
 

 

University of Hradec Králové 

Faculty of Informatics and Management 

Department of Information Technologies 

 

 

 

 

Human Activities Simulation Based on Fuzzy Cognitive Maps 

 

Doctoral Thesis 

 

 

 

 

Author:     Ing. Tomáš Nacházel 

Study program:    P1802 

Field of study:    Applied Informatics 

 

Supervisor:     doc. RNDr. Kamila Štekerová, Ph.D. 

Department of supervisor:  Department of Information Technologies 

 

Hradec Králové                      October 2019                   



 

Declaration 

I declare that this thesis and the work presented in it are my own original research 

and it has been generated by me using only sources cited in the chapter 

References. 

 

Hradec Králové       Ing. Tomáš Nacházel 

 

 

  



Acknowledgements 

I would like to thank my supervisor doc. RNDr. Kamila Štekerová, Ph.D. for her 

assistance and constructive criticism throughout my Ph.D. study and preparation 

of this work. I am also grateful for the help and useful recommendations by RNDr. 

Petr Tučník, Ph.D. and others who participated in projects and prepared 

publications with me. Finally, I would like to thank my family for support 

throughout my whole study. 

 

  



Annotation 

The aim of this work is the design and implementation of a method for human 

activity simulation. Regarding decision-making, the desired behavior is 

characterized by both need-oriented goals and routines. To accomplish this 

objective, this work uses own modification of fuzzy cognitive maps for autonomous 

agents that has been enhanced by sub-system which enables agents to perform 

activities planned through scenarios. The developed method was verified by 

implementation into ambient intelligence model and compared to other projects 

with similar aim or objective. The comparison shows the complexity of the 

proposed design and unique features like a combination of need-oriented and 

routine behavior and adaptation of behavior to specific scenarios by genetic 

algorithms. 

Keywords: human activity simulation; fuzzy cognitive maps; scenarios; routines; 

multi-agent systems; ambient intelligence; genetic algorithms 

  



Název: Simulace lidského chování založená na fuzzy kognitivních mapách 

Anotace 

Tato práce se zabývá návrhem a implementací metody pro simulaci lidského 

chování. Z pohledu rozhodování se takové chování vyznačuje zaměřením na 

potřeby a zároveň opakujícími se rutinami. K řešení tohoto problému byla využita 

vlastní úprava fuzzy kognitivních map pro autonomní agenty, která byla 

obohacena o sub-systém, který umožňuje vykonávat plánované aktivity pomocí 

scénářů. Vytvořená metoda byla ověřena implementací do modelu ambientní 

inteligence a porovnána s projekty podobného zaměření nebo cíle. Z porovnání 

vyplývá komplexnost navrženého řešení a unikátní vlastnosti jakými jsou 

například kombinace potřebami i rutinami řízeného chování a adaptace chování 

pro specifické scénáře pomocí genetických algoritmů. 

Klíčová slova: simulace lidského chování; fuzzy kognitivní mapy; scénáře; rutinní 

chování; multiagentové systémy; ambientní inteligence; genetické algoritmy 
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1 Introduction 

Ambient intelligence and smart technologies are continuously spreading into more 

aspects of our lives. Their objective is to help, provide information, monitor, or 

secure. When researching and developing an intelligent system for a smart 

environment, few issues arise. As in any other system, testing needs to be done on 

the finished system but also during development and design. Usually, a system 

receives some testing data to test its behavior. However, ambient intelligence 

needs human interaction with the system which requires real-world 

implementation of the system and volunteers for long-term testing. To properly 

test the system, months are often required for the system to collect enough data, so 

it recognizes routine behavior fully and adjust to the person. Apparently, this 

solution is demanding on both time and resources. Software models of ambient 

intelligence were created to overcome this problem. A model of the intelligent 

system alone is quite straightforward since the only significant difference lies in 

a software implementation of sensors instead of physical ones. The challenge 

stands in the creation of a simulation of artificial people who are supposed to 

interact with the system and generate needed data. 

The motivation behind this work originated from GAČR project DEPIES which 

focused on ambient intelligence. During this project, a model of a smart 

environment was developed. After the implementation of core components of the 

intelligent system and environment, the model was missing a mechanism that 

would provide human-like behavior. In attempts to create natural behavior, many 

approaches were examined, but their possibilities proved to be limited. This 

problem initiated the motivation to design a decision-making mechanism that 

could provide a simulation of natural behavior. 

When simulating natural behavior of any living being, routine behavior covers 

a significant portion of its life. Routine is a purposeful behavior made up of simple 

goal-oriented actions, which acquire, learn and develop through repeated practice 

[1]. As such, proper routines enable predictable and efficient completion of 

frequent and repetitive tasks and activities without going through unnecessary 
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resource or time-consuming decision-making and planning every time it occurs. 

Therefore, along with general decision-making based on needs and the current 

situation, this work will include routines for the simulated persons in an agent-

based model. An agent is an autonomous intelligent computer system capable of 

evaluation of the situation, decision-making and performing actions [2]. 

In the field of artificial intelligence, there are many various approaches to 

simulations of intelligent behavior or even the creation of an intelligent entity. It 

ranges from the most straightforward rule sets based on stimuli and 

corresponding reactions to soft computing with learning capabilities and the 

complex neural networks imitating some mechanisms of a biological brain. 

Different methods are suitable for various tasks as a neural network is 

inconvenient for simple repetitive tasks, and image recognition is nearly 

impossible to resolve with simple rule sets. Apparently, there is vast space 

between both approaches with a different balance of complexity and difficulty or 

performance. 

The dissertation focuses on the method that utilizes matrices to process decision-

making. It uses fuzzy cognitive maps enhanced to support autonomous agents and 

systems through classification of nodes into three classes: Needs, Activities, and 

States (FCM-NAS). This approach stands right in the middle between non-

transparent complex structures with the ability to learn and easy-to-use simple 

rules. It takes advantages from both sides of the field. It allows creating complex 

structures and learning similar to neural networks while it keeps the human-

readability and comfortable initial design. The other reason speaking in favor of 

this method is its scalability and adaptability which will be useful for implementing 

scenarios. Despite all these advantages, neither this approach nor any similar one 

was developed and used for human activity simulation before. 

To verify the proposed design and prove its abilities, the dissertation provides 

experiments of this method in an ambient intelligence model. In this case, the 

purpose of the method is not controlling the system, but simulating a person 

(agent) moving and interacting within the environment covered by the system. 
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This approach might replace the need for real-world volunteer triggering 

hardware sensors with an agent triggering software sensors in the model. 

Obviously, there are many other application areas of human activity simulation 

like social and environmental simulations, the entertainment industry, or robotics; 

however, its implementation in ambient intelligence model could also help with 

detecting and analyzing agent’s behavior through its interactions with sensors. 

The structure of this work is as follows: The next section, Objectives, presents the 

aim and main goals of the dissertation. Then the section State of the Art introduces 

the basics of decision-making, particularly fuzzy cognitive maps, and genetic 

algorithms. It also summarizes projects with similar goals or means to one 

presented in this work. The fourth section, Solution, describes the design of the 

FCM-NAS and routine behavior as well as the implementation of the approach into 

an ambient intelligence model. The section Results presents the results of 

experiments conducted on the model regarding behavior, machine learning, and 

computational performance. Finally, the section Discussion compares the created 

model with the projects described in the State of the Art, and also returns to 

objectives, evaluates accomplished goals and achievements, and outlines the future 

direction of research and possible enhancements of this work. 
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2 Objectives 

The objective of the dissertation is to design a decision-making method for agents 

which would combine following the schedule with the ability to react to 

unexpected situations at the same time. This approach requires the combination of 

two cooperating decision-making systems per single agent. The first system will 

manage a schedule created according to a scenario describing the agent’s usual 

routine activities during a day. The second system will handle irregularities or fill 

meantime between scheduled tasks. There needs to be cooperation between both 

systems to accomplish all planned tasks while covering all agent’s needs, random 

events or emergencies. The FCM-NAS method will be introduced and enhanced by 

schedule management.  

The main objective of this work is to design a method for the simulation of human 

behavior which would be able to process decision-making based on both internal 

needs of agents and planned scenario. To accomplish and prove this objective, the 

following tasks will be done:  

1. Review of application areas of human activity simulation. 

2. Review of studies describing FCM and its modification with a focus on 

agent-based approaches. 

3. Specification of the modified FCM method for human activity simulation. 

4. Proposal of general methodological procedure of how to design and 

implement human activity simulation for selected application domains. 

5. Implementation of the methodology into an ambient intelligence model, 

conducting experiments, and their evaluation. 

6. Synthesis of results. 

The proposed solution would be useful for simulations of any living creature 

following routines during its life. Potentially, it may be used in research to simulate 

complex behavior in various multi-agent models, or even add an immersive 

behavior of characters in the entertainment industry. 
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3 State of the Art 

This section introduces all areas of research related to this dissertation and its 

objectives. It starts with a general insight at decision-making before it dives into 

details of the core method of this work - fuzzy cognitive maps, and used learning 

method - genetic algorithms. Then, this section presents current applications of the 

method along with models based on different approaches with similar goals. 

3.1 Decision-making 

The first and most important area of research required for human activity 

simulation is decision-making, especially related to autonomous agents. For agent-

based models, artificial intelligence offers many methods to emulate intelligent 

behavior. Regarding structure and adaptability, these methods fall onto a scale 

between two opposite approaches. On one end, there is a robust narrowly focused 

approach with straightforward rule sets and hardcoded procedures. On the other 

end, there is soft computing; more general complex structures that are usually able 

to react even to unexpected situations (improvisation), but very hard to configure 

and often with not transparent decision-making. At the very end of this scale, there 

is the general artificial intelligence [3]. Neural networks are currently the closest 

method to this approach. 

Methods closer to the first approach (simple, narrow) are the most commonly used 

for agent-based models for their simplicity of implementation and usually very 

specific objectives of individual agents. In the large scale models, the complex 

behavior tends to emerge from simple interactions of many agents. It is effortless 

to find examples of this approach: from example models included in different 

multi-agent platforms to show their possibilities to most of the models focused on 

emergent behavior. The well-known stigmergic mechanism is using many agents 

with simple rules observed in nature to accomplish complex path-finding 

problems [4]. 

However, even without emergence, a large enough set of simple rules can generate 

behavior which may prove to be very complex or very close to human decision-
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making in a specific task. Recently updated artificial intelligence in classic strategic 

game Age of Empires 2 offers a great challenge for human players despite a very 

complex environment, a variety of possibilities, and limited structure of scripting 

rules. On almost 30 000 rows of code, scripters of artificial intelligence managed to 

implement most strategies of the best human players [5]. In [6], they are dealing 

with a similar problem. With limited tools, such procedures are very demanding to 

implement, while there still might be some logic holes left for human players to 

exploit. In some cases, human players could act intentionally a certain way to 

confuse algorithm and make it react advantageously for its opponents. To counter 

this, there are attempts to enrich such procedures with more complex structure 

with the ability to learn [7], which leans toward the soft computation approach to 

decision-making. 

On the other side, in opposition to the first approach, there are neural networks. 

There is a lot of different ways to implement these, but the core idea lies in 

imitation of processes of the biological brain. Its general structure contains inputs 

and outputs with manually assigned meaning to connect it with surroundings. 

Between input and output nodes, layers of neurons create the logic of a neural 

network. Only machine learning [8] can assign a purpose to each neuron. The main 

advantages are flexibility and the potential resulting from its complexity and 

ability to learn. However, its complexity is concurrently the cause of its 

disadvantages. While its implementation is not difficult, it requires a lot of learning 

(proportional to its number and size of layers) before a network is usable for 

an intended objective [9]. The second problem of neural networks also arises from 

its complexity. The final product, neural network after learning, is not human 

readable – a black box. Even if a network is small and we can track which neurons 

were activated, single neurons often do not carry one simple distinguishable 

meaning. 

A wide range of methods fits somewhere between these opposites with a more 

flexible structure, abilities of machine learning, or a wider range of perceived input 

than the first group, but still somehow limited in scope, focus, or size, keeping it 

usually human-readable. Methods like Markov decision process [10], Analytic 
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hierarchy (or network) process [11], Petri nets [12], or Fuzzy cognitive maps [13] 

are examples of the approaches between scripted procedures and black-box soft 

computing. These often use graph theory to represent concepts or states and their 

relations – causal dependencies, transition function or weights [14, 15]. 

As a special category of decision-making worth a mention, there are methods used 

specifically in multi-agent models. These approaches require more participants to 

utilize game theory and interaction models with auctions, negotiation, cooperation 

and so on [16]. However, this dissertation aims for individual-based decision-

making. This aim does not limit the number of agents in a model – only the 

complexity of possible interactions among them. 

3.1.1 Fuzzy Cognitive Maps 

Fuzzy cognitive maps (FCMs) [13] are dynamic systems of concept nodes with 

a network of causal relations. They originated from cognitive/causal maps, which 

are able to model causality and change of the concepts, by enhancing them with 

some principles of fuzzy logic [17]. An FCM is described by a collection of n concept 

nodes C, relations wij between these nodes and a function used to adjust values of 

nodes. Figure 1 shows graph representation of an example FCM with five concept 

nodes. A designed causal map with evaluated oriented edges (relations) is then 

transformed into a square matrix. The adjacency matrix R in (1) is a general matrix 

representation of an FCM as the matrix of relations between n concept nodes [13]. 

𝑅 =

𝑤 ⋯ 𝑤
⋮ ⋱ ⋮

𝑤 ⋯ 𝑤
      (1) 

where n is the number of concept nodes. Each value wij represents the influence of 

node ci on node cj. Throughout this work iterators i, j ∊ ℕ. Values wij may be any 

real number between −1 (strong negative causality) and 1 (strong positive 

causality): 

 ∀𝑤 : 𝑤 ∈ [−1, 1]      (2) 

If wij = 0, then node ci has no direct influence on node cj. If wij > 0, then a high value 

of node ci raises the level of node cj; if wij < 0, then a high level of node ci lowers the 

value of node cj.  
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Figure 1: Example of FCM with five concept nodes and relations among them. (source: [18]) 

 
Figure 2: Equivalent relations. (source: author) 

In addition to the matrix R, an FCM needs the truth values of nodes. Let vi denote 

the truth value of node ci. This value represents how much is its corresponding 

concept node active or strong. For example, an agent with the high level of the 

value corresponding to concept node Fatigue means that the agent is tired. Names 

of nodes determine understanding and design of concept nodes and their relations. 

When designing causal relations, each concept is interchangeable with its opposite 

counterpart. If all relations of the inverted concept are inverted as well, then this 
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change does not influence the logic of the FCM. Figure 2 shows four different 

relations which have the same meaning. In this example, the truth value of nodes 

Fatigue and its counterpart Energy would be inverted to each other: the low level 

of Energy would be equal to the high level of Fatigue. 

Since this work uses an FCM in a dynamic environment, it will be changing through 

iterations (often called time steps in simulations). Therefore, the variable of time is 

necessary for calculations. Let denote time steps with t, which is a positive whole 

number starting at zero as FCMs calculates values in discrete time scale and is only 

able to advance in time. Changing values of nodes are then specified as 𝑣 , which is 

the value of concept node ci at time t. As a truth value, 𝑣  is always a real number 

ranging between 0 (definitely not true) and 1 (definitely true). Even if the value 

exceeds these limits after computation, it needs to be immediately reduced to the 

valid range:  

∀𝑣 : 𝑣 ∈ [0, 1]       (3) 

These values form a vector Vt; a one-dimensional array also valid only for the time 

step t: 

𝑉 =
⋮

      (4) 

The sizes of all components are constant. The vector Vt is updated at every time 

step, and the content of R is static. (5) shows the computation of iteration at time 

step t based on the original definition model, while (6) represents a version in 

which the product of the multiplication is added to the previous value, known as 

the incremental model [19]. 

𝑉 = 𝑓 𝑅 ∙ 𝑉( )       (5) 

𝑉 = 𝑓 𝑉( ) +  𝑅 ∙ 𝑉( )       (6) 

In both equations, function f represents a transformation of values. It is a real 

function of a real variable. Many diverse types of nonlinear functions can be used 

(e.g. sigmoid, hyperbolic, step and others).  The primary task for this function is to 

keep the values within the interval from zero to one. The model described in this 
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dissertation mostly uses a simple linear transformation unless a value exceeds this 

interval: 

𝑓(𝑥) =

0 𝑓𝑜𝑟 𝑥 < 0       

𝑥 𝑓𝑜𝑟 𝑥 ∈ [0, 1]

1 𝑓𝑜𝑟 𝑥 > 1       
         𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ    (7) 

The original FCMs handle all concept nodes in the same way, which causes a few 

issues in systems that contain elements of a different type. For example, if an FCM 

considers a few inputs and then decides whether to trigger an action, then a trigger 

node has to be processed differently than the other nodes. Besides choosing 

a sufficient level of the node to trigger an action, it usually has to recognize only 

two states of node: an action is performed or not. Such differences in the 

processing and interpretation of nodes make FCMs confusing and less modular. 

This is the reason to use a modification which is built to handle such situations. 

FCMs are a powerful tool in modeling various dynamic phenomena and systems 

which consist of many dependent variables in a complex structure. Usually, an FCM 

is designed for a single narrow task as a support tool for analysis [20, 21], decision-

making [22, 23], predictions [24], and various tasks in social sciences [25, 26]. 

These FCMs aim for specific values after a few iterations or search convergence 

and stable state of the system. However, this work regards FCMs as an artificial 

intelligence method for systems in dynamic environments. Autonomous systems 

have to handle a much wider range of situations and require a different approach 

to the FCMs. FCMs with a few enhancements prove to be strong artificial 

intelligence method even for autonomous agents [27]. 

In the field of intelligent systems, a few projects aiming for interaction with human 

use an FCM to simulate emotions. For educational purposes, a virtual pet was 

designed with an FCM that ensures believable reactions to user’s actions [28]. Also, 

an ambient intelligence system enriched its user interface with FCM-based 

emotions to provide additional comfort and naturally respond to the presence of 

users [29]. 
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In many projects, FCMs are a core component of a system or agent in a model. For 

instance, it is used by monitoring systems, where an FCM assesses risk in critical 

situations [30], a situation awareness model for infantry platoon leaders [31], or 

even landing site selection for planetary exploration [32].  

Several articles cover the possibilities of learning FCMs. Systems in a dynamic 

environment have to deal with continuous changes; therefore, unsupervised 

training of the FCM or even adjusting it during runtime are desirable features in 

such projects. Genetic algorithms and Hebbian algorithms are commonly used as 

a base for various extensions dealing with this issue [19, 33]. 

Dynamic fuzzy cognitive maps (DFCMs) are one of the extensions focusing on the 

learning of FCMs. It is based on the random neural model, which was designed to 

react to random events by modifying causal relations. The main feature of this 

approach is the ability to change an FCM during runtime, which enables adaptation 

and switching different behaviors at runtime. This extension was used as 

a supervision system [34] and a navigation system of a robot [27, 35].  

FCMs also provide useful services in multi-agent systems. There are two areas 

suitable for this method: as a supervisor monitoring and controlling 

an environment [34, 36] or an artificial intelligence controlling individual agents. 

The second area is not commonly used because FCMs in their original form are not 

convenient for this purpose nor modifications that could support this role are not 

well known yet. However, many of the previously mentioned works had to touch 

the problem of FCMs for autonomous systems at least slightly. Moreover, models 

like the EcoSim model, which will be described in the following paragraphs, 

already process agents with an FCM. 

EcoSim [37-39], an artificial life model, uses an FCM to process the agents’ 

behavior, and its usage is close to the method in this work. The simulation includes 

the evolution of values in the FCM, which enables adaptation of behavior. Agents 

have available just a set of basic actions, from which they choose the optimal one 

for a current situation. The development and behavior of the population emerge 
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from interactions between agents. EcoSim contains two types of species (predator 

and prey), which both evolve to raise their chances against the rival species. 

The decision-making of prey and predator species differs in its actions and 

observed properties. As seen in Figure 3, it combines high-level and low-level 

control at the single map which generates a very complex FCM (26 concepts). The 

width of the arrow represents the strength of a relation. Blue color means positive 

relation; red negative. The structure of the FCM forms layers determining the 

direction of relations, which resembles the structure of a neural network or the 

framework of FCMs for autonomous agents presented later in this work. The first 

(input) layer (left side in Figure 3) contains pairs of inputs. Each pair has 

a separate node for low and high presence of the corresponding quality. The 

middle layer connects inputs with the last layer (right side in Figure 3), serving as 

outputs. In this case, levels of output nodes decide the action that agent will choose 

in reaction to given inputs. 

 
Figure 3: Concepts and their relations of FCM in the EcoSim model. (source: [38])  
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Despite the size of the FCM, the behavior is focused only on the reproduction and 

management of food and energy. Generated patterns are visually close to the cell-

based models. According to [40], EcoSim aims to observe the emergence and 

evolution of the population rather than realistically simulate the behavior of 

individual living creatures. 

3.1.2 Genetic Algorithms 

Using decision-making requires more than the choice of the right method suited 

for a task and its implementation. Its design and configuration are essential to 

ensure consistent and reasonable results. For the hardcoded procedures, 

a designer has to set everything by hand and be aware of every possible input. 

However, soft computing methods usually offer possibilities for machine learning. 

These possibilities depend on the selected method. Some of the methods are 

available for initial manual configuration, and then an automatic learning process 

optimizes the result. However, neural networks, for instance, are not suited for by-

hand design at all, and therefore they require machine learning before they are 

ready to operate. 

Generally, machine learning [41] includes methods for supervised, unsupervised, 

and reinforcement learning. Supervised learning aims at classification and 

regression; its objective is to pick the correct output for input sets. 

Backpropagation is one of its tools to correct wrong answers by adjusting internal 

weights. After enough learning data, decision-making can recognize and classify 

even inputs that it did not encounter yet. The objective of the unsupervised 

alternative is similar to the previous one with the exception of creating its own 

output classes (clusters). Mentioned learning algorithms focus on handling big 

data structures, and they can be useful for agent-based models as well; however, it 

is not suited for training decision-making part of agents. For instance, the 

previously mentioned EcoSim model uses cluster analysis to create species and 

sort agents into groups corresponding to their traits [42]. Nevertheless, previous 

adjustments of these traits were executed by reinforcement learning – specifically 

by genetic algorithms [43].  
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The reinforcement learning algorithms are the most relevant for a configuration of 

agents’ decision-making. The base concept of this type of learning lies in rewarding 

the subject after good (intended) behavior or penalizing it after bad behavior. It 

also differs by not tying specific inputs to a specific output and permits sub-

optimal solutions. As the agent goes through reinforcement learning, inconvenient 

connections drop and useful ones are reinforced [44, 45]. 

The Q-learning is an example of reinforced learning, where the subject chooses 

an action from known selection based on expected reward. After each selection, it 

evaluates its decision and corrects expected rewards for the future. Its goal is to 

explore useful states to go through and learn a policy that brings the highest 

cumulative reward [46]. In cases where every action can be evaluated every step, 

this method converges very fast to the optimal solution. For complex environments 

where actions may have delayed or unclear consequences, machine learning offers 

more general and universal method – genetic algorithms. 

After Charles Darwin published principles of evolution in 1859, his ideas were 

extracted from biology scope and generalized into the algorithm that is able to 

solve a wide range of problems. The popularity of this method is recently rising 

thanks to significant increases in available computational power - along with more 

frequent use of soft computing to solve computationally expensive problems [47].  

 
Figure 4: Example operations with binary genotypes. (source: [48]) 
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Genetic algorithms imitate natural phenomena of natural selection, breeding, 

mutation, and apply it to the gene pool of a population. Each individual from the 

population is characterized by own genotype (also sometimes called 

a chromosome) – a string of values that represents a solution to an examined 

problem. Type of these values can be binary, truth values, integers or any symbols 

which are then translated by the program into the part of a solution. An important 

requirement of genetic algorithms is the ability to evaluate each solution on 

a continuous scale allowing ordering and comparing genotypes. After the 

evaluation, it proceeds with selection and genotype operations to create a new 

population (see Figure 4).  Following steps explain standard procedures of genetic 

algorithms [49]: 

1. Create a starting population 

2. Evaluate each genotype using a fitness function 

3. Select pairs of genotypes using a selection mechanism based on fitness 

values 

4. Apply crossover for each selected pair of genotypes 

5. Replace old population with newly created genotypes 

6. If a target condition is met, then end this procedure; otherwise return to 

step 2 

In [50], the authors evaluated different crossover approaches; particularly the 

number and position of crossover sites. Crossover sites are points in a child 

genotype, where the inherited values switch their source (from one parent 

genotype to another and back). Besides the basic ones seen in Figure 4, they tested 

multi-point, uniform, and variable-to-variable crossovers. Their results showed 

that approaches with fewer crossover sites converge to better results faster. The 

authors recommended single-point crossover as the best choice for general use. 

The worst approach in this regard was uniform crossover, which deals with every 

gene on its own leading to random number of crossover sites. However, they 
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acknowledged that the uniform crossover shows the best exploration ability, 

which is the reason for its slow convergence. 

Many modifications appeared since the first attempts to apply evolutionary 

principles to a computational problem. Some approaches try to approximate the 

source of this idea (nature) better. For instance, diploid genetic algorithms 

appropriate more detailed evolutionary principles of mammals. Instead of one 

chromosome, each individual has a pair of them – one from each parent. The 

dominance scheme then decides which specific genes will be expressed into 

phenotype (actual traits of an individual) [48]. Another interesting idea is to 

enhance genetic algorithms with the concept of frozen evolution – a natural 

phenomenon, which possibly has a negative effect in real evolution by limiting 

further development [51], but its principles could help the learning process with 

its convergence towards the optimal solution. The application of genetic 

algorithms into a virtual environment allows for a great variety of possibilities to 

adapt the evolutionary process to the specific needs of an examined problem and 

offers tools that are unreachable in the area of biological evolution. 

3.2 Human Activity Simulation 

Human-like behavior differs from the behavior of a general perception of artificial 

intelligence. The main difference points to decision-making and its cost. Generally, 

human decision-making has unlimited alternatives in continuous space and time of 

the real world while it is limited by the capacity of brain and time. This 

environment forced decision-making mechanisms to develop a strategy that is not 

going through all possible alternatives and selects an alternative, which is the best 

of the explored ones, even if it might not be the optimal alternative. This theory, 

bounded rationality, started to develop along with rational and game theory to 

better explain and describe human-like decision-making [16]. The natural interest 

to cost-efficient decision-making also leads to developing patterns in behavior - 

routines.  

Routines are defined by frequent actions a subject performs in different situations 

[52]. They are purposeful behavior acquired through repeated practice of goal-
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oriented activities. Routines enable predictable and efficient completion of 

frequent and repetitive tasks and activities. It explains behavioral patterns like the 

sleeping schedule of a person or even low-level tasks – learned procedures to 

handle specific situations. Routines, like most other kinds of human behaviors, are 

not fixed but may vary and adapt based on feedback and the current situation [1]. 

Description of routines, scenario, has many various approaches. Usually, it is 

represented by a sequence of activities optionally tied to specific times, when 

activities are supposed to start. With a higher level of detail, those activities might 

consist of a series of simple short tasks. For example, when an agent is performing 

activity cook dinner, it starts a sequence of elemental operations, which might 

trigger various sensors in the environment, like open/close a drawer, move to 

stove, turn on/off the stove, and so on [53]. There are several possible 

representations of scenarios: trees, Gantt charts, tables, flow diagrams, or 

statecharts [54-56]. Obviously, the graphical representations are aimed to be more 

human-readable. On the other hand, there are machine-readable formats that are 

more suitable for computer processing - tables or XML.  

According to [57], human behavior can be represented in many ways regarding the 

level of abstraction (see Figure 5). At the highest level of abstraction, a model 

eliminates human behavior entirely by simplification. In the middle, models using 

system dynamics represent humans as flows to simulate pedestrians and drivers 

or total quality management. This work will be focused on the individual approach, 

which has the lowest level of abstraction by the mentioned study. However, there 

are a lot of possibilities and levels of abstraction even within this individualistic 

approach concerning the design of a simulation. 
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Figure 5: Methods of modeling human behavior in a simulation study. (source: [57]) 

There are many application areas where simulated human-like agents are useful. 

Most of them have a narrow focus on a single area, a simple task, and a short span 

of time. For example, PlayGA [58] system models human movement in 

an environment with various structures to simulate geometric affordance. This 

system might be helpful for the architectural design process to evaluate design 

alternatives. Also, simplified human cyber activity simulation uses a Markov 

Decision Process to model cybersecurity threats emerging from human errors [59]. 

Many studies cover the topic of human simulation under extreme conditions of 

various emergencies. These models explore building fires, crashes, natural 

disasters, toxic gas releases, radiological releases, and others. During such events, 

agents’ decision-making is limited and has straightforward goals – escape, help 

other agents or just survive. Some models simulate psychological stress or panic, 

which causes agents to act ineffectively. With a higher number of agents in close 

vicinity, crowd behavior also impacts the final results of simulations [60]. 
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The less frequent but still important part of this area explores human behavior in 

a more general scope. Instead of simulating a human in a specific situation or just 

narrow indirect effects of human activity, this work focuses on the simulation of 

human behavior during its natural existence within a more extended period of 

time. Only then higher-level routine behavior takes place in the virtual life of an 

agent. Besides ambient intelligence models, which will be described later in detail, 

reactive decision-making mechanism with routines could improve artificial life 

models, society models, or ecologic simulations as routine behavior is definitely 

not exclusive to the humankind only.  

Of course, the demand for human simulation is not limited solely to research 

purposes. In the growing entertainment industry, computer games are getting 

much more complex, and the audience’s requirements rise. There is a high demand 

for believable human simulation for non-playable characters (NPCs). The living 

world and its inhabitants immerse the player into the game and improve the 

overall quality of the game. 

 

 
Figure 6: A day plan of an NPC in the role of a common peasant in KCD. (source: [61]) 

 
Figure 7: Example of priority lanes in the decision-making of simulated persons in the game Kingdom Come: 

Deliverance. (source: [61]) 
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For example, one of the biggest Czech computer games, Kingdom Come: 

Deliverance (KCD), which was very successful on the global market, also uses 

similar mechanics. Reviewers around the globe often praised its living world as 

one of the positives which made this game stand out from others [62]. The doctoral 

thesis at [61] describes in detail believable decision-making implemented in the 

game. In KCD, NPCs’ behavior contains a few sub-systems for different conditions. 

The higher-level decision-making mechanism selects the general context which 

NPC should focus on currently. Then, it decomposes a selected goal into tasks and 

to further lower-level actions that lead to the satisfaction of that goal. The standard 

behavior of any NPC is straight-forward schedule for the whole day as shown in 

Figure 6. 

In the context of computer games, human simulation has specific requirements 

regarding interactions with a player (or players). Meaning game designers need to 

consider all possible interactions either direct ones with the player or indirect 

ones through changes in the environment initiated by the player. NPCs in KCD 

operate in modes depending on the situation (for instance combat, regular or quest 

mode). Figure 7 shows a collision of quest-related activities with regular ones. 

Schedules with higher priorities overwrite the daily routine simulation. For more 

natural behavior, NPC can skip activities when there is not enough time to finish it 

(due to a quest for example). Hence, its internal needs are not strictly managed and 

skipped activities are not substituted; the visual quality is the main concern in this 

application area. 
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3.3 Ambient Intelligence Simulators 

Ambient intelligence and smart environment systems aim to observe user 

interactions with the environment, gather data, learn from it and use it to help its 

users in daily life without unnecessary intrusion or direct user-system interaction.  

To research these systems, many experiments need to be prepared and performed. 

However, conducting them in a real environment is expensive due to space and 

hardware needed and testing them is hugely ineffective, since it takes real time to 

collect data from actual usage of the system. This problem motivated the 

development of various simulation approaches for modeling an intelligent 

environment to test it virtually [63-66]. A simulation brings advantages over real-

world implementation: it is cheaper and capable to generate a record log worth of 

months of system use in a few seconds.  

These simulations need to implement agents with natural behavior to acquire valid 

results of experiments [53, 67]. They mostly use scenarios with none or random 

variations omitting less likely or extreme situations. This type of behavior is 

a sequence of activities that might consist of more elemental actions [67, 68]. 

Models often apply small random variations to imitate real behavior with small 

irregularities and break the exact match with a planned schedule from the 

scenario. The other approach to human activity simulations is based on the agent’s 

parameters which do not respect any daily cycles or regularly repeated behavior. 

These approaches cannot deliver believable human behavior simulation within 

more prolonged periods of time on their own. None of the current works offer the 

combination of both principles to create need-oriented behavior along with 

routine and planned activities. 
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Table 1: Analysis of smart home simulation tools. (source: [69]) 

 

In [69], the authors of the OpenSHS model presented an overview of available tools 

for smart home simulation (see Table 1). Besides previously mentioned 

approaches to human simulation, there is a large group of tools which completely 

avoid autonomous human simulation. Instead of an artificial decision-making 

method, interactive approaches use manual control of a virtual person by a user. 

Generally, controlling an avatar by a human participant may capture some specific 

interesting scenarios that most of the autonomous agents could not offer; however, 

it is not able to generate large datasets. In comparison with the expensive real-

world testing of ambient intelligence, this approach will reduce only hardware cost 

while time costs usually stay the same. Also, generated dataset arguably cannot 

reach the precision of real-world testing. Since the main objective of this work is an 

autonomous human simulation, only models which at least partially offer 

autonomous behavior will be examined. 
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Figure 8: Vibration collision detection model in PerSim3D. (source: [68]) 

 

3.3.1 PerSim 

PerSim [70] is an event-driven simulator for human activities in smart 

environments. It focuses on the interaction of a person with sensors and objects in 

an intelligent environment. Its objective is activity recognition of agents based on 

sensory activation. Key output data measured in the model are the order in which 

different sensors were activated and its duration. The agent’s behavior is 

a straightforward fixed sequence designed by hand. The agent loads its behavior 

from an activity buffer. When it is empty, the simulation ends. 

In the most advanced version of this simulator, PerSim 3D [71], users can place 

sensors in 3D space and watch an agent’s behavior within a three-dimensional 

environment. It has a higher level of detail regarding the physical interactions of an 

agent with sensors. As shown in Figure 8, its transfer into the 3D environment and 

the intended detail of interactions require realistic animations, which are then 

used for precise collision detection of the agent with collision boxes of sensors in 

the environment. This mechanism simulates the propagation of vibrations caused 

by the agent’s movement or interactions with devices within the environment. 
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To evaluate the realism of animations, online users rated several animations from 

the simulation, which they considered sufficiently realistic in the end. Considering 

decision-making and behavior, this version also replaces the event-driven model 

with context-driven one. This change adds another layer of behavior above 

activities, where each context contains one or more activities. Context loops 

manage the selection, order, and performance of its activities. However, the 

activities/contexts are defined by a user only - similarly to the original PerSim. 

Both versions of this simulator aim specifically for realistic sensory detection; 

therefore, it is designed for related but still different goals of ambient intelligence 

than this work.  

3.3.2 Home Sensor Simulator 

The Home Sensor Simulator (HSS) proposed in [53] aims to generate sensor data 

for ambient intelligence models by simulation of the daily activities of a single 

person. Regarding sensors, this application is less detailed than the previously 

presented PerSim3D. However, it uses a very similar hierarchical model of 

activities (see Figure 9) to break top-level activities (called contexts in the previous 

work) into ordered lower-level activities, which are then performed by completing 

corresponding elemental actions. HSS does not use schedules; instead, it makes 

decisions based on priority. As shown in Figure 10, priority functions consider the 

environment, possibly ongoing activities, and the agent’s internal variables 

representing its attributes and preferences. 

 
Figure 9: Three levels of actions. (source: [53]) 
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Figure 10: Priority function depending on the environment (green), the activity that is currently performed 

(orange), and the character of the human (blue). (source: [53])  
 

When the priority of activity reaches a certain threshold, it triggers its start. The 

agent is capable of interrupting ongoing activity if a more pressing need appears 

(see Figure 11). For that matter, the new activity has to reach the priority level of 

the current activity with the additional increase (represented by the dashed line) 

corresponding to the agent’s will to proceed and finish the ongoing activity before 

moving to anything else.  

 
Figure 11: Example of priority levels of activities developing over model time. (source: [53]) 

 



26 
 

 
Figure 12: Screenshot of the interface of the Home Sensor Simulator. (source: [72]) 

 

HSS offers a simple interface and tools to design the environment and the agent’s 

growth of needs. It is available for download at [72]. Provided output plots show 

activation of sensors, agent’s needs or utility usage during a simulated time (see 

Figure 12). The record outputted by SSH shows a time when each activity started 

or possibly was interrupted. Although the presented behavior is flexible, can adjust 

to the agent’s needs, and even handle situations like a lack of food in a fridge, HSS 

clearly lacks any patterns reminiscent of routines. The regular sleeping cycle is the 

only time-triggered routine in the model. 

3.3.3 MASSHA 

MASSHA simulator [67] is capable of processing more agents at once. Agents start 

a day with TODO and DONE lists: lists with tasks they need to accomplish or have 

already finished that day. TODO list is partially defined by a user but dynamically 

expanded by events in the environment. For example, the preparing_dinner activity 

generates a new washing_dishes activity and adds it to the TODO list. An agent is 

trying to complete all or at least the most important activities from the list. At the 

end of the day, lists reset. Agents’ decision-making is responsible for the selection 

of an activity from the TODO list. This process is based on the priority of activities, 

agent’s skill parameters, or roulette wheel mechanism. To compare priorities, each 

activity holds several parameters defining its duration and interactions between 
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an agent and environment. Table 2 lists all these parameters used in the model. 

Because the model expects some uncertainty and variability, two parameters are 

defining the start time and two the end time. The first set, desirable time, indicate 

the optimal interval to perform the activity. The decision-making process attempts 

to plan the activity within this interval. When this is not possible, it will try to 

perform the activity later. Then there is the second set of parameters representing 

the mandatory start and end time. If the agent exceeds these timestamps, the 

activity is considered failed. 

Similarly to some previously mentioned models, MASSHA also decomposes 

activities into a structure, where the high-level objective is a sequence of low-level 

actions. It aims at very precise detection of lower-level human interactions with 

the environment as it collects data from every drawer, light switch, or cabinet in 

the environment. Duration and frequency of sensor usage were compared to the 

data collected from real smart environments which observed three different 

persons showing a very high percentage of similarity. At [67], authors recognize 

that the behavior in MASSHA heavily relies on the TODO list and suggest the future 

direction of the model could test some soft-computing methods like Markov 

models or neural networks. 
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Table 2: Definition of activity parameters in MASSHA model. (source: [67]) 

 

 

3.3.4 OpenSHS 

OpenSHS [69] uses scenarios for the selection of activities of a virtual person. This 

model recognizes only the highest level of activities and does not focus on lower-

level actions or animations. It offers import of a 3D environment from a free tool, 

and the model itself is also available for download at [73]. To construct scenarios, 

it records participants controlling an avatar in the model in specific phases of a day 

(for instance early morning, afternoon, and so on). Participants control the avatar 



29 
 

from the first-person perspective and manually aim at switches, door handles, or 

other interactive devices. Participants can start an activity from a limited list, set 

its duration, and the simulation skips time to the end of the activity, so they 

continue immediately. 

When this interactive approach collects enough data, a researcher aggregates 

samples generated by participants to create the final dataset of scenarios that 

modularly covers the whole day (see Figure 13). At [74], the authors described this 

process in detail. They have gathered data by seven participants to generate 

complete datasets and detect anomalies (for example, when a person forgets to 

turn off a light or leave a door open). Datasets were used as classification sets for 

automated anomaly detection that is applicable in eldercare, healthcare, or 

security.  

 

Figure 13: Creation of dataset (collection of scenarios) in OpenSHS. (source: [69]) 
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3.3.5 Other Ambient Intelligence Simulators 

Another open-source smart home simulator, SIMACT [75], aims for support of 

activity recognition in a 3D environment. As such, it is focused primarily on lower-

level actions and simulations. The higher-level activity selection is simplified to 

a pre-recorded scenario. Along with the simulator, authors provide files with 

gathered data from experiments. This dataset contains performing time of actions, 

their usual order, mistakes or hesitations during activities, and other data. It also 

recognizes age, sex, and other attributes of participants to create a realistic 

performance of activities which could be later used for experiments of activity 

recognition. 

DiaSim [76] is a simulator developed primarily for the detailed simulation of 

heterogeneous devices in pervasive environments. It supports large scale models 

with hundreds of agents with simple behavior created in a scenario editor. Three 

initial scenarios allow testing behavior of various smart devices under different 

workloads. Figure 14 shows the basic structure of its simulation model. For every 

type of sensor, there is a type of stimulus producer, which is often a mathematical 

function. This function is provided by experts and stimulates corresponding 

sensors to trigger events in the environment. For example, luminosity, as stimuli 

producer, is detected by light detectors. Depending on the settings of the system, 

information from light detectors may turn on/off lights (actuators). This change 

then affects the original stimulus producer. 

 
Figure 14: Simulation model in DiaSim. (source: [76]) 
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4 Solution 

This section presents the solution to the main goals of this work: FCMs modified 

for autonomous agents, scenarios management and the cooperation of both 

decision-making sub-systems. Then, this section also describes the configuration 

and implementation of genetic algorithms, the environment, and other issues 

linked with the implementation of the proposed solution into an ambient 

intelligence model. The content of this section is the original work of the author of 

this thesis. 

4.1 Introduction to FCM-NAS 

FCM-NAS modification enables agents to make decisions and simulate internal 

needs at the same time. The first advantage this matrix-based method offers is 

keeping human-readability despite its complexity and possibilities. That allows 

manual initial setup, which makes the agent functional from the beginning of 

development even without implementing a machine learning mechanism. 

Moreover, the relations are readable from matrix even after learning, which means 

reasoning is never black-box like in case of neural networks.  

The second advantage of the method is its excellent adjustability which allows easy 

modifications or additions. The whole part of the method can be easily replaced 

with a different method if needed. It has been already successfully modified for 

large-scale models where performance is a crucial factor. In that case, Analytic 

hierarchy process (AHP) replaced the decision-making part of FCM-NAS [77]. The 

combination with AHP improved performance but also proved the adaptability and 

scalability of this method by various extensions. In this work, the schedule 

management sub-system will enhance the method to accomplish the goal of the 

human activity simulation. 

The original design of FCM needs to be adjusted to fit in the role of agents’ 

decision-making. This work will describe all the major changes in detail. The main 

difference lies in the classification of concepts. In the original design, all concept 

nodes have the same range of values, the same behavior, and the same 
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interpretation. This approach is sufficient in a dynamic system with equal elements 

of the same type. However, if an FCM needs to react or make decisions, some 

changes are unavoidable. Managing different kinds of nodes after computation 

often becomes very confusing and context-dependent; this hinders modularity and 

scalability of the FCM. The FCM-NAS offers a different design, which expects 

various types of nodes, and processes them according to the classification during 

computation. Therefore, any special treatment after computation is not necessary.   

This method brings several features, which are impossible to reach by a standard 

approach without heavy editing of the algorithm. It enables the combination of 

monitoring and decision-making, easy processing of inputs from sensors, faster 

reactions of the system, more realistic behavior in simulations (disabling parallel 

activities if needed), a simulation of the inner needs, adjustments to the granularity 

of the simulation, and self-evaluation of the agent (fitness), which supports 

learning (more on these in section 4.2 Additional Features of FCM-NAS). 

4.1.1 Structure 

The fundamental step to introduce FCM-NAS into a project is the partition of 

concept nodes into three classes. 𝒞 is a partition of the original set of concept 

nodes C (see (8)). Then CN denotes the set of nodes which were identified as Need 

nodes; similarly, CA represents the set of Activity nodes, and CS is the set of State 

nodes: 

𝒞 = {𝐶 ∪ 𝐶 ∪ 𝐶 }      (8) 

In the design phase, this approach requires the classification of all concepts into 

these classes. Also, since classes are pairwise disjoint sets, each concept node is in 

exactly one class. Original notation of the number of general concept nodes n is 

extended to distinguish the number of concepts in new classes: nN for the number 

of Need nodes, nA for the number of Activity nodes, and nS for the number of State 

nodes. Then the following statements result from the previously mentioned 

features of the new structure: 

∀𝑐 : 𝑐 ∈ (𝐶 ∪ 𝐶 ∪ 𝐶 )      (9) 

𝑛 = 𝑛 + 𝑛 + 𝑛       (10) 
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The notation of individual nodes (ci) and their values (𝑣 ) stays the same as in the 

original FCM design. To distinguish the assignment of nodes to the introduced 

classes, it is necessary to define that the collection of nodes has the static order of 

nodes starting with Need nodes, then Activity nodes, and ending with State nodes. 

Therefore nodes are assigned base on their index: 

𝑐 ∈

𝐶 𝑓𝑜𝑟 𝑖 = {1, … , 𝑛 }                     

𝐶 𝑓𝑜𝑟 𝑖 = {𝑛 + 1, … , 𝑛 + 𝑛 } 

𝐶 𝑓𝑜𝑟 𝑖 = {𝑛 + 𝑛 + 1, … , 𝑛}    

     (11) 

 

4.1.2 Concept Class Needs 

Needs are the first class of concept nodes. Usually, a designed system has at least 

one purpose, which it is trying to fulfill. Then, a measure of success in the effort 

might be useful. Alternatively, it has to observe a variable and perform an action 

repeatedly to keep the variable under control. If the action costs limited resources 

or time, the system should consider those costs as it may not be convenient to take 

action too often. Then, the system could use a time delay or sensitive balancing. In 

such cases, Need nodes are the optimal choice for representation of the concepts. 

For example, this class is used for the needs of agents in an artificial life model or 

a simulated level of satisfaction with memory management in a system. 

The main difference from the other nodes is their behavior during computation. 

Their computation is based on the incremental model introduced in (6), meaning it 

keeps its previous value and adds (or subtracts) an increment based on influence 

of other nodes. Therefore, if there are not active influences from the other nodes, 

then it holds its value. (12) shows the computation of value 𝑣  of node ci. This 

equation uses the basic transformation function f (see (7)). For a reminder, value 

𝑤  represents the influence of node ci on node cj.  

𝑣 = 𝑓 𝑣 + 𝑤 ∙ 𝑣         𝑓𝑜𝑟 𝑗 = {1, … , 𝑛𝑁} 

      (12) 

The value of a Need node represents the level of the necessity to do something to 

satisfy the corresponding need. Then, 0 means the need has been satisfied, and 
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an agent does not have to do anything. If its level approaches 1, then the agent fails 

in satisfying the need, and it should take appropriate action as soon as possible. 

Obviously, the exact critical level of a Need node, which initiates a corresponding 

activity, depends on the configuration of relations in matrix R. The design of Need 

nodes and its integration into FCM-NAS later enable features like the granularity of 

the simulation, addition of true positive causality to itself, self-evaluation of 

an FCM-NAS, and the varying necessity of actions (all described in section 4.2 

Additional Features of FCM-NAS). 

4.1.3 Concept Class Activities 

The next class of concept nodes, Activities, represents all possible actions that 

a system or agent can perform. If an agent with an FCM-NAS is not just a passive 

observer and has to react, manage, or anyhow affect its environment or itself, then 

there are two possible solutions. The first approach involves another mechanism 

outside of an FCM that reads values from the FCM and makes a decision [78]. The 

other one puts the actions directly inside the FCM-NAS, which then holds 

the decision-making responsibility. 

As actions, these concepts are or are not being active; therefore, after computation, 

the Activity nodes have only two possible values: zero (false; the action is inactive) 

or one (true; an agent performs the activity). However, during their computation, 

these values keep the full interval from zero to one. They are calculated with 

a similar algorithm as general nodes in the original FCMs (based on the definition 

model introduced in (5)). (13) shows the full computation of Activity nodes. 

𝑣 = 𝑓 𝑤𝑖𝑗 ∙ 𝑣𝑖
𝑡−1

𝑛

𝑖=1

        𝑓𝑜𝑟 𝑗 = {𝑛 + 1, … , 𝑛 + 𝑛 } 

      (13) 

The values are rounded using a simple algorithm (the transformation 𝑓 ), which 

decides the activation of Activity nodes based on their truth values acquired from 

the computation. Depending on whether parallel activities are available, it selects 

only the activity with the highest value (see section 4.2.3 Disabling Parallel 
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Activities) or performs all activities reaching a certain critical level 𝑎  (the default 

is 0.5) as seen in (14): 

𝑓 (𝑥) =
1 𝑖𝑓 𝑥 ≥ 𝑎    
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ     (14) 

 

In cases when Activity nodes are supposed to provide a truth value to express 

an intensity of actions, basic f transformation (7) could be used. Transformation 

functions are adjustable to the demands of the system without any issues with the 

rest of the design. 

Generally, FCMs are not suitable for a combination of high-level decision-making 

(“what should be done”) and low-level operations (“how it should be done”). That 

combination often requires too many variables in one structure which causes 

performance issues. Low-level problems (for example, pathfinding) would be 

extremely ineffective when managed by FCM-NAS along with the other concept 

nodes. It could be solved by another FCM dedicated to pathfinding. However, in 

any case, low-level operations should be separated from high-level decision-

making to ensure clarity of the model and the most importantly reasonable 

performance. 

4.1.4 Concept Class States 

The third class of concept nodes States is very similar to general concepts in the 

original FCMs. The way how it is calculated is almost the same (see (15)), and its 

purpose has not narrow focus as the previously presented classes. 

𝑣 = 𝑓 𝑤𝑖𝑗 ∙ 𝑣𝑖
𝑡−1

𝑛

𝑖=1

         𝑓𝑜𝑟 𝑗 = {𝑛 + 𝑛 + 1, … , 𝑛} 

      (15) 

Besides general concepts, the State nodes are the advantageous choice for external 

inputs. If an agent needs to be able to perceive an attribute of the environment and 

take it into account during the decision-making process, then it requires 

a dedicated State node in its FCM-NAS. As a property of the environment, the value 

of this node is not directly affected by any node in the FCM-NAS. Therefore, all 

relations to this node in matrix R equal zero, which allows omitting its whole 
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calculation. Instead, it is updated by sensors. Obviously, the inserted values have to 

be transformed into truth values (ranging from zero to one). 

4.2 Additional Features of FCM-NAS 

While the previous section described the core of the proposed method, this section 

provides optional attachments that are very useful for certain systems but 

unnecessary for others. Although a few of these are dependent on each other (the 

dependencies are noted), the core design presented above can be implemented 

independently of the following features. 

4.2.1 Granularity 

Since agents process an FCM-NAS through iteration in discrete time steps, the 

selection of the period between computations of FCMs is a crucial issue regardless 

of whether the system deals with continuous real-time or discrete time steps. The 

values of an FCM in a dynamic environment are always valid only within the 

particular interval for which the FCM was designed. Generally, a shorter interval 

generates better reactions of agents, but it has higher performance demands per 

system time unit as it is processed more often. This is very similar to sampling in 

signal processing; when samples are too distant, much of the information between 

them can be lost. 

Figure 15 shows how an FCM-NAS perceives a continuous variable with different 

settings of the granularity in continuous time. The FCM-NAS with a granularity of 

0.5 is four times more demanding in terms of performance but is also more precise 

than one with a granularity of 2.0. The parameter g is a multiplier representing the 

length of an interval between computations, which is relative to the default length 

of the interval for which a model was initially designed.  
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Figure 15: Comparison of different settings of granularity. (source: author) 

Note that in a single system, the granularity parameter of agents may vary, 

meaning that they can have different reaction times. In a model with continuous 

time, the designer chooses how often an FCM updates its values. In a model with 

discrete time, the problem instead lies in deciding how much virtual time (or how 

many time steps) elapses between the computations or how much the 

environment changes in a single time step. After an FCM is designed, any change to 

the length of this interval invalidates certain values related to dynamic phenomena 

in the environment. However, with the proposed solution, the influence of 

granularity on concept classes is evident; Need nodes are obviously affected; 

Activity nodes are not, since a decision could be made at any time; and State nodes 

typically are not, but since they have a broader use, some may be affected in 

certain cases. 

The effect of granularity on Need nodes causes differences in their growth (or 

decrease). This can be easily compensated for with a simple enhancement of the 

calculation, and the nodes always adjust to the current simulation speed. 

(16) shows the addition of the granularity parameter g, which adjusts the size of 

the increment every time step. 
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𝑣 = 𝑓 𝑣 + 𝒈 ∙ 𝑤 ∙ 𝑣          𝑓𝑜𝑟 𝑗 = {1, … , 𝑛𝑁} 

      (16) 

 

The values of the Need nodes reach (1 𝑔⁄ ) times more computations per virtual 

time unit than they would have with g = 1. For example, in an artificial life model, 

an agent escaping from a predator has depleted stamina after three time steps with 

the default granularity; with the granularity at 0.5, the agent manages to run over 

six computations. Of course, in both cases, it runs the same length and for the same 

amount of virtual time, but due to the granularity, it has twice as many 

opportunities to reconsider the activity or the direction of its escape. 

The main advantage of this feature is the adjustability of a model during its 

development. It allows a designer to set values according to a specific time frame 

during a design phase and later adjust the time frame without the requirement of 

redesigning the whole matrix of relations. For example, if the value of node c1 (for 

simplicity, assume it is always at 1.0) is supposed to increase the value of Need 

node c2 at rate 0.6 per hour, and the matrix is designed in this time frame in mind, 

then w12 would be set at 0.6. However, later in the development, a designer would 

realize that one computation per hour is not enough for the system. For the period 

of 1 minute between computations, granularity parameter g would be set at 1/60, 

and the system would process FCM once per minute. Thanks to this feature the 

designed increase rate of Need node c2 stays automatically at 0.6 per hour (or 

0.6/60 per minute). Otherwise, the designer would need to edit every value in 

matrix R by hand with every change to the granularity of the model. This process 

would be especially laborious when testing different computation intervals. 

4.2.2 Faster Reactions of Agents 

As seen in (5) and (6), the original FCMs compute the current values by using the 

values of the previous iteration. This procedure inevitably causes a delay between 

a stimulus and the corresponding reaction (i.e., one time step or the interval 

between computations of the FCM). Depending on how often the FCMs are 

recomputed, this delay may cause problems if the short reaction time is essential 
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for the proper operation of a system. For example, a monitoring system should 

react to fire immediately, as soon as sensors detect it, rather than waiting for the 

next iteration to take action. 

Some researches solve this with incremental or cumulative models [19]. However, 

their goal is to achieve FCM with stable converged values in the shortest time 

possible. FCM-NAS does not seek one set of values to able to decide; instead, it is 

using values of every step to make decisions. With considerations of the objectives 

and abilities of this method, there is a far more efficient way to ensure not only 

faster but even immediate reactions of agents. 

Thanks to the partition of concept nodes to different classes, the computation of 

an FCM-NAS can be divided into three parts, which can then be rearranged in any 

order. Moreover, some parts can even consider the values of the current iteration 

from parts that have already been computed. The best order has proved to be as 

follows: first the Need nodes, then the State nodes and finally the Activity nodes. It 

is because Need nodes do not have to correspond with the most current values; 

since they use an incremental model as shown in (12), their values are primarily 

based on their own previous values and actions performed in the previous time 

step. State nodes may be based on the current values of needs, but also contain 

external inputs that have to be considered in the decision-making as soon as 

possible. Finally, Activity nodes, as the decision-making part of the model, should 

access the latest values in order to give the best possible reaction to the current 

situation.  

The implementation of this feature requires only the replacement of values from 

the previous time step 𝑣  with the current ones 𝑣  for classes that have been 

already computed. (17) and (18) show adjusted expressions for the order 

recommended above. The equation for Need nodes is not affected since no other 

current values are yet available for time step t. 
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𝑣 = 𝑓 𝑤 ∙ 𝑣 + 𝑤 ∙ 𝑣
( )

     𝑓𝑜𝑟 𝑗 = {𝑛 + 𝑛 + 1, … , 𝑛}  

      (17) 

𝑣 = 𝑓  𝑤 ∙ 𝑣 + 𝑤 ∙ 𝑣

( )

( )

+ 𝑤 ∙ 𝑣
( )

 

𝑓𝑜𝑟 𝑗 = {𝑛𝑁 + 1, … , 𝑛𝑁 + 𝑛𝐴} 

      (18) 

For example, in an artificial life model, agents have two concept nodes: the Danger 

state and the Escape activity. When an agent recognizes a dangerous situation, it 

should immediately escape rather than wait until the next time step to take action. 

Tables 3 and 4 show both approaches; obviously, an agent with the FCM-NAS with 

this feature has a much better chance of escaping and surviving. 

4.2.3 Disabling Parallel Activities 

In many systems, the individual actions are independent of each other; however, 

there are cases where an agent is limited to one action per time step since different 

activities require different positions of the agent or several of them utilize a single 

actuator. The original FCM method cannot restrict this without another algorithm 

that processes and adjusts the values of specific nodes. If any process or value is 

bound to specific nodes by its position in an FCM, then the algorithm has to be 

adjusted after any change. This is confusing and a less modular approach.  

Table 3: The delay in reaction time in the original FCM. (source: author) 

Iteration 1 2 3 4 5 6 7 8 
Danger 0 1 0 0 1 1 1 0 
Escape 0 0 1 0 0 1 1 1 

 

Table 4: Immediate reactions in the FCM-NAS. (source: author) 

Iteration 1 2 3 4 5 6 7 8 
Danger 0 1 0 0 1 1 1 0 
Escape 0 1 0 0 1 1 1 0 
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The FCM-NAS uses a simple adjusted transformation algorithm for its Activity 

nodes, meaning that it is not bound to specific nodes, which allows simple changes 

in concepts without disrupting the algorithm. This feature is useful in human 

activity simulation, artificial life models, or more generally for any non-trivial 

decision-making. For example, as a simulated person, the agent should not be able 

to eat, drink, and sleep at the same time step. The following code describes the 

adjusted transformation algorithm for non-parallel activities: 

max = 0.0 
max_position = -1 
for ( i = nN + 1, …, nN +nA){ 

if (𝑣  > ac  AND 𝑣   > max){ 
max = 𝑣  
if (max_position ≠-1) 

𝑣  _  = 0.0 
max_position = i 
𝑣  = 1.0 

}else 
𝑣  = 0.0 

} 
 

When disabling of parallel activities is required, the algorithm finds the Activity 

node with the highest value after all nodes are calculated. If the found value 

exceeds a critical level 𝑎 , then the activity is performed; otherwise, the agent does 

nothing (alternatively returns to its default state or start a free time activity). 

Within this single cycle, the algorithm finds the most necessary activity and rounds 

the values to zero or one. 

4.2.4 Primary State, Fitness, and Constant Increments 

In any field, an evaluation of a system is a critical topic, regardless of whether it is 

done for designers of the system or purposes of autonomous learning; the 

development and progress of any system always depend on some kind of feedback. 

Since the Need nodes in the FCM-NAS serve as indicators of success in particular 

tasks, their values can easily be converted into a general evaluation measure of the 

success (fitness) of an FCM.  
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In order to integrate the fitness into an FCM-NAS, a Primary State (PS) node is 

added to the State nodes. Only Need nodes that are included in the evaluation of 

the system can affect the PS node. If the recommended convention for the setting of 

the Need nodes is met (a value of zero indicates maximal satisfaction; no action is 

required), then all these relations are negative. Therefore, the higher the value of 

a Need node, the lower the fitness of an FCM-NAS. Since fitness ranges from zero to 

one and is likely to change during the previous computation, its base value has to 

be reset to one before computations. The relation of the PS node to itself wpp is also 

equal to one, where p is the position of this node in an FCM-NAS. 

For example, Figure 16 presents the part of the FCM-NAS of the person in the 

ambient intelligence model. This part contains three Need nodes and the Primary 

State node. Table 5 shows the corresponding part of the matrix R. The last row in 

the table contains the relations of all nodes to the PS node. Since the value of 

the Need nodes decreases with increasing satisfaction, these relations are negative, 

and PS node is set to 1.0 before computation begins. In this example, Hunger and 

Thirst are more important to success than Boredom; they, therefore, have a much 

higher negative impact on the fitness of an agent. 

 
Figure 16: An example of Primary State node in a part of an FCM. (source: author) 
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Table 5: An example of matrix R of an FCM with Primary State node. (source: author) 

 Hun. Thir. Boredom Prim. S. … 
Hunger 0 0 0 0.05  
Thirst 0 0 0 0.1  

Boredom 0 0 0 0.01  
Primary State -0.5 -0.5 -0.2 1  

…     … 
 

If the PS node starts at 1.0, then it can be used as a constant node, i.e. serving as 

a constant increment to any node. For the PS node cp and a node ci, the relation wpi 

guarantees that a steady increase (or decrease) is added to node ci at every time 

step. This relation is especially useful for the stable growth of Need nodes. The last 

column of Table 5 shows the positive relations of the PS node to the Need nodes. 

These relations simulate a constant increase of the needs over time. For instance, 

Thirst would be increased by 0.1 per every time step (with default granularity 

parameter g = 1.0). 

4.2.5 Necessity 

The necessity of actions provides the FCM-NAS with another useful measure for 

decision-making. If several Need nodes have high values, then the decision-making 

prefers actions that relate to the most vital need. This feature is useful for the 

decision-making process in an FCM-NAS with disabled parallel activities. For 

example, in the artificial life model, an agent with values of both Hunger and 

Boredom of 1.0 will prefer activities that lead to the meeting of a more critical need. 

In the case shown in Table 5, the agent would select eating rather than 

entertaining activity, since the Hunger need affects the PS more than the Boredom 

does. 

This feature uses states to evaluate the necessity of the Need nodes. The PS node is 

recommended since at least one fitness value is required. More states can 

represent different fitness functions of the system, and the necessity feature covers 

even this possibility. At the first step, a designer identifies those State nodes that 

are used as fitness values and compares their necessity to the system. The constant 

di represents these evaluations for all State nodes in the form of values ranging 
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from zero to one, where di = 1.0 means that State node ci has the highest priority 

and vice versa. Therefore, the necessity value for a PS node would be at 1.0, other 

State nodes would range from 0 to 1 depending on their relative importance to the 

PS node, and all State nodes that do not serve as a fitness value (for 

instance external inputs) would be at 0.0. Note that index i does not start at one for 

di values since i represents the position of the node in an FCM-NAS that also 

contains other types of nodes which come before State nodes. 

During initialization of the system, the necessity of each Need node is calculated 

according to their influences on the State nodes and the corresponding values di: 

𝑒′ = −w ∙ d

( )

        𝑓𝑜𝑟 𝑖 = {0, … , 𝑛 } 

      (19) 

Then the coefficients are adjusted by an increment kn that shifts their values, so 

their mean is 1.0. This way, setting of absolute values of necessity does not affect 

the activation of Activity nodes: 

𝑘 = 1 −
∑ (𝑒′ )

𝑛
 

      (20) 

𝑒 = 𝑘 + 𝑒′         𝑓𝑜𝑟 𝑖 = {0, … , 𝑛 }      (21) 

Then, ei is the final necessity coefficient of Need node ci and e’i is the necessity value 

ei without the compensation of the offset 𝑘 . In the computation of an FCM-NAS, 

the necessity is used to calculate the Activity nodes from the Need nodes.  (22) 

shows the placement of the necessity coefficient. Calculations of the effects of Need 

nodes to Activity nodes have to be separated; otherwise the rest stays the same as 

in (13).  

𝑣 = 𝑓 𝒆𝒊 ∙ 𝑤 ∙ 𝑣 + 𝑤 ∙ 𝑣
( )

  

𝑓𝑜𝑟 𝑗 = {𝑛𝑁 + 1, … , 𝑛𝑁 + 𝑛𝐴}      (22) 
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4.2.6 Processing FCM-NAS 

The process of computing the FCM-NAS occurs periodically in intervals with 

constant length. This procedure contains calculations of each class, reading values 

for input nodes, and the selection of activity. The fact that all classes are processed 

individually means it can be rearranged and also use new values of previously 

processed nodes. Figure 17 shows the best possible order of computations which 

allows the decision-making part of the FCM-NAS to react to the current situation 

instead of the situation at the previous time step (more in section 4.2.2 Faster 

Reactions of Agents). At the first phase, Need nodes are updated; then, computation 

of State nodes can optionally use these new values. After this part, external inputs 

are imported to dedicated State nodes. Alternatively, this import could appear in 

the very beginning since the calculation of nodes dedicated to external inputs 

would be ideally omitted. However, if these calculations are processed, they would 

overwrite the value after its import. 

At this stage, the new updated value of Primary State is copied to an external 

variable, if this node is used for constant increments. In that case, PS node would 

be reset to 1.0 before the computation of Activity nodes. During this stage, Activity 

nodes are calculated; optionally using both updated sets of nodes to make 

reactions of the decision-making immediate. Finally, values of Activity nodes go 

through the transformation function to select the activity (or activities) to perform. 

Then lower-level decision-making or actuators take control until the next 

computation. 

 
Figure 17: Summary of the computation of the FCM-NAS optimized for autonomous agents with described 

features. (source: author) 
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4.3 Applications of FCM-NAS 

The FCM-NAS method (or its previous iterations) has been already successfully 

used in two other models on different platforms. It has been developed and 

enhanced since the author’s bachelor thesis [79]. The initial motivation to create 

such a method was the implementation of an intelligent system in a virtual 

environment of Second Life. It is a unique platform from a programming 

standpoint. It is limited by memory and computational performance as everything 

runs on distant servers optimized for multiple user experiences in a 3D 

environment. It offers basic procedural programming language Linden Script 

Language which is meant for interactions of users with scripted objects. The 

implementation of any complex system within this setting presents a challenge. 

This system manages memory usage and sensory data transfer in the 

computationally very limited environment of the virtual world Second Life. It 

decides when to transfer data collected by sensors and clear memory depending 

on inner states and the presence of agents (in this case, avatars of users). Since it 

manages only its internal sub-systems, its behavior does not directly affect the 

environment. The only way to extract data is through its communication sub-

system, which translates user messages in a native language into database queries 

and returns corresponding information. Figure 18 shows the architecture of the 

system regarding information flow. 

 
Figure 18: Diagram of the intelligent system managing its database within a limited environment; white arrows 
mean direction of information flow, dark arrows represent the direction of control or influence. (source: author) 
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Figure 19: Diagram of an agent in the ALModel; white arrows mean direction of information flow, dark arrows 

represent the direction of control or influence. (source: author) 

After the intelligent system, this method was adjusted for agent-based approach, 

and it was implemented into an artificial life model ALModel that features 

a randomly generated two-dimensional environment with resources and 

thousands of agents [78, 80]. It was built on the platform NetLogo 5, and it is 

available for download at [81]. The simulation runs in discrete time steps at which 

each agent makes a decision about its activity. Parallel activities are disabled; 

therefore, agents cannot perform more than one activity per time step. As shown in 

Figure 19, the FCM-NAS handles almost whole agents’ logic as it simulates inner 

states (especially needs), processes information from sensors, and performs 

decision-making.  

Decision-making in ALModel covers a few context areas which agents need to 

consider: food, energy consumption, reproduction, and keeping out from any 

danger. As seen in Table 6, each aspect of artificial life requires more than one 

node. For instance, food management of agents uses one Need node for a level of 

Hunger, two Activity nodes for Feeding and Searching for food, and a State node 

used as an external input, which allows taking into consideration currently 

available food supplies on the current positions. Generally, more concept nodes in 

any FCM mean more possibilities, but also, the FCM becomes more performance 

demanding. 
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Figure 20 shows 100 time steps of a single agent in the model. The top plot in the 

figure depicts the development of the Need nodes and Primary State node (fitness). 

The bottom plot explains the changes in the values in the plot above with a log of 

the activities that this agent performed during the observed 100 time steps. During 

the first 25 time steps, the agent struggled to find resources: Need nodes were 

increasing, and its fitness was decreasing. Then the agent finally found resources, 

rested and reproduced. Reproduction raised values of Need nodes due to its cost 

set as negative relations to Need nodes. Since agents remember the last spot where 

they found resources, it was able to finish the next search for food and water much 

faster. Except for Sleep, Escape, and Searching, all activities floor the value of the 

corresponding Need node in a single time step. 

Table 6: Concept nodes and their classification in ALModel. (source: author) 

Need nodes Activity nodes State nodes 
Hunger (c1) Feed (c5) Primary State (c13) 
Thirst (c2) Drink (c6) Lack of Food (c14) 
Fatigue (c3) Sleep (c7) Lack of Water (c15) 
Reproductive Need (c4) Reproduce (c8) Lack of Partners (c16) 
  Search for Food (c9) Danger (c17) 
  Search for Water (c10)  
  Search for Partner (c11) 

 
  Escape (c12) 

 

 
Figure 20: Need and Activity nodes of an agent in the ALModel over 100 time steps (source: author) 
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Figure 21: Diagram of an agent with the combination of FCM-NAS and AHP; white arrows mean direction of 

information flow, dark arrows represent the direction of control or influence. (source: author) 

Although this platform is not that limited as the previous one, the computational 

complexity is a still serious concern for the model with thousands of agents at the 

same time. Consequently, the method has been modified for large-scale models. As 

shown in Figure 21, the AHP replaced the decision-making part of FCM-NAS. The 

modified FCM-NAS was used only for simulation of inner states which made its 

matrix of relations significantly smaller. It improved performance but slightly 

decreased the decision-making capabilities of the method. This modification was 

published at [77].  

The integral part of any agent-based artificial life model is the evolution emerging 

from the competition for resources, inheritance, and breeding. In the case of 

ALModel, along with agents’ physical traits in the model, evolutionary principles 

were used to adjust the decision-making part of the FCM-NAS which enabled 

learning and behavior adaptation of species. This decision-making section of FCM-

NAS consists of all values of relations in the matrix R that affect an Activity node – 

meaning all rows corresponding to Activities are part of the decision-making 

process, as shown in Table 7. During processing, these values are multiplied with 

the current value of the corresponding node (column) to add to the value of the 

activity node (row). These values define the whole behavior of the agent – in 

ALModel, this section contained 136 values (with 8 activities and 17 concept nodes 

total). 
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Table 7: Overview of the most important sections of matrix R of an FCM-NAS. (source: author) 

 Needs Activities PS States 
Needs  Satisfying needs Growth of needs  

Activities Decision-making section 
Primary state Evaluation    

States All values here are zero for external input states 

 
Figure 22: Example of phylogenetic trees created in ALModel. (source: author) 

ALModel also uses cluster analysis to differentiate species and build phylogenetic 

trees – a very similar way to EcoSim [42]. Figure 22 shows phylogenetic trees of 

species produced in a single model run, in which each bubble represents 

a different species. The arrows point to the species that evolved from the species 

on the other end of the arrow, and sizes of the bubbles represent the numbers of 

agents that were classified as members of that species at the moment of creating 

the graph (small dots correspond to extinct species). The brightness of the bubbles 

depicts a certain attribute of a species; in this case, it is the type of diet (a black 

bubble means a carnivore species; a brighter one a herbivore species). 

Obviously, evolutionary principles are not limited to artificial life area only. In 

models without simulated natural selection, genetic algorithms use fitness 

evaluation and artificial selection based on the fitness instead. This way the similar 

learning can be applied to FCM-NAS in every situation where the conditions allow 

its evaluation and its simulation environment supports hundreds or thousands of 

repeats of a model run to process generations of genotypes. 
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4.4 Routine Behavior 

The previous implementations proved that FCM-NAS allows for rational behavior 

with multiple objectives, learning, and interactions. However, this is only a part of 

a problem in the human activity simulation. As presented in the section Human 

Activity Simulation, routine behavior is an essential component of this area as well. 

This section explains its requirements and obstacles that may appear during the 

design and implementation of routine behavior. This section is also the author’s 

contribution to papers [82] and [83], which are not published yet. 

4.4.1 Scenarios 

In the domain of ambient intelligence, scenarios are used for a long time as a mean 

to capture standard behavior of agents. A scenario is a set of activities with given 

order and often attached timestamps. For the simulations, scenarios might include 

additional convenient information about activities: the location where the activity 

should be performed, which objects does the activity use in the environment, and 

other useful information. 

Scenarios may have various formats and representations of time or continuity. 

However, any scenario for the model must be transferred into a machine-readable 

format like CSV files, XML structures, or tables. This chapter describes 

an implementation based on tables because the model use database to store the 

data, and tables are still human-readable as well. 

The used table representation contains two tables to comprise all the needed 

information about a scenario. The first one (see Table 8) stores a schedule with 

data exclusive to each occurrence of an activity in the scenario. There are two 

necessary items: the name of the activity and its anticipated start time. Two other 

complementary values were added for the better inclusion of routines into the 

model. The Importance value serves during decision-making as a measure of how 

important is the activity. When the agent is under time pressure and has less time 

than scheduled activities take, then it skips or postpones the less important 

activity. The Probability value enables simple irregularities – when this value is 

lower than 1.0 (meaning it will be always in the final schedule), the activity has 
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a chance to not appear in some daily schedules of the agent. For instance, the 

activity exercise with the value of Probability 0.7 will appear in 7 out of 10 days on 

average. Note that the Probability of 1.0 does not mean the agent always performs 

the action; it is added to its schedule every day, but it still might be skipped (more 

in 4.4.2 Schedule Management). 

Table 8: An example of the table with a scenario. (source: author) 

Time Activity Importance Probability 

6:00 toileting 0.9 1.0 

6:15 medicine 1.0 1.0 

6:30 exercise 0.5 0.7 

 

Table 9: Description of parameters of activities. (source: author) 

Parameter Type of input Description 

Duration Number of minutes How long it will take until the activity is finished (minimum 

time). 

Max 

multiplier 

Coefficient How many times longer than its base duration it may take. 

Place Location Where activity takes place. 

Needs to be  

completed 

True/false If true, the effect of the activity is applied after its end. 

Otherwise, activity affects agent continuously. 

Required 

activity 

Name of activity When the activity cannot be performed, the agent does 

require activity instead (to collect a consumable item 

required by this activity). 

Uses Name of device Furniture or device used during the activity. 

Consumes Name of item The item in the agent’s inventory which will be consumed by 

the activity. 

Creates Name of item The item which will be created and added into the agent’s 

inventory. 

Conditions Atribute, operator 

and target value 

What conditions need to be met to proceed with the activity. 

Backup 

activity 

Name of activity Activity triggered if conditions of current activities are not 

met. 

Effects Attribute and value How the activity affects needs of the agent. 
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The second table contains general information about all possible activities 

regardless of when or how often they are occurring in the scenarios. The second 

table holds the complete list of all possible activities with their configuration 

applying to every occurrence of the corresponding activity. All required 

parameters of activities used in this model are described in Table 9. Both tables are 

not limited in either of two dimensions: adding rows for new activities or even 

adding columns for additional parameters about activities. 

The parameter “Needs to be completed” splits activities into two main groups 

regarding whether they are effective only once at the end or their effects are active 

through the whole period of execution. In the first group, activities have 

an objective, expected duration, and their effect occurs only when they are fully 

finished. When interrupted, it may continue later or start from the beginning, but 

there is no effect until its completion. Examples of the first type are the 

preparation of dinner, taking medicine, or getting a laptop. The second type of 

activities affects an agent even during its performance. There might be expected 

duration, but when interrupted, the agent still partially benefits from its effects. 

For example, sleeping, watching television, playing games, or working belong to 

this category. 

Parameters like Conditions, Effects, or Backup activity were added to connect with 

the FCM-NAS component of an agent. Before an activity starts, Conditions are 

checked. Each condition consists of three values: name of the attribute, comparing 

sign (<, > or =) and the target value. Each effect has two values: the name of 

an attribute and a value, which may be both positive and negative. In this model, 

conditions and effects are connected to concept nodes in FCM-NAS. However, there 

may appear other attributes of an agent like its age, gender, health, and others. 

4.4.2 Schedule Management 

To be able to work with a scenario in the model, each agent loads it from the 

database and stores it as a schedule of activities. Each activity keeps information 

about where and when it is supposed to happen, which object it consumes, which 

equipment it uses, and so on. Because the agents deal with their needs or 
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unexpected events, they have to handle the possibility of delaying or even skipping 

a planned activity. To manage these situations, the schedule has a buffer where it 

stores activities that are about to begin or are already delayed. 

Since each activity has a truth value determining its importance (given by 

a scenario configuration), when an agent does not manage to complete all 

scheduled activities, then Importance values along with supposed starting times 

determine which activities should be prioritized. However, as a static value, 

Importance is only a part of the mechanism calculating a dynamic value 

representing the priority of the activity at every time step. To work properly in 

a dynamic environment, it is accompanied by other values defining its lifespan 

during the simulations: Near_planned, Delay, and Planned. All three values have 

an effect on the decision-making process, although only two of them are used for 

the priority function and final evaluation of behavior. The Near_planned value only 

alerts decision-making about planned activities in the near future (60-30 minutes 

in this case), so the agent has time to prepare and satisfy needs that would 

otherwise threaten to interrupt the ongoing planned activity.  

To determine Planned and Delay values in time, a few auxiliary parameters of 

activities were added into their configuration (see Figure 23). The parameter 

Tolerance defines the interval around the planned start time. If the activity starts 

within this interval, it is considered that the activity started in time. The parameter 

Start tolerance represents a number of minutes before the planned start. After this 

point in time, the corresponding activity is added to the activity buffer, and its 

Planned value starts to grow – alerting the decision-making process that there is 

an activity in the buffer soon to be performed. If the activity is started before 

reaching the tolerance interval, then it is considered as prematurely triggered, 

which penalizes its evaluation. The similar rules apply for the parameter Delay 

tolerance except it is tied to the Delay value. When this point in time is reached 

without the activity started yet, this activity is considered skipped, and it is 

removed from the buffer with the lowest evaluation for this activity which 

decreases overall agent’s rating (depending on the Importance value of the 

activity). 
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Figure 23: Dynamic values defining an activity during their lifespan (source: author) 

The previously mentioned values are used to express the priority of each activity 

at each time step t. The higher-level decision-making requires priorities to solve 

possible conflicts and sort activities by their current priority. The algorithm 

calculates the priority value of each activity from its importance and the interval 

between the current time and supposed start time of the activity. The priority is 

calculated regarding time difference td of the current time t and the planned start 

of the activity 𝑢  (see (23)). After adding an activity to the schedule at time 

step 𝑢 − 𝑇 , its priority raises until the time reaches tolerance interval around the 

planned start of the activity. During this tolerance period, the priority stays 

constant at the level of the importance of the activity 𝑢 . When the activity is 

delayed beyond the tolerance interval, the delay part of the priority starts to rise 

until it is removed at time step 𝑢 + 𝑇 : 

𝑡 = 𝑡 − 𝑢       (23) 

𝑢 =

⎩
⎪
⎨

⎪
⎧ 𝑓

| |
𝑢 , 𝑡 < −𝑢          

𝑢 , 𝑡 = [−𝑢 , 𝑢 ]

𝑢 + 𝑓
| |

𝑢 , 𝑡 >  𝑢            

    (24) 
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where 𝑢  is the priority of activity ui at time t.  Constants TP and TD determine 

chosen intervals for adding/discarding activities into/from Activity buffer. Both 

functions fP and fD adjust the growth of the value over time and caps it at 1.0: 

𝑓 (𝑥) = max ; 1          𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ 𝑎𝑛𝑑 𝑙 ∈ (1, ∞)   (25) 

𝑓 (𝑥) = max ; 1          𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ 𝑎𝑛𝑑 𝑙 ∈ (1, ∞)   (26) 

where l is a constant affecting the curve of the priority function. For experiments in 

this thesis, constant values were set in this way: l = 20 and 𝑇 = 𝑇 = 60 (minutes) 

by default. Figure 23 shows the development of both parts (Planned and Delay 

values) of the priority function of an activity. 

The schedule manages interruptions among planned activities when ongoing less 

important activity collides with the planned start of an important one. Such 

interruptions are less common than ones caused by FCM-NAS simply because 

activities in scenarios are usually planned without overlapping. However, any 

delays within a dense schedule may lead to a shift of activities. That is handled by 

priority functions of activities, which are derived from the Planned and Delay 

values. For example, two planned activities are waiting in the buffer: long-lasting 

activity working and very short and important activity take_medicine. Table 10 

shows the configuration of both activities, which defines their priority function 

over time.  

Table 10: An example of the configuration of activities (source: author) 

Activity Duration* Tolerance* Start tol.* Delay tol.* Importance 

1 working 120 30 60 60 0.6 

2 take_medicine 4 5 10 10 1.0 

*in minutes      
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Figure 24: An example of interruption of an activity (source: author) 

 

Figure 24 shows a time plot of priority functions over time. In this example, the 

first activity starts four minutes earlier. Ongoing activity then may have a priority 

boost by adding an interruption threshold, which other activities need to reach to 

be able to replace the current one. That encourages an agent to proceed and finish 

the activity without unnecessary switching back and forth between many 

activities. A similar interruption mechanism can be found in the HSS model [53]; 

although there it is used for need-oriented activities. An interruption occurs when 

the priority of the second activity crosses the interruption threshold. After 

finishing the second activity, it is removed from the buffer, and the interrupted 

activity is resumed. Note that the real duration of activities in the model also 

includes walking time needed to get to the appropriate location. 

Interruptions initiated by FCM-NAS look similar way, except its more complex 

structure involves values of all concept nodes which have non-zero relation to 

activity nodes. Through the learning process, some activities may receive a similar 

boost (or decrease) as planned activities in the schedule management subsystem. 
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Figure 25: Diagram of the agent Person; white arrows mean direction of information flow, dark arrows represent 

the direction of control or influence. (source: author) 

 

4.5 Behavior of Agents 

The proposed design introduces the combination of FCM-NAS and routine 

behavior which creates a new problem: there are two independent decision-

making processes that might want to control the behavior of a single agent in 

an incompatible manner. The task of the connection between these two processes 

is complicated. It requires one of the processes always has priority, or there has to 

be the third method to decide which one should be preferred at the moment. This 

work utilizes the first option. The preferred process has to be able to decide when 

it moves the responsibility to select an activity to the other process. 

The model described in this work utilizes the FCM-NAS as the primary decision-

making method for agents. This method simulates the needs of the person and 

selects appropriate activities, but it also receives information from the schedule 

whether there is any planned activity currently or shortly. If there is no immediate 

need to cover vital functions, then FCM passes selection of activity to the schedule. 

This model covers needs including hunger, thirst, fatigue, hygiene, bladder, 

boredom, and socializing need. This set is not limited in any way. Besides basic 

physical and psychological needs, there could be ambitions regarding work, 

hobbies, or family, for instance. 

Figure 25 shows the structure of the agent Person. The white arrows represent 

a flow of information; the dark arrows express a direction of influence or control. 
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The dashed arrow depicts the import of the scenario into the schedule. To decide, 

the FCM gathers data from the schedule and inner states. The schedule returns 

values representing if there is an activity that should be in progress right now or is 

about to start soon. Inner states provide values of all needs and the activity 

performed last time. FCM is able to make higher-level decisions, what should the 

agent do. It selects a general group of activities (a context) and forwards it to 

actuators, which pick specific action regarding the current location or conditions. 

These lower-level decisions are made by simple rules which select a specific action 

and ensure the right position of the agent. For example, when the agent is 

supposed to eat, the algorithm checks the agent’s level of the corresponding need 

(Hunger). If it is high, then the agent starts to cook a meal. Otherwise, it takes 

a snack. If the agent is not in a kitchen, it starts moving to the corresponding spot. 

Figure 26 visualizes all levels of activities considered for the solution with 

examples. The activity context level is exclusive for the higher-level decision-

making provided by the FCM-NAS. Some activities may have several required steps 

before the activity becomes available. These chains are logically arranged into 

higher-level activities. Scenarios may contain all required steps, or just the final 

activity and actuators make sure all conditions are met. For instance, if a scenario 

contains activity eat_dinner and a meal is not prepared, then actuators start the 

preparation of the meal first. Action level in Figure 26 represents atomic actions of 

activities; meaning each action is connected to a single device or position. 

Movement in the environment to a target location is considered as an action as 

well. The lowest level of the hierarchy represents animations; these are not 

implemented in the proposed model as it does not aim to precise physical 

interactions since they are not in the scope of this work. Note that even without 

animations; interactions with devices are implemented, just not visually.  However, 

the addition of the animation layer would be possible as it is compatible with the 

design, although a more suitable platform would need to be selected accordingly. 
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Figure 26: Hierarchy of activities with examples showing activities/actions related to having dinner. 

(source: author) 

 

4.6 Genetic Algorithms 

Genetic algorithms will be applied to the decision-making part of the FCM-NAS to 

adjust agents’ behavior. Although it could use other less computationally expensive 

learning algorithms, there is a problem of immediate evaluation after the decision. 

When rating a complex behavior, a single decision cannot be evaluated properly as 

it may have consequences which might change events in the future. For instance, 

taking a meal seems like a bad decision for an agent that is not very hungry right 

now, but if he plans to go out for several hours later, then it is a good decision in 

a long-term perspective as it would get very hungry later on. Therefore, the agent’s 

behavior is evaluated after a certain period of time. When the behavior is 

evaluated, its complexity still prevents effective interpretation of its problems. 

Fortunately, genetic algorithms can overcome this issue. The only major drawback 
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is the computational time needed to process sufficiently large populations through 

a sufficient number of generations. 

Implementing genetic algorithms requires a lot of repetitions of the same 

simulation with different configurations of decision-making. One of the ways to 

implement this is running parallel simulations corresponding with the size of the 

population. This model launches the whole population in the environment for a set 

number of days. To avoid any interactions between agents and their perceived 

environment, agents need to record any possible changes to the environment to 

local variables, and the ambient intelligence system must be turned off during this 

learning process. These measures ensure the same conditions for each agent and 

guarantees that only the behavior alone affects its final score. 

After a given simulation period, fitness function evaluates each genotype; meaning 

the configuration of decision-making in this case. The fitness function in the model 

does not only rate behavior, but in the case of genetic algorithms, the fitness 

defines the direction of evolution that forms the intended goal of the learning 

process. As the decision-making method covers two different concepts, its fitness 

function requires at least two components. The first fitness component evaluates 

the need-oriented part of behavior based on the average success rate of satisfying 

needs during the simulation. This is possible through the Primary State node 𝑐 , 

which monitors all needs at each computation of FCM-NAS (see 4.2.4 Primary 

State, Fitness, and Constant Increments for detailed explanation). The first part of 

fitness F  is the mean of values of the Primary State 𝑣  node through a simulation: 

F =
∑

      (27) 

The second component focuses on routine behavior and planned activities. It 

reflects how many of the planned activities were finished during the simulation. 

Because these activities have different importance, the evaluation is weighted 

accordingly. If the agent misses important activity, then fitness decrease more than 

in case of missed less critical activity. (28) shows the expression used to calculate 

this second component of the fitness function F . 
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F =
∑

∑
      (28) 

where m is the total number of activities planned during the simulation including 

missed ones, the value 𝑢  represents the Importance of activity 𝑢  and 𝑢  is the 

evaluation of its progress when it is removed from the schedule. The importance 

value is a constant of each activity given by the configuration of the scenario. The 

evaluation of activities 𝑢  is a value ranging from zero (when an activity is 

skipped) to the importance 𝑢 . This value is also adjusted according to the delay or 

early start of the activity. Then the ratio   represents the fulfillment of each 

activity (from zero to one). In other words, the second fitness component 

represents the average success rate of planned activities during the simulation 

weighted by the Importance of activities. 

The early experiments revealed the shortcomings of the described evaluation. Both 

these fitness components lead to optimization of behavior corresponding to both 

decision-making parts; however, the learning process still did not produce 

effective and reasonable behavior. Time distribution on Figure 27b shows that 

agent tends to spend any free time between planned activities to keep needs 

satisfied. This behavior seems to be always alerted and repeatedly triggers 

activities even before there is the actual need. That is the reason why the third 

component of the fitness function was introduced. It motivates decision-making to 

be more effective with the limited time agents have each day. This fitness 

component F  is represented by the percentage of the time when the agent was 

neither doing any planned nor need-oriented activity (denoted as tfree) out of total 

simulation time tmax:  

F =       (29) 

Figure 27c shows that the learned behavior with this component is significantly 

more effective as it spends much less time to manage both needs and planned 

activities. Instead of using 58% of the time to reach to need-oriented fitness 

of 0.974 (Figure 27b), it spends only 8% of the time to reach the value of 0.963 

(Figure 27c). 
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Figure 27: Comparison of fitness values and time distributions of initial behavior with two learned behaviors - 

with and without the third fitness component (source: author) 

There are three components of the fitness function, but because genetic algorithms 

expect one value, they are all merged into the final fitness value as a weighted 

average of all three components (see (30)). All three values are inside the interval 

from zero to one and share the same orientation (0.0 is the worst, 1.0 is the best 

evaluation) which makes their combination into the final fitness value very easy. 

𝐹 =
∙ ∙ ∙

     (30) 

Finally, after the fitness function is complete, the other parts of genetic algorithms 

require configuration. The selection in this model is based on the provided fitness 

of genotypes. A few of the best ones are cloned into a new generation; some of the 

worst are discarded and replaced by children of surviving individuals. The rest of 

the genotypes enter the lottery of crossover and mutation. Each of these is 

randomly paired with another one which ensures they are all used at least once. 

Chance of additional selection is dependent on the fitness value of a genotype. This 

model uses the uniform crossover that randomly collects individual genes from 

one or the other parent. According to [50], this type of crossover has the best 

abilities to explore possible configurations at the cost of slower convergence. 
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Mutation in this model randomly shifts some genes according to three variables: 

the rate, power, and step of mutation. The rate defines how many genes are 

affected by the mutation. Since genotype in the model is a series of truth values 

instead of binary ones, the mutation does not simply switch the value. Instead, the 

value is increased or decreased by a product of mutation step parameter and 

rounded random number from a normal distribution with a mean of 0.0 and 

a standard deviation equal to the mutation power parameter. 

This model also experiments with the principles based on generalized frozen 

evolution [51], which examines the variation of a gene pool. Although it is 

a negative phenomenon in biological evolution, it may be useful for the 

convergence of the virtual population to the optimal solution. It is implemented 

into the model by adjusting mutation parameters during the learning process. In 

the beginning, the mutation is powerful and changes genes by significant steps. 

That means fast but risky learning with great variability and low chance of getting 

stuck in a local maximum of the fitness function. Later on, mutation parameters are 

softened to allow population easier convergence towards the best solution. Finally, 

parameters are focused on fine-tuning of the genes. At this point, evolution is 

unable to make any severe changes or switch to a different local maximum. 

However, it is assumed that previous learning steps have already chosen the best 

direction and now the learning process searches for the very best solution in that 

direction by tiny adjustments. 

4.7 Multi-agent Support 

Ambient intelligence models become a lot more complicated when there is more 

than one agent. Especially in concepts like smart home, users can have different 

preferences of environment that can be conflicting. Therefore, multi-agent support 

is an important feature in human simulation. This work focuses on individual-

based decision-making, which means agents are autonomous units and as such the 

model is able to simulate a lot of them in parallel. Since the model includes genetic 

algorithms, two different multi-agent modes are required. The first one needs to 

ignore any interactions to support parallel isolated simulations for individual 
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evaluations during the learning process. The second mode supports two or more 

agents per single simulation. 

Multi-agent support has several levels and perspectives. Agents’ higher-level 

decision-making could be altered to acknowledge the presence of other agents and 

has possible interactions in the set of activities (as it is in ALModel [77]). Lower-

level decision-making requires management of capacity of places or devices to 

avoid the parallel use of devices by more agents than it could support. For instance, 

at most one agent should be allowed to use a computer at any moment. In case 

other agents request to use the same device, they either wait or select a backup 

activity depending on the activity context. Figure 28 shows agents indirectly 

interacting within a single environment. The list on the right side of the screenshot 

shows activities that are currently performed by all seven agents. Note that the 

second person (by computer) is waiting for another agent to leave fridge area so 

he can also prepare his breakfast. Meanwhile, there are more agents watching TV 

because this device has a higher limit of concurrent users. Since the model does not 

use animations, all agents watching TV are clustered on a single node, this is why it 

seems like only one agent is watching TV. 

 
Figure 28: Screenshot from the model during the experiment with multiple agents in single simulation; each 

agent has an activity listed on the right side (source: author) 
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To use the multiple agents for testing their interactions with an intelligent 

environment, the intelligent system along with sensory sub-systems needs to be 

able to read correct data and recognize more than one behavior within the model. 

Unfortunately, the model in which the proposed human simulation was 

implemented does not fully support more than one agent. This causes that system 

treats some sensory data as they originated from a single source. However, to fully 

support multiple agents, the system would need to be redesigned. That part of 

ambience intelligence is out of the scope of this work. Nonetheless, the 

environment and agents are still able to interact in basic ways successfully. As 

proved even in ALModel [77], the FCM-NAS is generally able to support multiple 

agents in a simulation. 

4.8 Implementation 

This section will describe the implementation of some significant or platform-

specific parts of the proposed solution. The designed human activity simulation 

was implemented in platform AnyLogic 8, which is optimized for agent-based 

systems. For the processes, besides object-oriented programming language Java, it 

offers state charts and action charts. Regarding simulation, this platform allows 

real-time simulation speed along with fast-forwarding speed limited only by 

computational capabilities of the hardware. The final model can be viewed in both 

2D and 3D representation. 

Table 11: Nodes of FCM-NAS used in the proposed model. (source: author) 

Need nodes Activity nodes State nodes 
Hunger (c1) HungerActivity (c8) PrimaryState (c16) 

Thirst (c2) ThirstActivity (c9) Planned (c17) 

Fatigue (c3) FatigueActivity (c10) Delay (c18) 

Boredom (c4) BoredomActivity (c11) NearPlanned (c19) 

HygieneNeed (c5) HygieneActivity (c12) Nighttime (c20) 

ToiletNeed (c6) ToiletActivity (c13) Daytime (c21) 

SocialNeed (c7) SocialActivity (c14)  

 PlannedActivity (c15)  
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Figure 29: Diagram of the higher-level decision-making process. (source: author) 

 

4.8.1 Implementation of Decision-making 

The model triggers the decision-making of each agent every single minute. This 

interval can be arbitrarily adjusted thanks to the granularity parameter in FCM-

NAS. This process starts with higher-level decision-making using FCM-NAS and 

schedule management. As seen in Figure 29, regardless of the FCM-NAS decision, 

the schedule always updates its activity buffer to check for upcoming or missed 

activities. Firstly, it checks all activities in the buffer for missed activities. There are 

two possible ways for activities to be missed. The first possibility is that the 

activity has not yet started and missed delay tolerance. The second one is the 

situation when the activity started but has been interrupted and missed its latest 

finish time. After discards, the schedule adds the upcoming activities that either 

start in one hour or have a longer start tolerance interval.  Then the schedule 

management sorts activities by their current value of priority function, so if the 

FCM-NAS decides to process a planned activity, then the first one from the buffer is 

performed. 
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After the schedule management, FCM-NAS is computed. This process is not 

dependent on neither platform nor model; it has been described in detail in section 

4.2.6 Processing FCM-NAS. The FCM-NAS in this model contains 21 nodes: seven 

Need nodes with seven corresponding Activity nodes, one additional Activity node 

for planned activities, Primary State node, and five State nodes for external inputs. 

Table 11 lists all nodes in the designed FCM-NAS. Agent’s behavior covers the 

following needs: hunger, thirst, fatigue, boredom, hygiene need, toilet need, and 

social need. Each of these has a corresponding Activity node, which triggers one of 

the activities that are supposed to satisfy the need. The choice of the specific 

activity to handle the need is the responsibility of lower-level decision-making. 

All State nodes except Primary State are external inputs. In this context, it means 

outside of FCM-NAS, not necessarily external for the agent as a whole. Values of 

nodes Planned, Delay, and NearPlanned are taken from the schedule as a sum of 

corresponding values of activities in the buffer (these values were described in 

section 4.4.2 Schedule Management). Values of states Nighttime and Daytime are 

global; meaning their values are the same for all agents in a model run. These 

values allow agents to include time in the decision-making of FCM-NAS. Other 

more precise variants would also be available. For instance, nodes Morning, 

Afternoon, Evening, and Night would potentially allow machine learning to better 

adjust behavior to day time. With more complex scenarios, nodes for 

distinguishing weekdays from the weekend would also be very helpful. Even if the 

designer does not see an obvious way how an extra node could change the 

behavior, machine learning uses every piece of information available, and it often 

finds the optimal way to include it in the decision-making. For this model, the FCM-

NAS was designed with the least nodes possible to allow fast testing and learning. 

Otherwise, additional State nodes for external inputs have relatively small because 

its computation is omitted. 



69 
 

 
Figure 30: Lower-level decision-making process managing conditions and interactions. (source: author) 

The outputs of FCM-NAS are updated values of all nodes and particularly one 

Activity node with value 1.0 signalizing the selected type of activity (context). This 

selected context is then processed by lower-level decision-making mechanism 

which is straight-forward algorithm checking conditions, managing effects, and 

interactions with the environment or eventually other agents. The whole process is 

shown in Figure 30. At the first stage, an activity is selected based on the current 

activity context. For example, if FCM-NAS chose PlannedActivity, then the first 
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planned activity in the buffer (the one with the highest priority) is performed. If 

the context is HungerActivity, then the algorithm picks the default activity linked to 

this context. That may be Having dinner, but it is then switched to Having a snack 

because the agent’s Hunger need does not meet the conditions of the first activity. 

In case no context is picked, the agent starts to perform free time activities 

(watching TV, playing games, or hobbies). 

At the second stage of the lower-level decision-making mechanism, the activity is 

translated to a specific action. It stops the interaction with the device that may 

have been in use by the previous activity. If this previous activity waits for its 

effect, then its timer is reset, and the activity interrupted. Next, the agent’s position 

is checked whether it equals to the required position of the new activity, and the 

agent is eventually sent to that position. If the selected activity was already in 

progress, this section is skipped. 

4.8.2 Environment 

The original ambient intelligence model created during GAČR project DEPIAS is set 

in the 3D model of a standard apartment placed on a map with several buildings 

around. It was built on the template of map plan of the city Trencianske Teplice, 

specifically local spa resort. The reason for this placement is the initial motivation 

of this ambient intelligence model: possibilities of ambient intelligence system for 

guests of the spa resort. The apartment offers all elemental functionalities required 

for comfortable living (see Figure 31). It was fully described at [83] (not published 

yet) where the author of this work contributed with the design of the connection 

between agent’s behavior and environment; meaning lower-level decision making 

and interactions with devices or furniture. 

Since the experiments were conducted in this environment with just a few minor 

alterations, the dependency of the agent’s behavior on the environment needs to 

be explained. The higher layer of decision-making does not rely on a configuration 

of the environment and disposition of rooms or furniture at all. The only variable 

of environment that enters this level of decision-making is time. FCM-NAS reads 

a truth value of Daytime and Nighttime be able to adjust the sleep cycle or other 
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time-dependent activities. Schedule management, obviously, needs the current 

time and day for its correct function. Since all ambient intelligence models are 

supposed to be close to reality, it can be assumed that all such models would follow 

real time and calendar. Therefore, this approach would work in any of these 

models the same way. 

Agents’ actuators, the lower layer of decision-making, handle the logic for the 

interaction of the agent with the environment, which consequently leads to some 

dependency on the environment. To filter out unnecessary details of the 

environment, decision-making perceives only a weighted graph (see Figure 32) 

where edges are possible paths with different lengths, and nodes are either 

intersections or locations assigned for activities. 

 

Figure 31: Screenshot of the apartment in the AnyLogic. (source: author) 

 

Figure 32: Weighted graph of the environment. (source: author) 
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Figure 33: Comparison of fitness and composition of a day of two agents with different speeds after the learning 

process. (source: author) 

Activities are bound to the corresponding locations by value in the configuration. 

Some activities are missing this value, meaning it can be performed everywhere; 

for instance, the agent can drink anywhere as long as it has a drink in its inventory. 

By default, the decision-making process assumes that the target location of every 

possible activity exists somewhere in the environment. At least one of all types of 

locations should be present in the environment (including outside of the 

apartment). If there are more instances of such locations (for instance chairs by 

table), it searches for the closest one usable by the agent. 

The only influence the environment has on the behavior is by the distance between 

nodes that an agent needs to walk; therefore, the starting time of the activities may 

vary. In the current apartment in the model, the maximal distance between two 

nodes is around 23 meters. Even if the agent is set very slow with speed of one 

meter per second, it can easily move to any location within one minute, which is 

the period between decision-making computations. In extreme cases, 

an environment with significant walking distances could have an impact on the 

agents’ evaluation since the walking would cost; however, the decision-making still 

works and adjusts for this cost. Figure 33 shows an experiment comparing the 

same agent within the same environment, scenario, and configuration with the 

exception of walking speed. After learning with genetic algorithms, the ten times 

slower agent (Figure 33b) managed to achieve a reasonable schedule and need-

oriented fitness values. Of course, due to very long walking times between nodes 



73 
 

(up to 5 minutes of simulated time between rooms inside the apartment) 

evaluation was reduced by delays or starting too soon because the agent had to 

start earlier to compensate for extreme walking times between planned activities. 

4.8.3 Randomness and Repeatability 

Both decision-making mechanisms are deterministic, meaning randomness is not 

involved in the process of making decisions. However, the model uses some 

randomness during the creation of a daily schedule from a scenario. The first set of 

random values, which is generated from a positive uniform distribution, is used for 

all activities with the probability of their appearance in a daily schedule lower than 

1.0. Also, the duration of activities is randomized at the moment when an activity is 

added to the buffer. The parameter Max multiplier in the configuration of activity 

defines the possible variation of its duration. This way, the same activities may 

take different durations emulating variability in human behavior. Finally, the 

second area affected by randomness is the learning process: genetic algorithms 

during the selection, crossover, and mutation. All parts use a uniform distribution, 

and mutation uses a normal one for the random adjustment of genes. 

Although randomness offers desired variability and tests the flexibility of decision-

making, the design needs to consider the repeatability of experiments and fairness 

during learning processes. The first issue, repeatability of experiments, is covered 

by a built-in pseudorandom number generator (PRNG). The AnyLogic platform 

allows users to edit the seed value of PRNG, which ensures the same numbers are 

generated every model run with the same seed. The second problem requires 

a specific solution for genetic algorithms though. If a scenario contains activities 

with the Probability parameter lower than 1.0, then different random values will 

cause individuals of the same population having different schedules. Therefore, the 

evaluation would be distorted by the difficulty of a generated schedule. Meaning 

better behavior could have lower fitness than worse ones that received a schedule 

that is easier to complete (with less or shorter activities). To prevent this, a list of 

random numbers is generated in advance (using built-in PRNG). Individuals then 

obtain the same values in the same order, hence only their decision-making directs 

their final behavior and consequently their fitness. 
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5 Results 

This section offers possible outputs of the behavior along with separate tests of 

both behavioral sub-systems. Then, the results of computational performance tests 

and findings from evolutionary learning are presented. Its achieved computational 

performance allows simulating virtual years in minutes. Experiments with genetic 

algorithms demonstrated its ability to change behavior in the desired direction. 

5.1 Need-oriented Behavior Only 

The HSS model uses only need-like mechanisms to trigger activities, which 

corresponds to the proposed model without a scenario. Values representing needs 

grow and periodically trigger activities satisfying corresponding needs throughout 

a day. Figure 34 depicts patterns of needs during a single day in both simulations. 

Note the similarity of the slower growth during sleep. 

Besides usual needs, it has similar mechanisms for some other activities like using 

a computer, shopping, exercise, and others. Such activities would be otherwise in 

a scenario. Through HumanDesigner application (available for download at [72]), 

the HSS model allows manually adjust some parameters of behavior like the 

growth of needs and length of some activities. FCM-NAS offers the same 

adjustment through relations of a constant node (in this case the Primary State) to 

the corresponding need. Besides that, the proposed approach allows user to set 

different priorities or a critical level of needs to trigger the connected activity. 

Some of these parameters are also adjustable by genetic algorithms. 

 
Figure 34: Comparison of needs in 1 day in HSS and the proposed model. (source: [72] and author) 
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5.2 Routine Behavior Only 

To test the routine behavior only, FCM-NAS was set to ignore all need inputs and to 

trigger only the planned activity context. Activities were set with less flexible time 

frames when they are supposed to start and end to imitate a straight-forward set 

of activities triggered by time. This way, the proposed model is able to execute any 

hand-crafted schedule of activities. For comparison, the scenario was configured to 

imitate the short activity recording by PerSim3D presented in [71] (see Table 13). 

Table 14 shows almost the same recording as the original with tiny deviations 

caused by different environment and primarily by the flexible connection between 

FCM-NAS and the schedule management. Since PerSim3D aims for precise 

detection, unlike the proposed model, it supports animations and more specific 

sensors like pressure, vibration or radio-frequency identification (RFID) sensors. 

Table 12: Sample output of PerSim3D from execution of scenario in beginning of the day. (source: [68]) 

 

Table 13: Output of the model during the experiment with scenario only. (source: author) 

Activity Start/End time Location Sensors 

sleep 7:29:18 Bed Movement  (Bedroom) 

 7:34:13  Movement  (Center) 

toilet 7:34:28 WC Movement (Toilet), Use sensor (toilet) 

 7:36:08  Movement (Hall) 

make_breakfast 7:37:03 Kitchen Movement (Kitchen), Use sensor (fridge) 

 7:41:03  Movement  (Center) 

eat_breakfast 7:41:13 Table Movement  (Center) 

 7:48:03  Movement  (Living room) 
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5.3 Combination of Need-oriented and Routine Behavior 

Experiments were conducted to test the behavior of the agent Person with 

scenario shown in Table 14. All the agent’s activities with corresponding starting 

times were recorded during the day. The person was performing planned activities 

and satisfying needs for a few simulated weeks in the model of ambient 

intelligence. Since the person starts days with different inner values, the final order 

and starting times of activities may differ each day although the scenario was 

always the same. Table 15 shows the course of one day in comparison with the 

scenario introduced in Table 14. Most of the activities were completed, some on 

time, few of them later. For example, afternoon the agent had no time to continue 

read news because he had to make dinner. Later evening, the agent was tired, so he 

rested ignoring less critical activity in the schedule (playing games). However, he 

was able to return to it later. 

Table 14: Scenario tested in the model. (source: author) 

Start time Activity Importance 

6:00 toileting 0.95 

6:15 medicine 1 

6:30 exercise 0.7 

6:45 medicine 1 

6:50 shower 0.9 

7:00 eat_breakfast 0.95 

7:10 read_news 0.8 

7:20 medicine 1 

9:30 massage 0.9 

10:30 swimming 0.9 

12:30 eat_dinner 0.9 

16:00 watch_tv 0.3 

17:00 read_news 0.3 

17:30 health_practice 0.8 

18:00 eat_dinner 1 

18:50 medicine 1 

19:00 go_out_exercise 0.8 

20:00 work 0.5 

21:00 play_games 0.3 

22:30 drink 0.8 

22:45 toileting 0.95 

23:00 sleep 1 
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Table 15: Recording of the actual behavior of the agent in one day and its comparison with the scenario. 
(source: author) 

Time Activity Schedule comparison Time Activity Schedule comparison 

5:47 toileting 13 min early 14:48 get_drink not planned 

5:58 medicine 17 min early 14:51 drink not planned 

6:03 take_snack not planned 14:53 take_snack not planned 

6:05 eat_snack not planned 14:55 eat_snack not planned 

6:11 watch_tv not planned 15:01 watch_tv 59 min early 

6:23 exercise 7 min early 16:27 get_drink not planned 

6:39 medicine 3 min early 16:30 drink not planned 

6:44 get_drink not planned 16:32 watch_tv resumed 

6:47 drink not planned 17:16 read_news 16 min late 

6:49 watch_tv not planned 17:17 health_practice 13 min early 

7:00 eat_breakfast not hungry (skipped) 17:41 read_news resumed 

7:00 read_news 10 min early 17:49 get_ingredients required act 

7:05 medicine 15 min early 17:55 make_dinner required act 

7:10 use_toilet not planned 18:14 missed activity:  

read_news (3 minutes left) 7:11 watch_tv not planned 

8:23 get_drink not planned 18:16 eat_dinner 16 min late 

8:26 drink not planned 18:32 get_drink not planned 

8:28 watch_tv not planned 18:35 drink not planned 

9:28 massage 2 min early 18:37 use_toilet not planned 

10:29 swimming 1 min early 18:38 medicine 12 min early 

11:29 get_drink not planned 18:43 go_out_exercise 17 min early 

11:33 drink not planned 20:25 work 25 min late 

11:35 get_ingredients required act 21:01 get_drink not planned 

11:41 make_dinner required act 21:04 drink not planned 

12:02 eat_dinner 30 min early 21:06 rest not planned 

12:18 use_toilet not planned 22:14 play_games 74 min late 

12:19 watch_tv not planned 22:29 get_drink required act 

13:09 get_drink not planned 22:32 drink 2 min late 

13:12 drink not planned 22:34 play_games resumed 

13:14 wash_hands not planned 22:42 toileting 3 min early 

13:40 use_toilet not planned 22:53 play_games resumed 

13:41 watch_tv not planned 22:58 sleep 2 min early 

 

Table 15 shows output data originating directly from the agent Person. Obviously, 

the system controlling the smart environment does not have those outputs. It 

depends only on its sensors, and there is no direct communication between agents 

and the system even in the model. The log of sensors is much more detailed than 

the record of the person’s activities. Hence Table 16 contains information available 

to the system during only the first hour of the same day.  
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Table 16: Output data of the intelligent system from the first hour of the example scenario. (source: [83]) 

Time   Type   Location   Action       

5:47:08  Move   Center   Person is caught by Center   

5:47:13  Move   Hall   Person is caught by Hall   

5:47:18  Move   Bathroom   Person is caught by Bathroom   

5:48:03  On/off   Bathroom   Bathroom sink was turned on. 

5:58:03  On/off   Bathroom   Bathroom sink was turned off. 

6:03:03  Move   Hall   Person is caught by Hall   

6:03:08  Move   Center   Person is caught by Center   

6:03:13  Move   Kitchen   Person is caught by Kitchen   

6:04:03  On/off   Kitchen   Fridge was turned on.  

6:05:03  On/off   Kitchen   Fridge was turned off.  

6:11:03  Move   Center   Person is caught by Center   

6:11:13  Move   Living room   Person is caught by Living room  

6:12:03  On/off   Living room   TV was turned on. 

6:39:08  Move   Center   Person is caught by Center   

6:39:08  On/off   Living room  Person is in a different room than TV which was turned off by House System. 

6:39:13  Move   Hall   Person is caught by Hall   

6:39:18  Move   Bathroom   Person is caught by Bathroom   

6:44:03  Move   Hall   Person is caught by Hall   

6:44:08  Move   Center   Person is caught by Center   

6:44:13  Move   Kitchen   Person is caught by Kitchen   

6:49:03  Move   Center   Person is caught by Center   

6:49:13  Move   Living room   Person is caught by Living room  

 

As both tables describe the same day, it is easy to compare what the intelligent 

system knows about the agent’s activities and what the agent actually did. For 

example, at 6:11 agent Person decided to watch TV, at 6:12 TV was turned on. At 

6:23 the person stopped watching TV and start exercise. Since both activities are in 

the same room and person forgot to turn off the TV, the system did not notice any 

change until 6:39 when the person left room (with the TV still on). Then the system 

turned off TV because no one was watching it. That is just an example of how the 

output of the ambient intelligence model could look. The model uses basic sensors 

partially to avoid privacy issues which often smart environments need to deal 

with. However, it is not the objective of this work to further explore the 

possibilities and limitations of such a system.  
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5.4 Computational Performance  

In the field of multi-agent models, computational complexity is a serious concern if 

a model seeks to process a large number of agents fast. Although the final output of 

this model depends only on one agent or small group of them, lower computational 

complexity is still a beneficial achievement because of possible future 

enhancement of the model and computationally demanding learning algorithm. 

Growing the population of agents is often the highest performance hit because it 

multiplies all processes of the agent. Genetic algorithms do exactly that: generally 

speaking, the larger population, better the results of evolution. 

Beside standard optimization of algorithms, the effort to increase simulation speed 

in multi-agent systems also focuses on the reducing of processing load on 

individual agents and pre-computing the data which are supposed to be used often 

by agents. In [84], thousands of agents drive through the map. The greatest 

challenge for this project was path-finding. Certain approaches are sufficient as 

long as the population stays relatively small, but their simulation time grows fast 

along with the number of agent or complexity of their environment (see 

Figure 35). The best solution for this particular model started with simplification 

of the environment from a detailed Geographic information system (GIS) map to 

a weighted graph. Then the best-proven strategies kept already computed paths 

and then just distributed results, so agents never process the same path again. 

For the purpose of the human simulation, the environment in the proposed model 

was also simplified to a weighted graph. Although pre-computation of paths is 

possible, it is not implemented in this model because the number of agents does 

not reach thousands like in [84], and primarily the overall complexity of behavior 

makes path-finding costs insignificant. Instead, agents use built-in AnyLogic path-

finding algorithm (A* by default), which is sufficient for this purpose. 
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Figure 35: Mean runtime performance of algorithms. (source: [84]) 

To further decrease the computational time of the simulation, some reductions in 

the processing load of agents were used during the implementation of the model. 

Any variable or function which is valid globally through the model should be 

placed in the main class of the model. This way, agents request the value they need 

instead of processing it individually each time. For instance, the truth values 

describing the time of day are at any moment the same across the whole model; 

therefore, agents take the value from the global variable instead of calculating it 

themselves. A performance test was conducted to compare the impact of the 

location of timers on the simulation speed. At the first case, agents had own timers 

individually; the later version uses global timers which trigger corresponding 

actions for each agent. Although this change undoubtedly removes some 

unnecessary operations, its effect on the simulation speed has been statistically 

insignificant. Therefore, performance optimization efforts were redirected to the 

decision-making process. 
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The core of FCM-NAS is the multiplication of a vector with a matrix. Despite this 

calculation being divided by different concept classes, its time complexity is the 

same.  Increasing the number of concept nodes means more possibilities. However, 

adding a new node to an FCM with c concept nodes raises its number of operations 

by 2n+1 per computation. The time complexity of multiplication of 1×n vector and 

n×n matrix is 𝑂(𝑛 ). Reduction of its complexity is undoubtedly possible: there are 

loss and lossless methods to do so. Beneficial lossless optimization is the utilization 

of the specific structure of FCM-NAS and different purposes of nodes to skip some 

sections during computations. If an FCM-NAS contains nodes of external inputs, the 

whole this section is omitted because these values are inserted from the outside; 

hence no other node can influence it. 

Experiments with other modifications were conducted to decrease the time 

complexity of FCM-NAS even further. Multi-criterion decision support method AHP 

was used for the decision-making part of FCM-NAS. Although AHP has the same 

complexity as it processes matrix and vector multiplication as well, it spreads time 

complexity over two smaller sets: 𝑂(𝑛′ ) and 𝑂(ℎ ℎ ), where n’ is the number of 

nodes in a new smaller FCM-NAS, ℎ  represents the number of criteria and ℎ  the 

number of alternatives in AHP. In [77], there was proven that the final number of 

operations is always lower this way because the following statements are always 

true: 

𝑛′ + ℎ < 𝑛      (31) 

ℎ < 𝑛      (32) 

𝑛′ + ℎ ℎ < 𝑛       (33) 

It proved to significantly decrease processing time of FCM-NAS depending on the 

size of the FCM. For the relatively small matrix, 17 concept nodes, computational 

time of this method is less than half of the full FCM-NAS approach (54% decrease). 

Figure 36 shows dependency on the size of FCM-NAS: for example, huge FCM-NAS 

with 180 nodes would be about five times faster with AHP modification.  
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Figure 36: Performance comparison of FCM-NAS and its modification with AHP: the dependency between the 

number of concepts and the time needed to perform a million computations. (source: [77]) 

The main drawback of this method is that fewer values enter the decision-making 

process. The tested artificial life model in [77] with 17 concept nodes had initially 

136 values forming agents’ decision-making. After the combination with AHP, this 

number has been reduced to 20 which considerably limits the learning capabilities 

of agents. This simplification resulted in slightly less effective decision-making: 

4.4% average decrease of fitness in the model. Since the presented ambient 

intelligence model has significantly fewer agents to process and specific demands 

of human behavior, full FCM-NAS matrix with lossless optimization only is used to 

process decision-making. However, if the scope of this model grows or its focus 

does not require such detail, then the replacement of its decision-making part with 

AHP will be a viable option to improve computational complexity. 

The next important area of computational performance is the cost of agents' 

operations in the model. This includes the lower-level activity selection, movement 

through the environment, interactions and even processes of the intelligent system 

with its sensors. The high rate of processing agents’ logic (under 1 millisecond per 

agent) prevents reliable measurement of individual parts of the simulation. 

Fortunately, the model allows disabling specific parts of behavior to compare it 

with the standard configuration. This technique will help to estimate a balance of 

computational demands of the proposed decision-making approach and the other 

operating costs of the simulation.  

Different configurations of agents’ behavior were tested while decision-making 

processes kept the same demands (the same size of the FCM-NAS and the same 
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scenario). A blank decision-making configuration, which does not trigger any 

activity, reached the rate of over 100 000 processed agents per second (see Figure 

37). It is about three times higher rate compared to a standard one. On the other 

hand, the behavior intentionally configured to change activities every minute, 

which keeps agents constantly walking in the environment, has this rate 47% 

lower than a standard one. Conducted performance experiments show that the 

simulation speed is highly dependent on the intensity of agents’ behavior. In most 

cases, operational costs limit this model by greatest contribution regarding 

computational demands. The experiments also shows that processing decision-

making including the schedule management is sufficiently fast even in the worst 

case scenario. 

All the previous results regarding computational performance were run on the 

same system: PC1 described in Table 17. Devices listed in Table 17 were used to 

test the model on different hardware configurations. Figure 38 shows the average 

rate of processed agents per second on all these devices. 

 
Figure 37: Comparison of processing rates of different behaviors. (source: author) 
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Table 17: Specification of testing devices. (source: author) 

Label Operation system Processor (cores, max frequency) RAM Model performance* 

PC1 Win 10 (64-bit) i7 8700 (6 cores, 4.6 GHz) 16 GB 37 113 

PC2 Win 7 (64-bit) i5 3210M (2 cores, 3.1 GHz) 8 GB 22 245 

PC3 Win 7 (64-bit) i3 530 (2 cores, 2.93 GHz) 8 GB 11 571 

All devices used AnyLogic 8.3.3 with Java 9.0.1 

*Average number of processed agents per second – with a standard (default) configuration 

 

 
Figure 38: Comparison of average simulation speed on different hardware configurations. (source: author) 

The performance of the proposed approach allows a smooth run of hundreds or 

thousands of agents while keeping complex behavior. Its modularity also enables 

to modify this approach for either large scale simulations with tens of thousands of 

agents or very complex behavior with over a hundred concept nodes. In the 

ambience intelligence model, its simulation speed is more than sufficient by a large 

margin. Learning through genetic algorithms is the only situation with a large 

population within the model. The primary use of this model allows simulating very 

long periods of time in a few seconds. For example, the model on PC1 with one 

agent go through one year in 35 seconds on average (80 seconds on PC3). 
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5.5 Machine Learning 

During the learning process, the agent’s behavior improves generation by 

generation in pursuit of improvement of the fitness. Many configurations were 

tested to balance parameters of evolution and weights of three parts of the fitness 

function. The ability to design initial decision-making by hand (which would not be 

possible with neural networks) proved to be very useful and time-saving 

concerning the use of genetic algorithms because it allowed starting with evident 

and important relations from the beginning. Otherwise, when learning every 

relation from scratch, it takes significantly more generations to uncover and 

reinforce essential connections of needs and appropriate activities with this 

complex behavior.  

Generally, configurations with lower variability get easily stuck in a local maximum 

of fitness function by triggering activities by wrong inputs. In this situation, agents 

tend to transfer responsibility for decisions to schedule management since 

triggering it is easy to learn and the reward for its scenario completion is high. 

Then, planned activities are covered, but the learning process struggles to discover 

ties between needs and their corresponding activities. Figure 39 shows such 

a situation. Even after one thousand generations, genetic algorithms did not 

manage to teach agents to handle needs, and it optimized behavior only according 

to two other components of fitness function (schedule and free time). A schedule 

containing some need-oriented activities (for example planned dinner) further 

confuses learning mechanism. For this and following experiments with machine 

learning, the sample scenario described above in Table 14 was used. To prevent 

that, either initial by-hand design is needed to guide the population in the right 

direction, or genetic algorithms require different configuration. The latter option 

may be higher selection pressure towards desired behavior or high variability 

(meaning more pronounced mutation) for significantly more time to properly 

explore possibilities. 
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Figure 39: Development of fitness during genetic algorithms getting stuck at local maximum.  (source: author) 

 

Figure 40: Development of fitness during genetic algorithms with higher selection pressure towards needs.  
(source: author) 

Figure 40 shows another attempt with the same parameters except weights of the 

fitness component evaluating needs. This time it was set higher than the schedule 

component leading to higher selection pressure towards needs satisfaction. This 

configuration managed to overcome difficulties of learning complex behavior from 

blank decision-making. However, since the pressure for satisfying needs was the 

strongest, the final behavior tends to ignore the weaker free time fitness 
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component. Which leads to spending most of the time on needs despite their low 

level; hence the behavior is less effective. 

Figure 41 shows the development of the fitness value during the experiment that 

started with an initial by-hand designed matrix of relations R. This way, FCM-NAS 

starts the learning process in a basic operational state. This initial configuration is 

not optimized to recognize priorities of different needs and does not have proper 

sensitivity to switching behavior between need-related and planned activities. 

However, all needs are connected to corresponding activities saving genetic 

algorithms a lot of time, so it starts with the optimization of these values instead of 

searching for them. Notice that the fitness value in the experiment on Figure 41 

converged to a very high value in a much shorter time in comparison with the 

previous experiments starting from scratch. 

The configuration of genetic algorithms is an essential step in creating desired 

behavior. Some values significantly influence the final behavior or the duration of 

learning. Firstly, the fitness function with its three components pushes evolution in 

the desired direction. As the best balance of weights of this three components 

proved to be as follows: weight of schedule component W  at 1.5; the weight of 

need-related fitness W  at 1.0; and weight of free time component W  at 0.5. It is 

recommended to keep planned activities more important than free time; 

otherwise, it might simply skip some longer activities with lower priority just to 

save time. For the configuration of parameters of mutation, the model uses 

dynamic values gradually lowering variability. In the beginning, mutation is 

pronounced to randomize genes and spread across a wide range of possibilities. 

After this phase, every 200 (or 400 depending on the speed of convergence) 

generations, mutation softens and makes smaller adjustments of values to find 

a more precise solution. The size of steps which are genes modified with starts at 

0.1; at the end, this size was set to 0.01, which determines the final precision of the 

solution. 
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Figure 41: Development of fitness during genetic algorithms starting from by-hand designed FCM-NAS matrix.  
(source: author) 
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6 Discussion 

This section compares the created model with the projects described in the State of 

the Art, and also returns to objectives of this work, evaluates accomplished goals 

and achievements, and outlines the future direction of research and possible 

enhancements of this work. 

6.1 Comparison with Other Projects 

Table 18 shows the feature comparison of the method proposed by this work to 

other projects with similar approaches or goals. It offers an overview of the models 

previously presented in section State of the Art. There are also two models 

considered before the design of FCM-NAS connected with schedule management. 

The first one is the finite-state machine that was implemented in the model in the 

beginning. During its implementation, many shortcomings appeared. The demand 

for a better solution was driven by tedious manual creation of a scenario, low 

flexibility, difficulties to connect activities to proper time, and some other 

drawbacks that are listed in Table 18. The second method considered before was 

a simple FCM-NAS, which has been already developed and tested. However, the 

goal of the project expected an implementation of scenarios, which are not 

supported by FCM-NAS alone.  

All these projects and approaches aim for different objectives and focus their 

attention to different aspects of the simulation of human activity. Many of them do 

not explicitly aim for the decision-making which leads to incomplete, temporary, 

or limited solutions which are just enough for the objective but are not scalable. 

For instance, the PerSim simulations rely on a simple list of activities feeding 

agent’s behavior. Since the model focuses on very detailed physical interactions of 

the agent with sensors, it does not run the simulation over an extended period of 

time when the list of activities would reach the end and agent stopped working. On 

the other hand, the HSS model, which would be capable of running infinitely, lacks 

the ability of routine behavior or any scenario implementation which limits it to 

need-driven activities only.  



90 
 

Another possible feature of human simulation is the ability to handle or at least 

support unexpected events in the environment. This feature requires either 

a flexible decision-making method or the mechanism offering to delay or interrupt 

activities. Obviously, models with strict scenarios do not support that feature as 

the simulation is directed only by given scenario. HSS with the need-oriented 

decision-making enables to interrupt activities to satisfy a more pressing need. 

NPCs (agents) in Kingdom Come are capable of handling unexpected situations by 

switching decision-making sub-models corresponding to the current context 

(regular, combat, and so on) [61]. 

The support of more than one agent in the environment is an important feature for 

testing ambient intelligence systems in more complex situations. MASSHA model 

[67] supports and tested two agents in a simulation. Each one has its own dataset 

directing its behavior through a day. This model focuses on interactions with the 

environment and has unvarying behavior; hence the agents’ behavior does not get 

more complex by adding more agents. On the other hand, large-scale models with 

hundreds of agents like DiaSim [76] or ALModel with FCM-NAS only [77] tends to 

focus on the emergence and simplify agent’s behavior which does not support 

routines or more complex interactions. The proposed method offers potentially full 

support of interactions based on both situational need and planned activities. 

However, only basic multi-agent support and interactions were tested in the model 

(see 4.7 Multi-agent Support). 

The support of multiple scenarios per agent and conditions of activities makes 

behavior varying and more situation-specific. The proposed solution allows setting 

agents with an unlimited number of scenarios for different days of the week (or 

even month). Their schedule can be further randomized by the probability of 

appearance of activities. The method also enables activities to set conditions that 

need to be met in order to start. Unmet conditions then trigger alternative 

activities. These features make possible behaviors very complex and varying 

through a simulation. 
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Although in some models it may be possible, none of the models actually uses 

machine learning. All their decision-making processes are set and configured by 

hand including scenarios. As described in section 5.5 Machine Learning, the 

proposed model uses genetic algorithms to adjust behavior for specific goals or 

a scenario. It can ultimately simulate each agent with different behavioral 

configuration learned specifically for its style of life (scenario). This feature is 

exclusive to the proposed model.  

Regarding decision-making, the method presented in this work is able to emulate 

approaches of any previously described human activity simulation by omitting 

some elements of decision-making or learning the decision-making mechanism 

with adjusted weights of the fitness function. As shown in section 5.1 Need-

oriented Behavior Only, the method can generate the same behavior patterns as 

simpler decision-making without scheduling capabilities. The opposite approach 

with the scripted scenario was emulated as well (see section 5.2 Routine Behavior 

Only). In section 5.3 Combination of Need-oriented and Routine Behavior, the 

combination of both approaches, which is exclusive to the proposed solution, 

proved it can autonomously manage dynamic agent’s needs within planned 

scenario by delaying less critical activities or omitting redundant ones. 

Experiments in section 5.4 Computational Performance verified the proposed 

solution is not limited by computational performance as it can process one virtual 

year in dozens of seconds, even on a bellow average hardware configuration. 

6.2 Fulfillment of Objectives 

The main objective of this work was to design a method for the simulation of 

human behavior which would be able to process decision-making based on both 

internal needs of agents and planned scenario. To accomplish and prove this 

objective, the following tasks were completed:  

1. Review of application areas of human activity simulation. 

2. Review of studies describing FCM and its modification with a focus on 

agent-based approaches. 
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3. Specification of the modified FCM method for human activity simulation. 

4. Proposal of general methodological procedure of how to design and 

implement human activity simulation for selected application domains. 

5. Implementation of the methodology into an ambient intelligence model, 

conducting experiments, and their evaluation. 

6. Synthesis of results. 

First two tasks were completed in section State of the Art. This section presented 

reviews of human activity simulation, FCMs in agent-based approaches, as well as 

all other research areas connected to this work. For each area of interest, it defined 

basic concepts and presented related works. It also described the mathematical 

background of FCM as the core method for the proposed approach, which further 

enhances these formulas in the context of agent-based models. 

The following section, Solution, accomplished tasks number three and four. Its first 

part thoroughly describes the proposed enhancement of FCMs targeted to agent-

based uses. Then the solution of routine behavior is presented showing general 

data structure and helpful information for the implementation of routines into any 

agent-based model. After both of these components are presented, this section 

discusses their cooperation and implementation into the model. 

The fifth task, implementation of the model, was completed on the platform 

AnyLogic 8. Some of this process is described in section Solution; while section 

Results presents experimental results acquired by running the built model. 

The response to the sixth task is presented in the section Results, which offers 

results of several experiments focused on the function of the model as a whole, the 

rationality of the decision-making and also its learning abilities through genetic 

algorithms. Then, this section compares the proposed method with models 

described in State of the Art to point out the positives and negatives of different 

approaches in the researched area. This comparison highlights features that are 

unique to the proposed model: the combination of need-oriented and routine 
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behavior and the ability to adapt behavior to the specific scenarios using machine 

learning. 

Main benefits of the dissertation are as follows: 

 It provided a complete overview of the problem of simulating human 

activities in agent-based applications. 

 It provided the design of FCM-NAS method that could serve as a guide for 

the design of decision-making in a wide range of agent-based applications. 

 It introduced the approach that combines the introduced FCM-NAS method 

with routine behavior for the human activity simulation. 

 It further specified steps of implementation of the introduced decision-

making mechanism into agents in an ambient intelligence model and 

pointed out possible obstacles. 

 It presented the results of experiments showing the usefulness and abilities 

of this approach for human activities simulations. 

The proposed solution could be used for a simulation of any living creature 

following routines during its life. In theory, it may improve an artificial life model 

with the addition of a day/night cycles, used as artificial intelligence for characters 

in computer games, or simulate agents in multi-agent models for research 

purposes or testing of ambient intelligence systems. 

The last mentioned use case was tested. The behavior of the entity with this 

approach was implemented and tested within the virtual environment of 

an ambient intelligence model. The model is using the AnyLogic, which is a Java-

based development platform optimized for agent-based models. The solution uses 

machine learning to optimize decision-making method. Agents’ behavior is 

evaluated through fitness function and then adjusted by reinforcement learning – 

genetic algorithms. The fitness value depends on the percentage of accomplished 

scheduled activities and satisfaction of the agent’s needs. Like in human behavior, 

the goal is not to start every scheduled activity exactly at the second it was meant 
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to begin. The intended behavior always considers not only schedule but even the 

current situation or expected events in the near future. Then, the agent is able to 

accomplish all the important scheduled activities. It may skip less important ones; 

however, there should always be a reason for every skip resulting from the current 

situation. 

6.3 Future Work 

Despite these achievements, this model has still the potential to advance. For 

instance, extending the simulated environment outside of the living area and 

adding more agents with complex interactions would allow simulating even work 

environment, potentially whole smart city. It would require new activities, 

interactions and even cooperation with other agents. Most importantly the method 

would need to process expectancy and uncertainty regarding other agents’ 

behavior, which means that agents would need to synchronize their schedule and 

react when others are delayed. Currently, the model assumes that agents are not 

going through any significant changes (dramatic change in a lifestyle or agents 

moving in/out) during a simulation, which would also be possible to implement. 

On the other hand, there is also a possibility to aim for a more detailed 

environment instead. That would, of course, require detailed low-level operations 

inside already implemented activities. For example, when the agent is making 

dinner, it would split into many simple tasks like open/close drawer or cabinet, 

take dishes and so on. In theory, the proposed method allows the addition of 

animations and very detailed physical sensory detection; however, the current 

platform is not well suited for it.   
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7 Conclusion 

This work presented the new approach of human activity simulation using 

an agent-oriented modification of fuzzy cognitive maps with the addition of routine 

behavior sub-system. The proposed decision-making method is designed to follow 

a daily schedule while still being able to react to unexpected situations and manage 

an agent’s needs autonomously. The main objective of this work was the design of 

a method for the simulation of human behavior which would be able to process 

decision-making based on both internal needs of agents and planned scenario. To 

accomplish the objective and test the proposed design, this method was 

implemented into an ambient intelligence model and compared with projects with 

similar objectives. It features abilities like delaying or interrupting activities due to 

unexpected events, multi-agent and multi-scenario support, conditions and 

requirements of activities, and hierarchical structure of contexts-activities-actions. 

On top of these more or less usual features of human simulation, the proposed 

model has added two unique ones: the cooperation of need-oriented and routine 

behavior and adaptation of behavior through machine learning. 

In the beginning, this work summarized the current state of the art regarding the 

original fuzzy cognitive maps and their mathematical background, ambient 

intelligence models and other fields that are related to human activity simulation. 

This section also presented some projects that either use similar methods or aim 

for similar goals as the model implementation of this work. 

The FCM-NAS, as the core method, was described in detail along with its abilities to 

learn. Also, the second component of the decision-making mechanism was 

presented: routine behavior implemented by scenarios and schedule management. 

Then the cooperation of these methods was introduced since both components are 

independent decision-making processes which might otherwise want to control 

the behavior of a single agent in an incompatible manner. After the design, this 

work presented its implementation into an ambient intelligence model and its 

adaptation by genetic algorithms. The final section describes conducted 

experiments and their results proving the accomplishment of the objective. 
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Attachments 

Content of the attached disc 

The disc attached to this work contains the full text of the doctoral thesis, the 

model of ambient intelligence on AnyLogic platform, and the artificial life model 

(ALModel), which was mentioned as an example of FCM-NAS on platform NetLogo. 

User guides, generated output data, source codes, and installation files for 

platforms in the correct version are also included. The content of the disc has the 

following structure: 

 Thesis 

o Text 

o Figures 

 Models 

o Ambient intelligence model 

o ALModel 

 Software 
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Algorithm 

The following pseudocode includes the algorithm of the computation of FCM-NAS 

with all support functions needed to process values every time step. 

Input: 

matrix  //two-dimensional array of values of relations between nodes 
values  //one-dimensional array (vector) of values of all nodes 
 
necessityValues //values for optional necessity calculations 
necessityOfStates //evaluation of necessity of State nodes 
necessity  //true if necessity calculation is active; false if it is not 
primaryState //position of Primary State node 
firstInput //position of the first input node; expecting all following are 

input nodes as well 
granularity //granularity parameter 
criticalValue //minimal level of Activity nodes required to start activity 
 

High-level procedure: 

processFCM(values, matrix){ 
 previousValues = copy(values) 

processNeeds() 
processStates() 
updateInputStateNodes() //if there are any external input nodes 
processActivities() 
transformationOfActivities() //select activity to perform 

} 
 
 

Computations of FCM-NAS sections: 

processNeeds(){ 
for (j = 1, …, numberOfNeeds){ 

  increment = 0.0 
  for (i = 1, …, numberOfNodes){ 
   increment += matrix[i, j] ∙ previousValues[i] 
  } 

values[j] = transformation(previousValues[j] +  
+ (granularity ∙ increment)) 

} 
} 
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processStates(){ 
for (j = numberOfNeeds + numberOfActivities + 1, …, firstInput){ 

  value = 0.0 
  for (i = 1, …, numberOfNodes){ 
   value += matrix[i, j] ∙ previousValues[i] 
  } 
  values[j] = transformation(value) 

} 
fitness = values[primaryState] 
values[primaryState] = 1.0 

} 
processActivities(){ 
if (necessity){ 

for (j = numberOfNeeds + 1, …, numberOfNeeds + numberOfActivities){ 
  value = 0.0 
  for (i = 1, …, numberOfNeeds){ 
   value += matrix[i, j] ∙ previousValues[i] ∙ necessityValues[i] 
  } 

for (i = numberOfNeeds + 1, …, numberOfNodes){ 
   value += matrix[i, j] ∙ previousValues[i] 
  } 
  values[j] = value 

} 
}else{ 

for (j = numberOfNeeds + 1, …, numberOfNeeds + numberOfActivities){ 
  value = 0.0 
  for (i = 1, …, numberOfNodes){ 
   value += matrix[i, j] ∙ previousValues[i] 
  } 
  values[j] = value 

} 
}} 
 
transformationOfActivities(){ //no pararel activities allowed in this version 

max = 0.0 
maxPosition = -1 
for (i = numberOfNeeds + 1, …, numberOfNeeds + numberOfActivities){ 

if (values[i] > criticalValue  AND values[i] > max){ 
max = values[i] 
if (maxPosition != -1) 

values[maxPosition] = 0.0 
maxPosition = i 
values[i] = 1.0 

}else 
values[i] = 0.0 

} 
} 
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Support functions: 

transformation(value){ 
 if (value > 1.0) 
  value = 1.0 
 if (value < 0.0) 
  value = 0.0 

return value 
} 
 
setUpNecessity(){  //executed once at the start of a model 
 for (i = 1, …, numberOfNeeds){ 
  coeficient = 0 

 for (j = numberOfNeeds + numberOfActivities + 1, …, numberOfNodes){ 
   coeficient -= matrix[i, j] ∙ necessityOfStates[j] 
  } 
  necessityValues[i] = coeficient 
 } 
 sum = 0.0 
 for (i = 1, …, numberOfNeeds){ 
  sum += necessityValues[i] 
 } 
 diff = 1 - (sum / numberOfNeeds) 
 for (i = 1, …, numberOfNeeds){ 
  necessityValues[i] += diff 
 } 
} 


