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ABSTRACT 
Th is master's thesis deals with the reconstruction of a dynamic model for production 
of polyhydroxyalkanoates ( P H A ) by thermophi l ic bacterium Schlegelella thermodepoly-
merans. T h e first chapter provides readers with a brief introduct ion into the systems 
biology and mathemat ical graph theory. It is followed by Chapter Two dealing with dif­
ferent approaches in dynamic model l ing, including the commonly used tools for dynamic 
analysis of complex systems. T h e third chapter then pursues further terms and possi­
bilities regarding the model analysis. The fol lowing chapter focuses on metabolomics 
and the frequently used laboratory techniques and the fifth chapter is then occupied 
with polyhydroxyalkanoates, especially their chemical structure and properties. In Chap­
ter Six, a general Boolean model for P H A production by thermophi l ic bacteria is pro­
posed. Chapter Seven then aims at model refinement with focus on 5. thermodepoly-
merans. The final dynamic model is analysed and the results are discussed. 

KEYWORDS 
Schlegelella, P H A , Dynamic model l ing, Metabo lomics , Flux balance analysis, At t ractor 
analysis 

ABSTRAKT 
Tato diplomová práce se zabývá rekonstrukcí dynamického modelu produkce polyhydro-
xyalkanoátů ( P H A ) termof i ln í bakteri í Schlegelella thermodepolymerans. První kapitola 
poskytuje čtenářům krátký úvod do systémové biologie a matematické teorie grafů. Na ni 
navazuje druhá kapitola zabývající se různými přístupy v dynamickém modelování, včetně 
běžně používaných nástrojů pro dynamickou analýzu komplexních systémů. T ře t í kapi­
tola pak sleduje další pojmy a možnosti týkající se analýzy modelu. Následující kapitola 
se zaměřuje na metabolomiku a často používané laboratorní techniky a pátá kapitola 
je pak věnována polyhydroxyalkanoátům, zejména jejich chemické st ruktuře a vlastnos­
tem. V kapitole šesté je navržen obecný booleovský model pro produkci P H A termofi l -
ními bakteriemi. Kapi to la sedmá se poté zaměřuje na zdokonalení modelu se zaměřením 
na S. thermodepolymerans. Výsledný dynamický model je podroben analýze a výsledky 
jsou diskutovány. 

KLÍČOVÁ SLOVA 
Schlegelella, P H A , Dynamické modelování, Metabo lomika , Analýza rovnováhy toku, 
Analýza atraktorů 



ROZŠÍŘENÝ ABSTRAKT 
Tato diplomová práce se zabývá konstrukcí dynamického modelu pro produkci poly-

hydroxya lkanoá tů ( P H A ) termofilní bakter i í Schlegelella thermodepolymerans. P H A 

jsou polymerní lá tky vyznačující se p o d o b n ý m i vlastnostmi jako maj í běžné plasty. 

Narozdíl od těchto umělých látek, k teré se vyráběj í předevš ím z ropy, jsou však 

produkovány bakteriemi, a navíc jsou b iodegradabi ln í [1]. 

Navzdory t ě m t o v ý h o d á m je jejich komercializace d louhodobě problemat ická 

z d ů v o d u vysoké ceny jejich produkce. Motivací za v ý z k u m e m termofilních bak­

terií je jejich základní p o t ř e b a vyšší teploty, v důsledku které by mohly být sníženy 

nák lady spojené se sterilizací v p r ů b ě h u kultivace. Bakterie S. thermodepolymerans 

je navíc un iká tn í svou vlas tnos t í efektivního zpracovávání xylózy, k t e rá je levným 

a d o s t u p n ý m zdrojem uhl íku [2]. Díky t ě m t o sku tečnos tem předs tavuje S. thermod­

epolymerans s l ibného P H A producenta mezi os ta tn ími bakteriemi. 

P r v n í část t é to práce se věnuje nezby tným teore t ickým zák ladům. V prvn í kapi­

tole je p ředs tavena systémová biologie, j akož to holistická vědní disciplína, s pře­

sahem do základních po jmů a v las tnos t í ma tema t i cké teorie grafů. N a ni navazuje 

kapitola d ruhá , k t e rá se zabývá různými p ř í s tupy v dynamickém modelování a př ináší 

podrobnějš í popis t řech vybraných metod, včetně běžně používaných nás t ro jů 

pro analýzu dynamických modelů . T ře t í kapitola pak uvádí rozšiřující pojmy a mož­

nosti týkající se ana lýzy komplexních systémů. 

Kapi to la č t v r t á př ináší č tenář i úvod do metabolomiky s p řeh ledem nejčastěji 

používaných labora torn ích technik t é t o vědní disciplíny. V rámci následující kapitoly 

jsou pak předs taveny polyhydroxyalkanoáty , předevš ím z hlediska jejich chemické 

struktury a vlas tnost í , a v závěru jsou pak uvedeny t ř i základni metabol ické dráhy 

pro syntézu P H A bakteriemi. Šestá kapitola se konečně věnuje termofilním bakter­

iím a rekonstrukci obecného dynamického modelu. 

Doposud byla syntéza P H A p o p s á n a celkem u pě t i termofilních bakter i í , t ěmi 

jsou Thermus thermophilus [59, 60], Caldimonas taiwanensis [61], Chelatococcus 

thermostellatus [62], Aneurinibacillus sp. [51] a Schlegelella thermodepolymerans [2]. 

Ze srovnání v tabulce 6.1 vyplývá, že čtyři z pě t i termofilů byli schopni produkce 

po ly (3 -hydroxybu ty rá tu ) , neboli P ( 3 H B ) , z glycerolu a nějakého typu cukru. N a zák­

ladě těch to znalost í bylo odvozeno základní schéma modelu. 

Dynamický model byl vy tvořen pomocí webového nás t ro je Cel l Collective [21], 

vychází z Booleovské logiky a jeho chování odráž í základní prvky reálných experi­

men tů . Simulace uvedené na obrázku 6.2 demonst ru j í v l iv teploty na celkový růs t 

buněk a akumulaci P ( 3 H B ) , a degradaci po lymerů po té , co je větš ina výchozího 

s u b s t r á t u zkonzumována. N e v h o d n á teplota při kultivaci obvykle vyús t í v nižší růs t 

i syntézu P H A . Degradace je pak d á n a t ím, že b u ň k y začnou n a h r o m a d ě n é zásoby 

P H A využívat pro v las tn í po t ř ebu , neboť j i m slouží jako zásoba uhl íku a energie. 



Poslední , sedmá kapitola, se věnuje úpravě a zdokonalení modelu se zaměřen ím 

na S. thermodepolymerans. P r v n í část se zabývá předevš ím zkoumán ím jejích meta­

bolických drah na základě anotovaného genomu. Získané informace jsou doplněny 

teore t ickými znalostmi a p ř ípadně s rovnáním s mode lovým organismem E. coli. 

D r u h á část je pak věnována p ř ímo úpravě dynamického modelu, jeho analýze a dis­

kuzi výsledků. 

Jak už bylo naznačeno, S. thermodepolymerans je un iká tn í t ím, že velmi efek­

t ivně zpracovává xylózu [2]. P ř i konzumaci tohoto s u b s t r á t u vykazuje větší růs t 

a vyšší produkci P (3HB) než při spo t řebě glukózy, a dokonce preferuje xylózu i v pří­

padě dostupnosti obou cukrů současně; teprve až je větš ina xylózy spot řebována , 

začne konzumovat glukózu. Toto sekvenční zpracovávání cukrů, známé jako diaux-

ické chování, je u bakter i í obvyklé, n icméně větš ina z nich dává přednos t glukóze. 

V dynamickém modelu jsou zohledněny právě tyto dva výchozí monosacharidy. 

N a základě analýzy genomu bylo zjištěno, že geny kódující proteiny pro transport 

i degradaci xylózy jsou součást í jednoho operonu. To znamená , že jsou regulovány 

společně, a tud íž ihned po transportu je xylóza degradována. Výsledná xylulóza 

5-fosfát dále vstupuje do neoxidat ivní část i pentózového cyklu, k te rý se pak napo­

juje na glykolýzu. T ranspor tn í mechanismus glukózy za t ím nebyl přesně stanoven, 

nicméně po vstupu do cytoplazmy je metabol izována glykolýzou. 

Po fosforylaci může glukóza také vstoupit do oxidat ívni části pentózového cyklu. 

Zajímavostí je, že v genomu bakterie S. thermodepolymerans p r avděpodobně chybí 

dva v ý z n a m n é geny kódující část t é t o metabol ické dráhy. Její v ý z n a m spočívá přede­

vším v produkci redukovaného kofaktoru N A D P H , k te rý se upla tňuje při syntetic­

kých reakcích, a r ibulózy 5-fosfát, k t e rá dále vstupuje do neoxidat ivní části . Jestl iže 

oxidat ívni část v metabolismu Schlegelelly opravdu chybí, musí t aké existovat nějaké 

kompenzační mechanismy pro doda tečnou tvorbu kofaktoru, r ibulóza 5-fosfát pak 

může bý t z ískána zpě tně z neoxidat ivní části . 

Výše uvedené poznatky byly zohledněny př i nás ledných úpravách modelu; oxida­

t ívni část pentózového cyklu byla vynechána . Dále byla v modelu zahrnuta produkce 

metabol ických prekurzorů tak, aby byly kladeny stejné nároky na jejich produkci 

při konzumaci xylózy i glukózy. Vyšší efektivita xylózy byla nakonec zaj iš těna po­

mocí uměle vytvořené komponenty, k t e r á zpomaluje degradaci glukózy. 

K e s tanovení směru toků reakcí v neoxidat ivní část i pentózového cyklu byla 

použ i ta ana lýza rovnováhy toků. Její výsledky také poukáza ly na to, že glukóza 

m á p ravděpodobně vyšší metabolickou kapacitu ve srovnání s xylózou. Nicméně 

vytvořený model nebyl natolik komplexní , aby mohly být výsledky b rány s jistotou. 

V rámci dynamické analýzy byly simulovány p o d m í n k y reálných exper imentů , 

k teré model dokáže napodobit. O p ě t byl demons t rován vl iv teploty, dále pak rychle­

jší růs t a produkce P ( 3 H B ) při konzumaci xylózy, a také specifické diauxické chování. 



Výsledky simulace jsou uvedeny na obrázcích 7.3 a 7.4. Přes tože model dobře 

napodobuje provedené experimenty, příčiny un iká tn ího chování bakterie jsou stále 

p ř e d m ě t e m diskuze. Hlavním faktorem přispívajícím k preferenci a vyšší efektivitě 

xylózy je p a t r n ě dříve zmíněná společná regulace genů pro její transport i degradaci. 

Dalš ím za j ímavým faktem je, že v genomu bakterie nebyl nalezen žádný speci­

fický T P S t r anspo r t é r pro přenos glukózy. Ten by mohl rovněž př ispět k absenci 

typické preference tohoto monosacharidu, neboť m á také globální regulační funkci -

v p ř ípadě dostupnosti preferovaného cukru nejsou expr imovány geny pro zpracování 

j iných cukrů. Dále by mohla h r á t roli i nepř í tomnos t oxidat ívni části pentózového 

cyklu, v p ř ípadě doda tečné tvorby ribulózy 5-fosfát je to t iž d r á h a k jej ímu vytvoření 

kra tš í při zpracování xylózy. 

Poslední část sedmé kapitoly se pak zabývá d louhodobým chováním vytvořeného 

modelu. Ten musel být částečně z jednodušen, neboť diauxické chování, stejně 

jako degradace polymerů , byly zajištěny manuá ln í úpravou externích komponent 

v p r ů b ě h u simulace, a to zde nebylo možné. Výsledky analýzy demonstrovaly sta­

bilní stav produkce P (3HB) při nepře t rž i t ém dodávání živin a cukrů . Taková situace 

odpovídá kont inuální bakter iá ln í kultivaci v chemostatu. 

Závěrem lze shrnout, že Schlegelella thermodepolymerans je díky svým vlast­

nostem nadě jným producentem polyhydroxya lkanoá tů , a rozhodně by tak měla být 

p ř e d m ě t e m dalšího výzkumu. Tato práce by tak mohla být podkladem pro její další 

studium. 
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Introduction 
This master's thesis focuses on production of polyhydroxyalkanoates ( P H A ) by ther­

mophilic bacterium Schlegelella thermodepolymerans. P H A are a family of biodegrad­

able polymers produced by many bacterial species. The history of their discovery 

dates back to mid-twenties and since then, they have become the subject of interest 

of many researchers [1]. The motivation behind the extensive studies concerning 

P H A is that they represent a "green" alternative to petrochemical plastics. 

Despite the great advantage of biodegradability, the commercialisation of P H A 

is still out of sight since production costs are five to ten times higher in com­

parison with standard petrochemicals [1]. The initiative to study P H A synthesis 

in thermophilic bacteria is based on the assumption of reducing the costs associ­

ated with sterilisation, as the bacterial cultivations undergo higher temperatures. 

Furthermore, in case of thermophilic bacterium S. thermodepolymerans, the costs 

could be even more decreased since the species is able of P H A synthesis from xylose 

which is an inexpensive source of carbon [2]. The aim of this master's thesis, thus, 

is to explore the underlying biochemical mechanisms and reconstruct the dynamic 

model for P H A production by S. thermodepolymerans. 

A t the beginning, theoretical foundations need to be given. The first chapter 

of the thesis introduces systems biology as a holistic scientific discipline. Since all 

biological networks are based on mathematical graph theory, the basic graph termi­

nology, representations and properties are briefly described. The subsequent chapter 

then focuses on different approaches in dynamic modelling and three regular mod­

elling techniques are introduced; these are ordinary differential equations (ODEs) , 

Boolean networks and Petri nets. In addition, three commonly used tools are men­

tioned at each of the methods. 

The next chapter pursues further terms and possibilities related to model anal­

ysis. Basic concepts of abstract phase space, attractors or bifurcation are clari­

fied, and the constraint-based modelling is introduced wi th the flux balance analy­

sis ( F B A ) as the typical representative. The fourth chapter then focuses on regular 

approaches used in metabolomics and brings a brief comparison of the most fre­

quently used methods; these are N M R spectroscopy and mass spectrometry coupled 

wi th different separation techniques. 

The aim of the Chapter Five is to briefly wander into the history of the dis­

covery of polyhydroxyalkanoates and introduce them in terms of chemical struc­

ture and properties. In addition, three natural pathways for P H A synthesis are 

described. The following chapter then deals with the actual production of P H A 

by thermophilic bacteria. To date, the P H A synthesis has been described just in five 

thermophiles. Based on the gathered knowledge, a general dynamic model is created. 

12 



The model follows the Boolean logic and reflects the common experiments concerning 

P H A production by thermophilic bacteria. The model's behaviour and the effect 

of temperature are demonstrated via simulation in time. 

The Chapter Seven is finally devoted to P H A production by S. thermodepoly-

merans. In the first part, the underlying biochemical mechanisms are explored. 

The investigation is based on the Schlegelella's annotated genome and literature 

and focuses mainly on transport mechanisms and sugar degradation pathways. 

The second part is then concerned wi th the refinement of the general dynamic 

model. Xylose and glucose are determined as the input carbon sources and the flux 

balance analysis is used to help with the final arrangement of the model. The model's 

dynamics then follows the diauxic behaviour and the higher efficiency of xylose 

utilisation observed in S. thermodepolymerans. In addition, the long-term behaviour 

of the model is examined using an analysis of attractors. The results from individual 

sections are continuously discussed and finally summarised in conclusions. 

13 



1 Biological Networks 
A s reductionist researchers investigate constituent parts of an organism in detail, sys­

tems biology focuses on the individual as a complex system. This opposite approach 

is referred to as holistic [3]. In contrast to scientific reductionism, holism adheres 

to the statement that a system is not only a sum of its individual parts. In other 

words, the behaviour of biological systems cannot be explained only by properties 

of their individual parts. 

The unpredictable behaviour arising from complex systems is called an emergent 

property. It emerges from the system as a whole and so it cannot be determined 

by reductionist methods. Systems biology in cooperation with many other scientific 

disciplines investigate biological processes by creating and analysing complex inter­

action networks. To build such a network, a given biological problem need to be ex­

pressed in terms of mathematical graph theory. 

1.1 Biological Process as a Mathematical Graph 

Before describing biological networks of different scales, one should be aware of basic 

graph theory concepts. 

A graph G = (V,E) is an ordered pair of the set of vertices V = {vi,V2, •••vm} 

and the set of edges E = {e\, 62, •••vn} [4]. A subgraph G' = (V, E') of the graph G 

is then defined by a subset V of the set V and a subset E' of the set E. 

A graph can be directed or undirected. In a directed graph, the edges are ori­

ented and direct from one vertex to another. Expressed mathematically, the graph 

would be defined by an ordered triple G = (V,E,f), where / is a function map­

ping the edges from E to ordered pairs of vertices in V. A n undirected graph does 

not provide any information about the edge direction, i.e. edges have no orienta­

tion. The connection between vertices i and j is defined as E = {{i,j}\i,j G V} 

and the vertices in question are called direct neighbours. A n edge starting and end­

ing in the same vertex is called a loop. 

If there are more edges between any two vertices (meaning two unoriented edges 

or two edges of the same direction), the graph is called multi-edge or multigraph. 

In case the graph does not contain any multiple edges or loops, it is called sim­

ple. A complete graph or clique then contains one unique edge between any pair 

of vertices. If the number (density) of edges is low, the graph is called sparse. A n ­

other term is a weighted graph, where edges are associated with a weight function, 

mathematically expressed as w : E —>• R, where R is the set of real numbers. 
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A B C 

F ig . 1.1: Various types of graphs. 

A) A simple undirected graph G = (V, E) wi th the set of vertices V = 

{ V i , V2, V3, VA,V5} and the set of edges E = { d , e 2, e 3, e 4, e 5, e 6, e 7} = 

{ W , ^ 3 } , ^ 5 } , { V 2 , ^ 3 } , {V>, ^ 4 } , {V>, V5}, {V3, V5}, {V4, V5}}. 

B) A simple directed graph G = (V,E) wi th the vertices V = { V i , V 2 , V3, V4, V5} 
and the edges £ = { ( V 1 ; V 2 ) , (Vu V 3 ) , (V2, V3), (V3, V5), (V 4 , V i ) , (V 4 , V3), (V 5 , V2)}. 

C) A subgraph G' = (V',E') of the graph G from B) . 

D) A simple weighted graph G = (V, E), where E = { { V i , V3,0.1}, { V i , V 5 , 0.1}, 

{ V 2 , V3, 0.1}, { V 2 , V 4 , 0.5}, { V 2 , V 5 , 0.3}, { V 3 , V5, 0.2}, { V 4 , V5,0.7}}. 

E) A multigraph G = (V, E) wi th two double edges (V 4 , V3) and (V 5 , V 2 ) . Note that 

the links between vertices V i and V 2 are not equally oriented, i.e. these are two 

simple edges ( V i , V2), (V2, Vi) and do not make the graph multi-edge. 

F) A simple oriented graph G = (V, E) wi th loop (V3, V3). 

G) A bipartite graph G = (V, E), where V is composed of the sets A and B. Note 

that there are no links between the two vertices from the same set. 

H) A hypergraph G = (V,E), where E = { { V i , V 2 , V 3 } , { V 2 , V 6 } , { V 3 , V 4 } , { V 3 , V 5 } } . 
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A bipartite graph G = (V, E) is an undirected graph, where the set of vertices V 

is divided into two separate sets, A and B, and only the edges connecting these 

two sets are allowed. The last type of graph to mention is a hypergraph. The typ­

ical property of hypergraph is that the edges can connect any number of vertices. 

Certainly, there are other various types of graphs, but it is not the aim of this chapter 

introducing them all . Some of the mentioned above are depicted in F ig . 1.1. 

A biological network, arising from the graph theory as a mathematical abstrac­

tion, describes the relations between biological entities interacting at different struc­

tural levels. The vertices, often called nodes, usually represent genes, proteins, 

enzymes or metabolites, and the edges then gene regulations, protein interactions, 

enzyme reactions etc [4]. Generally, biological networks are simple oriented or un-

oriented sparse graphs, their edges are often weighted and regularly create loops. 

Commonly, they also contain statistically significant subgraphs called motifs. 

Probably the most intuitive way of representing graphs is a drawing. There is a va­

riety of layouts to be used and the final form always depends on the specific applica­

tion [4]. The point is that different layouts can highlight different network properties, 

so it is always important to choose an appropriate style. Vertices of graph are usually 

depicted as circles or points and the edges as their links. When modelling biolog­

ical processes, oriented edges can be drawn as positive —> (performing activation) 

or negative H (performing inhibition) [5]. 

The more practical way of representing a graph (especially for further data anal­

ysis) is data structures. The common are an adjacency matrix, an adjacency list, 

or a sparse matrix [4]. 

A n adjacency matrix A of a graph G = (V, E) is a square matrix of dimen­

sion TV x TV, where N = \V\ [6]. The matrix is defined as 

graph, the diagonal contains only zeros. The problem of adjacency matrices is 

that they require 0( |V^ | 2 ) memory according to the O notation 1 [4]. Thus, this 

data structure brings difficulties into storing larger networks and becomes useless 

especially for storing sparse networks. 

lrThe big O notation is a theoretical calculation that refers to the running time or memory 
needed for a given algorithm in connection to the growing size of input data. [4] 

1.2 Basic Graph Representation 

For undirected graphs, the matrix is symmetric - otherwise it is not. In case of simple 
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A n alternative form to the matrix can be the adjacency list [4]. The adjacency 

list A is an array of vertices, where each vertex is accompanied by a list of all 

adjacent vertices. This data structure requires 0(V+E) memory, which is noticeably 

less memory-consuming compared to the adjacency matrix. Similarly to the lists, 

an efficient solution can be a sparse matrix storing only the non-zero values and their 

coordinates. A drawing, the adjacency matrix and list are shown in the F ig . 1.2. 

A B C 

Fig . 1.2: Various representations of a simple directed graph G. A ) A drawing. 

B) The adjacency matrix. C) The adjacency list. 

1.3 Network Properties 

Equal ly important part to introduce is formed by the network properties. The var­

ious types of graphs and their representations were already mentioned, now some 

of the basic network characteristics wi l l be described. 

A few definitions from the start. The size of the graph G is the number of all 

its edges [7]. The vertices linked to the vertex i, i.e. the neighbours or adjacent ver­

tices, form a subgraph called the neighbourhood JVj of the vertex %. A degree degi 

of the vertex % is the size of its neighbourhood JVj (with the exception that loops 

containing % are counted twice) [4]. In case of directed graphs, incoming and out-

coming edges can be distinguished as in-degree deg™ and out-degree deg°ut (giving 

the degi in the sum). 

A probability, that a randomly selected vertex from the graph G has a degree k, 

is described by the degree distribution P(k) [4]. Another significant characteristic 

of a graph is the clustering coefficient. It can be determined for a single node 

or for the whole graph and it provides the information about the tendency of the node 

or the graph to form cluster(s). 
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A walk in a graph is a sequence of vertices, where there is an edge between any 

of two consecutive vertices [7]. In the walk, both edges and nodes can be freely 

repeated. The length of a walk is then the number of edges it uses. More specific 

terms are a t ra i l or a path. 

The trai l is a walk, where no edge can be used twice. Conversely, the path is 

a walk, where no vertex can be used twice. The closed trai l including all the edges 

of a graph is called Eulerian and the path going through all the vertices in a graph 

is called Hamiltonian. 

A cycle (circuit) is a closed trail , it starts and ends in the same vertex (represent­

ing the only vertex repetition) [7]. Based on this statement, the definition of loop 

would be a cycle of length one. A graph containing cycles is called cyclic, otherwise 

it is acyclic. The graphs depicted in F ig . 1.1 are all cyclic except for the hypergraph 

in H) . 
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2 From Structure to Dynamics 
The issue discussed in previous chapter lays the foundations for static analysis 

of the model. However, to discover the dynamics of the system, the relations between 

interacting components need to be further investigated and defined precisely. 

Concerning the methods used in dynamic modelling, there are two different ap­

proaches to consider [8]. The first one, deterministic, works wi th the substance con­

centrations and disregards any molecule fluctuations. The second one, stochastic, 

conversely weighs every single molecule and works with the small particle numbers. 

The apparent difference between these two approaches is, thus, the level of approx­

imation and model complexity. 

The matter of deterministic methods is that they disregard the heterogeneity 

as one of the main properties of all biological systems [9]. The slightly different 

development of two separate individuals is caused by genetic, extrinsic (environ­

mental) and intrinsic (stochastic) heterogeneities. The third one, intrinsic, arises 

from random thermal fluctuations at molecular level and thus, manifests itself es­

pecially when considering lower molecule numbers. In such a case, deterministic 

methods fail to cope with the intrinsic noise and hence, the stochastic are required. 

A great field for comparison of these two approaches is performing a simula­

tion [9]. Considering deterministic algorithm and unchanging parameter settings, 

the result after several simulation runs wi l l always be the same. In case of stochastic 

simulation, the result after each run is slightly different. This fact enables stochastic 

algorithms to reveal the full probability distribution, whereas the deterministic are 

able to define only one point of it. O n the other hand, stochastic algorithms are 

much slower to solve. Thus, the advantage of deterministic methods is their speed. 

Despite some imperfections of deterministic methods, they have a broad range 

of use and generally provide adequate results. The most common are ordinary dif­

ferential equations (ODEs) , Boolean networks or Petri nets [8]. The most favourite 

stochastic methods are then chemical master equation or rule-based formalisms [8]. 

Interestingly, all the given deterministic methods can be modified for stochastic mod­

elling as well, only the involvement of a stochastic component is required. A specific 

area is then rule-based models which can be simulated either stochastically or de-

terministically using an appropriate algorithm. 

This thesis focuses on metabolic networks and works wi th experimental data 

of higher volumes. Hence, the mentioned deterministic methods wi l l be next intro­

duced. In addition, three relevant tools wi l l be proposed for each of the methods 

since there are many. 
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2.1 Ordinary Differential Equations 

The most common deterministic method are ordinary differential equations (ODEs) . 

It enables continuous modelling in time by solving the equations either analytically 

or numerically. When applying O D E s to biological systems, the two assumptions 

must be considered: firstly, the contents of biological compartment is ideally mixed 

and the concentrations are high (so that there is no time delay caused by the in­

ternal transport of species); and secondly, the transport between two different com­

partments is slow and observable [10]. Otherwise, the spatial information must be 

included by using the partial differential equations (PDEs) . In such a case, solving 

equations becomes much harder since the functions are multivariable. 

Generally, a dynamic system can be described as a system of state variables 

and development equations. The variables are represented by a state vector xt) 

where each of the elements is determined in time t by the function F(xt) [11]. 

Concerning biological models using O D E s , the state vector is comprised of concen­

trations of particular species, usually given in units of mols per volume. The change 

of concentration in time is then modelled as a function of the reaction fluxes and thus, 

it depends on chemical kinetics of the reactions and concentrations of the other 

species. Hence, forming the equations requires precise knowledge of the modelled 

reactions and the underlying mechanisms. 

In the real world, any reaction comprising more than two reactants occurs 

as a sequence of simple interactions involving only the two of the reacting enti­

ties at the time. These single-step reactions between two chemical species are called 

elementary reactions and form the basis of every O D E model [12]. The following 

forms can be considered: 

where 0 represents all entities out of the model's ambit and k represents the rate 

constant as it describes the speed of the reaction. 

The E q . (2.1) denotes the inflow of entities into the system. This reaction 

does not depend on concentrations of other species and only the rate constant k 

is engaged. Hence, it is called zero-order reaction. 

The reaction described by E q . (2.2) represents the transformation of two reac­

tants at most into any number of products. In case of one unique reactant, it is 

first-order reaction and describes the change of state of an entity. 

0 —> products 
k 

reactants —>• products 

reactants —>• 0, 

(2.1) 

(2.2) 

(2.3) 
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A n example can be a movement of species from one compartment to another, 

e.g. from extracellular to intracellular space, or a simple conversion, e.g. the protein 

autophosphorylation. Staying wi th the second example, the transformation can be 

depicted as A —>• Ap. Such a reaction must be described by two equations as there 

are two different species participated (protein A and phosphorylated protein Ap): 

d[A] 
dt 

d[AP] 

-k-[A], (2.4) 

k-[A], (2.5) 
dt 

where [A], [Ap] are the concentrations of proteins A and Ap [12]. The E q . (2.4), 

denoting the change of concentration of protein A in time, is tied wi th the minus 

sign as the concentration of protein A is decreasing. 

The reaction with one unique reactant is called unimolecular [13]. In case of two 

reactants, it is called bimolecular and it is the reaction of second order since the re­

action order is associated with molecularity. A n elementary second-order reaction 
k 

can be depicted as A + B —>• AB and is described by following equations: 

d [ A ] - -k- [A] • [B], (2.6) 
dt 

d[B] 
dt 

d[AB] 
dt 

-k.[A].[B], (2.7) 

k-[A].[B}. (2.8) 

The reaction flux here is controlled by the law of mass action and the reaction is 

often depicted in a reversible form as A + B AB. The mass action law deter­

mines that the overall reaction rate is proportional to the product of concentrations 

of the reacting species [12]. 

The final form in E q . (2.3) denotes the degradation reaction or the outflow 

of an entity from the modelled system [12]. In case of one reactant involved, it is 

the first-order reaction and the rate constant k is tied wi th the negative sign. 

A i m i n g at metabolic networks, enzyme kinetics and Michaelis-Menten equation 

need to be mentioned. Consider enzymatic reaction: 

E + S ^ E S ^ E + P, (2.9) 

where E is an enzyme, S is a substrate, SE is the substrate-enzyme complex and P 

is the product [13]. This reaction can be modelled according to the mass action law 

by the set of four equations as there are four species involved. 
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However, Michaelis and Menten came wi th the simplified form based on the mass 

action kinetics, but only wi th substrate and product included. The simplified form 

of enzymatic reaction is depicted as 

S V m ^ 4 m P, (2.10) 

where P, S represent product and substrate, vmax is the maximum reaction rate 

and Km is the Michaelis constant [14]. For this simplified form, the following equa­

tion was derived 
_ d[P] _ Vmax • [S] ( 

dt ~ [S] + KJ [ } 

where v is the reaction rate and [P], [S] are the concentrations of product and sub­

strate [14]. This equation is called Michaelis-Menten equation and the two constants 

are defined as 

"Vmax — ^3 ' Etot, Km = : , (2.12) 
fcl 

where Etot represents the total amount of enzyme in the reaction and k\, fe, &3 

are the rate constants depicted in (2.9) [14]. The Michaelis constant represents 

the concentration of substrate in case of half-maximum reaction rate. 

Thus, the enzymatic reaction according to the Michaelis and Menten is described 

by the following two equations 
d[S] vmax • [S] 

dt [S] + K„ 
d[P] vmax • [S] 

(2.13) 

(2.14) 
dt [S] + Km 

Besides the mass action and Michaelis-Menten kinetics, there exist other kinetic 

laws for enzymatic reactions, e.g. H i l l or Goldbeter-Koshland kinetics [14]. 

Commonly Used Tools 

CellDesigner [15]. A pathway editor for construction and simulation of gene-

regulatory and biochemical networks. Besides the creation, it enables user to import 

models in S B M L format or from online databases such as BioModels [16]. The sim­

ulation is based on S B M L O D E Solver and is performed through a graphical user 

interface. 

C O P A S I (COmplex PAthway Simulator) [17]. A tool supporting deterministic, 

stochastic, or even hybrid simulation of ODE-based models. The user is allowed 

to construct the model via specifying the reactions and relevant mathematical equa­

tions directly, or v ia selecting the pre-defined rate laws which results in automat­

ically defined mathematical model. Importing a model in S B M L format is sup­

ported as well. 
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D M P y [18]. A Python package proposing an automated pipeline for translation 

of static networks into the dynamic mathematical models. The input static network 

is parsed and the kinetic rates of all reactions involved are being searched for in online 

databases. The tool focuses especially on large-scale metabolic networks. 

2.2 Boolean Networks 

Another method for dynamic modelling is a Boolean network [19]. A great advan­

tage here is that there is no need of defining any rate constants or forming the set 

of differential equations. Hence, in comparison wi th quantitative O D E models, es­

tablishing the Boolean model does not require such a detailed knowledge of the given 

problem. The character of Boolean models is rather qualitative. 

This simplification makes Boolean networks relatively easy to use. However, one 

needs to learn how to express the real situation using only ones and zeroes, since 

the state variables here can only reach the two states - true or false. In case the state 

variable is O N (true), it is considered to be activated or expressed, or it signifies 

that the concentration of the relevant species is above the given threshold. In case 

the state is O F F (false), the species is inhibited or not expressed, or the concen­

tration is under the given threshold. The Boolean model wi th the state vector x t 

of the length n can reach 2™ possible states in total [19]. 

The individual entities of Boolean model are represented by the nodes and the in­

teractions between them by the links of a directed graph [19]. The future state x* 

of the node % is given by the Boolean transition function /j which involves the current 

states of the regulating species and logic operators A N D , O R and N O T [20]. A n ex­

ample can be the function / 5 = [x^ANDx^] OR (NOTx±) denoting the future 

state of the variable £5 . The verbal interpretation would be that entity represented 

by variable £5 (node 5) is O N only if x 2 and £3 are both O N or if x 4 is O F F . In this 

example, the variables x 2 , £3,0:4 are the regulators of x5. 

A l l the possible future states of relevant variables can be expressed by the truth 

table [20]. Considering the function /$ wi th k variables, the truth table would have 

2k rows (all the variations of the regulators' states) and fc + 1 columns. The Tab.2.1 

shows the truth table of three functions, fc, JD and denoting the possible future 

states of variables XC,XD and XE- Hence, the table has k + 3 columns. 

In contrast to the continuous O D E modelling, simulation of Boolean networks 

flows in discrete time, i.e. the network is updated at each discrete time t by applying 

the Boolean functions to the state variables [20]. Considering deterministic models, 

the network update is synchronous. It means that at each time step, all transi­

tion functions are applied. This paradigm should demonstrate that all components 

require the same time for transition to the future state. 
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However, there exist also asynchronous or probabilistic updating, both of stochastic 

character. In asynchronous, only one randomly selected variable is updated per step. 

In probabilistic, state variables can be associated wi th more functions of different 

probability. A t each step, only one of the functions for each variable is applied. 

Tab. 2.1: The truth table of three functions, fc, JD and denoting all the possible 

future states of variables XC,XD and XE- The regulators here are XA and XB [20]. 

XA xB fc = NOT xA fD = xA OR xB fE = xA AND xB 

0 0 1 0 0 

0 1 1 1 0 

1 0 0 1 0 

1 1 0 1 1 

Commonly Used Tools 

Cell Collective [21]. A web-based platform focused on construction and analy­

sis of Boolean networks. In contrast to other common tools, it enables to share 

the created models wi th other users and so gather the acquired complex knowledge 

at one place. Besides the research, Cel l Collective is supposed to assist in teaching 

and learning of fundamental biological processes. 

BoolNet [22]. A n R package supporting construction and analysis of synchronous, 

asynchronous, and probabilistic Boolean networks. It further enables analysis and v i ­

sualisation of attractors, including visualisation of state transitions and basins of at­

traction. 

BooleanNet [23]. A Python source code for modelling rather smaller biological 

sub-systems based on Boolean logic. The user input consists in simple text-based 

model description. Besides the synchronous and asynchronous simulation, it enables 

hybrid modelling via piecewise linear formalisms and O D E s . 

2.3 Petri Nets 

The two significant methods were introduced, now the thi rd one is going to be pre­

sented. In the previous subchapter, the difference between the quantitative and qual­

itative model was briefly mentioned, considering O D E models and Boolean networks 

as typical quantitative and qualitative representatives. A s for the Petr i nets, both 

types of models can be defined [24]. 
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The Petr i net model is based on bipartite directed and weighted graph [24]. The two 

sets of nodes are composed of places and transitions and the arrows, connecting these 

sets, denote the arcs of the net. Every place is allowed to contain a number of marks 

called tokens. The weights of edges then represent the number of tokens required 

for enabling the transitions. The actual distribution of tokens in the net is called 

marking and defines the actual state of the system. The change of state is related 

to the flow of tokens across the network which is called firing. 

A simple Petri net model describing water formation is depicted in F ig . 2.1 [25]. 

The reaction follows the equation 2H2 + O2 —> 2H20. The marking on the left 

denotes the situation before firing the reaction, the transition t is enabled since 

the places H2 and 02 contain adequate number of tokens. O n the right, there is 

a situation after firing the reaction. The number of tokens differs here as they were 

consumed by the firing. 

F ig . 2.1: A simple Petr i net based model describing water formation [25]. The mark­

ing on the left denotes the situation before firing the reaction, the marking 

on the right refers to the situation after firing the reaction. 

In relation wi th metabolic networks, the places of Petri net represent metabolites 

and enzymes and the transitions represent metabolic reactions. A r c weights cor­

respond to the stoichiometric coefficients and the occurrence of tokens in places 

to the occurrence of relevant chemical species. 

Based on the init ial mathematical concept, various extended versions of Petri 

nets were developed. In a very simple way, Petri nets can be classified as low-level 

or high-level [26]. In low-level systems, places are represented either by Boolean 

or integer tokens which means they can be marked by one at most or by a number 

of tokens. In high-level systems, tokens are carrying an additional information. 

Commonly Used Tools 

Snoopy [27]. A software tool which focuses on designing, animation and simu­

lation of Petri nets. It enables the time-free or time-dependent execution dealing 

wi th qualitative, stochastic, continuous or hybrid Petri nets. 
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Cell Illustrator [28]. A software tool supporting the construction and simulation 

of biological systems based on the Hybr id Functional Petri nets wi th Extensions. 

W i t h an intuitive user-friendly interface and no need of higher mathematical skills. 

Cel l Illustrator is a suitable tool for a wide scientific community. 

G r e a t S P N [29]. A well-established tool supporting coloured Generalised Stochastic 

Petr i Nets ( G S P N ) , G S P N with deterministic and/or general transitions 

and Markov Decision Petr i nets ( M D W N s ) . It went through many changes 

from its beginning and currently proposes many tools for qualitative and quanti­

tative model analysis. 
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3 Besides the Simulation 
In previous chapter, different modelling techniques were introduced in order to ex­

plore the dynamics of the system. The two approaches, deterministic and stochas­

tic, were clarified as well as the qualitative and quantitative essence of the model. 

Using any of these strategies enables biologists to analyse the model's behaviour 

via the simulation in time. 

In this chapter, further terms attending the dynamic analysis, such as attractors 

or bifurcation, wi l l be introduced. Moreover, a particular approach laying between 

the purely static and dynamic modelling wi l l be presented - a brief introduction 

into constraint-based modelling. 

3.1 Phase Space, Attractors and Bifurcation 

Before introducing attractors or bifurcation, the term phase space needs to be ex­

plained. The phase space is an abstract space whose dimensions are comprised 

of state variables [30]. The system development in time is then represented as a se­

quence of points (in case of discrete time) or a continuous curve (in case of continuous 

time) through this space. When considering a deterministic system and given in i ­

t ia l conditions, the system wi l l always perform the same, i.e. it wi l l always copy 

the same trajectory in the phase space. 

A n important property of complex systems is that they are able to resist adequate 

parameter perturbations - they are said to be robust [6]. It means the dynamic de­

velopment of the system from two different ini t ial points can still end up in the same 

state. The final behaviour into which these points converge is referred to as attractor 

and the init ial distinct trajectories as transient [31]. A l l the ini t ial states converging 

to the same attractor form the basin of attraction. A dynamic system can have 

several attractors whose basins of attraction do not overlap. 

There are three types of attractors to be distinguished - a fixed point, a limit cy­

cle, and strange attractors [31]. A fixed point is an attractor represented by a steady 

point in a phase space. Since its location (i.e. parameters) remains stable, it denotes 

the steady state of the system. L imi t cycles represent attractors defined by a peri­

odical repetition of the set of states. The number of recurrent states then determine 

the period or length of the attractor [32]. Finally, strange attractors are those that 

evince a chaotic behaviour. A s the trajectories of two similar ini t ial points are close 

during the whole development at fixed points and limit cycles, at strange attractors, 

two similar ini t ial points have diverse trajectories [31]. 

27 



Staying wi th the parameter perturbations, the qualitative changes in the structure 

of solutions due to a tiny parameter shift are called a bifurcation [33]. In practice it 

means that exceeding the critical value of a control parameter results in significantly 

distinct development of the system. Some fixed points may arise and some may 

vanish or become unstable, to illustrate. The point in the phase space giving rise 

such a change in the system's behaviour is called a bifurcation point. 

3.2 Constraint-based Modelling 

According to Raman and Chandra [34], constraint-based modelling fits somewhere 

between the interaction-based static models, represented by mathematical graphs, 

and mechanistic dynamic models, defined by stoichiometric equations and kinetic 

parameters. Thus, it is based on the stoichiometry, but no kinetic parameters are 

involved. 

Once the metabolic network is reconstructed, the information about stoichiome­

try can be stored in the form of stoichiometric matrix [35]. The rows of the matrix 

correspond to the metabolites and the columns to the reactions involved. The ma­

tr ix elements then agree wi th stoichiometric coefficients of relevant species and re­

actions. In addition, all reactants in the matrix are tied wi th the negative sign 

and thus, all products are represented by positive values. In case the species is not 

present in the relevant reaction, its value is zero. 

s Vl V2 V3 V4 bi b2 

A -1 -1 1 a l 0 

B 1 0 0 l 0 -l 

C 0 1 -1 -l 0 0 

Fig . 3.1: A drawing of a very simple metabolic network and its representation by sto­

ichiometric matrix S. The network consists of three metabolites A, B and C, inter­

nal reactions v\-v± and exchange fluxes b\ and 62 (the ellipse denotes the boundary). 

In the matrix, reactants are represented by negative, products by positive values. 

Further constraints, as they are needed to form the solution space, derive from 

thermodynamics and enzyme capacity. The typical representatives of constraint-

based modelling are metabolic flux analysis or flux balance analysis [36]. 
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Flux Balance Analysis 

F l u x balance analysis ( F B A ) is a predictive constraint-based method used for de­

termining the steady-state flux distribution in metabolic networks [34]. From math­

ematical point of view, it is a linear optimisation of an objective function subject 

to given constraints. The idea of biologists is to discover the metabolic capabili­

ties of the system wi th respect to the given biochemical goal, e.g. the maximisation 

of growth or biomass production [37]. 

Consider the example of a simple metabolic network given in F ig . 3.1. The steady 

state of this network can be described by the following set of dynamic mass balance 

equations: 

d[A] 
~df 
d[B] 

dt 
d[C] 
~dT 

-v1 -v2 + v3 + b1 = 0 , 

vi + v4 - b2 = 0, 

V2 - V3 - V4 = 0. 

(3.1) 

(3.2) 

(3.3) 

The same can be expressed using the stoichiometric matrix S and the vector of fluxes v. 

d[A] 
dt 

d[B] 
dt 

d[C] 
dt 

S-v 

- 1 - 1 

1 0 

0 1 

1 0 1 0 

0 1 0 - 1 

- 1 - 1 0 0 

(3.4) 

It follows that the steady-state mass balance of any metabolic network can be de­

fined as 
d[x] 
~df 

= S-v = 0, (3.5) 

where ^ represents the time derivatives of metabolite concentrations, S is the stoi-dt 
chiometric matr ix and v is the desired vector of fluxes in which v\-vm are the internal 

and b\-bn the exchange fluxes [34]. 

The expression in E q . (3.5) represents the equality constraints referred to as bal­

ances [38]. In practice, further constraints must be given in order to restrict the so­

lution space. In the real-world metabolic networks, there are commonly many more 

reactions than species which makes the system under-determined. The additional 

constraints are referred to as bounds [38] and usually are determined as the lower 

and upper boundaries of the reaction fluxes. 
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Once the constraints are established, the crucial step is to form an objective func­

tion Z reflecting the requirements for the system. Mathematically, the objective 

function is defined as 

Z = cT • v, (3.6) 

where c is the vector of weights defining how much the reactions contribute to the ob­

jective function [37]. In fact, it is nothing but a linear combination of the vector 

of fluxes v. In case the goal would be to maximise only one reaction, c would be 

a vector of zeroes with one at the position of the desired reaction flux. 

Finally, the whole analysis becomes a linear optimisation problem defined as 

max cT • v subject to S • v = 0. (3.7) 

F B A is a widespread method wi th many uses [34]. Since it does not require the exact 

values of kinetic parameters and its principal is basically simple, the computation 

is feasible even for large-scale metabolic networks. Typically, it can be used for dis­

covering the metabolic capabilities when using different substrates or tightening 

the constraints in order to simulate diverse preconditions. Furthermore, F B A has 

many extensions such as regulatory F B A ( r F B A ) , integrated or integrated dynamic 

F B A ( i F B A or i d F B A ) , to name a few [34]. 
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4 Experimental Methods 
Systems biology pursues the interactions of chemical species at different functional 

levels of the organism. A t the beginning of each biochemical model are theoretical 

knowledge and experimental results gained by the means of different "omics" sci­

ences. The four major are genomics, transcriptomics, proteomics and metabolomics 

focusing on genome, transcriptome, proteome or metabolome determination [39]. 

Since this thesis aims at metabolic networks, metabolomics wi l l be further discussed. 

Metabolites are low molecular weight species produced by metabolic reactions [39]. 

The term metabolome then refers to a complete set of metabolites contained in a cell, 

tissue, organ, or the whole organism. Metabolome is closely related to the phe-

notype as it reflects the perturbations at lower functional levels. There are two 

main approaches when concerning the metabolomic analysis - targeted and untar-

geted [40]. The aim of the untargeted analysis is to discover the various metabolites 

present in the metabolome. Targeted analysis then focuses on quantitative analy­

sis of the specific metabolites. It is based on the prior knowledge and has rather 

hypothesis-testing character based on the previous untargeted survey. 

Furthermore, three regular terms are being used - metabolic fingerprinting, foot-

printing and metabolic profiling [39]. Metabolic fingerprinting aims at comparing 

the patterns ("fingerprints") reflecting the changes wi thin intracellular metabolites. 

This approach searches for the changes in metabolome caused by the exposure 

of the system to different conditions. Metabolic footprinting then focuses on mon­

itoring the extracellular environment - the metabolites produced or (not) accepted 

by the cells. Thus, it brings the information about the exo-metabolome. Finally, 

metabolic profiling aims at predefined group of metabolites in order to identify 

and quantify the metabolites related to the specific metabolic pathway. 

There are two most commonly used techniques in metabolomics - nuclear mag­

netic resonance ( N M R ) spectroscopy and mass spectrometry (MS) [41]. The latter 

is usually coupled with gas or l iquid chromatography ( G C - M S and L C - M S ) , choos­

ing between the G C and L C is then conditioned by the sample to be analysed. 

G C is a suitable tool for small and volatile molecules, whereas L C can be used 

for wider range of metabolites. 

Alternatively, capillary electrophoresis (CE) can represent the separation tech­

nique for M S . However, it struggles with a low repeatability and wi th balanc­

ing the temperature changes [41]. A n alternative spectroscopic technique is then 

Fourier-transform infrared spectroscopy ( F T I R ) . In the following sections, the most 

frequently used metabolomic techniques wi l l be introduced. 
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4.1 NMR Spectroscopy 

N M R spectroscopy represents a powerful and commonly used tool for the determi­

nation of the chemical composition of the given sample [42]. Generally, N M R aims 

at certain type of nuclei, typically 1H, 1 3 C or 3 1 P , having the optimal magnetic prop­

erties for N M R experiments. The sample is placed into the strong magnetic field 

and exposed to electromagnetic pulses. Subsequently, the energy absorbed by the nu­

clei is emitted back and detected. The basic principle, which enables the method 

to distinguish between nuclei adjacent to different atoms, is that the resonance fre­

quency of nuclei differs according to the atom surroundings. 

Various N M R spectroscopic techniques were developed including one, two 

or three-dimensional or solid-state N M R [42]. The advantage of N M R spectroscopy 

is that it requires only minimal sample preparation and enables to identify various 

compounds simultaneously. Nevertheless, the number of detected species is limited 

by the spectral resolution [43]. The technique is non-invasive and non-destructive 

and enables quantitative analysis as well. In addition, the accurate chemical struc­

ture and spatial decomposition of individual molecules can be revealed [44]. 

The whole analysis is fast and well reproducible. 

4.2 Mass Spectrometry 

Mass spectrometry is another important technique dealing with the identification 

and quantification of molecules [45]. The whole analysis has three consecutive parts. 

A t first, molecules are vaporised and ionised so that they form gas-phase ions. Next, 

ions are separated according to the mass to charge ratio (m/z) in the mass analyser 

and finally, different m/z ratios are detected. Data from the analyser and detector 

are combined to form the resulting mass spectrum. 

The system development covers the application of various ionisation techniques 

and different types of mass analysers [43]. In comparison with N M R , the M S device 

is less expensive and the requirements for the installation are not so demanding. 

However, the technique is surely less reproducible. Unlike N M R , a great advantage 

of M S is the high sensitivity - even nanomolar concentrations of species can be de­

tected. In general, M S efficiency depends on the proper ionisation which is affected 

by the sample composition [44]. Hence, M S is usually coupled wi th different separa­

tion techniques. Once used, the sample cannot be recovered as M S is a destructive 

tool. 
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4.3 Chromatography-Mass Spectrometry 

Chromatography is a well-established technique of analytical chemistry used to sepa­

rate, identify and purify the individual components of the mixture [46]. 

The method utilises two phases for the separation - the stationary and the mo­

bile one. The constituents of the mixture are reacting with the stationary phase 

while being carried through the system by the mobile phase. Based on the differ­

ent molecule properties, such as their size and shape or total charge, the individual 

components pass through the system wi th different velocity as they are reacting 

wi th the stationary phase differently. 

The mobile phase can be either l iquid or gas which results in the basic division 

into liquid chromatography (LC) and gas chromatography ( G C ) . In C G , the mo­

bile phase is comprised of an inert gas such as He or N 2 . Hence, the sample needs 

to be vaporised which entails the requirement for the volatili ty of the compounds. 

In metabolomics, G C is used when coupled wi th M S . A t first, the individual con­

stituents of the given sample are separated using G C and subsequently detected 

by the highly sensitive M S . Combining these two techniques results in the accurate 

determination of the metabolites present in the sample. The problem of using G C 

alone is that some species can have very similar properties so that they pass through 

the system simultaneously - that makes the species indistinguishable [47]. 

Another commonly used technique in metabolomics is L C - M S combining high-

pressure l iquid chromatography ( H P L C ) and M S . In a standard column chromatog­

raphy, passing the mobile phase through the system is ensured by gravity. However, 

in H P L C , the mobile phase is pushed through the column under 10-400 atmospheric 

pressure and thus, smaller particles can be used to form the stationary phase [46]. 

In result, high separation efficiency can be obtained in a short time. 

In comparison wi th G C - M S systems, L C - M S does not require any demand­

ing sample preparation and it can be used for a wide range of metabolites [45]. 

The point of G C - M S is that it focuses on small volatile molecules and thus, com­

pounds with no such properties need to be derivatised (if possible). 
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5 Biosynthesis of Polyhydroxyalkanoates 
The discovery of polyhydroxyalkanoates ( P H A ) dates back to 1920s [48]. In 1926. 

bacteriologist Maurice Lemoigne first isolated and characterised poly(3-hydroxybuty-

rate) [P(3HB)] from Bacillus megaterium [49]. In the following years, the gran­

ules of P ( 3 H B ) were identified in variety of bacteria as a reserve material. How­

ever, no one was further engaged in more detailed description of their function 

unti l the late 1950s and P (3HB) rediscovery [50]. 

Since then, many further studies were concerned with the P H A biosynthesis 

and hand in hand with the general scientific progress they formed the great knowl­

edge we have now. Besides better comprehension of P ( 3 H B ) function, further P H A 

were discovered in various bacteria (even in plants), the synthesis was investigated 

under different cultivation conditions and its basic metabolic pathways were re­

vealed. The P H A production was analysed in genetically modified bacterial strains 

and found in recombinant strain of the model E. coli, some P H A started being 

produced industrially and many other goals were achieved [1]. 

Nowadays, it is known that bacteria synthetise P H A due to a k ind of metabolic 

pressure or stress, such as an excess of carbon sources or a lack of v i ta l nutri­

ents (e.g. oxygen, phosphorus or nitrogen) [1]. P H A stored in the form of granules 

(see F ig . 5.1) are then supposed to provide cells wi th carbon and energy reserves. 

Anyway, the issue which makes the topic of polyhydroxyalkanoates so popular is 

that, in terms of chemical structure and properties, they represent a great biodegrad­

able substitute to synthetic plastics. The chemical essence of P H A is the point 

of the following subchapter. 

F ig . 5.1: The accumulation of P H A granules in bacteria and their basic struc­

ture. A) T E M image of P H A granule formation in Aneurinibacillus sp. H I [51]. 

B) A general scheme of P H A granule [1]. P H A are encased in phospholipid mono­

layer containing various enzymes and structural proteins (phasins). 
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5.1 PHA in Terms of Chemistry 

Polyhydroxyalkanoates are linear polyesters composed of hydroxyalkanoic acid mono­

mers [52]. The polyester synthesis is based on the polycondensation reaction which 

generally includes the species wi th two functional groups at least and small molecules 

as side products. In case of polyesters, the ester bond arises via reaction between car-

boxyl and hydroxyl groups of reacting monomers accompanied by water as the side 

product [53]. The general structure of P H A is depicted in F ig . 5.2. 

F ig . 5.2: The general structure of P H A , n determines the degree of polymerisation 

(usually 100-1000) and x the hydroxyl group position [54]. Most commonly, x is 

equal to one which means the hydroxyl group is localised at the third carbon atom. 

To be exact, the F ig . 5.2 shows the general structure of P H A homopolymer. 

The typical example of such a polymer is P ( 3 H B ) which is composed only from 3 H B 

monomers. The polymers containing different types of monomers are called copoly­

mers (or heteropolymers) and the typical example here is poly(3-hydroxy-butyrate-

co-3-hydroxyvalerate) [P(3HB-co-3HV)] depicted in F ig . 5.3. 

C H , 

C H , o 

-O CH C H 2 C " 

3BH 

-O C H CH C — O — 

3HV 

F ig . 5.3: The chemical structure of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 

[P(3HB-co-3HV)], the typical P H A copolymer composed of 3 H B (3-hydroxy-

butyrate) and 3 H V (3-hydroxyvalerate) monomers [55]. 

According to the carbon number of monomers present in biopolymer, P H A can be 

divided into two major groups - short chain length (sc l -PHA) and medium chain 

length (mc l -PHA) [56]. Monomeric units of s c l - P H A contain from three to five car­

bon atoms and the ones of m c l - P H A from six to fourteen carbon atoms. The various 

carbon number provides the biopolymers wi th different properties. S c l - P H A are usu­

ally crystalline, brittle and have high melting points, while m c l - P H A are less crys­

talline, elastomeric, and their melting point is lower in comparison wi th s c l - P H A . 

Typical P H A monomers of different chain lengths are depicted in F ig . 5.4. 
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The polymerisation reaction in bacteria is catalysed by enzymes called P H A syn­

thases [56]. Based on the bacterium species, enzyme specificity and carbon sources, 

various types of biopolymers can be produced. A s a result, P H A with diverse proper­

ties are obtained since P H A structure determines the substance properties. To date, 

over 150 different monomers were recognised [54]. 

3HB 3HV 3HHx 3HO 3HD 3HDD 

' 1 ' 1 , 1 

SCL-HA MCL-HA 

Fig . 5.4: A n example of common s c l - P H A and m c l - P H A monomers [54]. 3 H B : 

3-hydroxybutyrate, 3 H V : 3-hydroxyvalerate, 3HHx: 3-hydroxyhexanoate, 3HO: 

3-hydroxyoctanoate, 3 H D : 3-hydroxydecanoate, 3 H D D : 3-hydroxydodecanoate. 

5.2 Three Fundamental Pathways 

In general, studies of P H A synthesis mechanism in bacteria revealed three ma­

jor natural pathways [57] (see F ig . 5.5). The pathway I represents the basic 

s c l - P H A synthesis. A t first, two molecules of acetyl-CoA are produced from sugar, 

amino acids, or fatty acids as ini t ial carbon sources. Next, with the help of enzyme 

/3-ketothiolase, they are condensed into acetoacetyl-CoA which is further reduced 

to 3-hydroxybutyryl-CoA by enzyme acetoacetyl-CoA reductase. The final poly­

merisation is then catalysed by P H A synthase. 

The pathway II is related to fatty acids utilisation and leads to m c l - P H A synthe­

sis. Fatty acids are catabolised via /3-oxidation cycle. One of the cycle's products 

is acetyl-CoA which can be further used in pathway I or III. However, pathway II 

utilises the intermediate cycle product, R-3-hydroxyacyl-CoA, which is the substrate 

for P H A synthase catalysing m c l - P H A synthesis. 

The pathway III uses one of the intermediate products of in situ fatty acid syn­

thesis from acetyl-CoA. A s in the previous case, this pathway leads to m c l - P H A 

synthesis. It is conditioned by the presence of enzyme 3-hydroxyacyl-acyl carrier 

protein-CoA transferase which catalyses the transformation of R-3-hydroxyacyl-

A C P , obtained from fatty acid synthesis cycle, to R-3-hydroxy-acyl-CoA. 
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Amino acids Sugar Fatty acids 

R-3-Hydroxyacyl-ACP 

R-3-Hydroxyacyl-CoA 

Mcl-PHA 

Acety l -CoA 

I 
Acetoacety l -CoA 

I 
3-Hydroxybutyry l -CoA 

Scl-PHA 

Scl-mcl-PHA 

R-3-Hyd roxyacyl -CoA 

Mcl-PHA 

Fig . 5.5: Three natural metabolic pathways for P H A synthesis in bacteria. 

The pathway I is the most common, it leads to the short chain length P H A 

(scl -PHA) synthesis from sugars, amino acids, or fatty acids. The other two path­

ways result in medium chain length P H A (mcl -PHA) formation. When combined 

wi th pathway I, sc l -mcl -PHA can be produced. 
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6 Production by Thermophilic Bacteria 
The major factor impeding the commercial production of P H A are the five to ten 

times higher costs compared to petrochemical plastics [1]. This difficulty accom­

panies the topic of P H A from the very beginning and many studies took various 

steps in order to deal wi th this problem. Nevertheless, none of them revealed to be 

efficient enough. The issue of thermophilic bacteria is that their cultivation under­

goes higher temperatures which eliminate the risk of contamination by ubiquitous 

microorganisms [2]. Hence, the costs related to sterilisation are reduced. 

Thermophilic bacteria are a particular type of bacteria whose optimal growth 

temperature is 45 °C and more [58]. To date, P H A production was described at five 

thermophilic bacteria, namely Thermus thermophilus [59, 60], Caldimonas taiwanen-

sis [61], Chelatococcus thermostellatus [62], Aneurinibacillus sp. [51] and Schlegelella 

thermodepolymerans [2]. The Tab. 6.1 summarises the basic results from studies 

describing P H A synthesis from various carbon sources. In the table, only significant 

carbon sources were mentioned. Further, cell dry mass ( C D M ) as the biomass con­

tent, percentage of P H A per C D M and total amount of P H A were given, if available. 

Besides the P H A production from various substrates, the effect of temperature 

was commonly investigated in attendant experiments. Hence, the optimal temper­

atures were also given for comparison. Note that the given optimal temperatures 

do not have to correspond to the temperatures used for the cultivations on various 

substrates. 

A l l bacteria, except for T. thermophilus, accumulated P H A in the form of ho-

mopolymer P ( 3 H B ) . P H A produced by T. thermophilus were all copolymers com­

posed of diverse monomer units. This species also differ in the optimal growth 

temperature which is about 70 °C. Such a temperature is typical for extreme ther-

mophiles [58]. 

According to the Tab. 6.1 summarising the P H A production by thermophilic bac­

teria, four out of five thermophiles were able to use some type of sugar and glycerol 

to produce s c l - P H A , namely P ( 3 H B ) . This knowledge leads to the assumption that 

the mechanism of P H A synthesis in thermophilic bacteria mostly agrees with path­

way I. Hence, the basic dynamic model describing P H A production by thermophilic 

bacteria wi l l be based on this pathway wi th a sugar at the input. 

The sugar catabolism in bacteria has already been well described [63]. In fact, 

different bacteria are able to utilise different types of monosaccharides, but the basic 

principle usually remains the same. The part, where the individual cases differ, 

is the sugar degradation into glyceraldehyde 3-phosphate ( G A P ) . From this point, 

G A P is further transformed via the trunk pathway into pyruvate which is then 

converted into acetyl-CoA. 
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Tab. 6.1: The P H A production by thermophilic bacteria from various carbon sources 

and the optimal growth temperatures. 

Thermus thermophilus 

Substrate C D M [g/1] P H A [% p CDM] P H A [g/1] Topt [°C] Ref. 

Sodium gluconate - 35.00 - [59] 
Sodium octanoate - 40.00 - 70 [59] 
Whey supernatant* 1.60 ± 0 . 0 5 35.60 0.57 ± 0 . 0 7 [60] 

Caldimonas taiwanensis 

Substrate C D M [g/1] P H A [% p CDM] P H A [g/1] T0pt [°C] Ref. 

Sodium gluconate - 70.00 -
Fructose - 62.00 -

55 [61] 
Maltose - 60.00 - 55 [61] 

Glycerol - 52.00 -

Chelatococcus thermostellatus 

Substrate Strain C D M [g/1] P H A [% p CDM] P H A [g/1] Topt [°C] Ref. 

M W 9 3.04 ± 0.22 64.47 1.96 ± 0 . 2 0 
MWIO 

Glucose 
MW13 
MW14 

3.34 ± 0 . 1 4 
2.52 ± 0.16 
3.14 ± 0 . 2 6 

65.57 
66.27 
64.01 

2.19 ± 0 . 0 5 
1.67 ± 0 . 2 0 
2.01 ± 0 . 1 0 

50 [62] 

MW11 
Glycerol 

MW12 
2.04 ± 0.09 42.16 0.86 ± 0.20 MW11 

Glycerol 
MW12 3.18 ± 0 . 3 1 61.64 1.96 ± 0 . 4 0 

Aneurinibacillus sp. H I 

Substrate C D M [g/1] P H A [% p CDM] P H A [g/1] Topt [°C] Ref. 

Glucose 
Glycerol 

2.00 ± 0 . 3 6 
2.19 ± 0 . 0 7 

27.74 ± 0 . 1 8 
45.95 ±0 .10 

0.55 ± 0 . 1 0 
1.00 ± 0 . 0 4 

45 [51] 

Schlegelella thermodepolymerans 

Substrate C D M [g/1] P H A [% p CDM] P H A [g/1] Topt [°C] Ref. 

Glucose 3.34 ± 0.01 37.15 ± 0 . 9 6 1.24 ± 0 . 0 3 
Fructose 3.40 ± 0.02 29.36 ± 0 . 5 5 1.00 ±0 .02 

Lactose 3.27 ± 0.06 40.41 ± 5 . 7 5 1.32 ± 0 . 1 9 55 [2] 
Xylose 5.35 ± 0.04 53.20 ± 0 . 1 1 2.85 ± 0 . 0 1 
Glycerol 3.08 ± 0.03 54.17 ± 0 . 7 0 1.67 ±0 .02 

*A more complex substrate containing lactose. 

A s for the glycerol uptake, the situation is similar as in the case of different monosac­

charides. Glycerol degradation leads to dihydroxyacetone phosphate which is next 

converted into G A P [64]. Then, it is metabolised v ia the trunk pathway as in the case 

of sugars. 
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6.1 Dynamic Model Reconstruction 

The general model was reconstructed by using the web-based modelling platform 

Cel l Collective [21]. Using this tool enables to create and analyse qualitative dy­

namic Boolean models. The model reconstruction consists of defining the qualitative 

information by the user which is next automatically transformed into the Boolean 

expressions. Formed expressions are encoded to C++ files and these are together 

compiled into the dynamic library which is finally executable by the simulation 

engine, ChemChains. 

The development of individual components in time is expressed by the activ­

ity level measured as % O N . In principle, the user is allowed to choose the length 

of a sliding window and the level activity of a component then corresponds 

to the fraction of active/inactive states over the chosen window. A l l simulations 

given in this thesis wi l l be synchronous and performed wi th a sliding window 

of the length 1000. 

The final scheme of the created general model is depicted in F ig . 6.1. 

F ig . 6.1: The general model of P H A production by thermophilic bacteria. The back­

bone of the model is formed by the acetyl-CoA to 3-hydroxybutyryl-CoA pathway 

(pathway I) resulting in P ( 3 H B ) production. 

There are three external components (highlighted in orange) Nutr ients, 

Opt ima l Temperature and Sugar. Cel l Collective allows users to set the activity 

of external components in the range from zero to 100 %. This extention enables 

to apply finer changes in the ini t ial conditions and thus, simulate more diverse situ­

ations. The green links then denote positive and the red links negative regulations. 

The grey ones represent conditioned relations. 
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The Nutr ients component in the model represents standard cultivation medium 

needed for the cell growth - its lower activity results in lower Cel l Growth activ­

ity. Opt ima l Temperature specifies the optimal temperature during the cultivation -

reduced component activity denotes that the temperature is too low/high which 

again results in lower Cel l Growth activity. The third component, Sugar, represents 

the ini t ial sugar concentration in the cultivation medium. 

The metabolic pathway describing the sugar degradation into acetyl-CoA was 

omitted since it does not play any key role here. The sugar could also be replaced 

wi th glycerol, however, sugar is the conventional input component when considering 

the pathway I. Another name for pathway I is acetyl-CoA to 3-hydroxybutyryl-CoA 

pathway and here, it creates the backbone of the model. 

The experimental results from studies of P H A production by thermophilic bacte­

ria refer to one important factor - the time of cultivation. Usually, at the beginning 

of cultivation, a dose of carbon source is applied into the cultivation medium. In re­

sponse to such an excess of carbon source, bacteria start to consume it in order 

to create reserves in the form of P H A granules. Thus, the C D M and so the P H A 

content increase. 

However, due to such abundant consumption, the concentration of carbon source 

in medium gradually decreases unti l it achieves a sort of limit value. A t this point, 

bacteria stop consuming the given carbon source and start to degrade their own re­

serves. In the model, this behaviour is assured by the Degradat ion component which 

is dependent on the Sugar activity. The Degradat ion is 100 % active from the very 

beginning, however, it becomes a negative regulator of P H A activity only when 

the Sugar is inactive. Such a situation can be simulated by manual Sugar activity 

decrease after a while simulation. 

A t the top of the F ig . 6.2, there is a simulation plot denoting the situation 

wi th ideal growth conditions (Nutr ients, Sugar and Opt ima l Temperature at 100 %). 

In such cells are growing and accumulating P H A granules at maximum. 

In performed experiments, after some time, the concentration of sugar greatly de­

creased, and bacteria started to degrade the accumulated reserves. This is simulated 

by decreasing the Sugar activity to zero which enables the Degradat ion component 

to negatively regulate P ( 3 H B ) activity. 

In contrast, the simulation plot at the bottom denotes the situation wi th un­

suitable growth temperature. The Opt ima l Temperature activity here is at 60 %, 

other conditions are the same as in the first case. Due to the inconvenient tem­

perature, the accumulation of P (3HB) is not so efficient, and bacteria do not grow 

so fast. Temperature plays a crucial role when estimating the metabolic capabilities 

of thermophilic bacteria. Usually, the effect of temperature is investigated only after 

the ini t ial experiment of P H A production from different carbon sources. 
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F ig . 6.2: Simulation of P H A production by thermophilic bacteria under various 

temperatures. In the first case (top), the cultivation is performed under the optimal 

growth temperature (Opt imal Temperature at 100 %). In the second case (bottom), 

the temperature is unsuitable (Opt imal Temperature at 60 %) and hence, the resulting 

cell growth and P ( 3 H B ) accumulation are lower. Nutr ients and Sugar are adjusted 

to 100 % in both cases. After a while simulation, the Sugar activity is reduced 

to zero and thus, the Degradat ion component starts to negatively regulate P ( 3 H B ) 

activity. A t this point, bacteria start to degrade their reserves. 
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7 Production by S. t h e r m o d e p o l y m e r a n s 

The Schlegelella genus was first named in 2003 in honour of H . G . Schlegel who made 

a great contribution to the primal P H A research [65]. It was described as Gram-

negative non-sporulating aerobic rod-shaped bacterium genus wi th the growth tem­

peratures between 37 °C and 60 °C (optimum about 50 °C). In terms of phyloge-

netics, it is a member of the /3-subclass of the Proteobacteria. 

The species designation, Schlegelella thermodepolymerans, originated from its 

ability to depolymerise P (3HB) at high temperatures [65]. Several substances, 

such as gluconate, lactate, valerate or 3 H B , were reported to be utilised by the iso­

lated strains. Nevertheless, it was also stated that xylose or mannose are not em­

ployed which today proves to be wrong. 

According to Kourilova et al. [2], S. thermodepolymerans is not only able to de­

grade, but also synthetise P ( 3 H B ) . Furthermore, it transpired that the most efficient 

carbon source is xylose. The significant results from cultivation at 50 °C and P H A 

production on various carbon sources are given in the Tab. 6.1. The optimal cultiva­

tion temperature for P H A production was later experimentally determined as 55 °C. 

A t this temperature, the cultivation on xylose resulted in C D M 6.27 g/1 with the to­

tal amount of P ( 3 H B ) about 5.47 g/1. 

Following xylose as the most efficient carbon source, the utilisation of xylose 

over glucose was further investigated. It was discovered that S. thermodepoly­

merans shows so called diauxic behaviour which means it utilises individual sub­

strates sequentially. A t first, bacterium employed xylose at the consumption rate 

about 0.19 1/h (glucose consumption rate was about 0.03 1/h). However, as the con­

centration of xylose decreased after 48 hours of cultivation, the substrate preference 

switched over to glucose at the consumption rate about 0.17 1/h (xylose consumption 

rate decreased to 0.06 1/h). 

The last experiment performed was concerned with the bacterium ability to in­

corporate 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB) into the polymer 

chain. Various 3 H V precursors were used and the most efficient proved to be va­

leric acid. When using this precursor, the crystallinity of resultant P (3HB-co-3HV) 

titres was almost zero. However, the presence of valeric acid had an inhibitory ef­

fect on bacterial cultivation and hence, the titers were very low. This problem can 

be dealt wi th by managing the time of application and valeric acid concentration 

at the expense of lower 3 H V yield. A s for the other copolymer synthesis, it transpired 

that the capability of S. thermodepolymerans to produce poly(3-hydroxybutyrate-

co-4-hydroxybutyrate) [P(3HB-co-4HB)] is too low to be further considered. 
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Based on these recent findings, it is obvious that S. thermodepolymerans represents 

a promising P H A producent among other bacteria. The preference of xylose together 

wi th the higher cultivation temperature are two key properties which could help 

to reduce the costs related to P H A production by bacteria. The following subchapter 

of this thesis wi l l be concerned wi th deeper understanding of transport mechanisms 

and metabolic pathways for sugar degradation in S. thermodepolymerans. 

7.1 Extending the Qualitative Base 

In order to better comprehend the system's behaviour, it is favourable to start 

wi th a proper qualitative base. The metabolic pathways and reactions involved 

in the bacterium were derived from the annotated genome of S. thermodepolymerans 

D S M 15344. The complete genome sequence was assembled by Musilova et al. 

and it is available under the accession number CP064338. To explore Schlegelella's 

metabolic network, the Pathway Tools software was used. 

The Pathway Tools [66] allows to create, query and analyse the model-organism 

databases called Pathway/Genome Databases ( P G D B ) . The software consists 

of a graphical environment for visualisation and some interactive tasks and an on­

tology and database A P I for the complex queries and computations. A n important 

part of the tool is PathoLogic [67] component which enables to automatically create 

a new P G D B based on the annotated genome and MetaCyc [68] reference database. 

The P G D B for S. thermodepolymerans D S M 15344 was created by Da l imi l Bujdos 

from Microbia l Bioengineering Laboratory, Department of Experimental Biology, 

Masaryk University lead by Dr . Pavel Dvorak. 

Sugar Transport Mechanisms 

When trying to understand the preferences in sugar uptake, one needs to deal 

wi th transport first. S. thermodepolymerans is a Gram-negative bacterium and thus, 

it has two membranes. Transport through the outer membrane is ensured 

by porins [69], channel-forming proteins which allow sugars to pass into the space 

between the two membranes, periplasm. Transport through the inner membrane 

into cytoplasm is then provided by more complex means. 

Concerning xylose, the transport mechanism and metabolic degradation pathway 

have already been described [2]. Xylose import is ensured by A T P - b i n d i n g cassette 

( A B C ) transporter X y l F G H , where X y l F represents the high-affinity periplasmic 

binding protein, X y l G is ATP-b ind ing subunit and X y l H is the integral membrane 

component of the uptake system [70]. The import v ia the A B C transporter requires 

one molecule of A T P as it belongs to active transports. 
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Usually, genes encoding X y l F G H transporter form a single operon. In case of S. ther-

modepolymerans, this operon consists also of genes encoding the xylose degradation 

pathway, xylA and xylB. It means, by the time xylose enters cytosol via the A B C 

transporter, it is immediately metabolised via the xylose isomerase pathway. 

The most similar sequences to these genes were found in Phaeobacter inhibiens 

D S M 17395 [71]. However, the genes xylF, xylG, xylH and xylA, xylB formed two 

separate operons and also, the X y l F G H transporter probably enabled to import 

glucose and sucrose as well. 

In Escherichia coli, the model Gram-negative bacterium, xylose is usually im­

ported via the xylose/proton symporter X y l E or A B C transporter X y l F G H [70]. 

The X y l E symporter is a representative of major facilitator superfamily (MFS) 

and in E. coli, it is considered to be less efficient and lower-affinity compared 

to X y l F G H . No similar genes to xylE were found in Schlegelella's genome. 

Besides the X y l F G H , a non-specific A B C sugar transporter was predicted 

in Schlegelella's transport system. It is nothing surprising since the specificity 

of substrate-binding protein is often unclear and varies in different species. Anyway, 

there is one more type of transporter in the game. 

The third important group of transport proteins is PEP-dependent phospho­

transferase system (PTS) [69]. It is characterised by three unique features compared 

to A B C transporters or M F S : first, it is found only in bacteria; second, the sugars 

are phosphorylated during the transport and third, it affects carbon and nitrogen 

metabolism in relation to available sugars. 

A P T S transporter consists of three components from which two are general 

and one is substrate-specific. The two common phosphotransferase proteins are en­

zyme I (EI) and histidine protein (HPr) , the third one is sugar-specific complex called 

enzyme II (EII). The sugar transport is ensured by sequential transfer of phosphoryl 

group from phosphoenolpyruvate ( P E P ) to sugar. In S. thermodepolymerans, a kind 

of T P S transporter was predicted wi th either non-specific, or fructose transporter 

subunit I IA. The basic scheme of P T S is depicted in F ig . 7.1. 

Carbon Catabolite Repression Phenomenon 

It is nothing new that bacteria can utilise multiple carbon sources. After all, 

the P H A production by thermophilic bacteria from various substrates has already 

been discussed in this thesis (see Tab. 6.1). In most cases, however, only one 

substrate was examined at the time. Interestingly, what happens when multiple 

substrates are available at the same time? 
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In such a case, most bacteria usually start to use the individual substrates sequen­

tial ly according to their preferences. This phenomenon is called carbon catabolite 

repression ( C C R ) and it is typically glucose which is preferred over the others [72]. 

Nevertheless, S. thermodepolymerans shows different behaviour: it prefers xylose 

over glucose. This occurrence can be termed as reverse C C R . 

The reason why only one preferred substrate is consumed at the time is that 

the genes for the use of secondary carbon sources are not currently expressed. 

The transcription is usually controlled by global and operon-specific regulations. 

Concerning xylose utilisation in E. coli, the transcription of genes encoding both, 

the transport v ia X y l F G H and the degradation pathway, are regulated via the global 

cyclic A M P ( c A M P ) receptor protein ( C R P ) and a type of specific regulator X y l R [70] 

In S. thermodepolymerans, no similar genes to xylR were found. 

A s regards the global control of sugar uptake in E. coli, the key role plays 

the PEP-dependent phosphotransferase system [72]. The regulation mainly depends 

on phosphorylation of E I I A domain of the EII complex which is influenced by the ac­

t ivi ty of P T S transporter and the phosphoenolpyruvate ( P E P ) to pyruvate ratio. 

Sugar 

Fig . 7.1: The basic scheme of PEP-dependent phosphotransferase system (PTS) [72]. 

The phosphoryl group is sequentially transferred from phosphoenolpyruvate ( P E P ) 

to sugar. P : phosphate, E P : enolpyruvate, EI : enzyme I, H P r : histidine protein, 

EII : enzyme II and its domains A , B , C. 
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If a P T S sugar (typically glucose) is available, E I I A subunit remains in dephospho-

rylated state as it transfers the phosphoryl group to sugar during the transport. 

In dephosphorylated form, E I I A cannot activate adenylate cyclase ( A C ) . After ma­

jority of glucose is consumed, E I I A remains mostly phosphorylated and hence, it can 

activate A C which further catalyses the conversion of A T P into c A M P . Cycl ic A M P 

then binds C R P and together they activate the expression of catabolic genes for other 

non-PTS sugars. 

Sugar Degradation Pathways 

A s already mentioned, genes xylA, xylB encoding xylose degradation pathway are 

regulated together wi th the genes for xylose transport. In other words, once it is 

transported into cytoplasm, it is immediately degraded v ia xylose isomerase path­

way. A t first, xylose is transformed into xylulose by xylose isomerase (xylA) and xy­

lulose is next converted into xylulose 5-phosphate by xylulokinase (xylB). 

Xylulose 5-phosphate can be further metabolised via the non-oxidative branch 

of pentose phosphate pathway ( P P P ) . The purpose of this fully reversible part is sim­

ply to rearrange carbon atoms in molecules in order to produce C4, C5 and C7 sug­

ars [73]. These can be further used for biosynthesis. Regarding production of poly-

hydroxyalkanoates, xylulose 5-phosphate together with erythrose 4-phosphate can 

be converted into fructose 6-phosphate and glyceraldehyde 3-phosphate. G A P can 

further engage in glycolysis which leads to pyruvate formation and after pyruvate 

decarboxylation to acetyl-CoA, P ( 3 H B ) can be formed via acetyl-CoA to 3-hydroxy-

butyry l -CoA pathway (pathway I in F ig . 5.5). 

Concerning glucose, it is probably transported v ia a non-PTS transporter 

and thus, the degradation starts wi th phosphorylation by glucokinase in cytoplasm. 

Glucose 6-phosphate is converted into fructose 6-phosphate by glucose-6-phosphate 

isomerase, another phosphoryl group is joined by 6-phosphofructokinase and the re­

sulting fructose 1,6-bisphosphate can be then transformed into G A P and dihydrox-

yacetone phosphate by fructose-bisphosphate aldolase. A t this point, different sugar 

degradation pathways usually converge. The basic scheme denoting xylose and glu­

cose degradation pathways in S. thermodepolymerans is depicted in F ig . 7.2. 

Glucose 6-phosphate can also enter the oxidative branch of P P P . Unlike the non-

oxidative part, it is unidirectional and it aims at production of N A D P H and ribulose 

5-phosphate [73]. The latter further engages in the non-oxidative branch. Reduced 

nicotinamide adenine dinucleotide phosphate, shortly N A D P H , is produced by re­

duction of N A D P + and mainly acts as an electron donor in anabolic reactions. 

In S. thermodepolymerans, the presence of the oxidative part of P P P is questionable 

as orthologues of two important genes cannot be identified in the genome. 
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Fig . 7.2: The basic scheme of xylose and glucose degradation pathways in S. ther-

modepolymerans. Xylose is transformed via xylose isomerase pathway (green) 

into xylulose 5-P which further enters the non-oxidative branch (blue shades) 

of pentose phosphate pathway ( P P P ) . Glucose is metabolised via glycolysis, 

aka the Embden-Meyerhof-Parnas pathway (orange). The presence of the oxida­

tive branch (yellow) of P P P is uncertain as orthologues of pgl and gnd genes cannot 

be identified in the Schlegelella's genome. 
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The first one is pgl, the gene encoding 6-phosphogluconolactonase which cataly­

ses hydrolysis of 6-phosphoglucono-l,5-lactone to 6-phosphogluconate. In the past, 

the reaction was thought to occur spontaneously, but later study [74] provided new 

insights. It was revealed that the enzyme not only accelerates the reaction, but it 

also prevents lactones from conversion into the gamma form. This intramolecular 

rearrangement would lead to a biochemical dead end. 

The second gene probably missing is gnd. It encodes 6-phosphogluconate de­

hydrogenase which catalyses the conversion of gluconate 6-phosphate into ribu-

lose 5-phosphate wi th N A D P H as a side product. A reference protein sequence 

from E. coli was aligned to Schlegelella's proteome using B L A S T P [75] and a kind 

of NAD(P)-dependent oxidoreductase was found. However, only about 26 % was 

identical wi th the 57 % of the query sequence and hence, the presence of this enzyme 

in S. thermodepolymerans cannot be clearly determined without further exploration. 

The deletion of gnd has already been investigated in E. coli and as a result, 

some compensatory mechanisms have been described [76]. One of them is that 

gluconate 6-phosphate, which cannot be further converted into ribulose 5-phosphate, 

takes the Entner-Doudoroff (ED) shunt instead. The E D pathway is an alternative 

to glycolysis and leads to G A P and pyruvate formation. Thanks to the gluconate 

6-phosphate consumption by E D , half of the N A D P H yield could be preserved. 

In S. thermodepolymerans, pgl gene is absent as well and thus, the use of E D shunt 

is uncertain. 

Except for the alternative ways for N A D P H production, changes in direction 

of fluxes were observed in the non-oxidative part of P P P . Since ribulose 5-phosphate 

cannot be produced from the oxidative branch, it must be obtained additionally via 

the carbon rearrangement of intermediates from the latter part of P P P . 

7.2 Dynamic Model Refinement 

A dynamic model for P H A production by thermophilic bacteria has already been 

established (see Chapter 6). Now, it wi l l be refined wi th a focus on S. thermode­

polymerans and the gathered knowledge discussed in the previous subchapter. 

Starting wi th the carbon sources, the general term "sugar" at the input of the in i ­

t ial model wi l l be replaced by two specific substrates, xylose and glucose. Xylose 

is degraded by the xylose isomerase pathway into xylulose 5-phosphate which next 

enters the non-oxidative part of P P P . Glucose is metabolised only via glycolysis 

assuming the oxidative branch of P P P is absent. The sequence of metabolic reac­

tions describing G A P transformation into pyruvate is not included in order to keep 

the model's arrangement clear. Pyruvate is then converted into acetyl-CoA which 

enters the pathway I resulting in P ( 3 H B ) synthesis. 
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The intracellular and extracellular sugar are distinguished by the addition of "hit" 

or "ext" to the name of the sugar component. The diauxic behaviour of the system 

is then ensured by negative regulation of glucose import (i.e. Glucose int) which 

is conditioned by the presence of xylose in the cultivation medium (Xylose ext). 

Only after most of the xylose has already been consumed (the activity of Xy lose ext 

decreases), glucose starts to be imported (the activity of Glucose int increases). 

Other components from the ini t ia l model remain, those are Nutr ients, Opt imal 

Temperature, Cel l Growth and Degradat ion. Thus, P ( 3 H B ) synthesis can now be 

simulated wi th two different carbon sources and various temperature and nutrient 

settings. Nevertheless, the higher efficiency of xylose utilisation as a sole carbon 

source is stil l not included in the model. Actually, P (3HB) production from xylose 

is even slower than from glucose due to the higher number of steps involved in its 

metabolic pathway. To correct this behaviour, the production of four metabolic 

precursors is taken into account in the model. 

The central carbon metabolism (i.e. glycolysis, pentose phosphate pathway 

and tricarboxylic acid cycle) generates 12 metabolic precursors which ensure the en­

tire biomass production [77]. Four of them are relevant to involve into the model, 

these are: ribose 5-phosphate, necessary for biosynthesis of nucleotides; erythrose 

4-phosphate, used for the formation of aromatic amino acids; glucose 6-phosphate, 

precursor of glycogen and lipopolysaccharides; and fructose 6-phosphate, needed 

for the cell wall formation. 

The production of the four precursors was uneven when using the two carbon 

sources separately, which favoured the use of glucose. Since these metabolites are 

essential for the proper functioning of cells, the activity of Cell Growth compo­

nent was conditioned by their activity. It means that cells cannot grow and thus, 

P ( 3 H B ) cannot be synthetised unti l all four metabolic precursors are present. 

To be able to use the proposed compensatory mechanism, one remaining problem 

needs to be solved - the direction of reaction fluxes in the non-oxidative P P P . A flux 

balance analysis wi l l be used to deal with this issue. 

Performing Flux Balance Analysis 

To perform flux balance analysis, MetaF lux component [78] of Pathway Tools can 

be used. The input model is specified by a simple .fba text file which enables users 

to determine various parameters. Based on these instructions, an F B A model is 

generated from the relevant Pathway/Genome Database. After running the input 

model, MetaF lux provides the user wi th a .log file reporting whether the specified 

reactions were employed or not. This is helpful especially during the ini t ial model 

formation when there might be no fluxes found for any reaction. 
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To create a new F B A model, a template F B A file and several examples are available. 

The first parameter to be specified is the relevant P G D B . Next, there are four basic 

sections to be completed: reactions, biomass, nutrients and secretions. To build 

a feasible model, it is important to consider all substances consumed or produced 

by the specified reactions. Once there is one of them missing, the MetaF lux solv­

ing mode wi l l probably generate zero fluxes and the user is dependent on the .log 

file. To facilitate the creation of more complex models, MetaF lux provides users 

wi th a development mode. 

The F B A model for S. thermodepolymerans consists of four metabolic pathways: 

xylose degradation pathway, non-oxidative part of P P P , glycolysis and pyruvate 

decarboxylation to acetyl-CoA. Involvement of pathway I for P ( 3 H B ) synthesis is 

problematic since the polymer formation is defined by a single step polymeric reac­

tion. Hence, the product to be maximised (placed in the biomass compartment) 

is acetyl-CoA which can further enter the acetyl-CoA to 3-hydroxybutyryl-CoA 

pathway. 

Nutrients and secretions were defined according to the requirements of the re­

actions. The important nutrients are xylose and glucose whose fluxes were limited 

by the same upper bound. This should help to discover and compare the metabolic 

capabilities of both sugars. The fluxes of other nutrients, namely N A D , phosphate 

and coenzymeA, were not l imi ted 1 (in practice, these would be obtained as products 

of other reactions which are not part of the model). 

The crucial secreted metabolites were the four metabolic precursors discussed 

earlier: ribose 5-phosphate, erythrose 4-phosphate, glucose 6-phosphate and fructose 

6-phosphate. The boundaries for their secretion were adjusted according to the pre­

viously mentioned study [76] concerning gnd deletion in E. coli. A part of the study 

was to examine the chemostat culture in a steady state in order to determine the dis­

tr ibution of reaction fluxes in the central carbon metabolism. Thus, the secretion 

boundaries for the Schlegelella's F B A model were set with respect to the ratio among 

the relative fluxes of the four metabolites in E. coli. The fluxes of other secretions, 

such as N A D H , protons, water and carbon dioxide, were not additionally limited. 

The specific numbers of all boundaries were adjusted partly by tr ial and error 

in order to obtain fluxes about between zero and 100. The input constraints together 

wi th the results from the analysis using the two different carbon sources are depicted 

in F ig . 7.3 and F ig . 7.4. In both cases, the given constraints led to the same pro­

duction of acetyl-CoA and the same secretion fluxes. Furthermore, the consumption 

of nutrients, except for sugars, was equal as well. 

1In fact, all fluxes are limited by default from zero to 3000. Nevertheless, these values are not 
even achievable with respect to the other chosen constraints. 

51 



103.00 

103.00 

D-xylose 

D-xylulose 

D-xylulose 5-P 

D-glucose 6-P 
10.00 

61.00 

20.00 
D-erythrose 4-P 

D-sedoheptulose 7-P 

D-ribulose 5-P 

61.00 

30.00 
D-ribose 5-P 

10.00 

5.00 
D-fructose 6-P 

31.00 
27.00 

D-fructose 1,6-bisP 

27.00 

D-glyceraldehyde 3-P Dihydroxyacetone P 

27.00 

ES.OO 

65.00 

Pyruvate 

CONSTRAINTS 

Acetyl-CoA 

D-xylose 0.0 < x < 10S.0 

D-ribose 5-P 20.0 < x < 30.0 

D-erythrose 4-P 10.0 < x < 20.0 

D-glucose 6-P 5.0 < x < 10.0 

D-fructose 6-P O.S < x < S.O 

Xylose Isomerase Pathway Non-oxidative PPP Glycolysis Pyruvate Decarboxylation to Acetyl-CoA 

Fig . 7.3: The distribution of reaction fluxes in xylose degradation pathway based 

on the flux balance analysis. The product to maximise is acetyl-CoA which further 

enters the pathway I for P ( 3 H B ) synthesis. The constraints were defined so that 

the chosen metabolic precursors were produced in the specific ratio. Note that 

the non-oxidative P P P carries a considerable amount of flux. 
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Fig . 7.4: The distribution of reaction fluxes in glucose degradation pathway based 

on the flux balance analysis. The parameters of the model are the same as in the pre­

vious case. In comparison to xylose, several reactions flow in the opposite direction 

and P P P carries lower fluxes, whereas glycolysis is greatly employed. Importantly, 

the overall yield of acetyl-CoA is the same in both cases. However, the lower amount 

of glucose is required compared to xylose. 
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A s shown in F ig . 7.3 and F ig . 7.4, the consumption of xylose was about 103 whereas 

the consumption of glucose about 86. Since both sugars allowed to produce the same 

amount of acetyl-CoA wi th the same amount of nutrients consumed and secretions 

produced, it can be deduced that glucose has probably higher metabolic potential 

than xylose. In other words, a smaller amount of glucose leads to the same produc­

tion in comparison to xylose. 

A s for the other reaction fluxes, different values and directions can be observed 

in the two cases. W i t h xylose consumption, significant fluxes are detected in P P P , 

whereas glycolysis is less employed. One of the reactions of glycolysis is reversed 

in order to additionally produce the remaining precursor, glucose 6-phosphate. 

W i t h glucose consumption, the fluxes in P P P are lower and three out of five are 

heading the opposite direction. The fluxes in glycolysis are noticeably higher. 

When the directions of reaction fluxes are determined, the dynamic model can be 

finally completed. The resulting scheme is depicted in F ig . 7.5. 

F ig . 7.5: The final scheme of the dynamic model for P (3HB) synthesis in S. thermod-

epolymerans. The model consists mainly of xylose isomerase pathway, non-oxidative 

pentose phosphate pathway, glycolysis and acetyl-CoA to 3-hydroxybutyryl-CoA 

pathway. There are four adjustable external components (highlighted in orange): 

Xylose ext, Glucose ext, Nutrients and Optimal Temperature. 
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Exploring the Dynamics 

To recapitulate, the general model for P H A production by thermophilic bacteria 

was refined wi th respect to S. thermodepolymerans. The input carbon sources are 

xylose and glucose. The model demonstrates the sugar degradation pathways, re­

flects the diauxic behaviour and follows the assumption of the necessary produc­

tion of metabolic precursors. Once the last condition is met, cells are growing 

and P ( 3 H B ) is synthetised. Both can be further influenced by the activity of exter­

nal components such as Opt ima l Temperature or Nutr ients (besides the input sugar). 

After majority of sugar is consumed, cells start to degrade the accumulated reserves. 

The employment of the production of metabolic precursors resulted in equal 

P ( 3 H B ) synthesis from both input sugars. The situations are balanced now, 

but the higher efficiency of xylose is stil l not reproduced. Hence, an artificial compo­

nent "Slowdown" was added to the model in order to demonstrate the lower efficiency 

of P ( 3 H B ) synthesis from glucose. This one more step slows down the glucose degra­

dation which results in delayed P (3HB) formation compared to xylose. 

To demonstrate the model's behaviour, three model situations were examined. 

The two of them are shown in F ig . 7.6 and are supposed to depict the difference be­

tween the xylose and glucose utilisation. Thus, the preconditions were equal in both 

cases. Nutr ients and the relevant sugar were at 100 %, the Opt ima l Temperature was 

adjusted to 90 % in order to simulate the ini t ial experiment wi th different carbon 

sources. Usually, the effect of temperature is studied only after this primary investi­

gation. In S. thermodepolymerans, the various carbon sources were examined under 

the temperature 50 °C, while the optimal temperature was later experimentally 

determined as 55 °C [2]. 

A s can be seen in the simulation plots, the P (3HB) production from glucose is 

one step slower. This occurrence is ensured by the artificial component Slowdown 

which delays the glucose degradation. The real reason why the use of xylose is 

more effective is stil l the subject of discussion. A significant role plays probably 

the joint regulation of genes encoding xylose transport and degradation pathway. 

A s previously mentioned, xylose is imported by the X y l F G H transporter and as soon 

as it enters cytosol, it is immediately degraded. Concerning glucose there is not much 

information about its transport. It can only be said that there was no glucose-specific 

T P S transporter found in the Schlegelella's genome. 

The absence of glucose-specific T P S could support the occurrence of specific di­

auxic behaviour. A s described in section 7.1, T P S contributes to C C R phenomenon 

as a global regulator. When T P S sugar is available, the genes for transport of other 

sugars are not expressed. In many bacteria, glucose is preferred over the others, 

but Schlegelella rather uses xylose. Such behaviour is depicted in F ig . 7.7. 
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P(3HB) Product ion by S. thermodepolymerans: Xylose Consumpt ion 

Fig . 7.6: The simulation of P ( 3 H B ) production by S. thermodepolymerans. The up­

per plot denotes the production from xylose, the lower from glucose. A s can be seen, 

P ( 3 H B ) formation from glucose is one step behind compared to xylose. This occur­

rence should demonstrate the higher efficiency of xylose utilisation. A s the culti­

vation temperature is not ideal (Optimal Temperature at 90 %) during both experi­

ments, cell growth and P ( 3 H B ) yield cannot reach the maximal values. 
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P(3HB) Product ion by S. thermodepolymerans: Diauxic Behaviour 
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Fig . 7.7: The simulation of the specific diauxic behaviour of S. thermodepolymerans. 

When xylose and glucose are both available, bacteria first use xylose and only after 

most of the xylose is consumed, they start to consume glucose. Note that glucose is 

present in the cultivation medium from the very beginning (Glucose ext at 100 %), 

but it is imported into cells (Glucose int) later due to the xylose decrease. The ini t ial 

setting of all external components was 100 %. 

The simulation plot above denotes the sequential use of available sugars. Since 

Schlegelella prefers xylose, it is immediately imported and catabolised as previ­

ously demonstrated at the top of F ig . 7.6. Glucose is present in the cultivation 

medium, but it has not been used yet. After about 40 steps, Xy lose ext activity 

is decreased from 100 % to zero to simulate the significant decline in the external 

xylose concentration. Such a fall finally triggers the transition to glucose consump­

tion. Regarding the cultivation conditions, the simulation was performed wi th ideal 

temperature and enough nutrients (both external components at 100 %). 

A s denotes the F ig . 7.7, there is a little decline in growth and P (3HB) synthesis 

due to the switching to glucose consumption. In practice, the amount of P ( 3 H B ) 

was constantly increasing during the whole cultivation [2]. However, the cell dry 

mass measured at the time of switching was slightly lower than before, suggesting 

the growth had probably stopped for a while due to the decreasing amount of xylose. 

After switching to glucose, an increase in C D M was observed again. Additionally, 

there is only one sugar used at the time in the model. In actual fact, the other sugar 

is consumed as well, but at a very low consumption rate. 
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Even though the model's behaviour in the previous three situations reflects the re­

sults from real experiments, the knowledge behind the scenes is st i l l not sufficient. 

The joint regulation of xylose transport and utilisation is suggested to be the key 

factor contributing to both, xylose preference over glucose and its higher efficiency 

as a sole carbon source. These two curiosities observed in Schlegelella's behaviour 

can be considered to go hand in hand. Further, it was stated that there is no 

glucose-specific T P S found in the bacterium's genome which also supports the ab­

sence of typical glucose preference. 

Another fact to consider is that the oxidative branch of P P P is probably missing 

in Schlegelella's metabolism. In case the pathway is really absent, there have to be 

some compensatory mechanisms for production of N A D P H (which is usually formed 

mostly via this pathway) and thus, consumption of glucose does not have to be 

such an advantage. Moreover, ribulose 5-phosphate must be produced alternatively 

by the means of the non-oxidative part. 

Concerning the latter consequence, the benefit of xylose is that it is degraded 

in two steps into xylulose 5-phosphate which can be directly converted into ribu­

lose 5-phosphate. Glucose, on the contrary, has to be catabolised into fructose 

6-phosphate and then G A P , which can together form xylulose 5-phosphate and ery-

throse 4-phosphate. Xylulose 5-phosphate is then transformed into ribulose 

5-phosphate. Thus, the pathway to compensate the ribulose 5-phosphate forma­

tion is shorter when using xylose. 

O n the other hand, glucose 6-phosphate, as one of the metabolic precursors, 

must be obtained additionally when using xylose. However, there might not be 

such requirements for its production compared to ribulose 5-phosphate (or ribose 

5-phosphate, more precisely) as follows from the gnd deletion study in E. coli [76]. 

The fact which plays in favour of glucose is that it has probably higher metabolic 

potential in comparison wi th xylose. According to the flux balance analysis, which 

was previously performed, to produce the same amount of acetyl-CoA and other 

metabolites, a smaller amount of glucose is required. Nevertheless, the model was 

not sufficiently comprehensive and thus, the results cannot be entirely convincing. 

There is another effective carbon source, which has not been mentioned yet, 

and that is cellobiose; two molecules of glucose joined by the (3(1 —> 4) glycosidic 

bond. The P ( 3 H B ) production by S. thermodepolymerans from this substrate was 

even higher than from xylose (data not published). This is not very surprising since 

cellobiose provides cells with double amount of energy compared to glucose. Thus, 

it is likely that it can overcome the certain benefits of xylose. 

Other substrates, such as glycerol, lactose or fructose, provided reasonable re­

sults. However, these are not so attractive in terms of reducing the production costs 

and hence, this master's thesis focused mainly on xylose utilisation. 
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Attractor Analysis 

The last analysis was concerned wi th the long-term behaviour of the model. It was 

performed using the A E O N [79] software which is designed for the attractor bifur­

cation analysis of asynchronous parametrised Boolean models. The parametrisa-

tion of the model allows researchers to define update functions as logical parame­

ters which comes in useful when some of the functions are not completely known. 

The created model for S. thermodepolymerans is non-parametrised as all parameters 

are fixed. Thus, it can be seen as one instantiation of a parametrised Boolean model. 

The software includes two basic components, the client and the compute engine. 

The client provides users with a web-based graphical interface. Besides creating 

a new model, it enables to import and edit an existing model in .sbml format. 

The compute engine is then used to perform the analysis. 

Several problem were coupled wi th the analysis of the Schlegelella's model. 

In Cel l Collective, the application and subsequent vanishing of carbon source 

from the cultivation medium was demonstrated by manual adjustment of the relevant 

external sugar component. In other words, the diauxic behaviour or the degrada­

tion of accumulated granules could be simulated only by the manual intervention 

into the course of simulation. However, such actions cannot be made in attractor 

analysis and thus, the key elements of Schlegelella's behaviour cannot be included 

in the A E O N model. 

This fact leads to the considerable simplification. The Degradation component 

and relevant links were deleted as they were useless here. The Opt imal Temperature 

and Nutrients were set as true (since nothing between zero and one can be set 

in A E O N ) and the sugar input components were not specified. Such model has four 

ini t ial states - both sugars are present, only one, or any of them. Three of these 

situations lead to the cell growth and P (3HB) formation, the fourth is the case 

when no sugar is present. When both sugars were available, the bacterium used 

only xylose, which is in agreement wi th the model's disposition. Such situation is 

denoted in F ig . 7.8. 

The three applicable situations denote the cultivation wi th ideal temperature 

and constant supply of nutrients and carbon source. Resulting attractors for such 

preconditions show stability. In practice, such conditions are typical for chemostat 

cultivations, where nutrients are continuously supplied, and the bacterial culture is 

regularly harvested. This method is considered to be the most reproducible tech­

nique for P H A production by bacteria [80]. 
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Fig . 7.8: Screenshots from the analysis of attractors in A E O N . Four ini t ial states 

were considered (both sugars are present, only one, or any of them) and all resulted 

in a stable state. If at least one of the sugars is available, cells grow and P ( 3 H B ) 

is synthetised. The resulting stable state is described v ia binary notation or colour-

coded names of components. The one in the picture corresponds to the situation 

when both sugars are present, but only xylose is consumed as it is preferred. 
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Conclusions 
The aim of this master's thesis was to reconstruct a dynamic model for P H A produc­

tion by thermophilic bacterium Schlegelella thermodepolymerans. A t the beginning, 

the theoretical foundations were given. The Chapter One focuses on mathematical 

graph theory as the basis of biological networks. It is followed by Chapter Two 

which deals with different approaches in dynamic modelling and commonly used 

tools for dynamic analysis of complex systems. In the thi rd chapter, further terms 

and possibilities related to model analysis are introduced and the fourth chapter 

then aims at metabolomics and the frequently used laboratory techniques. 

The fifth chapter is finally dedicated to polyhydroxyalkanoates and in the end, 

the three natural metabolic pathways for P H A synthesis in bacteria are introduced. 

The subsequent chapter then deals with P H A production by thermophilic bacteria. 

Before focusing on S. thermodepolymerans, a general dynamic model is proposed. 

The Boolean model was created in Cel l Collective [21] and its behaviour reflects 

the usual course of basic experiments. The simulation plots depict the P H A degra­

dation due to the large decrease of carbon source in cultivation medium and the effect 

of temperature on cell growth and polymer yields. 

Once the general model was established, it was further refined wi th respect 

to S. thermodepolymerans. Since the bacterium is specific by the effective use 

of xylose and its preference over glucose, the first part of Chapter Seven is focused 

on transport mechanisms and degradation pathways of the two sugars. The actual 

refinement of the general dynamic model is then discussed in the second part. 

The final model includes mainly xylose isomerase pathway, non-oxidative pentose 

phosphate pathway, glycolysis and pathway I for P ( 3 H B ) production. It is proposed 

that the oxidative branch of P P P is probably missing in the Schlegelella''s metabolic 

network. To determine the direction of fluxes in the non-oxidative part, flux balance 

analysis was used. Besides assisting in the model's arrangement, results from F B A 

indicate to the likely higher metabolic capacity of glucose. The attractor analysis 

of simplified model resulted in the stable state of P ( 3 H B ) production wi th continuous 

supply of nutrients. 

In conclusion, the final model for P H A production by S. thermodepolymerans 

demonstrates the higher efficiency of xylose utilisation and the specific diauxic be­

haviour. Nevertheless, the reason behind such occurrences is st i l l the subject of dis­

cussion. The joint regulation of genes encoding xylose transport and degradation is 

proposed to be the key factor. Since xylose is an inexpensive substrate and higher 

cultivation temperature reduces the costs related to sterilisation, S. thermodepoly­

merans represents a promising P H A producent among other bacteria. The knowl­

edge gathered in this thesis should lay the foundations for further research. 
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A B C ATP-b ind ing cassette (transporter) 

A C adenylate cyclase 

A T P adenosine triphosphate 

c A M P cyclic adenosine monophosphate 

C C R carbon catabolite repression 

C D M cell dry mass 

C E capilar electrophoresis 

C o A coenzyme A 

C R P c A M P receptor protein 

E D Entner-Doudoroff (pathway) 

EI enzyme I 

EII enzyme II 

F B A flux balance analysis 

F T I R Fourier-transform infrared spectroscopy 

G A P glyceraldehyde 3-phosphate 

G C gas chromatography 

G S P N generalised stochastic Petr i nets 

H P L C high-pressure l iquid chromatography 

H P r histidine protein 

i d F B A integrated dynamic flux balance analysis 

i F B A integrated flux balance analysis 

L C l iquid chromatography 

m c l - P H A medium chain length polyhydroxyalkanoates 

M D W N s Markov decision Petr i nets 
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M F S major facilitator superfamily 

M S mass spectrometry 

N A D nicotinamide adenine dinucleotide 

N A D H reduced nicotinamide adenine dinucleotide 

N A D P nicotinamide adenine dinucleotide phosphate 

N A D P H reduced nicotinamide adenine dinucleotide phosphate 

N M R nuclear magnetic resonance 

ODE(s ) ordinary differential equation(s) 

P ( 3 H B ) poly(3-hydroxybutyrate) 

P (3HB-co-3HV) poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 

P(3HB-co-4HB) poly(3-hydroxybutyrate-co-4-hydroxybutyrate) 

P H A polyhydroxyalkanoates 

PDE(s ) partial differential equation(s) 

P E P phosphoenolpyruvate 

P G D B pathway/genome database 

P P P pentose phosphate pathway 

P T S PEP-dependent phosphotransferase system 

r F B A regulatory flux balance analysis 

S B M L systems biology markup language 

s c l - P H A short chain length polyhydroxyalkanoates 
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