowledge

production because they are based on constantly overcoming knowledge insulation.

In the previous paragraph I suggest that by providing some sort of experience or

reflection, design artifacts are able to transmit knowledge through the process of learning. But

to grasp the problem in more detail, we must differentiate knowledge and information just

like, for example, Nico Stehr and Ulrich Ufer do. According to these authors, knowledge

inherently involves appropriation by a knowing subject, as they put it: “Knowledge always

requires some kind of attendant interpretive skills and a command of situational

circumstances. In other words, the acquisition, dissemination and realization of knowledge

requires an active actor.” (Stehr & Ufer, 2009, p. 9). Information, on the other hand, does not

require appropriation and therefore represents something that actors simply have and can pass

on whenever they want. This makes information easily transferable (Stehr & Ufer, 2009, p.

9).47

In a similar manner Loet Leydesdorff makes a distinction between information and

meaning. According to this author, information by itself is in a state of “still-to-be-provided-

with-meaning”. Meaning arises in the process of relating information to one another in a

context of individual (personal meaning) or supra-individual (discourse) systems of reference.

47 Consider a map as an example. By itself, it is a piece of information that can be passed quickly from one
actor to another (and even more so in a digital form). However, it takes an actor who can read all the signs,
reference points and directions in order to turn the information into knowledge about location and possible
courses of action.

24

Therefore, meaning is defined in use (Leydesdorff, 2011, p. 393–394). This is consistent with

how George Herbert Mead defined meaning, provided that we think of gestures as of

transmitted information:

Meaning arises and lies within the field of the relation between the gesture of a given
human organism and the subsequent behavior of this organism as indicated to another
human organism by that gesture. If that gesture does so indicate to another organism the
subsequent (or resultant) behavior of the given organism, then it has meaning. (Mead,
1972, p. 76)

Therefore, meaning is derived from the ways in which information is used, from action.48 In

this sense, knowledge and meaning are very closely tied as ways of making sense from

information. This relationship is further explored by Doyle McCarthy who claims that

knowledge is best conceived and studied as culture. This is to claim that various bodies of

knowledge operate within culture, “that they contain and transmit and create cultural

dispositions, meanings, and categories” (McCarthy, 1996, p. 118).49

Applied to the area of software development, the theoretical statements above mean that

what is embedded in design artifacts is information which can be easily transmitted but which

can also be easily stripped of its meaning.50 Knowledge involves the ability to utilize

information contained in objects and to give them meaning.51 In other words, the source code

of a program by itself represents only information. Knowledge arises from the ability to either

use the compiled program as an end-user or read, understand and meaningfully alter the

source code as a programmer. This means that knowledge does not reside either in

programmer’s head or the source code, but can be found only in the interplay of the two.

Knowledge is not the content, it is a quality of interaction.52 The claim, which is made by

48 It is also common to say that meaning is the result of interpretation. As Elizabeth Long shows, this process
traditionally associated with reading in private can be made less opaque by explicating the “social
infrastructure of reading” by which she means not only the socialization and learning processes that establish
the competency of reading, but also the social base of reading groups or other associations devoted to
reading, interpreting and discussing texts (Long, 1993, p. 190–191). As a result, software development
projects can be seen as a specific case of reading associations.

49 Karin Korr-Cetina’s detailed study of epistemic cultures in natural sciences is a case in point (Cetina, 1999).
50 Such decontextualization is documented in a study by Jessica Thurk and Gary Fine who examine how

importing pieces of architectural drawings causes errors when not accompanied with the original meaning.
This happens despite the standardization with which tools are designed (Thurk & Fine, 2003, p. 115–116).

51 According to Hakken, the process of distilling knowledge from information is emphasized in the modernist
knowledge discourse. The other direction, production of information based on situated knowledge is
emphasized in the postmodernist knowledge discourse (Hakken, 2003, p. 37–39) . Hakken further claims that
these two points of emphasis form a useful dialectic, keeping the focus on both of the processes instead of
just one (Hakken, 2003, p. 45). In software development projects, we can see this dialectic at work when a
newcomer first appropriates information to gain knowledge and then use it to create more information for
others to appropriate.

52 This claim is also supported by Keil-Slawik (1992, p. 169).

25

Naur, that this quality is best spread by observing (experiencing) the interaction of someone

knowledgeable seems obvious. But that does not mean that it is the only way to achieve it.

The problem of transferring knowledge through its embodiment in design artifacts

essentially corresponds to the classical issue of reciprocity of perspectives explored by Alfred

Schütz. According to Schütz, there is an inherent difference in perspectives among actors

because they 1) are located in different spatial distance from the object while experiencing

different aspects of it as typical and 2) are located in different biographical situations which

are projected into different purposes at hand and systems of relevances (Schütz, 1953, p. 8).

These two points also constitute the underlying basis for distribution of knowledge. We can

see that the knowledge with which software developers approach a program will necessarily

differ from that of its users or newcomer programmers. Members of each of these three

groups approach the object with a different purpose at hand, different systems of relevances

and different typifications. Assuming, of course, that these three groups are homogeneous in

those three regards which does not have to be the case. But let me postulate that the

differences will be bigger between those three groups rather than within them. After all, they

are defined by a common experience (developing, using, learning to develop) with the object.

According to Schütz, the difference in perspectives can be overcome by two types of

idealizations: interchangeability of standpoints and congruency of the system of relevances.

According to the first, actors take it for granted that when they change positions, they would

be at the same distance from the object and see it in the same typicality as their counterparts.

The second idealization implies that actors assume that the uniqueness of their and their

counterpart’s biographical situations can be set aside to establish common purposes at hand

and a common system of relevances (Schütz, 1953, p. 8). These two idealizations show us

how the differences resulting from heterogeneous distribution of knowledge can be overcome,

that is to say, how reciprocity of perspectives is established.

When applied to the practice of software development we can see that the differences

may be overcome to a degree to which interchangeability of standpoints is possible among

current developers, new developers and users. First, interchangeability of standpoints can be

achieved when current and new developers observe each other’s work. This is Naur’s original

proposition (Naur, 1985). But there is more to this way of establishing this interchangeability.

The current developers remember the beginning of their involvement and see newcomers in

the light of this experience. On the other hand, new developers can read the project’s archives,

26

which, as Andrea Hemetsberger suggests, allows them to re-experience past action

(Hemetsberger & Reinhardt, 2006, p. 195). But to make it easier for newcomers to find the

right information current developers usually write documentation aimed at developers.

The second way to achieve it is a practice called testing in which developers assume the

role of users in order to find issues in the developed software. Testing is used not only to

discover hidden errors, but also to make sure that the interface is intuitive enough for users,

that the meaning of offered operations is accessible just by looking at the design without the

need to cooperate with the programmer who wrote it (Keil-Slawik, 1992, p. 181).53 Should the

interface fail at this, there is a safeguard in the form of user documentation which aims to

explicate the meanings carried in the interface.

The third way, this time to establish congruent systems of relevance, leads, as Keil-

Slawik (1992, p. 169) suggests, through using common tools. Given that tools specify, often

to a great detail, how a problem is perceived and approached, or how work is done in general,

using the same tools usually results in standardization of perceptions and solutions to several

options. To be sure, there may be disagreements on which option is optimal, but the

recognition of available options is usually widespread. And it is in the light of these standard

options that systems of relevance overlap.

These are all ways that allow to establish common purposes at hand and shared systems

of relevance. In doing so, they resist the loss of knowledge at points where

decontextualization would usually take place. The induction of knowledge at distant places is

not something effortless, it must be safeguarded by means I now roughly sketched.

As a result of this elaboration, we can see that Naur’s consideration of knowledge

processes involved in software development was limited. Naur was not occupied by the

congruence between developers and users so his aims were different. But still, his

consideration did not involve the possibility to re-experience actions.

When Naur conceptualized the three phases a computer program can go through, the

Internet was not yet widespread. This is important to note because developing software in this

environment introduces conditions that were not previously present and that free and open

53 To achieve this, interfaces usually consist of signs that are designed to remind users of what can be done with
the program. To grasp this problem, Ehn reaches for Wittgenstein’s concept of language games and claims
that the signs used in an interface must fit within the language games of its users. Only then “the signs
remind us of what we can do with the artifact” (Ehn, 1988, p. 164). As a result, signs are often designed as
representations of the real world actions that are symbolically mapped by a programmer and implemented as
functions of the program. A typical example of this approach is the image of scissors which is common for
representing the cut function.

27

source software development takes advantage of. These possibilities are based on two

characteristics of digital texts as described by Lorenzo Cantoni and Stefano Tardini. The first

characteristic, persistence, means that every communication that is mediated by a computer

leaves a physical trace making it possibly available for someone else for an unspecified

amount of time (Cantoni & Tardini, 2006, p. 44). At first, this seems to apply to all

communication, online or offline – even voice makes a physical trace. However, when

communicating outside cyberspace, additional effort needs to be exerted (writing or other

forms of recording) in order to capture the communication and make it accessible for longer

periods of time. Within cyberspace such effort is not needed because all communication takes

place already in the form of text (or, less frequently, in other recorded forms).

Similarly, the second characteristic means that digital texts (and other recorded forms)

are reproducible without the need to exert effort and resources that would be needed when

reproducing non-digital media (Cantoni & Tardini, 2006, p. 55). Reproduction requires only

computational resources which, once acquired, are abundant.54 Going one step further, both of

the characteristics (persistence and reproducibility) are tightly interconnected with the ability

of automated manipulation. This ability implies that digital text can be manipulated

(recorded, reproduced, searched or edited) in a way that does not require direct and permanent

attendance by a human operator. Automation allows human operators to specify instructions

before the manipulation process which is then performed autonomously at the computer’s

own pace.

These characteristics of digital texts make possible what Yochai Benkler emphasizes as

transparency of online culture. As an example, this author takes the case of Wikipedia55

articles. For any given article, all changes made to it are traceable in its history while

discussions leading to those changes are also recorded on a separate page (Benkler, 2006, p.

289). Such an endeavor in offline archiving would require large investments in effort and

resources, making it slow and cumbersome. But in cyberspace, the archiving procedures can

54 The words “once acquired” are important here. One more important characteristic that Cantoni and Tardini
list is that digital texts are directly inaccessible to human senses. This means that a computer (preferably with
Internet connection) is required in order to obtain and read digital texts. As the issue of digital divide (see for
example Norris, 2001) reminds us, the spread of this infrastructure is hardly universal.

55 Wikipedia, launched in 2001 and explicitly stating influence from the free software movement (see
Wikipedia (2015)), can be considered what Christopher Kelty calls a modulation of Free software practices,
that is, an application of one or more characteristics of free and open source software development to other
areas than programming (Kelty, 2008, p. 16). Roy Rosenzweig (2006), a historian examining the implications
Wikipedia has for historiography characterizes it in a similar way by posing the question: “Can history be
open source?”.

28

be automated. Originating in 1970s, free and open source software development seems to be

the first organized effort to employ these possibilities systematically. As a result, the source

code (and its documentation) is by far not the only set of information that is publicly available

in FOSS projects. There are numerous other sources of information of which the main are:

detailed history of changes made to the source code (resulting from version control systems),

recorded communication among developers (located in mailing lists or Internet relay chat

archives), lists of issues containing discussions on how to solve them (gathered in databases

such as Bugzilla), websites with further information (project website, developer blogs). With

such a wealth of information at disposal, we can hypothesize that the dependency of new

developers on interacting with the original ones is lowered. Wider pool of information that

can be related to one another means more options for endowing it with meaning.

2.1. Network Shaped Knowledge Distribution

If we try to sum up the role tools and design artifacts play for a programmer’s knowledge

building, we could come up with a wording similar to “material means of thought”, an

expression used by Edwin Hutchins to describe material dimension of symbol manipulation.

Hutchins’ line of argumentation starts with the claim that abstract manipulation of symbols is

not a process that takes place inside individual’s mind. Instead, symbol manipulation should

be considered as mediated by cultural and physical objects (Hutchins, 1995, p. 363).56 This is

not to disprove that humans process symbolic structures, Hutchins’ aim is to counter the

proposition that the cognitive process is purely symbolic (Hutchins, 1995, p. 369–370).

Hutchins is not the only author proposing what could be called the central thesis in

Theory of Distributed Cognition.57 Andy Clark and David Chalmers also propose to award

56 The tendency to restrict cognition only to matters internal to the individual results, according to Hutchins, in
attributing every cognitive characteristic to the individual mind while ignoring any role externalities could
play (1995, p. 173, 356). This assumption has been rendered problematic by studies from Bruno Latour
(1986), Karin Knorr-Cetina (1999) or Hutchins (1995) himself.

57 Hutchins work is a part of a broader line of thought represented also by authors such as Jean Lave (1988) or
Lucy Suchman (2007; 1987) and applied in fields of study such as human-computer interaction (Wright,
Fields, & Harrison, 2000), religion (Lawson, 1999; Reimer, 2005), morality (Magnani & Bardone, 2008), or
work (Rogers & Ellis, 1994). Another approach that also refuses to attribute the epistemic credit to the
symbol manipulation performed only by the human mind can be found in the theory developed by Karen
Barad who claims that interaction (involving apparatuses used for measurement or observation) constitutes
an inseparable part of phenomena (Barad, 1998, p. 95). In her more recent work, she brings this claim to its
more radical implications, questioning the metaphysical belief that things have independent sets of
determinate properties (Barad, 2007, p. 19). Finally, the central thesis of the Theory of Distributed Cognition
is reminiscent of the cyborg image classically described by Donna Haraway: “Why should our bodies end at
the skin, or include at best other beings encapsulated by skin? From the 17th century till now, machines could
be animated – given ghostly souls to make them speak or move or to account for their orderly development
and mental capacities. Or organisms could be mechanized – reduced to body understood as resource of mind.

29

externalities with epistemic credit:

If, as we confront some task, a part of the world functions as a process which, were it
done in the head, we would have no hesitation in recognizing as part of the cognitive
process, then that part of the world is (so we claim) part of the cognitive process. (Clark
& Chalmers, 1998, p. 8)

This seems to be the main criterion for determining whether an object is a part of a cognitive

system.5859 To define what a cognitive system is, we can reach for Ronald Giere’s grasp of the

concept. In his view, cognitive systems are specified by what they produce: knowledge.

Therefore, cognitive systems, even though they include material objects, are based on human

agency (Giere, 2002, p. 642). We can also use Clark’s and Chalmers’ distinction between

pragmatic action (alteration of the world for its own sake) and epistemic action (alteration of

the world in order to augment cognitive processes, for example search or recognition) (Clark

& Chalmers, 1998, p. 8) to claim that cognitive systems engage predominantly in epistemic

action.

According to Hutchins, the development of material means of thought results in

different representations of given problems so that problems once considered difficult can be

turned into easily solvable ones (Hutchins, 1995, p. 367). This connects directly to Keil-

Slawik’s thesis about removing enforced sequentiality of tasks by condensing them into a

single operation that can be easily performed by a program. A sequence of tasks can be

mapped, represented as a formal function in a programming language, and implemented in a

program by adding it to it’s source code. After compilation of the modified source code, the

operation is available through user interface of the program. There, it represents not only

modification of text (source code), but also modification of an object or a tool (interface).

Depending on the type of interface60, this modification can take the form of an added

These machine/organism relationships are obsolete, unnecessary. For us, in imagination and in other practice,
machines can be prosthetic devices, intimate components, friendly selves.” (Haraway, 2006, p. 144)

58 There is an ongoing discussion concerning the criterion as represented, for example, by Magnus who
considers, whether double blind studies are a case of distributed cognition, given that they in principle could
not be carried out within a single mind (Magnus, 2007, p. 301). But these are rather discussions of corner
cases, which are not very relevant for the present text. Conceptualizing tools as parts of distributed cognition
systems is well established (Clark, 2006; DiMaggio, 1997).

59 Francis Heylighen further characterizes distributed cognition systems with self-organization, co-opting
external media, network structure, selective propagation of information and production of novel knowledge
(Heylighen et al., 2004).

60 In one of his early texts, Hutchins distinguishes between interfaces based on abstract formalism and direct
manipulation interfaces based on graphical representation of tasks (Hutchins, Hollan, & Norman, 1985). The
former are typically represented by command line interfaces that rely on complex and precise syntax of
textual commands while the latter designate graphical user interfaces that rely on operations with graphical
elements. To give an example, copying a file in a command line interface can achieved by a command like:

30

command in command line interface or added element in graphical user interface, each

representing the new operation. In cyberspace, each operation that can be performed has to be

an operation of some program and therefore had to undergo this generally described process.

As a result, action can be defined as coordination of condensed task sequences represented as

operations in a software interface. This positions software (along with the underlying

hardware of course) to be the material means of thought of programming.

Clark further specifies objects that meet the criterion for attribution of epistemic credit

(what I have been up to now calling “material means of thought”) as “wideware” and defines

them in a way that shows their direct relevance for this text as objects that “act so as to

manipulate, store, or modify the knowledge and information that the organism uses to reach

its goals” (Clark, 1998, p. 269). The sociological relevance of these claims, as Ronald Giere

and Barton Moffat emphasize, lies in the fact that the shape the distribution of actors and

objects takes in particular cases originates in existing social structures (Giere & Moffatt,

2003). Furthermore, Hutchins, when dealing with the question of how are the elements of

distributed cognition systems selected and included, relies heavily on the cultural context of

cognition. Therefore, he proposes what he calls the “hypothesis of enculturated cognition”

according to which “the ecological assemblies of human cognition make pervasive use of

cultural products. They are always initially, and often subsequently, assembled on the spot in

ongoing cultural practices” (Hutchins, 2011, p. 445). In other words, Hutchins claims that

cultural practices play key role in organization of the cognitive systems.61

In this work, I assume that the social structures and the assemblies of cultural practices

take the form of networks. Besides the resemblance in terminology, this decision is also

supported by the fact that Hutchins’ work on distributed cognition is considered by Bruno

Latour to be compatible with Actor-Network Theory (Latour, 2005, p. 60). For example, one

cp directory1/file_to_be_copied.txt directory2/ while in a direct manipulation
interface, one can simply drag and drop the file with mouse. The latter interface seems to be faster and more
convenient, however the benefit of using textual commands is that they can be easily combined with other
commands, creating a new task sequentiality in a script file that can be executed as a whole, thus representing
a new condensation of tasks. See Appendix 1 for an example of a script together with its description.

61 There is also a topic within the theory of distributed cognition which roughly corresponds to the classical
sociological dichotomy between actor and structure. Giere shows that there is a tendency to attribute agency
to structures by speaking of “distributed minds” but claims that this is not necessary and argues for
attribution of agency only to human actors (Giere, 2002, p. 642). In one of his early works, Hutchins draws a
distinction between evolution and design to distinguish systems that emerged spontaneously (perhaps as a
result of some underlying structure) from those that were results of conscious planning (attributable to human
actors) (Hutchins, 1991, p. 38). More recently, Eviatar Zerubavel and Eliot Smith elaborated on the
possibility of transcending methodological individualism by considering human actors to mutually constitute
the entities of distributed cognition systems for each other (Zerubavel & Smith, 2010, p. 324).

31

of the central claims of Latour’s theory, that connections among entities are constitutive for

them (Latour, 1994, p. 35), can be seen as one of the more general assumptions behind the

theory of distributed cognition, underpinning the effort to attribute epistemic credit to external

entities.62 Furthermore, Hakken introduces the concept of knowledge networking (broadly

consistent with Actor-Network Theory) to avoid some of the controversies stemming from

taking into consideration both modernist and postmodernist knowledge discourses and uses it

to establish a dialectical perspective (Hakken, 2003, p. 45–47).

An organized set of wideware (that is tools and design artifacts) and its human operators

hints at the main types of compositional elements that form the networks of FOSS

development projects. At this point I draw from Latour’s theory which provides a useful infra-

language that specifies how could these networks be mapped (Latour, 2005, p. 174). In other

words, it is not a substantial theory of what is going on in any part of the social reality, it is a

perceptive grid used for observation (Latour, 1996, p. 11). In Latour’s approach, to interpret

means to add something from the outside, something which has not yet been mapped to the

network.63 Subsequently, a good research account should be the one tracing a network through

different locations.

According to Latour, a network is “not made of nylon thread, words or any durable

substance but is the trace left behind by some moving agent” (Latour, 2005, p. 132). Networks

are not simply “out there” in the sense of material substance connecting their nodes all the

time. Not all networks are like computer networks which need cables, routers and switches to

be constantly present.64 Usually networks need to be mapped and visualized to be graspable.

To elaborate the concept more, I note that networks have three basic features:

1. A point-to-point connection is being established which is physically traceable and thus

can be recorded empirically.

2. Such a connection leaves empty most of what is not connected.

62 Considering this affinity, it is no surprise to find the two theories elaborated side by side in overview works
such as that of Norton Wise (Wise, 2011).

63 This stands in contrast to a more traditional approach to interpretation based on subsuming or connecting
particular observations with general concepts. As his criticism of theoretical frameworks demonstrates,
Latour is strongly opposed to such a way of interpretation. For him, explaining something with a theoretical
framework means to make the phenomenon vanish, because the general social forces play a paradoxical role
of a necessary cause which, however, always remains invisible (Latour, 2000, p. 6, 2003, p. 3, 2005, p. 102,
2012, p. 138). In this sense, the general social forces are seen by Latour as something that Gregory Bateson
called explanatory principles: “an explanatory principle – like ‘gravity’ or ‘instinct’ – really explains nothing.
It’s a sort of conventional agreement between scientists to stop trying to explain things at a certain point”
(Bateson, 1972, p. 43).

64 Latour sees the Internet as increasing the material dimension of networks, he claims: “the more digital, the
less virtual and the more material a given activity becomes” (Latour, 2010, p. 8).

32

3. This connection is not made for free. (Latour, 2005, p. 132)

First, we can see that the tracing is done on a material, not conceptual level. As Latour would

put it, the world needs to be allowed to “put itself in order” (Latour, 2005, p. 184).65 But this

“putting into order” is nothing mysterious, it is traceable and accountable. As Latour claims,

social formations hold together because of graspable entities that operate within them. And it

is by tracing the connections that these entities are part of, that we can understand the

particular case of order that is established. In this research project it means focusing on the

tools and platforms such as Git, Bugzilla, MediaWiki, IRC and trace their origin, how are they

used in the studied project and how did they get there in the first place. It also means focusing

on the elements within them, that is, commits, pull requests, bug reports, wiki pages and their

histories, IRC channels and the conversations within them. Tracing how these entities are put

together will allow me to examine how is this specific type of order put together.

Second, networks are made of connections and so they differ from what is commonly

called an area, a field, a sphere, or any surface in general. It is for this reason that networks

don’t have borders (Latour, 2010, p. 5), they just leave everything that is not part of them

unconnected (Latour, 2005, p. 242). As such, Latour claims that networks are “by no means

comprehensive, global or systematic, even though they embrace surfaces without covering

them, and extend a very long way” (Latour, 2012, p. 118). He then goes to label everything

that is unconnected with the word “plasma”. It represents everything “which is not yet

formatted, not yet measured, not yet socialized, not yet engaged in metrological chains, and

not yet covered, surveyed, mobilized, or subjectified” (Latour, 2005, p. 244). This implies that

the characteristics of a network could be arrived at by examining what is not connected just as

well as what is. This is not a call to examine everything but a call to include entities that as we

understand could be connected but the connection is avoided or are being connected at the

65 This strand of Latour’s thinking is heavily influenced by Harold Garfinkel. According to Latour, both he and
Garfinkel share the view that sociology should be a science examining how society holds together (Latour,
2005, p. 13). Although Latour does not use the concept, Garfinkel, in his definition of ethnomethodology
explicitly states that it rests on a presupposition that social settings are to be viewed as “self-organizing”.
Garfinkel further elaborates the concept as follows: “Any setting organizes its activities to make its properties
as an organized environment of practical activities detectable, countable, recordable, reportable, tell-a-story-
aboutable, analyzable - in short, accountable” (Garfinkel, 1967, p. 33). However, it seems that Garfinkel is
not the only interactionist precursor of Latour’s approach. If we compare Herbert Blumer’s methodological
approach (Blumer, 1986) described by Martin Hammersley as a program of naturalistic research
(Hammersley, 1990, p. 156), it seems to be compatible in all points that Hammersley lists. In this context, the
concept of self-organization is different from its other version rooted in the tradition of cybernetics (Ashby,
1962; Von Foerster, 2003) and utilized most notably as the concept of autopoiesis (originally developed by
Humberto Maturana (Maturana, 1980) and Francisco Varela (Maturana & Varela, 1987)) in the systems
theory of Niklas Luhmann (Luhmann, 1995, 2014).

33

time of observation. For this research project, it means studying closely the cases of

newcomers who attempt to join the software development project. It also means examining

the tools or platforms that the maintainers for some reason avoid using. Elaboration of such

cases can bring key insight into the inner workings of the network.

Third, Latour keeps stating that the connections made within networks are “not made

for free” (Latour, 2005, p. 132) or that sites have to “levy the means” (Latour, 2005, p. 174) in

order to influence other sites. Such statements point to the role resources play in building

networks. Indeed, to connect something does not mean just attaching it. It means searching for

something, appropriating it, learning how to use it, spending time with it, modifying it, or

buying something, creating something, deserving something. In other words, resources are

spent on making connections, on making actor-networks more extensive. Without resources,

networks will hardly flourish and so for explaining how a certain network operates, it is

necessary to shed light on the resources it uses to do so. This applies also to this research

project. Servers are necessary to run Git repositories, Bugzilla databases or IRC channels. But

servers need to be provided, powered and maintained, people need to be paid and legal

entities must represent every attempt for gaining financial resources. Thus, to trace the tools

and platforms means also finding out how can they operate, what resources make that

possible.

Now I will attempt to describe the difference between two basic types of units that form

networks, that is, mediators and intermediaries. The latter are defined by Latour in a following

way: “An intermediary, in my vocabulary, is what transports meaning or force without

transformation: defining its inputs is enough to define its outputs.” (Latour, 2005, p. 39) Thus,

intermediaries are regular and predictable, just like machines that function reliably in

accordance with expectations of their operators. Mediators are precisely the opposite, their

output cannot be predicted from their inputs, every time they have to be considered with all

their particular characteristics. Thus, mediators are anything but regular, they are like

unreliable, broken or unfinished machines that seem to do whatever they want.66

Whether an entity is a mediator or an intermediary is not inscribed into its nature once

and for all, but depends on its observed behavior. This means that an intermediary can turn

66 These definitions appear to be analogical to the definitions of trivial (independent of their past states and
therefore predictable) and nontrivial machines (dependent on their past states and therefore unpredictable)
developed by Heinz von Foerster (Von Foerster, 2003, pp. 309–313). This line of thought is further developed
by Ranulph Glanville who considers scientific knowledge to be a cumulative stabilization over examination
of in principle unpredictable (because unopenable) black boxes (Glanville, 1982, 2007).

34

into a mediator at certain point in time (as when an error is discovered in a piece of software

leading to unexpected behavior) or from a certain point of view (as when inexperienced user

is discovering unknown functions that certain piece of software can perform). This also

applies to the transition from mediator to intermediary (as when a bug in a piece of software is

fixed or a user learns what to expect).

In this perspective, mediation is a key concept that needs to be elaborated further. In one

of his texts, Latour offers four meanings mediation has: translation, composition, black-

boxing, delegation. According to this author, translation is a “displacement, drift, invention,

mediation, the creation of a link that did not exist before and that to some degree modifies two

elements or agents” (Latour, 1994, p. 32).67 If we start with the premise that a relation

between two elements modifies them, it seems logical to claim that connections are

constitutive for those elements. Their “essence” is to be found in the links that connect them

to others. Those connections allow them to act in ways they would not be able to just by

themselves. This is the second meaning of mediation, composition (Latour, 1994, p. 35).

Latour goes as far as equating the embeddedness in various configurations of connections

with different modes of existence (Latour, 2007a, p. 24). Therefore, interaction can be seen as

action which is shared with actors that have different ontologies because they are made of

connections from other spatio-temporal frameworks (Latour, 1996).68 Furthermore, this

meaning of mediation can be related to the claim made by Hutchins and Clark, that actors

widen their options for epistemic actions by interacting with wideware and by doing so they

achieve augmented cognitive results. Programmers use software interfaces in order to perform

task sequences that are condensed into easily performable operations. The way these

operations are designed and implemented in an interface determine programmer’s options for

action.

However, composition may not be visible at first sight. This is a result of the black-

boxed nature of mediators or intermediaries (Latour, 1994, p. 36). Their composition is

opaque unless effort is made to make them more transparent. As I suggested earlier,

compilation, the act of transforming human readable source code into machine readable

67 It seems that the concept of translation is roughly analogical to the concept of emergence used in the systems-
oriented tradition of thought (see for example the work of Poe Yu-Ze Wan (Wan, 2011, pp. 69–82)).
However, while emergence is associated with the premise that the whole is always more than the sum of its
parts, in Latour’s approach, the whole is always smaller than its parts (Latour, 2011, p. 6). This is so because
the whole black-boxes its composition by appearing as a single agent.

68 John Law articulates this perspective through the term empirical ontology, which he summarizes in the
following way: “It washes away assumptions about pre-given realities and instead asks questions about how
realities are done in practices.” (Law & Lien, 2013, p. 3)

35

binary files, represents a finest act of black-boxing. The contents of a binary file after

compilation are not intelligible for human readers and thus an understandable text is turned

into a black-boxed thing. Finally, delegation makes explicit what mediators or intermediaries

do: they achieve spatial and temporal shifting of action (Latour, 1994, p. 39). They make

overcoming distances and durations possible to bring a certain kind of action to a situation. In

cyberspace, delegation is carried out primarily by persistent digital text or an interface of a

compiled program. They are able to overcome distance and endure time in order to carry

information (digital texts) or carry out an operation (interfaces).

To sum up Latour’s perspective: any interaction takes place in a situation which is full

of elements that originated somewhere else, at a different time and perhaps were put into

motion by some other agency. This means that an observer of an interaction should be led

away from it and drawn towards the different places, times and agencies that played a role in

putting together the elements of the examined situation. This research strategy is consistent

with Dominique Vinck’s approach, which she elaborates under the label “technical

ethnography”. According to Vinck, constant effort in both of the areas of production and use

of technology is necessary in order to keep the technology existing. The material dimension of

a technological object may create the basis for its performance, but it cannot be fully grasped

without considering number of actors and intermediary objects organized toward it. This

creates the ground for the “objectivity of technology” (Vinck & Blanco, 2003, p. 212). This

corresponds to Latour’s claim that “what lasts (…) is generated by what does not last (the

constant work of taking it up again)” (Latour, 2011, p. 12) and to his resistance to an idealized

form of materialism that take as a reference point the ideas of what things in themselves

should be. Instead, Latour directs the attention to the actual processes that result in things as

they are (Latour, 2007b, p. 139). Finally, Vinck’s perspective on objectivity of technology

echoes the title of one of Latour’s studies: “technology is society made durable” (Latour,

1991).

Furthermore, Latour’s famous statement “follow the actors themselves” is resembled by

the perspective employed by technical ethnography, which tries to see “technology in action”:

Technology in action can therefore be grasped by following and reporting on the action
and movement with and by all the intermediaries: tools that are bent and bruised (…),
texts that are covered with contradictory and half-finished notes, drawings that never
show everything and seem to adhere to tacit conventions, tables of data, and so on. (Vinck
& Blanco, 2003, p. 219)

36

This illustrates the entities this approach focuses on. The general question that technical

ethnography aims to answer with such observations is: “What makes something work, and

why does it produce the effects it does?” (Vinck & Blanco, 2003, p. 3). The question is

twofold and centered around a technological object. First, it aims to trace the elements that

were needed to bring together in order for the object to perform. Second, the objective is to

make account of other subsequent compositions where the object plays the role of an element,

a part. As a result, technical ethnography, as conceived by Vinck, can be used to track the

composition of actor-networks.

But Latour’s approach has one more important characteristic. He insists that the

observer should abstain from calling in a notion of context or structure and by that adding a

third dimension to the interaction being mapped. The observer should move only through the

two-dimensional “flatland” of concrete mediators, intermediaries and transformations. This

should be done in three steps.

The first step consists in localizing the global. Every element present in an interaction

has been put there by other interactions happening in other situations. Or as Latour puts it: “If

a site wants to influence another site, it has to levy the means. The tyranny of distance has

been underlined again.” (Latour, 2005, p. 174) To explain an interaction then means to trace

its connection with other interactions. The micro / macro distinction is replaced by

distinguishing sites with different scope of influence.

The second step is redistributing the local. This is where we get to the meaning of the

expression “actor-network”. It means that every actor can be decomposed into a network of

interconnected mediators, which, in turn, establish the actors subjectivity. The existence of

actors relies on the ties they are composed of. “So every assemblage that pays the price of its

existence in the hard currency of recruiting and extending is, or rather, has subjectivity.”

(Latour, 2005, p. 218) However, these ties not only allow actors merely to exist, but they also

make them do things. This is what Latour’s theory of action is based on. The fundamental

concept here is that of a plug-in. Plug-ins (e.g. tools or other equipment available in the

network) not only make actors competent in given areas of conduct, but also transform them

in the sense that they guide their actions.

The third step consists in connecting sites. This step relies on Latour’s conceptualization

of information. According to him, “to provide a piece of information is the action of putting

37

something into a form” (Latour, 2005, p. 223).69 In other words, information is embedded in

forms through which it can be handled or passed on. The decisions concerning what to pass

on and what not can be observed as decisions on which entities they want to multiply and

which to rarefy.70 Entities which succeed in the multiplication game can be seen as subject to

wide agreement and thus might be considered to be standard. The significance of standards

lies in their ability to render things comparable and in doing so, facilitating coordination.

Comparability and coordination are central to maintenance of ties among different sites and

therefore allow for the existence of that which has to be traced.

In this work, I employ the principles by playing down contextual notions such as the

free software movement values, hacker ethic, recursive publics or class struggle at the

beginning of my analysis. Instead, I focus on the licenses, tools and platforms and study the

implications of their design to localize and pinpoint such global phenomena. Furthermore,

participant observation allows me to identify the composition of the actor-networks that

represent the contributors. Again, the software tools and platforms play a key role here, but

also hardware aspects like screen size or availability of server space or the speed of Internet

connection. Examining the composition makes visible what is going on in the field. I try to

make the black-boxed compositions transparent to grasp the connections that allow actors to

act in the ways they do. Subsequently, I assemble my observations in order to see the

standards permeating the sites. But not only to identify them, also to examine the processes

that lead to some technology becoming standard.

To sum up my theoretical approach, I will now go through the most important points

made in this section. I argued that programming, an activity central to software development,

requires knowledge not only in the area of how to use programming languages and other

tools, but there is also a significant part of knowledge that consists of a theory, or an

approach, with which a particular program is developed. An important role in the software

development process is played by artifacts. These may be used either as tools that augment or

replace human activity, or as design artifacts, intermediary outcomes which allow for further

reflection or new experience. Reflection and experience form the basis of vertical and

horizontal distribution of knowledge and so, any change in distribution of knowledge (which

69 Or as Hutchins would probably put it, symbol manipulation always has its material side.
70 Through the perspective of Walter Buckley, the basic mechanisms that could be identified in this

phenomenon would be positive and negative feedback; the former leading to deviation amplification and
structure building, while the latter resulting in deviation counteracting and stabilization (Buckley, 1967, p.
59).

38

is key for organizations focusing on knowledge production) must come through these

processes. However, it is necessary to differentiate knowledge, which involves appropriation

by an actor, and information which denotes data that actors possess. Similar distinction can be

made with regard to information and meaning, where the latter arises from relating

information to one another within a system of reference.

Therefore, within software development, design artifacts consist of information that can

be easily stripped of its meaning, in other words, decontextualized. To resist this, reciprocity

of perspectives must be established among the parties exchanging design artifacts. I delimited

three main aggregates according to their experience with developed software: developers,

newcomers and users. I also assume that these groups are internally more consistent than

among each other. Based on this, I identify the points where the probability of

decontextualization is highest, that is, the exchanges of design artifacts between members of

different aggregates. I further suggested several practices such as work observation,

consulting archives or documentation, testing, and the use of common tools, that contribute to

establishing of reciprocity of perspectives. However, as free and open source software

development is an online constituted practice, the conditions in which it operates are specific.

I argued that this is mainly because the omnipresent use of digital text which has unique

characteristics that allow for storage, reproduction and automated manipulation at the price of

computational resources only. I also argued that FOSS software development was one of the

first practices that systematically employed these possibilities which, in turn, gave the

practices involved in establishing reciprocity of perspectives a new dimension.

In this line of reasoning, tools and design artifacts play central role. It is through them

that cognitive processes leading to production of knowledge take place. They constitute the

so-called wideware, the parts of cognitive systems that are external to humans. At the same

time, the distribution of wideware in particular cases originates in existing social structures.

These structures, I assume, take the form of networks which can be assembled as

conglomerates of physically traceable connections that are selective and require resources to

be maintained or extended. The elements operating within a network can be of two types,

reliably transporting intermediaries and unpredictably transforming mediators. What these

elements perform can be grasped with the concept of mediation and its four meanings:

translation, composition, black-boxing and delegation. By tracing the mediation of identified

elements a network can be assembled and described as a form of explanation of a

39

phenomenon.

I will now use the implications of this section to reformulate the problem at hand. The

main research question could be formulated along the following lines: given that the design

artifacts, which are essential for software development, consist of information, how is it

possible that with regard to them, reciprocity of perspectives is established and standard

knowledge is produced among varying aggregates of actors? In the following lines, where I

will attempt to answer this question, I will assume that the networks which form free and open

source software development projects contain elements (wideware) that are formative for the

cognitive processes which lead to the induction of knowledge. The practices which I already

claimed to be important for establishing of reciprocity of perspectives (work observation,

testing, etc.) represent my starting clues, but the strategy of network tracing leads me from

them to the elements and resources that make them possible. As a result, the question of how

knowledge is produced in free and open source software development can be specified in two

ways. First, we must ask how do digital texts and software interfaces (as material means of

thought) mediate actions of programmers. Second, we must ask how, or using what resources

is the price to make connections paid in cyberspace. Thus, the following analysis will not be

limited only to the examination of the aforementioned practices, but will be aimed at

exploring also the less visible fringes of the network that make them possible.

40

3. Methodology

This chapter contains a basic formulation of the methodological approach utilized in this

research project. In the previous section, I stated that the shape of systems of distributed

cognition depends on existing social structures and that I assume that these structures can be

grasped by assembling connections into networks. The method of choice to achieve this is

usually ethnography. Indeed, as Richie Nimmo states, there is a significant overlap between

Actor-Network Theory and the use of ethnography (Nimmo, 2011). The ethnographic

approach, usually perceived as a combination of field research and the resulting written

accounts (Packer, 2011, p. 209), offers a suitable variety of tools for detailed scrutiny of social

practices in their entirety and context. It has been also suggested by several authors

(Klischewski, 2002; Rönkkö, 2002; Westrup, 2002) that ethnography is probably the most

appropriate method for studying software development. Furthermore, ethnography has already

been used several times for research on free and open source software development

(Coleman, 2010, see for example 2013; Ducheneaut, 2005; Kelty, 2008).

According to Isabelle Baszanger and Nicolas Dodier, there are three characteristics

distinguishing ethnography from other approaches to the study of human conduct. First, it is

the empirical basis of findings, as opposed to purely deductive approaches. Second, it is the

openness toward new phenomena as opposed to approaches that start with categories

specified in advance. Third, observations are related to the historical and cultural context of

the studied environment as opposed to approaches such as conversation analysis or

ethnomethodology (Baszanger & Dodier, 2004, p. 13). Ethnography is well suited for making

empirical descriptions, being open and tracing wider connections – the characteristics that,

according to Latour make a good research account:

A good ANT account is a narrative or a description or a proposition where all the actors
do something and don’t just sit there. Instead of simply transporting effects without
transforming them, each of the points in the text may become a bifurcation, an event, or
the origin of a new translation. (Latour, 2005, p. 128)

The emphasis on what actors actually do connects directly to the central concept of technical

ethnography – performance. Performance denotes what is produced through human conduct

(Vinck & Blanco, 2003, p. 208), it is the outcome of collective action (Vinck & Blanco, 2003,

p. 217).71 Being that, performance is subject to variability due to change in either its

71 Performance in this sense is also elaborated by Jansen and Vellema (2011, p. 171) who try to develop a
similar approach called “technography”. In doing so, they link performance to the theory of situated action

41

compositional elements or its compositional structure. The most illustrative definition that can

be found in Vinck (2003) is the following:

“performance” means what is produced in whatever register is used: technico-economic
productivity, technical demonstration of the unsuspected possibilities of a machine or
product, operator virtuosity (…), beauty of the machine’s movement, turnaround in power
relations, identity of a professional group, exalting destructive power, or demonstration of
the potential violence of a technology (with weapons, for example). (Vinck & Blanco,
2003, p. 215)

This means that technical ethnography is predominantly concerned with the process of using

tools and design artifacts to produce something.72 The focus is on the process of making,

doing, creating, inventing, or coming up with workarounds, while intentions and

rationalizations lurk in the background. Technical ethnography presupposes actors that are, in

the words of Natalia Rybas and Radhika Gajjala, “creative appropriators of technology”

(Rybas & Gajjala, 2007, p. 13).73

To make a good description of the use of tools and design artifacts, participant

observation is a crucial source of data. According to John Brewer, observation represents a

technique of data gathering through contact with everyday lives of the participants (Brewer,

2000, p. 59). Its purpose is to generate data through watching what participants do, listening

to what they say and experiencing the conditions in which they act.

During participant observation, the role of the researcher is dual – it contains aspects of

both participation and observation. Conceiving them as a binary opposition, Sladjana Nørskov

and Morten Rask identify four positions that a researcher could adopt with regard to the

duality. In what they call a participant–as–observer role, the researcher becomes a member of

the studied group in the sense of participation on group activities (Nørskov & Rask, 2011).

The advantage of this role compared to the others (observer, participant, observer–as–

participant) is the direct access to experience which is key for understanding what is going on

in the field. The need for participation, as opposed to what is called lurking (passive presence

only to monitor activity), is emphasized for example by Heike Greschke (2007, p. 18).

(Suchman, 2007).
72 The important role tools and design artifacts play in the process also hints at the importance of existing

infrastructure, which is consistent with an ethnographic approach developed by Susan Leigh Star (Star, 1999,
2002; Star & Ruhleder, 1996).

73 By placing emphasis on the technological performance, this type of ethnography is close to focused
ethnography, defined by Sarah Wall as an ethnography, which “usually deals with a distinct problem in a
specific context and is conducted within a sub-cultural group rather than with a cultural group that differs
completely from that of the researcher” (Wall, 2015, p. 8).

42

Brewer states that it is necessary to distinguish if undertaking the investigation means

entering new environment for the researcher or if it allows for staying in a familiar one. In

both cases the researcher can either employ one of his existing roles or accept a new one

(Brewer, 2000, p. 60). Concerning the research project at hand, I was already familiar to a

certain extent with the environment I was about to enter. Prior to conceiving this project I was

reading reports on websites focusing on free and open source software, following updates of

some of the biggest FOSS projects and using the software. However, I was not actively

participating on development in any FOSS project. That is why entering the field meant

negotiating and accepting a new role of documentation writer. This came out rather naturally

as one of the project maintainers made a call on his blog that anyone interested in this position

should contact the team in their IRC channel. When I made the contact, I made it clear that I

would do the work as part of my research. No one opposed it, on the contrary, I was given

pointers on where to start to understand the architecture of the project. The hardest part of

getting into my new role was establishing the work environment, and learning the features of

the developed software enough to be able to write the user documentation. This required time

and effort both on my part and on the part of the project maintainers who were helpful in

solving problems that occurred through the process.

In this research project, the direct experience is of high importance because it gives me

an opportunity to use the tools, design artifacts, platforms and infrastructures employed in

knowledge building while also experiencing the whole process of establishing work

environment, learning how the tools behave and coordinating work on contributions.

Contributing to the project also has an ethical dimension of giving back to the project, whose

maintainers agreed with my fieldwork in the environment.

To supplement participant observation, I opted for extensive gathering and analysis of

documents I encountered not only during my direct engagement in the project (like bug

reports or commits) but I also made concentrated efforts to gather documents that were of

importance for making important connections in my description. For example, I

systematically browsed through old blog posts and wiki pages in order to reconstruct the

project’s history and its relationship to a business company as it evolved through time.

Furthermore, I also utilized my knowledge of news sources for the domain of free and open

source software in general and also for the specific areas of concerned software development

projects to scan for any material relevant for analysis.

43

According to Paul Atkinson and Amanda Coffey, it is necessary to bear in mind that

documents do not account for the reality independently of their author’s position. As a result,

it is necessary to examine their character and utility and not just assume the position of a

reader for whom the documents are intended to (Atkinson & Coffey, 2004, p. 73). This

includes examining the practices related to how the documents are produced, stored,

distributed and used. In this regard, it is useful to apply Norman Fairclough’s distinction

between the level of text itself and the level of discursive practice (Fairclough, 1992, p. 73),

which, for example, involves the relationships between individual texts. According to

Atkinson and Coffey, such relationships could traditionally take the form of hierarchical

patterns, nesting documents one into another, or sequential patterns, continuing one document

with another (Atkinson & Coffey, 2004, p. 67). But, perhaps more importantly, the analysis on

the level of discursive practice must take into consideration the agency that could be

attributed to the documents – the ways in which they are defining and helping to constitute

subjects, objects and domains (Nimmo, 2011, p. 114). That is, for example, whether a

document classifies a certain set of licenses as compatible with the FOSS development model,

and thus allowing projects that use these licenses to be part of the FOSS domain.

Most documents I deal with are hypertext documents. This type of documents also

exhibits hierarchical or sequential patterns, but these are not entirely predefined by the author.

As Cantoni and Tardini remind us, the reader is able to make choices on which links to follow

(Cantoni & Tardini, 2006, p. 71) and therefore creates sequences based on his interests.

However, hypertext documents are typically found on distinct websites, indicating their

relevance to a certain general topic. Furthermore, in order to navigate the user, websites are

usually hierarchically structured according to topical areas so even if there are hyperlinks that

lead outside the website or its topical area, it is possible to examine all the hypertext

documents systematically. In this way, I aim to take advantage of the self-documenting nature

of the project by analyzing its website as a set of nested documents.

The same applies to maintainer’s blogs or other websites related to the project. But there

are also other documents which, even though they utilize the hypertext infrastructure, do not

constitute hypertext pages in the usual sense. With this, I imply git logs and bug reports as

documents. Both represent persistent traces left after a development contribution. In a certain

sense, the relationship between bug reports and the corresponding git logs can be seen as a

relationship between problems the project faces and solutions its members have devised to fix

44

them. However, the numbers in which these documents exist are overwhelming and because

of that git logs and bug reports are analyzed only with regard to incidents (traced through

searching or hypertext links) that I selected for further examination.

According to Lindsay Prior, documents enter the human experience as bearers of

instructions, obligations, wishes or information. In this sense, documents might be able to

project themselves into actions taken by their recipients or extricate from the original

intentions of their producers (Prior, 2004, p. 76). In this sense, documents can (but are not

limited to) represent design artifacts that mediate the process leading to certain kind of

performance (typically bug reports and git commits/logs). In other cases, they provide

additional explanations or rationalizations (typically blog posts or wiki pages). The

importance of documents is demonstrated by the fact that in certain settings, the right to

produce or alter them is a privilege granted only to certain individuals or groups. Write access

to the project’s website, git repository or to certain administrative actions in Bugzilla is held

by maintainers of the project. The content found in these documents is therefore created or at

least reviewed by the core members of the team.

3.1. Analysis and Interpretation Through Indexing and Writing

Once gathered, data has to be dealt with through analysis, interpretation and presentation.

Data analysis can be defined as a process in which data are organized through selecting and

indexing segments. Interpretation involves assignment of meaning to the analytical units and

leads to understanding the data. Presentation fixates results of the previous procedures in

various forms, most importantly in text. Of course, the separation of data gathering, analysis,

interpretation and writing are artificial and serves only explanation purposes in this section.

Analysis represents the first stage in reduction and organization of data, opening space

for interpretation and presentation (Brewer, 2000, p. 108). Authors like John Brewer or

Matthew Miles and Michael Huberman agree that data analysis is best performed together

with data gathering (Brewer, 2000, p. 107; Miles & Huberman, 1994, p. 65). This strategy

provides the researcher with continuous stream of analysis results to orientate further

gathering so that the researcher focuses on relevant events and gains feedback on operational

conclusions. In this research project, fieldwork is done continuously, mostly without the need

to travel long distances to reach the field. This creates good conditions for analysis parallel to

data gathering.

Collected data were directly typed or copied to plain text files. A markup language

45

called Markdown74 and its syntax highlighting support in text editors75 were used for indexing

important expressions or denoting incidents so that basic organization of data is achieved

immediately after them being gathered. Data are supplemented by a timestamp, a note on their

source, label of an incident76 and highlighted keywords. In ethnographic research, this

procedure is usually called indexing (Brewer, 2000, p. 110; Neyland, 2008, p. 126), while the

adherents of approaches, where systematic multilevel coding is more common would

probably call it pre-coding (Saldana, 2009, p. 16).

No matter how it is called, this procedure is essential for efficient browsing and

retrieving of data. Indeed, David Fetterman links the analytical organization of data with more

general issues of data storage and retrieval (Fetterman, 2010, p. 117). The important point

here is that efficient browsing facilitates further refinement of indexing by allowing quickly

going through the data repeatedly. In this way, the analysis bootstraps itself – current

organization of data facilitates its further organization. As a result, order is brought to data, a

state which, according to Brewer, should be the result of analysis (Brewer, 2000, p. 108).

Repetitive browsing through data also stimulates researcher’s imagination. To capture

the ideas and descriptions emerging in this process, it is necessary to write memos during all

stages of research. I used a separate plain text markdown file to store all memos written in

course of this research project. In it, memos are separated by headings, supplemented by

keywords while important expressions are still highlighted in the text. In writing memos I

usually drew together different parts of data to combine them in an emerging description

(while also pointing to the indexes so that the particular pieces of data would be easily

retrievable). The first immediate result of writing is that it feeds back into data, validating or

suggesting alternatives for their indexing – in the same sense in which Neyland links writing

with ordering work (Neyland, 2008, p. 127). But more importantly, and in line with Brewer’s

(2000, p. 133) suggestions, I used the space for informal writing provided by memos to think

through what is going on in the data and to clarify my descriptions. In other words, writing is

74 More information about Markdown can be found here: http://en.wikipedia.org/wiki/Markdown.
75 Syntax highlighting is a standard feature of most plain text editors. Based on the file’s extension, the editor

determines the language that is used in it and applies corresponding rules to highlight common patterns of
syntax. The purpose of this function is to enhance readability and to facilitate quick orientation in the
contents of the file. As a simple example of markdown syntax highlighting: words surrounded with asterisks
(*word*) – indicating a word in italics – are highlighted with purple (the color is arbitrary in principle, it
depends on a concrete implementation in a text editor) font color.

76 Here, incidents mean events like discovering and filing new bugs, discussing severity of bugs, reviewing
commits, pushing commits, or testing new features. Comparing incidents among each other provides ground
for better understanding of what is common to them. Furthermore, focusing on incidents corresponds to the
emphasis on observing performance – what is being done.

46

essential for sorting and precising of thought. Furthermore, early writing also has the potential

to reveal gaps in data (Brewer, 2000, p. 133). These provide incentives for adjusting fieldwork

in order to cover them.

Over time, the memos grew into descriptions that I attempted to make as thick as

possible. I explicitly draw on the approach of Clifford Geertz, who claims that ethnographic

description is interpretive, concerned with discourse, which it attempts to fix in perusable

terms, while also being microscopic, that is, it confronts abstract terms with concrete settings

of the field (Geertz, 1973, p. 20–21).7778 There is just one important caveat to the use of this

approach here – my descriptions are not wholly discourse oriented, they include orientation

on material things and their relations. In this way, my thick descriptions are not entirely

consistent with Geertz’s theory focused on culture, but incorporate a Latourian influence.79

That is to say, I use thick description as a way of providing descriptions that include what is

going on “behind” the observations (and here comes the twist) – the links, connections or

broader situations often represented by material traces.80

The generalizations that can be based on such descriptions are of specific kind. They are

not empirical generalizations (claims that findings are valid for larger population than is the

sample), as Brewer (2000, p. 77) would call them, nor are they what Geertz (1973, p. 26) calls

governing laws (rules used for prediction). They are defensible interpretations – they do not

predict, but their relevance for future is that they should hold against new cases (Geertz, 1973,

p. 26). However, along the lines of Latour’s theory, to interpret here means to add something,

to add the traced connections and to view situations through the grid of assembled networks

(Latour, 2005, p. 244).81 To be sure, the description of standards allows to make claims

outside the strictly defined field, but these are usually more vague than typical empirical

generalizations.

77 This microscopic orientation roughly corresponds to Latour’s first analytical move, localizing the global
(Latour, 2005, p. 173).

78 With reference to another Geertz’s work, I aim to avoid the strict empiricism resulting in the production of an
“ethnographical telephone book” on the one hand and the omnipresence of grand ideas producing a
“historical opera” on the other (Geertz, 1996, p. 23).

79 Perhaps the influence could also be framed as that of a branch of thought currently known as “New
Materialisms”. Diana Coole and Samantha Frost summarize the approach in the following way: “For critical
materialists, society is simultaneously materially real and socially constructed: our material lives are always
culturally mediated, but they are not only cultural. As in new materialist ontologies, the challenge here is to
give materiality its due while recognizing its plural dimensions and its complex, contingent modes of
appearing.” (Coole et al., 2010, p. 27)

80 This “behind” corresponds to Latour’s second analytical move, redistributing the local (Latour, 2005, p. 189).
81 This kind of interpretation corresponds with Latour’s third and last analytical move, connecting sites (Latour,

2005, p. 221).

47

To give my analysis a more concrete shape, I used three main files to achieve the

transformation of data into descriptions: one representing a research journal where all data are

stored and indexed, one dedicated to memos and one for writing the more or less finished

descriptions – the text itself.82 Furthermore, I keep literature notes in multiple plain text files,

usually one per topical area. These notes are indexed in a very similar way to that of my data,

using the same functions of syntax highlighting. This configuration allows me to bring

together a variety of sources to build up my ethnography: field notes, gathered documents,

memos or other research texts – to draw on a list put together by Neyland (2008, p. 128).

3.2. Research Field

Predominant part of my research takes place online. This means that the information flows

necessary to gather data and interact with participants are carried through a technical

infrastructure known as the Internet. According to Latour, this digital environment greatly

increases the materiality of networks, making them less virtual than before (Latour, 2010, p.

8). This claim seems to be at odds with how the online environment is typically characterized

– as bringing virtuality into a world that has been up to that point material. But, as we have

seen, that is a perspective emphasizing the potential of the networks. In my work, I see the

digital as a result of actual network of ties that had to be put together.83 In the end, digital

information is nothing else than organized values of voltage. But one does not need to go that

far. It is sufficient to consider the actual effort that goes into creating a digital artifact – the

mobilization of actual people spending their actual time, connected through actual

infrastructure. Therefore, in this text, digital is seen not as virtual, it is seen as actual, that is,

material, graspable and traceable.

The Internet infrastructure is often characterized as making time and space irrelevant,

but such claims hold only in certain sense and need to be carefully specified. The time

dimension is displaced by the ability of digital information to persist. This can be illustrated

by the opposition of synchronous and asynchronous communication which is elaborated for

example by Cantoni and Tardini (Cantoni & Tardini, 2006, p. 44). The tools belonging to the

former type of communication are not designed for later retrieval of information and because

82 This setup roughly matches Latour’s suggestion for keeping notebooks, especially what he calls the second
and third notebooks kept with the purposes of gathering information and writing trials (Latour, 2005, p. 134).

83 An alternative would be to look at the Internet as a distinct kind of space where interaction is made possible,
as for example Anette Markham (2004, p. 99) notes. But that would correspond to a different kind of social
topology (regions), than what is used through this text (networks). For a more detailed elaboration of the
difference, see the work of Annemarie Mol and John Law (1994).

48

of that both parties have to be present at the same time.84 On the other hand, tools belonging to

the latter type of communication create a persistent trace that can be retrieved at later time and

in doing so enable both parties to sustain the communication even when they are not

simultaneously present.85

Second, space is to some extent rendered irrelevant by the infrastructure’s ability to

transfer information in real time between any two nodes of the network. However, this does

not mean that the space dimension of the world becomes wholly irrelevant. As already

mentioned, the problem known as digital divide refers to the fact that the infrastructure is far

from being universally present throughout the world (Norris, 2001). If present, the

infrastructure provides varying levels of connectivity. As a result, there is a bandwidth

limitation which often favors low bandwidth media (such as text) for transferring information

(Cantoni & Tardini, 2006, p. 44). Although higher bandwidth media (such as pictures, sound,

video) are ever more common, these play only supplemental role in practices like software

development as these practices predate the spread of digital high bandwidth media and thus

are fully attuned to the nature of digital text. Therefore, most of the traces that this research

deals with are of textual nature. In this sense, Maurizio Teli, Francesco Pisanu and David

Hakken suggest to see the Internet through a library-of-people metaphor (Teli, Pisanu, &

Hakken, 2007, p. 36).

With regard to spatiality, Cantoni and Tardini also speak about the “new syntax” related

to the word “here”. This word can now have several distinct meanings: it can mean the place

where the body of the user is physically present; it can designate the online space the user is

active in; it can also denote the desktop space of the computer which the user is using to

connect the former location (Cantoni & Tardini, 2006, p. 59). As if this was not enough,

Markham notes that the users are typically present in more than one online space at a time

(Markham, 2004, p. 105), making the traditional notion of presence limited to only one place

problematic.86

This issue shows its full extent once we realize that the data gathering techniques of

ethnography are traditionally very closely related to presence in the field (i.e. at a certain

place). The approach to data gathering must be adjusted appropriately and this is where the

multi-sited version of ethnography comes into play. This approach has been developed since

84 A classical example of this type of communication tool is chat.
85 A classical example of this type of communication tool is email.
86 The multiplicity of communication sites that are maintained by varying types of collaboration is also noted

by Christine Hine (Hine, 2000 ,115).

49

1995 when the defining article from George E. Marcus was published. In it, Marcus defined

multi-sited ethnography as a form of research that is tracing a certain cultural phenomenon

through various settings (Marcus, 1995, p. 669). According to Mark Falzon, this approach

rests on the assumption that space is socially produced and on a subsequent realization that

ethnographers could also produce a space of their own (Falzon, 2012, p. 4).

However, the conceptualization of space in this approach is far from unproblematic.

Joanna Cook, James Laidlaw and Jonathan Mair suggest distinguishing between space

(geographical area), place (cultural territory) and field (cultural territory in geographical area

appropriated for research) (Cook, Laidlaw, & Mair, 2009, p. 60). According to these authors,

the turn to multi-sited ethnography implicated the acknowledgment that cultural territories

spanned multiple geographical areas or were part of networks that could not be examined

from one geographical area only. In order for the field to correspond to a cultural territory, it

has to involve multiple geographical areas (Cook et al., 2009, p. 63).

But Cook, Laidlaw and Mair went beyond what the first generation of researchers

promoting multi-sited ethnography proposed and suggested an approach called “un-sited

ethnography” (Cook et al., 2009, p. 69).87 They made one more distinction by insisting that

whereas spaces or places are two (or more) dimensional areas, ethnographic field is only a

collection of one dimensional lines connecting points of observation. These lines may

effectively intersect borders found in spaces or places and in doing so, provide useful data for

making comparisons (Cook et al., 2009, p. 63–64). The decisions on what to include in the

network-shaped field should be made based on what the research is focused on and what the

research questions are (Cook et al., 2009, p. 65). In this regard, Marcus laid out several

options of what can be traced through the various settings. These options include following

certain people, things, metaphors, narratives, biographies or conflicts (Marcus, 1995, p. 106–

110).

Within this research project, the un-sited approach is useful for drawing together the

various sites and platforms that are mobilized during the studied instance of software

development. There is an IRC channel for synchronous communication, Bugzilla database for

bug tracking, Git repository for hosting the version controlled source code, website as a

persistent reference point for information and there are also events at which developers from a

broader community come together. What ties these sites together is the role they play in

87 Similarly, Hakken proposes non-site bound or trans-sited approach to grasp cyberspace research that takes
advantage of the hypertext nature of the web (Hakken, 1999, p. 59).

50

development of the particular piece of software which are embodied in the frequent references

and links to each other. For example, when a bug is filed, a message is automatically

generated and appears in the IRC channel. Or when a patch fixes a particular bug, the git log

contains the number of the bug as filed in Bugzilla. These public places are accessed by

developers from other, private spaces of their bodily locations and personal computers.

The interaction nodes present on online platforms provide the substrate for my points of

observation. My field is then, quite literally, constituted by links between these points.

Although I have no direct access to the private spaces of the developers, I can get indirect

glimpse of it through what they say or through attending events organized around software

development in which they take part. That is to say, my approach is un-sited in this particular

sense of distributing my observation across several platforms connected to the development of

certain piece of software which also provide data to infer what is happening beyond them.

3.3. Research Sample

The FOSS project in which my fieldwork took place was selected according to several

criteria. The first three of them are based on my prior experience with the field combined with

key concepts and points made above in chapters containing review of prior research and

theoretical framework. The criteria were in place to assure that the project was a good

representative of free and open source software projects in general, by placing emphasis on

what I learned to be standard in this type of software development. The last criterion was

present for practical reasons, to make sure that the fieldwork would be manageable for a

single person.

Licenses. The source code of the developed software (and possibly other components

such as documentation) is licensed under one of the copyleft licenses. The archetypal licenses

among these are the GNU public licenses created and maintained by the Free Software

Foundation (Lessig, 2006, p. 148). Among these belongs the GNU Lesser General Public

License under which the source code of the examined software is licensed. The software

documentation is licensed under a Creative Commons Share Alike license, a type of Creative

Commons license that preserves the “viral feature”88 of the free software licenses.

88 The requirement made by certain licenses (typically the GNU public licenses) that all derivative works
should be licensed under the same or compatible license is sometimes referred to as the viral feature (Kelty,
2008, p. 179), drawing a picture of pieces of free software software infecting larger bodies of source code
with their licensing. However, this feature could also be seen as a counter-measure to practices of massive
appropriation and relicensing of the source code by anyone who would aim to profit from free riding on
FOSS development efforts (Söderberg, 2008, p. 46).

51

Tools. The software is developed by using tools typical for FOSS projects. FOSS

developers have a tendency to use tools that are also developed as free and open source

software, surrounding themselves with objects of familiar nature. In this regard, the choices

are especially relevant for the use of version control tools, bug tracking tools and a

communication platform. In the project I selected, Git is used for version control – the same

tool that is used in the iconic open source project: the Linux kernel. Bugzilla, the bug-tracking

system used in the project is also used in development of the Linux kernel or the Mozilla

Firefox browser, one of the most famous pieces of open source software. IRC, as a tool for

communication is the de-facto standard for synchronous communication in FOSS projects.

What is not standard is the absence of use of mailing list in the selected project. This means

that synchronous communication is predominant within the project and that there is no

archiving of communication (which typically goes hand in hand with using a mailing list).

This is something specific about this particular project and it is necessary to take it into

account during the research.

Embeddedness. The project is part of a broader ecosystem of other FOSS projects and

interacts with those when needed. This means that it recognizes the openness of the

development processes of software it utilizes (either as tools or as dependencies) and

participates on it at least occasionally for example by filing discovered bugs, providing

patches etc.

Size. The project size is key for the amount of communication and other processes that

take place at any given point in time. Therefore, the project had to be small enough for

information streams to be manageable, but on the other hand it had to be sufficiently big to

allow observation of cooperation among several core developers. With this criterion in mind, I

searched for a project that had a minimum of four and maximum of ten core developers.

These numbers may appear small but we must bear in mind that they apply only to core

developers. In most projects there are numerous other participants that take the roles of new

developers, occasional patchers, documentation writers, translators, etc.

Another criterion that was important for selecting the project was a sign that I could

actually do some work there. This made my entrance into the project similar to more common

cases of new volunteers and provided me with the opportunity to do participant observation.

Therefore, my entrance to the field happened in several steps. The first direct contact I made

with my field was at the GNOME Users and Developers European Conference which is an

52

annual event (hosted in August 2013 in Brno, Czech Republic) focused on development of the

GNOME desktop environment. GNOME is a wide project aggregating many smaller projects

underneath its label. Therefore, my presence at the event had a twofold purpose – to try to

pre-select a smaller project I could do participant observation in and to familiarize myself

with the environment by being present at the conference itself and the hackfests (events

dedicated to aggregating participants to work together on a selected problem) that took place

after the conference officially ended.

Later (in November 2013), through monitoring the GNOME blog aggregator (called

Planet GNOME), I discovered that a project called Pitivi needed someone for writing user

documentation. It turned out that it was a rather small project aimed at developing video

editing software and that it met all of the above listed criteria. I decided to contact the author

of the blog post (who was one of the maintainers of the project) using the project’s IRC

channel so that our conversation would happen somewhere anyone associated with the project

is present, in the sense of being able to read it or participate in it. In this contact, I made it

clear that I will be contributing to the project as part of my research and I spent some more

time in the channel discussing the aims of my research project with several core developers

who expressed interest.

From that point on, I became a curious newcomer that required help and explanations at

times but that also tried hard to learn the craft and give back by doing something that would

be of use to the project. Taken together, my participant observation was spread in a time frame

of around a half year, starting at the first day of contact in the IRC channel. However, my

passive presence in the project – everyday monitoring of the IRC channel where all of the

non-private synchronous communication takes place and browsing through the sites holding

records of asynchronous communication – spanned for around a year, until the end of 2014.

Part of the interaction with the software developers later on was also their checking of some

of the material I wrote (an article discussing my preliminary results) and its subsequent

discussion.

53

4. Dismantling Pitivi, the Video Editor

The development of Pitivi started in 2003 as Edward Hervey’s end-of-studies project at the

EPITECH engineering school in Paris. Initially, there were 10 students working on the

project, aiming to have something usable before graduating. They decided to base their work

on an existing FOSS multimedia framework known as GStreamer. This decision allowed for

the support of multimedia formats and operations already present in GStreamer to be

gradually implemented in Pitivi without re-inventing them. But this also meant that in its

functionality, Pitivi relied heavily on GStreamer which was at that time under heavy

development and was not considered stable. Therefore, in the first years of development, the

focus was aimed at GStreamer and Hervey managed to make it a full time job. After

graduating, he was hired by a company called Fluendo in order to work on GStreamer. This

lasted two years during which development of Pitivi itself was in a state of limbo. After that,

Hervey co-founded multimedia division at a company called Collabora, “in order to improve

Pitivi, GStreamer and the GNonlin plugins”. In late 2008, Collabora hired two new

developers to work on Pitivi and related technologies. This boosted development that stalled

during 2005–2007.

At that time the underlying framework for Pitivi consisted of GStreamer and GNonlin.

However, it turned out that in order to create a video editor on top of this framework, a lot of

additional work had to be done. To solve this problem, and to make the solution re-usable,

Hervey created a library called GStreamer Editing Services (GES) in 2009. In 2011, it was

officially announced that Pitivi’s next version (at that time version 0.15) will be based on

GES. But the subsequent version (0.91, released in 2013 and codenamed “Charming

Defects”) involved also other substantial changes such as porting from GStreamer 0.10 to

GStreamer 1.0. The 0.91 release marked a large change in architecture (for an overview of the

architecture, see Appendix 2) of the program which brought with it number of issues. The

main focus of development at the time of writing is at stabilization that is necessary for

releasing the 1.0 stable version.

From this brief account of the project’s history, it is clear that underneath its user

interface, Pitivi hides a complex architecture of elements it is built with. The user interface

(for its picture, see Appendix 3) is a result of combining GTK+ – a toolkit that provides

ready-made buttons, widgets or other basic interface elements – and Clutter – a library89 used

89 A library is a specific type of program that is in most cases invisible to the end-user but which is essential in

54

to draw timeline (which is a central interface component of any video editor but which is also

very specific and so it is not provided by GTK+ as a ready-made element). Thus, GTK+ and

Clutter are used to create a convenient interface (also called frontend) through which users

can trigger operations that are performed by lower level libraries (backend).

The most recent component of the Pitivi stack90 is a library called GStreamer Editing

Services (GES). This library filled the space between Gstreamer which provides very general

functionality and the Pitivi frontend which is designed to apply specific video editing

operations. GStreamer is a library that is not intended only for video editing, but for media

handling in general and thus, a lot of work must be put into condensing GStreamer

functionality into operations that are conventionally used in video editing. To make this work

re-usable, it was put into a separate library (GES), which can be used by any video editing

program. This effort aims to simplify the work of programmers to an extent that writing a

video-editing program should be reduced to creating a user interface that applies operations

already provided by GES. The whole backend (which represents the biggest investment of

effort when developing a video-editing program) can be simply reused in other video-editing

programs, thus doing away with the need to write functionally equivalent software for every

new program over and over again. The extent of the achievement is fully understood only

when we consider the number of projects that aimed at developing an open source video

editor in recent years. In an overview (see Appendix 4) created by one of Pitivi maintainers,

there are 54 projects, 9 of which are still active.

The effort that aims to transform what has been initially at the core of Pitivi itself (and

thus specific for only this program) into a library that is able to provide functionality to many

other programs is indicative of an “upstream first” approach to software development, a

convention that forms a cornerstone of the programming theory (in Naur’s sense described

above) with which Pitivi maintainers operate. This principle was described by one of the

Pitivi maintainers at the GNOME User and Developer Conference (GUADEC) 2013:

It basically means: no hacks. You discuss with upstream such as upstream GStreamer,
upstream GTK and everything and you work out solutions in cooperation with them and
you don’t put some stupid hacks in your application downstream instead of fixing the
problem for everybody.

that it provides general functionality that is used by programs that interact with users. The existence of
libraries allows for modularity (libraries specialized in function may be combined) and reuse (the functions
provided by a library may be used by a wide variety of programs) of components in software design.

90 “Stack” is a term that denotes all components that form a working program. In this sense, Glib, Gstreamer,
GNonlin, GTK+ or Clutter are all part of the Pitivi stack.

55

What is interesting here is that in the world of free and open source software, the word

“hacking” usually comes with positive connotation (in general, it denotes a creative and

clever leverage of formal systems). But in this case, “hacks” are associated with stupidity. It

denotes a way of solving problems that is faster and easier but that will eventually result in

fragmentation and hindering of development in the wider community. On his blog, the same

maintainer likens the difference between the “upstream first” approach and “stupid hacks” to

a difference between “being a good citizen” and “doing your own thing in your corner”. This

is why many Pitivi developers do not actually work on Pitivi itself, but rather on some of the

underlying libraries.

On the lowest level of the stack, Pitivi is based on the Glib library, that provides basic

types and algorithms with which Gstreamer, GES, or Pitivi are built. But the basic

functionality related to media handling is provided by GStreamer. It is a multimedia-centric

library that forms the heart of the Pitivi stack. GStreamer handles multimedia by sending

streams of data through series of nodes. Nodes represent spots where data can be altered by

various codecs, effects, or (de)muxers which are available in GStreamer as a set of plugins.

This means that the elements which make GStreamer useful are packaged independently and

may or may not be installed together with it. This seemingly odd design is enforced by

licensing issues with various codecs and other elements.

The GStreamer maintainers differentiate plugins into four categories based on source

code quality and licensing: base, good, ugly, and bad. The base and good plugins are

unproblematic with regard to both licensing and code quality, as the maintainers put it quite

humorously:

A collection of plug-ins you’d want to have right next to you on the battlefield. Shooting
sharp and making no mistakes, these plug-ins have it all: good looks, good code, and
good licensing. Documented and dressed up in tests. If you’re looking for a role model to
base your own plug-in on, here it is.91

As indicated by their names, the “ugly” and the “bad” plugins are the problematic groups,

each in its own way. Bad plugins simply have bad code quality and can not be relied on. In

this sense, they are technologically inferior to the rest of the plugins. By labeling them as bad,

GStreamer maintainers renounce their responsibility for their performance and support. They

also renounce any commitments to fixing issues that are reported. Performance of these

91 An explanation of the various plugin modules and how they were split up. GStreamer documentation page.
Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/documentation/splitup.html.

56

http://gstreamer.freedesktop.org/documentation/splitup.html

plugins has low priority so the only way that issues can be fixed in this area is when someone

else steps in and provides a patch92:

Don’t bug us about their quality - exercise your Free Software rights, patch up the
offender and send us the patch on the fastest steed you can steal from the Confederates.
Because you see, in this world, there’s two kinds of people, my friend: those with loaded
guns and those who dig. You dig.93

Here, the GStreamer maintainers emphasize the “Free software rights” that are granted by the

use of free software licenses and that permit modification and redistribution of the code.

However, the maintainers expect the contributors to exercise only the right to modify the

code, not to redistribute it. The patch should be sent to them for review and redistribution.

While this practice may seem as free-riding on the work of others, it keeps development from

fragmentation into a confusing number of parallel versions while also providing a trusted

source of reviewed official versions. At the same time, the author retains his authorship and is

provided with a distribution channel that reaches the widest possible audience. In the context

of the “upstream first” principle discussed above, the maintainers expect contributors to be

good citizens.

However, the right to redistribute the code is still present and serves as a safety that

counterbalances the maintainer’s power stemming from the review and redistribution process.

If a contributor (or more likely group of contributors) is unsatisfied with the way the current

maintainers operate, it is always possible to duplicate the whole source code of the developed

program and start maintaining a parallel project. This practice is called forking.94

Ugly plugins, the fourth and last remaining category is characteristic by licensing issues.

GStreamer maintainers retain their responsibility for fixing issues that are reported against

this group of plugins, but note there are difficulties in distributing them:

There are times when the world needs a color between black and white. Quality code to
match the good’s, but two-timing, backstabbing and ready to sell your freedom down the
river. These plug-ins might have a patent noose around their neck, or a lock-up license, or

92 Patch is a term denoting a modification of source code that is made in order to fix a particular issue.
93 An explanation of the various plugin modules and how they were split up. GStreamer documentation page.

Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/documentation/splitup.html.
94 Although in theory possible, forking is rather rare and is seen as a last resort (because it means duplication of

efforts) in cases where every other option to resolve the differences failed while also placing the burden of
maintaining the new project on the initiators. Generally, forks are accompanied by argumentation that
justifies the duplication of efforts that developing two parallel versions of a program implies. The
argumentation also serves to draw contributors that have to decide if they stay with the original project or
become part of the new one.

57

http://gstreamer.freedesktop.org/documentation/splitup.html

any other problem that makes you think twice about shipping them.95

To fully understand the extent of problems that licensing issues pose for the GStreamer

project, it necessary to note that key functionality is often accompanied by restrictive licenses

or patents.96 As a result, the GStreamer maintainers (and many others) face a dilemma:

Due to this situation, many companies, including major GNU/Linux distributions, get
trapped in a situation where they either get bad reviews due to lacking out-of-the-box
media playback capabilities (and attempts to educate the reviewers have met with little
success so far), or go against their own - and the free software movement’s - wish to
avoid proprietary software.97

The omni-presence of the problem can be illustrated by a conversation I witnessed on one

social network, where a blogger took issue with the choices made for shipping software with

the Fedora Linux distribution and suggested an application that is made to easily install the

missing software:

For Fedora new-comers Fedy provides an easy way to install all (almost all!) the software
that Fedora cannot ship –for reasons that only Red Hat’s legit department knows ;)

In the comments to the post, I found an answer from a Fedora contributor:

I think the reasons are pretty well known, so not only the RH legal department knows:
1) you don’t have a right to redistribute the software (the license doesn’t allow it)
2) technologies in the software are patent protected
3) the software cannot be packaged in a way it doesn’t violate Fedora packaging
guidelines (bundling,…)
Only the third case is something Fedora can do something about.

The blogger expresses his confusion with a situation, in which software that cannot be

shipped (for legal reasons) directly with a Linux distribution, but can be installed on the same

Linux distribution afterwards using a specific program. The Fedora contributor attempts to

explain the sources of constraint, pointing out that in most cases, there is nothing the

95 An explanation of the various plugin modules and how they were split up. GStreamer documentation page.
Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/documentation/splitup.html.

96 For example, patented software is necessary in order to process files in the omnipresent MP3 format. Of
course, the MP3 format has its alternative in the free OGG Vorbis format, but the use of this format is far
from standard. Contrary to licenses which affect exactly defined parts of source code and an ex post change
of their terms is very hard if not impossible in most cases, patents are problematic because they affect certain
technology in a more general sense and allocate the power to decide into the hands of one formally defined
party. Even though the party may permit a free use of the patented technology, there is no guarantee that this
will not change in the future, possibly as a result of transferring the patent to another party. In this sense, a
call made by Polk Wagner to supplement licenses as ways of organizing open source software development
with patents (Wagner, 2003, p. 1031) seems inadequate.

97 Licensing your applications and plugins for use with GStreamer. GStreamer documentation page. Accessed:
2014-07-23. Available at: http://gstreamer.freedesktop.org/documentation/licensing.html.

58

http://gstreamer.freedesktop.org/documentation/licensing.html
http://gstreamer.freedesktop.org/documentation/splitup.html

distribution maintainers can do about it. This indicates the dilemma has to be negotiated or

explained between developers and users, supporting the statements made by the GStreamer

developers.98

In attempting to overcome this dilemma, GStreamer maintainers opt for a lesser evil –

they choose to use the GNU Lesser General Public License (LGPL) which is a free software

license that permits (as opposed to the classic GNU General Public License) distribution

together with proprietary software.99 The proprietary or patented software is then packaged

into a separate body of plugins so that the users may decide (according to their needs, local

legislation, or their attitude toward using proprietary or patented software) whether they want

to install and use it.

However, the problem does not stop with GStreamer, it applies to all applications that

use the library to handle multimedia files. As a result, GStreamer maintainers recommend to

all developers of applications that use their framework to use the LGPL license too in order to

be able to use the functionality contained in ugly plugins. But this is not the only option that

developers of other applications have. They may also use the GPL license and supplement it

with a clause stating that GStreamer plugins are exempted from the obligations of the license.

However, GStreamer maintainers state that using a GPL license with a clause would result in

hindrances to sharing source code among projects and therefore recommend the standard

LGPL:

Our suggestion among these choices is to use the LGPL license, as it is what resembles
the GPL most and it makes it a good licensing fit with the major GNU/Linux desktop
projects like GNOME and KDE. It also allows you to share code more openly with
projects that have compatible licenses. As you might deduce, pure GPL licensed code
without the above-mentioned clause is not re-usable in your application under a GPL plus
exception clause unless you get the author of the pure GPL code to allow a relicensing to
GPL plus exception clause. By choosing the LGPL, there is no need for an exception

98 The ambiguity regarding licensing and patents in this area is so deep that Fluendo, one of the companies
involved in the GStreamer project has partly built its business model around it: “While Linux OS does
provide multimedia functionality in terms of free media players, unlike major paid operating systems like
Microsoft Windows and Apple OSX it does not come with licensed codecs pre-installed. Without these
codecs, many Linux users and organizations unknowingly violate intellectual property laws, putting
themselves and their organizations at risk. Patent infringement has serious consequences and, especially for
larger organizations with many users, the cost can be substantial. … This is where we come in. From
proprietary codecs to our robust DVD software, Fluendo legally protects organizations and empowers users
to engage with multimedia like never before. Experience unmatched playback quality with the peace of mind
that you’re adhering to international audio and video patents.” (The Legal Risk that Linux Users Face.
Fluendo marketing materials. Accessed: 2015-04-09. Available at: http://www.fluendo.com/corporate-linux-
users/.)

99 The classical GNU General Public License introduces the necessity to license all derivative works with it, a
characteristic that is often called a “viral feature”.

59

http://www.fluendo.com/corporate-linux-users/
http://www.fluendo.com/corporate-linux-users/

clause and thus code can be shared freely between your application and other LGPL using
projects.100

The GPL and LGPL are standard in free software development and their wide use allows for

re-appropriation of source code between projects without the need to negotiate licensing

conditions. On the other hand, the inclusion of a non-standard clause into one of the licenses

introduces a requirement of negotiation and complicates the “free sharing” of source code

among projects. Thus, licensing may be seen as a part of the (legal) infrastructure of sharing

in the sense that abiding to standards allows for frictionless performance of the intended

practices.

It is then no surprise that Pitivi abides to the standard and uses the LGPL to license its

source code. It was actually my first task as a documentation writer to add the information on

licensing of Pitivi’s source code into the user manual. To get me started, one of the

maintainers gave me his to-do list that he kept specifically for user documentation and from it,

I selected what seemed to be the easiest task available: adding one sentence containing a link

to the licensing page. In FOSS projects, it is common to tag and leave aside easily fixable

problems that newcomers can grind their teeth on. These problems are referred to as a “low

hanging fruit” in the sense that by contributing their solutions, newcomers get a fast reward

and a sense of accomplishment.

However, it is often not clear for a newcomer that there is a database of issues

(commonly referred to as “bugs”) in which it is possible to search for specifically tagged

entries.101 Therefore, the most common first step (and mine was no different) on the way to

contribute is to join the project’s chat channel and ask how is it possible to contribute.

Tim: hi I would like to contribute to pitivi, I am good at python and javascript, can
somebody point me to the source code and small task to get started, thanks

In most cases, what follows (during the time I was present I witnessed several newcomers

trying to contribute to the project) is a negotiation between the maintainers and the newcomer

in which the sides attempt to find a fit between the potential contributor’s skills and interests

on the one hand and available tasks on the other. To get some sense of how such negotiation

proceeds, I will quote one case at length:

100 Licensing your applications and plugins for use with GStreamer. GStreamer documentation page. Accessed:
2014-07-23. Available at: http://gstreamer.freedesktop.org/documentation/licensing.html.

101 In Pitivi’s case, the easy bugs are tagged as “gnome-love” because Pitivi uses the database of the GNOME
project – a more general project aiming to develop a whole desktop environment forming an umbrella
organization for many smaller software development projects.

60

http://gstreamer.freedesktop.org/documentation/licensing.html

Steve: After the setup is done and you make sure you can run the dev version, what I
would recommend is starting with writing simple tests with dogtail
…
Tim: Steve, ok I will start by writing the tests :-) any other suggestion that would be
useful?
Tim: I mean initially to start with small tasks and gradually shift to bigger ones
Steve: That makes sense
Steve: Be aware that video edition is not a completely trivial task :)
Steve: And yeah, the most useful thing IMO would be to just use the software, find bugs,
write tests that highlight them, then discuss with us the best way to fix them
Steve: That way you’ll start to learn the codebase while being able to contribute code
from the get go
Tim: Steve, ah I see! I would definitely follow you and ping you if I get stuck, well
thanks for the help :-)
Steve: OK :)
Steve: Tim, I see your [link to a repository containing source code of an audio processing
program], nice to see you’re interested in audioprocessing :)
Tim: Steve, heh yep that’s a recent one :-)
…
Steve: If you’re interested in sound specifically, we’ve got a regression that needs fixing,
it’s the “auto aligner” feature
Steve: The work needed there is not really low level audio though, more like gstreamer
fixes
Steve: ie the one that fixes that won’t get to play with raw samples :)
Tim: cool! could you point to the url?
Steve: [link to a file containing a specific part of Pitivi’s source code]
Steve: Tim ^
Steve: hm it’s quite lowlevel actually
Eric: Tim, we could look for something more easy for a start, depends how used to
python, gtk, gstreamer you are, and what kind of task you would like
Tim: Eric: I have been coding in python for quite some time, so it won’t be a problem but
gtk and gstreamer i will have to look at tbh! but sure that won’t be a big task, so suggest
something accordingly, thanks btw
…
Steve: Eric certainly has good ideas :)
Tim: Eric, i have been working for Mozilla QA, and writing unit and functional tests for
firefox OS and Selenium tests for their websites
Steve: :)
…
* Eric looking for a cool small task :)
…
Eric: Tim, not sure how interesting this might be for you: [link to a bug report]
…
Eric: or this Gtk-related change: [link to a bug report]

61

…
* Tim has a quick look at the bugs
Eric: If you click pitivi: Show you can see all of them :)
Ted: Tim, well I guess the question is,
…
Ted: 1- do you like to fix bugs, fix tests, or touch features (though we’re probably in a
feature freeze now)
Ted: 2- do you prefer UI work or backend work?
Tim: hey Ted : i have been working with testing as i said so i would prefer that more and
yes I would like to focus at backend
Ted: awesome
… [setting up the development version]
Tim: Steve, yea so now I can get to do some work! what should I start with?
…
Steve: My opinion is tests :)
Steve: Which means getting familiar with dogtail, finding a bug in pitivi, and trying to
reproduce it with dogtail
Steve: Ted will be able to tell you more than I about dogtail
…
Ted: Tim, see [link to a project’s wiki page containing information on testing] if you
hadn’t seen it already
Ted: the dogtail tests are “purely UI”, but pitivi also has more “theoretical” backend-
related tests
Ted: that page gives a quick overview of both
…
Tim: Ted, I will go through [link to a project’s wiki page containing information on
testing] and try running some tests, also are there any tests that are to be written, so that i
can work on them? or will I have to find bugs and write tests for them?
Ted: there’s that sub page for a test suite “wishlist” linked inside that page
Ted: but don’t let that stop you, there’s certainly a ton of stuff that can come out of your
imagination that we haven’t thought of
Ted: and Roy supposedly had ideas (when I asked him a year ago :) about stuff that needs
to be done for the normal (not dogtail) tests
Ted: but hasn’t written them on that page yet
Tim: ok I will try to add some tests, here, and keep in touch, about any new things to be
added Ted
Ted: cool, thanks :) we’ll be happy to help you with pieces of advice etc.
Ted: play around, try the app, see what works and what doesn’t, what annoys you, etc.
Tim: but really its 5:41am in my timezone and i haven’t slept the night, so will work on it
tomorrow, btw thanks a ton Ted and Steve
Ted: good night and good luck!
Tim: thanks!

In his first message, Tim provides the maintainers with information about his skills that could

62

be useful for contribution to Pitivi. Based on that, the first option that Steve provides is

writing Dogtail tests. This means that Tim would write automated tests to ensure that once

bugs are fixed, they do not appear again. However, a look at Tim’s personal repository, Steve

discovers that Tim previously worked in the area of audio processing. Thus, Steve suggests an

audio related task but by browsing through information about it, reminds himself that the

issue concerns lower level libraries that are written in the C programming language (whereas

Tim already told him that he knows two different languages: Python and Javascript).

At this point, Eric joins the conversation and links two bug reports that could be suitable

for a new contributor with Tim’s skills. Ted then attempts to specify Tim’s expectations by

asking him, what area he is interested in. Through that, they reach automated testing again.

Taking it as a valid option, Ted provides Tim with more information on testing by linking to

the appropriate page form the project’s wiki. At the same time, Ted emphasizes that task

suggestions contained in the wiki should not be taken as a final list of tasks available. There is

a repeated suggestion to try out Pitivi, use it, play around with it, find out what works and

what does not, see what is annoying. By this, the maintainers place emphasis on the

contributor’s own experience with the developed program and assume that the contributor

will be more motivated or find it more interesting to fix issues that he himself discovered or

that he finds annoying. This corresponds to the first principle that Eric Raymond lists in his

essay The Cathedral and the Bazaar (Raymond, 1999), a text that has been formative for the

open source movement. In the first principle, Raymond states that “every good work of

software starts by scratching a developer’s personal itch”. Of course, Tim does not have a

personal itch with regard to Pitivi (at least not yet) and that’s why he asks for guidance. The

maintainers readily pull out lists of tasks in the form of known issues and wiki pages, but also

try to point the newcomer in a direction, where he could obtain his personal itch to work on.

The second (and often bigger) challenge that newcomers have to face is setting up the

development environment. The environment consists mainly of the latest development version

of the program (and the libraries it uses). The development version serves as a shared

reference point, this time not in the form of source code, but in the form of a running

interface. By running the development version, the contributors are able to grasp and use the

result of their work. This is necessary for testing the work that has already been done and

determining what should be done next (where else to find one’s personal itch than in the latest

version?). For comparison, I quote here from the same case as the one few paragraphs above:

63

Tim: hi I would like to contribute to pitivi, I am good at python and javascript, can
somebody point me to the source code and small task to get started, thanks
Eric: Tim, /[link to instructions on building the development version/]
Eric: Tim, what Linux distro do you use?
Tim: fedora 19 x86 Eric 64bit
Steve: Tim, pitivi is a complicated project, with many moving dependencies
Steve: For that reason, we have a script that allows contributors to set up the environment
automatically, which Eric linked to you
…
Steve: After the setup is done and you make sure you can run the dev version, what I
would recommend is starting with writing simple tests with dogtail
…
Tim: so Eric : i ran the script here /[link to instructions on building the development
version/] and have pitivi-git dir and [ptv] a virtualenv kind of a thing i guess?
Eric: good
Eric: cd pitivi-git/pitivi; bin/pitivi
Eric: works?
Eric: the [ptv] is just a bash with some environment variables set
Tim: well i have just glib and prefix dirs Eric
Eric: if you run bin/pitivi it should ..fail, can you confirm?
…
Tim: Eric, : i mean in pitivi-git/ i just have glib and prefix , and prefix is empty too after
running the script is there anything else that needs to be done ?
…
Eric: I really have to go, see you tomorrow
Steve: bye Eric o/
Tim: bye Eric : i will figure it out :-)
Steve: Tim, did you solve the dependencies as indicated on the website ?
Tim: yes that I need to I think I skipped some steps
Steve: Solve the Dependencies.
Steve: Get this script, save it, make it executable and run it: [link to the script]
Tim: cool! just doing
Steve: just two steps :P
Steve: on f19 it should work, we’ve been developing with f18 - 20
Steve: I skipped 19 but I believe Roy used it
…
Steve: Tim, no problem yet?
Steve: (aliasing make to “make -j4”) makes the whole process faster
Tim: yeah downloading packages
Steve: Should have told you
Tim: Steve, i get [link to a copy-pasted output from Tim’s command line] on running the
script, it isn’t able to clone pitvi for me i guess ?
Steve: Thats not the first run right Tim?
Steve: the previous one must have failed

64

Tim: Steve, yes
Steve: Can you paste the output of the previous one ?
Steve: The run that checked out the libs etc ?
…
Steve: Tim, the file you’re showing me is a new run
Steve: You should just remove the newly created directory,
Steve: start the script once again, and paste me the output
Steve: ie remove “pitivi-git”
* Tim follows steps
Tim: it takes too long, all CC CCLD and make on my screen, is it correct, or i have ended
up firing something weird ?
Steve: It doesn’t take too long
Steve: you’re compiling gstreamer, which is a huge beast
Steve: Not the kernel by far but still
Steve: around ~1.5 millions LOC [lines of code]
…
Tim: yea finally something I got and it stopped, should I overwrite ? [link to a copy-
pasted output from Tim’s command line] ??
Tim: woah! cool I think I got the things right now :-)
Steve: yep, the duck pretty much means “good to go” ;)
Tim: would it take this much time always when i run the script ? Steve
Steve: Of course not
Steve: Once it’s built it’s built
Steve: you can ctrl + D and rerun the script to get back into the env
Tim: yea! my CPU would have died then :P
Steve: aha don’t worry
Tim: Steve, yea so now I can get to do some work! what should I start with ?

Typically, to get the latest development version of a program running, one has to download its

source code and compile it. But as Steve puts it, Pitivi is a complicated project – it depends on

several underlying libraries, some of which can be used at latest packaged version (therefore

no compilation is necessary) and some of which must be compiled from the source code. To

simplify setting up of the development environment, Pitivi maintainers created a script that

automates the process of checking for the required versions, downloading and compilation of

the dependencies and Pitivi itself. However, the script does not take care of everything, there

are several issues that the newcomer has to solve manually. It is necessary to install one of the

Linux distributions that Pitivi developers typically operate with. The choice of distribution

affects what software (and in which versions) is available for the contributor and therefore is

crucial for solving dependencies. In this case, the standard distribution used for development

is Fedora. This is so, because Pitivi uses the Gimp toolkit (GTK+) for development and so

65

distributions that package the latest versions of GTK+ are preferred. Fedora is tightly

integrated with GNOME, to a point where its development cycle is synchronized to that of

GNOME. As a result, Fedora is reliable in shipping the latest stable GTK+. This is the main

reason why Fedora is used as a standard Linux distribution by the Pitivi developers.

As the quoted conversation indicates, running the script is also not a trivial matter. Tim

went through several iterations before he figured out how to correctly run it. While doing so,

he exchanged with others the output from his command line that he could not interpret

properly himself. By doing so, he tapped into the knowledge that the maintainers pool in the

Pitivi IRC channel. The knowledge present there allowed him to treat properly information

which would otherwise remain cryptic for him. Tim is not even sure how the correct result of

his action should look like – this is demonstrated by him asking if he “ended up firing

something weird?”. He is assured by the maintainers that what he sees on his screen is normal

and that in subsequent runs, it will not take this long. Finally, the running script on his screen

stops and he is greeted with a picture of a duck made of ASCII letters. This means that he is

“good to go”.

==
 BATTLECRUISER OPERATIONAL
 >(°)__/
 (_~_/
                         ~~~~~~~~~~~~
====================================================================

However, to contribute to Pitivi, Tim will need more than its running development version.

He will need tools102 to get the work underway. Text editors allow him to browse and edit the

source code, Git allows him to manage source code and share it, compilers allow him to turn

the source code into an interface, debuggers allow him to find errors, Bugzilla allows him to

see the issues reported against Pitivi, Wiki allows him to make drafts and write developer

documentation, an IRC client allows him to connect to the Pitivi channel and the list goes on.

The common denominator is that the tools are typically developed consistently with the free

and open source software model.  The reasons for this  differ but it  seems they follow the

reasoning typical for the two branches of the movement – either it is an issue of being self-

sufficient with the tools abiding the same moral standards (free software), or it is a practical

102 It should be noted that some tools are needed even to set up the development version. This applies to Git or
compilers for example. As a result, the difference between some tools and dependencies may not be initially
clear. The clarity comes with distinguishing the roles of developers and users. Dependencies are packaged
programs that must be installed for a given program to run regardless if it is run by a developer or an end
user. Tools, on the other hand, are not required from end users. Another way of saying this is that official
versions of software require only dependencies while development versions require dependencies and tools.

66 



issue  of  being able  to  see the guts  of  the tools  and being able  to  possibly  influence  the

direction of their development (open source software).

Both of these reasons point to the recursivity involved in FOSS projects – the tools that

are used in one software development project constitute development projects of their own,

while also using a set of tools. A distinct way of demonstrating this recursivity is pointing to

the project that develops the version control tool called Git, where Git itself has been used for

version control from the very beginning of its development. Linus Torvalds, the originator of

Git described the process in a following way:

You can actually see how it all took shape in the git source code repository, except for the
very first day or so. It took about a day to get to be “self-hosting” so that I could start
committing things into git using git itself, so the first day or so is hidden, but everything
else is there. The work was clearly mostly during the day, but there’s a few midnight
entries and a couple of 2 a.m. ones. The most interesting part is how quickly it took
shape; the very first commit in the git tree is not a lot of code, but it already did the basics
- enough to commit itself. The trick wasn’t really so much the coding but coming up with
how it organizes the data.103

In  general,  we  can  talk  about  FOSS  projects  being  “self-hosting”  in  the  sense  that  the

production of one project is used by another. This is what Christopher Kelty is pointing at

when he writes about recursive publics (Kelty, 2008, p. 3).

To  describe  how tools  are  used  in  the  Pitivi  project,  let  us  first  pick  a  very  basic

representative – text editors. There is a wide variety of text editors to choose from. There are

command line editors and there are editors with a dedicated graphical user interface; there are

editors  supporting  a  number  of  modes  or  modeless  editors  –  to  name  some  categories

according to which editors can be classified. Furthermore, text editors are typically highly

customizable and extensible. For example, editors can be set up to use dark or light color

schemes  for  their  user  interface,  to  highlight  current  lines,  to  display  line  numbers,  to

highlight  the  syntax  of  a  certain  programming  language,  to  wrap  lines  longer  than  80

characters, to display spaces, to use regular expressions for searching, to use various plugins,

or to complement the editor with a terminal and debugger to create a so-called integrated

development  environment.  Needless to say this  list  scratches  only the surface of possible

customization. The width of customization possibilities is not surprising when we consider the

fact that the interfaces of text editors are the ones in which developers spend most time and

103 Interview with Torvalds about Git on the occasion of 10 years of Git. Interview published by Linux.com. 
Published: 2015-04-06. Accessed: 2015-04-08. Available at: http://www.linux.com/news/featured-blogs/185-
jennifer-cloer/821541-10-years-of-git-an-interview-with-git-creator-linus-torvalds.

67 

http://www.linux.com/news/featured-blogs/185-jennifer-cloer/821541-10-years-of-git-an-interview-with-git-creator-linus-torvalds
http://www.linux.com/news/featured-blogs/185-jennifer-cloer/821541-10-years-of-git-an-interview-with-git-creator-linus-torvalds


that software developers – their users – also often carry the knowledge and skills to modify

them.

However, customizations are in most cases focused on the editor interfaces, not on the

form of the resulting text files where standards are enforced, although customization can help

following the standards. For example, when I submitted my first work, the maintainer doing

the review told me that my files contained trailing whitespaces. This meant that I forgot space

characters at the end of some lines. These characters are generally considered redundant and

may cause problems in certain situations and so it is considered a good practice to remove

them.  After  I  got  the  review I  had  to  set  up  my text  editor  so  that  it  displayed trailing

whitespaces (which were invisible until then) to avoid the issue.

Another instance emphasizing the existence of a standardized output was marked in the

discussion among two of the maintainers I witnessed on the Pitivi IRC channel. The subject of

the discussion was the “80 column rule” which states that any line in a text file should not be

longer than 80 characters.104 This rule is so common, that many text editors assume it by

default.  But  apparently,  the  rule  makes  more  sense  with  regard  to  some  programming

languages (like C for example) than others (like Python, which is used in Pitivi). Also, wide

computer screens are common today and enforcing the rule leads to leaving much of the

screen space unused. In the end, it is up to the project maintainers to make an agreement.

There were two justifications for enforcing the rule for the Pitivi source code: (1) “I want to

be able to dual screen on modest sized computers.” (2) “Some hackers might have their editor

setup with 80 chars assumption.”

The first reason is practical – wide screens are common these days, but they are usually

tied to a place because of their size. No one carries a 22 inch monitor around on a daily basis.

When traveling, for example, more modest screen sizes are still standard. Furthermore, the

developer work-flow usually involves displaying two text files side by side on a screen (“dual

screen”) and this requires making the text limited in width. In this context, the old rule that

has its roots in the 80 column IBM punch cards still has some relevance.

The  second  reason  is  concerned  with  standardization  explicitly.  Even  though  the

maintainers are aware that the number of 80 characters is  arbitrary (stating that “socrates

104 Unlike the mainstream text processing programs contained in various office suites,  text  editors used by
developers do not employ the metaphor of a page which restricts line width according to the specified paper
format. The only limiting factor for editors designed for software development is the size of a computer
screen which is nowadays widely variable. Thus, limiting the width of the line gets to be more a matter of
agreement than a matter of external constraints.

68 



could troll like this: it could be 74”105) they still use it as a reference point as it seems it is the

most commonly used option. By applying the 80 column rule, the project maintainers intend

to comply with the expectations most experienced developers could have, therefore lowering

the barrier (of setting up or adjusting the development environment) to entry for them.

All in all, setting up a development environment is far from a trivial matter. Initially, it

took me days to set up my environment in order to contribute to Pitivi. I had to install a new

operating system (Fedora) on my computer, get the development version of Pitivi and make it

run, install and configure Git (to be able to see and create revisions in source code), make a

Bugzilla account (to be able to file and comment on issues), pick a text editor and configure it

(actually, I tried a number of them – from Gedit and Geany to Vim and Emacs and back to

Nano). All of this before I even started to work with the Pitivi user documentation I wanted to

contribute to. But the very first thing I had to do to make this process started was to contact

the maintainers in the Pitivi IRC channel.

4.1. Knowledge Channeling

The  Internet  relay  chat106 is  designed  to  facilitate  synchronous  communication,  that  is,

communication where both parties are present at the same time. Internet relay chat simulates

the  space  for  communication  in  a  way  that  not  being  present  means  missing  the

communication – no history is  recorded for  those who join in  to  read.  Pitivi  maintainers

circumvent this limitation by using “bouncers”, programs that run constantly on a server and

through which they connect to their chat accounts. This allows them to be connected to IRC

channels even when they are asleep and their computers are shut down. When they connect

again, they can read the backlog (what happened when they were away) and see if someone

tried  talk  to  them.  By  this,  they  are  using  IRC  also  as  an  asynchronous  means  of

communication.

The basic organizational unit of IRC is a channel, which essentially denotes a chat room

where those who are present see the communication taking place. Channels are differentiated

by topics of interest: there is a Pitivi channel, a Gstreamer channel, channel of the GNOME

documentation team etc. People are known to be present in certain channels so when I wanted

to talk to them, I had to go where they were. Sometimes I went to a channel because of its

overall specialization and sometimes I aimed for a particular person. In this way, the IRC

105 To “troll” means to make controversial statements with the intention to spark heated discussion and conflict.
106 The IRC is a protocol of the application layer of the Internet protocol suite. It is located in the same layer as

HTTP, but whereas HTTP is used to transfer static text, IRC is used to transfer text messages.

69 



channels represent reservoirs of knowledge. This is what I noted when I was beginning my

work on the user manual:

I needed to make sure that the new page I created gets to the .pot file for translators to
work on. No one at Pitivi knew for sure what was needed so I joined the channel #i18n
[internationalization] and asked.  I  explained my problem and provided info on which
module it is related to. Within an hour I got my answer and a place where to check that
everything went ok. Went back to #pitivi and told others the result.

Such trips to various channels in order to retrieve specific information are a common practice

in this environment. Since one can be connected to multiple channels simultaneously, it is not

even necessary to leave the current channel. All that is needed is to know the name of the

channel and of the network it belongs to.107

What takes place within a channel is similar to a screenplay text. The communication is

sequentially structured, actors enter and leave, say something and do something108 while they

are  present.  All  these  acts  leave  traces  in  the  backlog.  However,  it  is  not  necessary  to

communicate actively the whole time one is connected. It is common to be present in the

channel  just  to  monitor  it  for  relevant  discussions  (a  practice  called  “lurking”)  or  to  be

available for others. For example, at the time of writing,  there are around 30 people (not

including bots) connected to the Pitivi channel even when no discussion is taking place. The

lurking practice was jokingly referred to in one conversation:

Chris: sounds like it’s probably doable, but i’ll have to do some more poking and research
Chris: it’s not an 8am poke around before work task ;)
Steve: Indeed :)
Steve: Anyway, hope you’re having fun with all this, always interesting to discover new 
techs :)
Steve: (and fix stuff on the way)
Chris: oh yeah i’m having fun diving back into gtk+ stuff
Chris: did a little work on gimp aaaaages ago (in powerpc mac days)
Steve: And jack is always very helpful, even when not giving out his code ahaha
Chris: in the meantime, adding more irc channels to my defaults :D
* chris idle ALL the channels!
Steve: Yeah I think I remember you telling me this :)
Steve: Ahaha that’s the spirit
Chris: :D

107 IRC channels are grouped into overarching networks which provide servers for their operation. During my
fieldwork,  I  was present in two networks:  Freenode and GimpNet.  The former hosts  channels  of  FOSS
projects in general while the latter hosts channels that belong specifically to the GNOME project.

108 There is a way to write a message so that it refers to the author from the position of a third party. This is
often used to let others know what one is doing or why one is not responding. Such messages begin with an
asterisk and look like this: “* [nickname] is still reading the backlog”.

70 



Steve: 17 channels open here :)
Steve: All these conversations I will never read :)

In this conversation, Chris was returning after a long period of time to work on code that uses

the GTK+ toolkit and investigated a task he wanted to accomplish. We can see that the return

and investigation naturally involve adding related IRC channels into a set of channels with

which connection is automatically established (the “defaults”) when his IRC client is opened.

But this does not necessarily mean that he will  read all  the conversations that take place

within the channels. He just wants to have those channels ready when he will need to make an

inquiry. This is another example of using IRC channels as reservoirs of knowledge.

Communication inside a channel often oscillates between bursts of activity and pauses

in conversation. This is obviously a result of developers being from different timezones and

having differently structured work time. However, there are also other mechanisms at work.

First,  an  ongoing  discussion  draws  attention  to  monitoring  the  channel.  Second,  when

someone starts a discussion, it tends to sustain itself by provoking new inputs. Third, when

participating on a discussion, others can see the actor’s availability and often start  a new

conversation.

Thus,  communication  on IRC is  usually  multi-threaded.  There  can  be  two or  more

simultaneous conversations taking place at the same time. Multi-threadedness means not only

that there are several dyads communicating at the same time, but also that one can participate

in more than one conversation. Such situations are demanding in response speed. However, no

one  gets  offended  when  one  does  not  respond  promptly,  others  can  see  how  many

conversation one is having. But responding slowly represents a risk of losing attention of

one’s counterpart and having the conversation interrupted. Everyone is multitasking and so

one is quickly driven away from the channel if nothing new happens in a while.

There is one mechanism though, that allows for making others pay attention. Writing

someone’s nickname in a message generates a notification in that user’s desktop client. The

notification system attempts to draw attention to the discussion. This can get annoying when

over-  or  misused  and  so  I  have  witnessed  the  maintainers  having  to  calm  down  eager

newcomers several times. On the other hand, some messages are not aimed directly at anyone,

they just function as a way of letting others know what is on one’s mind or what one is

currently doing. Similarly, solutions to problems are posted even if no one requested them

directly, to provide resources for future use and collect feedback on the solution. However, the

texts flowing through IRC are not very persistent. The individual maintainers occasionally

71 



copy and paste  parts  of  conversations  into their  private  notes,  but  there is  no systematic

archiving taking place.109

There is a different kind of infrastructure in place exactly for this purpose – the project’s

wiki and individual blogs. This infrastructure embodies what could be called the phenomenon

of self-documentation which is an integral part of free and open source software. This means

that  problems  and  their  solutions  get  recorded  and  elaborated  upon,  even  when  no  one

requested this directly. There is a conviction that the most effective way to deal with problems

is to archive them and their solutions publicly. This allows others (and sometimes the writer

himself after a longer period of time) to quickly find information or solutions to problems

they are facing. Blogs and wiki pages are better suited for this purpose as they offer more

accessible  (through  the  standard  HTTP protocol)  archiving  where  (contrary  to  IRC  for

example), texts are persistent by default.

Furthermore, blogs and wiki differ in that the first represents essentially simple web

pages written in the standard HyperText Markup Language (HTML), while the second not

only uses its own markup language (which is eventually translated to HTML), but it adds

functionality for collaborative writing and version tracking. Thus, blogs are usually used as a

simple  means  of  archiving  and  expression  of  individuals,  while  wiki  serves  as  a  more

“official” source of information about a project. Thus the project’s wiki contains pages that

serve as information resources dealing with common problems such as how to set  up the

development  environment,  how  to  use  source  code  management  or  debugging  tools

effectively, what is the general architectural model of the developed software, or who are the

main contributors.  An aggregation of such pages creates a pool of knowledge that can be

readily referenced to for example in chat discussions (each wiki page has its own HTML

address). As a result, the developers don’t have to repeatedly explain how to solve the most

common problems.

However, the wiki does not work only as a convenient resource for referencing. This

function would probably be served just as well by blogs, which are easier to establish and run

than the whole MediaWiki platform.110 There is more to its functionality that balances the

109 This is,  however,  project  specific.  Some projects,  like the Ubuntu Linux distribution, archive their IRC
channels and keep the archives accessible from their website.

110 MediaWiki is a software package originally designed by Magnus Manske to run Wikipedia. However, today
it is also widely used in other projects, not necessarily affiliated with Wikipedia. As it is licensed under the
GNU GPL license, it is widely used in free and open source software development, where it is common for
bigger projects to have their own wiki. Also, the MediaWiki is by far not the only software package with
which a wiki can be established. There are numerous other packages among which MediaWiki is probably
the most well known.

72 



effort. The differentiating feature is that Wiki pages allow multiple contributors to share work

material while all modifications to it are systematically recorded and form a reversible history.

This is a result of some of the design principles with which the platform has been built. These

design principles have been proposed by Ward Cunningham, the originator of the initial Wiki

Wiki Web which served as a model for later wiki packages including MediaWiki. Within the

design principles, there is a set of claims that interlock in what could be called “the value of

openness”:

Open – Should a page be found to be incomplete or poorly organized, any reader can edit 
it as they see fit.
Organic – The structure and text content of the site are open to editing and evolution.
Observable – Activity within the site can be watched and reviewed by any other visitor to 
the site.111

Translated to the design of a software package, the first two principles mean that there must

be a system for free creating and managing user accounts. But by using the word “reader”

with regard to editing, the implications seem to go further, to allow even those without a user

account to edit pages. Indeed, this is the case with the biggest project using the MediaWiki

package – Wikipedia. Also, the word “evolution” used in the second principle hints to the

expectation, that there will be a history behind every page. Combined with the third principle,

this leads to the design of an archiving function which records every set of edits, assigns them

to a time and an author, and make them comparable with every other version of a page (see

Appendixes 5 and 6 for examples of page differences and history logs). But to be observable

to a full extent, not only editing must be recorded, but also rationalizations behind it. Thus, for

every page, there is a place for discussion which is recorded and represents another dimension

of the page’s history.

However, it is interesting to see that Cunningham explicitly states that some principles,

although followed by later designers of wiki packages, were not his primary concerns. These

principles are explicitly formulated as follows:

Trust – This is the most important thing in a wiki. Trust the people, trust the process,
enable  trust-building.  Everyone  controls  and  checks  the  content.  Wiki  relies  on  the
assumption that most readers have good intentions. But see: [link to a page called Assume
Good Faith Limitations]
Sharing – of information, knowledge, experience, ideas, views…112

111 Wiki Design Principles. Accessed: 2014-12-04. Available at: http://c2.com/cgi/wiki?WikiDesignPrinciples.
112 Wiki Design Principles. Accessed: 2014-12-04. Available at: http://c2.com/cgi/wiki?WikiDesignPrinciples.

73 

http://c2.com/cgi/wiki?WikiDesignPrinciples
http://c2.com/cgi/wiki?WikiDesignPrinciples


Considering that Wikipedia is seen by many as the hallmark of the culture of sharing, it is

ironic to  see the originator  of the design principles  upon which it  was built  to state  that

sharing was not his primary concern. But the principle of trust seems to be the problematic

point here. The underlying assumption that most readers have good intentions explains the

design decision to make wiki pages open for editing by anyone and place the review process

after  the  editing  has  been done and published.  The fact  that  a  link  to  a  page  discussing

limitations of the assumption is enclosed right after explanation of the principle is indicative

of Cunningham’s reservations about it.  Nevertheless,  this principle was followed by other

developers and so the current wiki packages inherited this design decision.

However, the Pitivi wiki has different rules for contribution than the what is standard in

Wikipedia, where anonymous users (in the sense that they do not have user accounts, but are

identifiable by an IP address) may edit pages. Their modifications are only afterwards subject

to  review and  revisions.  This  creates  conditions,  in  which  vandalism and  spamming  are

possible and take hold in the time period between editing and review. Accordingly, vandalism

and  spamming  are  cited  in  the  lockdown  policy  of  the  Pitivi  wiki  as  main  reasons  for

restricting the rights to edit pages:

Fighting spam and vandalism has always been a problem in our wiki, and it has been
particularly tedious in 2010-2011 where a lot of spam consisted of “throwaway” user
accounts made to create lonely pages.

Those pages would typically not be seen by most visitors because they were not linked
from any other pages (except the RecentChanges and LonelyPages special pages), and
thus would fly under the radar.

=== Some statistics === Before the new lockdown policy was enforced, in 2011 there
were: * 831 registered users… but only ~10 were real/legitimate users! * 1156 pages…
but only 108 were real content pages!113

As a result, Pitivi developers reached an entirely opposite conclusion – that most users don’t

have  good  intentions  and  they  express  it  by  saying:  “managing  accounts  is  perfectly

acceptable and vastly more efficient than managing spam”. This essentially means that while

keeping spam under control is not possible, it is necessary to keep under control (manage)

user accounts, which would otherwise be entirely up to users. Thus, only users that got in

touch with the Pitivi developers and obtained a user account can edit pages.

But there is a reason for going through this trouble to keep the project wiki running. In

113 Lockdown Policy. Page in the Pitivi wiki. Last edit: 2014-02-22. Accessed: 2014-12-01. Available at: 
http://wiki.pitivi.org/wiki/Lockdown_policy.

74 

http://wiki.pitivi.org/wiki/Lockdown_policy


most  FOSS  projects  I  have  dealt  with  (and  Pitivi  is  no  exception)  wiki  pages  are  used

extensively  for  documentation,  be  it  for  users  or  for  developers.  Having  the  MediaWiki

platform in place allows for pooling information from various contributors that, ideally, form

a manual. Furthermore, wiki pages can play vital role in the prototyping process. Although I

haven’t really witnessed wiki to be used for this purpose during my presence in the field, I

found several older pages made specifically for the purpose of developing complex design

concepts  (like  a  plugin  system,  proxy  editing  or  rendering  profiles)  and  user  interface

mockups. These wiki pages contain a lot of rationalization, examples of how the problem is

solved in other programs and relevant use cases. Often, they also contain a different medium

than digital text as visualizations of how a problem solution would appear in the user interface

are common.

Using  wiki  for  prototyping  is  possible  because  the  implementation  of  the  design

principles  of  openness,  organicness  and  observability.  The  implementation  results  in  key

functionality  of  collaborative  writing  and  version  tracking  which  are  necessary  for  the

prototyping  process.  It  must  be  clear  who  made  which  set  of  changes,  and  with  what

rationalization. These changes must then be available for others to review and make their own

sets of changes (including rationalizations) that could be differentiated from the original one.

Prototyping then takes place through this iterative process of modification (which in this case

includes also publication) and review. In other words, wiki pages contain proposals that other

contributors can review and further develop, retaining their individual authorship even though

the pages are the result of collective effort.

However, all this functionality is necessary only when there are supposed to be more

iterations of modification and review. If the aim is to simply show the design ideas once and

collect feedback, developers often opt for the use of their blog. This allows them to reach a

wider audience than with a wiki page while presenting the content as their own work. In other

words, blogs usually represent the efforts of individual developers.

Various  content  management  systems (such as  Wordpress)  are  used  for  writing  and

publishing content of blogs. While these systems support the use from multiple users, they

omit  the functionality  of a systematic  tracking of  revision and thus  are  scarcely used for

collaborative writing. Blogs simply have a different purpose. During my time in the field the

purpose of blogging was explicitly negotiated when a newcomer that wanted to apply for the

75 



Google Summer of Code114 stipend to work on Pitivi brought that issue up:

Ben: It is necessary to post on a blog about the progress of the proposal for the GSoC? 
right?
Steve: Ben, I don’t mind if you don’t
Steve: And I think others agree
Steve: What we want is progress, not blogging about lack of progress :)
Ben: ;)
Ben: that’s better
Steve: (not saying you would not progress, just that I preferred working to blogging for 
my GSoC and I don’t think it ever hurt anyone :)
Eric: we’re programmers, not writers haha
Steve: this :)
…
Ted: Ben, though I would like to strongly encourage you to blog
…
Ted: we can’t force you though
…
Ted: I mean even one paragraph or two per week or two weeks, just to keep the pitivi and 
gnome communities informed, and to get feedback etc.
Ted: no need for a whole book
Steve: yeah Ben the thing is you would get a GSoC through GNOME, and they 
theoretically require your blogging
Ted: but then, I say that as the person who is pretty much the only one in the entire pitivi 
team to blog
Ted: (excluding the new fundraiser blog posts)
Steve: blogging is good for two purposes IMO : technical stuff (always happy to find a 
blog post about specific issues I’m also facing)
Steve: and marketing
… Ben: more “marketing” I think
Steve: what do you mean ?
Ben: because I don’t know if I’m wrong, but I really think that there are many USERS 
who want tutorials, know about new features… I think blogging is more for marketing in 
the case of Pitivi.
Steve: Ben, I don’t agree
Ted: being able to explain a technical implementation or problem is a valuable skill
Ted: blogging is a way to demonstrate that skill
Ted: and this helps your career

114 Google Summer of Code is a  stipend program that  annually supports students to work on open source
software. The general idea of the stipend program is to teach students practical skills through mentoring,
while the students work to contribute to the public realm. But it has more far reaching consequences than this
simple exchange. Many students continue to contribute to the projects even after the stipend is over. In the
case of Pitivi, at least two of the maintainers got initially involved as participants in the stipend program.
Therefore,  by attracting students and developing successful strategies when asking for the stipend, some
FOSS projects are able to gain new developers periodically.

76 



Ted: (I’m just saying :P)
Steve: Well it also helps other hackers, which is a key argument too
Ted: yes
Ted: and also, I’m sure there are semi-savy fans/users out there who love to read about 
progress on projects like pitivi, but don’t have time (or skills) to sit around in our IRC 
channel and read everything that’s going on
Ted: you gotta admit it’s sometimes pretty crazy technical in here
Steve: Well I do hope so :)
Ben: I think marketing is powerful. That gives you users ;)
Steve: Ben, I said both were

From the first part of the conversation, it is clear what is the priority – it is more important to

work than to blog about it. This position is summed up in the expression “we’re programmers,

not writers”. However, as Ted (who declares himself to be the only one within the Pitivi team

to  blog  consistently)  joins  the  conversation,  it  shifts  toward  identifying  the  purposes  of

blogging.  First,  it  is  the  “technical  stuff”  which  may  help  others  in  finding  solutions  to

problems they are facing – “it helps other hackers” (even Steve, who was initially skeptical

admits he is “always happy” to find such blog posts). The value of this type of blog posts to

others facing the same problem is that it  spares them the effort  put into investigating the

problem and creating their own solution (while also demonstrating the technical skills of the

post’s author).

Thanks to this practice one can safely assume that most problems were faced already by

someone else and therefore, that someone blogged about it. Solving the problem then amounts

to finding the appropriate blog post and implementing the solution described. In this way,

blog  posts  create  a  reservoir  of  informative  instruction  materials  which  were  written  by

knowledgeable authors and which can be picked up and utilized by others. Obviously, solving

a problem and writing a blog post about it requires higher level of technical knowledge than

finding the post and applying the prepared solution. In this way, actors can perform actions

that are beyond their technical knowledge (for example, by copy-pasting commands from a

blog to terminal without knowing precisely what will the commands do). This means that blog

posts  do  not  always  spread  knowledge.  Knowledge  would  be  transferred  if  the  recipient

learned to understand the problem and its solution in such a way that would make it possible

to re-apply it in different circumstances. Blog posts are often not detailed enough to allow

this, but even if they are not, they may serve as initial impulses to investigate an issue further.

The  second  purpose,  “marketing”,  is  associated  with  blog  posts  that  describe  the

progress of the project. New versions are announced, new features are demonstrated and work

77 



in progress is evaluated. Blogging about work in progress can be seen as one stage of the

“release early, release often” imperative. It shows others what are the aims and what can be

expected in the future and it is also a form of collecting feedback on the work even when the

source  code is  not  yet  released.  This  is  aimed primarily  at  users  (or  developers  in  other

projects) that do not tune in into the developer’s communication channels to experience what

is going on firsthand, but wait for what the “blogosphere” brings them.

The blogosphere, in this case, is embodied in a blog aggregator called Planet Pitivi. It is

the one place, that displays blog posts from Pitivi developers and informs anyone interested

about what is new and what is going on in the project. There is also an aggregator called

Planet GNOME which displays blog posts from the wider GNOME community and to reach a

broader audience some of the Pitivi developers feed their blogs also to this aggregator. The

“aggregation” is an arrangement in which texts are automatically redistributed from one place

(the  author’s  blog)  to  another  (the  aggregator).  This  arrangement  is  based  on  a  mutual

agreement between the administrators of a planet and the author of a blog and on the fact that

the  author  meets  certain  requirements.  Pitivi  is  a  small  project  and  acceptance  to  the

aggregator  is  based  on  individual  agreement.  However,  GNOME,  being  a  much  bigger

community, has the requirements spelled out explicitly:

We want readers of Planet GNOME to read and care about most of your posts.

Some posts should be relevant to the GNOME community, either because they’re related
to GNOME, some underlying projects (like freedesktop.org projects), some technologies
using GNOME, etc. or because it’s a topic most people in our community care about, like
freedom.115

The requirements are primarily related to the relevance of the blog posts to the audience.

Blogging  about  projects  related  to  GNOME  (be  it  upstream  or  downstream)  or  about

GNOME directly obviously meets the requirements regardless of the posts being more about

technical  issues  or  “marketing”.  What  is  new  here  are  the  topics  “most  people  in  our

community care about” out of which only one example is given – “freedom”. This common

denominator has a historical background. It  is  part  of the common knowledge within the

community that the GNOME desktop environment was founded at least in part because KDE

(at the time established free and open source desktop environment) relied on the Qt toolkit,

which, at that time, had a proprietary license. Therefore, GNOME filled the need to have

115 Planet GNOME Guidelines. Last edit: 2014-04-20. Accessed: 2014-12-04. Available at: 
https://wiki.gnome.org/PlanetGnome.

78 

https://wiki.gnome.org/PlanetGnome


desktop environment as independent of a proprietary source code as possible by relying on the

GTK+ toolkit  which  uses  licenses  made by the  Free  Software  Foundation  from the  very

beginning.  Therefore,  it  is  no  surprise  to  find  such  emphasis  on  the  value  of  freedom

permeating the documents of the GNOME Foundation and being used for moderation of its

blog  aggregator.  That  GNOME  operates  with  a  certain  vision  can  be  seen,  apart  from

licensing choices, in its Code of Conduct:

GNOME creates software for a better world. We achieve this by behaving well towards
each other.

Therefore this document suggests what we consider ideal behavior, so you know what to
expect when getting involved in GNOME. This is who we are and what we want to be.
There is no official enforcement of these principles, and this should not be interpreted like
a legal document.116

However,  it  is  indicative,  that  the  “better  world”  which  GNOME strives  for  is  nowhere

defined.  There  are  several  “advices”  for  individual  behavior  in  the  Code of  Conduct  (be

respectful  and considerate;  be  patient  and generous;  assume people  mean well;  try  to  be

concise) but no image of what the world should look like in any of the documents. The utopia

is not explicitly elaborated upon. It is left to the individual contributors to fill the words with

meaning.

However,  the  environment  that  GNOME  constitutes  does  not  allow  for  just  any

interpretation  of  the  words  “better  world”.  What  GNOME  does  is  that  it  provides

infrastructure  (legal  and  technical)  for  all  the  smaller  projects  it  overarches.  This

infrastructure  is  specifically  suited  for  the  free  and  open  source  model  of  software

development. Thus, the combination of this type of infrastructure with the words “software

for a better world” hints at the world view according to which the better world is not only

achieved, but also constituted by free and open source software. This meaning is implicitly

present because of the infrastructure and there is no need to explicitly specify it.

Apart from insisting on one development model (which gains a moral valence in this

context), there is a remarkably wide maneuvering space for various political positions. This

“political agnosticism” is rooted in the classical free software license – the GNU General

Public License (GPL). Of the three basic rights – use, modification and redistribution – this

license focuses solely on the third one, while leaving the first two completely unrestricted.

116 GNOME Code of Conduct. Last edit: 2013-12-04. Accessed: 2014-12-04. Available at: 
https://wiki.gnome.org/Foundation/CodeOfConduct.

79 

https://wiki.gnome.org/Foundation/CodeOfConduct


Furthermore,  redistribution  is  allowed  by  just  meeting  the  requirements  of  applying  the

original license to the derivative work and marking clearly any modifications that have been

made to  the  original  work.  Few more  supplements  can  be made concerning the  author’s

liability or identity, but all additional terms are considered to be “further restrictions” which

are explicitly disregarded:

If the Program as you received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further restriction, you may remove
that term. … You may not impose any further restrictions on the exercise of the rights
granted or affirmed under this License. For example, you may not impose a license fee,
royalty, or other charge for exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using, selling, offering for sale, or importing the
Program or any portion of it.117

Licensing  fees  and  patent  claims  are  stated  as  the  most  immediate  examples  of  further

restrictions, but this  aspect of the license also covers for example the use for commercial

purposes. If the author decides to license her work under the GPL, she may not further restrict

the conditions for its use or redistribution. The software may be used by big corporations just

as well as the unemployed or it may be used by activists just as well as the undemocratic

regime they are fighting against. In this way, the license is “agnostic” – it explicitly denies the

possibility for introducing any further restrictions than those which are stated in it. As a Linux

kernel  maintainer,  Linus  Torvalds  elaborated  upon  this  while  he  was  discussing  the

differences between version 2 and version 3 of the GPL:

For example,  the GPLv2 in no way limits your use of the software. If  you’re a mad
scientist,  you  can  use  GPLv2′d  software  for  your  evil  plans  to  take  over  the  world
(“Sharks with lasers on their heads!!”), and the GPLv2 just says that you have to give
source code back. And that’s OK by me. I like sharks with lasers. I just want the mad
scientists of the world to pay me back in kind. I made source code available to them, they
have to make their changes to it available to me. After that, they can fry me with their
shark-mounted lasers all they want.118

Now it becomes clear why the expression “better world” from GNOME’s Code of Conduct is

nowhere  specified.  As  the  GNU  licenses  (GPL and  LGPL)  are  used  consistently  across

117 GNU General Public License. Text of the third version of the license published on the website of the GNU 
project. Published 2007-06-29. Accessed: 2014-11-16. Available at: http://www.gnu.org/copyleft/gpl.html.

118 Linux Licensing. Interview with Linus Torvalds published by Forbes.com. Published: 2006-05-03. Accessed:
2015-04-09. Available at: http://webcache.googleusercontent.com/search?
q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-licensing-
cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu.

80 

http://webcache.googleusercontent.com/search?q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-licensing-cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu
http://webcache.googleusercontent.com/search?q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-licensing-cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu
http://webcache.googleusercontent.com/search?q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-licensing-cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu
http://www.gnu.org/copyleft/gpl.html


projects  that  GNOME associates,  it  is  not  surprising  that  it  would  apply  similar  sort  of

agnosticism in its  documents.  Given the infrastructure GNOME provides, contributors are

free to interpret what better world is and translate this meaning into their willingness to spend

hours of volunteer work, or invest in the development as a company. Thus, we can observe a

mix  of  specificity  (to  a  point  of  implementation)  with  regard  to  infrastructure  aimed  at

particular  software  development  model  and  ambiguity  concerning  further  values  and

motivations.  As  we  will  see  further,  the  same  principle  holds  for  most  parts  of  the

infrastructure considered individually. In the subsequent sections, I will elaborate on elements

typically used in two of the most commonplace activities in software development: debugging

and revision tracking.

4.2. Debugging

Bugzilla is  a  database of issues (bugs or feature requests)  that  were reported for a given

program. Reports can be made by anyone who is willing to make an account in Bugzilla. This

mostly  involves  dedicated  users,  testers  of  the  given  program or  its  developers.  Because

reports often come from actors that are unfamiliar with the project development or they focus

on other areas inside the project, the database has to be regularly cultivated and organized.

The relevant practice is called bug triaging and it involves setting bug severity, checking if the

bug is really related to the given program, checking for bug duplicates, or checking if the

provided information is correct and sufficient. Once organized and prioritized by bug triagers,

the database essentially serves as a large scale to-do list for all contributors.

For newcomers,  filing a  bug is  a rather  lengthy process that requires submission of

many  information  that  end  users  are  normally  not  even  aware  of,  creating  a  barrier  to

feedback.  However,  without  background  information  on  the  version  of  the  program that

exhibits the bug, on the environment the program runs in, or without a good description of the

bug itself,  the bug report  is  essentially  useless.  Filling in  the background information on

program version and environment gets rather straightforward after reporting one or two bugs.

The ability to generate a good description of a bug takes a longer time. This is so because

when  dealing  with  non-trivial  bugs,  it  is  often  not  clear  what  triggers  them  and  which

component is its source. Therefore, prior to filing a bug report, a good deal of effort needs to

go into a practice called debugging.

Debugging is an investigative activity that gets harder with increasing code complexity

and with growing number of libraries the program is dependent on because an error can be

81 



hiding in one of the dependencies, not the program itself. At the time of writing, Pitivi itself

has around 20 000 lines of code (not counting blank lines and comments), but GStreamer, its

main dependency, has almost 1.5 million lines of code. Therefore, identifying the source of an

error is no straightforward procedure. In a discussion, one of the project members expressed it

in the following way: “the trick is always to find a way to simplify the cause of the bug and

steps to reproduce to the maximum, it’s somewhat of an art ;)”.

By using the word “art” the speaker points to the fact that there is no precise set of rules

that,  if followed, would guarantee successful debugging. Rather,  it  is a process that relies

heavily on the experience and knowledge of the person doing the debugging. However, the

knowledge and experience do not have to be individual. The IRC channel is often used to

share the results of debugging efforts and to discuss what the possible culprit may be. This is

possible due to debugging tools that are able to translate an error into a stream (often very

long) of digital text expressing what is going on in the internals of the debugged program. In

this way, the user description of errors is substituted by a text with common formal properties.

Furthermore, the simplification aims at identifying only those steps that are necessary to

trigger the bug. These steps may involve performing specific operations with the program or

handling a specific file. In the latter case, it is important that the file is attached to the bug

report or shared in some other way with the maintainers. Once the simplification is made, one

can often guess which component is responsible for the error. But to get more information on

what is wrong inside the component a special program is needed.

The standard tool  for  debugging is  called GNU Debugger  (GDB) which  is  used  to

pinpoint the part of code responsible for an error. First, the debugger has to be pointed to the

program or library that presumably causes the error. The ability to make an informed guess in

this  area  assumes  knowledge  about  the  program’s  architecture  and  its  internal  workings.

When  pointed  to  a  running  process,  GDB  functions  like  an  observer  trying  to  record

everything that is going on with it:

Ben: #~|@¿~~! Segmentation fault

Steve: gdb is your friend :)
Ben: Steve: how do I use gdb when I compile the source?
Steve: Ben, not sure I understand your question
Steve: How do you trigger the segfault?
Ben: I don’t know how to debug something big as Gstreamer… I’ve
only used gdb for some single files
Steve: Ben, what do you do to create the segfault?

82 



Ben: I run the command
Ben: ges-launch-1.0 “multifile:///home/nick4/Pictures/Trash/numbers/%d.png?
start=100&end=230&framerate=1/1” 0 5
Steve: OK then run:
Steve: gdb –args sh ges-launch-1.0 “multifile:///home/nick4/Pictures/Trash/numbers/
%d.png?start=100&end=230&framerate=1/1” 0 5
Steve: when the segfault kicks in, you will type bt
Steve: press Enter
Steve: and see the backtrace of the thread that segfaulted
Steve: Ben, ^
Ben: Steve: thanks
Steve: Do you have the backtrace?
Ben: yes
Steve: Cool
Steve: segfaults are usually pretty straightforward to fix, be happy
it’s not a race condition / deadlock ;)

Using  GDB in  this  way  generates  a  text  file  that  is  called  backtrace  or  stack  trace.  At

minimum, the stack trace identifies all functions (and libraries they are located in) that were

called up to a point when the bug occurs. At best, the stack trace lists exact line numbers

inside concrete files, identifying precisely parts of source code that were running before the

bug occurred. To render a detailed stack trace, a special debugging version (these versions are

created  by  a  different  compilation  process,  thus  pointing  to  the  relationship  between

compilation/black-boxing, and debugging – its reversal) of the tested program usually needs

to be installed, one that allows for inspection of the running code. In this way the black-

boxing done by compilation can be temporarily reversed and the internals of a running thing

exposed. Once an error is debugged in this way, a valuable bug report can be filled. But to

fully  grasp  the  role  debuggers  play,  consider  the  forms  a  program has  before  and  after

compilation:

    def shutdown(self):
        if Pitivi.shutdown(self):
            self.gui.destroy()
            self.mainloop.quit()
            return True
        return False

The above is a part of Pitivi source code written in the Python programming language; the

snippet represents a definition of the shutdown procedure.  What follows is what one sees

when the compiled Pitivi package is opened with a text editor:

83 



^?
ELF^B^A^A^@^@^@^@^@^@^@^@^@^B^@>^@^A^@^@^@ø(@^@^@^@^@^@@^@^@^@^@^@^@^@^Hw^@
^@^@^@^@^@^@^@^@^@@^@8^@^H^@@^@^]^@^\^@^F^@^@^@^E^@^@^@@^@^@^@^@^@^@^@@^@@^
@^@^@^@^@@^@@^@^@^@^@^@À^A^@^@^@^@^@^@À^A^@^@^@^@^@^@^H^@^@^@^@^@^@^@^C^@^@
^@^D^@^@^@^@^B^@^@^@^@^@^@^@^B@^@^@^@^@^@^@^B@^@^@^@^@^@^\^@^@^@^@^@^@^@^\^
@^@^@^@^@^@^@^A^@^@^@^@^@^@^@^A^@^@^@^E^@^@^@^@^@^@^@^@^@^@^@^@^@@^@^@^@^@^
@^@^@@^@^@^@^@^@ôl^@^@^@^@^@^@ôl^@^@^@^@^@^@^@^@ 
^@^@^@^@^@^A^@^@^@^F^@^@^@^@p^@^@^@^@^@^@^@p

This is, however, not what a computer operates with. This is a result of a text editor taking a

binary code and translating it into signs. These seem to be random because it is no longer

binary code of a text, but of a program. To see what the computer operates with, one must

access the contents of its memory:

009c000 0066 0138 0000 0000 3801 0800 0000 0000
009c010 0008 0b72 1003 001e 0200 0000 0001 0100
009c020 0001 5850 0124 41ed 0000 0000 ed41 0001
009c030 0000 0000 0100 0000 0000 0000 0000 03e8
009c040 0000 0000 e803 4654 011a 720e 030b 1810
009c050 0033 0b72 1003 1518 7200 030b 1a10 0004
009c060 4d4e 0105 0002 0066 011e 0000 0000 1e01
009c070 0800 0000 0000 0008 0b72 1003 001e 0200
009c080 0000 0001 0100 0101 5850 0124 41ed 0000
009c090 0000 ed41 0001 0000 0000 0100 0000 0000
009c0a0 0000 0000 03e8 0000 0000 e803 4654 011a
009c0b0 720e 030b 1810 0015 0b72 1003 0c18 7200
009c0c0 030b 1a10 0004 4d4e 0105 0004 0088 0d47
009c0d0 0000 0000 470d 0b64 0000 0000 640b 0b72
009c0e0 1003 001e 0000 0000 0001 0100 4713 4f4e

The memory contents take the form of a structured set of hexadecimal numbers.119 The first

column denotes a memory address, while the rest of the numbers in a row are representations

of binary information. Each pair of hexadecimal numbers represents a binary byte.120 This is

the closest we get to see ones and zeros, the mythical building blocks of the digital. We can

see that at this point (when inspecting the contents of a compiled program in a binary form),

the logic according to  which  signs  are  organized  is  closer  to  the performance of  voltage

differences that hardware operates with than a language intelligible for humans. Hence the

role of debuggers which make it possible to inspect the contents of running binaries in a more

intelligible form.

The central part of every bug report is a description of the issue. In the description, three

things should be articulated: expected behavior of the program, its actual behavior and steps

119 While the traditional decimal numeral system operates with a basic set of symbols 0 1 2 3 4 5 6 7 8
9, the basic set of hexadecimal symbols is 0 1 2 3 4 5 6 7 8 9 a b c d e f so instead of orders
of ten, it operates with orders of sixteen.

120 This can be so because the number of states two combined hexadecimal digits can acquire (16 2=256) is
equivalent  to  the  number  of  states  eight  combined  binary  digits  (one  byte)  can  acquire  (2 8=256).  For
example, 4d in hexadecimal (which is 77 in decimal) means 01001101 in binary.

84 



to reproduce the bug. It is essential for others to be able to reproduce the bug for two reasons.

First, newly added bug reports are automatically considered unconfirmed. A bug report has to

be reproduced by at  least  one more contributor in  order to be confirmed.  Only then it  is

considered  for  further  investigation  and  fixing.  Second,  in  order  to  fix  the  bug,  other

contributors usually need to reproduce the bug in order to gain additional information and

insight into the issue:

Eric: Why do I get this? [link to an error message]
Roy: Eric, That looks pretty wrong, how did that happen?
Eric: I click a clip with two Box Filter effects
Roy: Eric, Can you share the project so we can debug it?
Roy: (and possibly open a bug report)
Eric: which MTS did I send you last time?
Eric: found the video, but sorry, cannot reproduce with a new project
Roy: Eric, So you can’t reproduce at all?
Eric: nope, I re-added the filters and it works fine now
Roy: Erg, that sounds like a bug in the effect priority management but I would need a way
to reproduce to fix it

Bug reports  provide public  space for  discussion of  the problem, evaluation of alternative

solutions, or assignment of severity and responsibility. Discussions often focus on identifying

the  problematic  component,  evaluation  often  takes  into  consideration  how  are  similar

problems  solved  in  other  programs.  Responsibility  is  divided  among  the  maintainers

depending on their  specialization within the project.  Severity represents a continuum with

blocker  bugs on one side and enhancements  on the other.  Blocker  bugs represent highest

severity issues that need to be fixed before the next version is  released.  They are mostly

regressions since previous versions or bugs that prevent testing of other issues. However, the

decision on classifying a bug as blocker is never final. The bug can be reclassified to non-

blocker or the version that it blocks can be heightened so that it does not stand in the way of

releasing the next version.

This pattern can be illustrated by bug 570118 which was filed in February 2009 and was

classified as blocker after a small discussion. Before the release of Pitivi version 0.13.1 in

May 2009, its severity was demoted to normal so that the release would not be blocked by

something  that  “would  be  a  nice  addition”.  After  the  May release,  the  bug severity  was

promoted to blocker and again demoted to normal before the release of version 0.13.3 in

September 2009. Eventually, the bug was labeled as enhancement and after more than three

years of no activity (except for minor adjustments made by a bug triager) in the bug report, it

85 



was  resolved  as  “won’t  fix”  with  the  justification  that  the  solution  would  “needlessly

complicate things, and nobody else actually requested this feature”.

This  fate  is  shared by many low severity  bugs that  are  largely ignored by the core

developers.  They expect  either  the reporter  (“scratching his/her  own itch”)  or  some other

occasional contributor to submit a patch. As the lack of manpower seems to be a constant

condition, core developers rarely find the time to pursue low severity bugs. However, they

have the power to demote the bugs that they see as low priority and that would stand in the

way of a next release. In this way, bug severity can be subject to tug of war among core

developers and bug reporters or other interested contributors. This was the case with bug

570118 which was promoted twice by its bug reporter (who also happened to be a bug triager)

and repeatedly demoted by a core developer. Eventually, the reporter agreed and labeled the

bug report as an enhancement request and after some time closed it.

In this context, submitting a bug report for a feature that is considered low severity from

the start  is considered futile effort.  As one of the maintainers put it  in a discussion: “the

problem is we don’t want to add more surface for bugs with new features unless we have a

very good reason”.

Filing a bug report represents an impulse for maintainers to react and it simultaneously

creates public space (a “surface”) for anyone else to weigh in. In contrast to IRC, bug reports

represent asynchronous form of communication that persists. This means that bug reports can

mobilize broader audience than local and temporal chat discussions:

Brian: I’m working on sth that is not a bug, and it’s not in Bugzilla as well. Should I 
create a new bug?
Ted: Brian, it would be nice yeah
Ted: it gives a public way to develop the idea
Ted: and something to refer to
Brian: Ok, I’ll do it. Thanks again, Ted!

By  providing  a  “public  way  to  develop  the  idea”,  bug  reports  constitute  a  space  for

prototyping.  This  is  more apparent  in  reports  that  are  essentially  feature requests.  Within

them, comments often involve descriptions of how a given feature is handled in various other

programs and argumentation on which option would be best to pursue. The interesting thing is

that  general  agreement  is  seldom reached and official  decision seldom made.  After  some

discussion,  the  prototyping  process  just  moves  to  a  new  stage  in  which  a  self-assigned

contributor attempts to implement the feature by creating a new branch in the source code

86 



history.  The  ultimate  design  decisions  then  lie  in  the  hands  of  the  contributor.  It  is  the

contributor who spends time and effort on the problem and this is compensated by the power

to  decide.  However,  this  power  is  balanced  by the  existence  of  the  review process.  The

contributor either has to align his work with the theory which the maintainers hold, or make

an  argument  convincing  enough  to  get  them to  go  out  of  their  way.  In  either  case,  the

contributor is bound in his design decisions by negotiations with the project’s maintainers.

Bug reports can also serve a purpose even when they do not result in a patch. They

represent persistent traces that can be easily referenced (every bug report and every comment

has its unique HTML address) and that inform anyone who was linked to them that the issue

is known, that it is (or it is not) worked on and shows the progress that has been made on the

issue. By this, repeated inquiries about the problem that keep the maintainers from productive

work and makes them explain the problem multiple times are avoided. Also, by showing if

anyone is working on a particular issue, bug reports help in avoiding parallel effort that may

result in sensitive situations where there are two fixes for one issue and the maintainers have

to pick one over the other, preferably without offending either.

4.3. Revision Tracking

Git is a source code management system used to track revisions of source code. This means

that it is able to track changes in a given text file and create diffs – detailed representations of

changes  comparing  two  versions  of  a  text  file.  As  such,  Git  and  other  source  code

management systems are able to track only plain text files. It is the standard form in which

text is stored in software development.

Git differs from older version control systems, in that it is distributed. This means that

there is no central repository that one would need to access in order to make changes to the

source code. Anyone can clone the source code (make a self-sufficient copy of everything that

constitutes the developed program) and make their own repository containing their changes.

This  facilitates  prototyping of  modifications  to  the  program.  However,  there  is  one main

repository which contains the master branch that consists of reviewed commits and represents

the official state of the source code. Write access to the main repository is restricted to the

project maintainers and any contribution must be reviewed by one of them before pushing it

to the main repository. Therefore, write access represents121 the main hierarchical distinction

121 There are also other indicators of the maintainer position like administrative access to the project’s web
page, having an account on the project’s Wiki or having maintainer rights in Bugzilla. All have in common
that they provide administrative access to a part of the project’s infrastructure. However, commit access to

87 



between maintainers and the rest of the developers.

However, the effects of this hierarchical break are mitigated by the distributed nature of

source code management that Git provides. Anyone with the abilities to do so can clone the

main  repository  into  their  own personal  repository  and start  modifying it  without  asking

maintainers for permission. One can keep piling up commits in a personal repository as long

as desired,  and once satisfied with the outcome,  the contributor  can demonstrate  that  the

modified  version  performs  better  in  a  certain  respect.  This  provides  an  incentive  for

maintainers  to  review  and  appropriate  the  commits  into  the  main  repository.  Thus,  the

distributed code management system is labeled as “truly open” and “meritocratic” in the Pitivi

wiki. The wiki page also links to a video of Linus Torvalds (the originator of Git) describing

the advantages of distributed source code management:

Because you have a central repository means that everybody that works on the project
needs  to  write  to  the  central  repository.  Which  means  that  since  you  don’t  want
everybody to write  into the  central  repository,  because  most  people  are  morons,  you
create this class of people who are ostensibly not morons. (…) So this whole commit
access issue (…) is a huge psychological barrier and causes endless hours of politics in
most open source projects. If you have a distributed model, it goes away. Everybody has
commit access; you can do whatever you want to your project. You just get your own
branch, you do great work, you do stupid work, nobody cares. It’s your copy, it’s your
branch. And later on, if it turns out you did a great job, you can tell people: hey, here’s my
branch and by the way, it performs ten times faster than anybody else’s branch so, how
about pulling from me. And people do, and that’s actually how it works and we never
have any politics. That’s not quite true, but we have other politics and we don’t have to
worry about the commit access thing. And I think this is a huge issue and that alone
should  mean  that  every  single  open  source  system should  never  use  anything  but  a
distributed model, you get rid of a lot of issues.122

In his  talk,  Torvalds makes a hyperbole:  everybody has commit access.  This is  true with

regard to the cloned personal repositories, but not for the official main repository of a project

that  is  still  managed  only  by  maintainers.  By  using  Git  the  hierarchy  is  maintained  but

contributors gain a better position to demonstrate, argue and persuade maintainers to include

their commits. This is so because the individual repositories represent a means of publishing123

the main repository is the key distinctive point as it gives access in an area central to software development:
source code management.

122 Tech Talk: Linus Torvalds on Git. Video of a talk published by Google on Youtube.com. Published: 2007-05-
14. Accessed: 2014-10-06. Available at: http://www.youtube.com/watch?v=4XpnKHJAok8#t=18m05s.

123 But it does not mean that anything the contributors do is necessarily public. All work is initially taking place
on a private local machine and only afterwards is pushed into a server-hosted public repository. This allows
contributors to control what stays private while making publication as easy as typing one command into a
terminal.

88 

http://www.youtube.com/watch?v=4XpnKHJAok8#t=18m05s


work  on an  individual  behalf.  The  modified  source  code  is  publicly  available  through a

personal repository. Thus, when arguing about its quality, the sides are able to point directly to

particular expressions on particular lines in particular files. This makes possible discussing the

modifications with precise references which could be described as “talking the code” instead

of “talking about the code”. Moreover, the modified cloned source code could be compiled to

an independent version of the program in order to be tested. In these conditions, there is less

space for what Torvalds calls “politics” that is, an unproductive challenging of power relations

generating large communication load.

During development,  personal  repositories  serve  as  prototyping spaces.  Suppose we

have a contributor whose name is Paul, he writes some new code, pushes it to his individual

repository, gets feedback during review and amends his code accordingly. Then, the code is

appropriated to a personal repository of the reviewer, where further revisions can be applied.

At this stage, every revision the reviewer makes is discussed with Paul. Finally, after reaching

a satisfactory state,  the  code is  pushed to  the  main  repository.  After  that,  Paul  resets  his

development branch and synchronizes it with the master branch of the main repository. This

creates  a  shared  reference  point  from  which  further  contributions  can  be  made.  Thus,

development  using  a  distributed  source  code  management  system is  an  iterative  process

balancing divergence (branching out with new modifications)  and integration (review and

appropriation into the main repository).

Using Git involves first and foremost dividing work into units called “commits” (for

illustration, see Appendix 7). These units denote logical wholes so that when it is necessary to

revert a certain modification, a corresponding commit can be easily identified and edited.124 In

other words, commits should be conceived in such a way that the Git history is “atomic”.125

The effort  put  into structuring  Git  history pays  off  in  that  the history is  fully  reversible.

Furthermore, it provides information on authorship, time stamps and a detailed comparison of

files before and after every modification which is essential for review. Still further, commits

124 An example to explain what the expression “logical wholes” means in this context: suppose I use Git to keep
a history of changes when writing this text and I make a commit that consists of adding two paragraphs to the
theoretical  section. However,  to form a logical  whole,  the commit should not consist  only of those two
paragraphs, but also of adding any new references (to the appropriate section) they introduce. This way, if I
later decide to remove the commit, no other editing is necessary.

125 This  requires  planning  and  discipline  in  work  defining  clearly  what  the  current  task  is  and  what  will
constitute a commit because Git monitors every modification that is made to the project files. It is possible to
separate changes into different commits when they are made to different files quite easily. But separating
changes made to one file into different commits requires manual intervention. To deal with these constraints,
it is common to use to-do lists which enable planning tasks in advance. One other way is to use the stash
function which puts aside all current modifications and reverts the files into the state of the last commit.

89 



can be clustered into branches that provide isolated space for safe experimentation.126 Thus,

Git can be a very useful tool when utilized properly. But as my field notes indicate, proper use

may not be a trivial matter for a newcomer:

Looked  at  my  repository  today and I  realized  that  the  Git  history,  if  not  performed
properly,  is  useless.  I  think I  will  have to delete most  of  the commits and edit  some
through interactive rebase to get some sense out of it.

Now that I know rebase and amend I feel more empowered because I can fix whatever
mistake I make in the future. Until now, everything was stored in the history and it was
beginning  to  look  messy  and  unuseful.  The  history  is  not  necessarily  what  exactly
happened, it is revisable and it is revised to serve a purpose.

However, for a seasoned developer, the impression may be very different:

Therefore, I’ll  say that Git is great because it provides version control in a very non-
intrusive way, and because it provides version control very easily for individual projects,
too. … You don’t have to be connected to the Internet, you don’t have to setup a server,
you don’t even need a separate directory. You don’t need to tell the world in advance what
you’re doing.

“git init” or “git checkout -b” are enough to start a project or a feature, and enjoy version
control from the very beginning. I think that this leads to code that is better and more
maintainable.127

For this developer, the tool is “non-intrusive” by lowering the requirements for establishing

version control for individual projects. All that is needed is to have Git installed and execute

one command. Such lowering of requirements may lead to abandoning the practice of starting

version control only when a project is sufficiently large or is being published. Instead, Git

encourages the application of version control from the very beginning of the development

process. As a result the planning and disciplination associated with committing modifications

is present also from the beginning, avoiding the typically very large initial commit which

aggregates (and thus obfuscates) all the changes made before version control was applied.

Therefore, applying version control from the start results in more maintainable code in the

sense that the commit discipline is enforced at all stages of development and can be observed

retrospectively.

126 I discovered the full power of branching once I realized that switching from one branch to another means
that the working files change literally under my own hands as different commits get applied. This feature
allows for having available several versions of a file in a repository without the need to have several distinct
copies, all the while detailed line-to-line comparisons of the branched versions can be summoned at any time.

127 Git Success Stories and Tips from KVM Maintainer Paolo Bonzini. Interview published by Linux.com. 
Published: 2015-04-07. Accessed: 2015-04-08. Available at: http://www.linux.com/news/featured-blogs/200-
libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini.

90 

http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini
http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini


As I point out in my field notes, Git functions more like a tool for work coordination

than like an archive that records what exactly happened. However, some of its features can be

considered  to  perform archiving  functions.  For  example,  if  someone  gets  interested  in  a

certain part of code, Git can (through its  blame command) provide information on who was

the last one to edit that part. Furthermore, commits can be browsed as they were made to a

branch, they can also be filtered by author or searched for a specific expression contained in

the log messages attached to them. Every commit also has a unique identifier (called SHA)

for referencing.

Now to the features that serve the purpose of work coordination. If two developers,

working in parallel, edit the same line of code, Git will generate a conflict and guide one of

them in its resolution. This means that after announcing a conflict, Git will open a text editor

showing the modifications. The lines that were changed by both developers appear in three

versions  –  the  original  one,  the  one  modified  by  developer  A and  the  one  modified  by

developer B. It is then up to the human operator to pick appropriate parts from the three

versions and merge them into the correct result, a fourth version that is saved as the conflict

resolution.

If  a developer  needs to edit  a commit which has been in the meantime covered by

several other commits, Git can temporarily revert all the piled up commits to get to the desired

one. Through this operation, Git essentially moves back in history to achieve a state when

some commits are not yet applied. Then the developer is free to amend the current commit at

will. When this is done, Git re-implements all reverted commits on top of the edited one as if

it had been like that all along. However, the identifiers of commits that were either edited or

reverted and re-implemented are changed because now they contain different code.

Such revisions of source code history are usually made only in the personal repositories

of contributors, because a revision in the main repository would effectively and immediately

change  the  reference  point  against  which  everyone  makes  their  modifications,  leading to

many conflicts, and making subsequent integration of contributions problematic. Because of

that, changes in the main repository are made only by submitting more commits. The personal

repositories, on the other hand, constitute a safe space for experimentation, as anything can be

reverted or modified. This is probably the most important implication of the distributed nature

of Git: with individual repositories, developers get their own self-sufficient space to develop

and  refine  their  modifications,  that  is,  to  branch  out  of  the  official  version  in  the  main

91 



repository and still enjoy the benefits of version control. As one project maintainer remarks:

Instead of having a single repository that everyone feeds from and into, everyone now has
their own repository, their own branches. The meaning of branch changed. It’s so cheap
now.128

The  ability  to  version  control  a  patch  created  outside  of  the  main  repository  was  not

something that other version control tools could provide at the time Git was created. This

meant  that  large  patches  were  difficult  to  review because  they  could  not  be dissected  to

smaller  parts  and  the  divergence  between  the  patch  and  the  development  in  the  main

repository that took place while the patch was being written was not systematically tracked,

possibly leading to conflicts between the patch and other parallel modifications. By now, the

distributed approach became standard as it brings significant refinement in creating patches.

Patches  are  more  refined  because  they  consist  of  a  number  of  smaller  and well  defined

commits that simplify review and conflict resolution. Another project maintainer expressed

his fondness of this approach:

As maintainer I love that I can review changes as series of small commits instead of one
big patch. I’m constantly asking developers to split their changes even more…129

It is clear that, through its command line interface, Git offers large functionality for source

code management.130 However, in order to operate correctly, Git needs to be supplemented

with other programs such as diff tools (programs that generates detailed comparisons between

files). It would also not be possible to resolve conflicts or revise history without pairing Git

with a text editor. Furthermore, there are programs that serve as graphical front end for the

command line tool that Git is, providing convenient user interface that is especially handy for

a  quick  overview of  a  repository  and  its  branches.  By  not  attempting  to  include  all  the

128 Git Success Stories and Tips from Ceph Creator Sage Weil Interview published by Linux.com. Published: 
2015-04-13. Accessed 2015-04-16. Available at: https://www.linux.com/news/featured-blogs/200-libby-
clark/823164-git-success-stories-and-tips-from-ceph-creator-sage-weil.

129 Git Success Stories and Tips from Wine Maintainer Alexandre Julliard. Interview published by Linux.com. 
Published: 2015-04-10. Accessed: 2015-04-16. Available at: https://www.linux.com/news/featured-
blogs/200-libby-clark/822789-git-success-stories-and-tips-from-wine-maintainer-alexandre-julliard.

130 To take advantage of it, one must undergo a demanding learning process. Luckily, Git is a widely used tool
and so there are vast information resources available online. I quickly learned that in most cases, it is safe to
assume that  someone  already  faced  similar  problem before  me  and  left  an  online  trace  containing  the
solution. Thus, apart from reading a coherent manual (/), my primary sources of information became blog
posts  of  other  software  developers  and  question  and  answer  sites  like  Stack  Overflow
(http://stackoverflow.com). The interface of such sites is adjusted for this particular purpose as it consists of
conversation threads augmented with voting capabilities that make the most voted for answers most visible,
providing fast reference for solving common problems. Checking Stack Overflow for problem solutions is
such a common practice that  for  example a plugin was introduced to Atom, a text  editor  developed by
Github, that displays the inquiries from Stack Overflow directly inside the editor.

92 

http://stackoverflow.com/
https://www.linux.com/news/featured-blogs/200-libby-clark/822789-git-success-stories-and-tips-from-wine-maintainer-alexandre-julliard
https://www.linux.com/news/featured-blogs/200-libby-clark/822789-git-success-stories-and-tips-from-wine-maintainer-alexandre-julliard
https://www.linux.com/news/featured-blogs/200-libby-clark/823164-git-success-stories-and-tips-from-ceph-creator-sage-weil
https://www.linux.com/news/featured-blogs/200-libby-clark/823164-git-success-stories-and-tips-from-ceph-creator-sage-weil


functionality Git is in practice dependent on into Git itself, the developers of Git show their

adherence  to  what  is  commonly  referred  to  as  “the  Unix  philosophy”.  This  approach  to

software  design  has  been  summed  by  Doug  McIlroy  (McIlroy  in  Raymond,  2003)  in  a

following way:

This is  the Unix philosophy: Write programs that  do one thing and do it  well.  Write
programs to work  together.  Write  programs to handle  text  streams,  because that  is  a
universal interface.

The approach encourages specialization to narrowly defined tasks that by themselves may

seem trivial, but are general enough to be used in a wide variety of use cases. The practical

utility is then based on the ability to combine the programs in a way that the output from one

constitutes an input for another.131 The universal medium which flows to and from programs is

digital text. Searching for an expression in a log message, generating comparisons of files

(diffs), resolving conflicts, and revising history, all those tasks are based on an interchange of

digital text between Git and other programs. These are all built around the idea of automated

manipulation of digital text.

Such text interchange is also taking place when publishing new commits in a personal

repository. This is necessary in order for the commits to be reviewed and included into the

official version of the developed program. The review process is (especially for a newcomer)

an opportunity when knowledge is passed and norms are negotiated among maintainers and

contributors. During the review of my first commits I learned many things, including how to

make proper commits in the first place. But more importantly, I learned what the expected

style of documentation writing is, pointing me in the direction I should proceed to in order to

get my commits included. After a few iterations of writing new commits, receiving feedback

and modifying them, I learned enough to make commits that got accepted without needing to

be modified during review. It was the sandboxed space constituted by my personal repository

that  allowed me to publish,  receive reviews and revise my work in order  to  develop the

knowledge to contribute fluently to the project.

131 It seems that the tools generally abide to the ethical imperative of cybernetics, which was formulated by
Heinz von Foerster in a following way: “act always so as to increase the number of choices” (Von Foerster,
2003, p. 227). In software development, this means that severing user options should be either backed by
explicit reasoning (i.e. blocking unwanted actions) or due to missing feature that has not been implemented
yet.  As  a  result,  providing  a  set  of  tools  with  general  functionality  and  capable  of  almost  arbitrary
interconnection provides users with a vast  array of possible courses of action. All these possibilities are
accessed through the command line interface which has been a traditional interface for programs developed
with the Unix philosophy in mind. However, in the present we see a rise of direct manipulation interfaces
which define good design by leaving the smallest number of technical decisions to the user.

93 



When the first batch of my commits was included into the main repository, I came to

understand why contributions appear in clusters. When a contributor makes a pull request,

that  is,  asks  for  his  commits  to  be included into  the  main repository,  one of  maintainers

reviews the commits, appropriates them and pushes them to the main repository. This can

happen immediately or take several weeks, depending on how extensive the commits are and

how  busy  the  maintainers  are.  Sometimes,  the  order  in  which  commits  from  various

contributors will be reviewed and pulled has to be negotiated. This was the case when Eric

made a pull request for his branch A:

Eric: Steve, what’s the status with the branch B?
Steve: Eric, I’ll need Keith to tell me what the “remaining bug” is
Eric: I have the feeling the intention is to merge his branch first then mine
Steve: No intentions here
Steve: But I have the feeling reviewing his branch will be faster than reviewing yours :)
Steve: I understand your concern, we should settle on a merge order
Steve: If the remaining bug in Keith’s branch is benign / can be fixed easily, I think we’ll 
go the branch B first way
Steve: if not then branch A
Eric: I’m fine with everything, just want to make progress
Steve: so you should wait and see what Keith is saying before rebasing
Steve: Eric, I understand, but I’m pretty much the only one to review your branches so 
bear with me please :)
Eric: mine is invasive, I don’t have any expectation
Eric: I keep amending the main commit.. :)
Steve: OK
Steve: The beginning of the release cycle is the good time to do such things
Steve: so I’ll make sure to have a look at both Keith’s and your branches soon

By the time Eric made his request, another contributor, Keith, finalized work on his branch B.

Both  branches  had  a  common  reference  point  in  the  main  repository,  but  Eric’s  branch

modified the source code in many places and the changes it made were pervasive. Pulling

Eric’s branch first would drastically change the source code in the main repository and that

would result in generating many conflicts when pulling Keith’s branch. From the maintainer’s

standpoint, it made sense to wait for solving the last issue on branch B and then pull it first.

But there is one more angle to this situation: knowing that branch A will dramatically change

the source code, Eric is essentially blocked from working on anything else while he is waiting

for review. Working on something new would introduce a new branch B that would generate

many conflicts if not merged prior to the invasive one. The only option he is left with is to pile

94 



his work onto branch A (“I keep amending the main commit”). By this, he risks only conflicts

that would result from changes introduced by the review process.

Another strategy for avoiding conflicts when two developers work on the same part of

code is to pass a modified branch from one of them to the other to let him implement his

modifications on top of it before reviewing and merging the whole work into the main branch:

Ted: isn’t that stuff going to conflict with whatever changes Steve was doing to the 
behavior of the timeline last month?
Roy: Ted, I will let him reimplement the right behaviour on that branch instead, right 
Steve ? xD

To this, Ted replies with a link to an image of a frightened cat that has a label: “You make

kitty  scared”,  indicating  humorously  the  audacity  of  the  procedure.  But  the  procedure  is

illustrative  of  the  degree  to  which  Git  makes  it  possible  to  make  sets  of  modifications

independent of their author and pass them around to others.

These examples of pull request coordination highlight the restrictions resulting from the

use of source code management tools. In theory, these tools allow for almost any thinkable

operation (from a purely technical standpoint, it does not matter which branch is pulled first,

the final result will be the same). In practice, developers navigate by applying conventions to

accomplishing  the  common  tasks  (in  this  case,  opting  for  creating  the  smallest  possible

number of conflicts  that require human assistance in their  resolution).  But these rules are

always negotiated – if following the convention meant that a contributor would be blocked

from working  for  a  long  time,  it  would  not  be  followed.  What  is  stable  and  cannot  be

negotiated, however, are the implications of using tools such as Git (if you have a shared

reference point and a branch of pervasive modifications, you either merge everything else

first, or you end up with many conflicts). In this sense, the infrastructure described above

mediates the process of software development.

4.4. Rules of Mediation

Now is the time to explicitly formulate how the components described until now perform as

mediators. The contents of this section (and its subsections) may seem repetitive at times, but

this is only because I need to reiterate or elaborate upon some of the observations in order to

relate them to the infra-language elaborated more thoroughly in chapter 2. In my analysis, I

rely on the concept of technical mediation and its four meanings – composition, translation,

black-boxing, and delegation – which are used to structure the this section.

95 



4.4.1. Composition

The basic  composition is  expressed by the components  already described in  the previous

sections. But to go one step beyond the most immediate tools, I will attempt to grasp the

general implications of using the software that is usually presupposed in free and open source

software development. Suppose I want to become a developer and buy a brand new computer

with no software installed (except for firmware, of course).132 What should I do?

The  first  step  is  to  install  an  appropriate  operating  system.  This  represents  a

mobilization of a vast network of relations. Out of the three well known types of operating

systems  (Windows,  Mac  OS,  Linux),  Linux  distributions  are  used  in  this  area  as  FOSS

developers  usually  prefer  using  free  and  open  source  software.  Specifically,  the  Pitivi

maintainers use a distribution called Fedora. Linux distributions generally consist of a Linux

kernel,  a  set  of  packages  from  the  GNU  project,  a  package  management  system,  some

libraries, a display server, a desktop environment, and a selection of pre-installed applications.

The Linux kernel, although originally developed by Linus Torvalds as a hobby project,

now  consists  of  millions  lines  of  code  and  its  development  is  sponsored  by  multiple

companies. The kernel is a basic building block of the operating system. Among other things,

it  is  responsible  for  controlling  hardware  and  so  the  correct  functionality  of  hardware

components often depends on which version of kernel is installed.

The GNU project, founded by Richard Stallman, is overarching a number of software

development projects. It  is sponsored by the Free Software Foundation and represents the

cusp  of  the  free  software  development  efforts.  The  packages  from the  GNU project  are

typically present in Linux distributions to provide basic functionality. The set includes the

following widely used packages:

Bash provides  functionality  needed  for  the  command  line  interface.  Without  this

functionality,  the  following  programs  (and  many  others)  would  lack  an  interface  to

communicate with their  human operators.  Bash defines a  set  of basic  commands that  are

accepted and can be combined. Furthermore, it is used to run programs and control them. As

such it is an essential piece of software for any kind of software development.

GCC is the GNU Compiler Collection, a program used to compile (human readable)

source code into (machine readable) executable binary files. It is the tool that turns an editable

132 Naturally, the readily available computer presupposes a huge network of it’s own (going as far as to mining
raw minerals as for example Jussi Parikka (2014) shows), but since this work is focused on software, I will
cut the network relations at the edge of the hardware/software distinction.

96 



text into an interface that functions according to its own logic. It also allows for compiling

versions that are specifically aimed at debugging.

GDB is the GNU Debugger,  a program used to temporarily and partially revert  the

compilation process by explicating the parts of source code that run prior to an error. It allows

the developers to see the internals of a running program, which is essential for finding errors

(bugs) in the source code.

Text editors. There are multiple editors maintained within the GNU project. Nano is a

simple text editor aimed at beginners or those that perform a more casual text editing. Emacs

is a complex editor with so many features that it is often jokingly described as an operating

system on its own. Sed is an editor that accepts commands and thus makes possible for text

editing to be automated. All three editors are capable of processing regular expressions, which

is essential for performing automated or more complex editing. Text editors are the tools that

developers spend most time with as they are used to view and edit the source code.

Diffutils is a set of utilities aimed at making comparisons between text files. These tools

are  commonly  used  to  produce  and see  differences  (between an  original  file  and a  later

version, or between two files edited in parallel by two developers). As such they are at the

core of any source code management or version control system.

To  be  sure,  the  GNU project  maintains  many  more  packages133 and  there  are  also

alternative packages outside of the GNU project that provide the described functionality. But

from my experience in the field,  these are the standard packages available for any Linux

distribution.

Contrary  to  the  standard  components  described  above,  the  package  management

systems differ for various Linux distributions. This means that once a stable version of a

program is released, it needs to be packaged independently for the different package managers

and distributions. The packaging process gets complicated as the versions of the dependencies

required by the program must be met by what is currently packaged for the given distribution.

This creates an interdependence between software packages which in some cases can be hard

to satisfy. Thus, when working on a program, the developers must draw on their knowledge of

the ecosystem which boils down to striking a balance in the following area – will we use the

functionality provided by the new versions of libraries even though we risk a slower adoption

of our software because the new versions of libraries may not be available in the targeted

133 See the full list here: https://www.gnu.org/software/.

97 

https://www.gnu.org/software/


distributions when we release a stable version? The knowledge that allows for acting with a

satisfying answer for this question comes from a long involvement in the broader ecosystem

of a variety of Linux distributions.

The components  described up to  this  point  could  form a  development  environment

using only the command line interface. To provide the graphical user interface (if only for

testing the developed program), a display server and a desktop environment must be present.

Desktop environments typically  represent  broader  forms of organization associating many

smaller projects with the aim of providing all the functionality an end-user would expect.

Thus,  desktop  environments  span  from  libraries  providing  the  basic  blocks  for  building

software to applications that are built on top of these libraries and that provide users with the

interfaces  and  functionalities  they  use.  More  specifically,  Pitivi  is  developed  within  the

framework of the GNOME desktop environment and thus uses its libraries (Glib, GTK+, or

Clutter). To take advantage of the functionality provided by those libraries, the developers

need to know the (changing) programming interfaces that they offer. This requires further

monitoring and involvement with the broader software ecosystem.

But  knowing  how  to  utilize  an  existing  functionality  is  not  enough  to  become  a

developer. One needs to learn the language in order to be able to write the source code in the

first  place!  Programming  languages  are  made  of  syntax  conventions  that  translate  into

instructions performed by the computer. In theory, anyone can combine a set of conventions

to create a new language. What counts, however, is whether the language is supported by a

compiler and thus has the possibility to be turned into an executable program. Without a

compiler, a programming language is just a set of conventions without a utility. Furthermore,

without a text editor supporting the language’s syntax, it is very hard to work with as syntax

highlighting greatly increases the source code readability. Because the introduction of new

languages has these restraints, it  is no surprise that there is a limited number of standard,

widely known languages. Two of which are used in the Pitivi stack: C and Python. While

Pitivi itself (mainly its interface) is written in Python – a language that is easier to pick up, but

which is ultimately not very efficient for high performance tasks – the libraries which “do the

heavy lifting” of video processing are written in C – a more difficult language to learn, yet

much more efficient. In such a case, knowledge of one of the languages essentially determines

the areas in which a developer is able to contribute to the project.

Now if we add to these components the tools and platforms elaborated upon in the

98 



previous  sections  of this  text  (Git,  Bugzilla,  Wiki,  blogs,  IRC channels,  licenses,  and the

development  versions  of  the  software  itself),  we  are  starting  to  grasp  the  extent  of  the

composition that goes into a single project of free and open source software development. But

we  get  a  more  complete  picture  when  we  realize  that  each  of  these  components  is  a

development project with a composition of its own, thus widening the number of relations in

an exponential degree. When we put this together with the fact that development decisions

require knowledge of a broader development ecosystem, we see what is called the barrier to

contribution.  Thus,  for  a  newcomer,  the  world  of  open source  software  development  is

anything but transparent. This is not because the key information are secret, they are indeed

publicly available. But there is just so much of it, that it requires significant effort to process

them. This point has been expressed in a public video stream with developers from another

project:

Nobody is allowed to push code directly to the trunk just because we believe in code
reviews so there’s not really a barrier like hey I need to approved to such and such team
before I can push code. That’s not true.

Once someone’s been around for a little bit, then they start to find out where we keep
certain information and things. I mean it’s not like we intentionally keep people out, it’s
just like once you get into the flow of how things work then you figure it out and then one
day you’re like “oh, I’m an [project’s name] developer” just because you know where the
stuff’s at.

The only difference between us and a lot of other people is that we’ve been around longer
and all that kind of stuff.

Here,  the  developers  say  that  there  is  no  higher  authority  that  would  select  who  can

contribute. The selection happens on an entirely different front: the effort put into finding out

where information are kept and learning how to use them. Obviously, the presupposition here

is that the newcomers already have the skills to contribute. If this is true, then the difference

between a newcomer and a recognized developer is knowing “where the stuff’s at”. It is a

problem of orientation, not accessibility. In other words, the word “open” designating this

model  of  software  development  certainly  means  “accessible”  but  it  does  not  mean  that

modification and redistribution are effortless. Quite the contrary.

As I have shown, there are lots requirements new contributors have to stand up to. They

need to know their  tools,  the standard platforms and also the project specifics.  This goes

99 



directly against the advertised claims that “anyone”134 can contribute. Certainly, there are roles

in FOSS projects that are easier to pick up (like a translator or documentation writer), but

these  are  rather  supportive  of  the  main  activity  and more  often  than  not  don’t  allow for

employing the main incentive for development: scratching one’s own itch. Therefore, there is

a barrier to contribution that selects contributors according to their skills, motivation and free

time.  The other  side of  the  coin is  that  overcoming the barrier  means learning,  which  is

empowering either on its own (the actors are able to modify software to fit their needs) or in

other institutional contexts (the actors can demonstrate their skills in educational institutions

or at the labor market).

But  how can the developers  presuppose that  the newcomers already have the skills

necessary to contribute when every development project is  relying on mastering so many

other entities? The first part of the answer could be expressed by a single word: specialization.

Developers  choose  the  components  they  want  to  work  on  and  over  time,  they  become

specialists in those areas. This is nothing uncommon. The second part of the answer rests on

the fact that the relations are not attached to ever more new entities. The meaning of standards

is that they are present through the field. For example, Bugzilla uses Git and wiki in its own

development while MediaWiki uses Git for managing its source code. And almost all of the

projects have an IRC channel. To be sure, all the projects have different rules for using the

components  in  development.  For  example,  the  commit  messages  will  contain  different

information – in the MediaWiki project, the commit messages must contain the name of the

reviewer, while in Pitivi they contain only a description of what the commit does. But the

repetitive  occurrence  of  these  development  components  gives  the  landscape  a  sense  of

arrangement. Therefore, when a core developer of the Drupal project is asked what makes Git

a great tool, she answers:

For me, it’s Git’s ubiquity. Particularly in the last couple of years, Git has become the
clear winner in the version control wars, and having one common language to speak with
and collaborate with other developers has solved SO many problems.135

134 Equating public access to source code with the claim that anyone can modify it and get the modifications
through the review process is common. It is also the implication of what the first page of the Pitivi website
states in the biggest font: “We believe in allowing everyone on the planet to express themselves through
filmmaking, with tools that they can own and improve.” There is a direct relationship between the words
“everyone” and “improve” in that statement.

135 Git Success Stories and Tips from Drupal Core Committer Angie Byron. Interview published by Linux.com. 
Published: 2015-04-08. Accessed: 2015-04-10. Available at: http://www.linux.com/news/featured-blogs/200-
libby-clark/822227-git-success-stories-and-tips-from-drupal-core-committer-angie-byron.

100 

http://www.linux.com/news/featured-blogs/200-libby-clark/822227-git-success-stories-and-tips-from-drupal-core-committer-angie-byron
http://www.linux.com/news/featured-blogs/200-libby-clark/822227-git-success-stories-and-tips-from-drupal-core-committer-angie-byron


Given the same question, a maintainer of the Qt project remarks:

And since it’s now so popular, it’s not a barrier of entry for new contributors.136

The advantage to using a standard tool is the lower entry barrier for newcomers. This is based

on the assumption that most newcomers will already be familiar with the tool and do not have

to learn it in the course of getting involved in the project. Furthermore, once the tool is used

widely enough, one can assume that others know its commands. Therefore, it ceases to be

necessary  to  describe  at  length  various  courses  of  action,  it  suffices  to  only  name  the

commands (which, in this sense, constitute the “common language”).

All these findings point to one claim – that the knowledge of standard tools reaches very

far. This claim draws on the conceptualization of knowledge as a relationship between an

actor  and  information  (for  example  information  that  constitutes  an  interface).  And  in  a

situation where a certain piece of information is  standard,  i.e. has established presence in

multiple  locations,  knowledge follows the actor  wherever he goes (within the field).  This

relationship is symmetrical in the sense that both actor and information are needed to produce

knowledge, but it is also asymmetrical in the sense that actors cannot be copied (and thus

reach multiple locations simultaneously), only information can. Thus we are getting back to

reproducibility and automated manipulation of digital text.

4.4.2. Translation and Delegation

This digital medium is crucial also for translation and delegation within free and open source

software development. In this environment, translation occurs in a very literal sense when

ordinary text is translated into one of the languages that are spoken by the major actants. For

example, if a text is to be displayed on the project’s wiki, it must contain the markup signs

consistent with the wiki markup language. This means that the formatting of such text needs

to be marked by additional characters. When saved in the wiki, these additional characters are

translated into the desired formatting for the original text. As a result, there are two texts: first,

the  raw text  with  visible  markup signs  which  is  edited  by  the  author;  second,  the  result

translated into a  formatted text  without  the markup signs  that  is  accessible  to  the reader.

Unless the reader decides to inspect the page by looking into the “backstage” of the text (in

MediaWiki, this is achieved by clicking the “View source” button which is present on every

136 Git Success Stories and Tips from Qt Maintainer Thiago Macieira. Interview published by Linux.com. 
Published: 2015-04-07. Accessed: 2015-04-10. Available at: http://www.linux.com/news/featured-blogs/200-
libby-clark/821948-git-success-stories-and-tips-from-qt-maintainer-thiago-macieira.

101 

http://www.linux.com/news/featured-blogs/200-libby-clark/821948-git-success-stories-and-tips-from-qt-maintainer-thiago-macieira
http://www.linux.com/news/featured-blogs/200-libby-clark/821948-git-success-stories-and-tips-from-qt-maintainer-thiago-macieira


page), she will not see the markup signs. They serve as instructions for the translating agency

(in this case, a component inside the WikiMedia platform), but are invisible for the reader.

''text in italics'' gets translated as text in italics

'''bold text''' gets translated as bold text

The same applies for example to the Hyper Text Markup Language (HTML), which is used

for  publishing  on the  project’s  web pages  or  developer  blogs.  The  syntax  of  the  HTML

markup signs is more complex than that of the wiki markup because the language is aimed at

a more general use. But it is still a markup language137 – it is predominantly concerned with

formatting of documents (websites) and their  display.  Adding to the complexity,  there are

number of translating agencies for HTML – commonly known as web browsers, with minor

differences  in  how  the  markup  is  interpreted  in  each  one  of  them.  However,  the  full

complexity is uncovered by the fact that more than one language may be involved in the

translation. For example, because wiki pages are accessed by web browsers, it is necessary to

translate the content into HTML. Therefore, the wiki markup is translated first into HTML

markup and only then into the reader-ready formatted text.

Wiki: ''text in italics''

HTML: <i>text in italics</i>

formatted: text in italics

Wiki: '''bold text'''

HTML: <b>bold text</b>

formatted: bold text

Therefore, we have a chain of translations at the beginning of which stands the author, who

decides which markup language to use and writes the first version of the text in it – thus,

augmenting  plain  natural  language with  markup.  All  subsequent  translations  are  done by

parsers which employ automated manipulation of text to translate it into different languages

or  reader-ready  results.  Each  of  these  parsers  consists  of  set  of  rules  for  substitution  of

markup signs of one language to functionally equivalent signs of another one (as can be seen

above).  This  is  only  possible  because  of  the  existence  of  a  set  of  conventions  aimed  at

searching  and  replacing  text  patterns.  These  conventions  may  be  part  of  a  particular

programming language, but in their raw form, they are formulated in what is called “regular

expressions”. Whatever their form, their general function is the same – instead of the limited

137 Or traditionally has been. The latest version called HTML5 represents a departure from this category, but
this fact is not relevant for the purpose of this text.

102 



options of searching and replacing literal strings of text, they introduce general concepts like a

word, a number, a letter, beginning or end of line; thus allowing for formulation of patterns

that match entire classes of literal strings. I will use few examples of regular expressions to

demonstrate their functionality:

.*@example\.com matches any email address at the example.com provider

[0-9][0-9]?\.[0-9][0-9]?\.[0-9][0-9] matches any date in the
dd–mm–yy, mm–dd–yy, d–m–yy, or m–d–yy formats

={2,6}.*={2,6} matches any second to sixth level heading in the wiki markup 

language

<b>\w</b> matches a word formatted to bold in the HTML markup language

The importance of regular expressions is also shown by the fact that they are regulated by the

POSIX standard – a standard that regulates key components of operating systems to assure

compatibility.  However,  despite  standardization  efforts,  there  are  several  versions,  or

“flavors” of regular expressions and so their exact formulation always depends on the parser

that is used to process them. Now we arrive at the point that language translation is a nested

problem.  This  is  because  parsers  of  markup  languages  require  regular  expressions  (or

programming  languages)  that  require  their  own  parsers  (in  the  case  of  programming

languages a compiler), which may comply to different standards. Therefore, as we can see,

even (literal) translation has its own composition.

The results of the described chain of translations are usually used for publishing. The

contents of both blogs and wiki pages can be served to multiple readers at the same time as

long as they are present on a server, thus creating a (more or less) stable point for referencing.

Essentially,  the  function  of  these pages  is  to  delegate  information  to  a  number of  places

(monitors of the connected readers) for a given period of time. In this way the delegation

overcomes distance (the text was written somewhere else) and time (the text was written at

another time) and is able to transport the same information into entirely different contexts.

In programming languages (as opposed to markup languages),  the translation gets a

whole new dimension. It is no longer the case that only markup signs are added to natural

language, the whole statement needs to be reformulated according to the logical structure of

the programming language and of the interface that is provided by libraries. This is so because

unlike  markup  languages  that  are  focused  on  organizing  text  into  the  desired  shape,

programming languages are aimed at performing actions if certain conditions are met. The

markup  languages  are  full  of  markup  signs  while  programming  languages  are  full  of

103 



conditionals. As an example, consider this part of a Bash script (which, technically, is not a

programming language, but its use of conditionals is analogical) with every line commented

in natural language:

while read line             # read every line of a given file
  do                        # at each line, do the following
    if [[ ${line} =~ $n ]]  # search for pattern specified in variable "n"
    then                    # if the pattern is found, do the following
       buff1="$buff1 $line" # add the line variable "buff1"
    else                    # if the pattern is not found, do the following
       buff1="$buff1\n\n"   # add two new lines to the variable "buff1"
    fi                      # no other options will follow
  done < $file              # do all of the above to a file specified in 

the variable "file"

In the IRC channel, explanations of what parts of source code “do” are common. It allows for

fast overview of the code and saves hours of browsing through it to discover its function.

Provided there is someone knowledgeable enough to explain it.

Ben: You have a media stream, imagine a video… you want to seek to the time 30s… 
how Gstreamer knows it has to stream the data at (the time) 30s and not 40s or 100s or 
whatever
Ben: Steve: ^
Steve: you’re asking me to explain you the seeking mechanism in gstreamer?
Steve: Basically a seek event travels upstream until an element (such as yours, or a 
demuxer) answers “yep I’ll handle that”
Steve: It then seeks itself in ways that are relevant to its job (for example your element 
finds the image that has to be output first, a demuxer might look up an index table to find 
out the byte offset in a file at which he’ll be able to resume streaming, preferably a 
keyframe)
Steve: It then propagates a segment downstream, saying “the segment I’m going to play 
starts at the nth second in media time and ends at nth second in media time”
Steve: And starts to output buffers once again
Steve: In the case of a demuxer and accurate seeking, the demuxer might output data 
prior to the requested start, necessary for decoding of the first actual frame to be 
rendered, the decoder will clip these “decode-only” frames but that’s irrelevant for your 
element
Steve: As it can be accurate at no cost even when the requested seek is not accurate
Steve: That means a demuxer usually needs to convert a time seek to a byte range when 
operating in pull mode
Steve: But imagesequence doesn’t need that
Steve: Ben, does that answer your question?

From this part of conversation, we can see that the seeking mechanism is no simple matter.

Luckily, we don’t have to go through all of its complexities as for the present purpose the

excerpt serves to demonstrate how source code is translated back into the natural language.

104 



There are events and elements that travel, answer, need to do things, say things and so on. The

result of this complicated interconnection is that a video is played exactly from the point

selected by a user – also an action. Here we can see that the source code, (after compilation of

course) literally does things. It is designed to do so by its originators – its developers. They

devise the actions to be taken and design the interlocking of elements and events. By writing,

they populate the internals of a program with entities that delegate action and wait for the

specified conditions to trigger it. The software entities that are closest to a literal expression of

this  principle  are  daemons.138 These  are  programs  on  their  own,  designed  to  run  in

background, monitor other tasks, and trigger an action if certain conditions occur. Thus, by

formulating precise rules for triggering conditions and actions to be carried out, these entities

allow for a very sophisticated delegation of action.

The other side of the coin is that this sophistication leads to a high rate of errors, that is,

delegated actions that are not intended by the developers. The presence of errors is seen as

inevitable  and  is  considered  to  be  unavoidable  when  writing  source  code.  One  of  the

maintainers expressed this point aptly when he substituted writing code for creating new bugs

by saying “We all love creating new bugs :)”. There is a distinction between the creative and

fun activity of writing source code that gives a program new features and the often hard and

frustrating  maintenance  that  involves  finding  and  fixing  errors.  Because  the  first  activity

usually means introducing new bugs to  the existing code,  it  is  common for development

projects to have a “feature freeze” period before releasing a stable version. This period is

dedicated to maintenance only and the design and implementation of new features is put on

hold.  During  my  fieldwork  in  the  Pitivi  project,  the  development  efforts  were  stretched

towards releasing the 1.0 stable version. As a result, there has been a feature freeze period for

more than a year. This was indicated by a seldom use of collaborative drafting tools like wiki

pages on the one hand, and common instances when new bugs and debugging information

filled the IRC channel.

I have described the basic principles of debugging in one of the previous sections, but

let us return to this activity and identify the translation and delegation that are performed in

the course of it. Debugging starts with an error, an unexpected course of action performed by

the program, which does not correspond to (or directly hinder) its functionality. Errors are

138 The term daemon is probably used with reference to the Maxwell’s daemon which represents a well known
image of  an entity  quietly  and tirelessly working in  the background and performing predictable actions
depending on input. This image is not limited to science and technology, for example Pierre Bourdieu uses
the metaphor to describe the function of educational system (Bourdieu, 1998, p. 20).

105 



usually discovered by using the program (regardless of whether use by a developer aimed

specifically at testing or general use by an end-user). This means that their natural form is

contained in  the  user  interface  of  the  program.  The whole  practice  of  debugging is  then

focused on identifying the component and, if possible, the part of source code within it that

causes the error.  The manifestation within an interface (which is  in the beginning usually

expressed in natural language) is  translated into an identified part  of source code.  In this

process,  the  debugging  tool  works  like  an  interpreter  that  bridges  the  barrier  made  by

compilation and translates the error from one form to another.

Usually, when an error is discovered, a bug report is created to account for it and to

track its development. The report ideally contains both an expression of the error in natural

language  (that  deals  with  the  compiled  interface)  and  the  information  produced  by  a

debugging tool  (that  identifies  parts  of  source  code).  These  information  are  submitted  to

Bugzilla, which stores the data in a database and creates a dedicated web page for each bug.

Thus the submitted information are embedded in HTML to be viewable in a web browser. The

translation into  the  markup language goes  hand in  hand with publishing  the  information.

During  the  process,  the  information  are  delegated  from  their  origin  at  someone’s  local

computer into a database run on a server and then into different local computers that belong to

the developers who access the report through web browsers.

If the bug is confirmed and no other information is necessary to identify its cause, the

report  serves as a space where public discussion takes place about the options of how to

approach it, how to design a patch that would fix it. In this phase, the error is transformed into

a task that can be picked up and solved by a developer. Now, it is halfway between problem

and solution. Information about bugs are not posted only to the IRC channel (even though the

discussion is faster and more convenient there), because fixing a bug usually takes a longer

period  of  time  (during  which  the  debugging  information  must  be  handy)  which  can  be

overcome only with the asynchronous communication that Bugzilla provides. And by also

keeping track of all errors that were fixed, Bugzilla delegates the information even further to

the future when the fixed bug can manifest itself as a regression. The small memory footprint

of  digital  text  and  the  efficiency  of  automated  search  functions  allow for  this  luxury  of

archiving.

When a developer picks a task from Bugzilla, or decides to write a brand new feature,

he needs to translate the feature into a complete design artifact first. A common vehicle in this

106 



process  are  artifacts  called  mockups.  In  software  development,  mockups  are  essentially

screenshots of how the future versions of a program will look. They take the form of pictures

expressing  the  intended  shape  of  the  user  interface  and  can  be  used  to  visualize  adding

buttons, resizing panes, moving menus, or simplifying the interface by removing any of the

elements. Thus, the idea of a new design is translated from natural language to a non-text

medium directly showing the result. After that, mockups are usually published on a blog or in

the project wiki. Both of these publishing options serve to delegate the design idea to other

developers (and possibly users), while collecting feedback. Thus, this is a type of delegation

that is aimed at provoking action, not propagating it.

The next step in the design process is to create a functioning prototype by modifying the

existing  program’s  source  code  appropriately.  However,  to  ensure  that  the  modifications

remain  distinguishable  and  reversible,  it  must  be  tracked  by  a  source  code  management

system.  Hence,  the  translation  at  this  point  is  double:  first,  from a  mockup  and  natural

language to a programming language; second, from a continuous stream of developer’s work

to  a  set  of  self-sufficient  units.  The  first  translation,  as  I  already  showed,  leads  to  the

delegation of intended actions from a private computer the source code is modified on, to all

the computers on which the code is running in the form of a compiled program. In the second

type of translation, the work is planned in order to be dissected into a set of atomic commits.

In Pitivi,  the commits are labeled in an imperative form, expressing what  is  achieved by

applying them. Here is a log with labels of some of my commits that were included into the

main repository:

commit 5b06c4686ffbe0eb76d08fd1b6f3b618384f5057
Author: Tomas Karger <tomkarger@gmail.com>
Date:   Sun May 25 14:03:52 2014 +0200

help: replace menu bar and main toolbar with header bar and app menu 
everywhere

commit b103ce8947026d03c1f507200c7479fea38d6d4c
Author: Tomas Karger <tomkarger@gmail.com>
Date:   Tue May 13 16:09:33 2014 +0200

help: update sysreq.page

commit 90ac17a661a9a29686cf4a4f6f926e6f75f417d9
Author: Tomas Karger <tomkarger@gmail.com>
Date:   Tue May 13 14:35:50 2014 +0200

help: remove unnecessary note from mainwindow.page

107 



commit ee93d664894b5253941d58f834f00d3bdd8f87f7
Author: Tomas Karger <tomkarger@gmail.com>
Date:   Tue May 13 14:29:02 2014 +0200

help: add tip on detaching the previewer to mainwindow.page

commit 6497108acf97c8c772e5dfea3d2824c68d5fb4b8
Author: Tomas Karger <tomkarger@gmail.com>
Date:   Tue May 6 17:24:33 2014 +0200

help: adjust see also links

The labels are indicative of the delegation performed by commits. They too delegate actions,

only not directly to user’s computers, but to the source code (or, in the above case, to the user

manual). In this sense, the delegation of source code management systems (such as Git) is

more enclosed in the development process (the commits usually don’t reach the users, they

remain a development aid) while the delegation performed by the programming languages (or

by the source code which is the concrete manifestation of them) goes practically from end to

end (from developers to users).

By creating a database of labeled,  time stamped, uniquely identifiable and precisely

recorded commits, source code management tools translate the work of an individual, so that

it  is  self-sufficient  and can  be  shared  with  other  programs and programmers.  It  uses  the

“universal interface” of digital text (formed into predefined data structures) in order to pass

information for processing to other entities. Commits can be pushed to a repository and pulled

from it  by someone else,  conflicting modifications are highlighted and resolved, different

versions of a file are sent to difftools to visualize differences, commit history can be sent to a

search tool to find work of a particular contributor. These are just common examples.

By translating work into standardized commits, Git performs an important function of

delegation.  Publishing commits in a repository makes possible independent cloning of the

code by anyone interested. The source code is delegated to a public space so that it can be

reviewed, modified and appropriated, it can become a subject of discussions, and it can trigger

learning. This delegation is key for free and open source software development, because it

allows for the existence of one its prime organizational features – work self-assignment.139

This seems to be consistent with the fact that FOSS projects are often driven by volunteer

effort,  and so  there  is  a  lack  of  any leverage  to  enforce  work  assignment.  This  is  often

contrasted with the fact that FOSS projects sustain themselves for long periods of time and are

139 A study by Crowston et al. (2007, p. 6) indicates that self-assignment is the most frequent form of work
assignment in free and open source software development.

108 



able to produce stable and widely used software.

Seen  from  this  perspective,  a  FOSS  project  represents  a  puzzling  combination  of

stability  and  fluidity.  However,  such  configuration  can  be  explained  when  we  take  into

consideration the usual process of how new contributors get involved in a project. In this

process,  the  minority  of  maintainers  serve  as  bearers  of  knowledge that  is  necessary  for

meaningful contribution. The heavy involvement of maintainers does not correspond to the

mythical image140 of aggregates of unrestrained contributors that swarm around projects to

contribute when the conditions are right. To be sure, there are occasional contributors who get

involved from time to time, but cannot be relied upon for consistent input. In an interview for

the Linux Voice magazine, Lennart Poettering, a well-known developer of the controversial

Systemd init system talks about such occasional contributions as “drive-by patches”:

LP: So anyway, long story short, we came to the conclusion that Upstart is conceptually
wrong, and it moved at glacial speeds. It also had the problem that Canonical tried very
hard to stay in control of it. They made sure, with copyright assignment, that they made it
really hard to contribute, but that’s what Linux actually lives off. You get these drive-by
patches, as I would call them, where people see that something is broken, or something
could be improved. They do a Git checkout, do one change, send you it and forget about
it.

LV: And you never see them again!

LP: Yeah, and this is great – these are the people you want to have, because the vast
majority of patches are actually of that kind. It gives you this polishing that you want.
The people invested in the project all the time do the big things, and don’t care so much
about the polishing. So these kind of patches are what you want. But if you do these
copyright assignment things, you will never get those people because they would have to
sign a contract before they can send you something.141

In the interview, Poettering compares Systemd with Upstart, a different init system developed

by Canonical. He points out, that the additional negotiation (Yochai Benkler would see this as

an increase in transaction costs) involved in signing a contract before contributing discourages

potential contributors (which, in turn, may be one of the reasons why, according to him, its

development moved at “glacial speeds”). A group that is most affected by the requirement of

contract are the occasional contributors, whose work is highlighted by Poettering. He claims

140 For example, the Fedora contributor conference is called Flock, drawing on the images of behavior of bird
collectives  which is  chaotic,  but  still  organised and  also on the popular  proverb  “birds  of  feather  flock
together”.

141 Interview: Lennart Poettering. An interview published by the LinuxVoice magazine. Published: 2015-01-16.
Accessed: 2015-01-16. Available at: http://www.linuxvoice.com/interview-lennart-poettering/.

109 

http://www.linuxvoice.com/interview-lennart-poettering/


that Linux literally “lives off” the drive-by patches, that the “vast majority” of patches are of

this kind and that the occasional contributors are “the people you want to have”. On the other

hand,  the  maintainers  (“the  people  invested  in  the  project”)  are  mentioned  only  in  one

sentence and their importance is diminished even though Poettering acknowledges that they

are doing “the big things”. This tendency is described more precisely by Paolo Bonzini, a

maintainer of a different project, who, in an interview for Linux.com, talks about the “long

tail” distribution:

Each release of QEMU has contributions from roughly 170 people. The distribution has a
very long tail: about 40 percent of those 170 people contribute only one patch, and about
60 percent contribute less than five.

KVM is smaller, with about 25 people contributing to each release. The same “long tail”
effect is visible there, about half of the people only contribute one or two patches.
The long tail is very important. A lot of those “drive-by” patches are bug fixes.142

These remarks indicate  that  while the work of occasional  contributors is  emphasized,  the

work of maintainers is taken for granted and is, in a sense, invisible (as elaborated by Bonnie

Nardi and Yrjö Engeström (1999)). The work on the “big things” carried out by few dedicated

individuals143 goes largely unnoticed. However, the core developers, by being available for

communication most  of  the  time (and keeping their  involvement  for  extended periods  of

time), holding necessary knowledge (with the willingness to share it) and performing the (not

so fun)  maintenance,  form the backbone of  a  project  without  which the drive-by patches

would not be reviewed and merged into the main branch.

This  directly  relates  to  Peter  Naur’s  claim  about  the  importance  of  knowledge

transmission in software development. He states that if a software project is abandoned by its

original development team, it can be proclaimed dead as no new team of developers will be

able to revive it. This is so because the new team would lack the knowledge developed by the

original one. Thus, a discontinuity in knowledge transmission may be fatal for a software

development project. However, Naur’s claim describes a corner case and therefore, I do not

aim to judge its  validity.  With it,  I  merely aim to show an important  feature of software

development.  That  is,  because  the  knowledge established to  pursue  development  is  more

extensive than what is recorded as information, all those non-humans that serve as delegators

142 Git Success Stories and Tips from KVM Maintainer Paolo Bonzini. Interview published by Linux.com. 
Published: 2015-04-07. Accessed: 2015-04-08. Available at: http://www.linux.com/news/featured-blogs/200-
libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini.

143 This is supported by studies which note the participation inequality issue (Holtgrewe, 2004; Krishnamurthy,
2002; Kuk, 2006; McInerney, 2009).

110 

http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini
http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini


cannot be relied upon to transmit all that is needed (even though with all the archiving options

afforded by the digital text based information infrastructures, the situation is clearly different

from the one Naur wrote about). Therefore, the continuity of a project relies on a continuity of

involvement of at least a narrow group of human operators.

But with this claim, I don’t want to simply shift the measure of importance in favor of

humans. They still  use delegators to transmit knowledge all the time, even though simply

chatting in the IRC channel. In fact, since this kind of software development is taking place

online, they have no other choice. Some tool must be used to delegate the information through

the Internet infrastructure. Furthermore, the whole organization of development projects relies

on  delegation  of  formalized  chunks  of  information,  be  it  commits  within  source  code

management  systems,  or  bug  reports  within  issue  databases.  They  allow  for  cloning,

branching, prototyping, review, merging, testing, debugging, confirmation, and fixing – all the

key practices that there are in free and open source software development.

In this way, commits and bug reports resemble what Bruno Latour calls inscriptions

(Latour, 1986, p. 20; Latour & Woolgar, 2013, p. 236). They are mobile, immutable, flat (they

are just  text!),  can be reproduced at  little  cost,  can be recombined or superimposed. The

mobility of digital text on the Internet is self-evident. Immutability is enhanced by the ability

of Git to clone whole repositories. Thus, when a developer makes modifications to the source

code, he can demonstrate their effect with compiling and running the whole self-sufficient

version of the program. Similarly, the reports in Bugzilla are public. Should there be a report

about a critical bug that no one is paying attention to, it is always possible to link directly to

the report  in public discussions, be it  in the project’s  IRC channel,  in a blog post that is

displayed by the project’s blog aggregator, or anywhere outside the project. The pressure to

address these initiatives comes from the fact that speed of development and fixing of critical

bugs  is  a  major  indicator  of  the  project’s  health  for  anyone  outside,  including  other

development projects that consider using the software in question:

Steve: No,
Steve: the errors are in the tests
Steve: not in our software
Steve: and maintaining tests is exactly what you don’t want to do ;)
Tim: i know! i was saying that, the point in writing tests is only if they pass!
Steve: Look: [link to a bug report]
Steve: That’s my problem
* Tim looks

111 



Steve: And the lack of activity on the report makes me doubt the reactiveness of the team
Steve: I mean it’s a fatal bug
Steve: [link to a git repository log]
Steve: I also look at that
Steve: 30 commits in 2013 is not really intensive dev
Tim: oh! I see, just 30 in complete yr!!
Tim: that’s worse than my local repos lol ;)
Steve: We had like 600 in pitivi alone ahaha
Tim: quite obvious!
Steve: A stable project might of course have less commits
Steve: But I don’t believe [project’s name] is one
Steve: so …
Steve: I would give a good look at our other options ;)

In this conversation, a maintainer and a newcomer discussed the project’s options with regard

to automated testing. They were discussing what software to include into their infrastructure

for testing. But there was a problem with the program they tried, it showed errors that the

team found out to be caused not by the software being tested, but by the testing tool itself. As

a result, the members of the Pitivi project would have to contribute to the testing software first

in order to fix it before using it. And this is not a very pleasing outlook. Furthermore, the

contribution would probably mean a longer involvement to keep the tests functional because

the project does not seem to be “healthy”.

As an evidence,  Steve provides a link to a report  about a critical  bug in which the

response time from an assigned maintainer is rather long – weeks to reply to a comment and

10 months to fix the issue. As a further evidence, Steve provides a link to the project’s stable

repository which shows that only 30 commits were made during a period of one year. This is a

very low rate for a development project that has not yet reached maturity and stability. Even

Tim, as a newcomer, recognizes that this is a problem and states that he has more commits in

repositories that only he contributes to. The final point is made by comparing the development

speed to that of Pitivi which has twenty times more commits for the same time period (and

this  does  not  include  the  commits  made  to  the  Pitivi  backend  –  the  GStreamer  and

Gnonlin/GNL libraries – to which the Pitivi developers regularly contribute to). As a result,

Steve encourages Tim to avoid using this testing software and look for alternatives.

This decision, based on indicators described above, will have unwanted consequences

for the project which was evaluated. First, it will not advance in gaining new users, which will

further it from becoming a widely supported standard in its area of utility. Standard software

112 



typically has the advantage of other tools being designed to work well with it and so it often

requires less effort to set it up in various environments. Its users will also be able to draw

from  a  more  extensive  knowledge  base  as  there  will  be  more  users  that  could  provide

information.  Thus,  becoming  a  standard  is  a  process  that  could  be  characterized  by

bootstrapping – the more standard a software is, the easier it is for it to gain new user, which

will result in it becoming even more standard.

Second,  the evaluated project  will  lose potential  future contributors which are often

recruited from satisfied users that only need to scratch their own itch by fixing a minor issue.

To see that in order to use a program for contributing to one project (in this case Pitivi), a

newcomer would have to become a maintainer of a different project (the testing software in

this case) is hardly appealing. But to see that this second project is performing fairly well and

just needs a limited contribution from time to time is acceptable. In that situation, both sides

would benefit – the first project for being able to draw on work that has already been done on

the tool and by being able to influence the direction of its development, and the second project

for gaining users and potential contributors to further enhance the speed of development. Here

too,  the  bootstrapping  process  is  at  work  once  a  project  reaches  the  state  of  performing

acceptably for others. And this state is indicated to others by immutable inscriptions described

above.

The inscriptions are also flat. They usually consist of digital text organized by markup

or programming languages. The use of pictures or geometry is not very common except for

mockups or other design schemes. The result is a set of files that are rather easy to modify (in

principle, it is much harder to make purposeful modifications as a part of the development

process)  and  adapt  to  one’s  needs.  However,  the  application  of  automated  manipulation,

which permeates the use of digital  text and, to a  lesser extent,  digital  images,  allows for

reproduction only with the use of computational resources. This makes possible for those files

to  be  translated  and  delegated  multiple  times  without  representing  a  significant  resource

burden.

Furthermore, these inscriptions can be recombined and superimposed. The availability

of  self-sufficient  commits  in  public  repositories  makes  possible  for  their  taking over  and

inclusion  into  other  repositories,  be  it  the  one  owned  by  a  reviewer  or  the  repository

containing  the  reviewed stable  version  of  the  software.  In  these repositories,  the  original

commits are combined either with modifications made by the reviewer, or with subsequent

113 



commits pushed to the stable repository. Superimposition, on the other hand, manifests itself

mainly in  the review process.  Here,  the proposed commits  are  evaluated not  only by the

criterion working/not working, but also the overall design of the modification is assessed with

regard to the theory that the core developers maintain. For example, the Pitivi maintainers

would not accept a patch that introduces video editing functionality to Pitivi itself as they

believe that the right place for this functionality are the libraries that form Pitivi’s backend.

However, in the past, this functionality was part of Pitivi. It was only in 2009, that the design

decision was made to separate the interface from the functionality into different segments.

Thus, by superimposition of concrete modifications to the source code, the reviewers are able

to assess, whether they adhere to the basic development principles agreed upon within the

project.

4.4.3. Black-boxing

The  primary  purpose  of  Bugzilla,  Git  and  other  tools  is  to  organize  work  and  make  it

connectable. They are not intended, nor used to work as archiving tools that records what

exactly takes place during software development. Only reviewed and agreed upon commits

are included into the main repository, and the prototyping space of personal repositories is

periodically cleared when repositories are synchronized to share a reference point. All the

failed attempts, experimental branches, or history revisions stay hidden when browsing the

main  repository.  Furthermore,  chat  discussions,  blog  posts,  issue  database  entries,  or

conceptual prototyping on the project’s wiki pages are not even part of the information that

Git handles. Having available detailed records of all the successful work that has gone into a

piece of software is seductive but misleading. The full history of a project lies scattered over

numerous wiki pages, blog posts, issue reports, chat discussions or mailing lists and need to

be read against each other in order to reconstruct the theories that guide the development.

The  complicated  composition  of  a  FOSS  project,  involving  few  platforms,  several

contributor roles, number of tools, hundreds of bug reports and thousands of lines of code

results  in  the project  appearing as  a  thick black-box to a  newcomer.  But  not  only to  the

newcomer. Given that contributors have certain roles and specialize in certain areas, they too

face smaller black-boxes that represent areas that are out of their scope. This can mean two

things. Either they never spent enough effort to familiarize themselves with what constitutes

the composition of that area, or their familiarity is not recent enough.

Software (i.e. the tools and platforms used) is constantly developed and new versions

114 



are released. This means that it is a moving target for anyone who wants to stay current. New

versions always mean changes in interface or, more importantly, in behavior. These changes

are documented in release notes, which are usually very extensive. In order to deal with the

extent and complexity, developers often use the strategy of emphasizing several important

innovations and for the rest provide links to all the bug reports that were closed or commits

that were made during development of the released version.

However, even this amount of raw information does not cover every change of behavior

of  the  program.  There  will  likely  be  unforeseen  relations,  unintended  consequences  or

regressions to previously fixed errors. Every new version will have it’s own unexpected ways

of  behavior.  When  we  take  this  insight  and  multiply  it  with  the  number  of  software

components used in one project, we may start to wonder how is any software development

possible  at  all?  The  answer  to  this  question  lies  in  the  constant  effort  to  stabilize  the

components (debugging), to make them behave predictably. If a program is developed long

enough, it might achieve what is called “maturity”, which means that all major features are

implemented  and  stabilized  and  that  it  now  needs  rather  small  modifications  aimed  at

maintenance.  And small  modifications mean lower chances  of introduction of  unexpected

behavior. At this point, most of the unpredictability is eliminated and the unreliable mediators

turn into mostly unproblematic intermediaries.

Of  course,  for  any  software  development  project,  it  is  advantageous  to  mobilize

programs that  are  generally  considered mature and thus,  stable.  It  reduces  the amount  of

friction,  frustration and workarounds needed to run the project.  However,  old and mature

programs will  not  provide  all  the  cutting  edge functionality  which  may be  appealing  for

automating tasks that until now had to be done manually. As a result, development projects

strive to balance the degrees of stability and innovation in the choice of their tools. Therefore,

any project  represents  a  blend of  the agreed upon tools  that  introduce certain  degrees  of

uncertainty together with their functionality.

The amount of information present in a project, together with an intricate network of

interrelations and mutual dependencies creates a barrier that is not easily overcome. There is

certainly considerable knowledge load assumed. I can illustrate this with my entering into the

field and assuming the role that allowed me participant observation. I have been using Linux

and open source software for several years prior to my research and it was still a challenging

process for me. In my memos, I made a brief list of things I had to do before I could make the

115 



first contribution:

• discover a blog post on planet Gnome saying: documentation specialist wanted

• set up an IRC client

• connect to the IRC channel #pitivi on Freenode

• negotiate my role in the project

• install a Linux distribution as a second operating system on my computer

• install the dependency packages

• install development version of Pitivi by running an automated script

• get familiar with the application (download sample video file and play with it)

• get familiar with the user documentation

• go through a documentation to-do list of one of the developers

• go through documentation bugs filed against the project

• set up a suitable text editor

• get familiar with the Mallard markup language

• get familiar with the Git version control system

• create a Github account

• clone the Pitivi Git repository

• create my own branch and set up a Git repository on Github

• share link to the Github repository to others

• learn the “commit etiquette”

Note that the points are very different in extent. Some of them (set up an IRC client, for

example) took only minutes while the others (like getting familiar with Git) required days of

iterative effort. For most of the tasks, there were resources online that provided information

on how to achieve them. There are manuals, troubleshooting posts on forums and blog posts

on how to set up an IRC client and connect it to a channel. There are wiki pages dedicated to

installing dependencies and the development version of Pitivi. There is a manual describing

the Mallard language syntax. And there is a whole book online on how to use Git. One can

follow the instructions, step by step to get the result with little knowledge about what is going

on.

However,  it  is only when the bare information are related to one another during an

intentional course of action, that knowledge arises. It was only when I got familiar with the

current state of the application, its user documentation and a list of issues, that I was able to

116 



start contributing. The triangulation between the information on how the application behaves,

how is this behavior represented in documentation and what are the known issues allowed me

to possess knowledge that oriented my actions. All other points from the list above could be

labeled as supportive. This is not to say that they are not important. I wouldn’t be able to

contribute one bit without a text editor for example. But a text editor does not specify the

content of contribution just as an IRC client does not specify the contents of discussions. And

neither  does  Git  or  the  other  tools.  It  was  the  triangulation,  which  was  aimed  towards

comparison of the current state of documentation and the state that could be reached that

provided guidance for content.

Applied to programming, this takes us back to Peter Naur’s definition of the practice as

matching a significant aspect of a real world activity to formal symbol manipulation (Naur,

1985), something that we could call  modeling.  The significance of modeling for software

development is highlighted in a blog post of one of the main developers of Light Table, a text

editor that was mentioned on Pitivi IRC channel as a new and possibly useful tool. In the post,

its author is trying to argue against the new trend to consider programming as a new literacy:

Reading and writing gave us external and distributable storage. Coding gives us external
and distributable computation. It allows us to offload the thinking we have to do in order
to execute some process. To achieve this, it seems like all we need is to show people how
to give the computer instructions, but that’s teaching people how to put words on the
page. We need the equivalent of composition, the skill that allows us to think about how
things are computed. This time, we’re not recording our thoughts, but instead the models
of the world that allow us to have thoughts in the first place.

We build mental models of everything - from how to tie our shoes to the way macro-
economic systems work. With these, we make decisions, predictions, and understand our
experiences.  If  we  want  computers  to  be  able  to  compute  for  us,  then  we  have  to
accurately extract these models from our heads and record them. Writing Python isn’t the
fundamental skill we need to teach people. Modeling systems is.

The author of the post argues that writing source code is not the key activity in software

development. The most significant activity is to create models according to which source code

is written. This is so because there is a large contingency in which activities can be modeled

or mapped. As we have seen earlier, Keil-Slawik pointed at this with his claim that programs

do not have to follow the sequential constraints of the mapped activities (Keil-Slawik, 1992,

p. 182). The author of the blog post expresses it in this way:

117 



While properties of physical modeling are useful to us as guiding principles, the digital
world offers us an opportunity to step out of their limitations.

When facing such contingency it is commonplace that rules are formulated and taught and

that experience is associated with increased performance. This is why the author claims that

modeling is the “fundamental skill we need to teach people”. However, modeling is not that

independent from writing source code as the blog post seems to imply. The characteristics and

possibilities afforded by programming languages and libraries interfere heavily into how the

models are implemented in the end. Therefore, creating functional models requires the whole

process.

Such  process  is  usually  iterative  and  depends  on  entities  around  for  providing

instructions  and  feedback.  Although  most  interfaces  in  this  environment  provide  the

rudimentary feedback by not working, giving an error message, or performing an unintended

operation if not handled properly, there certainly are sources of more elaborate instruction and

feedback. As already noted in prior research (Hemetsberger & Reinhardt, 2006; Lee & Cole,

2003),  browsing  developer  documentation  or,  more  importantly,  re-experiencing

communication from chat or mailing list  archives can be very instructive or even provide

feedback (by responding to a particular search query). To be sure, hybrid cases of maintainers

providing a link to documentation or archives in response to a newcomer query are common.

But adaptive iterative feedback is the area where humans fit in. From guidance during setting

up  the  development  environment  to  reviewing  the  finalized  commits,  humans,  and

maintainers in particular, are able to provide sophisticated feedback to a newcomer and guide

his actions from the start. In this way, they are compensating the knowledge needed to take

purposeful action in this complicated environment until the newcomer develops his own.

Needless to say that this is a time consuming process for both sides and so one would

think that there should be reciprocity in that the possible contribution the newcomer could

make is worth the time spent on guiding him. But most of the time (the students of GSoC

being  an  important  exception),  there  is  no  contract  that  would  obligate  either  party  to

anything. Thus, the guiding relationship with a newcomer is based on a tacit sense of what

seems to be worth it. And with the topic of worth, we are approaching the question of how

resources are used in free and open source software development.

118 



4.5. Resources Propelling Development

Most FOSS projects start as volunteer projects to which developers contribute in their spare

time. Pitivi is no exception in this regard. It was started as a student project and although

some of  its  developers  eventually  got  full-time jobs  working on some of  the  underlying

technologies, Pitivi itself is still a volunteer project. Thus, the continuous existence of the

project depends on the ability to attract new volunteers and keep them engaged. Someone has

to spend time by writing the source code,  reviewing it,  making design proposals,  writing

developer  and  user  documentation,  translating  the  interface  and  documentation.  Software

development is not simple, nor cheap. But still, there are many volunteer projects that manage

to keep the inflow of resource high enough to survive. How is this possible?

To achieve this, the project needs to advertise itself as producing a well designed tool to

provide a useful functionality and doing this the right way. Or, in other words, it needs to

present itself as worthy of contribution. There is a specific page on the Pitivi website which

targets potential contributors. This page serves as an index of communication channels and

development platforms, but also strives to provide rationale for contribution. The quality of

the overall design is demonstrated with the modular architecture which allows for reusing of

functionality worked into the underlying libraries. Being a well designed software, Pitivi has

many users,  a  lot  of  developers  and a  long history  proving the  project’s  resilience.  This

implies several advantages for a newcomer: his contributions will be distributed widely and so

he will be able to affect the experience of many users; the number of developers and history

length means that he will be joining a well established project with maintainers that will be

able to mentor him and review his contributions appropriately. Strategically, it also means that

the newcomer will not be at the mercy of decisions made by a single person as this might be

the case in one-man projects. At the end of the rationale, the emphasis is placed on the single

most important point: “when you contribute to Pitivi, your time is not lost”.

Time  is  a  valuable  resource  and  even  more  so  when  spent  by  highly  qualified

workforce. There is no one else who could contribute to a project because, as we have seen,

high qualification is necessary to overcome the barrier to involvement. Therefore, it  is no

surprise that the demographic from which I have seen most of the contributors to originate

was the one that abounds with time and qualification - students. Considering that Pitivi was a

student project in the first place, that its current maintainers got involved when they were

students, and that currently newcomers are also students in most cases, this seems to be the

119 



most common background among contributors.

This is so for several reasons. The first being that there is an institutional support for

student  involvement  in  open  source  projects.  Once  a  year,  Google  launches  its  stipend

program called  Google  Summer  of  Code.  It  allows  organizations  managing  open  source

projects  to select students who will  be paid to contribute over the period of few months.

However, there are several limitations that reveal the interconnectedness with areas outside

software development. First, the organizations involved in the program must develop software

under  a  license  approved  by  the  Open  Source  Initiative  (OSI).  Founded  in  1998,  this

California based standards body serves as a maintainer of the Open Source Definition144 and a

reviewer of popular licenses. In this configuration, the rules that for some (traditionally in the

Free Software movement) have ethical or moral significance, translate into eligibility to gain

resources.

Second, the students must be able to provide a certificate of their enrollment into an

accredited institution. Furthermore, they must be eligible to work in the country in which they

will reside during the program. Finally, students residing in countries with whom the U.S. law

prohibits engaging in commerce are not eligible to participate.  Here, we can see how the

program is connected to the countries of residence of the respective parties. In the present

context,  the  approval  of  a  license  by  the  OSI  and  a  decision  to  use  the  license  by  an

organization developing software, together with an approval from an educational institution,

while all taking place in the right geopolitical area creates an intersection at which the quality

of applicants only begins to be assessed and through which the funds are potentially available.

The incentive of earning several thousand dollars in the period of few months is the first

at hand when we consider the motivation of new contributors (provided they are involved in

the stipend program). But there are also other incentives. Starting with the most pragmatic

ones, further learning and earning experience in the field of study is obvious. In this regard,

active  contribution  to  a  FOSS  project  is  similar  to  an  internship.  And  considering  that

developers in some projects are paid by private companies for their work, it might also be an

“internship” very close to a potential future employer. Furthermore, there is one important

advantage  for  students  contributing  to  FOSS  projects.  The  combination  of  the  project’s

transparency (in this specific sense) and emphasis on recording authorship allows students to

demonstrate their skills by simply pointing to the work that they have already done and that is

144 This is a rather short document defining the open source development method in ten points. The full text is
available at http://opensource.org/docs/osd.

120 

http://opensource.org/docs/osd


marked in publicly available records. Just as the personal repositories create a leverage for

reviewing  and  including  commits  from a  contributor,  the  commits  included  to  the  main

repository create a leverage to accept an applicant.

Apart from the pragmatic ones, there are also other incentives to be added to the list.

One of them is  based on the value of the developed software and it  was expressed most

strongly at the start of a fund-raising campaign:

Free and Open Source video editing is something that can help make the world a better
place,  as  it  gives  people  all  around  the  world  one  more  tool  to  express  themselves
creatively, fight oppression, create happiness and spread love.

The expression does not go as far as changing the world, it is not revolutionary. It just aims to

add one thing to the list of what is good in the world. The assets that the software offers

permeate  the  personal  domains  (happiness,  love),  possibly  reach  to  professional  relations

(creative self-expression), but might also serve a political struggle (fighting oppression). This

hints at the modes of existence145 that the developers envision for their creation when it leaves

the haven of the main repository.

Furthermore, one of the Pitivi maintainers shared his motivations in a presentation at the

GNOME User  and Developer  Conference.  According to  him,  there is  a  variety  of  subtle

motives like scratching a personal itch, making friends with other contributors and thriving

from the enthusiasm and trust that runs in the group. But one of the major motivations is a

value which, according to his own words, resonates with most developers working on Pitivi.

It is expressed on the main page of the Pitivi website as a text in the largest print:

We believe in allowing everyone on the planet to express themselves through filmmaking,
with tools that they can own and improve.

The expression has  two important  dimensions.  First,  the  words  “everyone on the  planet”

means  (as  explained  by one  of  the  maintainers  in  a  presentation  given at  the  GUADEC

conference) that the software is developed explicitly with no market segmentation in mind.

The software should be suitable for anyone from kid in school or an activist to independent

professional filmmaker. In this, the developers see one of the main differences between their

program and software that is developed for commercial purposes and thus has to be tailored to

a  specific  group  of  customers.  In  a  way,  the  Pitivi  maintainers  claim that  providing  the

software free of charge liberates them from the restrictions originating from classical business

145 In the sense which Latour attaches to this expression (Latour, 2007a, p. 24).

121 



strategies.

For the second dimension of the expressed value, the words “own” and “improve” are

key.  Users  truly  own the  program only  when there  is  the  possibility  to  see  its  internals,

discover  how  it  works,  modify  it  or  reuse  some  of  the  work  that  has  been  done.  With

proprietary  software,  this  is  not  possible  by  definition.  Its  source  code is  not  distributed

publicly and any attempts at reverse engineering or modifications are forbidden by licenses.

From this point of view, the users of proprietary software only get the right to use the software

with all other rights denied. Therefore, users are dependent on the decisions the provider of

proprietary software makes and are left with no options to steer the direction of development

or maintenance. While in the open source model, a qualified user would be able to trade her

right to participate on the decision-making process for spending time volunteering for the

project. In this context, ownership is constituted by access to information (most importantly

the source code).

This point is based on one of the basic ideas the movement formed as a criticism of

proprietary software. One can find it in popular interpretations of the GNU project such as the

one provided by the British actor Stephen Fry:

If you have, I don’t know, plumbing in your house, it may be that you don’t understand it,
but you may have a friend who does and they may suggest you move a pipe here or stack
[something] there or valve somewhere else. And you’re not breaking the law by doing
that are you? Cause it’s your house, you own the plumbing. You can’t do that with your
computing, you can’t actually really fiddle with your operating system and you certainly
can’t share any ideas you have about your operating system with other people because
Apple, Microsoft who run the two of most popular operating systems are very firm about
the fact that they own that and no one else can have anything to do with it. Now this may
seem natural to you, why shouldn’t they? But actually, why can’t you do with it what you
like, why can’t the community at large alter and improve and share, that’s how science
works after all. All knowledge is free and all knowledge is shared in good science. If it
isn’t, it’s bad science and it’s a kind of tyranny.146

Fry uses the classic opposition between big companies that only provide a restrictive license

for using software they own and free software that is unrestricted in this sense and therefore

can be owned by anyone, while the latter alternative is further legitimized by the positive

associations in the images of “community” and “good science”. However, ownership, in this

sense, relies on the potentiality of engaging with the internals of a program (or an operating

146 Stephen Fry talks about free software (GNU 25th Birthday). Published: 2009-04-28. Accesses: 2015-03-25. 
Available at: https://www.youtube.com/watch?v=YGbMbF0mdPU.

122 

https://www.youtube.com/watch?v=YGbMbF0mdPU


system) and therefore, it is substitutable (if someone does not understand it, someone’s friend

might). But my point is that the relationship between information access and ownership goes

one step further, because one can have the source code available and still does not own the

software  anymore  than  if  it  was  proprietary.  One  needs  to  engage  with  the  information

available, appropriate it, in order to really own the thing. As I will show at the end of this

section, such relationship between knowledge and ownership serves as a strong incentive for

involvement of private companies in FOSS projects.

However, the trade-off between spending time and gaining rights is probably not the

most important part of volunteer motivation. If only for the fact that contributing consumes

large amounts of time and leaves the desired result uncertain (bugs may prove to be harder to

fix than expected, commits might not pass review, other design choices may prevail). But

there is added value to this trade-off that takes it to a new level of attractiveness – that the

results  of the volunteer work are made available to everyone who uses the software.  The

volunteers know they are giving a gift to the wider community and they are prepared to accept

praise for it. What they give away in hours of skilled work for free, they gain in their status.

Apart from providing positive gratification, the status can also be translated into resources.

Being employed for one’s individual merits is one way of doing so. Public fund-raising may

be another one.

When Pitivi version 0.93 was released, one maintainer emphasized the volunteer nature

of the project on his blog: “0.93 is the result of continued efforts in our spare time - occasional

hacking  during  vacations,  nights  and  week-ends”.  The emphasis  was  not  random,  it  was

setting  stage  for  a  fund-raising  campaign  that  aimed  to  intensify  the  development  by

providing funds to  the developers  so that  they  could  spend more than  spare  time on the

project. “Just imagine what could be achieved if Gary and Randy could be funded to work

full-time towards bringing us to 1.0!” reads the next sentence.

The fundraising campaign was no easy undertaking. It required preparations months in

advance – an agreement with a legal entity representing the project was made, a video was

shot,  a  separate  website  was established,  a  press release was published and payment and

voting mechanisms were put into place. What the fundraiser meant for the developers (and

why they invested so much effort into setting it up) was that they felt they spent a lot of time

on it for free on their own and now they needed a push to finally leave the testing stage and

reach the 1.0 stable version. It was a moment charged with emotional valence, even though

123 



the developers felt justified in asking for the funds. One of them wrote this into his blog post:

I’m writing this the day before launching the campaign, and I have the website in the
background, taunting me with its “0 € raised, 0 backers” message. Fortunately I also have
the spinning social widgets to cheer me up a bit, but it’s not exactly enough to get me rid
of  my anxiousness.  I  know that  what  we  do is  right,  and  that  requesting  money for
stabilization first is the correct and honest thing to do.

At  first  the  fund-raising  campaign  went  well  and  received  coverage  by  news  sites  that

delivered  it  to  audiences  interested  in  free  and  open  source  software.  The  coverage  got

quickly translated into funds as the news was getting to the potential donors. However, after

the  initial  burst  of  enthusiasm,  the  campaign  stagnated.  It  soon  became  clear  that  the

fundraising campaign will not achieve the target amount. This sparked a discussion about a

fall-back plan:

Eric: Also, maybe you should set a date when you make a plan, considering there is a 
chance you won’t get to 35.000?
Steve: “make a plan” ?
Steve: Eric, ?
Steve: fall-back plan ?
Steve: Gonna go sleep, if that was your question Eric the plan remains unchanged, we 
just do it with less money and more good will :)
Steve: Not that good will was lacking, but it’s an apt replacement for money, just means it
will take more time for us to do the stabilization as we’ll go on taking contracts on the 
side

Even  though  Steve  claims  that  money  and  will  are  interchangeable,  they  seem  to  have

different  characteristics.  The will  to  work on the  software  is  there,  no matter  how much

money is present. Money just provide more time for the will to materialize. More money

implies  smaller  number  of  other  contracts  and  more  focus  on  Pitivi  development.  Thus,

money seem to play a little role in deciding whether to work on the software or not. It plays a

much bigger role  with regard to how much time the volunteers  are  able  to  spend, which

translates to the speed of development.

This appears to be the opposite of how private businesses operate. There, the investment

return is  the biggest  criterion in  deciding whether  to  develop a  piece of software or not.

Furthermore,  as  Brooks  (1995)  claims,  within  private  businesses,  the  allocation  of  more

resources to a project sometimes leads to a later delivery. By this, I don’t mean to imply that

the open source  method of  development,  being completely opposite  to  the  proprietary,  is

incompatible with any form of business. As we will see in the following paragraphs, it is quite

124 



the contrary.

The economy of free and open source software development does not stop with the

motivation for contribution. Besides humans, all other entities present in a project must have a

reason to be there. The whole infrastructure described up to now is dependent on a continual

inflow of resources. In other words, someone has to provide the server time for running Git

repositories, Bugzilla, the IRC channel, or the project’s wiki. Without these elements, free and

open source software development would not be possible in the way it is now commonly

performed.  The  presence  of  these  elements  is  possible  due  to  existence  of  non-profit

organizations and specific business models of some private companies.

First, there are non-profit organizations like the GNOME Foundation. Operating from a

donation or sponsorship based funds, the foundation provides several key services for the

individual  projects  while  also  maintaining  libraries  that  form  a  low-level  programming

infrastructure. The foundation serves as a legal body that represents the projects in formal

relationships with other organizations. This allows the projects to have fundraising campaigns

or to participate on the GSoC stipend, even though the informal mode of organization of the

projects  themselves  would  disqualify  them  in  such  circumstances.  Thus,  the  foundation

shields the individual projects from the necessity of establishing formal organization. In a

way, it provides them the opportunity to reap some of the benefits formal organizations enjoy

while allowing them to stay informal.

Furthermore, the foundation also controls some server infrastructure which is provided

for the individual projects. Therefore, the Pitivi main repository is hosted by GNOME. Also,

Pitivi uses the Bugzilla instance provided by GNOME as its issue tracker. When I entered the

project,  I  was  made  aware  that  it  was  not  always  like  this.  In  the  past,  the  main  Pitivi

repository was hosted elsewhere and there was a duplicate hosted by GNOME that was used

to collect translation and documentation contributions. This points to another type of services

that the foundation provides. It is able to attract contributors that translate and document the

software developed by the individual projects. It usually takes orders of magnitude less time

to  translate  or  document  a  program then  to  develop  it,  and  therefore  it  makes  sense  to

associate those activities under an overarching body so that the contributors may move from

one project to another and still stay on the same infrastructure.

Second,  there are  services that  are  provided by some companies  for free.  A typical

example  of  such a  case  are  personal  repositories  of  the  individual  developers.  These  are

125 



hosted by GitHub, a company which specializes in managing Git repositories. The company

makes revenue by offering paid plans for individuals and organizations that require private

repositories. However, there are free plans for both types of customers which offer unlimited

number of public repositories. This configuration is tailored to be used as an intermediary in

volunteer projects. A newcomer aiming to contribute to a FOSS project just needs to create an

account and configure a repository to use the service. For the company, it obviously serves a

marketing function and creates a positive public image. But, more importantly, by drawing a

large number of developers to use its services for free, the service is becoming the de-facto

standard in the market segment of providing source code management services.

The case of the main Pitivi repository is different. It is located in a space provided by

the GNOME Foundation which in turn has its servers hosted by Red Hat. Red Hat is also a

company with a business model revolving around the open source development method, but

one which is quite different from that of GitHub. This constitutes the third option. Red Hat is

sponsoring a number of free and open source projects ranging from the Linux kernel to the

Fedora Linux distribution or the GNOME desktop environment.  The technologies derived

from these projects form a portfolio of what the company is able to deploy and maintain for a

customer. However, the software itself is not sold, it is the services around it (deployment and

maintenance) that create the revenue.

In this context, the communities around the projects Red Hat sponsors serve as sources

of innovative and tested technologies, while also providing a pool of skilled workforce (which

is already familiar with the products) to recruit from. On the other hand, the company keeps

the inflow of resources to the project by providing server time, sponsoring events, and acting

as motivational force drawing in those who seek careers related to open source technologies.

At the same time, the developed software is still  publicly available as it employs licenses

approved either by the Free Software Foundation or the Open Source Initiative. The close

relationship that a business might establish with a FOSS project can be illustrated precisely by

the case of Red Hat:

But of course, all of that value that Red Hat is able to offer its customers is built on the
contributions  of  the  much  larger  open  source  community,  both  as  a  whole,  and  the
specific communities that feed directly into Red Hat products.
…
Our most  notable  involvement  is  with The Fedora Project,  the  results  of  which feed
directly into Red Hat Enterprise Linux.
…

126 



Fedora releases come out every six months, showing the edge of innovation and new
features. Red Hat engineers participate in that process from the beginning. (However, 65–
70% of Fedora’s code is maintained by volunteers.) Then, Red Hat dedicates its quality
assurance resources to testing, hardening, and certifying those features to ensure that they
meet the requirements for enterprise-level interoperability and performance. Code that
started in the upstream community becomes the code that Red Hat customers … rely on
to solve their daily business problems.147

However,  this is only half of the picture.  After being used and modified by Red Hat, the

source  code is  made publicly  available  again  which  makes  it  possible  to  be  reused in  a

different community run Linux distribution called CentOS. From the CentOS perspective, the

process is described in the following way:

The  upstream  vendor  is  using  open  source  (mostly  GPL)  software  in  their  business
model.  They  take  software  that  other  people  write  (Gnome.org,  X.org,  KDE.org,
OpenOffice.org to name a few). They repackage the source files into RPM format for
redistribution.  Because they chose an open source model  to  obtain the  software they
distribute, they must provide their source code to others. That is how the GPL works. The
upstream  vendor  provides  much  added  value  by  creating  the  Source  RPMS  and
distributing  them.  They  also  fix  problems  in  software  and  provide  feedback  to  the
software developers … this is what makes open source software work.

The CentOS Project takes the publicly available source packages (SRPMS) provided by
the upstream vendor and creates binary (installable)  packages for use by anyone who
wishes to use them.148

A similar type of relationship (with the difference that after modification, the source code is

integrated back into its original community source instead of being reused by another project)

can  be  found  between  the  GStreamer  project  and  Collabora,  a  company  sponsoring  its

development. Collabora employs several GStreamer developers (some of which contribute to

Pitivi  in  their  free  time)  and  for  Pitivi,  it  provides  server  for  building  and  testing  daily

versions of the program. The emphasis is put on developing GStreamer and other backend

technologies  as  these  provide  the  functionality  that  Collabora  can  in  turn  offer  to  its

customers. But in the past, there were also developers assigned by the company to work on

Pitivi itself as it represented the storefront demonstrating what the underlying technologies are

capable of.

However,  the  relationships  between  sponsoring  companies  and  communities  often

147 Q&A. What Is the Secret of Red Hat’s Success?. An article linked from official Red Hat website. Published: 
January 2012. Accessed: 2015-04-09. Available at: http://timreview.ca/article/513.

148 Frequently Asked Questions about CentOS in general. Last edited: 2015-03-20. Accessed: 2015-04-09. 
Available at: http://wiki.centos.org/FAQ/General#head-4b2dd1ea6dcc1243d6e3886dc3e5d1ebb252c194.

127 

http://wiki.centos.org/FAQ/General#head-4b2dd1ea6dcc1243d6e3886dc3e5d1ebb252c194
http://timreview.ca/article/513


exhibit tensions.149 This is so because the development decisions preferred by companies and

those preferred by communities (or their parts) can diverge. In such a tug-of-war, companies

have a more advantageous position as they are able to mobilize developers that they employ

to spend more hours of work than volunteers. Combined with the rule that decisions (rather

the  smaller  ones,  bigger  decisions  are  left  for  governing  bodies  like  councils  in  which,

however, the companies also have their representation) are made by the ones carrying out the

work (and review), companies can gain an upper hand just by employing the key actors. On

the other hand, a community around a sponsored project is very valuable for any company

and  so  their  steering  power  is  counter-checked  by  the  possibility  of  the  community

abandoning or forking the project if a controversy reaches sufficient intensity. Volunteers are

not  assessing  the  project  only  before  they  start  contributing,  this  is  an  ongoing  process.

Therefore, a perceived lack of good design decisions combined with the feeling that one does

not get to be heard can lead to lowered willingness to contribute. As a result, the relationship

between  companies  and  communities  involves  careful  balancing.  Companies  may  lose  a

wealth of volunteers and risk competition if the project gets forked. Communities may lose

resources from sponsorship and risk criticism for duplication of efforts if forking takes place.

But to return to the resources issue, one can ask: how can there exist a business model

around software, that is (together with it’s documentation) publicly available? The answer lies

in the strategy I already mentioned with regard to Red Hat. It is not the software itself that is

sold, the services around it are. The publicly available information are complex enough to

require significant amount of effort to be processed in order to be put to use. This can be

demonstrated on a case when a newcomer (Ben), after finishing his first bigger task, thought

about taking on a much more demanding one:

Steve: As for the task you’re thinking about, to be done correctly, it would certainly 
require changes in blender, and intimate knowledge of its code base, plus willingness 
from their upstream to expose an API

149 A well known example of such tensions was the relationship between the community around the Ubuntu
Linux distribution and Canonical, its sponsoring company. Canonical was often criticized by members of the
community for taking decisions behind closed doors and introducing them as fait accompli. The tensions
culminated in 2013, when the website www.fixubuntu.com was established to instruct Ubuntu users on how
to deactivate offending features  introduced  to Ubuntu by Canonical.  At  first,  the company attempted to
enforce taking down the website by using its  ownership of  the Ubuntu trademark,  which resulted in an
outburst of controversy over the step. Eventually, Canonical founder Mark Shuttleworth apologized for this
step and the website is accessible to this day. Such tensions are largely absent from my descriptions because I
did not run into them during my fieldwork. This may be so because Pitivi is largely sponsored indirectly (for
example through infrastructure provided by the GNOME Foundation) or the involvement of direct sponsors
is  limited  and  does  not  currently  provide  developer  time  (as  in  the  case  of  Collabora  which  provides
developer time for GStreamer, but for Pitivi per se, it provides “only” a server).

128 



Steve: I am thus strongly hinting at you that it is *hard*, and will require changes in 
blender to do correctly
Steve: I don’t know if you already had a look at blender’s code, but it’s *huge*
Ben: I suppose.
Ben: I will need to read Blender code.
Ted: I can concur on that, maybe I was not clear enough (but I thought I was) to Ben 
earlier today when I was hinting that you are *vastly* underestimating the complexity of 
something like integrating blender with pitivi
Ted: I mean even if it was one of the gstreamer core devs doing it I would imagine a year 
of work
Ted: Ben you realize that Pitivi is 18 thousand lines of code and Blender is *2 million* 
lines of code? you can’t just go “read its source code” :)
Ted: I mean you can… but we’ll see you again in 10 years
Jim: reputedly the VSE (video sequence editor) in blender is a nightmare
Jim: terrible C code from the early 90s that nobody loves

In this conversation, the Pitivi maintainers (Steve and Ted) discourage Ben from taking the

task because of the difficulties it presents. To get an impression, it suffices to go through the

emphasized points (marked with asterisks): the task is hard, the source code is huge (which is

reiterated by stating that it has 2 millions lines of code), and Ben is vastly underestimating the

complexity of the task. The maintainers point out that this is not a suitable task for someone

who has been around for just several months, because, even for someone as knowledgeable as

a GStreamer core developer, the estimate time for completing the task would be a year. The

conversation  culminates  in  the  statement  that  “you  can’t  just  go  read  its  source  code”,

pointing out that approaching such a task head on would require  an amount of resources

(illustrated  by the expression “see  you again  in  10 years”)  that  are  out  of  scope for  any

individual there and that the codebase could perhaps be better appropriated by interacting with

it (doing smaller tasks). To this, Jim adds a remark about the state of the codebase (“terrible C

code from the early 90s that nobody loves”, it  is a “nightmare”), which, together with its

length, is also a significant indicator of the difficulty of dealing with it.

Such discouragement from experienced developers is indicative of how large barrier

complexity is even when approaching documented and publicly available source code. For a

more elaborate description of the problem, I can reach for the one provided by Brooks in his

classical essay on programming:

Large-system programming has over the past decade been such a tar pit, and many great
and  powerful  beasts  have  thrashed  violently  in  it.  Most  have  emerged  with  running
systems – few have met goals, schedules, and budgets. Large and small, massive or wiry,
team after  team has  become  entangled  in  the  tar.  No  one  thing  seems  to  cause  the

129 



difficulty – any particular paw can be pulled away. But the accumulation of simultaneous
and interacting factors brings slower and slower motion. Everyone seems to have been
surprised by the stickiness of the problem, and it is hard to discern the nature of it. But we
must try to understand it if we are to solve it. (Brooks, 1995, p. 4)

Although this  characterization  of  the  difficulties  associated  with  software  development  is

dated, it still retains its point. Even though it is normal today to make documented source

code publicly available, it does not mean that the complexity barrier will disappear.

Returning to the question of business models, the answer seems to lie in the fact that

employing developers who are already familiar  with a codebase represents a considerable

advantage for any company, as it is able to put the information to use without the need to

spend large amounts of resources on overcoming the barrier. In other words, the company’s

competitive  advantage  is  possessing  knowledge  (through  employing  developers).  And  it

seems that possessing knowledge provides the advantage to such an extent, that giving away

the information is not threatening the business strategy.150 This highlights the value (and the

difference) of possessing knowledge compared to just holding information.

Indeed, when we look at what the companies involved advertise as their competitive

advantage,  we  can  see  that  it  is  the  employment  of  experienced  contributors  who  carry

significant expertise. Collabora is particularly explicit about this on their website:

Whether you are getting ready for a new product development or upgrading a current one,
adopting Open Source can seem challenging. Collabora will save you time and money by
helping you leverage existing Open Source software so that you can focus on the truly
differentiated value of your product.151

Collabora employees are not just professional Open Source developers. They are also
longtime contributors and form an integral part of the Open Source community. And the
years they have spent exploring projects and distributions and forming relationships with
members of the Open Source community have resulted in expertise they can pass along to
you.152

Browsing through Collabora’s portfolio, it offers the following services around GStreamer:

consulting  assistance,  training,  custom  development,  architecture  (design  review  and

creation).  Note  that  three  of  the  four  offered  services  do  not  involve  writing  new  (or

150 Moreover, as Josh Lerner and Jean Tirole note,  making source code publicly available requires it  to be
adjusted to make orientation and contribution easier (Lerner & Tirole, 2002, p. 226). Therefore, even though
the barrier is being actively lowered, it is still so high that knowledge of the codebase is very valuable.

151 Services: Planning. Collabora marketing materials. Accessed: 2015-04-09. Available at: 
https://www.collabora.com/services/planning.html.

152 Services: Guiding. Collabora marketing materials. Accessed: 2015-04-09. Available at: 
https://www.collabora.com/services/guiding.html.

130 

https://www.collabora.com/services/guiding.html
https://www.collabora.com/services/planning.html


modifying current) software and selling it as a product. The one service that does (custom

development) could potentially involve writing source code that is not made public. This is

also explicitly indicated on the website:

We believe  that  developing  the  vast  majority  of  software  publicly  in  a  collaborative
fashion must become the standard. Of course there will always be room for differentiated
value; we don’t suggest that every line of code must be made public (although that would
be nice). Assisting customers maximize their use and contributions to Open Source is our
raison d’être.153

This  excerpt  suggests  that  extensions  of  the  publicly  available  source  code  that  are  held

private are one of the ways to add a differentiated value to the customers’ product. However,

the text hints at the preference to make even the extensions public (“that would be nice”) by

integrating  it  back  into  the  publicly  available  codebase.154 This  process  is  elaborated

elsewhere on the website:

Collabora has helped many customers to upstream their software contributions to existing
Open Source projects. Compliance with the terms of Open Source licenses governing the
software our customers use is of paramount importance to Collabora. Whether the code is
originally developed by Collabora or our customers, we help our customers lower their
maintenance burdens by ensuring that all relevant code is merged upstream. Collabora is
committed  to  maintaining  the  code  as  part  of  our  involvement  in  the  Open  Source
community.155

This excerpt shows that integrating extensions back into the open source codebase is not only

a potentiality, but an ongoing practice. The incentive for Collabora customers to do this is

expressed here as the possibility to “lower their maintenance burdens”. The reason for this is

that creating modifications of software that are held privately constitutes a parallel (privately

forked)  version  of  the  software  that  has  to  be  maintained  separately.  Such  maintenance

consists of monitoring the development that takes place in the public codebase and manually

153 Paving the Way. Collabora marketing materials. Accessed: 2015-04-08. Available at: 
https://www.collabora.com/open-first/open-source.html.

154 To protect the extensions from the necessity of being published, which would be normally required by the 
GNU GPL, some companies resort to strategies like dual licensing or requiring contributors to sign 
contribution license agreements (CLA), which state that the code they write may be relicensed in the future. 
We can see that the requirement made by the GPL to distribute derivative works under the same conditions as
the original work is problematic for some parties and requires further procedures to be dealt with. This may 
be one of the reasons why the so-called permissive licenses (such as the MIT or Apache licenses) that lack 
this requirement have been gaining momentum over the past several years. (What are the Most Popular Open
Source Licenses Today?. A report based on data from Black Duck, a company specializing in monitoring 
FOSS projects. Published: 2014-11-14. Accessed: 2015-05-13. Available at: 
http://redmonk.com/sogrady/2014/11/14/open-source-licenses/)

155 Services: Integrating. Collabora marketing materials. Accessed: 2015-04-09. Available at: 
https://www.collabora.com/services/integrating.html.

131 

https://www.collabora.com/services/integrating.html
http://redmonk.com/sogrady/2014/11/14/open-source-licenses/
https://www.collabora.com/open-first/open-source.html


including all modifications that result from the public development (which may also mean

resolving conflicts that arise between public and private modifications). It follows that such

approach requires significantly more resources than integrating the private modifications into

the public  codebase in  which case every subsequent  modification is  built  upon them and

consistent with them, thus doing away with the costs of separate maintenance. As we can see,

resharing of modified source code is not only a condition introduced by the “viral feature” of

the GPL licenses, but it is also backed up by incentives based on cost and effectivity.

We can see how practiced knowledge empowers volunteers and businesses alike in the

sense  that  it  allows  them  to  steer  the  direction  of  development  in  FOSS  projects.  For

volunteers, this represents an opportunity of raising status which can be eventually translated

into resources through donations, fundraisers, or employment. For businesses this represents a

competitive advantage in overcoming the barrier of technical complexity. This advantage is

often monetized in  specific  types  of  business  models  aimed at  providing services  around

publicly available technologies.

In sum, we are now able to see the rough outline of the network that allows many FOSS

projects to sustain themselves. The project must be able to draw volunteers and motivate them

to stay. It may use some of the services provided by non-profit organizations or by companies

whose business model involves free services. Finally, if strategically placed, the project may

enjoy the benefits of direct sponsorship from a private company. Most of these sources are

affected  by  the  design  decisions  and  quality  of  implementation  within  the  project  as

companies and volunteers alike will  evaluate the worth of the project before contributing.

Therefore,  software is  often initially  developed privately and it  is  made public  only after

reaching a certain level of completeness. It is because at this point, the developers are able to

demonstrate their skills and motivation. From the point of view of potential contributors, this

serves as a guarantee that the initial developers are able to deliver and are willing to do so as

they already invested a significant amount of effort before reaching out to public.

132 



5. Assembling a FOSS Project

We are  now in  a  position  to  see  the  overall  shape  of  a  FOSS development  project.  The

projects are architected to facilitate and encourage autonomous retrieval of information and

there are several structures that are particularly significant in this regard.

On a  most  basic  level,  there  is  the  upstream first  principle,  which  implies  that  the

maintenance of functionality inherited from other programs should be done in the original

programs, not in the one using the functionality. This is the difference between “being a good

citizen”  and  “doing  your  own  thing  in  your  corner”.156 This  approach  helps  to  keep

generalized functionality allocated in reusable libraries. Therefore, the functionality does not

have to be recreated for each new program, but also (and perhaps more importantly) it allows

for concentration of expertise around a technology that is considered standard.

Furthermore, licensing is key in establishing conditions for unconstrained information

flows. But, as we have seen in the case of the GStreamer library, using just about any license

permitting free reuse of information does not lead to frictionless sharing. Using non-standard

licenses (with a clause, for example) introduces the necessity to negotiate the terms of reuse

with some parties and therefore, as Yochai Benkler would point out, raises transaction costs

(Benkler, 2006, p. 109). As a result, the use of standard licenses, recommended by significant

parties  (such as  GStreamer  developers),  or  vetted  by  definition-maintaining  organizations

(such  as  the  Free  Software  Foundation  or  the  Open  Source  Initiative)  is  imperative  for

autonomous retrieval of information.

Apart  from being part  of  the  sharing  infrastructure,  licenses  can  carry  a  significant

moral load, while at the same time be otherwise politically agnostic. This is the case with the

GNU licenses created by the Free Software Foundation, which considers hoarding software

under  different  licenses  a  moral  fallacy.  On  the  other  hand,  the  GNU licenses  explicitly

preclude restrictions on reuse based on any further terms. This ambiguity is also reflected in

the images of a “better world” put forward by organizations such as the GNOME Foundation.

How exactly will this better world look like is nowhere specified, but it certainly involves the

use of FOSS development model.

But then again, this is no ordinary counterculture. The primary activity is not waging

156 It also indicates that free and open source software development assumes a collective form of authorship,
similarly to, for example, users of the Creative Commons licenses who see the accessibility of their works as
an acknowledgment of the intellectual debt they have toward their influences. Minjeong Kim contrasts this
position  with  what  he  calls  a  “private  property  vision”,  in  which  authorship  is  seen  as  an  exclusively
individual achievement (Kim, 2007, p. 195).

133 



political fight and trying to achieve a state of utopia. The primary concern here is branching

out and establishing self-sufficient alternatives. Everything here revolves around translating

ideas  expressed  in  natural  language  into  formal  languages  (either  markup,  or,  more

importantly, programming languages). Once translated and compiled, the actions devised by

software developers are fully automated and delegated to the computers of their users. This

translation  is  achieved  by  writing,  (or  making  modifications  to)  the  source  code.  The

modifications  are  tracked  by version  control  tools,  translated  into  standardized  form and

delegated to a public repository in order to be appropriated by others. Personal repositories

then represent sandboxes for experimentation, prototyping and learning. Once a contributor is

confident in her work, she makes a pull request to indicate to others an intention to merge the

work into the main development branch.

What  follows  is  peer  review,  which  is  the  center  of  gravity  for  power  relations.

Compared to the collaborative practices implied by Mediawiki, the review process utilizing

Git has specific spatial and temporal characteristics. Here, peer review takes place in a distinct

place (personal repositories) before the work is incorporated into the main repository. On the

Mediawiki platform, there are no personal repositories, there is one central repository which is

by default  open to  modifications.  Peer  review takes  place  only  afterwards  as  other  users

browse the content. While this model seems to produce acceptable results for the Wikipedia

community, maintainers of the Pitivi project decided to make further restriction in order to

avoid spam and vandalism. Considering that the Pitivi project is orders of magnitude smaller

than  Wikipedia  and  that  maintaining  wiki  pages  is  not  the  main  concern  here,  it  seems

reasonable to suggest that the wiki collaboration model works157 when a certain threshold of

number  of  active  users  is  exceeded,  while  the  model  utilizing  Git  works  even  when  the

numbers of contributors are low.

Proceeding exactly in the opposite direction, debugging represents temporal and local

reversing  of  the  blackboxing  introduced  by  source  code  compilation.  Debugging  is  a

procedure which translates defects initially formulated in natural language into formalized

descriptions known as stack traces. These are part of bug reports which delegate the defect

and its description into publicly available Bugzilla database and provide space for negotiation,

initial prototyping, and also a reference point. The contents of either Bugzilla database or Git

repositories  can be seen as  inscriptions,  establishing non-human allies  to  be mobilized in

157 The term “works” here means that the model leads to performance which is close enough to the intentions of
its users so that they do not decide to alter it.

134 



demonstrating a claim and persuading others inside or outside a project. Inside a development

project,  this  may  be  used  to  alter  design  decisions  or  allocation  of  time  by  individual

contributors. Outside of a project, these information are used for assessing the project, its

health and future prospects. This, in turn, affect the rate of adoption, which is also the rate of

reaching possible contributors, in a bootstrapping process of becoming (or not) a standard.

There are conventions which structure the procedures such as writing the source code

(the 80 column rule),  making commits  (the  commit  etiquette)  or  merging reviewed work

(opting for the lowest number of conflicts in revision tracking). But as it turns out in some

cases, the conventions are negotiable. If we look for something more stable, or pressing, we

would have to focus on the behavior enforced by the tools used. These are not negotiable, and

are  hard  to  alter.  Granted  that  tools  developed  in  accordance  with  the  FOSS model  are

preferred, it is in theory possible to modify their behavior. But doing so requires effort going

beyond the modification itself. Either one can opt for modification in cooperation with the

developers  of  the  tool.  In  this  case,  the  developers  will  have  to  be  persuaded  that  the

modification is necessary and it will also have to go through the standard review process. Or

one can opt for making the modification without cooperating the developers of the tool but

this  will  establish  an  alternative  version  of  the  software  which  will  require  maintenance

(including updates from the official version) in the future. As a result, such situations are often

dealt with by searching for a different tool that fits the requirements.

A similar dilemma can be found when we consider dependencies. However, from what I

have experienced, there is a stronger tendency to contribute to dependencies than to tools.

Some of Pitivi’s core developers contributed more to GStreamer (its main dependency), than

to Pitivi itself. This preference seems logical given that the dependencies are presupposed in

many parts of the source code and without them the developed program would simply not run.

Therefore,  switching  a  dependency  always  means  modification  to  the  source  code  (and,

perhaps,  functionality  of  the  developed  software),  while  switching  a  tool  means  that  the

change is contained within the project’s infrastructure.

But even though the individual tools may vary, we can always find certain types of tools

put  to  use  in  a  project.  Together  with  programming  languages,  tools  like  text  editors,

compilers,  debuggers,  or  version tracking systems establish the necessary minimum for a

FOSS project. These tools make it possible to perform not only the pragmatic action (text

editors allow for writing, compilers to compile, version tracking systems to push and pull to

135 



code around), but also the epistemic action – programming languages allow developers to

think in a way that is designed to be automated; text editors allow developers to see the source

code, to perform searches, or to display unwanted patterns (like trailing spaces in my case);

debuggers allow for seeing the internals of a program while running in order to identify which

part is responsible for an error; version tracking systems allow to see differences in the source

code so that the work of an individual can be known. In this sense, the tools serve as wideware

of software development.

Thus, the epistemic action performed with those tools leads to establishing knowledge

necessary for contribution. While this kind of knowledge is specific for every project, the

knowledge needed to operate the tools is not (or only to a limited extent). In the area of tool

use, the knowledge problem can be circumvented by resorting to standards, which will not

only decrease the barrier to entry for most possible contributors, but also make the output of

their use standard. On the other hand, the problem of decontextualization is most pressing in

the  area  of  design  artifacts.  These  intermediary  results  of  work  need  to  be  examined

thoroughly each time they appear. As I have already pointed out, their examination requires

the use of tools to be possible at all, but the added value is that a consistent use of tools yields

consistent output. Thus, the deployment of standard wideware facilitates the emergence of

knowledge in different places, it allows knowledge to “travel”.

This process is very valuable because, as we have seen, knowledge is closely related to

practicing rights traditionally associated with ownership in this context. Users do not own

proprietary software, they are only licensed to use it. This is a common claim in the FOSS

world, which, as Coleman (2013, p. 6) shows, leads to the prevailing opinion that source code

should not be subject to property rights.  Indeed, by using FOSS licensing,  the authors of

source  code  voluntarily  abandon  most  rights  associated  with  ownership.  Formally,  this

prevents ownership from being exercisable (unless, of course, the licensing conditions are

violated). FOSS licensing disposes of ownership by ascribing the most fundamental rights

associated with it to anyone. But practically, if we consider ownership to be defined exactly

by those activities the licenses are explicitly permissive about (that is, source code access,

modification and redistribution) we can see that they are not practiced by just about anyone.

The most significant prerequisite for doing so is holding specific kinds of knowledge. Hence

my  claim  about  the  close  relationship  between  ownership  (at  the  level  of  practice)  and

knowledge. Although this claim has one important caveat – it uses ownership in a sense, in

136 



which it is no longer an exclusive right. In this context, ownership is redefined to a form in

which it can be exercised by multiple parties simultaneously.158

The  distribution  of  source  code  and  provision  of  free  software  rights  introduces

ownership only potentially, we could say (with reference to Rob Shields (2003)) virtually. It is

only  by  exercising  the  rights  to  study,  modify  and  redistribute  the  source  code  that  the

ownership is actually performed. These knowledge intensive activities (performed through

pragmatic and epistemic actions enabled by tools) allow for knowledge accumulation which,

in turn supports further activities. In its course, this bootstrapping process renders ownership

actual. This claim is further supported by the observations of business models which do not

rely  on  (formal)  ownership  of  information.  Instead,  these  business  models  are  based  on

employing  actors  knowledgeable  of  publicly  available  information  and  through  them,

providing paid support for their customers. Therefore, even though a product (software) is

publicly available, it is owned (to the extent that profit can be made) only by those holding

knowledge of it.

Reintroducing  the  concept  of  ownership  (although  highly  modified)  to  FOSS

development can help explain the interrelatedness of significant FOSS projects with private

companies,  even  though  prominent  authors  in  this  area  consider  the  movement  as

incompatible  with  capitalism  (Coleman,  2013;  Himanen  et  al.,  2001;  Söderberg,  2008).

Indeed, the FOSS movement is at odds with classical capitalist values like the duty based

work ethic or the legal form of private property rights. However, this does not seem to matter

all that much as long as there is some source of differentiating value that can be utilized to

build  business  models  around.  The  barrier  of  information  complexity  and  the  necessary

investments to  appropriate  the information represent  such source.  Its  existence allows for

establishment of contexts where decoupling of differentiating values from dutiful work or

158 The extent  of  the  redefinition  becomes  visible,  when  we compare  this  case  with  a  classical  model  of
ownership such as, for example, the one that Bruce Carruthers and Laura Ariovich use as a starting point for
their overview work on the sociology of property rights (Carruthers & Ariovich, 2004, p. 24). In the model,
ownership is defined by a simultaneous validity of three points: (1) A has the right to use P; (2) A may
exclude others from using P; (3) A may transfer rights defined by rules 1 and 2 to others by consent. The
mismatch between the model and the empirical case at hand would be worth examining in detail and, as such,
represents a venue for following up on this research. But within the scope of this work, I must limit myself
only to pointing out that the sources of this problematical relationship seem to lie in an ambiguity of the word
“use” (in this case stemming from the difference between use by users and a more knowledge intensive use
by software developers), the assumed exclusivity in use of property (which is problematic for the whole
domain where digital data are concerned, as I can illustrate with the work of Majid Yar on piracy, particularly
the part where he stresses the difference between tangibles and intangibles (Yar, 2008, p. 612–613)), and in
the unforeseen possibility, that rights (1) and (2) could be systematically suspended through a consistent use
of a specific type of licensing.

137 



private property rights is possible. It is not very important whether we view this as the result

of an adaptive capacity of capitalism, or of a transformative capacity of the FOSS movement.

What matters is the existence of a symbiotic (although fragile at times) balance between two

entities that were initially considered inconsistent.

At its face value, the claim about the central role of knowledge in this environment

seems to support the assumption of utopian virtualism, that knowledge is currently the most

important production force. However, as we have seen, knowledge does not stand on its own

even in the digital realm and so there are too many caveats to the claim. In FOSS projects,

knowledge production is made possible by free access to information granted by specific type

of licensing. Furthermore, knowledge production is taking place through involvement in an

intricate network of tools and platforms, with investments of significant amounts of time,

allowing  for  epistemic  action  to  be  conducted  continuously  in  order  for  a  newcomer  to

become part of a software development project. The tools and platforms are conditioned, in

turn, by hardware such as servers, personal computers and their connection to the Internet.159

The amounts of available time are dependent on the life situations of the respective actors.

Combined with appropriate motivational impulse (such as intrinsic interest, status, moral or

ideological positions), only this configuration results in accumulation of significant amounts

of knowledge. It should become clear now, that for all its significance, knowledge is not self-

sufficient, knowledge does not immaterially operate upon knowledge.

Furthermore,  in  utopian  virtualism  the  implicit  concept  of  immaterial  action  is  an

assumption enabling the images of free and flexible association.160 It is based on the images of

self-organizing  masses,  flocking,  swarming  around  problems  to  solve  them,  to  push  the

advance further. However, the idea, held by utopian virtualism, that taking advantage of the

functionality  that  digital  technologies  bring is  only a  matter  of having these technologies

available omits significant contingencies. As we can see on how FOSS projects, the avant-

garde of digital culture, operate, the interlocking of various conditions can not be assumed

unproblematic. The dropout rate of newcomers demonstrates this very well. As my findings

indicate,  even  in  the  supposedly  frictionless  digital  environment,  the  center  –  periphery

structure emerges, signifying the central role of few heavily involved individuals. This is also

159 The tables or basements filled with digital equipment that were recorded on video in the series on Linux 
kernel developer workspaces by Linux.com are cases in point. See, for example: 
https://www.youtube.com/watch?v=HSgUPqygAww or https://www.youtube.com/watch?v=NomqUIC_Uzs.

160 Which could also be related to Castells’ claim about mind being a direct productive force – nothing is more
flexible than a mind with unrestricted access to the reality.

138 

https://www.youtube.com/watch?v=NomqUIC_Uzs
https://www.youtube.com/watch?v=HSgUPqygAww


supported  by  other  research  uncovering  participation  inequality  (Holtgrewe,  2004;

Krishnamurthy, 2002; Kuk, 2006; McInerney, 2009). This phenomenon may be explained by

taking into consideration a combination of specific interests an individual has and a heavy

knowledge investment one has to make in order to be able to contribute to a project. The core

maintainers are the bearers of the deepest knowledge about a project, their association with it

is anything but loose. Switching to another project would deprive them of their status and

place  them  under  the  pressure  of  learning  how  to  deal  with  a  new  codebase.161 Thus,

paradoxically enough, knowledge can be a limiting condition with regard to the images of

utopian virtualism just as it seems to be enabling.

As represented by the claim that “for the first time in history, the human mind is a direct

productive force, not just a decisive element of the production system” (Castells, 2010a, p.

31),  the tendency to invoke the images of  frictionless association seem to be implied by

Castells’ work.  But  how can the  mind be a  direct  productive  force?  All  the  “knowledge

workers” who are entrenched with computing technology through their working hours always

interact with a software interface. But when it gets to its users, an interface is no longer a fluid

thing that can be meddled with by modifying text (source code) as was the case while it was

developed. In interaction with users, an interface is part of a compiled program, having a

binary form and operating closer to the logic of voltage differences transmitted by hardware,

than to the logic of (programming) language and text (source code). Therefore, when software

reaches  its  users,  we  can  see  that  the  culturally  contingent  construct  has  materialized

(literally)  into  a  solid  thing  that  (together  with  hardware  input/output  devices)  forms  the

interface for the mind.

It is said that a good interface should be invisible (in the sense that it does not get in the

way of user’s actions), but that does not mean it is not there. As we have seen, interfaces are

there to display data (because digital information is not directly accessible to the senses, by

definition, it needs an intermediary to be accessed) and to offer to the user a set of possible

actions. Anything that is not part of an interface, is impossible to perform for a user.162 This

dependency on interface is not consistent with the claim of mind being a  direct productive

161 However, it is not uncommon for such switching to take place. This seems to indicate that involvement in
FOSS  projects,  in  a  sense,  constitutes  the  kind  of  education  that  Castells  envisions  to  produce  “self-
programmable labor” (Castells, 2010c, p. 377).

162 In this regard, Lawrence Lessig famously claims that source code is the law of cyberspace (Lessig, 2006, p.
5) while Richard Spinello builds upon this analogy to argue that  software developers should aspire to a
similar moral competence to that of lawmakers in a democratic establishment (Spinello, 2001, p. 149).

139 



force. Castells ascribes epistemic credit only to human mind163, but as we can see, there is still

a production system revolving around a mind, mediating its input and output.

To  avoid  this  criticism,  one  could  argue  that  the  Castells’ statement  should  not  be

considered with relation to an individual worker, but with regard to the minds of all concerned

workers. That is to say, that the mind of one is operating with something that is a product of

another’s  mind,  but  it  is  still  a  product  of  a  mind.  Therefore,  with  regard to  the  type of

production (production by mind) the statement could be theoretically correct. But when we

consider the argument formulated in this way, that in production, one mind builds upon what

other minds created, it loses its claim to discontinuity. Was production, with its use of tools

designed by a narrow group of people and utilized by a larger one, not organized in this way

before the 1970s? It certainly was.

I do not aim to disprove, or argue against Castells’ work as a whole. A proper analysis of

his comprehensive work is beyond the scope of this text. My argument is centered around just

one of his claims that I see as being symptomatic of utopian virtualism. In the light of my

findings,  Castells’ premise  about  the  mind  being  a  direct  productive  force  seems  to  be

untenable.  This  is  so  because,  in  the  sense  elaborated  above,  he  omits  the  problematic,

mediating role of at least some of the technologies he writes about and because he ascribes

cognitive  accomplishments  solely  to  a  universalistic  model  of  a  human  mind.  What  my

findings, connecting to previous developments in Actor-Network Theory and the theory of

distributed cognition, demonstrate, is that by itself, the human mind (if we can at all talk about

such singularity) can achieve very little. How could knowledge exist without all the elements

that together form a (digital) interface? This is not to argue that the impulses of the mind have

to be embodied in a material form. I point to the thesis that material objects (including the

digital ones) are constitutive of cognitive processes. Therefore, the mind is surely a part of the

production process, but it is not the sole, nor direct productive force.

163 According to Edwin Hutchins, the image of human mind as the sole origin of cognitive accomplishment is
the result of a reified analogy between the human mind and the computer: “The computer was not made in
the image of  the person. The computer  was made in  the image of  the formal manipulations of  abstract
symbols. And the last 30 years of cognitive science can be seen as attempts to remake the person in the image
of the computer.” (Hutchins, 1995, p. 363).

140 



References

Aigrain, P. (1997). Attention, media, value and economics. First Monday, 2(9).
Ashby, W. R. (1962). Principles of the self-organizing system. In H. V. Foerster & G. W. Zopf

(Eds.), Principles of Self-organization (pp. 255–278). Oxford: Pergamon Press.
Atkinson, P., & Coffey, A. (2004). Analysing documentary realities. In D. Silverman (Ed.),

Qualitative research: Theory, method and practice (pp. 56–75). London: Sage.
Barad, K. (1998). Getting real: Technoscientific practices and the materialization of reality.

Differences, A Journal of Feminist Cultural Studies, 10(2), 87–126.
Barad, K. (2007). Meeting the Universe Halfway: Quantum Physics and the Entanglement of

Matter and Meaning. Durham: Duke university Press.
Baszanger,  I.,  &  Dodier,  N.  (2004).  Ethnography:  relating  the  part  to  the  whole.  In  D.

Silverman (Ed.), Qualitative research: Theory, method and practice (pp. 9–34). London:
Sage.

Bateson,  G.  (1972).  Steps  to  an  ecology  of  mind:  Collected  essays  in  anthropology,
psychiatry, evolution, and epistemology. Chicago: University of Chicago Press.

Benkler,  Y. (2002).  Coase’s  Penguin,  or,  Linux and “The Nature of  the Firm”.  Yale Law
Journal, 112(3), 369–446.

Benkler, Y. (2004). Sharing nicely: On shareable goods and the emergence of sharing as a
modality of economic production. Yale Law Journal, 114(2), 273–358.

Benkler, Y. (2006).  The wealth of networks: How social production transforms markets and
freedom. New Haven: Yale University Press.

Bergquist, M., & Ljungberg, J. (2001). The power of gifts: organizing social relationships in
open source communities. Information Systems Journal, 11(4), 305–320.

Blumer,  H.  (1986).  Symbolic  interactionism:  Perspective  and  method.  Englewood  Cliffs:
Prentice Hall, Inc.

Bourdieu,  P.  (1998).  Practical  reason:  On  the  theory  of  action.  Stanford,  CA:  Stanford
University Press.

Brewer, J. (2000). Ethnography. Buckingham: Open University Press.
Brooks,  F.  (1995).  The  mythical  man-month:  Essays  on  software  engineering.  Boston:

Addison Wesley.
Buckley, W. (1967). Sociology and modern systems theory. Englewood Cliffs: Prentice-Hall.
Cantoni, L., & Tardini, S. (2006). Internet. New York: Routledge.
Carruthers, B. G., & Ariovich, L. (2004). The sociology of property rights. Annual Review of

Sociology, 30(1), 23–46.
Castells, M. (2010a). The rise of the network society. The information age: Economy, society

and culture (Vol. 1). Chichester: Wiley–Blackwell.
Castells,  M. (2010b).  The power of  identity.  The information age:  Economy,  society,  and

culture (Vol. 2). Chichester: Wiley–Blackwell.

141 



Castells,  M.  (2010c).  End  of  Millennium.  The  Information  Age:  Economy,  Society,  and
Culture (Vol. 3). Chichester: Wiley–Blackwell.

Castells, M., & Portes, A. (1989). World underneath: The origins, dynamics, and effects of the
informal  economy.  In  A.  Portes,  M. Castells,  & L.  A.  Benton (Eds.),  The informal
economy:  Studies  in  advanced  and  less  developed  countries.  Baltimore:  The  Johns
Hopkins University Press.

Cetina,  K. K. (1999).  Epistemic cultures: How the sciences make knowledge.  Cambridge,
MA: Harvard University Press.

Clark, A. (1998). Where brain, body, and world collide. Daedalus, 127(2), 257–280.
Clark, A. (2006). Material symbols. Philosophical Psychology, 19(3), 291–307.
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19.
Coase, R. H. (1937). The nature of the firm. Economica, 4(16), 386–405.
Coase, R. H. (1960). The Problem of Social Cost. Journal of Law and Economics, 3(1).
Coleman, G. (2009). Code is speech: Legal tinkering, expertise, and protest among free and

open source software developers. Cultural Anthropology, 24(3), 420–454.
Coleman,  G.  (2010).  The  hacker  conference:  A ritual  condensation  and  celebration  of  a

lifeworld. Anthropological Quarterly, 83(1), 47–72.
Coleman,  G.  (2013).  Coding  freedom:  The  ethics  and  aesthetics  of  hacking.  Princeton:

Princeton University Press.
Cook, J., Laidlaw, J., & Mair, J. (2009). What if there is no elephant? Towards a conception of

an un-sited field. In M. A. Falzon (Ed.),  Multi-sited ethnography: Theory, praxis and
locality in contemporary research (pp. 47–72). Farnham: Ashgate Publishing, Ltd.

Coole,  D.,  Frost,  S.,  Bennett,  J.,  Cheah,  P.,  Orlie,  M.  A.,  &  Grosz,  E.  (2010).  New
materialisms: Ontology, agency, and politics. Durham: Duke University Press.

Corbet, J., Kroah-Hartman, G., & McPherson, A. (2015). Linux kernel development. Annual
report, The Linux Foundation.

Crowston, K., Li, Q., Wei, K., Eseryel, U. Y., & Howison, J. (2007). Self-organization of
teams  for  free/libre  open  source  software  development.  Information  and  Software
Technology, 49(6), 564–575.

Dafermos, G.,  & Söderberg,  J. (2009).  The hacker movement as a continuation of labour
struggle. Capital & Class, 33(1), 53–73.

Dahlander,  L.,  &  Magnusson,  M.  (2008).  How  do  firms  make  use  of  open  source
communities? Long Range Planning, 41(6), 629–649.

Darking, M., & Whitley, E. A. (2007). Towards an understanding of FLOSS: Infrastructures,
materiality and the digital business ecosystem. Science Studies, 20(2), 13–33.

Davis, M. (2013). Doing Research “on and Through” New Media Narrative. In M. Andrews,
M. Tamboukou, & C. Squire (Eds.), Doing Narrative Research (pp. 159–175). London:
Sage.

Demazière, D., Horn, F., & Zune, M. (2007). The Functioning of a Free Software Community.
Science Studies, 20(2), 34–54.

142 



DiMaggio, P. (1997). Culture and cognition. Annual Review of Sociology, 23(1), 263–287.
Dittrich, Y. (2002). Reaching out for Commitments: Systems Development as Networking. In

Y. Dittrich, C. Floyd, & R. Klischewski (Eds.), Social Thinking – Software Practice (pp.
243–262). Cambridge, MA: MIT Press.

Ducheneaut,  N.  (2005).  Socialization  in  an  open  source  software  community:  A socio-
technical analysis. Computer Supported Cooperative Work (CSCW), 14(4), 323–368.

Ehn, P. (1988).  Work-oriented design of computer artifacts (PhD thesis). Umeå University,
Stockholm.

Fairclough, N. (1992). Discourse and social change. Cambridge: Polity Press.
Falzon, M. A. (2012).  Multi-sited ethnography: theory, praxis and locality in contemporary

research. Farnham: Ashgate Publishing, Ltd.
Fekete, L. (2006). The ethics of economic interactions in the network economy. Information,

Community & Society, 9(6), 737–760.
Fetterman, D. M. (2010). Ethnography: Step by step. Thousand Oaks, CA: Sage.
Floyd, C. (1992). Human questions in computer science.  In C. Floyd, H. Züllighoven, R.

Budde, & R. Keil-Slawik (Eds.),  Software development and reality construction (pp.
15–27). Berlin: Springer.

Freeman, S. (2007). The material and social dynamics of motivation. Science Studies, 20(2),
55–77.

Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs: Prentice-Hall.
Garzarelli, G., & Fontanella, R. (2011). Open source software production, spontaneous input,

and organizational learning. American Journal of Economics and Sociology, 70(4), 928–
950.

Geertz, C. (1973). The interpretation of cultures: Selected essays. New York: Basic Books.
Geertz, C. (1996). After the fact. Cambridge, MA: Harvard University Press.
Ghosh,  R.  A.,  Glott,  R.,  Krieger,  B.,  &  Robles,  G.  (2002).  Free/libre  and  open  source

software: Survey and study. Maastricht: International institute of Infonomics. Retrieved
from http://www.flossproject.org/report/FLOSS_Final4.pdf.

Giere, R. N. (2002). Discussion note: Distributed cognition in epistemic cultures. Philosophy
of Science, 69(4), 637–644.

Giere, R. N., & Moffatt, B. (2003). Distributed cognition: Where the cognitive and the social
merge. Social Studies of Science, 33(2), 301–310.

Glanville,  R. (1982).  Inside every white box there are two black boxes trying to get out.
Behavioral Science, 27(1), 1–11.

Glanville,  R.  (2007).  A (Cybernetic)  Musing:  Ashby  and  the  Black  Box.  Cybernetics  &
Human Knowing, 14(2–3), 189–196.

Goldhaber, M. (2006). The value of openness in an attention economy. First Monday, 11(6).
Goldhaber, M. H. (1997). The attention economy and the net. First Monday, 2(4).

143 

http://www.flossproject.org/report/FLOSS_Final4.pdf


Greschke, H. (2007). Logging into the Field—Methodological Reflections on Ethnographic
Research  in  a  Pluri-Local  and  Computer-Mediated  Field.  Forum  Qualitative
Sozialforschung  /  Forum:  Qualitative  Social  Research,  8(3).  Retrieved  from
http://www.qualitative-research.net/index.php/fqs/article/view/279.

Hakken, D. (1999). Cyborgs@cyberspace?: An ethnographer looks to the future. New York:
Routledge.

Hakken, D. (2003). The knowledge landscapes of cyberspace. New York: Routledge.
Hammersley, M. (1990). Dilemma of Qualitative Method. New York: Routledge.
Haraway, D. (2006). A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in

the Late 20th Century. In J. Weiss, J. Nolan, J. Hunsinger, & P. Trifonas (Eds.),  The
International Handbook of Virtual Learning Environments (pp. 117–158). New York:
Springer.

Hemetsberger, A., & Reinhardt, C. (2006). Learning and knowledge-building in open-source
communities a social-experiential approach. Management Learning, 37(2), 187–214.

Hemetsberger,  A.,  &  Reinhardt,  C.  (2009).  Collective  development  in  open-source
communities:  An  activity  theoretical  perspective  on  successful  online  collaboration.
Organization Studies, 30(9), 987–1008.

Heylighen, F. (1999). Collective Intelligence and its Implementation on the Web: algorithms
to  develop  a  collective  mental  map.  Computational  &  Mathematical  Organization
Theory, 5(3), 253–280.

Heylighen, F. (2002). The global brain as a new utopia. In R. Maresch & F. Rötzer (Eds.),
Zukunftsfiguren. Frankfurt: Suhrkamp.

Heylighen, F., & Bollen, J. (1996). The World-Wide Web as a Super-Brain: from metaphor to
model.  In  R.  Trappl  (Ed.),  Cybernetics  and  Systems.  Vienna:  Austrian  Society  for
Cybernetics.

Heylighen,  F.,  Heath,  M.,  & Van,  F.  (2004).  The  Emergence  of  Distributed  Cognition:  a
conceptual framework. In Proceedings of collective intentionality IV. Siena.

Himanen, P.,  Castells, M., & Torvalds, L. (2001).  The Hacker Ethic and the Spirit  of the
Information Age. New York: Random House.

Hine, C. (2000). Virtual ethnography. London: Sage.
Holtgrewe,  U.  (2004).  Articulating  the  Speed  (s)  of  the  Internet  The  Case  of  Open

Source/Free Software. Time & Society, 13(1), 129–146.
Hutchins, E. (1991). Organizing work by adaptation. Organization Science, 2(1), 14–39.
Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT press.
Hutchins, E. (2011). Enculturating the supersized mind. Philosophical Studies,  152(3), 437–

446.
Hutchins,  E.  L.,  Hollan,  J.  D.,  & Norman,  D.  A.  (1985).  Direct  manipulation  interfaces.

Human–Computer Interaction, 1(4), 311–338.
Jansen, K., & Vellema, S. (2011). What is technography? NJAS-Wageningen Journal of Life

Sciences, 57(3), 169–177.

144 

http://www.qualitative-research.net/index.php/fqs/article/view/279


Karatzogianni,  A.,  &  Michaelides,  G.  (2009).  Cyberconflict  at  the  edge  of  chaos:
Cryptohierarchies and self-organisation in the open-source movement. Capital & Class,
33(1), 143–157.

Keil-Slawik, R. (1992). Artifacts in software design. In C. Floyd, H. Züllighoven, R. Budde,
& R. Keil-Slawik (Eds.), Software development and reality construction (pp. 168–188).
Berlin: Springer.

Kelty,  C.  (2004).  Culture’s  open  sources:  Software,  copyright,  and  cultural  critique.
Anthropological Quarterly, 77(3), 499–506.

Kelty,  C.  (2008).  Two  bits:  The  cultural  significance  of  free  software.  Durham:  Duke
University Press.

Kim, M. (2007). The Creative Commons and copyright protection in the digital era: Uses of
Creative  Commons  licenses.  Journal  of  Computer-Mediated  Communication,  13(1),
187–209.

Klischewski,  R.  (2002).  Reaching  out  for  Commitments:  Systems  Development  as
Networking.  In  Y.  Dittrich,  C.  Floyd,  &  R.  Klischewski  (Eds.),  Social  Thinking  –
Software Practice (pp. 309–329). Cambridge, MA: MIT Press.

Krishnamurthy, S.  (2002).  Cave or community?: An empirical examination of 100 mature
open source projects. First Monday, 7(6).

Kuk, G. (2006). Strategic interaction and knowledge sharing in the KDE developer mailing
list. Management Science, 52(7), 1031–1042.

Lakhani, K., Wolf, B., Bates, J., & DiBona, C. (2002). The boston consulting group hacker 
survey. Retrieved from 
ftp://mirror.linux.org.au/pub/linux.conf.au/2003/papers/Hemos/Hemos.pdf.

Landström, C., Whatmore, S. J., & Lane, S. N. (2011). Virtual Engineering. Science Studies,
24(2), 3–22.

Latour, B. (1986). Visualization and cognition. Knowledge and Society, 6(1), 1–40.
Latour,  B.  (1991).  Technology is  society  made durable.  In  J.  Law (Ed.),  A Sociology  of

Monsters:  Essays  on  Power,  Technology  and  Domination (pp.  103–132).  London:
Routledge.

Latour, B. (1994). On technical mediation. Common Knowledge, 3(2), 29–64.
Latour, B. (1996). On interobjectivity. Mind, Culture, and Activity, 3(4), 228–245.
Latour,  B.  (1996).  Social  theory  and  the  study  of  computerized  work  sites.  In  W.  J.

Orlinokowski  &  W.  Geoff  (Eds.),  Information  technology  and  changes  in
organizational work (pp. 295–307). London: Chapman & Hall.

Latour, B. (2000). When things strike back: a possible contribution of “science studies” to the
social sciences. The British Journal of Sociology, 51(1), 107–123.

Latour,  B.  (2003).  The  Promises  of  Constructivism.  Chasing  Technoscience:  Matrix  for
Materiality, 27–46.

Latour, B. (2005).  Reassembling the social: An introduction to actor-network-theory. New
York: Oxford University Press.

145 

ftp://mirror.linux.org.au/pub/linux.conf.au/2003/papers/Hemos/Hemos.pdf


Latour, B. (2007a). A Textbook Case Revisited. Knowledge as mode of existence. In E. J.
Hackett,  O.  Amsterdamska,  M.  E.  Lynch,  & J.  Wajcman  (Eds.),  The  Handbook  of
Science  and  Technology  Studies-Third  Edition (pp.  83–112).  Cambridge,  MA:  MIT
Press.

Latour, B. (2007b). Can we get our materialism back, please? Isis, 98(1), 138–142.
Latour,  B.  (2009).  Spheres  and networks:  two ways to  reinterpret  globalization.  Harvard

Design Magazine, 30(Spring/Summer), 138–144.
Latour,  B. (2010, February). Networks, societies, spheres:  Reflections of an actor-network

theorist. Lecture notes.
Latour, B. (2011). “What’s the story?” Organizing as a mode of existence. In J.-H. Passoth, B.

Peuker, & M. Schillmeier (Eds.), Agency without Actors? New Approaches to Collective
Action (pp. 164–167). London: Routledge.

Latour, B. (2012). We have never been modern. Harvard University Press.
Latour,  B.,  &  Woolgar,  S.  (2013).  Laboratory  life:  The  construction  of  scientific  facts.

Princeton: Princeton University Press.
Lave,  J.  (1988).  Cognition  in  practice:  Mind,  mathematics  and  culture  in  everyday  life.

Cambridge: Cambridge University Press.
Law, J., & Lien, M. E. (2013). Slippery: Field notes in empirical ontology. Social Studies of

Science, 43(3), 363–378.
Lawson, M. P. (1999). The Holy Spirit as conscience collective. Sociology of Religion, 60(4),

341–361.
Lee,  G.  K.,  &  Cole,  R.  E.  (2003).  From a  firm-based  to  a  community-based  model  of

knowledge creation: The case of the Linux kernel development.  Organization Science,
14(6), 633–649.

Lerner,  J.,  & Tirole,  J.  (2002).  Some simple  economics  of  open source.  The  Journal  of
Industrial Economics, 50(2), 197–234.

Lessig, L. (2006). Code: version 2.0. New York: Basic Books.
Lévy,  P.  (2005).  Collective  intelligence,  a  civilisation:  towards  a  method  of  positive

interpretation. International Journal of Politics, Culture, and Society, 18(3-4), 189–198.
Lévy,  P.,  &  Bonomo,  R.  (1999).  Collective  intelligence:  Mankind’s  emerging  world  in

cyberspace. Perseus Publishing.
Leydesdorff,  L.  (2011).  “Meaning” as  a  sociological  concept:  A review of  the  modeling,

mapping  and  simulation  of  the  communication  of  knowledge  and  meaning.  Social
Science Information, 50(3-4), 391–413.

Ljungberg, J. (2000). Open source movements as a model for organising. European Journal
of Information Systems, 9(4), 208–216.

Long, E.  (1993).  Textual  interpretation as collective action.  The Ethnography of Reading,
180–211.

Luhmann, N. (1995). Social systems. Stanford, CA: Stanford University Press.
Luhmann, N. (2014). Die Gesellschaft der Gesellschaft. Frankfurt: Suhrkamp.

146 



Luyt, B. (2011). The nature of historical representation on Wikipedia: Dominant or alterative
historiography?  Journal  of  the  American  Society  for  Information  Science  and
Technology, 62(6), 1058–1065.

Macek, J. (2011).  Poznámky ke studiím nových médií (PhD thesis). Masarykova univerzita,
Brno.

Magnani, L., & Bardone, E. (2008). Distributed morality: externalizing ethical knowledge in
technological artifacts. Foundations of Science, 13(1), 99–108.

Magnus, P. (2007). Distributed cognition and the task of science.  Social Studies of Science,
37(2), 297–310.

Malone, T., Laubacher, R., & Dellarocas, C. (2010). The collective intelligence genome. MIT
Sloan Management Review, 51(3), 21–31.

Marcus,  G.  E.  (1995).  Ethnography in/of  the  world  system: the  emergence of  multi-sited
ethnography. Annual Review of Anthropology, 24(1), 95–117.

Markham, A. N. (2004). Internet communication as a tool for qualitative research. Qualitative
Research: Theory, Method and Practice, 95–124.

Maturana, H. R. (1980). Autopoiesis and cognition: The realization of the living. Dodrecht: D.
Reidl Publishing Company.

Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: The biological roots of human
understanding. Boston, MA: Shambhala Publications, Inc.

McCarthy,  D.  (1996).  Knowledge  as  culture:  The  new  sociology  of  knowledge.  London:
Routledge.

McInerney,  P.-B.  (2009).  Technology  movements  and  the  politics  of  free/open  source
software. Science, Technology & Human Values, 34(2), 206–233.

Mead, G. H. (1972).  Mind, self,  and society: From the standpoint of a social behaviorist.
Chicago: University of Chicago press.

Miles,  M.,  & Huberman,  M. (1994).  Qualitative data analysis:  An expanded sourcebook.
Thousand Oaks, CA: Sage.

Mol, A., & Law, J. (1994). Regions, networks and fluids: anaemia and social topology. Social
Studies of Science, 24(4), 641–671.

Nardi, B. A., & Engeström, Y. (1999). A web on the wind: The structure of invisible work.
Computer Supported Cooperative Work (CSCW), 8(1), 1–8.

Naur, P. (1985). Programming as theory building.  Microprocessing and Microprogramming,
15(5), 253–261.

Neyland, D. (2008). Organizational ethnography. Thousand Oaks, CA: Sage.
Nimmo, R. (2011). Actor-network theory and methodology: Social research in a more-than-

human world. Methodological Innovations Online, 6(3), 108–119.
Nørbjerg, J., & Kraft, P. (2002). Software Practice Is Social Practice. In Y. Dittrich, C. Floyd,

&  R.  Klischewski  (Eds.),  Social  Thinking  –  Software  Practice (pp.  205–222).
Cambridge, MA: MIT Press.

147 



Norris,  P.  (2001).  Digital divide: Civic engagement,  information poverty,  and the Internet
worldwide. Cambridge: Cambridge University Press.

Nørskov, S., & Rask, M. (2011). Observation of online communities: A discussion of online
and offline observer roles in studying development, cooperation and coordination in an
open  source  software  environment.  Forum  Qualitative  Sozialforschung/Forum:
Qualitative Social Research, 12(3).

O’Mahony,  S.,  &  Ferraro,  F.  (2007).  The  emergence  of  governance  in  an  open  source
community. Academy of Management Journal, 50(5), 1079–1106.

Ondrejka,  C.  (2004).  Escaping  the  gilded  cage:  User  created  content  and  building  the
metaverse. New York Law School Law Journal, 49(1), 81–101.

Osterloh, M., & Rota, S. (2004). Trust and community in open source software production.
Analyse & Kritik, 26(1), 279–301.

Packer,  M. (2011).  The science of qualitative research.  Cambridge: Cambridge University
Press.

Parikka, J. (2014, September). Digital Culture as the Desire of the Geophysical: A Geology of
Media. Conference keynote.

Prior, L. (2004). Doing things with documents. In D. Silverman (Ed.), Qualitative research:
Theory, method and practice (pp. 76–94). London: Sage.

Qureshi,  I.,  & Fang,  Y.  (2010).  Socialization in  open source software projects:  A growth
mixture modeling approach. Organizational Research Methods, 14(1), 208–238.

Raeithel, A. (1992). Activity theory as a foundation for design. In C. Floyd, H. Züllighoven,
R. Budde, & R. Keil-Slawik (Eds.), Software development and reality construction (pp.
391–415). Berlin: Springer.

Ratto, M. (2007). A Practice-Based Model of Access for Science. Science Studies, 20(1), 73–
105.

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy, 12(3),
23–49.

Raymond,  E.  (2003).  The  art  of  Unix  programming.  Boston,  MA:  Addison-Wesley
Professional.

Reay, M. (2010). Knowledge Distribution, Embodiment, and Insulation. Sociological Theory,
28(1), 91–107.

Reimer, K. (2005). Fiat Lux: Religion as Distributed Cognition.  Journal of Psychology &
Christianity, 24(2), 130–139.

Rogers, Y., & Ellis, J. (1994). Distributed cognition: an alternative framework for analysing
and explaining collaborative working.  Journal of Information Technology,  9(1), 119–
128.

Rönkkö, K. (2002). “Yes-What Does That Mean?” Understanding Distributed Requirements
Handling. In Y. Dittrich, C. Floyd, & R. Klischewski (Eds.), Social Thinking – Software
Practice (pp. 223–241). Cambridge, MA: MIT Press.

148 



Rosenzweig, R. (2006). Can History Be Open Source? Wikipedia and the Future of the Past.
The Journal of American History, 93(1), 117–146.

Rybas,  N.,  &  Gajjala,  R.  (2007).  Developing  Cyberethnographic  Research  Methods  for
Understanding  Digitally  Mediated  Identities.  Forum  Qualitative  Sozialforschung  /
Forum:  Qualitative  Social  Research,  8(3).  Retrieved  from  http://www.qualitative-
research.net/index.php/fqs/article/view/282.

Saldana, J. (2009). The coding manual for qualitative researchers. London: Sage.
Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open source

software development. Management Science, 52(7), 1000–1014.
Shields, R. (2003). The virtual. London: Routledge.
Shiga, J. (2007). Copy-and-persist: The logic of mash-up culture.  Critical Studies in Media

Communication, 24(2), 93–114.
Schütz, A. (1953). Common-Sense and Scientific Interpretation of Human Action. Philosophy

and Phenomenological Research, 14(1), 1–38.
Simon,  H.  A.  (1971).  Designing  organizations  for  an  information-rich  world.  In  M.

Greenberger (Ed.),  Computers,  communications,  and the public interest (pp.  37–72).
Baltimore: Johns Hopkins Press.

Söderberg, J. (2008). Hacking Capitalism. New York: Routledge.
Spinello,  R.  A.  (2001).  Code  and  moral  values  in  cyberspace.  Ethics  and  Information

Technology, 3(2), 137–150.
Star, S. L. (1999). The ethnography of infrastructure.  American Behavioral Scientist,  43(3),

377–391.
Star,  S.  L.  (2002).  Infrastructure  and  ethnographic  practice:  Working  on  the  fringes.

Scandinavian Journal of Information Systems, 14(2), 6.
Star, S. L., & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and

access for large information spaces. Information Systems Research, 7(1), 111–134.
Stehr,  N., & Ufer,  U. (2009).  On the global distribution and dissemination of knowledge.

International Social Science Journal, 60(195), 7–24.
Stewart,  D.  (2005).  Social  status  in  an  open-source  community.  American  Sociological

Review, 70(5), 823–842.
Stewart, K., & Gosain, S. (2006). The impact of ideology on effectiveness in open source

software development teams. Mis Quarterly, 30(2), 291–314.
Strathern, M. (2002). Abstraction and decontextualization: An anthropological comment. In S.

Woolgar (Ed.), Virtual society (pp. 302–314). Oxford: Oxford University Press.
Suchman,  L.  (2007).  Human-machine  reconfigurations:  Plans  and  situated  actions.

Cambridge: Cambridge University Press.
Suchman,  L.  A.  (1987).  Plans  and  situated  actions:  the  problem  of  human-machine

communication. Cambridge: Cambridge university press.

149 

http://www.qualitative-research.net/index.php/fqs/article/view/282
http://www.qualitative-research.net/index.php/fqs/article/view/282
http://www.qualitative-research.net/index.php/fqs/article/view/282


Teli,  M.,  Pisanu,  F.,  &  Hakken,  D.  (2007).  The  Internet  as  a  Library-Of-People:  For  a
Cyberethnography  of  Online  Groups.  Forum  Qualitative  Sozialforschung  /  Forum:
Qualitative  Social  Research,  8(3).  Retrieved  from  http://www.qualitative-
research.net/index.php/fqs/article/view/283.

Thurk,  J.,  & Fine,  G.  A.  (2003).  The  Problem of  Tools:  Technology and the  Sharing  of
Knowledge. Acta Sociologica, 46(2), 107–117.

Tovey, M. (2008).  Collective Intelligence: Creating a Prosperous World at Peace. Oakton:
EIN Press.

Uspenski, I.  (2013). Mass intelligence and the commoditized reader.  In P. Zahrádka & R.
Sedláková  (Eds.),  New  Perspectives  on  Consumer  Culture  Theory  and  Research.
Newcastle upon Tyne: Cambridge scholars publishing.

Vinck,  D.,  &  Blanco,  E.  (2003).  Everyday  engineering:  An  ethnography  of  design  and
innovation. Cambridge, MA: MIT Press.

Von  Foerster,  H.  (2003).  Ethics  and  second-order  cybernetics.  In  H.  von  Foerster  (Ed.),
Understanding understanding (pp. 287–304). New York: Springer.

Von Foerster, H. (2003). For Niklas Luhmann: How Recursive is Communication? In H. von
Foerster (Ed.), Understanding Understanding (pp. 305–323). New York: Springer.

Von  Foerster,  H.  (2003).  On  self-organizing  systems  and  their  environments.  In  H.  von
Foerster (Ed.), Understanding Understanding (pp. 1–19). New York: Springer.

Von Krogh, G., & Von Hippel, E. (2006). The promise of research on open source software.
Management Science, 52(7), 975–983.

Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and specialization
in open source software innovation: a case study. Research Policy, 32(7), 1217–1241.

Wagner, R. P. (2003). Information wants to be free: Intellectual property and the mythologies
of control. Columbia Law Review, 103(1), 995–1034.

Wall, S. (2015). Focused Ethnography: A Methodological Adaption for Social Research in 
Emerging Contexts. Forum Qualitative Sozialforschung / Forum: Qualitative Social 
Research, 16(1). Retrieved from http://www.qualitative-
research.net/index.php/fqs/article/view/2182.

Wan,  P.  Y.-z.  (2011).  Reframing  the  social:  Emergentist  systemism  and  social  theory.
Farnham: Ashgate Publishing, Ltd.

Wechsler, D. (1971). Concept of collective intelligence. American Psychologist, 26(10), 904.
West, J., & O’Mahony, S. (2008). The role of participation architecture in growing sponsored

open source communities. Industry and Innovation, 15(2), 145–168.
Westrup,  C. (2002).  On Retrieving Skilled Practices:  The Contribution of Ethnography to

Software  Development.  In  Y.  Dittrich,  C.  Floyd,  &  R.  Klischewski  (Eds.),  Social
Thinking – Software Practice (pp. 95–110). Cambridge, MA: MIT Press.

Wikipedia.  (2015).  Wikipedia  —  Wikipedia,  The  Free  Encyclopedia.  Retrieved  from
http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=642784283.

150 

http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=642784283
http://www.qualitative-research.net/index.php/fqs/article/view/2182
http://www.qualitative-research.net/index.php/fqs/article/view/2182
http://www.qualitative-research.net/index.php/fqs/article/view/283
http://www.qualitative-research.net/index.php/fqs/article/view/283


Wise, N. M. (2011). Collective intelligence and its corollaries. History and Technology, 27(2),
197–203.

Woolgar, S. (2002). Five rules of virtuality. In S. Woolgar (Ed.),  Virtual society (pp. 1–22).
Oxford: Oxford University Press.

Wright, P. C., Fields, R. E., & Harrison, M. D. (2000). Analyzing human-computer interaction
as distributed cognition: the resources model.  Human-Computer Interaction,  15(1), 1–
41.

Yar,  M. (2008).  The rhetorics  and myths  of  anti-piracy campaigns:  criminalization,  moral
pedagogy and  capitalist  property  relations  in  the  classroom.  New Media  & Society,
10(4), 605–623.

Zerubavel,  E.,  &  Smith,  E.  R.  (2010).  Transcending  cognitive  individualism.  Social
Psychology Quarterly, 73(4), 321–325.

151 



Appendix 1: An Example of Scripting

1   #!/bin/bash
2
3   echo -n "Please enter the absolute path and press [ENTER]: "
4   read -e file
5
6   sed -i "s/{\\\'a}/á/g" $file
7   sed -i "s/{\\\'A}/Á/g" $file
8   sed -i "s/{\\\'e}/é/g" $file
9   sed -i "s/{\\\'E}/É/g" $file
10  sed -i "s/{\\\'\\\i}/í/g" $file
11  sed -i "s/{\\\'\\\I}/Í/g" $file
12  sed -i "s/{\\\'o}/ó/g" $file
13  sed -i "s/{\\\'O}/Ó/g" $file
14  sed -i "s/{\\\'u}/ú/g" $file
15  sed -i "s/{\\\'U}/Ú/g" $file
16  sed -i "s/{\\\'y}/ý/g" $file
17  sed -i "s/{\\\'Y}/Ý/g" $file
18  sed -i "s/{\\\r{u}}/ů/g" $file
19  sed -i "s/{\\\r{U}}/Ů/g" $file
20  sed -i "s/{\\\v{c}}/č/g" $file
21  sed -i "s/{\\\v{C}}/Č/g" $file
22  sed -i "s/{\\\v{d}}/ď/g" $file
23  sed -i "s/{\\\v{D}}/Ď/g" $file
24  sed -i "s/{\\\v{e}}/ě/g" $file
25  sed -i "s/{\\\v{E}}/Ě/g" $file
26  sed -i "s/{\\\v{r}}/ř/g" $file
27  sed -i "s/{\\\v{R}}/Ř/g" $file
28  sed -i "s/{\\\v{s}}/š/g" $file
29  sed -i "s/{\\\v{S}}/Š/g" $file
30  sed -i "s/{\\\v{t}}/ť/g" $file
31  sed -i "s/{\\\v{T}}/Ť/g" $file
32  sed -i "s/{\\\v{z}}/ž/g" $file
33  sed -i "s/{\\\v{Z}}/Ž/g" $file
34
35  echo "Done"

 This is a script I put together to automate conversion of diacritics, as expressed in the syntax

of the Latex markup language ({'a}) into its literal form (á). The first line indicates that the

following contents of the file should be interpreted as a Bash script. Line 3 asks a user to input

a path to the file, whose contents should be converted. Line 4 reads the path and saves it as a

variable called “file”. The following lines proceed uniformly: Sed, a program designed for

automated editing of text files, is called with an argument “-i” which instructs it to save the

edits directly into the file from which it reads (the default behavior is to only print the edited

text into the terminal, not affecting the file itself). Between the quotation marks, a search and

replace pattern is specified. The “s” at the beginning indicates the use of substitution function

152 



from Sed. The forward slash (“/”) after that is a separator. After that comes the pattern that

should be replaced (e.g. “{\'a}” – note that there are more backward slashes than what the

literal  pattern  contains;  this  is  so  because  backslash  has  a  special  meaning  in  the  Bash

metalanguage  and  to  be  taken  literally,  it  must  be  “escaped”  by  two  more  backslashes,

therefore, the three backslashed get eventually interpreted as one literal backslash). Then there

is  another  forward slash as  a  separator,  followed with the pattern that  should replace the

previous one (e.g. “á”). Then another forward slash as a separator, followed by “g” indicating

that the substitution should be performed globally, that is, should involve all the lines in the

file (the default behavior is that substitution applies to only one line at a time). At the end of

the line, the contents of the variable “file” (“$” indicating that it is a variable) are given to Sed

to direct it to a file in which the substitution should be performed. Line 35 prints “Done” to

indicate that all of the substitutions were performed.

Given the set of 28 substitutions that should be performed repeatedly in a file, it is easy

to  imagine  how  tedious  such  task  would  be  to  perform  by  hand,  which  is  what  direct

manipulation interfaces require. However, with a textual interface,  a number of individual

tasks (28 substitutions times number of replaced occurrences) could be condensed into one

task of running a script. The enforced sequentiality involved in opening a file, searching for a

pattern, replacing it, searching for another one … and eventually saving the modified file, was

replaced  by  a  single  task  that  appears  to  be  indivisible  (by  running  the  script,  every

substitution is performed), but whose internals could be rearranged by an informed user.

153 



Appendix 2: Pitivi Architecture

154 



Appendix 3: Pitivi Interface

155 



Appendix 4: Overview of Projects Developing Video 
Editors

156 



Appendix 5: History Log of a MediaWiki Page

157 



Appendix 6: Display of Differences Among Two Versions of
a MediaWiki Page

158 



Appendix 7: A Git Commit

159 


