

University of Hradec Králové

Faculty of Informatics and Management

Department of Information Technologies

Human Activities Simulation Based on Fuzzy Cognitive Maps

Doctoral Thesis

Author: Ing. Tomáš Nacházel

Study program: P1802

Field of study: Applied Informatics

Supervisor: doc. RNDr. Kamila Štekerová, Ph.D.

Department of supervisor: Department of Information Technologies

Hradec Králové October 2019

Declaration

I declare that this thesis and the work presented in it are my own original research

and it has been generated by me using only sources cited in the chapter

References.

Hradec Králové Ing. Tomáš Nacházel

Acknowledgements

I would like to thank my supervisor doc. RNDr. Kamila Štekerová, Ph.D. for her

assistance and constructive criticism throughout my Ph.D. study and preparation

of this work. I am also grateful for the help and useful recommendations by RNDr.

Petr Tučník, Ph.D. and others who participated in projects and prepared

publications with me. Finally, I would like to thank my family for support

throughout my whole study.

Annotation

The aim of this work is the design and implementation of a method for human

activity simulation. Regarding decision-making, the desired behavior is

characterized by both need-oriented goals and routines. To accomplish this

objective, this work uses own modification of fuzzy cognitive maps for autonomous

agents that has been enhanced by sub-system which enables agents to perform

activities planned through scenarios. The developed method was verified by

implementation into ambient intelligence model and compared to other projects

with similar aim or objective. The comparison shows the complexity of the

proposed design and unique features like a combination of need-oriented and

routine behavior and adaptation of behavior to specific scenarios by genetic

algorithms.

Keywords: human activity simulation; fuzzy cognitive maps; scenarios; routines;

multi-agent systems; ambient intelligence; genetic algorithms

Název: Simulace lidského chování založená na fuzzy kognitivních mapách

Anotace

Tato práce se zabývá návrhem a implementací metody pro simulaci lidského

chování. Z pohledu rozhodování se takové chování vyznačuje zaměřením na

potřeby a zároveň opakujícími se rutinami. K řešení tohoto problému byla využita

vlastní úprava fuzzy kognitivních map pro autonomní agenty, která byla

obohacena o sub-systém, který umožňuje vykonávat plánované aktivity pomocí

scénářů. Vytvořená metoda byla ověřena implementací do modelu ambientní

inteligence a porovnána s projekty podobného zaměření nebo cíle. Z porovnání

vyplývá komplexnost navrženého řešení a unikátní vlastnosti jakými jsou

například kombinace potřebami i rutinami řízeného chování a adaptace chování

pro specifické scénáře pomocí genetických algoritmů.

Klíčová slova: simulace lidského chování; fuzzy kognitivní mapy; scénáře; rutinní

chování; multiagentové systémy; ambientní inteligence; genetické algoritmy

Content
1 Introduction ... 1

2 Objectives .. 4

3 State of the Art ... 5

3.1 Decision-making ... 5

3.1.1 Fuzzy Cognitive Maps .. 7

3.1.2 Genetic Algorithms .. 13

3.2 Human Activity Simulation ... 16

3.3 Ambient Intelligence Simulators .. 21

3.3.1 PerSim .. 23

3.3.2 Home Sensor Simulator .. 24

3.3.3 MASSHA ... 26

3.3.4 OpenSHS .. 28

3.3.5 Other Ambient Intelligence Simulators .. 30

4 Solution ..31

4.1 Introduction to FCM-NAS .. 31

4.1.1 Structure ... 32

4.1.2 Concept Class Needs ... 33

4.1.3 Concept Class Activities... 34

4.1.4 Concept Class States ... 35

4.2 Additional Features of FCM-NAS .. 36

4.2.1 Granularity ... 36

4.2.2 Faster Reactions of Agents ... 38

4.2.3 Disabling Parallel Activities ... 40

4.2.4 Primary State, Fitness, and Constant Increments 41

4.2.5 Necessity ... 43

4.2.6 Processing FCM-NAS .. 45

4.3 Applications of FCM-NAS .. 46

4.4 Routine Behavior .. 51

4.4.1 Scenarios ... 51

4.4.2 Schedule Management ... 53

4.5 Behavior of Agents ... 58

4.6 Genetic Algorithms .. 60

4.7 Multi-agent Support .. 64

4.8 Implementation... 66

4.8.1 Implementation of Decision-making .. 67

4.8.2 Environment .. 70

4.8.3 Randomness and Repeatability .. 73

5 Results ..74

5.1 Need-oriented Behavior Only .. 74

5.2 Routine Behavior Only ... 75

5.3 Combination of Need-oriented and Routine Behavior 76

5.4 Computational Performance .. 79

5.5 Machine Learning ... 85

6 Discussion ...89

6.1 Comparison with Other Projects .. 89

6.2 Fulfillment of Objectives .. 92

6.3 Future Work ... 95

7 Conclusion ...96

8 References ...97

8.1 List of Author’s Publications ... 103

8.2 Overview of Research Activities .. 105

List of used abbreviations

Abbreviation Description
1 FCM-NAS Fuzzy cognitive map enhanced by three classes

(Needs, Activities, States) for autonomous agents
2 AHP Analytic hierarchy process
3 ALModel Artificial life model
4 DFCM Dynamic fuzzy cognitive map
5 FCM Fuzzy cognitive map
6 HSS HomeSensorSimulator
7 KCD Kingdom Come: Deliverance
8 MAS Multi-agent system
9 MASSHA Multi-agent system for human activities simulation
10 NPC Non playable character
11 OpenSHS Open Smart Home Simulator
12 PerSim Ambient intelligence simulator
13 PRNG Pseudorandom number generator
14 PS Primary state (in FCM-NAS)
15 RFID Radio-frequency identification

List of used symbols

Symbol Description
 ac The critical level for processing Activity nodes
 ci The i-th concept node in an FCM
 cp The Primary State node
 C The set of all concept nodes in an FCM
 𝒞 Partition of the original set of concept nodes C
 CA The set of all Activity nodes in an FCM-NAS
 CN The set of all Need nodes in an FCM-NAS
 CS The set of all State nodes in an FCM-NAS
 di A value representing necessity of a State node si
 e’i A temporary variable for the calculation of necessity

coefficient ei of Need node ci
 ei The necessity coefficient of Need node ci
 f Transformation function
 fa The transformation function for processing Activity nodes
 fD Transformation function for the Delay value
 fP Transformation function for the Planned value
 F The final fitness function
 FF Fitness function based on the average success rate of

satisfying needs (value of Primary State node)
 FP Fitness function based on completion of planned activities
 FT Fitness function based on portion of free time during a

simulation (extra time which was not used for a planned
activity or satisfying needs)

 g Granularity parameter
 ha The number of alternatives in an AHP
 hc The number of criterion in an AHP
 i List, array, or matrix iterator; positive integer
 j List, array, or matrix iterator; positive integer
 kn An increment to shift necessity coefficients of Need nodes
 l Constant affecting the curve of the priority functions
 m Total number of activities planned during the simulation
 n The number of concept nodes in an FCM
 n' The number of concept nodes in a new smaller FCM

enhanced by AHP
 nA The number of Activity nodes in an FCM-NAS
 nN The number of Need nodes in an FCM-NAS
 nS The number of State nodes in an FCM-NAS
 p The position of Primary State node

 R The adjacency matrix containing all relations wij
 t Time step; integer number representing number of past

iterations of an FCM
 td Time difference between the current time t and planned

start 𝑢 of activity ui
 tfree Number of time steps when agent was neither doing any

planned nor need-oriented activity
 tmax Number of past iterations of FCM after a simulation finished

(the number of the last time step)
 TD Time period after planned start 𝑢 of activity ui when the

activity ui is removed from the schedule
 TP Time period before planned start 𝑢 of activity ui when the

activity ui is added to the schedule
 ui The i-th planned activity in a list
 𝑢 The evaluation of progress of planned activity Pi
 𝑢 The importance of planned activity ui
 𝑢 The planned start time of planned activity ui
 𝑢 The tolerance of planned activity ui
 𝑢 The priority of planned activity ui at time step t
 vi The truth value of node ci
 𝑣 The truth value of node ci at time step t
 𝑣 The value of the Primary State node at time step t

 Vt A one-dimensional vector containing values of all concept
nodes at time step t

 wij The value representing the influence of node ci on node cj
 WF Weight of fitness function FF
 WP Weight of fitness function FP
 WT Weight of fitness function FT

1

1 Introduction

Ambient intelligence and smart technologies are continuously spreading into more

aspects of our lives. Their objective is to help, provide information, monitor, or

secure. When researching and developing an intelligent system for a smart

environment, few issues arise. As in any other system, testing needs to be done on

the finished system but also during development and design. Usually, a system

receives some testing data to test its behavior. However, ambient intelligence

needs human interaction with the system which requires real-world

implementation of the system and volunteers for long-term testing. To properly

test the system, months are often required for the system to collect enough data, so

it recognizes routine behavior fully and adjust to the person. Apparently, this

solution is demanding on both time and resources. Software models of ambient

intelligence were created to overcome this problem. A model of the intelligent

system alone is quite straightforward since the only significant difference lies in

a software implementation of sensors instead of physical ones. The challenge

stands in the creation of a simulation of artificial people who are supposed to

interact with the system and generate needed data.

The motivation behind this work originated from GAČR project DEPIES which

focused on ambient intelligence. During this project, a model of a smart

environment was developed. After the implementation of core components of the

intelligent system and environment, the model was missing a mechanism that

would provide human-like behavior. In attempts to create natural behavior, many

approaches were examined, but their possibilities proved to be limited. This

problem initiated the motivation to design a decision-making mechanism that

could provide a simulation of natural behavior.

When simulating natural behavior of any living being, routine behavior covers

a significant portion of its life. Routine is a purposeful behavior made up of simple

goal-oriented actions, which acquire, learn and develop through repeated practice

[1]. As such, proper routines enable predictable and efficient completion of

frequent and repetitive tasks and activities without going through unnecessary

2

resource or time-consuming decision-making and planning every time it occurs.

Therefore, along with general decision-making based on needs and the current

situation, this work will include routines for the simulated persons in an agent-

based model. An agent is an autonomous intelligent computer system capable of

evaluation of the situation, decision-making and performing actions [2].

In the field of artificial intelligence, there are many various approaches to

simulations of intelligent behavior or even the creation of an intelligent entity. It

ranges from the most straightforward rule sets based on stimuli and

corresponding reactions to soft computing with learning capabilities and the

complex neural networks imitating some mechanisms of a biological brain.

Different methods are suitable for various tasks as a neural network is

inconvenient for simple repetitive tasks, and image recognition is nearly

impossible to resolve with simple rule sets. Apparently, there is vast space

between both approaches with a different balance of complexity and difficulty or

performance.

The dissertation focuses on the method that utilizes matrices to process decision-

making. It uses fuzzy cognitive maps enhanced to support autonomous agents and

systems through classification of nodes into three classes: Needs, Activities, and

States (FCM-NAS). This approach stands right in the middle between non-

transparent complex structures with the ability to learn and easy-to-use simple

rules. It takes advantages from both sides of the field. It allows creating complex

structures and learning similar to neural networks while it keeps the human-

readability and comfortable initial design. The other reason speaking in favor of

this method is its scalability and adaptability which will be useful for implementing

scenarios. Despite all these advantages, neither this approach nor any similar one

was developed and used for human activity simulation before.

To verify the proposed design and prove its abilities, the dissertation provides

experiments of this method in an ambient intelligence model. In this case, the

purpose of the method is not controlling the system, but simulating a person

(agent) moving and interacting within the environment covered by the system.

3

This approach might replace the need for real-world volunteer triggering

hardware sensors with an agent triggering software sensors in the model.

Obviously, there are many other application areas of human activity simulation

like social and environmental simulations, the entertainment industry, or robotics;

however, its implementation in ambient intelligence model could also help with

detecting and analyzing agent’s behavior through its interactions with sensors.

The structure of this work is as follows: The next section, Objectives, presents the

aim and main goals of the dissertation. Then the section State of the Art introduces

the basics of decision-making, particularly fuzzy cognitive maps, and genetic

algorithms. It also summarizes projects with similar goals or means to one

presented in this work. The fourth section, Solution, describes the design of the

FCM-NAS and routine behavior as well as the implementation of the approach into

an ambient intelligence model. The section Results presents the results of

experiments conducted on the model regarding behavior, machine learning, and

computational performance. Finally, the section Discussion compares the created

model with the projects described in the State of the Art, and also returns to

objectives, evaluates accomplished goals and achievements, and outlines the future

direction of research and possible enhancements of this work.

4

2 Objectives

The objective of the dissertation is to design a decision-making method for agents

which would combine following the schedule with the ability to react to

unexpected situations at the same time. This approach requires the combination of

two cooperating decision-making systems per single agent. The first system will

manage a schedule created according to a scenario describing the agent’s usual

routine activities during a day. The second system will handle irregularities or fill

meantime between scheduled tasks. There needs to be cooperation between both

systems to accomplish all planned tasks while covering all agent’s needs, random

events or emergencies. The FCM-NAS method will be introduced and enhanced by

schedule management.

The main objective of this work is to design a method for the simulation of human

behavior which would be able to process decision-making based on both internal

needs of agents and planned scenario. To accomplish and prove this objective, the

following tasks will be done:

1. Review of application areas of human activity simulation.

2. Review of studies describing FCM and its modification with a focus on

agent-based approaches.

3. Specification of the modified FCM method for human activity simulation.

4. Proposal of general methodological procedure of how to design and

implement human activity simulation for selected application domains.

5. Implementation of the methodology into an ambient intelligence model,

conducting experiments, and their evaluation.

6. Synthesis of results.

The proposed solution would be useful for simulations of any living creature

following routines during its life. Potentially, it may be used in research to simulate

complex behavior in various multi-agent models, or even add an immersive

behavior of characters in the entertainment industry.

5

3 State of the Art

This section introduces all areas of research related to this dissertation and its

objectives. It starts with a general insight at decision-making before it dives into

details of the core method of this work - fuzzy cognitive maps, and used learning

method - genetic algorithms. Then, this section presents current applications of the

method along with models based on different approaches with similar goals.

3.1 Decision-making

The first and most important area of research required for human activity

simulation is decision-making, especially related to autonomous agents. For agent-

based models, artificial intelligence offers many methods to emulate intelligent

behavior. Regarding structure and adaptability, these methods fall onto a scale

between two opposite approaches. On one end, there is a robust narrowly focused

approach with straightforward rule sets and hardcoded procedures. On the other

end, there is soft computing; more general complex structures that are usually able

to react even to unexpected situations (improvisation), but very hard to configure

and often with not transparent decision-making. At the very end of this scale, there

is the general artificial intelligence [3]. Neural networks are currently the closest

method to this approach.

Methods closer to the first approach (simple, narrow) are the most commonly used

for agent-based models for their simplicity of implementation and usually very

specific objectives of individual agents. In the large scale models, the complex

behavior tends to emerge from simple interactions of many agents. It is effortless

to find examples of this approach: from example models included in different

multi-agent platforms to show their possibilities to most of the models focused on

emergent behavior. The well-known stigmergic mechanism is using many agents

with simple rules observed in nature to accomplish complex path-finding

problems [4].

However, even without emergence, a large enough set of simple rules can generate

behavior which may prove to be very complex or very close to human decision-

6

making in a specific task. Recently updated artificial intelligence in classic strategic

game Age of Empires 2 offers a great challenge for human players despite a very

complex environment, a variety of possibilities, and limited structure of scripting

rules. On almost 30 000 rows of code, scripters of artificial intelligence managed to

implement most strategies of the best human players [5]. In [6], they are dealing

with a similar problem. With limited tools, such procedures are very demanding to

implement, while there still might be some logic holes left for human players to

exploit. In some cases, human players could act intentionally a certain way to

confuse algorithm and make it react advantageously for its opponents. To counter

this, there are attempts to enrich such procedures with more complex structure

with the ability to learn [7], which leans toward the soft computation approach to

decision-making.

On the other side, in opposition to the first approach, there are neural networks.

There is a lot of different ways to implement these, but the core idea lies in

imitation of processes of the biological brain. Its general structure contains inputs

and outputs with manually assigned meaning to connect it with surroundings.

Between input and output nodes, layers of neurons create the logic of a neural

network. Only machine learning [8] can assign a purpose to each neuron. The main

advantages are flexibility and the potential resulting from its complexity and

ability to learn. However, its complexity is concurrently the cause of its

disadvantages. While its implementation is not difficult, it requires a lot of learning

(proportional to its number and size of layers) before a network is usable for

an intended objective [9]. The second problem of neural networks also arises from

its complexity. The final product, neural network after learning, is not human

readable – a black box. Even if a network is small and we can track which neurons

were activated, single neurons often do not carry one simple distinguishable

meaning.

A wide range of methods fits somewhere between these opposites with a more

flexible structure, abilities of machine learning, or a wider range of perceived input

than the first group, but still somehow limited in scope, focus, or size, keeping it

usually human-readable. Methods like Markov decision process [10], Analytic

7

hierarchy (or network) process [11], Petri nets [12], or Fuzzy cognitive maps [13]

are examples of the approaches between scripted procedures and black-box soft

computing. These often use graph theory to represent concepts or states and their

relations – causal dependencies, transition function or weights [14, 15].

As a special category of decision-making worth a mention, there are methods used

specifically in multi-agent models. These approaches require more participants to

utilize game theory and interaction models with auctions, negotiation, cooperation

and so on [16]. However, this dissertation aims for individual-based decision-

making. This aim does not limit the number of agents in a model – only the

complexity of possible interactions among them.

3.1.1 Fuzzy Cognitive Maps

Fuzzy cognitive maps (FCMs) [13] are dynamic systems of concept nodes with

a network of causal relations. They originated from cognitive/causal maps, which

are able to model causality and change of the concepts, by enhancing them with

some principles of fuzzy logic [17]. An FCM is described by a collection of n concept

nodes C, relations wij between these nodes and a function used to adjust values of

nodes. Figure 1 shows graph representation of an example FCM with five concept

nodes. A designed causal map with evaluated oriented edges (relations) is then

transformed into a square matrix. The adjacency matrix R in (1) is a general matrix

representation of an FCM as the matrix of relations between n concept nodes [13].

𝑅 =

𝑤 ⋯ 𝑤
⋮ ⋱ ⋮

𝑤 ⋯ 𝑤
 (1)

where n is the number of concept nodes. Each value wij represents the influence of

node ci on node cj. Throughout this work iterators i, j ∊ ℕ. Values wij may be any

real number between −1 (strong negative causality) and 1 (strong positive

causality):

 ∀𝑤 : 𝑤 ∈ [−1, 1] (2)

If wij = 0, then node ci has no direct influence on node cj. If wij > 0, then a high value

of node ci raises the level of node cj; if wij < 0, then a high level of node ci lowers the

value of node cj.

8

Figure 1: Example of FCM with five concept nodes and relations among them. (source: [18])

Figure 2: Equivalent relations. (source: author)

In addition to the matrix R, an FCM needs the truth values of nodes. Let vi denote

the truth value of node ci. This value represents how much is its corresponding

concept node active or strong. For example, an agent with the high level of the

value corresponding to concept node Fatigue means that the agent is tired. Names

of nodes determine understanding and design of concept nodes and their relations.

When designing causal relations, each concept is interchangeable with its opposite

counterpart. If all relations of the inverted concept are inverted as well, then this

9

change does not influence the logic of the FCM. Figure 2 shows four different

relations which have the same meaning. In this example, the truth value of nodes

Fatigue and its counterpart Energy would be inverted to each other: the low level

of Energy would be equal to the high level of Fatigue.

Since this work uses an FCM in a dynamic environment, it will be changing through

iterations (often called time steps in simulations). Therefore, the variable of time is

necessary for calculations. Let denote time steps with t, which is a positive whole

number starting at zero as FCMs calculates values in discrete time scale and is only

able to advance in time. Changing values of nodes are then specified as 𝑣 , which is

the value of concept node ci at time t. As a truth value, 𝑣 is always a real number

ranging between 0 (definitely not true) and 1 (definitely true). Even if the value

exceeds these limits after computation, it needs to be immediately reduced to the

valid range:

∀𝑣 : 𝑣 ∈ [0, 1] (3)

These values form a vector Vt; a one-dimensional array also valid only for the time

step t:

𝑉 =
⋮

 (4)

The sizes of all components are constant. The vector Vt is updated at every time

step, and the content of R is static. (5) shows the computation of iteration at time

step t based on the original definition model, while (6) represents a version in

which the product of the multiplication is added to the previous value, known as

the incremental model [19].

𝑉 = 𝑓 𝑅 ∙ 𝑉() (5)

𝑉 = 𝑓 𝑉() + 𝑅 ∙ 𝑉() (6)

In both equations, function f represents a transformation of values. It is a real

function of a real variable. Many diverse types of nonlinear functions can be used

(e.g. sigmoid, hyperbolic, step and others). The primary task for this function is to

keep the values within the interval from zero to one. The model described in this

10

dissertation mostly uses a simple linear transformation unless a value exceeds this

interval:

𝑓(𝑥) =

0 𝑓𝑜𝑟 𝑥 < 0

𝑥 𝑓𝑜𝑟 𝑥 ∈ [0, 1]

1 𝑓𝑜𝑟 𝑥 > 1
 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ (7)

The original FCMs handle all concept nodes in the same way, which causes a few

issues in systems that contain elements of a different type. For example, if an FCM

considers a few inputs and then decides whether to trigger an action, then a trigger

node has to be processed differently than the other nodes. Besides choosing

a sufficient level of the node to trigger an action, it usually has to recognize only

two states of node: an action is performed or not. Such differences in the

processing and interpretation of nodes make FCMs confusing and less modular.

This is the reason to use a modification which is built to handle such situations.

FCMs are a powerful tool in modeling various dynamic phenomena and systems

which consist of many dependent variables in a complex structure. Usually, an FCM

is designed for a single narrow task as a support tool for analysis [20, 21], decision-

making [22, 23], predictions [24], and various tasks in social sciences [25, 26].

These FCMs aim for specific values after a few iterations or search convergence

and stable state of the system. However, this work regards FCMs as an artificial

intelligence method for systems in dynamic environments. Autonomous systems

have to handle a much wider range of situations and require a different approach

to the FCMs. FCMs with a few enhancements prove to be strong artificial

intelligence method even for autonomous agents [27].

In the field of intelligent systems, a few projects aiming for interaction with human

use an FCM to simulate emotions. For educational purposes, a virtual pet was

designed with an FCM that ensures believable reactions to user’s actions [28]. Also,

an ambient intelligence system enriched its user interface with FCM-based

emotions to provide additional comfort and naturally respond to the presence of

users [29].

11

In many projects, FCMs are a core component of a system or agent in a model. For

instance, it is used by monitoring systems, where an FCM assesses risk in critical

situations [30], a situation awareness model for infantry platoon leaders [31], or

even landing site selection for planetary exploration [32].

Several articles cover the possibilities of learning FCMs. Systems in a dynamic

environment have to deal with continuous changes; therefore, unsupervised

training of the FCM or even adjusting it during runtime are desirable features in

such projects. Genetic algorithms and Hebbian algorithms are commonly used as

a base for various extensions dealing with this issue [19, 33].

Dynamic fuzzy cognitive maps (DFCMs) are one of the extensions focusing on the

learning of FCMs. It is based on the random neural model, which was designed to

react to random events by modifying causal relations. The main feature of this

approach is the ability to change an FCM during runtime, which enables adaptation

and switching different behaviors at runtime. This extension was used as

a supervision system [34] and a navigation system of a robot [27, 35].

FCMs also provide useful services in multi-agent systems. There are two areas

suitable for this method: as a supervisor monitoring and controlling

an environment [34, 36] or an artificial intelligence controlling individual agents.

The second area is not commonly used because FCMs in their original form are not

convenient for this purpose nor modifications that could support this role are not

well known yet. However, many of the previously mentioned works had to touch

the problem of FCMs for autonomous systems at least slightly. Moreover, models

like the EcoSim model, which will be described in the following paragraphs,

already process agents with an FCM.

EcoSim [37-39], an artificial life model, uses an FCM to process the agents’

behavior, and its usage is close to the method in this work. The simulation includes

the evolution of values in the FCM, which enables adaptation of behavior. Agents

have available just a set of basic actions, from which they choose the optimal one

for a current situation. The development and behavior of the population emerge

12

from interactions between agents. EcoSim contains two types of species (predator

and prey), which both evolve to raise their chances against the rival species.

The decision-making of prey and predator species differs in its actions and

observed properties. As seen in Figure 3, it combines high-level and low-level

control at the single map which generates a very complex FCM (26 concepts). The

width of the arrow represents the strength of a relation. Blue color means positive

relation; red negative. The structure of the FCM forms layers determining the

direction of relations, which resembles the structure of a neural network or the

framework of FCMs for autonomous agents presented later in this work. The first

(input) layer (left side in Figure 3) contains pairs of inputs. Each pair has

a separate node for low and high presence of the corresponding quality. The

middle layer connects inputs with the last layer (right side in Figure 3), serving as

outputs. In this case, levels of output nodes decide the action that agent will choose

in reaction to given inputs.

Figure 3: Concepts and their relations of FCM in the EcoSim model. (source: [38])

13

Despite the size of the FCM, the behavior is focused only on the reproduction and

management of food and energy. Generated patterns are visually close to the cell-

based models. According to [40], EcoSim aims to observe the emergence and

evolution of the population rather than realistically simulate the behavior of

individual living creatures.

3.1.2 Genetic Algorithms

Using decision-making requires more than the choice of the right method suited

for a task and its implementation. Its design and configuration are essential to

ensure consistent and reasonable results. For the hardcoded procedures,

a designer has to set everything by hand and be aware of every possible input.

However, soft computing methods usually offer possibilities for machine learning.

These possibilities depend on the selected method. Some of the methods are

available for initial manual configuration, and then an automatic learning process

optimizes the result. However, neural networks, for instance, are not suited for by-

hand design at all, and therefore they require machine learning before they are

ready to operate.

Generally, machine learning [41] includes methods for supervised, unsupervised,

and reinforcement learning. Supervised learning aims at classification and

regression; its objective is to pick the correct output for input sets.

Backpropagation is one of its tools to correct wrong answers by adjusting internal

weights. After enough learning data, decision-making can recognize and classify

even inputs that it did not encounter yet. The objective of the unsupervised

alternative is similar to the previous one with the exception of creating its own

output classes (clusters). Mentioned learning algorithms focus on handling big

data structures, and they can be useful for agent-based models as well; however, it

is not suited for training decision-making part of agents. For instance, the

previously mentioned EcoSim model uses cluster analysis to create species and

sort agents into groups corresponding to their traits [42]. Nevertheless, previous

adjustments of these traits were executed by reinforcement learning – specifically

by genetic algorithms [43].

14

The reinforcement learning algorithms are the most relevant for a configuration of

agents’ decision-making. The base concept of this type of learning lies in rewarding

the subject after good (intended) behavior or penalizing it after bad behavior. It

also differs by not tying specific inputs to a specific output and permits sub-

optimal solutions. As the agent goes through reinforcement learning, inconvenient

connections drop and useful ones are reinforced [44, 45].

The Q-learning is an example of reinforced learning, where the subject chooses

an action from known selection based on expected reward. After each selection, it

evaluates its decision and corrects expected rewards for the future. Its goal is to

explore useful states to go through and learn a policy that brings the highest

cumulative reward [46]. In cases where every action can be evaluated every step,

this method converges very fast to the optimal solution. For complex environments

where actions may have delayed or unclear consequences, machine learning offers

more general and universal method – genetic algorithms.

After Charles Darwin published principles of evolution in 1859, his ideas were

extracted from biology scope and generalized into the algorithm that is able to

solve a wide range of problems. The popularity of this method is recently rising

thanks to significant increases in available computational power - along with more

frequent use of soft computing to solve computationally expensive problems [47].

Figure 4: Example operations with binary genotypes. (source: [48])

15

Genetic algorithms imitate natural phenomena of natural selection, breeding,

mutation, and apply it to the gene pool of a population. Each individual from the

population is characterized by own genotype (also sometimes called

a chromosome) – a string of values that represents a solution to an examined

problem. Type of these values can be binary, truth values, integers or any symbols

which are then translated by the program into the part of a solution. An important

requirement of genetic algorithms is the ability to evaluate each solution on

a continuous scale allowing ordering and comparing genotypes. After the

evaluation, it proceeds with selection and genotype operations to create a new

population (see Figure 4). Following steps explain standard procedures of genetic

algorithms [49]:

1. Create a starting population

2. Evaluate each genotype using a fitness function

3. Select pairs of genotypes using a selection mechanism based on fitness

values

4. Apply crossover for each selected pair of genotypes

5. Replace old population with newly created genotypes

6. If a target condition is met, then end this procedure; otherwise return to

step 2

In [50], the authors evaluated different crossover approaches; particularly the

number and position of crossover sites. Crossover sites are points in a child

genotype, where the inherited values switch their source (from one parent

genotype to another and back). Besides the basic ones seen in Figure 4, they tested

multi-point, uniform, and variable-to-variable crossovers. Their results showed

that approaches with fewer crossover sites converge to better results faster. The

authors recommended single-point crossover as the best choice for general use.

The worst approach in this regard was uniform crossover, which deals with every

gene on its own leading to random number of crossover sites. However, they

16

acknowledged that the uniform crossover shows the best exploration ability,

which is the reason for its slow convergence.

Many modifications appeared since the first attempts to apply evolutionary

principles to a computational problem. Some approaches try to approximate the

source of this idea (nature) better. For instance, diploid genetic algorithms

appropriate more detailed evolutionary principles of mammals. Instead of one

chromosome, each individual has a pair of them – one from each parent. The

dominance scheme then decides which specific genes will be expressed into

phenotype (actual traits of an individual) [48]. Another interesting idea is to

enhance genetic algorithms with the concept of frozen evolution – a natural

phenomenon, which possibly has a negative effect in real evolution by limiting

further development [51], but its principles could help the learning process with

its convergence towards the optimal solution. The application of genetic

algorithms into a virtual environment allows for a great variety of possibilities to

adapt the evolutionary process to the specific needs of an examined problem and

offers tools that are unreachable in the area of biological evolution.

3.2 Human Activity Simulation

Human-like behavior differs from the behavior of a general perception of artificial

intelligence. The main difference points to decision-making and its cost. Generally,

human decision-making has unlimited alternatives in continuous space and time of

the real world while it is limited by the capacity of brain and time. This

environment forced decision-making mechanisms to develop a strategy that is not

going through all possible alternatives and selects an alternative, which is the best

of the explored ones, even if it might not be the optimal alternative. This theory,

bounded rationality, started to develop along with rational and game theory to

better explain and describe human-like decision-making [16]. The natural interest

to cost-efficient decision-making also leads to developing patterns in behavior -

routines.

Routines are defined by frequent actions a subject performs in different situations

[52]. They are purposeful behavior acquired through repeated practice of goal-

17

oriented activities. Routines enable predictable and efficient completion of

frequent and repetitive tasks and activities. It explains behavioral patterns like the

sleeping schedule of a person or even low-level tasks – learned procedures to

handle specific situations. Routines, like most other kinds of human behaviors, are

not fixed but may vary and adapt based on feedback and the current situation [1].

Description of routines, scenario, has many various approaches. Usually, it is

represented by a sequence of activities optionally tied to specific times, when

activities are supposed to start. With a higher level of detail, those activities might

consist of a series of simple short tasks. For example, when an agent is performing

activity cook dinner, it starts a sequence of elemental operations, which might

trigger various sensors in the environment, like open/close a drawer, move to

stove, turn on/off the stove, and so on [53]. There are several possible

representations of scenarios: trees, Gantt charts, tables, flow diagrams, or

statecharts [54-56]. Obviously, the graphical representations are aimed to be more

human-readable. On the other hand, there are machine-readable formats that are

more suitable for computer processing - tables or XML.

According to [57], human behavior can be represented in many ways regarding the

level of abstraction (see Figure 5). At the highest level of abstraction, a model

eliminates human behavior entirely by simplification. In the middle, models using

system dynamics represent humans as flows to simulate pedestrians and drivers

or total quality management. This work will be focused on the individual approach,

which has the lowest level of abstraction by the mentioned study. However, there

are a lot of possibilities and levels of abstraction even within this individualistic

approach concerning the design of a simulation.

18

Figure 5: Methods of modeling human behavior in a simulation study. (source: [57])

There are many application areas where simulated human-like agents are useful.

Most of them have a narrow focus on a single area, a simple task, and a short span

of time. For example, PlayGA [58] system models human movement in

an environment with various structures to simulate geometric affordance. This

system might be helpful for the architectural design process to evaluate design

alternatives. Also, simplified human cyber activity simulation uses a Markov

Decision Process to model cybersecurity threats emerging from human errors [59].

Many studies cover the topic of human simulation under extreme conditions of

various emergencies. These models explore building fires, crashes, natural

disasters, toxic gas releases, radiological releases, and others. During such events,

agents’ decision-making is limited and has straightforward goals – escape, help

other agents or just survive. Some models simulate psychological stress or panic,

which causes agents to act ineffectively. With a higher number of agents in close

vicinity, crowd behavior also impacts the final results of simulations [60].

19

The less frequent but still important part of this area explores human behavior in

a more general scope. Instead of simulating a human in a specific situation or just

narrow indirect effects of human activity, this work focuses on the simulation of

human behavior during its natural existence within a more extended period of

time. Only then higher-level routine behavior takes place in the virtual life of an

agent. Besides ambient intelligence models, which will be described later in detail,

reactive decision-making mechanism with routines could improve artificial life

models, society models, or ecologic simulations as routine behavior is definitely

not exclusive to the humankind only.

Of course, the demand for human simulation is not limited solely to research

purposes. In the growing entertainment industry, computer games are getting

much more complex, and the audience’s requirements rise. There is a high demand

for believable human simulation for non-playable characters (NPCs). The living

world and its inhabitants immerse the player into the game and improve the

overall quality of the game.

Figure 6: A day plan of an NPC in the role of a common peasant in KCD. (source: [61])

Figure 7: Example of priority lanes in the decision-making of simulated persons in the game Kingdom Come:

Deliverance. (source: [61])

20

For example, one of the biggest Czech computer games, Kingdom Come:

Deliverance (KCD), which was very successful on the global market, also uses

similar mechanics. Reviewers around the globe often praised its living world as

one of the positives which made this game stand out from others [62]. The doctoral

thesis at [61] describes in detail believable decision-making implemented in the

game. In KCD, NPCs’ behavior contains a few sub-systems for different conditions.

The higher-level decision-making mechanism selects the general context which

NPC should focus on currently. Then, it decomposes a selected goal into tasks and

to further lower-level actions that lead to the satisfaction of that goal. The standard

behavior of any NPC is straight-forward schedule for the whole day as shown in

Figure 6.

In the context of computer games, human simulation has specific requirements

regarding interactions with a player (or players). Meaning game designers need to

consider all possible interactions either direct ones with the player or indirect

ones through changes in the environment initiated by the player. NPCs in KCD

operate in modes depending on the situation (for instance combat, regular or quest

mode). Figure 7 shows a collision of quest-related activities with regular ones.

Schedules with higher priorities overwrite the daily routine simulation. For more

natural behavior, NPC can skip activities when there is not enough time to finish it

(due to a quest for example). Hence, its internal needs are not strictly managed and

skipped activities are not substituted; the visual quality is the main concern in this

application area.

21

3.3 Ambient Intelligence Simulators

Ambient intelligence and smart environment systems aim to observe user

interactions with the environment, gather data, learn from it and use it to help its

users in daily life without unnecessary intrusion or direct user-system interaction.

To research these systems, many experiments need to be prepared and performed.

However, conducting them in a real environment is expensive due to space and

hardware needed and testing them is hugely ineffective, since it takes real time to

collect data from actual usage of the system. This problem motivated the

development of various simulation approaches for modeling an intelligent

environment to test it virtually [63-66]. A simulation brings advantages over real-

world implementation: it is cheaper and capable to generate a record log worth of

months of system use in a few seconds.

These simulations need to implement agents with natural behavior to acquire valid

results of experiments [53, 67]. They mostly use scenarios with none or random

variations omitting less likely or extreme situations. This type of behavior is

a sequence of activities that might consist of more elemental actions [67, 68].

Models often apply small random variations to imitate real behavior with small

irregularities and break the exact match with a planned schedule from the

scenario. The other approach to human activity simulations is based on the agent’s

parameters which do not respect any daily cycles or regularly repeated behavior.

These approaches cannot deliver believable human behavior simulation within

more prolonged periods of time on their own. None of the current works offer the

combination of both principles to create need-oriented behavior along with

routine and planned activities.

22

Table 1: Analysis of smart home simulation tools. (source: [69])

In [69], the authors of the OpenSHS model presented an overview of available tools

for smart home simulation (see Table 1). Besides previously mentioned

approaches to human simulation, there is a large group of tools which completely

avoid autonomous human simulation. Instead of an artificial decision-making

method, interactive approaches use manual control of a virtual person by a user.

Generally, controlling an avatar by a human participant may capture some specific

interesting scenarios that most of the autonomous agents could not offer; however,

it is not able to generate large datasets. In comparison with the expensive real-

world testing of ambient intelligence, this approach will reduce only hardware cost

while time costs usually stay the same. Also, generated dataset arguably cannot

reach the precision of real-world testing. Since the main objective of this work is an

autonomous human simulation, only models which at least partially offer

autonomous behavior will be examined.

23

Figure 8: Vibration collision detection model in PerSim3D. (source: [68])

3.3.1 PerSim

PerSim [70] is an event-driven simulator for human activities in smart

environments. It focuses on the interaction of a person with sensors and objects in

an intelligent environment. Its objective is activity recognition of agents based on

sensory activation. Key output data measured in the model are the order in which

different sensors were activated and its duration. The agent’s behavior is

a straightforward fixed sequence designed by hand. The agent loads its behavior

from an activity buffer. When it is empty, the simulation ends.

In the most advanced version of this simulator, PerSim 3D [71], users can place

sensors in 3D space and watch an agent’s behavior within a three-dimensional

environment. It has a higher level of detail regarding the physical interactions of an

agent with sensors. As shown in Figure 8, its transfer into the 3D environment and

the intended detail of interactions require realistic animations, which are then

used for precise collision detection of the agent with collision boxes of sensors in

the environment. This mechanism simulates the propagation of vibrations caused

by the agent’s movement or interactions with devices within the environment.

24

To evaluate the realism of animations, online users rated several animations from

the simulation, which they considered sufficiently realistic in the end. Considering

decision-making and behavior, this version also replaces the event-driven model

with context-driven one. This change adds another layer of behavior above

activities, where each context contains one or more activities. Context loops

manage the selection, order, and performance of its activities. However, the

activities/contexts are defined by a user only - similarly to the original PerSim.

Both versions of this simulator aim specifically for realistic sensory detection;

therefore, it is designed for related but still different goals of ambient intelligence

than this work.

3.3.2 Home Sensor Simulator

The Home Sensor Simulator (HSS) proposed in [53] aims to generate sensor data

for ambient intelligence models by simulation of the daily activities of a single

person. Regarding sensors, this application is less detailed than the previously

presented PerSim3D. However, it uses a very similar hierarchical model of

activities (see Figure 9) to break top-level activities (called contexts in the previous

work) into ordered lower-level activities, which are then performed by completing

corresponding elemental actions. HSS does not use schedules; instead, it makes

decisions based on priority. As shown in Figure 10, priority functions consider the

environment, possibly ongoing activities, and the agent’s internal variables

representing its attributes and preferences.

Figure 9: Three levels of actions. (source: [53])

25

Figure 10: Priority function depending on the environment (green), the activity that is currently performed

(orange), and the character of the human (blue). (source: [53])

When the priority of activity reaches a certain threshold, it triggers its start. The

agent is capable of interrupting ongoing activity if a more pressing need appears

(see Figure 11). For that matter, the new activity has to reach the priority level of

the current activity with the additional increase (represented by the dashed line)

corresponding to the agent’s will to proceed and finish the ongoing activity before

moving to anything else.

Figure 11: Example of priority levels of activities developing over model time. (source: [53])

26

Figure 12: Screenshot of the interface of the Home Sensor Simulator. (source: [72])

HSS offers a simple interface and tools to design the environment and the agent’s

growth of needs. It is available for download at [72]. Provided output plots show

activation of sensors, agent’s needs or utility usage during a simulated time (see

Figure 12). The record outputted by SSH shows a time when each activity started

or possibly was interrupted. Although the presented behavior is flexible, can adjust

to the agent’s needs, and even handle situations like a lack of food in a fridge, HSS

clearly lacks any patterns reminiscent of routines. The regular sleeping cycle is the

only time-triggered routine in the model.

3.3.3 MASSHA

MASSHA simulator [67] is capable of processing more agents at once. Agents start

a day with TODO and DONE lists: lists with tasks they need to accomplish or have

already finished that day. TODO list is partially defined by a user but dynamically

expanded by events in the environment. For example, the preparing_dinner activity

generates a new washing_dishes activity and adds it to the TODO list. An agent is

trying to complete all or at least the most important activities from the list. At the

end of the day, lists reset. Agents’ decision-making is responsible for the selection

of an activity from the TODO list. This process is based on the priority of activities,

agent’s skill parameters, or roulette wheel mechanism. To compare priorities, each

activity holds several parameters defining its duration and interactions between

27

an agent and environment. Table 2 lists all these parameters used in the model.

Because the model expects some uncertainty and variability, two parameters are

defining the start time and two the end time. The first set, desirable time, indicate

the optimal interval to perform the activity. The decision-making process attempts

to plan the activity within this interval. When this is not possible, it will try to

perform the activity later. Then there is the second set of parameters representing

the mandatory start and end time. If the agent exceeds these timestamps, the

activity is considered failed.

Similarly to some previously mentioned models, MASSHA also decomposes

activities into a structure, where the high-level objective is a sequence of low-level

actions. It aims at very precise detection of lower-level human interactions with

the environment as it collects data from every drawer, light switch, or cabinet in

the environment. Duration and frequency of sensor usage were compared to the

data collected from real smart environments which observed three different

persons showing a very high percentage of similarity. At [67], authors recognize

that the behavior in MASSHA heavily relies on the TODO list and suggest the future

direction of the model could test some soft-computing methods like Markov

models or neural networks.

28

Table 2: Definition of activity parameters in MASSHA model. (source: [67])

3.3.4 OpenSHS

OpenSHS [69] uses scenarios for the selection of activities of a virtual person. This

model recognizes only the highest level of activities and does not focus on lower-

level actions or animations. It offers import of a 3D environment from a free tool,

and the model itself is also available for download at [73]. To construct scenarios,

it records participants controlling an avatar in the model in specific phases of a day

(for instance early morning, afternoon, and so on). Participants control the avatar

29

from the first-person perspective and manually aim at switches, door handles, or

other interactive devices. Participants can start an activity from a limited list, set

its duration, and the simulation skips time to the end of the activity, so they

continue immediately.

When this interactive approach collects enough data, a researcher aggregates

samples generated by participants to create the final dataset of scenarios that

modularly covers the whole day (see Figure 13). At [74], the authors described this

process in detail. They have gathered data by seven participants to generate

complete datasets and detect anomalies (for example, when a person forgets to

turn off a light or leave a door open). Datasets were used as classification sets for

automated anomaly detection that is applicable in eldercare, healthcare, or

security.

Figure 13: Creation of dataset (collection of scenarios) in OpenSHS. (source: [69])

30

3.3.5 Other Ambient Intelligence Simulators

Another open-source smart home simulator, SIMACT [75], aims for support of

activity recognition in a 3D environment. As such, it is focused primarily on lower-

level actions and simulations. The higher-level activity selection is simplified to

a pre-recorded scenario. Along with the simulator, authors provide files with

gathered data from experiments. This dataset contains performing time of actions,

their usual order, mistakes or hesitations during activities, and other data. It also

recognizes age, sex, and other attributes of participants to create a realistic

performance of activities which could be later used for experiments of activity

recognition.

DiaSim [76] is a simulator developed primarily for the detailed simulation of

heterogeneous devices in pervasive environments. It supports large scale models

with hundreds of agents with simple behavior created in a scenario editor. Three

initial scenarios allow testing behavior of various smart devices under different

workloads. Figure 14 shows the basic structure of its simulation model. For every

type of sensor, there is a type of stimulus producer, which is often a mathematical

function. This function is provided by experts and stimulates corresponding

sensors to trigger events in the environment. For example, luminosity, as stimuli

producer, is detected by light detectors. Depending on the settings of the system,

information from light detectors may turn on/off lights (actuators). This change

then affects the original stimulus producer.

Figure 14: Simulation model in DiaSim. (source: [76])

31

4 Solution

This section presents the solution to the main goals of this work: FCMs modified

for autonomous agents, scenarios management and the cooperation of both

decision-making sub-systems. Then, this section also describes the configuration

and implementation of genetic algorithms, the environment, and other issues

linked with the implementation of the proposed solution into an ambient

intelligence model. The content of this section is the original work of the author of

this thesis.

4.1 Introduction to FCM-NAS

FCM-NAS modification enables agents to make decisions and simulate internal

needs at the same time. The first advantage this matrix-based method offers is

keeping human-readability despite its complexity and possibilities. That allows

manual initial setup, which makes the agent functional from the beginning of

development even without implementing a machine learning mechanism.

Moreover, the relations are readable from matrix even after learning, which means

reasoning is never black-box like in case of neural networks.

The second advantage of the method is its excellent adjustability which allows easy

modifications or additions. The whole part of the method can be easily replaced

with a different method if needed. It has been already successfully modified for

large-scale models where performance is a crucial factor. In that case, Analytic

hierarchy process (AHP) replaced the decision-making part of FCM-NAS [77]. The

combination with AHP improved performance but also proved the adaptability and

scalability of this method by various extensions. In this work, the schedule

management sub-system will enhance the method to accomplish the goal of the

human activity simulation.

The original design of FCM needs to be adjusted to fit in the role of agents’

decision-making. This work will describe all the major changes in detail. The main

difference lies in the classification of concepts. In the original design, all concept

nodes have the same range of values, the same behavior, and the same

32

interpretation. This approach is sufficient in a dynamic system with equal elements

of the same type. However, if an FCM needs to react or make decisions, some

changes are unavoidable. Managing different kinds of nodes after computation

often becomes very confusing and context-dependent; this hinders modularity and

scalability of the FCM. The FCM-NAS offers a different design, which expects

various types of nodes, and processes them according to the classification during

computation. Therefore, any special treatment after computation is not necessary.

This method brings several features, which are impossible to reach by a standard

approach without heavy editing of the algorithm. It enables the combination of

monitoring and decision-making, easy processing of inputs from sensors, faster

reactions of the system, more realistic behavior in simulations (disabling parallel

activities if needed), a simulation of the inner needs, adjustments to the granularity

of the simulation, and self-evaluation of the agent (fitness), which supports

learning (more on these in section 4.2 Additional Features of FCM-NAS).

4.1.1 Structure

The fundamental step to introduce FCM-NAS into a project is the partition of

concept nodes into three classes. 𝒞 is a partition of the original set of concept

nodes C (see (8)). Then CN denotes the set of nodes which were identified as Need

nodes; similarly, CA represents the set of Activity nodes, and CS is the set of State

nodes:

𝒞 = {𝐶 ∪ 𝐶 ∪ 𝐶 } (8)

In the design phase, this approach requires the classification of all concepts into

these classes. Also, since classes are pairwise disjoint sets, each concept node is in

exactly one class. Original notation of the number of general concept nodes n is

extended to distinguish the number of concepts in new classes: nN for the number

of Need nodes, nA for the number of Activity nodes, and nS for the number of State

nodes. Then the following statements result from the previously mentioned

features of the new structure:

∀𝑐 : 𝑐 ∈ (𝐶 ∪ 𝐶 ∪ 𝐶) (9)

𝑛 = 𝑛 + 𝑛 + 𝑛 (10)

33

The notation of individual nodes (ci) and their values (𝑣) stays the same as in the

original FCM design. To distinguish the assignment of nodes to the introduced

classes, it is necessary to define that the collection of nodes has the static order of

nodes starting with Need nodes, then Activity nodes, and ending with State nodes.

Therefore nodes are assigned base on their index:

𝑐 ∈

𝐶 𝑓𝑜𝑟 𝑖 = {1, … , 𝑛 }

𝐶 𝑓𝑜𝑟 𝑖 = {𝑛 + 1, … , 𝑛 + 𝑛 }

𝐶 𝑓𝑜𝑟 𝑖 = {𝑛 + 𝑛 + 1, … , 𝑛}

 (11)

4.1.2 Concept Class Needs

Needs are the first class of concept nodes. Usually, a designed system has at least

one purpose, which it is trying to fulfill. Then, a measure of success in the effort

might be useful. Alternatively, it has to observe a variable and perform an action

repeatedly to keep the variable under control. If the action costs limited resources

or time, the system should consider those costs as it may not be convenient to take

action too often. Then, the system could use a time delay or sensitive balancing. In

such cases, Need nodes are the optimal choice for representation of the concepts.

For example, this class is used for the needs of agents in an artificial life model or

a simulated level of satisfaction with memory management in a system.

The main difference from the other nodes is their behavior during computation.

Their computation is based on the incremental model introduced in (6), meaning it

keeps its previous value and adds (or subtracts) an increment based on influence

of other nodes. Therefore, if there are not active influences from the other nodes,

then it holds its value. (12) shows the computation of value 𝑣 of node ci. This

equation uses the basic transformation function f (see (7)). For a reminder, value

𝑤 represents the influence of node ci on node cj.

𝑣 = 𝑓 𝑣 + 𝑤 ∙ 𝑣 𝑓𝑜𝑟 𝑗 = {1, … , 𝑛𝑁}

 (12)

The value of a Need node represents the level of the necessity to do something to

satisfy the corresponding need. Then, 0 means the need has been satisfied, and

34

an agent does not have to do anything. If its level approaches 1, then the agent fails

in satisfying the need, and it should take appropriate action as soon as possible.

Obviously, the exact critical level of a Need node, which initiates a corresponding

activity, depends on the configuration of relations in matrix R. The design of Need

nodes and its integration into FCM-NAS later enable features like the granularity of

the simulation, addition of true positive causality to itself, self-evaluation of

an FCM-NAS, and the varying necessity of actions (all described in section 4.2

Additional Features of FCM-NAS).

4.1.3 Concept Class Activities

The next class of concept nodes, Activities, represents all possible actions that

a system or agent can perform. If an agent with an FCM-NAS is not just a passive

observer and has to react, manage, or anyhow affect its environment or itself, then

there are two possible solutions. The first approach involves another mechanism

outside of an FCM that reads values from the FCM and makes a decision [78]. The

other one puts the actions directly inside the FCM-NAS, which then holds

the decision-making responsibility.

As actions, these concepts are or are not being active; therefore, after computation,

the Activity nodes have only two possible values: zero (false; the action is inactive)

or one (true; an agent performs the activity). However, during their computation,

these values keep the full interval from zero to one. They are calculated with

a similar algorithm as general nodes in the original FCMs (based on the definition

model introduced in (5)). (13) shows the full computation of Activity nodes.

𝑣 = 𝑓 𝑤𝑖𝑗 ∙ 𝑣𝑖
𝑡−1

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑗 = {𝑛 + 1, … , 𝑛 + 𝑛 }

 (13)

The values are rounded using a simple algorithm (the transformation 𝑓), which

decides the activation of Activity nodes based on their truth values acquired from

the computation. Depending on whether parallel activities are available, it selects

only the activity with the highest value (see section 4.2.3 Disabling Parallel

35

Activities) or performs all activities reaching a certain critical level 𝑎 (the default

is 0.5) as seen in (14):

𝑓 (𝑥) =
1 𝑖𝑓 𝑥 ≥ 𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ (14)

In cases when Activity nodes are supposed to provide a truth value to express

an intensity of actions, basic f transformation (7) could be used. Transformation

functions are adjustable to the demands of the system without any issues with the

rest of the design.

Generally, FCMs are not suitable for a combination of high-level decision-making

(“what should be done”) and low-level operations (“how it should be done”). That

combination often requires too many variables in one structure which causes

performance issues. Low-level problems (for example, pathfinding) would be

extremely ineffective when managed by FCM-NAS along with the other concept

nodes. It could be solved by another FCM dedicated to pathfinding. However, in

any case, low-level operations should be separated from high-level decision-

making to ensure clarity of the model and the most importantly reasonable

performance.

4.1.4 Concept Class States

The third class of concept nodes States is very similar to general concepts in the

original FCMs. The way how it is calculated is almost the same (see (15)), and its

purpose has not narrow focus as the previously presented classes.

𝑣 = 𝑓 𝑤𝑖𝑗 ∙ 𝑣𝑖
𝑡−1

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑗 = {𝑛 + 𝑛 + 1, … , 𝑛}

 (15)

Besides general concepts, the State nodes are the advantageous choice for external

inputs. If an agent needs to be able to perceive an attribute of the environment and

take it into account during the decision-making process, then it requires

a dedicated State node in its FCM-NAS. As a property of the environment, the value

of this node is not directly affected by any node in the FCM-NAS. Therefore, all

relations to this node in matrix R equal zero, which allows omitting its whole

36

calculation. Instead, it is updated by sensors. Obviously, the inserted values have to

be transformed into truth values (ranging from zero to one).

4.2 Additional Features of FCM-NAS

While the previous section described the core of the proposed method, this section

provides optional attachments that are very useful for certain systems but

unnecessary for others. Although a few of these are dependent on each other (the

dependencies are noted), the core design presented above can be implemented

independently of the following features.

4.2.1 Granularity

Since agents process an FCM-NAS through iteration in discrete time steps, the

selection of the period between computations of FCMs is a crucial issue regardless

of whether the system deals with continuous real-time or discrete time steps. The

values of an FCM in a dynamic environment are always valid only within the

particular interval for which the FCM was designed. Generally, a shorter interval

generates better reactions of agents, but it has higher performance demands per

system time unit as it is processed more often. This is very similar to sampling in

signal processing; when samples are too distant, much of the information between

them can be lost.

Figure 15 shows how an FCM-NAS perceives a continuous variable with different

settings of the granularity in continuous time. The FCM-NAS with a granularity of

0.5 is four times more demanding in terms of performance but is also more precise

than one with a granularity of 2.0. The parameter g is a multiplier representing the

length of an interval between computations, which is relative to the default length

of the interval for which a model was initially designed.

37

Figure 15: Comparison of different settings of granularity. (source: author)

Note that in a single system, the granularity parameter of agents may vary,

meaning that they can have different reaction times. In a model with continuous

time, the designer chooses how often an FCM updates its values. In a model with

discrete time, the problem instead lies in deciding how much virtual time (or how

many time steps) elapses between the computations or how much the

environment changes in a single time step. After an FCM is designed, any change to

the length of this interval invalidates certain values related to dynamic phenomena

in the environment. However, with the proposed solution, the influence of

granularity on concept classes is evident; Need nodes are obviously affected;

Activity nodes are not, since a decision could be made at any time; and State nodes

typically are not, but since they have a broader use, some may be affected in

certain cases.

The effect of granularity on Need nodes causes differences in their growth (or

decrease). This can be easily compensated for with a simple enhancement of the

calculation, and the nodes always adjust to the current simulation speed.

(16) shows the addition of the granularity parameter g, which adjusts the size of

the increment every time step.

38

𝑣 = 𝑓 𝑣 + 𝒈 ∙ 𝑤 ∙ 𝑣 𝑓𝑜𝑟 𝑗 = {1, … , 𝑛𝑁}

 (16)

The values of the Need nodes reach (1 𝑔⁄) times more computations per virtual

time unit than they would have with g = 1. For example, in an artificial life model,

an agent escaping from a predator has depleted stamina after three time steps with

the default granularity; with the granularity at 0.5, the agent manages to run over

six computations. Of course, in both cases, it runs the same length and for the same

amount of virtual time, but due to the granularity, it has twice as many

opportunities to reconsider the activity or the direction of its escape.

The main advantage of this feature is the adjustability of a model during its

development. It allows a designer to set values according to a specific time frame

during a design phase and later adjust the time frame without the requirement of

redesigning the whole matrix of relations. For example, if the value of node c1 (for

simplicity, assume it is always at 1.0) is supposed to increase the value of Need

node c2 at rate 0.6 per hour, and the matrix is designed in this time frame in mind,

then w12 would be set at 0.6. However, later in the development, a designer would

realize that one computation per hour is not enough for the system. For the period

of 1 minute between computations, granularity parameter g would be set at 1/60,

and the system would process FCM once per minute. Thanks to this feature the

designed increase rate of Need node c2 stays automatically at 0.6 per hour (or

0.6/60 per minute). Otherwise, the designer would need to edit every value in

matrix R by hand with every change to the granularity of the model. This process

would be especially laborious when testing different computation intervals.

4.2.2 Faster Reactions of Agents

As seen in (5) and (6), the original FCMs compute the current values by using the

values of the previous iteration. This procedure inevitably causes a delay between

a stimulus and the corresponding reaction (i.e., one time step or the interval

between computations of the FCM). Depending on how often the FCMs are

recomputed, this delay may cause problems if the short reaction time is essential

39

for the proper operation of a system. For example, a monitoring system should

react to fire immediately, as soon as sensors detect it, rather than waiting for the

next iteration to take action.

Some researches solve this with incremental or cumulative models [19]. However,

their goal is to achieve FCM with stable converged values in the shortest time

possible. FCM-NAS does not seek one set of values to able to decide; instead, it is

using values of every step to make decisions. With considerations of the objectives

and abilities of this method, there is a far more efficient way to ensure not only

faster but even immediate reactions of agents.

Thanks to the partition of concept nodes to different classes, the computation of

an FCM-NAS can be divided into three parts, which can then be rearranged in any

order. Moreover, some parts can even consider the values of the current iteration

from parts that have already been computed. The best order has proved to be as

follows: first the Need nodes, then the State nodes and finally the Activity nodes. It

is because Need nodes do not have to correspond with the most current values;

since they use an incremental model as shown in (12), their values are primarily

based on their own previous values and actions performed in the previous time

step. State nodes may be based on the current values of needs, but also contain

external inputs that have to be considered in the decision-making as soon as

possible. Finally, Activity nodes, as the decision-making part of the model, should

access the latest values in order to give the best possible reaction to the current

situation.

The implementation of this feature requires only the replacement of values from

the previous time step 𝑣 with the current ones 𝑣 for classes that have been

already computed. (17) and (18) show adjusted expressions for the order

recommended above. The equation for Need nodes is not affected since no other

current values are yet available for time step t.

40

𝑣 = 𝑓 𝑤 ∙ 𝑣 + 𝑤 ∙ 𝑣
()

 𝑓𝑜𝑟 𝑗 = {𝑛 + 𝑛 + 1, … , 𝑛}

 (17)

𝑣 = 𝑓 𝑤 ∙ 𝑣 + 𝑤 ∙ 𝑣

()

()

+ 𝑤 ∙ 𝑣
()

𝑓𝑜𝑟 𝑗 = {𝑛𝑁 + 1, … , 𝑛𝑁 + 𝑛𝐴}

 (18)

For example, in an artificial life model, agents have two concept nodes: the Danger

state and the Escape activity. When an agent recognizes a dangerous situation, it

should immediately escape rather than wait until the next time step to take action.

Tables 3 and 4 show both approaches; obviously, an agent with the FCM-NAS with

this feature has a much better chance of escaping and surviving.

4.2.3 Disabling Parallel Activities

In many systems, the individual actions are independent of each other; however,

there are cases where an agent is limited to one action per time step since different

activities require different positions of the agent or several of them utilize a single

actuator. The original FCM method cannot restrict this without another algorithm

that processes and adjusts the values of specific nodes. If any process or value is

bound to specific nodes by its position in an FCM, then the algorithm has to be

adjusted after any change. This is confusing and a less modular approach.

Table 3: The delay in reaction time in the original FCM. (source: author)

Iteration 1 2 3 4 5 6 7 8
Danger 0 1 0 0 1 1 1 0
Escape 0 0 1 0 0 1 1 1

Table 4: Immediate reactions in the FCM-NAS. (source: author)

Iteration 1 2 3 4 5 6 7 8
Danger 0 1 0 0 1 1 1 0
Escape 0 1 0 0 1 1 1 0

41

The FCM-NAS uses a simple adjusted transformation algorithm for its Activity

nodes, meaning that it is not bound to specific nodes, which allows simple changes

in concepts without disrupting the algorithm. This feature is useful in human

activity simulation, artificial life models, or more generally for any non-trivial

decision-making. For example, as a simulated person, the agent should not be able

to eat, drink, and sleep at the same time step. The following code describes the

adjusted transformation algorithm for non-parallel activities:

max = 0.0
max_position = -1
for (i = nN + 1, …, nN +nA){

if (𝑣 > ac AND 𝑣 > max){
max = 𝑣
if (max_position ≠-1)

𝑣 _ = 0.0
max_position = i
𝑣 = 1.0

}else
𝑣 = 0.0

}

When disabling of parallel activities is required, the algorithm finds the Activity

node with the highest value after all nodes are calculated. If the found value

exceeds a critical level 𝑎 , then the activity is performed; otherwise, the agent does

nothing (alternatively returns to its default state or start a free time activity).

Within this single cycle, the algorithm finds the most necessary activity and rounds

the values to zero or one.

4.2.4 Primary State, Fitness, and Constant Increments

In any field, an evaluation of a system is a critical topic, regardless of whether it is

done for designers of the system or purposes of autonomous learning; the

development and progress of any system always depend on some kind of feedback.

Since the Need nodes in the FCM-NAS serve as indicators of success in particular

tasks, their values can easily be converted into a general evaluation measure of the

success (fitness) of an FCM.

42

In order to integrate the fitness into an FCM-NAS, a Primary State (PS) node is

added to the State nodes. Only Need nodes that are included in the evaluation of

the system can affect the PS node. If the recommended convention for the setting of

the Need nodes is met (a value of zero indicates maximal satisfaction; no action is

required), then all these relations are negative. Therefore, the higher the value of

a Need node, the lower the fitness of an FCM-NAS. Since fitness ranges from zero to

one and is likely to change during the previous computation, its base value has to

be reset to one before computations. The relation of the PS node to itself wpp is also

equal to one, where p is the position of this node in an FCM-NAS.

For example, Figure 16 presents the part of the FCM-NAS of the person in the

ambient intelligence model. This part contains three Need nodes and the Primary

State node. Table 5 shows the corresponding part of the matrix R. The last row in

the table contains the relations of all nodes to the PS node. Since the value of

the Need nodes decreases with increasing satisfaction, these relations are negative,

and PS node is set to 1.0 before computation begins. In this example, Hunger and

Thirst are more important to success than Boredom; they, therefore, have a much

higher negative impact on the fitness of an agent.

Figure 16: An example of Primary State node in a part of an FCM. (source: author)

43

Table 5: An example of matrix R of an FCM with Primary State node. (source: author)

 Hun. Thir. Boredom Prim. S. …
Hunger 0 0 0 0.05
Thirst 0 0 0 0.1

Boredom 0 0 0 0.01
Primary State -0.5 -0.5 -0.2 1

… …

If the PS node starts at 1.0, then it can be used as a constant node, i.e. serving as

a constant increment to any node. For the PS node cp and a node ci, the relation wpi

guarantees that a steady increase (or decrease) is added to node ci at every time

step. This relation is especially useful for the stable growth of Need nodes. The last

column of Table 5 shows the positive relations of the PS node to the Need nodes.

These relations simulate a constant increase of the needs over time. For instance,

Thirst would be increased by 0.1 per every time step (with default granularity

parameter g = 1.0).

4.2.5 Necessity

The necessity of actions provides the FCM-NAS with another useful measure for

decision-making. If several Need nodes have high values, then the decision-making

prefers actions that relate to the most vital need. This feature is useful for the

decision-making process in an FCM-NAS with disabled parallel activities. For

example, in the artificial life model, an agent with values of both Hunger and

Boredom of 1.0 will prefer activities that lead to the meeting of a more critical need.

In the case shown in Table 5, the agent would select eating rather than

entertaining activity, since the Hunger need affects the PS more than the Boredom

does.

This feature uses states to evaluate the necessity of the Need nodes. The PS node is

recommended since at least one fitness value is required. More states can

represent different fitness functions of the system, and the necessity feature covers

even this possibility. At the first step, a designer identifies those State nodes that

are used as fitness values and compares their necessity to the system. The constant

di represents these evaluations for all State nodes in the form of values ranging

44

from zero to one, where di = 1.0 means that State node ci has the highest priority

and vice versa. Therefore, the necessity value for a PS node would be at 1.0, other

State nodes would range from 0 to 1 depending on their relative importance to the

PS node, and all State nodes that do not serve as a fitness value (for

instance external inputs) would be at 0.0. Note that index i does not start at one for

di values since i represents the position of the node in an FCM-NAS that also

contains other types of nodes which come before State nodes.

During initialization of the system, the necessity of each Need node is calculated

according to their influences on the State nodes and the corresponding values di:

𝑒′ = −w ∙ d

()

 𝑓𝑜𝑟 𝑖 = {0, … , 𝑛 }

 (19)

Then the coefficients are adjusted by an increment kn that shifts their values, so

their mean is 1.0. This way, setting of absolute values of necessity does not affect

the activation of Activity nodes:

𝑘 = 1 −
∑ (𝑒′)

𝑛

 (20)

𝑒 = 𝑘 + 𝑒′ 𝑓𝑜𝑟 𝑖 = {0, … , 𝑛 } (21)

Then, ei is the final necessity coefficient of Need node ci and e’i is the necessity value

ei without the compensation of the offset 𝑘 . In the computation of an FCM-NAS,

the necessity is used to calculate the Activity nodes from the Need nodes. (22)

shows the placement of the necessity coefficient. Calculations of the effects of Need

nodes to Activity nodes have to be separated; otherwise the rest stays the same as

in (13).

𝑣 = 𝑓 𝒆𝒊 ∙ 𝑤 ∙ 𝑣 + 𝑤 ∙ 𝑣
()

𝑓𝑜𝑟 𝑗 = {𝑛𝑁 + 1, … , 𝑛𝑁 + 𝑛𝐴} (22)

45

4.2.6 Processing FCM-NAS

The process of computing the FCM-NAS occurs periodically in intervals with

constant length. This procedure contains calculations of each class, reading values

for input nodes, and the selection of activity. The fact that all classes are processed

individually means it can be rearranged and also use new values of previously

processed nodes. Figure 17 shows the best possible order of computations which

allows the decision-making part of the FCM-NAS to react to the current situation

instead of the situation at the previous time step (more in section 4.2.2 Faster

Reactions of Agents). At the first phase, Need nodes are updated; then, computation

of State nodes can optionally use these new values. After this part, external inputs

are imported to dedicated State nodes. Alternatively, this import could appear in

the very beginning since the calculation of nodes dedicated to external inputs

would be ideally omitted. However, if these calculations are processed, they would

overwrite the value after its import.

At this stage, the new updated value of Primary State is copied to an external

variable, if this node is used for constant increments. In that case, PS node would

be reset to 1.0 before the computation of Activity nodes. During this stage, Activity

nodes are calculated; optionally using both updated sets of nodes to make

reactions of the decision-making immediate. Finally, values of Activity nodes go

through the transformation function to select the activity (or activities) to perform.

Then lower-level decision-making or actuators take control until the next

computation.

Figure 17: Summary of the computation of the FCM-NAS optimized for autonomous agents with described

features. (source: author)

46

4.3 Applications of FCM-NAS

The FCM-NAS method (or its previous iterations) has been already successfully

used in two other models on different platforms. It has been developed and

enhanced since the author’s bachelor thesis [79]. The initial motivation to create

such a method was the implementation of an intelligent system in a virtual

environment of Second Life. It is a unique platform from a programming

standpoint. It is limited by memory and computational performance as everything

runs on distant servers optimized for multiple user experiences in a 3D

environment. It offers basic procedural programming language Linden Script

Language which is meant for interactions of users with scripted objects. The

implementation of any complex system within this setting presents a challenge.

This system manages memory usage and sensory data transfer in the

computationally very limited environment of the virtual world Second Life. It

decides when to transfer data collected by sensors and clear memory depending

on inner states and the presence of agents (in this case, avatars of users). Since it

manages only its internal sub-systems, its behavior does not directly affect the

environment. The only way to extract data is through its communication sub-

system, which translates user messages in a native language into database queries

and returns corresponding information. Figure 18 shows the architecture of the

system regarding information flow.

Figure 18: Diagram of the intelligent system managing its database within a limited environment; white arrows
mean direction of information flow, dark arrows represent the direction of control or influence. (source: author)

47

Figure 19: Diagram of an agent in the ALModel; white arrows mean direction of information flow, dark arrows

represent the direction of control or influence. (source: author)

After the intelligent system, this method was adjusted for agent-based approach,

and it was implemented into an artificial life model ALModel that features

a randomly generated two-dimensional environment with resources and

thousands of agents [78, 80]. It was built on the platform NetLogo 5, and it is

available for download at [81]. The simulation runs in discrete time steps at which

each agent makes a decision about its activity. Parallel activities are disabled;

therefore, agents cannot perform more than one activity per time step. As shown in

Figure 19, the FCM-NAS handles almost whole agents’ logic as it simulates inner

states (especially needs), processes information from sensors, and performs

decision-making.

Decision-making in ALModel covers a few context areas which agents need to

consider: food, energy consumption, reproduction, and keeping out from any

danger. As seen in Table 6, each aspect of artificial life requires more than one

node. For instance, food management of agents uses one Need node for a level of

Hunger, two Activity nodes for Feeding and Searching for food, and a State node

used as an external input, which allows taking into consideration currently

available food supplies on the current positions. Generally, more concept nodes in

any FCM mean more possibilities, but also, the FCM becomes more performance

demanding.

48

Figure 20 shows 100 time steps of a single agent in the model. The top plot in the

figure depicts the development of the Need nodes and Primary State node (fitness).

The bottom plot explains the changes in the values in the plot above with a log of

the activities that this agent performed during the observed 100 time steps. During

the first 25 time steps, the agent struggled to find resources: Need nodes were

increasing, and its fitness was decreasing. Then the agent finally found resources,

rested and reproduced. Reproduction raised values of Need nodes due to its cost

set as negative relations to Need nodes. Since agents remember the last spot where

they found resources, it was able to finish the next search for food and water much

faster. Except for Sleep, Escape, and Searching, all activities floor the value of the

corresponding Need node in a single time step.

Table 6: Concept nodes and their classification in ALModel. (source: author)

Need nodes Activity nodes State nodes
Hunger (c1) Feed (c5) Primary State (c13)
Thirst (c2) Drink (c6) Lack of Food (c14)
Fatigue (c3) Sleep (c7) Lack of Water (c15)
Reproductive Need (c4) Reproduce (c8) Lack of Partners (c16)
 Search for Food (c9) Danger (c17)
 Search for Water (c10)
 Search for Partner (c11)

 Escape (c12)

Figure 20: Need and Activity nodes of an agent in the ALModel over 100 time steps (source: author)

49

Figure 21: Diagram of an agent with the combination of FCM-NAS and AHP; white arrows mean direction of

information flow, dark arrows represent the direction of control or influence. (source: author)

Although this platform is not that limited as the previous one, the computational

complexity is a still serious concern for the model with thousands of agents at the

same time. Consequently, the method has been modified for large-scale models. As

shown in Figure 21, the AHP replaced the decision-making part of FCM-NAS. The

modified FCM-NAS was used only for simulation of inner states which made its

matrix of relations significantly smaller. It improved performance but slightly

decreased the decision-making capabilities of the method. This modification was

published at [77].

The integral part of any agent-based artificial life model is the evolution emerging

from the competition for resources, inheritance, and breeding. In the case of

ALModel, along with agents’ physical traits in the model, evolutionary principles

were used to adjust the decision-making part of the FCM-NAS which enabled

learning and behavior adaptation of species. This decision-making section of FCM-

NAS consists of all values of relations in the matrix R that affect an Activity node –

meaning all rows corresponding to Activities are part of the decision-making

process, as shown in Table 7. During processing, these values are multiplied with

the current value of the corresponding node (column) to add to the value of the

activity node (row). These values define the whole behavior of the agent – in

ALModel, this section contained 136 values (with 8 activities and 17 concept nodes

total).

50

Table 7: Overview of the most important sections of matrix R of an FCM-NAS. (source: author)

 Needs Activities PS States
Needs Satisfying needs Growth of needs

Activities Decision-making section
Primary state Evaluation

States All values here are zero for external input states

Figure 22: Example of phylogenetic trees created in ALModel. (source: author)

ALModel also uses cluster analysis to differentiate species and build phylogenetic

trees – a very similar way to EcoSim [42]. Figure 22 shows phylogenetic trees of

species produced in a single model run, in which each bubble represents

a different species. The arrows point to the species that evolved from the species

on the other end of the arrow, and sizes of the bubbles represent the numbers of

agents that were classified as members of that species at the moment of creating

the graph (small dots correspond to extinct species). The brightness of the bubbles

depicts a certain attribute of a species; in this case, it is the type of diet (a black

bubble means a carnivore species; a brighter one a herbivore species).

Obviously, evolutionary principles are not limited to artificial life area only. In

models without simulated natural selection, genetic algorithms use fitness

evaluation and artificial selection based on the fitness instead. This way the similar

learning can be applied to FCM-NAS in every situation where the conditions allow

its evaluation and its simulation environment supports hundreds or thousands of

repeats of a model run to process generations of genotypes.

51

4.4 Routine Behavior

The previous implementations proved that FCM-NAS allows for rational behavior

with multiple objectives, learning, and interactions. However, this is only a part of

a problem in the human activity simulation. As presented in the section Human

Activity Simulation, routine behavior is an essential component of this area as well.

This section explains its requirements and obstacles that may appear during the

design and implementation of routine behavior. This section is also the author’s

contribution to papers [82] and [83], which are not published yet.

4.4.1 Scenarios

In the domain of ambient intelligence, scenarios are used for a long time as a mean

to capture standard behavior of agents. A scenario is a set of activities with given

order and often attached timestamps. For the simulations, scenarios might include

additional convenient information about activities: the location where the activity

should be performed, which objects does the activity use in the environment, and

other useful information.

Scenarios may have various formats and representations of time or continuity.

However, any scenario for the model must be transferred into a machine-readable

format like CSV files, XML structures, or tables. This chapter describes

an implementation based on tables because the model use database to store the

data, and tables are still human-readable as well.

The used table representation contains two tables to comprise all the needed

information about a scenario. The first one (see Table 8) stores a schedule with

data exclusive to each occurrence of an activity in the scenario. There are two

necessary items: the name of the activity and its anticipated start time. Two other

complementary values were added for the better inclusion of routines into the

model. The Importance value serves during decision-making as a measure of how

important is the activity. When the agent is under time pressure and has less time

than scheduled activities take, then it skips or postpones the less important

activity. The Probability value enables simple irregularities – when this value is

lower than 1.0 (meaning it will be always in the final schedule), the activity has

52

a chance to not appear in some daily schedules of the agent. For instance, the

activity exercise with the value of Probability 0.7 will appear in 7 out of 10 days on

average. Note that the Probability of 1.0 does not mean the agent always performs

the action; it is added to its schedule every day, but it still might be skipped (more

in 4.4.2 Schedule Management).

Table 8: An example of the table with a scenario. (source: author)

Time Activity Importance Probability

6:00 toileting 0.9 1.0

6:15 medicine 1.0 1.0

6:30 exercise 0.5 0.7

Table 9: Description of parameters of activities. (source: author)

Parameter Type of input Description

Duration Number of minutes How long it will take until the activity is finished (minimum

time).

Max

multiplier

Coefficient How many times longer than its base duration it may take.

Place Location Where activity takes place.

Needs to be

completed

True/false If true, the effect of the activity is applied after its end.

Otherwise, activity affects agent continuously.

Required

activity

Name of activity When the activity cannot be performed, the agent does

require activity instead (to collect a consumable item

required by this activity).

Uses Name of device Furniture or device used during the activity.

Consumes Name of item The item in the agent’s inventory which will be consumed by

the activity.

Creates Name of item The item which will be created and added into the agent’s

inventory.

Conditions Atribute, operator

and target value

What conditions need to be met to proceed with the activity.

Backup

activity

Name of activity Activity triggered if conditions of current activities are not

met.

Effects Attribute and value How the activity affects needs of the agent.

53

The second table contains general information about all possible activities

regardless of when or how often they are occurring in the scenarios. The second

table holds the complete list of all possible activities with their configuration

applying to every occurrence of the corresponding activity. All required

parameters of activities used in this model are described in Table 9. Both tables are

not limited in either of two dimensions: adding rows for new activities or even

adding columns for additional parameters about activities.

The parameter “Needs to be completed” splits activities into two main groups

regarding whether they are effective only once at the end or their effects are active

through the whole period of execution. In the first group, activities have

an objective, expected duration, and their effect occurs only when they are fully

finished. When interrupted, it may continue later or start from the beginning, but

there is no effect until its completion. Examples of the first type are the

preparation of dinner, taking medicine, or getting a laptop. The second type of

activities affects an agent even during its performance. There might be expected

duration, but when interrupted, the agent still partially benefits from its effects.

For example, sleeping, watching television, playing games, or working belong to

this category.

Parameters like Conditions, Effects, or Backup activity were added to connect with

the FCM-NAS component of an agent. Before an activity starts, Conditions are

checked. Each condition consists of three values: name of the attribute, comparing

sign (<, > or =) and the target value. Each effect has two values: the name of

an attribute and a value, which may be both positive and negative. In this model,

conditions and effects are connected to concept nodes in FCM-NAS. However, there

may appear other attributes of an agent like its age, gender, health, and others.

4.4.2 Schedule Management

To be able to work with a scenario in the model, each agent loads it from the

database and stores it as a schedule of activities. Each activity keeps information

about where and when it is supposed to happen, which object it consumes, which

equipment it uses, and so on. Because the agents deal with their needs or

54

unexpected events, they have to handle the possibility of delaying or even skipping

a planned activity. To manage these situations, the schedule has a buffer where it

stores activities that are about to begin or are already delayed.

Since each activity has a truth value determining its importance (given by

a scenario configuration), when an agent does not manage to complete all

scheduled activities, then Importance values along with supposed starting times

determine which activities should be prioritized. However, as a static value,

Importance is only a part of the mechanism calculating a dynamic value

representing the priority of the activity at every time step. To work properly in

a dynamic environment, it is accompanied by other values defining its lifespan

during the simulations: Near_planned, Delay, and Planned. All three values have

an effect on the decision-making process, although only two of them are used for

the priority function and final evaluation of behavior. The Near_planned value only

alerts decision-making about planned activities in the near future (60-30 minutes

in this case), so the agent has time to prepare and satisfy needs that would

otherwise threaten to interrupt the ongoing planned activity.

To determine Planned and Delay values in time, a few auxiliary parameters of

activities were added into their configuration (see Figure 23). The parameter

Tolerance defines the interval around the planned start time. If the activity starts

within this interval, it is considered that the activity started in time. The parameter

Start tolerance represents a number of minutes before the planned start. After this

point in time, the corresponding activity is added to the activity buffer, and its

Planned value starts to grow – alerting the decision-making process that there is

an activity in the buffer soon to be performed. If the activity is started before

reaching the tolerance interval, then it is considered as prematurely triggered,

which penalizes its evaluation. The similar rules apply for the parameter Delay

tolerance except it is tied to the Delay value. When this point in time is reached

without the activity started yet, this activity is considered skipped, and it is

removed from the buffer with the lowest evaluation for this activity which

decreases overall agent’s rating (depending on the Importance value of the

activity).

55

Figure 23: Dynamic values defining an activity during their lifespan (source: author)

The previously mentioned values are used to express the priority of each activity

at each time step t. The higher-level decision-making requires priorities to solve

possible conflicts and sort activities by their current priority. The algorithm

calculates the priority value of each activity from its importance and the interval

between the current time and supposed start time of the activity. The priority is

calculated regarding time difference td of the current time t and the planned start

of the activity 𝑢 (see (23)). After adding an activity to the schedule at time

step 𝑢 − 𝑇 , its priority raises until the time reaches tolerance interval around the

planned start of the activity. During this tolerance period, the priority stays

constant at the level of the importance of the activity 𝑢 . When the activity is

delayed beyond the tolerance interval, the delay part of the priority starts to rise

until it is removed at time step 𝑢 + 𝑇 :

𝑡 = 𝑡 − 𝑢 (23)

𝑢 =

⎩
⎪
⎨

⎪
⎧ 𝑓

| |
𝑢 , 𝑡 < −𝑢

𝑢 , 𝑡 = [−𝑢 , 𝑢]

𝑢 + 𝑓
| |

𝑢 , 𝑡 > 𝑢

 (24)

56

where 𝑢 is the priority of activity ui at time t. Constants TP and TD determine

chosen intervals for adding/discarding activities into/from Activity buffer. Both

functions fP and fD adjust the growth of the value over time and caps it at 1.0:

𝑓 (𝑥) = max ; 1 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ 𝑎𝑛𝑑 𝑙 ∈ (1, ∞) (25)

𝑓 (𝑥) = max ; 1 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℝ 𝑎𝑛𝑑 𝑙 ∈ (1, ∞) (26)

where l is a constant affecting the curve of the priority function. For experiments in

this thesis, constant values were set in this way: l = 20 and 𝑇 = 𝑇 = 60 (minutes)

by default. Figure 23 shows the development of both parts (Planned and Delay

values) of the priority function of an activity.

The schedule manages interruptions among planned activities when ongoing less

important activity collides with the planned start of an important one. Such

interruptions are less common than ones caused by FCM-NAS simply because

activities in scenarios are usually planned without overlapping. However, any

delays within a dense schedule may lead to a shift of activities. That is handled by

priority functions of activities, which are derived from the Planned and Delay

values. For example, two planned activities are waiting in the buffer: long-lasting

activity working and very short and important activity take_medicine. Table 10

shows the configuration of both activities, which defines their priority function

over time.

Table 10: An example of the configuration of activities (source: author)

Activity Duration* Tolerance* Start tol.* Delay tol.* Importance

1 working 120 30 60 60 0.6

2 take_medicine 4 5 10 10 1.0

*in minutes

57

Figure 24: An example of interruption of an activity (source: author)

Figure 24 shows a time plot of priority functions over time. In this example, the

first activity starts four minutes earlier. Ongoing activity then may have a priority

boost by adding an interruption threshold, which other activities need to reach to

be able to replace the current one. That encourages an agent to proceed and finish

the activity without unnecessary switching back and forth between many

activities. A similar interruption mechanism can be found in the HSS model [53];

although there it is used for need-oriented activities. An interruption occurs when

the priority of the second activity crosses the interruption threshold. After

finishing the second activity, it is removed from the buffer, and the interrupted

activity is resumed. Note that the real duration of activities in the model also

includes walking time needed to get to the appropriate location.

Interruptions initiated by FCM-NAS look similar way, except its more complex

structure involves values of all concept nodes which have non-zero relation to

activity nodes. Through the learning process, some activities may receive a similar

boost (or decrease) as planned activities in the schedule management subsystem.

58

Figure 25: Diagram of the agent Person; white arrows mean direction of information flow, dark arrows represent

the direction of control or influence. (source: author)

4.5 Behavior of Agents

The proposed design introduces the combination of FCM-NAS and routine

behavior which creates a new problem: there are two independent decision-

making processes that might want to control the behavior of a single agent in

an incompatible manner. The task of the connection between these two processes

is complicated. It requires one of the processes always has priority, or there has to

be the third method to decide which one should be preferred at the moment. This

work utilizes the first option. The preferred process has to be able to decide when

it moves the responsibility to select an activity to the other process.

The model described in this work utilizes the FCM-NAS as the primary decision-

making method for agents. This method simulates the needs of the person and

selects appropriate activities, but it also receives information from the schedule

whether there is any planned activity currently or shortly. If there is no immediate

need to cover vital functions, then FCM passes selection of activity to the schedule.

This model covers needs including hunger, thirst, fatigue, hygiene, bladder,

boredom, and socializing need. This set is not limited in any way. Besides basic

physical and psychological needs, there could be ambitions regarding work,

hobbies, or family, for instance.

Figure 25 shows the structure of the agent Person. The white arrows represent

a flow of information; the dark arrows express a direction of influence or control.

59

The dashed arrow depicts the import of the scenario into the schedule. To decide,

the FCM gathers data from the schedule and inner states. The schedule returns

values representing if there is an activity that should be in progress right now or is

about to start soon. Inner states provide values of all needs and the activity

performed last time. FCM is able to make higher-level decisions, what should the

agent do. It selects a general group of activities (a context) and forwards it to

actuators, which pick specific action regarding the current location or conditions.

These lower-level decisions are made by simple rules which select a specific action

and ensure the right position of the agent. For example, when the agent is

supposed to eat, the algorithm checks the agent’s level of the corresponding need

(Hunger). If it is high, then the agent starts to cook a meal. Otherwise, it takes

a snack. If the agent is not in a kitchen, it starts moving to the corresponding spot.

Figure 26 visualizes all levels of activities considered for the solution with

examples. The activity context level is exclusive for the higher-level decision-

making provided by the FCM-NAS. Some activities may have several required steps

before the activity becomes available. These chains are logically arranged into

higher-level activities. Scenarios may contain all required steps, or just the final

activity and actuators make sure all conditions are met. For instance, if a scenario

contains activity eat_dinner and a meal is not prepared, then actuators start the

preparation of the meal first. Action level in Figure 26 represents atomic actions of

activities; meaning each action is connected to a single device or position.

Movement in the environment to a target location is considered as an action as

well. The lowest level of the hierarchy represents animations; these are not

implemented in the proposed model as it does not aim to precise physical

interactions since they are not in the scope of this work. Note that even without

animations; interactions with devices are implemented, just not visually. However,

the addition of the animation layer would be possible as it is compatible with the

design, although a more suitable platform would need to be selected accordingly.

60

Figure 26: Hierarchy of activities with examples showing activities/actions related to having dinner.

(source: author)

4.6 Genetic Algorithms

Genetic algorithms will be applied to the decision-making part of the FCM-NAS to

adjust agents’ behavior. Although it could use other less computationally expensive

learning algorithms, there is a problem of immediate evaluation after the decision.

When rating a complex behavior, a single decision cannot be evaluated properly as

it may have consequences which might change events in the future. For instance,

taking a meal seems like a bad decision for an agent that is not very hungry right

now, but if he plans to go out for several hours later, then it is a good decision in

a long-term perspective as it would get very hungry later on. Therefore, the agent’s

behavior is evaluated after a certain period of time. When the behavior is

evaluated, its complexity still prevents effective interpretation of its problems.

Fortunately, genetic algorithms can overcome this issue. The only major drawback

61

is the computational time needed to process sufficiently large populations through

a sufficient number of generations.

Implementing genetic algorithms requires a lot of repetitions of the same

simulation with different configurations of decision-making. One of the ways to

implement this is running parallel simulations corresponding with the size of the

population. This model launches the whole population in the environment for a set

number of days. To avoid any interactions between agents and their perceived

environment, agents need to record any possible changes to the environment to

local variables, and the ambient intelligence system must be turned off during this

learning process. These measures ensure the same conditions for each agent and

guarantees that only the behavior alone affects its final score.

After a given simulation period, fitness function evaluates each genotype; meaning

the configuration of decision-making in this case. The fitness function in the model

does not only rate behavior, but in the case of genetic algorithms, the fitness

defines the direction of evolution that forms the intended goal of the learning

process. As the decision-making method covers two different concepts, its fitness

function requires at least two components. The first fitness component evaluates

the need-oriented part of behavior based on the average success rate of satisfying

needs during the simulation. This is possible through the Primary State node 𝑐 ,

which monitors all needs at each computation of FCM-NAS (see 4.2.4 Primary

State, Fitness, and Constant Increments for detailed explanation). The first part of

fitness F is the mean of values of the Primary State 𝑣 node through a simulation:

F =
∑

 (27)

The second component focuses on routine behavior and planned activities. It

reflects how many of the planned activities were finished during the simulation.

Because these activities have different importance, the evaluation is weighted

accordingly. If the agent misses important activity, then fitness decrease more than

in case of missed less critical activity. (28) shows the expression used to calculate

this second component of the fitness function F .

62

F =
∑

∑
 (28)

where m is the total number of activities planned during the simulation including

missed ones, the value 𝑢 represents the Importance of activity 𝑢 and 𝑢 is the

evaluation of its progress when it is removed from the schedule. The importance

value is a constant of each activity given by the configuration of the scenario. The

evaluation of activities 𝑢 is a value ranging from zero (when an activity is

skipped) to the importance 𝑢 . This value is also adjusted according to the delay or

early start of the activity. Then the ratio represents the fulfillment of each

activity (from zero to one). In other words, the second fitness component

represents the average success rate of planned activities during the simulation

weighted by the Importance of activities.

The early experiments revealed the shortcomings of the described evaluation. Both

these fitness components lead to optimization of behavior corresponding to both

decision-making parts; however, the learning process still did not produce

effective and reasonable behavior. Time distribution on Figure 27b shows that

agent tends to spend any free time between planned activities to keep needs

satisfied. This behavior seems to be always alerted and repeatedly triggers

activities even before there is the actual need. That is the reason why the third

component of the fitness function was introduced. It motivates decision-making to

be more effective with the limited time agents have each day. This fitness

component F is represented by the percentage of the time when the agent was

neither doing any planned nor need-oriented activity (denoted as tfree) out of total

simulation time tmax:

F = (29)

Figure 27c shows that the learned behavior with this component is significantly

more effective as it spends much less time to manage both needs and planned

activities. Instead of using 58% of the time to reach to need-oriented fitness

of 0.974 (Figure 27b), it spends only 8% of the time to reach the value of 0.963

(Figure 27c).

63

Figure 27: Comparison of fitness values and time distributions of initial behavior with two learned behaviors -

with and without the third fitness component (source: author)

There are three components of the fitness function, but because genetic algorithms

expect one value, they are all merged into the final fitness value as a weighted

average of all three components (see (30)). All three values are inside the interval

from zero to one and share the same orientation (0.0 is the worst, 1.0 is the best

evaluation) which makes their combination into the final fitness value very easy.

𝐹 =
∙ ∙ ∙

 (30)

Finally, after the fitness function is complete, the other parts of genetic algorithms

require configuration. The selection in this model is based on the provided fitness

of genotypes. A few of the best ones are cloned into a new generation; some of the

worst are discarded and replaced by children of surviving individuals. The rest of

the genotypes enter the lottery of crossover and mutation. Each of these is

randomly paired with another one which ensures they are all used at least once.

Chance of additional selection is dependent on the fitness value of a genotype. This

model uses the uniform crossover that randomly collects individual genes from

one or the other parent. According to [50], this type of crossover has the best

abilities to explore possible configurations at the cost of slower convergence.

64

Mutation in this model randomly shifts some genes according to three variables:

the rate, power, and step of mutation. The rate defines how many genes are

affected by the mutation. Since genotype in the model is a series of truth values

instead of binary ones, the mutation does not simply switch the value. Instead, the

value is increased or decreased by a product of mutation step parameter and

rounded random number from a normal distribution with a mean of 0.0 and

a standard deviation equal to the mutation power parameter.

This model also experiments with the principles based on generalized frozen

evolution [51], which examines the variation of a gene pool. Although it is

a negative phenomenon in biological evolution, it may be useful for the

convergence of the virtual population to the optimal solution. It is implemented

into the model by adjusting mutation parameters during the learning process. In

the beginning, the mutation is powerful and changes genes by significant steps.

That means fast but risky learning with great variability and low chance of getting

stuck in a local maximum of the fitness function. Later on, mutation parameters are

softened to allow population easier convergence towards the best solution. Finally,

parameters are focused on fine-tuning of the genes. At this point, evolution is

unable to make any severe changes or switch to a different local maximum.

However, it is assumed that previous learning steps have already chosen the best

direction and now the learning process searches for the very best solution in that

direction by tiny adjustments.

4.7 Multi-agent Support

Ambient intelligence models become a lot more complicated when there is more

than one agent. Especially in concepts like smart home, users can have different

preferences of environment that can be conflicting. Therefore, multi-agent support

is an important feature in human simulation. This work focuses on individual-

based decision-making, which means agents are autonomous units and as such the

model is able to simulate a lot of them in parallel. Since the model includes genetic

algorithms, two different multi-agent modes are required. The first one needs to

ignore any interactions to support parallel isolated simulations for individual

65

evaluations during the learning process. The second mode supports two or more

agents per single simulation.

Multi-agent support has several levels and perspectives. Agents’ higher-level

decision-making could be altered to acknowledge the presence of other agents and

has possible interactions in the set of activities (as it is in ALModel [77]). Lower-

level decision-making requires management of capacity of places or devices to

avoid the parallel use of devices by more agents than it could support. For instance,

at most one agent should be allowed to use a computer at any moment. In case

other agents request to use the same device, they either wait or select a backup

activity depending on the activity context. Figure 28 shows agents indirectly

interacting within a single environment. The list on the right side of the screenshot

shows activities that are currently performed by all seven agents. Note that the

second person (by computer) is waiting for another agent to leave fridge area so

he can also prepare his breakfast. Meanwhile, there are more agents watching TV

because this device has a higher limit of concurrent users. Since the model does not

use animations, all agents watching TV are clustered on a single node, this is why it

seems like only one agent is watching TV.

Figure 28: Screenshot from the model during the experiment with multiple agents in single simulation; each

agent has an activity listed on the right side (source: author)

66

To use the multiple agents for testing their interactions with an intelligent

environment, the intelligent system along with sensory sub-systems needs to be

able to read correct data and recognize more than one behavior within the model.

Unfortunately, the model in which the proposed human simulation was

implemented does not fully support more than one agent. This causes that system

treats some sensory data as they originated from a single source. However, to fully

support multiple agents, the system would need to be redesigned. That part of

ambience intelligence is out of the scope of this work. Nonetheless, the

environment and agents are still able to interact in basic ways successfully. As

proved even in ALModel [77], the FCM-NAS is generally able to support multiple

agents in a simulation.

4.8 Implementation

This section will describe the implementation of some significant or platform-

specific parts of the proposed solution. The designed human activity simulation

was implemented in platform AnyLogic 8, which is optimized for agent-based

systems. For the processes, besides object-oriented programming language Java, it

offers state charts and action charts. Regarding simulation, this platform allows

real-time simulation speed along with fast-forwarding speed limited only by

computational capabilities of the hardware. The final model can be viewed in both

2D and 3D representation.

Table 11: Nodes of FCM-NAS used in the proposed model. (source: author)

Need nodes Activity nodes State nodes
Hunger (c1) HungerActivity (c8) PrimaryState (c16)

Thirst (c2) ThirstActivity (c9) Planned (c17)

Fatigue (c3) FatigueActivity (c10) Delay (c18)

Boredom (c4) BoredomActivity (c11) NearPlanned (c19)

HygieneNeed (c5) HygieneActivity (c12) Nighttime (c20)

ToiletNeed (c6) ToiletActivity (c13) Daytime (c21)

SocialNeed (c7) SocialActivity (c14)

 PlannedActivity (c15)

67

Figure 29: Diagram of the higher-level decision-making process. (source: author)

4.8.1 Implementation of Decision-making

The model triggers the decision-making of each agent every single minute. This

interval can be arbitrarily adjusted thanks to the granularity parameter in FCM-

NAS. This process starts with higher-level decision-making using FCM-NAS and

schedule management. As seen in Figure 29, regardless of the FCM-NAS decision,

the schedule always updates its activity buffer to check for upcoming or missed

activities. Firstly, it checks all activities in the buffer for missed activities. There are

two possible ways for activities to be missed. The first possibility is that the

activity has not yet started and missed delay tolerance. The second one is the

situation when the activity started but has been interrupted and missed its latest

finish time. After discards, the schedule adds the upcoming activities that either

start in one hour or have a longer start tolerance interval. Then the schedule

management sorts activities by their current value of priority function, so if the

FCM-NAS decides to process a planned activity, then the first one from the buffer is

performed.

68

After the schedule management, FCM-NAS is computed. This process is not

dependent on neither platform nor model; it has been described in detail in section

4.2.6 Processing FCM-NAS. The FCM-NAS in this model contains 21 nodes: seven

Need nodes with seven corresponding Activity nodes, one additional Activity node

for planned activities, Primary State node, and five State nodes for external inputs.

Table 11 lists all nodes in the designed FCM-NAS. Agent’s behavior covers the

following needs: hunger, thirst, fatigue, boredom, hygiene need, toilet need, and

social need. Each of these has a corresponding Activity node, which triggers one of

the activities that are supposed to satisfy the need. The choice of the specific

activity to handle the need is the responsibility of lower-level decision-making.

All State nodes except Primary State are external inputs. In this context, it means

outside of FCM-NAS, not necessarily external for the agent as a whole. Values of

nodes Planned, Delay, and NearPlanned are taken from the schedule as a sum of

corresponding values of activities in the buffer (these values were described in

section 4.4.2 Schedule Management). Values of states Nighttime and Daytime are

global; meaning their values are the same for all agents in a model run. These

values allow agents to include time in the decision-making of FCM-NAS. Other

more precise variants would also be available. For instance, nodes Morning,

Afternoon, Evening, and Night would potentially allow machine learning to better

adjust behavior to day time. With more complex scenarios, nodes for

distinguishing weekdays from the weekend would also be very helpful. Even if the

designer does not see an obvious way how an extra node could change the

behavior, machine learning uses every piece of information available, and it often

finds the optimal way to include it in the decision-making. For this model, the FCM-

NAS was designed with the least nodes possible to allow fast testing and learning.

Otherwise, additional State nodes for external inputs have relatively small because

its computation is omitted.

69

Figure 30: Lower-level decision-making process managing conditions and interactions. (source: author)

The outputs of FCM-NAS are updated values of all nodes and particularly one

Activity node with value 1.0 signalizing the selected type of activity (context). This

selected context is then processed by lower-level decision-making mechanism

which is straight-forward algorithm checking conditions, managing effects, and

interactions with the environment or eventually other agents. The whole process is

shown in Figure 30. At the first stage, an activity is selected based on the current

activity context. For example, if FCM-NAS chose PlannedActivity, then the first

70

planned activity in the buffer (the one with the highest priority) is performed. If

the context is HungerActivity, then the algorithm picks the default activity linked to

this context. That may be Having dinner, but it is then switched to Having a snack

because the agent’s Hunger need does not meet the conditions of the first activity.

In case no context is picked, the agent starts to perform free time activities

(watching TV, playing games, or hobbies).

At the second stage of the lower-level decision-making mechanism, the activity is

translated to a specific action. It stops the interaction with the device that may

have been in use by the previous activity. If this previous activity waits for its

effect, then its timer is reset, and the activity interrupted. Next, the agent’s position

is checked whether it equals to the required position of the new activity, and the

agent is eventually sent to that position. If the selected activity was already in

progress, this section is skipped.

4.8.2 Environment

The original ambient intelligence model created during GAČR project DEPIAS is set

in the 3D model of a standard apartment placed on a map with several buildings

around. It was built on the template of map plan of the city Trencianske Teplice,

specifically local spa resort. The reason for this placement is the initial motivation

of this ambient intelligence model: possibilities of ambient intelligence system for

guests of the spa resort. The apartment offers all elemental functionalities required

for comfortable living (see Figure 31). It was fully described at [83] (not published

yet) where the author of this work contributed with the design of the connection

between agent’s behavior and environment; meaning lower-level decision making

and interactions with devices or furniture.

Since the experiments were conducted in this environment with just a few minor

alterations, the dependency of the agent’s behavior on the environment needs to

be explained. The higher layer of decision-making does not rely on a configuration

of the environment and disposition of rooms or furniture at all. The only variable

of environment that enters this level of decision-making is time. FCM-NAS reads

a truth value of Daytime and Nighttime be able to adjust the sleep cycle or other

71

time-dependent activities. Schedule management, obviously, needs the current

time and day for its correct function. Since all ambient intelligence models are

supposed to be close to reality, it can be assumed that all such models would follow

real time and calendar. Therefore, this approach would work in any of these

models the same way.

Agents’ actuators, the lower layer of decision-making, handle the logic for the

interaction of the agent with the environment, which consequently leads to some

dependency on the environment. To filter out unnecessary details of the

environment, decision-making perceives only a weighted graph (see Figure 32)

where edges are possible paths with different lengths, and nodes are either

intersections or locations assigned for activities.

Figure 31: Screenshot of the apartment in the AnyLogic. (source: author)

Figure 32: Weighted graph of the environment. (source: author)

72

Figure 33: Comparison of fitness and composition of a day of two agents with different speeds after the learning

process. (source: author)

Activities are bound to the corresponding locations by value in the configuration.

Some activities are missing this value, meaning it can be performed everywhere;

for instance, the agent can drink anywhere as long as it has a drink in its inventory.

By default, the decision-making process assumes that the target location of every

possible activity exists somewhere in the environment. At least one of all types of

locations should be present in the environment (including outside of the

apartment). If there are more instances of such locations (for instance chairs by

table), it searches for the closest one usable by the agent.

The only influence the environment has on the behavior is by the distance between

nodes that an agent needs to walk; therefore, the starting time of the activities may

vary. In the current apartment in the model, the maximal distance between two

nodes is around 23 meters. Even if the agent is set very slow with speed of one

meter per second, it can easily move to any location within one minute, which is

the period between decision-making computations. In extreme cases,

an environment with significant walking distances could have an impact on the

agents’ evaluation since the walking would cost; however, the decision-making still

works and adjusts for this cost. Figure 33 shows an experiment comparing the

same agent within the same environment, scenario, and configuration with the

exception of walking speed. After learning with genetic algorithms, the ten times

slower agent (Figure 33b) managed to achieve a reasonable schedule and need-

oriented fitness values. Of course, due to very long walking times between nodes

73

(up to 5 minutes of simulated time between rooms inside the apartment)

evaluation was reduced by delays or starting too soon because the agent had to

start earlier to compensate for extreme walking times between planned activities.

4.8.3 Randomness and Repeatability

Both decision-making mechanisms are deterministic, meaning randomness is not

involved in the process of making decisions. However, the model uses some

randomness during the creation of a daily schedule from a scenario. The first set of

random values, which is generated from a positive uniform distribution, is used for

all activities with the probability of their appearance in a daily schedule lower than

1.0. Also, the duration of activities is randomized at the moment when an activity is

added to the buffer. The parameter Max multiplier in the configuration of activity

defines the possible variation of its duration. This way, the same activities may

take different durations emulating variability in human behavior. Finally, the

second area affected by randomness is the learning process: genetic algorithms

during the selection, crossover, and mutation. All parts use a uniform distribution,

and mutation uses a normal one for the random adjustment of genes.

Although randomness offers desired variability and tests the flexibility of decision-

making, the design needs to consider the repeatability of experiments and fairness

during learning processes. The first issue, repeatability of experiments, is covered

by a built-in pseudorandom number generator (PRNG). The AnyLogic platform

allows users to edit the seed value of PRNG, which ensures the same numbers are

generated every model run with the same seed. The second problem requires

a specific solution for genetic algorithms though. If a scenario contains activities

with the Probability parameter lower than 1.0, then different random values will

cause individuals of the same population having different schedules. Therefore, the

evaluation would be distorted by the difficulty of a generated schedule. Meaning

better behavior could have lower fitness than worse ones that received a schedule

that is easier to complete (with less or shorter activities). To prevent this, a list of

random numbers is generated in advance (using built-in PRNG). Individuals then

obtain the same values in the same order, hence only their decision-making directs

their final behavior and consequently their fitness.

74

5 Results

This section offers possible outputs of the behavior along with separate tests of

both behavioral sub-systems. Then, the results of computational performance tests

and findings from evolutionary learning are presented. Its achieved computational

performance allows simulating virtual years in minutes. Experiments with genetic

algorithms demonstrated its ability to change behavior in the desired direction.

5.1 Need-oriented Behavior Only

The HSS model uses only need-like mechanisms to trigger activities, which

corresponds to the proposed model without a scenario. Values representing needs

grow and periodically trigger activities satisfying corresponding needs throughout

a day. Figure 34 depicts patterns of needs during a single day in both simulations.

Note the similarity of the slower growth during sleep.

Besides usual needs, it has similar mechanisms for some other activities like using

a computer, shopping, exercise, and others. Such activities would be otherwise in

a scenario. Through HumanDesigner application (available for download at [72]),

the HSS model allows manually adjust some parameters of behavior like the

growth of needs and length of some activities. FCM-NAS offers the same

adjustment through relations of a constant node (in this case the Primary State) to

the corresponding need. Besides that, the proposed approach allows user to set

different priorities or a critical level of needs to trigger the connected activity.

Some of these parameters are also adjustable by genetic algorithms.

Figure 34: Comparison of needs in 1 day in HSS and the proposed model. (source: [72] and author)

75

5.2 Routine Behavior Only

To test the routine behavior only, FCM-NAS was set to ignore all need inputs and to

trigger only the planned activity context. Activities were set with less flexible time

frames when they are supposed to start and end to imitate a straight-forward set

of activities triggered by time. This way, the proposed model is able to execute any

hand-crafted schedule of activities. For comparison, the scenario was configured to

imitate the short activity recording by PerSim3D presented in [71] (see Table 13).

Table 14 shows almost the same recording as the original with tiny deviations

caused by different environment and primarily by the flexible connection between

FCM-NAS and the schedule management. Since PerSim3D aims for precise

detection, unlike the proposed model, it supports animations and more specific

sensors like pressure, vibration or radio-frequency identification (RFID) sensors.

Table 12: Sample output of PerSim3D from execution of scenario in beginning of the day. (source: [68])

Table 13: Output of the model during the experiment with scenario only. (source: author)

Activity Start/End time Location Sensors

sleep 7:29:18 Bed Movement (Bedroom)

 7:34:13 Movement (Center)

toilet 7:34:28 WC Movement (Toilet), Use sensor (toilet)

 7:36:08 Movement (Hall)

make_breakfast 7:37:03 Kitchen Movement (Kitchen), Use sensor (fridge)

 7:41:03 Movement (Center)

eat_breakfast 7:41:13 Table Movement (Center)

 7:48:03 Movement (Living room)

76

5.3 Combination of Need-oriented and Routine Behavior

Experiments were conducted to test the behavior of the agent Person with

scenario shown in Table 14. All the agent’s activities with corresponding starting

times were recorded during the day. The person was performing planned activities

and satisfying needs for a few simulated weeks in the model of ambient

intelligence. Since the person starts days with different inner values, the final order

and starting times of activities may differ each day although the scenario was

always the same. Table 15 shows the course of one day in comparison with the

scenario introduced in Table 14. Most of the activities were completed, some on

time, few of them later. For example, afternoon the agent had no time to continue

read news because he had to make dinner. Later evening, the agent was tired, so he

rested ignoring less critical activity in the schedule (playing games). However, he

was able to return to it later.

Table 14: Scenario tested in the model. (source: author)

Start time Activity Importance

6:00 toileting 0.95

6:15 medicine 1

6:30 exercise 0.7

6:45 medicine 1

6:50 shower 0.9

7:00 eat_breakfast 0.95

7:10 read_news 0.8

7:20 medicine 1

9:30 massage 0.9

10:30 swimming 0.9

12:30 eat_dinner 0.9

16:00 watch_tv 0.3

17:00 read_news 0.3

17:30 health_practice 0.8

18:00 eat_dinner 1

18:50 medicine 1

19:00 go_out_exercise 0.8

20:00 work 0.5

21:00 play_games 0.3

22:30 drink 0.8

22:45 toileting 0.95

23:00 sleep 1

77

Table 15: Recording of the actual behavior of the agent in one day and its comparison with the scenario.
(source: author)

Time Activity Schedule comparison Time Activity Schedule comparison

5:47 toileting 13 min early 14:48 get_drink not planned

5:58 medicine 17 min early 14:51 drink not planned

6:03 take_snack not planned 14:53 take_snack not planned

6:05 eat_snack not planned 14:55 eat_snack not planned

6:11 watch_tv not planned 15:01 watch_tv 59 min early

6:23 exercise 7 min early 16:27 get_drink not planned

6:39 medicine 3 min early 16:30 drink not planned

6:44 get_drink not planned 16:32 watch_tv resumed

6:47 drink not planned 17:16 read_news 16 min late

6:49 watch_tv not planned 17:17 health_practice 13 min early

7:00 eat_breakfast not hungry (skipped) 17:41 read_news resumed

7:00 read_news 10 min early 17:49 get_ingredients required act

7:05 medicine 15 min early 17:55 make_dinner required act

7:10 use_toilet not planned 18:14 missed activity:

read_news (3 minutes left) 7:11 watch_tv not planned

8:23 get_drink not planned 18:16 eat_dinner 16 min late

8:26 drink not planned 18:32 get_drink not planned

8:28 watch_tv not planned 18:35 drink not planned

9:28 massage 2 min early 18:37 use_toilet not planned

10:29 swimming 1 min early 18:38 medicine 12 min early

11:29 get_drink not planned 18:43 go_out_exercise 17 min early

11:33 drink not planned 20:25 work 25 min late

11:35 get_ingredients required act 21:01 get_drink not planned

11:41 make_dinner required act 21:04 drink not planned

12:02 eat_dinner 30 min early 21:06 rest not planned

12:18 use_toilet not planned 22:14 play_games 74 min late

12:19 watch_tv not planned 22:29 get_drink required act

13:09 get_drink not planned 22:32 drink 2 min late

13:12 drink not planned 22:34 play_games resumed

13:14 wash_hands not planned 22:42 toileting 3 min early

13:40 use_toilet not planned 22:53 play_games resumed

13:41 watch_tv not planned 22:58 sleep 2 min early

Table 15 shows output data originating directly from the agent Person. Obviously,

the system controlling the smart environment does not have those outputs. It

depends only on its sensors, and there is no direct communication between agents

and the system even in the model. The log of sensors is much more detailed than

the record of the person’s activities. Hence Table 16 contains information available

to the system during only the first hour of the same day.

78

Table 16: Output data of the intelligent system from the first hour of the example scenario. (source: [83])

Time Type Location Action

5:47:08 Move Center Person is caught by Center

5:47:13 Move Hall Person is caught by Hall

5:47:18 Move Bathroom Person is caught by Bathroom

5:48:03 On/off Bathroom Bathroom sink was turned on.

5:58:03 On/off Bathroom Bathroom sink was turned off.

6:03:03 Move Hall Person is caught by Hall

6:03:08 Move Center Person is caught by Center

6:03:13 Move Kitchen Person is caught by Kitchen

6:04:03 On/off Kitchen Fridge was turned on.

6:05:03 On/off Kitchen Fridge was turned off.

6:11:03 Move Center Person is caught by Center

6:11:13 Move Living room Person is caught by Living room

6:12:03 On/off Living room TV was turned on.

6:39:08 Move Center Person is caught by Center

6:39:08 On/off Living room Person is in a different room than TV which was turned off by House System.

6:39:13 Move Hall Person is caught by Hall

6:39:18 Move Bathroom Person is caught by Bathroom

6:44:03 Move Hall Person is caught by Hall

6:44:08 Move Center Person is caught by Center

6:44:13 Move Kitchen Person is caught by Kitchen

6:49:03 Move Center Person is caught by Center

6:49:13 Move Living room Person is caught by Living room

As both tables describe the same day, it is easy to compare what the intelligent

system knows about the agent’s activities and what the agent actually did. For

example, at 6:11 agent Person decided to watch TV, at 6:12 TV was turned on. At

6:23 the person stopped watching TV and start exercise. Since both activities are in

the same room and person forgot to turn off the TV, the system did not notice any

change until 6:39 when the person left room (with the TV still on). Then the system

turned off TV because no one was watching it. That is just an example of how the

output of the ambient intelligence model could look. The model uses basic sensors

partially to avoid privacy issues which often smart environments need to deal

with. However, it is not the objective of this work to further explore the

possibilities and limitations of such a system.

79

5.4 Computational Performance

In the field of multi-agent models, computational complexity is a serious concern if

a model seeks to process a large number of agents fast. Although the final output of

this model depends only on one agent or small group of them, lower computational

complexity is still a beneficial achievement because of possible future

enhancement of the model and computationally demanding learning algorithm.

Growing the population of agents is often the highest performance hit because it

multiplies all processes of the agent. Genetic algorithms do exactly that: generally

speaking, the larger population, better the results of evolution.

Beside standard optimization of algorithms, the effort to increase simulation speed

in multi-agent systems also focuses on the reducing of processing load on

individual agents and pre-computing the data which are supposed to be used often

by agents. In [84], thousands of agents drive through the map. The greatest

challenge for this project was path-finding. Certain approaches are sufficient as

long as the population stays relatively small, but their simulation time grows fast

along with the number of agent or complexity of their environment (see

Figure 35). The best solution for this particular model started with simplification

of the environment from a detailed Geographic information system (GIS) map to

a weighted graph. Then the best-proven strategies kept already computed paths

and then just distributed results, so agents never process the same path again.

For the purpose of the human simulation, the environment in the proposed model

was also simplified to a weighted graph. Although pre-computation of paths is

possible, it is not implemented in this model because the number of agents does

not reach thousands like in [84], and primarily the overall complexity of behavior

makes path-finding costs insignificant. Instead, agents use built-in AnyLogic path-

finding algorithm (A* by default), which is sufficient for this purpose.

80

Figure 35: Mean runtime performance of algorithms. (source: [84])

To further decrease the computational time of the simulation, some reductions in

the processing load of agents were used during the implementation of the model.

Any variable or function which is valid globally through the model should be

placed in the main class of the model. This way, agents request the value they need

instead of processing it individually each time. For instance, the truth values

describing the time of day are at any moment the same across the whole model;

therefore, agents take the value from the global variable instead of calculating it

themselves. A performance test was conducted to compare the impact of the

location of timers on the simulation speed. At the first case, agents had own timers

individually; the later version uses global timers which trigger corresponding

actions for each agent. Although this change undoubtedly removes some

unnecessary operations, its effect on the simulation speed has been statistically

insignificant. Therefore, performance optimization efforts were redirected to the

decision-making process.

81

The core of FCM-NAS is the multiplication of a vector with a matrix. Despite this

calculation being divided by different concept classes, its time complexity is the

same. Increasing the number of concept nodes means more possibilities. However,

adding a new node to an FCM with c concept nodes raises its number of operations

by 2n+1 per computation. The time complexity of multiplication of 1×n vector and

n×n matrix is 𝑂(𝑛). Reduction of its complexity is undoubtedly possible: there are

loss and lossless methods to do so. Beneficial lossless optimization is the utilization

of the specific structure of FCM-NAS and different purposes of nodes to skip some

sections during computations. If an FCM-NAS contains nodes of external inputs, the

whole this section is omitted because these values are inserted from the outside;

hence no other node can influence it.

Experiments with other modifications were conducted to decrease the time

complexity of FCM-NAS even further. Multi-criterion decision support method AHP

was used for the decision-making part of FCM-NAS. Although AHP has the same

complexity as it processes matrix and vector multiplication as well, it spreads time

complexity over two smaller sets: 𝑂(𝑛′) and 𝑂(ℎ ℎ), where n’ is the number of

nodes in a new smaller FCM-NAS, ℎ represents the number of criteria and ℎ the

number of alternatives in AHP. In [77], there was proven that the final number of

operations is always lower this way because the following statements are always

true:

𝑛′ + ℎ < 𝑛 (31)

ℎ < 𝑛 (32)

𝑛′ + ℎ ℎ < 𝑛 (33)

It proved to significantly decrease processing time of FCM-NAS depending on the

size of the FCM. For the relatively small matrix, 17 concept nodes, computational

time of this method is less than half of the full FCM-NAS approach (54% decrease).

Figure 36 shows dependency on the size of FCM-NAS: for example, huge FCM-NAS

with 180 nodes would be about five times faster with AHP modification.

82

Figure 36: Performance comparison of FCM-NAS and its modification with AHP: the dependency between the

number of concepts and the time needed to perform a million computations. (source: [77])

The main drawback of this method is that fewer values enter the decision-making

process. The tested artificial life model in [77] with 17 concept nodes had initially

136 values forming agents’ decision-making. After the combination with AHP, this

number has been reduced to 20 which considerably limits the learning capabilities

of agents. This simplification resulted in slightly less effective decision-making:

4.4% average decrease of fitness in the model. Since the presented ambient

intelligence model has significantly fewer agents to process and specific demands

of human behavior, full FCM-NAS matrix with lossless optimization only is used to

process decision-making. However, if the scope of this model grows or its focus

does not require such detail, then the replacement of its decision-making part with

AHP will be a viable option to improve computational complexity.

The next important area of computational performance is the cost of agents'

operations in the model. This includes the lower-level activity selection, movement

through the environment, interactions and even processes of the intelligent system

with its sensors. The high rate of processing agents’ logic (under 1 millisecond per

agent) prevents reliable measurement of individual parts of the simulation.

Fortunately, the model allows disabling specific parts of behavior to compare it

with the standard configuration. This technique will help to estimate a balance of

computational demands of the proposed decision-making approach and the other

operating costs of the simulation.

Different configurations of agents’ behavior were tested while decision-making

processes kept the same demands (the same size of the FCM-NAS and the same

83

scenario). A blank decision-making configuration, which does not trigger any

activity, reached the rate of over 100 000 processed agents per second (see Figure

37). It is about three times higher rate compared to a standard one. On the other

hand, the behavior intentionally configured to change activities every minute,

which keeps agents constantly walking in the environment, has this rate 47%

lower than a standard one. Conducted performance experiments show that the

simulation speed is highly dependent on the intensity of agents’ behavior. In most

cases, operational costs limit this model by greatest contribution regarding

computational demands. The experiments also shows that processing decision-

making including the schedule management is sufficiently fast even in the worst

case scenario.

All the previous results regarding computational performance were run on the

same system: PC1 described in Table 17. Devices listed in Table 17 were used to

test the model on different hardware configurations. Figure 38 shows the average

rate of processed agents per second on all these devices.

Figure 37: Comparison of processing rates of different behaviors. (source: author)

84

Table 17: Specification of testing devices. (source: author)

Label Operation system Processor (cores, max frequency) RAM Model performance*

PC1 Win 10 (64-bit) i7 8700 (6 cores, 4.6 GHz) 16 GB 37 113

PC2 Win 7 (64-bit) i5 3210M (2 cores, 3.1 GHz) 8 GB 22 245

PC3 Win 7 (64-bit) i3 530 (2 cores, 2.93 GHz) 8 GB 11 571

All devices used AnyLogic 8.3.3 with Java 9.0.1

*Average number of processed agents per second – with a standard (default) configuration

Figure 38: Comparison of average simulation speed on different hardware configurations. (source: author)

The performance of the proposed approach allows a smooth run of hundreds or

thousands of agents while keeping complex behavior. Its modularity also enables

to modify this approach for either large scale simulations with tens of thousands of

agents or very complex behavior with over a hundred concept nodes. In the

ambience intelligence model, its simulation speed is more than sufficient by a large

margin. Learning through genetic algorithms is the only situation with a large

population within the model. The primary use of this model allows simulating very

long periods of time in a few seconds. For example, the model on PC1 with one

agent go through one year in 35 seconds on average (80 seconds on PC3).

85

5.5 Machine Learning

During the learning process, the agent’s behavior improves generation by

generation in pursuit of improvement of the fitness. Many configurations were

tested to balance parameters of evolution and weights of three parts of the fitness

function. The ability to design initial decision-making by hand (which would not be

possible with neural networks) proved to be very useful and time-saving

concerning the use of genetic algorithms because it allowed starting with evident

and important relations from the beginning. Otherwise, when learning every

relation from scratch, it takes significantly more generations to uncover and

reinforce essential connections of needs and appropriate activities with this

complex behavior.

Generally, configurations with lower variability get easily stuck in a local maximum

of fitness function by triggering activities by wrong inputs. In this situation, agents

tend to transfer responsibility for decisions to schedule management since

triggering it is easy to learn and the reward for its scenario completion is high.

Then, planned activities are covered, but the learning process struggles to discover

ties between needs and their corresponding activities. Figure 39 shows such

a situation. Even after one thousand generations, genetic algorithms did not

manage to teach agents to handle needs, and it optimized behavior only according

to two other components of fitness function (schedule and free time). A schedule

containing some need-oriented activities (for example planned dinner) further

confuses learning mechanism. For this and following experiments with machine

learning, the sample scenario described above in Table 14 was used. To prevent

that, either initial by-hand design is needed to guide the population in the right

direction, or genetic algorithms require different configuration. The latter option

may be higher selection pressure towards desired behavior or high variability

(meaning more pronounced mutation) for significantly more time to properly

explore possibilities.

86

Figure 39: Development of fitness during genetic algorithms getting stuck at local maximum. (source: author)

Figure 40: Development of fitness during genetic algorithms with higher selection pressure towards needs.
(source: author)

Figure 40 shows another attempt with the same parameters except weights of the

fitness component evaluating needs. This time it was set higher than the schedule

component leading to higher selection pressure towards needs satisfaction. This

configuration managed to overcome difficulties of learning complex behavior from

blank decision-making. However, since the pressure for satisfying needs was the

strongest, the final behavior tends to ignore the weaker free time fitness

87

component. Which leads to spending most of the time on needs despite their low

level; hence the behavior is less effective.

Figure 41 shows the development of the fitness value during the experiment that

started with an initial by-hand designed matrix of relations R. This way, FCM-NAS

starts the learning process in a basic operational state. This initial configuration is

not optimized to recognize priorities of different needs and does not have proper

sensitivity to switching behavior between need-related and planned activities.

However, all needs are connected to corresponding activities saving genetic

algorithms a lot of time, so it starts with the optimization of these values instead of

searching for them. Notice that the fitness value in the experiment on Figure 41

converged to a very high value in a much shorter time in comparison with the

previous experiments starting from scratch.

The configuration of genetic algorithms is an essential step in creating desired

behavior. Some values significantly influence the final behavior or the duration of

learning. Firstly, the fitness function with its three components pushes evolution in

the desired direction. As the best balance of weights of this three components

proved to be as follows: weight of schedule component W at 1.5; the weight of

need-related fitness W at 1.0; and weight of free time component W at 0.5. It is

recommended to keep planned activities more important than free time;

otherwise, it might simply skip some longer activities with lower priority just to

save time. For the configuration of parameters of mutation, the model uses

dynamic values gradually lowering variability. In the beginning, mutation is

pronounced to randomize genes and spread across a wide range of possibilities.

After this phase, every 200 (or 400 depending on the speed of convergence)

generations, mutation softens and makes smaller adjustments of values to find

a more precise solution. The size of steps which are genes modified with starts at

0.1; at the end, this size was set to 0.01, which determines the final precision of the

solution.

88

Figure 41: Development of fitness during genetic algorithms starting from by-hand designed FCM-NAS matrix.
(source: author)

89

6 Discussion

This section compares the created model with the projects described in the State of

the Art, and also returns to objectives of this work, evaluates accomplished goals

and achievements, and outlines the future direction of research and possible

enhancements of this work.

6.1 Comparison with Other Projects

Table 18 shows the feature comparison of the method proposed by this work to

other projects with similar approaches or goals. It offers an overview of the models

previously presented in section State of the Art. There are also two models

considered before the design of FCM-NAS connected with schedule management.

The first one is the finite-state machine that was implemented in the model in the

beginning. During its implementation, many shortcomings appeared. The demand

for a better solution was driven by tedious manual creation of a scenario, low

flexibility, difficulties to connect activities to proper time, and some other

drawbacks that are listed in Table 18. The second method considered before was

a simple FCM-NAS, which has been already developed and tested. However, the

goal of the project expected an implementation of scenarios, which are not

supported by FCM-NAS alone.

All these projects and approaches aim for different objectives and focus their

attention to different aspects of the simulation of human activity. Many of them do

not explicitly aim for the decision-making which leads to incomplete, temporary,

or limited solutions which are just enough for the objective but are not scalable.

For instance, the PerSim simulations rely on a simple list of activities feeding

agent’s behavior. Since the model focuses on very detailed physical interactions of

the agent with sensors, it does not run the simulation over an extended period of

time when the list of activities would reach the end and agent stopped working. On

the other hand, the HSS model, which would be capable of running infinitely, lacks

the ability of routine behavior or any scenario implementation which limits it to

need-driven activities only.

90

Another possible feature of human simulation is the ability to handle or at least

support unexpected events in the environment. This feature requires either

a flexible decision-making method or the mechanism offering to delay or interrupt

activities. Obviously, models with strict scenarios do not support that feature as

the simulation is directed only by given scenario. HSS with the need-oriented

decision-making enables to interrupt activities to satisfy a more pressing need.

NPCs (agents) in Kingdom Come are capable of handling unexpected situations by

switching decision-making sub-models corresponding to the current context

(regular, combat, and so on) [61].

The support of more than one agent in the environment is an important feature for

testing ambient intelligence systems in more complex situations. MASSHA model

[67] supports and tested two agents in a simulation. Each one has its own dataset

directing its behavior through a day. This model focuses on interactions with the

environment and has unvarying behavior; hence the agents’ behavior does not get

more complex by adding more agents. On the other hand, large-scale models with

hundreds of agents like DiaSim [76] or ALModel with FCM-NAS only [77] tends to

focus on the emergence and simplify agent’s behavior which does not support

routines or more complex interactions. The proposed method offers potentially full

support of interactions based on both situational need and planned activities.

However, only basic multi-agent support and interactions were tested in the model

(see 4.7 Multi-agent Support).

The support of multiple scenarios per agent and conditions of activities makes

behavior varying and more situation-specific. The proposed solution allows setting

agents with an unlimited number of scenarios for different days of the week (or

even month). Their schedule can be further randomized by the probability of

appearance of activities. The method also enables activities to set conditions that

need to be met in order to start. Unmet conditions then trigger alternative

activities. These features make possible behaviors very complex and varying

through a simulation.

91

Table 18: Com
parison of the proposed hum

an activity sim
ulation to other sim

ilar projects. (source: author)

M
odel

PerSim

[70]
PerSim

3D

[68, 71]
M

ASSH
A

[67]
H

SS
[53, 72]

O
penSH

S
[69, 73]

Kingdom

Com
e [61]

Finite-state
m

achine
FCM

-N
AS

only
FCM

-N
AS

w
ith SM

Type of decision-m
aking

Procedure
w

ith list of
activities

Procedure
w

ith list of
contexts

List of
activities w

ith
priorities

Selection by
priority
function

Scenarios
replicating

user control

List of
activities and

DM
 sub-

m
odels

Finite-state
m

achine
FCM

-N
AS

FCM
-N

AS +
schedule

m
anagem

ent

Focus

Low
er level -

sensory
detection

Low
er level -

sensory
detection

Decision-
m

aking and
interactions

H
igher level of

decision-
m

aking

H
igher level of

decision-
m

aking
Visual quality

H
igher level of

decision-
m

aking

H
igher level of

decision-
m

aking

H
igher level of

decision-
m

aking

Tim
e scope

1 day
1 day

Days
W

eeks
Days

W
eeks

1 day
M

onths
M

onths

Scenarios support
Y

Y
Y

N

Y
Y

Y
N

Y

Sim
ulation of needs

N

N

N

Y
N

N

Y

Y
Y

U
nexpected events

support
N

N

Y

Y
N

Y

N

Y
Y

M
ulti-agent support

N

N

Y
N

N

Y

N

Y
P

M
ulti-scenario support

N

N

N

N

Y
Y

N

N

Y

Activity conditions
N

Y

Y
N

N

Y

N

Y
Y

Activity hierarchy
N

Y

Y
Y

N

Y
P

N

Y

Anim
ations

N

Y
N

N

N

Y

N

N

N

3D
 environm

ent
N

Y

N

N

Y
Y

Y
Y

Y

M
achine learning

N

N

N

N

N

N

N

Y
Y

Y: a m
odel contains/supports a feature and it w

as tested; P: a m
odel partially supports a feature or it has not been tested; N

: a m
odel does not support the feature

92

Although in some models it may be possible, none of the models actually uses

machine learning. All their decision-making processes are set and configured by

hand including scenarios. As described in section 5.5 Machine Learning, the

proposed model uses genetic algorithms to adjust behavior for specific goals or

a scenario. It can ultimately simulate each agent with different behavioral

configuration learned specifically for its style of life (scenario). This feature is

exclusive to the proposed model.

Regarding decision-making, the method presented in this work is able to emulate

approaches of any previously described human activity simulation by omitting

some elements of decision-making or learning the decision-making mechanism

with adjusted weights of the fitness function. As shown in section 5.1 Need-

oriented Behavior Only, the method can generate the same behavior patterns as

simpler decision-making without scheduling capabilities. The opposite approach

with the scripted scenario was emulated as well (see section 5.2 Routine Behavior

Only). In section 5.3 Combination of Need-oriented and Routine Behavior, the

combination of both approaches, which is exclusive to the proposed solution,

proved it can autonomously manage dynamic agent’s needs within planned

scenario by delaying less critical activities or omitting redundant ones.

Experiments in section 5.4 Computational Performance verified the proposed

solution is not limited by computational performance as it can process one virtual

year in dozens of seconds, even on a bellow average hardware configuration.

6.2 Fulfillment of Objectives

The main objective of this work was to design a method for the simulation of

human behavior which would be able to process decision-making based on both

internal needs of agents and planned scenario. To accomplish and prove this

objective, the following tasks were completed:

1. Review of application areas of human activity simulation.

2. Review of studies describing FCM and its modification with a focus on

agent-based approaches.

93

3. Specification of the modified FCM method for human activity simulation.

4. Proposal of general methodological procedure of how to design and

implement human activity simulation for selected application domains.

5. Implementation of the methodology into an ambient intelligence model,

conducting experiments, and their evaluation.

6. Synthesis of results.

First two tasks were completed in section State of the Art. This section presented

reviews of human activity simulation, FCMs in agent-based approaches, as well as

all other research areas connected to this work. For each area of interest, it defined

basic concepts and presented related works. It also described the mathematical

background of FCM as the core method for the proposed approach, which further

enhances these formulas in the context of agent-based models.

The following section, Solution, accomplished tasks number three and four. Its first

part thoroughly describes the proposed enhancement of FCMs targeted to agent-

based uses. Then the solution of routine behavior is presented showing general

data structure and helpful information for the implementation of routines into any

agent-based model. After both of these components are presented, this section

discusses their cooperation and implementation into the model.

The fifth task, implementation of the model, was completed on the platform

AnyLogic 8. Some of this process is described in section Solution; while section

Results presents experimental results acquired by running the built model.

The response to the sixth task is presented in the section Results, which offers

results of several experiments focused on the function of the model as a whole, the

rationality of the decision-making and also its learning abilities through genetic

algorithms. Then, this section compares the proposed method with models

described in State of the Art to point out the positives and negatives of different

approaches in the researched area. This comparison highlights features that are

unique to the proposed model: the combination of need-oriented and routine

94

behavior and the ability to adapt behavior to the specific scenarios using machine

learning.

Main benefits of the dissertation are as follows:

 It provided a complete overview of the problem of simulating human

activities in agent-based applications.

 It provided the design of FCM-NAS method that could serve as a guide for

the design of decision-making in a wide range of agent-based applications.

 It introduced the approach that combines the introduced FCM-NAS method

with routine behavior for the human activity simulation.

 It further specified steps of implementation of the introduced decision-

making mechanism into agents in an ambient intelligence model and

pointed out possible obstacles.

 It presented the results of experiments showing the usefulness and abilities

of this approach for human activities simulations.

The proposed solution could be used for a simulation of any living creature

following routines during its life. In theory, it may improve an artificial life model

with the addition of a day/night cycles, used as artificial intelligence for characters

in computer games, or simulate agents in multi-agent models for research

purposes or testing of ambient intelligence systems.

The last mentioned use case was tested. The behavior of the entity with this

approach was implemented and tested within the virtual environment of

an ambient intelligence model. The model is using the AnyLogic, which is a Java-

based development platform optimized for agent-based models. The solution uses

machine learning to optimize decision-making method. Agents’ behavior is

evaluated through fitness function and then adjusted by reinforcement learning –

genetic algorithms. The fitness value depends on the percentage of accomplished

scheduled activities and satisfaction of the agent’s needs. Like in human behavior,

the goal is not to start every scheduled activity exactly at the second it was meant

95

to begin. The intended behavior always considers not only schedule but even the

current situation or expected events in the near future. Then, the agent is able to

accomplish all the important scheduled activities. It may skip less important ones;

however, there should always be a reason for every skip resulting from the current

situation.

6.3 Future Work

Despite these achievements, this model has still the potential to advance. For

instance, extending the simulated environment outside of the living area and

adding more agents with complex interactions would allow simulating even work

environment, potentially whole smart city. It would require new activities,

interactions and even cooperation with other agents. Most importantly the method

would need to process expectancy and uncertainty regarding other agents’

behavior, which means that agents would need to synchronize their schedule and

react when others are delayed. Currently, the model assumes that agents are not

going through any significant changes (dramatic change in a lifestyle or agents

moving in/out) during a simulation, which would also be possible to implement.

On the other hand, there is also a possibility to aim for a more detailed

environment instead. That would, of course, require detailed low-level operations

inside already implemented activities. For example, when the agent is making

dinner, it would split into many simple tasks like open/close drawer or cabinet,

take dishes and so on. In theory, the proposed method allows the addition of

animations and very detailed physical sensory detection; however, the current

platform is not well suited for it.

96

7 Conclusion

This work presented the new approach of human activity simulation using

an agent-oriented modification of fuzzy cognitive maps with the addition of routine

behavior sub-system. The proposed decision-making method is designed to follow

a daily schedule while still being able to react to unexpected situations and manage

an agent’s needs autonomously. The main objective of this work was the design of

a method for the simulation of human behavior which would be able to process

decision-making based on both internal needs of agents and planned scenario. To

accomplish the objective and test the proposed design, this method was

implemented into an ambient intelligence model and compared with projects with

similar objectives. It features abilities like delaying or interrupting activities due to

unexpected events, multi-agent and multi-scenario support, conditions and

requirements of activities, and hierarchical structure of contexts-activities-actions.

On top of these more or less usual features of human simulation, the proposed

model has added two unique ones: the cooperation of need-oriented and routine

behavior and adaptation of behavior through machine learning.

In the beginning, this work summarized the current state of the art regarding the

original fuzzy cognitive maps and their mathematical background, ambient

intelligence models and other fields that are related to human activity simulation.

This section also presented some projects that either use similar methods or aim

for similar goals as the model implementation of this work.

The FCM-NAS, as the core method, was described in detail along with its abilities to

learn. Also, the second component of the decision-making mechanism was

presented: routine behavior implemented by scenarios and schedule management.

Then the cooperation of these methods was introduced since both components are

independent decision-making processes which might otherwise want to control

the behavior of a single agent in an incompatible manner. After the design, this

work presented its implementation into an ambient intelligence model and its

adaptation by genetic algorithms. The final section describes conducted

experiments and their results proving the accomplishment of the objective.

97

8 References

[1] N. Banovic, T. Buzali, F. Chevalier, J. Mankoff, and A. K. Dey, "Modeling and
understanding human routine behavior," presented at the Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, 2016.

[2] S. Russell and P. Norvig, The Artificial Intelligence: Prentice Hall Press, 2010.
[3] A. R. Jensen, Bias in Mental Testing: Free Press, 1980.
[4] C. R. Renato, V. Z. J. Fernando, and F. F. Mauricio, "Stigmergic Autonomous

Navigation in Collective Robotics," in Stigmergic Optimization, ed Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 25-63.

[5] Promiskuitiv and Archon. (2014). Age of empires II AI Scripting - GitHub.
Available: https://gist.github.com/Andygmb/1e3a6d9d444b2dfa8c40

[6] M. Certicky, Implementing a Wall-In Building Placement in StarCraft with
Declarative Programming vol. abs/1306.4460, 2013.

[7] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss,
"RTS AI Problems and Techniques," in Encyclopedia of Computer Graphics
and Games, N. Lee, Ed., ed Cham: Springer International Publishing, 2015,
pp. 1-12.

[8] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural
Networks, vol. 61, pp. 85-117, 2015/01/01/ 2015.

[9] R. Lent, "A generalized reinforcement learning scheme for random neural
networks," Neural Computing and Applications, October 19 2017.

[10] R. A. Howard, "Dynamic programming and markov processes," 1960.
[11] N. Khademi, A. S. Mohaymany, J. Shahi, and S. Zerguini, "An Algorithm for

the Analytic Network Process (ANP) Structure Design," Journal of Multi-
Criteria Decision Analysis, vol. 19, pp. 33-55, 2012.

[12] W. Reisig and G. Rozenberg, Lectures on petri nets i: basic models: advances
in petri nets: Springer Science & Business Media, 1998.

[13] B. Kosko, "Fuzzy cognitive maps," International Journal of Man-Machine
Studies, vol. 24, pp. 65-75, 1986/01/01 1986.

[14] R. Yu and G.-H. Tzeng, "A soft computing method for multi-criteria decision
making with dependence and feedback," Applied Mathematics and
Computation, vol. 180, pp. 63-75, 9/1/ 2006.

[15] F. Čapkovič, "Failures in discrete-event systems and dealing with them by
means of Petri nets," Vietnam Journal of Computer Science, vol. 5, pp. 143-
155, May 01 2018.

[16] N. Bulling, A Survey of Multi-Agent Decision Making vol. 28, 2014.
[17] J. P. Carvalho, "On the semantics and the use of fuzzy cognitive maps and

dynamic cognitive maps in social sciences," Fuzzy Sets and Systems, vol. 214,
pp. 6-19, 3/1/ 2013.

[18] E. I. Papageorgiou, K. E. Parsopoulos, C. S. Stylios, P. P. Groumpos, and M. N.
Vrahatis, "Fuzzy Cognitive Maps Learning Using Particle Swarm
Optimization," Journal of Intelligent Information Systems, vol. 25, pp. 95-121,
July 01 2005.

[19] O. Motlagh, Z. Jamaludin, S. H. Tang, and W. Khaksar, "An agile FCM for real-
time modeling of dynamic and real-life systems," Evolving Systems, vol. 6,
pp. 153-165, 2015.

98

[20] Y.-H. Hsieh, I.-H. Chen, and S.-T. Yuan, "FCM-based customer expectation-
driven service dispatch system," Soft Computing, vol. 18, pp. 359-378, 2013.

[21] V. Senniappan, J. Subramanian, E. I. Papageorgiou, and S. Mohan,
"Application of fuzzy cognitive maps for crack categorization in columns of
reinforced concrete structures," Neural Computing and Applications, pp. 1-
11, 2016.

[22] S. Ahmadi, C. H. Yeh, E. I. Papageorgiou, and R. Martin, "An FCM-FAHP
approach for managing readiness-relevant activities for ERP
implementation," Computers & Industrial Engineering, vol. 88, pp. 501-517,
Oct 2015.

[23] G. Kyriakarakos, K. Patlitzianas, M. Damasiotis, and D. Papastefanakis, "A
fuzzy cognitive maps decision support system for renewables local
planning," Renewable and Sustainable Energy Reviews, vol. 39, pp. 209-222,
2014.

[24] L. S. Jayashree, N. Palakkal, E. I. Papageorgiou, and K. Papageorgiou,
"Application of fuzzy cognitive maps in precision agriculture: a case study
on coconut yield management of southern India’s Malabar region," Neural
Computing and Applications, vol. 26, pp. 1963-1978, 2015.

[25] P. J. Giabbanelli and R. Crutzen, "Creating groups with similar expected
behavioural response in randomized controlled trials: a fuzzy cognitive map
approach," BMC Medical Research Methodology, vol. 14, pp. 1-19, 2014.

[26] H. Barón, R. Crespo, J. Pascual Espada, and O. Martínez, "Assessment of
learning in environments interactive through fuzzy cognitive maps," Soft
Computing, pp. 1-14, 2014.

[27] M. Mendonça, L. V. R. d. Arruda, and F. Neves-Jr, "Cooperative Autonomous
Agents Based on Dynamical Fuzzy Cognitive Maps," in Fuzzy Cognitive Maps
for Applied Sciences and Engineering: From Fundamentals to Extensions and
Learning Algorithms, I. E. Papageorgiou, Ed., ed: Springer Berlin Heidelberg,
2014, pp. 159-175.

[28] A. L. Laureano-Cruces and A. Rodriguez-Garcia, "Design and implementation
of an educational virtual pet using the OCC theory," Journal of Ambient
Intelligence and Humanized Computing, vol. 3, pp. 61-71, 2011.

[29] G. Acampora, V. Loia, and A. Vitiello, "Distributing emotional services in
Ambient Intelligence through cognitive agents," Service Oriented Computing
and Applications, vol. 5, pp. 17-35, 2011.

[30] P. Szwed, P. Skrzynski, and W. Chmiel, "Risk assessment for a video
surveillance system based on Fuzzy Cognitive Maps," Multimedia Tools and
Applications, pp. 1-24, 2014.

[31] R. T. Jones, E. Connors, M. Mossey, J. Hyatt, N. Hansen, and M. Endsley,
"Using fuzzy cognitive mapping techniques to model situation awareness
for army infantry platoon leaders," Computational and Mathematical
Organization Theory, vol. 17, pp. 272-295, 2011/09/01 2011.

[32] R. Furfaro, W. Fink, and J. S. Kargel, "Autonomous real-time landing site
selection for Venus and Titan using Evolutionary Fuzzy Cognitive Maps,"
Applied Soft Computing, vol. 12, pp. 3825-3839, 2012.

99

[33] W. Stach, L. Kurgan, and W. Pedrycz, "A divide and conquer method for
learning large Fuzzy Cognitive Maps," Fuzzy Sets and Systems, vol. 161, pp.
2515-2532, 10/1/ 2010.

[34] A. Jose, "Dynamic Fuzzy Cognitive Maps for the Supervision of Multiagent
Systems," in Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools
and Applications, M. Glykas, Ed., ed: Springer Berlin Heidelberg, 2010, pp.
307-324.

[35] M. Mendonça, L. V. R. de Arruda, I. R. Chrun, and E. S. da Silva, "Hybrid
Dynamic Fuzzy Cognitive Maps Evolution for autonomous navigation
system," in 2015 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), 2015, pp. 1-7.

[36] M. Stula, D. Krstinic, and L. Seric, "Intelligent forest fire monitoring system,"
Information Systems Frontiers, vol. 14, pp. 725-739, 2011.

[37] R. Gras, A. Golestani, M. Hosseini, M. Khater, Y. Farahani, M. Mashayekhi, et
al., "Ecosim: an individual-based platform for studying evolution," in
European Conference on Artificial Life, 2011, pp. 284-286.

[38] M. Khater, E. Salehi, and R. Gras, "The Emergence of New Genes in EcoSim
and Its Effect on Fitness," in Simulated Evolution and Learning. vol. 7673, L.
Bui, Y. Ong, N. Hoai, H. Ishibuchi, and P. Suganthan, Eds., ed: Springer Berlin
Heidelberg, 2012, pp. 52-61.

[39] R. Gras. (2013). EcoSim: An ecosystem simulation. Available:
https://sites.google.com/site/ecosimgroup/research/ecosystem-
simulation

[40] M. Khater and R. Gras, "Adaptation and Genomic Evolution in EcoSim," in
From Animals to Animats 12: 12th International Conference on Simulation of
Adaptive Behavior, SAB 2012, Odense, Denmark, August 27-30, 2012.
Proceedings, T. Ziemke, C. Balkenius, and J. Hallam, Eds., ed: Springer Berlin
Heidelberg, 2012, pp. 219-229.

[41] T. M. Mitchell, Machine Learning: McGraw-Hill, Inc., 1997.
[42] A. Aspinall and R. Gras, "K-Means Clustering as a Speciation Mechanism

within an Individual-Based Evolving Predator-Prey Ecosystem Simulation,"
in Active Media Technology. vol. 6335, A. An, P. Lingras, S. Petty, and R.
Huang, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 318-329.

[43] R. Scott and R. Gras, Comparing Distance-Based Phylogenetic Tree
Construction Methods Using An Individual-Based Ecosystem Simulation,
EcoSim, 2012.

[44] A. Šošić, A. M. Zoubir, and H. Koeppl, "Reinforcement learning in a
continuum of agents," Swarm Intelligence, vol. 12, pp. 23-51, March 01 2018.

[45] A. R. KhudaBukhsh, J. G. Carbonell, and P. J. Jansen, "Robust learning in
expert networks: a comparative analysis," Journal of Intelligent Information
Systems, vol. 51, pp. 207-234, October 01 2018.

[46] M. Abdoos, N. Mozayani, and A. L. C. Bazzan, "Hierarchical control of traffic
signals using Q-learning with tile coding," Applied Intelligence, vol. 40, pp.
201-213, March 01 2014.

[47] T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, "A survey on handling
computationally expensive multiobjective optimization problems with
evolutionary algorithms," Soft Computing, December 11 2017.

100

[48] H. Bhasin, G. Behal, N. Aggarwal, R. K. Saini, and S. Choudhary, "On the
applicability of diploid genetic algorithms in dynamic environments," Soft
Computing, vol. 20, pp. 3403-3410, September 01 2016.

[49] T. Y. Lim, "Structured population genetic algorithms: a literature survey,"
Artificial Intelligence Review, vol. 41, pp. 385-399, March 01 2014.

[50] O. Hasançebi and F. Erbatur, "Evaluation of crossover techniques in genetic
algorithm based optimum structural design," Computers & Structures, vol.
78, pp. 435-448, 2000/11/01/ 2000.

[51] J. Flegr, "Elastic, not plastic species: Frozen plasticity theory and the origin
of adaptive evolution in sexually reproducing organisms," Biology Direct,
vol. 5, p. 2, January 13 2010.

[52] G. M. Hodgson, "The ubiquity of habits and rules," Cambridge journal of
economics, vol. 21, pp. 663-684, 1997.

[53] B. Kormányos and B. Pataki, "Multilevel simulation of daily activities: Why
and how?," presented at the 2013 IEEE International Conference on
Computational Intelligence and Virtual Environments for Measurement
Systems and Applications (CIVEMSA), 2013.

[54] M. Grabisch, "Temporal scenario modelling and recognition based on
possibilistic logic," Artificial Intelligence, vol. 148, pp. 261-289, Aug 2003.

[55] I. Cavrak, A. Stranjak, and M. Zagar, "SDLMAS: A Scenario Modeling
Framework for Multi-Agent Systems," Journal of Universal Computer Science,
vol. 15, pp. 898-925, 2009.

[56] M. P. Huget, "Agent UML notation for multiagent system design," IEEE
Internet Computing, vol. 8, pp. 63-71, Jul-Aug 2004.

[57] A. Greasley and C. Owen, "Behavior in Models: A Framework for
Representing Human Behavior," in Behavioral Operational Research: Theory,
Methodology and Practice, M. Kunc, J. Malpass, and L. White, Eds., ed
London: Palgrave Macmillan UK, 2016, pp. 47-63.

[58] Y. G. Lee, "Developing a Human Behavior Simulation System Based on
Geometry Affordance," Cham, 2018, pp. 475-479.

[59] W. Warwick, N. Buchler, and L. Marusich, "An Integrated Model of Human
Cyber Behavior," Cham, 2019, pp. 290-302.

[60] Y. Cheng, D. Liu, J. Chen, S. Namilae, J. Thropp, and Y. Seong, "Human
Behavior Under Emergency and Its Simulation Modeling: A Review," Cham,
2019, pp. 313-325.

[61] T. Plch, "Belieavable decision making in large scale open world games for
ambient characters," PhD. Doctoral thesis, Department of Software and
Computer Science Education, Faculty of Mathematics and Physics, Charles
University in Prague, Praha, 2017.

[62] Metacritic. (2019). Kingdom Come: Deliverance for PC Reviews - Metacritic.
Available: https://www.metacritic.com/game/pc/kingdom-come-
deliverance

[63] P. Mikulecky and R. Cimler, "Simulating Decision Processes in Intelligent
Environments," presented at the Intelligent Environments 2016,
Amsterdam, 2016.

101

[64] G. Azkune, A. Almeida, D. Lopez-de-Ipina, and L. M. Chen, "Combining Users'
Activity Survey and Simulators to Evaluate Human Activity Recognition
Systems," Sensors, vol. 15, pp. 8192-8213, Apr 2015.

[65] D. Bonino and F. Corno, "Modeling, simulation and emulation of Intelligent
Domotic Environments," Automation in Construction, vol. 20, pp. 967-981,
Nov 2011.

[66] M. Buchmayr, W. Kurschl, and J. Küng, "A Simulator for Generating and
Visualizing Sensor Data for Ambient Intelligence Environments," Procedia
Computer Science, vol. 5, pp. 90-97, 2011/01/01/ 2011.

[67] O. Kamara-Esteban, G. Azkune, A. Pijoan, C. E. Borges, A. Alonso-Vicario, and
D. Lopez-de-Ipina, "MASSHA: An agent-based approach for human activity
simulation in intelligent environments," Pervasive and Mobile Computing,
vol. 40, pp. 279-300, Sep 2017.

[68] A. Helal, K. Cho, W. Lee, Y. Sung, J. W. Lee, and E. Kim, "3D Modeling and
Simulation of Human Activities in Smart Spaces," presented at the 2012 9th
International Conference on Ubiquitous Intelligence & Computing and 9th
International Conference on Autonomic & Trusted Computing, Los
Alamitos, 2012.

[69] N. Alshammari, T. Alshammari, M. Sedky, J. Champion, and C. Bauer,
OpenSHS: Open smart home simulator vol. 17, 2017.

[70] S. Helal, J. W. Lee, S. Hossain, E. Kim, H. Hagras, and D. Cook, "Persim -
Simulator for Human Activities in Pervasive Spaces," presented at the 2011
Seventh International Conference on Intelligent Environments, 2011.

[71] S. Liu, S. Helal, and J. W. Lee, "High Fidelity Simulation and Visualization of
Activities of Daily Living in Persim 3D," Cham, 2017, pp. 136-148.

[72] B. Kormányos and B. Pataki. (2013). Home Sensor Simulator. Available:
http://home.mit.bme.hu/~kormi/simulator/

[73] N. Alshammari. (2017). OpenSHS by openshs. Available:
https://openshs.github.io/openshs/

[74] T. Alshammari, N. Alshammari, M. Sedky, and C. Howard, SIMADL: Simulated
Activities of Daily Living Dataset vol. 3, 2018.

[75] K. Bouchard, A. Ajroud, B. Bouchard, and A. Bouzouane, "SIMACT: A 3D
Open Source Smart Home Simulator for Activity Recognition," Berlin,
Heidelberg, 2010, pp. 524-533.

[76] J. Bruneau, W. Jouve, and C. Consel, "DiaSim: A parameterized simulator for
pervasive computing applications," in 2009 6th Annual International Mobile
and Ubiquitous Systems: Networking & Services, MobiQuitous, 2009, pp. 1-10.

[77] T. Nachazel, "Analytic hierarchy process in artificial life model based on
fuzzy cognitive maps," Journal of Ambient Intelligence and Smart
Environments, vol. 10, pp. 127-141, 2018.

[78] T. Nachazel, "Optimization of Decision-Making in Artificial Life Model Based
on Fuzzy Cognitive Maps," in Intelligent Environments (IE), 2015
International Conference on, 2015, pp. 136-139.

[79] T. Nacházel, "Inteligentní systémy ve virtuálním prostředí," Bc. Bachelor
thesis, Faculty of Informatics and Management, University of Hradec
Králové, Hradec Králové, 2012.

102

[80] T. Nachazel, "Models of artificial life based on fuzzy cognitive maps," in
Advances in Informatics, Information Management and Administration, first
ed Liberec: Technical University of Liberec, 2014, pp. 75-87.

[81] T. Nachazel. (2016). NetLogo User Community Models: ALModel. Available:
http://ccl.northwestern.edu/netlogo/models/community/ALModel

[82] P. Tucnik, T. Nachazel, and P. Mikulecky, "On the Methods of Scenarios
Representation in Ambient Environments," [Not published yet].

[83] P. Tucnik, T. Nachazel, P. Blecha, and P. Mikulecky, "Modelling Routine
Interactions with Intelligent Environments," [Not published yet].

[84] P. Tucnik, T. Nachazel, P. Cech, and V. Bures, "Comparative analysis of
selected path-planning approaches in large-scale multi-agent-based
environments," Expert Systems with Applications, vol. 113, pp. 415-427,
2018/12/15/ 2018.

103

8.1 List of Author’s Publications

Publications in journals with impact factor

1. Nachazel, T. (2018) Analytic hierarchy process in artificial life model based

on fuzzy cognitive maps. Journal of Ambient Intelligence and Smart

Environments, vol. 10, no. 2, pp. 127-141

2. Tucnik, P.; Nachazel, T.; Cech, P.; Bures V. (2018) Comparative Analysis of

Modified Pathfinding Algorithms in Large-Scale Multi-Agent Based

Environments. Expert Systems with Applications, 113, pp. 415-427.

Publications in proceedings of international conferences

3. Nacházel, T. (2015) Optimization of Decision-Making in Artificial Life Model

Based on Fuzzy Cognitive Maps. Intelligent Environments 2015, Praha, pp.

136-139.

4. Tucnik, P.; Nachazel, T. (2016) Agent-based Computational Economics:

Modelling of Economic Entities. HED 2016, Hradec Králové, pp. 1133-1140.

5. Nachazel, T.; Tucnik, P. (2017) Decision Making in Agent-based Virtual

Economic Model. HED 2017, Hradec Králové, pp. 629-635.

6. Tucnik, P.; Nemcova, Z.; Nachazel, T. (2017) Multiplant Production Design in

Agent-Based Artificial Economic System. 9th International Conference on

Computational Collective Intelligence, ICCCI 2017, Nicosia, Cyprus, pp. 371-

380.

7. Bures, V.; Cech, P.; Husakova, M.; Kriz, P.; Krylova, K.; Nachazel, T.; Ponce, D.;

Poulova, P.; Tacheci, I.; Tucnik, P. (2019) Learning by Doing in Medicine:

Solution and Configuration of Virtual Medical Cases. International

Symposium on Educational Technology 2019, Hradec Králové.

104

Other publications

8. Nacházel, T. (2014) Modely umělého života na bázi fuzzy kognitivních map.

IMEA 2014, Sychrov, pp. 205-210.

9. Nacházel, T. (2014) Models of Artificial Life Based on Fuzzy Cognitive Maps.

Advances in Informatics, Information Management and Administration. pp.

75-87.

Publications in review process

10. Tucnik, P.; Nachazel, T.; Blecha, P.; Mikulecky, P. (????) Modelling Routine

Interactions with Intelligent Environments. (submitted to Human-centric

Computing and Information Sciences)

11. Tucnik, P.; Mikulecky, P.; Nachazel, T. (????) On the Methods of Scenarios

Representation in Ambient Environments. (in preparation)

12. Nachazel, T. (????) Fuzzy cognitive maps for autonomous agents in dynamic

environments. (submitted to Genetic Programming and Evolvable

Machines)

105

8.2 Overview of Research Activities

 Specific research project "Socio-economic models and autonomous

systems 2" (2019, Ing. Tomáš Nacházel)

 Specific research project "Socio-economic models and autonomous

systems" (2018, Ing. Tomáš Nacházel)

 GAČR "DEPIES - Decision Processes in Intelligent Environments" - n. 15-

11724S (2015-2017, prof. RNDr. Peter Mikulecký, Ph.D.)

 Specific research project " Autonomous Socio-Economic Systems" (2017,

RNDr. Petr Tučník, Ph.D.)

 Specific research project "Řešení produkčních, přepravních a alokačních

problémů v agentově-orientovaných modelech" (2016, RNDr. Petr Tučník,

Ph.D.)

 Project Excelence "Modeling and Simulation of Processes in Socioeconomic

Systems and Intelligent Environments" (2017, prof. RNDr. Peter Mikulecký,

Ph.D.)

 Project Excelence "MAS Applications in Modeling of Complex

Socioeconomic Systems and Intelligent Environments" (2015, RNDr. Petr

Tučník, Ph.D.)

 Specific research project "Agentové modely a simulace" (2015, doc. RNDr.

Kamila Štekerová, Ph.D.)

 Specific research project "SCM and Control of Markets and Production in

Agent-based Computational Economics" (2015, RNDr. Petr Tučník, Ph.D.)

 Specific research project "Informační a znalostní management a kognitivní

věda v cestovním ruchu" (2017, prof. RNDr. Josef Zelenka, CSc.)

 Specific research project "Informační a znalostní management a kognitivní

věda v cestovním ruchu" (2018, prof. RNDr. Josef Zelenka, CSc.)

106

Attachments

Content of the attached disc

The disc attached to this work contains the full text of the doctoral thesis, the

model of ambient intelligence on AnyLogic platform, and the artificial life model

(ALModel), which was mentioned as an example of FCM-NAS on platform NetLogo.

User guides, generated output data, source codes, and installation files for

platforms in the correct version are also included. The content of the disc has the

following structure:

 Thesis

o Text

o Figures

 Models

o Ambient intelligence model

o ALModel

 Software

107

Algorithm

The following pseudocode includes the algorithm of the computation of FCM-NAS

with all support functions needed to process values every time step.

Input:

matrix //two-dimensional array of values of relations between nodes
values //one-dimensional array (vector) of values of all nodes

necessityValues //values for optional necessity calculations
necessityOfStates //evaluation of necessity of State nodes
necessity //true if necessity calculation is active; false if it is not
primaryState //position of Primary State node
firstInput //position of the first input node; expecting all following are

input nodes as well
granularity //granularity parameter
criticalValue //minimal level of Activity nodes required to start activity

High-level procedure:

processFCM(values, matrix){
 previousValues = copy(values)

processNeeds()
processStates()
updateInputStateNodes() //if there are any external input nodes
processActivities()
transformationOfActivities() //select activity to perform

}

Computations of FCM-NAS sections:

processNeeds(){
for (j = 1, …, numberOfNeeds){

 increment = 0.0
 for (i = 1, …, numberOfNodes){
 increment += matrix[i, j] ∙ previousValues[i]
 }

values[j] = transformation(previousValues[j] +
+ (granularity ∙ increment))

}
}

108

processStates(){
for (j = numberOfNeeds + numberOfActivities + 1, …, firstInput){

 value = 0.0
 for (i = 1, …, numberOfNodes){
 value += matrix[i, j] ∙ previousValues[i]
 }
 values[j] = transformation(value)

}
fitness = values[primaryState]
values[primaryState] = 1.0

}
processActivities(){
if (necessity){

for (j = numberOfNeeds + 1, …, numberOfNeeds + numberOfActivities){
 value = 0.0
 for (i = 1, …, numberOfNeeds){
 value += matrix[i, j] ∙ previousValues[i] ∙ necessityValues[i]
 }

for (i = numberOfNeeds + 1, …, numberOfNodes){
 value += matrix[i, j] ∙ previousValues[i]
 }
 values[j] = value

}
}else{

for (j = numberOfNeeds + 1, …, numberOfNeeds + numberOfActivities){
 value = 0.0
 for (i = 1, …, numberOfNodes){
 value += matrix[i, j] ∙ previousValues[i]
 }
 values[j] = value

}
}}

transformationOfActivities(){ //no pararel activities allowed in this version

max = 0.0
maxPosition = -1
for (i = numberOfNeeds + 1, …, numberOfNeeds + numberOfActivities){

if (values[i] > criticalValue AND values[i] > max){
max = values[i]
if (maxPosition != -1)

values[maxPosition] = 0.0
maxPosition = i
values[i] = 1.0

}else
values[i] = 0.0

}
}

109

Support functions:

transformation(value){
 if (value > 1.0)
 value = 1.0
 if (value < 0.0)
 value = 0.0

return value
}

setUpNecessity(){ //executed once at the start of a model
 for (i = 1, …, numberOfNeeds){
 coeficient = 0

 for (j = numberOfNeeds + numberOfActivities + 1, …, numberOfNodes){
 coeficient -= matrix[i, j] ∙ necessityOfStates[j]
 }
 necessityValues[i] = coeficient
 }
 sum = 0.0
 for (i = 1, …, numberOfNeeds){
 sum += necessityValues[i]
 }
 diff = 1 - (sum / numberOfNeeds)
 for (i = 1, …, numberOfNeeds){
 necessityValues[i] += diff
 }
}

