BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER SYSTEMS
USTAV POCITACOVYCH SYSTEMU

GRAPHICAL SIMULATOR OF SUPERSCALAR
PROCESSORS

GRAFICKY SIMULATOR SUPERSKALARNICH PROCESORU

MASTER’'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. JAN VAVRA
AUTOR PRACE
SUPERVISOR Doc. Ing. JIRI JAROS, Ph.D.

VEDOUCI PRACE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Computer Systems (DCSY) Academic year 2020/2021
Master's Thesis Specification |||l
21991

Student: Vavra Jan, Bc.
Programme: Information Technology and Artificial Intelligence
Specializatio Embedded Systems

n:
Title: Graphical Simulator of Superscalar Processors
Category: Computer Architecture

Assignment:

1. Familiarize yourself with the architecture of current superscalar processors.
2. Review existing graphical simulators of superscalar processors.
3. Design a graphical user interface to visualize the operation of superscalar processor. Focus
on out-of-order instruction issue, register rename, branch prediction, and reorder buffer.
Take into consideration possible customization of the processor configuration (number of
registers, the size of issuing window, reorder buffer, etc.).
4. Implement designed solution.
5. Implement a way to input user source code written in assembly or other higher languages.
6. Evaluate and discuss about the usability and illustrative nature of developed simulator.
Recommended literature:
e According to supervisor's advice.
Requirements for the semestral defence:
¢ |tems 1 to 3 of the assignment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Jaros Jifi, doc. Ing., Ph.D.
Head of Department: Sekanina Lukas, prof. Ing., Ph.D.
Beginning of work: November 1, 2020

Submission deadline: May 19, 2021

Approval date: April 22, 2021

Master's Thesis Specification/21991/2020/xvavra20 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract

The focus of this thesis is implementation of the superscalar simulator. The implementation
follows research of existing simulators and tries to implement missing features from them.
Simulator uses RISC-V instruction set architecture, but architecture can be swapped for
any RISC instruction set. Simulator implements deterministic branch prediction. Parts of
the simulation can be configured. The simulator application also contains a text editor for
inputting source code.

Abstrakt

Price se zabyva implementaci simuldtoru superskalarniho procesoru. Implementace se
odviji od existujicich simulatorti a jejich chybéjicich ¢asti. Simulator umi vykonavat in-
strukéni sadu RISC-V, ovsem je umoznéno pridani jakékoli RISC instrukéni sady. Simula-
tor méa deterministickou predikei skoku. Césti procesoru lze upravovat. Soudésti je i editor
kédu pro danou instrukéni sadu.

Keywords

simulator, superscalar, processor, interactive, Java, OOP, RISC-V, branch prediction, Gshare,
Tomasulo algorithm, data hazards, load bypassing, load forwarding

Klicova slova

simulator, superskalarni, procesor, interaktivni, Java, OOP, RISC-V, predikce skoku, Gshare,
Tomasulo algoritmus, datové konflikty, load bypassing, load forwarding

Reference

VAVRA, Jan. Graphical Simulator of Superscalar Processors. Brno, 2021. Master’s the-
sis. Brno University of Technology, Faculty of Information Technology. Supervisor Doc.
Ing. Jiti Jaros, Ph.D.

Rozsireny abstrakt

Vysvétleni jistého vnitfniho chovani u urcitych objektu je ponékud obtizné bez jakékoli
vizualizace, at se to tyka bud lidského téla, automobilového motoru, nebo funkcionality
procesoru. Jednou z cest je vyuziti spousty obrazku a animaci, nicméné toto jsou stat-
ické objekty, ukazujici pouze jeden konkrétni problém. Mnohem lepsi cestou je vytvorit
simulator, ktery napodobuje chovani daného systému, se kterym lze interagovat, at je to
bud ubranim ¢i pfidanim jistych komponent nebo zménou vstupnich proménnych.

Cilem této préace je tedy napsat simulator, ktery by simuloval chovani urcitého super-
skalarniho procesoru. Tento simuldtor by mél umoznit vkladat vlastni zdrojové kédy, psané
v jazyce symbolickych instrukei (assembler), jejichz chovani by nasledné bylo zobrazeno ve
vystupu simuldtoru. Urcité komponenty simuldtoru, napriklad velikost serazovaci paméti
nebo pocet funkcénich jednotek, by mély byt nastavitelné, aby umoznily uzivateli pozorovat
chovani ruznych nastaveni. Dalsi véci, kterou by mél simulator obsahovat, je simulace
vétveni instrukei a vykondvani pamétfovych instrukei mimo poradi, coz ve vét§iné existu-
jicich simulatoru chybi nebo je feseno stochasticky.

V ramci této prace bylo tfeba nastudovat instrukéni zavislosti, chovani jednotlivych
komponent superskaldrniho procesoru, pristupy pro predikci skoku a vykonavani pamétovych
instrukci. Dale bylo tfeba vybrat vhodny procesor, jehoz algoritmy jsou volné pristupné
a slouzily by jako ukézkovy priklad pro studenty kurzu AVS. Také bylo zapotiebi projit
jiz existujici simulatory a zhodnotit jejich silné a slabé stranky, kde chybéjici ¢asti by byly
pouzity jako inspirace pro vyvijeny simulator. Na zakladé této reserse byl sestaven navrh,
kde byly vytyceny body, které by vysledna aplikace méla splnit.

Vysledkem je simuldtor postaveny na algoritmech pouzivanych procesorem RISC-V
BOOM, ktery pouziva instrukéni sadu RISC-V. Aplikace simuluje napiiklad pfejmenovani
registri pomoci Tomasulova algoritmu, predikci skokii pomoci metody Gshare a load for-
warding a bypassing. Simuldtor méa i konfigurovatelnou instrukéni sadu a soubory registri,
k jejichz zapisu a uchovani byla pouzita notace JSON. V ramci simulatoru lze vkladat vs-
tupni kéd pomoci predpripraveného textového editoru primo v aplikaci, ktery umoznuje
zvyraznovani klicovych slov.

Rozsitenim této prace by mohlo byt okno pro zobrazeni paméti, kde by byl pozorovatelny
obsah jednotlivych bunék paméti o velikosti 1-4 byte. Dalsim vizualnim rozsifenim by
mohl byt moéd pro vizualizaci posilani instrukei mezi jednotlivymi ¢astmi procesoru, jako
je naptiklad vytvoreno v aplikaci Cisco Packet Tracer.

Graphical Simulator of Superscalar
Processors

Declaration

I hereby declare that this Diploma’s thesis was prepared as an original work by the author
under the supervision of assoc. prof. Ing. Jif{ Jaros Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

Jan Vavra
May 18, 2021

Acknowledgements

I would like to thank my supervisor Jiti Jaros for his kind and patient attitude throughout
the duration of the task and for all of his advices, and remarks, without which this work
wouldn’t be possible.

Contents

1 Introduction

2 Summary of processor architectures

2.1 Pipelining L e
2.2 Superscalar processoro i e
2.3 Superscalar’s front-end
2.4 The back-end and commit stage oo

3 Overview of existing simulators

3.1 VSIM . o e e e e
3.2 QEMIPS . o v
3.3 OpenDLX
3.4 RIPES . . . o e
3.5 Jupiter.
3.6 RISC Simulator by Peter Higginson
3.7 BRICS-V simulator. it
3.8 SUMMATY e e

4 Proposal of implementing system
4.1 Decomposition of the implementing system
4.2 Simulator mockup oo

5 Implementation of the proposed system

5.1 Loader layer

5.2 Codelayer

5.3 Block layer

5.4 Ullayer o i i e e
6 Testing

6.1 Business logic testingo

6.2 Ul and Application testing

7 Conclusion
Bibliography
A Contents the included storage media

B User manual

o w W

12

14
14
15
16
17
18
19
19
20

21
21
22

24
24
27
32
45

49
49
50

51

52

54

55

Chapter 1

Introduction

Explaining the inner workings of certain objects to people, who know nothing about them,
might be a complicated task. Even after showing the basics and familiarizing them with
what goes "under the hood", many people might still not understand, because they need to
see it in action. This is the problem many teachers face during their lectures. But there is
a solution. What if there is a program, that allows people to interact with the object and
see how it behaves?

These apps are called simulators. There are many such apps, which show how an
engine of a car works, how a certain circuit is interconnected and what voltage is on each
connection, and so on. The same goes for a processor architecture, where students could
play with instructions and see how they are passing through each part, how does it behave,
etc. The problem is that finding a proper simulator might be tricky because not all of
them have all features required for a certain subject focus. In this thesis, I shall focus on
implementing such a simulator for a superscalar processor.

The goal of this thesis is to create a simulator, that is based on a modern superscalar
processor, where the processor state of each step of the execution can be seen. It needs to
focus on the out-of-order program execution and the releasing in the correct order. The
simulator needs to allow some sort of configuration, whether it is size is the buffers, initial
state, or by adding more function units if needs be. The simulator should allow compiling
the user-created source code in an assembly language of chosen architecture. Also, the
architecture should be allowed to be extended, letting the users extend and play with it at
will.

The thesis is divided into separate chapters. In the chapter 2, there is a summary of how
scalar and superscalar processor works, form what parts it is built and how they interact.
In the chapter 3, I go over existing simulators and review each one of them, focusing on
how the simulation works, and existing and missing features. In the chapter 4, I introduce
the proposition of my solution for implementing a superscalar simulator.

Chapter 2

Summary of processor
architectures

This chapter summarizes the required knowledge to understand the pipelining process, the
difference between the scalar and the superscalar processor, used algorithms inside the
superscalar processor, and some examples of processors.

2.1 Pipelining

The simplest processors, called subscalar processors, executed instructions one after the
other while waiting for the instruction before finishing. So if we create an example with 2
instructions, where both of them take 6 steps to finish, executing a single two instruction
program would take 12 steps in total. The clocks per instruction would be (646)/2 = 6 CPI.
This approach was way too restrictive. But there was a way to execute these instructions in
parallel, more precisely the steps were overlapped between consecutive instructions, which
coined the term pipelining.

The pipeline processors, also called scalar processors, were able to significantly shorten
the execution time of programs by dividing processors into stages that could be done sep-
arately. So we could be loading a new instruction while also computing another one in
another stage. If we got back to the example, we would move from 12 steps to just 7
steps, so the CPI would be (6 4+ 1)/2 = 3,5 CPI, which is a 58% speedup compared to the
subscalar processor.

The execution steps are similar to the steps in the von Neumann machine model being
in order: fetching the next instruction, decoding it, executing it, saving the result, and
moving to the next instruction. For pipelining to be effective, it needs to suffice some
conditions. Namely, the steps should approximately take a similar time to execute, the
instruction needs to go through all stages to utilize all stages, the stage should be able to
hold its results, because not all states take the same time to finish, and all stages should
be able to react to disruption in the execution and be able to save the state of the pipeline,
so when the interrupt is removed, the pipeline can continue from a consisted state. [4] [7]

Pipeline stages

When talking about pipeline processors, we usually refer to the five-stage instruction exe-
cution pipeline. The basic schematics of such a pipeline can be seen in the Figure 2.1. The

stages are from left to right as follows: Instruction fetch, Instruction decode, Execution,
Memory access, and Writeback.

IF/TD IVEX EX/Mem Mem/'WB

W+ I — HEX - H Mem H [WB

Figure 2.1: An abstract five-stage pipeline.|[4]

In the instruction fetch stage, an instruction is fetched from the instruction cache (I-
cache) at the address given by the Program counter (PC). In the case of non-branching
instructions, the PC is incremented by one, and when finished, a new instruction is loaded.
When a branching instruction is processed and the condition is true, the PC is moved to
the address pointed by the instruction, and the pipeline is flushed.

The Instruction decode decodes the fetched instruction to know the type and operands
of the instruction. In this step, the immediate constants are also extended to the required
amount of bits.

The Execution stage performs the actions of the provided instruction. If the instruction
is arithmetic, the stage will perform arithmetic or logical operations. If it’s a load or store
operation, the effective address is calculated for loading or storing a value. In the case of a
branching instruction, a new value for PC is computed.

The Memory access stage does nothing if the instructions are not load nor store, never-
theless, all instructions must pass through this step. If the instruction is a load operation,
data will be fetched from the Data cache (D-cache). If the instruction is the store operation,
data is modified on the index got from the Execution stage.

Lastly, the Writeback stage stores calculated or fetched values in the result register.
This applies to all floating-point and fixed-point instructions, logical instructions, and load
instructions. In the case of a branch or store operation, nothing happens. [4] [10] [17]

Hazards

As already mentioned, the subscalar processor was restrictive, on the other hand, there
couldn’t arise any problems, because instructions were executed separately. By breaking
this restriction in the scalar pipeline processor, we have to face new problems. These
problems are called hazards. We differentiate between 3 known hazards.

The first one is Stuctural hazard. This hazard can be encountered when two or more
stages compete for the same shared resources. Example being shared cache for instructions
and data, where stages IF and MA would compete for access. This type of hazard can
be easily prevented by separating the problematic component or by adding more hardware
components.

Another hazard is Data hazard, which happens when two or more consecutive instruc-
tions have data dependencies between them, where one instruction is trying to access data

that are not ready yet. This type is again split into 3 categories: read-after-write (RAW),
write-after-write (WAW), and write-after-read (WAR).

Read-after-write occurs, when instruction at address ¢ has the same output register
as input register of an instruction i¢+1. The instruction i+1 will read old data before
instruction ¢ has a chance to produce the new ones. The example of such instructions could
be: R3 = R1 + R2, R4 = R3 + R10. The RAW can be removed either by stalling the
pipeline or forwarding computed data. Stalling the pipeline stops any instructions which
depend on the previous one. This approach is not optimal, because it leads to a longer
execution time. Forwarding is done by adding new paths to stages where the data are
already present. Of course, this leads to extending the output multiplexer and adding new
busses between stages. In the example, the data from the first instruction are available at
stage EX, so by adding path EX to EX, the instructions can execute right after the previous
one finishes its EX stage. The same forwarding can be done from stage MA to EX if the
first instruction were to be load. [12]

add x1 x2 x3 IF > ID > EX > MA —>{ WB

x1 ready

sub x5 x1 x3 IF — ID > ID = ID EX P+ MA — WB

Stalling Stalling

Figure 2.2: RAW dependency between two instructions

add x1 x2 x3 IF — ID | EX MA (= WB
x1 ready
sub x5 x1 x3 IF » ID EX P+ MA — WB

Figure 2.3: RAW dependency on the same instructions with forwarding

The other two hazards, write-after-read and write-after-write, do not happen inside
the pipeline processor, but usually happens inside a superscalar processor, which will be
mentioned later. Write-after-read is encountered, when the instruction at address ¢ has the
same input register as the output register of the instruction at address i+1. Write-after-
write happens, when two consecutive instructions have the same output register. Both
of these hazards are solved by renaming the registers or by stalling, where preferable is
renaming.

The last of the three hazards is the Control hazard, which is connected to the flow of
the program. These are triggered by unconditional and conditional branch instructions.
Without any hardware support, the target address is calculated in the EX stage, and the
MA stage writes it to PC. That would lead to a three-step delay before any other instruction
can proceed. We can reduce the delay to 1 if we add a new adder in the ID stage, which
would compute the address and send it to the PC in one step. Also, we can add a test for
zero in this stage for the conditional branch instructions, which do jump if a source register
is zero or not. For other branch instructions, we would have to wait until the EX stage is
done, where the comparison will be calculated. Still, that is a 1-2 step delay compared to
3.

For now, the instruction that was input into the pipeline during the delay was the NOP
instruction (i.e. no operation). What if the instruction wasn’t just a filler instruction,
but some useful and maybe correct instruction that should be executed after the branch
instruction. This is where predictions come into play. We differentiate between two possible
predictions: negative or positive. In the case of negative prediction, we are expecting that
the jump won’t happen, so we insert another instruction in the program’s order. The
positive prediction does the exact opposite. [4] [19] [17]

2.2 Superscalar processor

The time to process the program is defined by the equation t = %, where IC is the
instruction count, IPC is instruction per clock, and f is frequency. To make programs faster,
either IC needs to be smaller, therefore the program needs to be optimized, or IPC or f
has to be bigger, resulting in the overall faster processor. In the scalar processor, we had
an ideal IPC of 1, but in practice, the Execution stage (EX) took longer, because of more
complex computation, such as complex integer calculation being multiplication or division
or floating-point arithmetic, so the IPC is in reality smaller. The Superscalar processors
make the pipeline wider, meaning that it no longer processes instructions linearly, making
the IPC value bigger. [19]

The Superscalar processors are divided into 2 parts: the front-end and the back-end.
The front-end covers pipeline stages IF and ID, but now it can fetch multiple instructions
at once. The number of fetched instructions corresponds to the number of ways the pro-
cessor has, making it an m-way superscalar processor. The back-end of the pipeline covers
EX, MA, and WB stages with the difference that now these stages process instructions

concurrently. [4] [19]

Rename Map Tables & Freelist

'

Issue
Window Unified * .
II:I:H_> Decode Physical
> Register
Rename] File
(PRF)
ROB
Commit

Figure 2.4: An abstract superscalar processor.'

The Superscalar processors are divided into two categories. The first one is a static, in-
order superscalar processor, where the front-end releases instructions in the strict program
order and data dependencies are resolved before passing them to the back-end. The second
one is the out-of-order or dynamic superscalar processor, where instructions enter back-end
before previous instructions in the program order. To make instructions leave the back-end
correctly, the Writeback stage is replaced by the Commit stage, which makes instructions
leave in the order given by the source code. Both of these versions have an in-order front-

!Source: https://riscv.org/wp-content /uploads /2016 /01/Wed1345-RISCV-Workshop-3-BOOM.pdf

https://riscv.org/wp-content/uploads/2016/01/Wedl345-RISCV-Workshop-3-BOOM.pdf

end, meaning that the instructions are fetched and decoded in the program order. [4]
The following section will be focusing on the separate parts of an out-of-order superscalar
processor.

2.3 Superscalar’s front-end

The focus of this section is to go through all front-end parts of the superscalar processor
and explain them in order from fetching the instructions to the reservation stations, where
instructions left for the back-end of the processor.

Instruction fetch

The Instruction fetch has to give m instructions every cycle. But there are several problems.
The first one is determining the address from where to get the next instruction when there
are several branching paths. The solution is to use ALU near the fetch stage, for address
calculation, but the processor is still dependent on previous predictions. Even if we know
precisely where to jump, the processor can load one cache line in one cycle, which creates
an issue when instructions are way far apart. That limits the processor to one branch
prediction per cycle. This limitation can be eliminated by using trace caches.

Trace cache allows the processor to fetch instructions with multiple branch predictions,
called traces, in one cycle, assuming that the predictions will be correct. The traces are
recorded in the order in which they were decoded and saved for later purposes. Trace cache
entries have a tag and a data, where the tag is the address to the first instruction in the
trace. If in case the processor finds itself at the beginning of a trace, the PC will index from
the trace cache rather than from the I-cache. There are different types, such as concurrent
trace caches, which access instruction cache and trace cache in parallel, or sequential trace
cache, which access these caches sequentially. [4] [6]

Branch prediction

Branch predictions are done during stages of fetching and decoding. The prediction itself
can be either static or dynamic. Static predictions are based on statistics from multiple
program runs. From known statistics [19] [4], around 83% of jumps will be performed, so
if the processor was set to static positive prediction, it would be correct 83% of the time.
Unfortunately, the costs of misprediction grew over the years, so this approach is obsolete.
1]

The dynamic prediction is based on previous predictions that happened earlier in the
execution of a program. The simplest solution to this is to use bit predictors. The bit
predictors are of sizes either zero, one, or two. The three or more bit predictors do give
only minimal improvement compared to the previous 3 and only give worse storage costs.
The 0-bit predictor functions almost the same way as the static one, it is determined by
the first branch instruction and for the next, it will use saved prediction from the first one.
The 1-bit predictor changes prediction depending on the last branch instruction. The bit
represents 2 states, either "taken', meaning that the previous branch condition was true
and PC was changed to target address, or "not taken', where the branch condition was
false. The 2-bit predictor is a bit more complicated. It uses 4 states, which can be seen
in the figure 2.5. The "strongly taken" state is achieved after 2 consecutive branch taking.
The "weakly taken" state is reached when we receive a false prediction in the "strongly

Strongly Weakly

Taken Taken
T
—T.
Ou=()
N
T
—N
QuaC)
N_A
Strongly Weakly
Not Taken Not Taken

Figure 2.5: Two-bit predictor finite state graph [21]

taken" state, therefore the branch is not taken. The "strongly not taken" is the opposite to
"strongly taken" and the "weakly not taken" is to the "weakly taken". [4] [21]

The processor keeps these predictions in a cache called a pattern history table or PHT.
This cache can be indexed using k selected bits from a PC because using the whole PC
would be way more costly than the payload. Unfortunately, this leads to address aliasing,
where two different branch instructions can have the same tag, and therefore use the same
predictor. We can get better results if the prediction would move from being local to
being global, which would take into account all previously evaluated branch instructions.
For that, we can use global shift register or GSR. The GSR remembers the history of k
instructions by creating a bit vector, where 1 represents "branch taken', and 0 "branch not
taken". This is then used to index predictions in the PHT. This works well if the k is big
enough, meaning if there is a small number of entries in the PHT or the GHR vector is
too small, this approach is not suitable and the local predictions should be used instead.
This approach also suffers from not knowing the actual position in the program. There is
an easy solution using a hash function, where the hash is calculated from GSR and part
of the PC. The hashing function can be for example an XOR gate. This exact solution is
named GShare predictor. [4] [21]

There are also other similar solutions, for example, McFarling predictor, which is a
Gshare with a "meta-predictor", a two-bit counter, which selects from one or more PHT,
that gives a prediction result based on a majority vote. Another variant is the Bi-Mode
predictor, which again uses several PHTs with Gshare for indexing and a meta-predictor
that is indexed by the PC telling, which PHT should be used. [1]

For a successful prediction, the processor needs to know the target address of a jump.
Without it, the m-way processor would have to have m additional adders not to cause
stalling during the instruction fetch stage. For that, the superscalar processors use branch
target buffer or BTB, where the branch target addresses are kept. There is an option to
either use BTB with integrated PHT, which would make the BTB much larger, decoupled
BTB-PHT, where addresses and predictions are stored in separate caches but indexed the
same way, or to use more PHT and use PC to address a specific one and use index saved
in BTB to address specific row in chosen PHT, which would reintroduce locality to the
prediction. [4]

. ™~
= |
2" 2-bit 2 &
Counters = | = % % %
E d 8 8 B
) g ™ g g i
- | 3 Bl |3 : : :
[Program Counter [o0| ; 5 = = =
F 1 ™ e
L@ D] 2 3 5 5 5
. n - = B < 5 2 s
r L}
- ™~
Global Histo . g § nA- n- L
; ' z 3 g 2"dbit 2"dbit 2" dbit
' ' o 5 4| Counters Counters Counters
PHT Index &y 2|
£ | i t
Majority
oL - Vote
(a) are
Prediction
(b) McFarling
2" 2bit 2M2bit 2" 2bit
Counter. Counters Counters
Taken | -~ (P1) (®2)
_ 2 |Use =] -
ZEm | B _& | [program Counter [00]
Z e s B B | o '
5 | £2 £5 | |22 L_?_.:
5 3= EE 2=)
0 st g zs
oo PHT Index
(c) Bi-Mode

Figure 2.6: Schematics of the Gshare, the McFarling, and the Bi-Mode in respective order.
[1]

This also introduces new instances of mispredictions. The first one happens when the
direction is mispredicted, which is the most costly one, where the processor needs to nullify
all instructions after the branch. The second one happens when the prediction is correct,
but the address is missing from the BTB. In this case, the address needs to be calculated and
fetching is halted during the calculations. The third case happens when the prediction is
correct, the BTB has an address, but the address points to the wrong place in the program.
This is called misfetch and can occur because of indirect jumps. The penalty is the same
as if there would be no address. [4]

Instruction decode

The decode stage takes fetched instructions from the instruction fetch stage and decodes
them and allocates all necessary resources for each instruction. This implies that if m in-
structions are fetched, the processor has to have m decoders not to stall the fetching. But
decoders are quite hardware-expensive compared to fetch buffer. Some limitations can be
introduced to save up HW-costs for example limit the number of branch instructions or use
predecoded bits, that are appended to instruction during fetching so that instruction bound-
aries are performed only once and it will save work during decoding. The disadvantage is
that the size of the I-cache is doubled to facilitate predecoded bits. [4] [21]

BTB
PHT Tag Pred. PC

e

Figure 2.7: Example of indexing into decoupled PTH-BTB [4]

Register renaming

As said in the pipelining section, processors have to have some mechanism to overcome data
hazards. The RAW hazard in the superscalar processor is overcome by processing other
instructions before this dependency is resolved, which is easy because of the out-of-order
execution. On the other hand, the WAW and WAR hazards will start to become a problem.
These hazards can be eliminated either by using the Scoreboard algorithm or Tomasulo’s
algorithm. [4]

The Scoreboard algorithm is the simpler one, a cache called scoreboard keeps track of all
issued instructions, their operands (registers), and their validity, represented by the validity
bit. When the valid bit of destination register is 1, the register will be taken, set to 0 and
the instruction will be processed. If the destination register is set to 0, it will wait until it
becomes 1 again, which will eliminate the WAW hazard. After the execution, the processor
will look into the scoreboard and find all source registers that are equal to the destination,
and set them to 1. If it is already set to 1, the instruction has to wait until the validity bit is
set to 0, which will eliminate the WAR hazard. When all validity bits are valid, instruction
is ready to be executed, which eliminates RAW hazard. In short, the Scoreboard algorithm
solves the hazard problem by stalling the execution of the instruction, which is not optimal.
The more convenient solution would be to rename the registers so that the later instructions
will be executed instead while waiting for the RAW to be resolved. [19]

Tomasulo’s algorithm solves the problem of waiting by renaming registers, which elimi-
nates WAW and WAR hazards. This is done by taking the destination register and renaming
it to a different one, then changing the name of source registers that follows after and are
equal to the original naming. [20] Those values are then kept either inside of the reorder
buffer, which is called "implicit renaming", where register file entries are according to ISA
specification and the register file is called architectural (ARF). This approach is costly in
terms of reorder buffer size because it needs to hold all partial results of instructions. An-
other approach is to use an additional register file, called Rename register file (RRF), which
would accommodate speculative registers. A different approach is to have Physical register
file (PRF), which will accommodate more registers than specified by the ISA, having both
architectural registers as well as the speculative ones. In both previous cases, we need an
additional cache, called Rename Map Table, which would hold mappings of speculative

10

ROB t)

inst

« Issue
; ISA
Window > w _ Register|
w uop : tags AN "1 File
. —— commit (ARF)
Commit > \Jw
Yy
1
wakeup ‘;l I_ssue uop ! tags ! data -
Physical Window
Register L -
File = #’
(PRF)
\J FU
7%
y M

data bus A

Figure 2.8: Example of an explicit (left) and implicit (right) renaming diagram. [21]

registers to the architectural ones. This can be part of the ARF, reorder buffer, or it can
be a separate cache. This is called "explicit renaming". [19] [21]

The "explicit renaming" behaves according to the following algorithm. When the regis-
ters are at their initial state, architectural registers are set to assigned and the speculative
ones are set to free. When the free register is used as a destination register, it will be-
come allocated. When the result value is produced at the end of the execution stage it
will become ezecuted. After committing the register becomes assigned, which implies that
the speculative register becomes architectural. Releasing will happen after no instruction
will reference this speculative register and it can become free again and wait for the new
assignment. [4]

Reservation stations

After registers in the instruction have been renamed and placed into the reorder buffer,
the decoded and renamed instruction is dispatched to reservation station. The reservation
station is holding all dispatched instructions, maintaining information about the type of
the instruction, source operands and their valid bits, the name of the result register, and
the entry in the reorder buffer, where the result is stored. The reservation station’s purpose
is to detect the readiness and schedule instructions. [4] [19]

Scheduling is often done by issuing either the oldest instruction in the station or the
instruction that would stall most instructions. Detecting the readiness is associated with
valid bits of source registers, so the station knows if the result can be computed. The

11

processor eliminates wasteful stalling by enabling other instructions to pass by monitoring
their validity bits. [4] [2]

When the destination architectural register is mapped to a speculative one, the valid
bit is flipped to 0. When the instruction is dispatched, every register with validity bit
in 1 is replaced by the value inside the register. If every source register validity bit is
set to 1, the instruction is ready to be issued. If the valid bit of any register is during
dispatch in 0, the name is passed and will wait until the register value is delivered. When
an instruction completes, the result and the name of its destination register are broadcasted
to all reservation stations. If any reservation station has an instruction, which has the same
register name as the broadcasted one, the register tag is replaced by the value inside the
register and set validity bit to 1. [4] [19]

2.4 The back-end and commit stage

This section is focused on the back-end of the superscalar processor and explains the exe-
cution of memory access instructions, and also introduces the reorder buffer (ROB).

Reorder buffer

The Reorder buffer, or ROB, gives an illusion that the instructions are executed in order.
It stores information about dispatched, issued, and already done instructions waiting to be
committed. The ROB operates as a circular queue where the order is given by the executing
program. The information about instructions is stored in the tuple where the main parts of
the tuple are: is instruction busy (busy bit), is instruction valid (valid bit), speculative bit,
and a rename state, where the remapped speculative and the original architectural register
is stored. Instructions that are not speculative, not busy, and valid can be committed. In
case of speculative instructions, ROB needs to wait until the branch is evaluated and after
either speculative bit is changed to non-speculative in case of correct prediction, or valid
bit is changed to false in case of incorrect one. [21] [19] [9]

Memory access instructions

As already mentioned in the Pipelining section, store and load need two stages to finish,
address computation and memory access. This can lead to RAW hazards. Apart from
hazard created between load and arithmetic instructions or arithmetic instructions and
a store, there can be an instance, where a store is followed by a load. In the following
paragraphs, a solution which modern processors implement is explained.

For evaluating a store instruction, the processor needs to have an address where to
save data, and the data itself. For that, the processor needs the store buffer, which stores
information about the state of the store instructions. It is organized into a circular queue,
as the reorder buffer. To track the state of the store instruction, for each entry, there is a
set of flags that indicated one of these states: entry is available, the entry has an address
without result, the entry has an address and a result and is waiting to be committed, and
entry has been committed.

For load instruction, the processor has a similar buffer called load buffer, where the
address and the value are kept until the entry can be committed. The problem arises if
a store is to be executed before a load. The processor can check whether a certain load
has the same address as the store thanks to the load-store buffers. If the address does

12

Load—store reservation
stations or instruction
window
AGU
[
i Store unit l Load unit
Store
buffer, Load
buffer
Tag Op. address
Cw X7 F £ 0p
Status Op_ address Op. value A 4
‘ Data cache

Figure 2.9: Load/Store buffer diagram. [4]

not match, the load instruction can pass the store, which is called load bypassing. If the
opposite is true, the load cannot access a memory until the store is committed. In case
that the load is after store and the store already has all values ready and is either waiting
or is already committed, then the load instruction doesn’t have to access memory and can
take the value from the store buffer. This approach is called load forwarding. In the case
of the same addresses but no result, the load entry will wait for the store instruction to get
the data and after that, depending on the load, the instruction can be completed.

The processor executes out-of-order, there can be an instance, where the load gets issued
before the store, even though the store should be executed first in program order. This
creates a problem since after processing a store, the processor has to nullify the result
of the load instruction if there is a dependency. So the processor can only process load
speculatively and only if load instruction is on the front of the load buffer and the ROB,
then the instruction is not speculative anymore. But how to approach scheduling load
instructions, when this problem is known? There are three approaches. The first one
is a pessimistic approach. The processor waits until it is known that there is no RAW
hazard, so the instruction can be safely processed. Another approach is optimistic, where
the load instruction is processed immediately, but also has a recovery mechanism in case of
data dependency. The last approach uses prediction to estimate, whether to evaluate load
or not. That allows programs with safe loads to be processed optimistically, meanwhile
programs with strong dependencies to be more pessimistic. [19] [4] [21]

13

Chapter 3

Overview of existing simulators

As this thesis focuses on the implementation of the superscalar processor simulator, it would
be wise to review already existing simulators and find out the features they provide, they
have in common, their limitations. The new simulator should follow the best design practice
from all of them and implement some, or even all, of the missing features.

3.1 VSIM

VSIM simulator is currently used in the Computation Systems Architectures course' for
showing the basics of superscalar processors. It was developed in 2001 and offers five
architectures of superscalar processors of that era, namely Compaq Alpha 21264, Hewlett-
Packard PA-8500, IBM Power3, Intel Pentium Pro/II/III, and MIPS R10000. [15]

The main window shows function blocks of different architectures, depending on the
selection of the processor. The function blocks cover the decode and dispatch unit, reser-
vation station, floating-point unit, reorder buffer, register files, and so on. The flow of the
simulation is shown by arrows between blocks.

9 /SIM Superszalar CPU Simulator - MIPS R10000 - o0 x

Fie_Simu IsHelp

O 3 e s @ B o= O @

Opn Sove Sellogs Diwlay Heb | Run Sep Mawd Pase Sp Rewl Rawban

=X Vapping Table P Maoping Table

U todics | 881 St Cotons | & Insructon x| 89 pog
- - <o seecton About i cpu
| #®Diatal Alp1a 21264
X Resevaor s] | [@pea
= P th et
0 @it pantumero
sorter Buter (R0 s 10000 E 10000
199 ’
 Resevtonsiaion
3 poReaknstion | o
] H s

! s «

@
z

(3
H

ADDR Reservaton Sation |

J

Foatg Font
Acder (ADD)

|

Load/store
(address) Unit

Simple Integes £U
(=1

‘Complex Integer £ FP Square Root
(w2 Unt rscRn)

CFUEMIPS RI000 Clock: 220 MHz [Simuiation Mode: Clocked Simu

it Status: Feady. instruction Mix Geneic

Figure 3.1: The main windows of VSIM with a setting dialogue window.

The simulator offers 3 options for the instruction stream. First, it can create a random
stream of instructions for a simple demonstration of the instruction flow between blocks.

Yhttps:/ /www.fit.vut.cz/study/course/13577/.en

14

https://www.fit.vut.cz/study/course/13577/.en

Second, it can run a single instruction to show more detailed processing of that instruction,
or finally, it can run a user-defined assembly program. When running, this stream will be
executed sequentially in architectural blocks. The simulation can be run in 2 modes. The
first one is the educational mode, which will show step by step how the instructions are
decoded, dispatched, issued, executed, and retired. In each step, explanatory tooltips with
what is happening in the current step are also shown. The second mode is the performance
mode, in which the simulation runs continuously and gathers performance metrics about
the selected architecture with a set of given parameters. In this mode, simulation speed
can be set.

The simulated processor is customizable by prepared parameters and the user can set up,
e.g., how many instructions are dispatched into the processor, how many instructions are
issued into the function units, or how many instructions are retired from the reorder buffer.
The user can also change the size of the decode and dispatch unit, reservation stations,
or the reorder buffer. Since the data cache and branch predictions are only simulated,
there are also changeable probabilities of branch prediction accuracy or data hit rate. The
instructions have modifiable delays and frequencies, in which they appear in the auto-
generated instruction stream.

Unfortunately, there is no way of adding new processor models to this simulator. Even
the ISA of each processor cannot be extended. Another thing, the simulator does not have,
is a deterministic branch prediction. The simulator simulates jump predictions based on
the probability value, which is snot how real processors behave. The same can be said
about memory access.

3.2 QtMips

QtMips is an interactive simulator developed at FEL CVUT as a diploma thesis. It shows
the inner workings of a single MIPS pipeline on a user-defined code. The simulator offers
detailed views into separate caches and the processor can also be modified. [14]

QtMips has 4 built-in and one user-defined presets of the MIPS processor. The presets
are: Without the pipeline, without pipeline with instruction and data cache, pipeline model
without hazard unit and cache, and a pipeline model with hazard unit and cache. All of
these parameters can be set in a user-defined processor, plus users can set sizes of instruction
and data caches, their associativity, and replacement policy. In case of hazards, there are
2 choices, either the pipeline will be stalled or will try to forward the result of the previous
instruction.

The main window offers many tabs with a detailed view into current values of registers,
memory, and compiled instructions with the raw value of each instruction. The app offers a
terminal window for string outputs and RGB peripherals for sending RGB data to a simple
frame buffer.

The simulation window shows the configured MIPS processor, divided into two parts if
the "no pipeline" version is selected, or into five parts, in the case of the pipeline version.
When instructions are being processed, the values can be seen in processor registers in
separate stages. If caches are allowed, instruction and data cache will be shown in the
simulation and the user can open cache details where the configured n-way cache with
cached data can be seen.

The simulation code is a subset of MIPS instruction set architecture, with added prag-
mas for displaying certain windows for demonstration purposes. The instruction subset also
specifies which addresses are used for reading and writing peripheral data. The simulator

15

Figure 3.2: QtMips main window.

offers a template file with constants addresses of peripheral data. The code itself can be
edited inside the application IDE with a simple keyword highlighting and the support for
saving and loading the code.

The simulator only works as an in-order processor. However, most of current processors
process the instructions out-of-order, so this simulator can only serve as a basic example.
And same as the previous simulator, it lacks demonstration of branch predictors or load-
store units of modern processors.

3.3 OpenDLX

OpenDLX is a simple pipeline simulator which can be used to explain the basics of pipelin-
ing. It was developed at the University of Augsburg in 2013. The simulator is capable of
hazards handling and jump prediction. [18]

The simulator processed each instruction in basic pipeline stages (Fetch, Decode, Exe-
cute, Memory access, Writeback), which are displayed in the "Cycles and pipeline" window.
Fach row represents an instruction and each column one cycle of the simulation. Detailed
messages about separate cycles can be seen in the Log window where the information about
what happened in each step in one simulation cycle can be found. The statistics are being
gathered and displayed in another window, where the information about the number of cor-
rectly predicted jumps, hits or misses in the branch target buffer, how many instructions
were forwarded in case of a hazard can be found. There are also windows for the content of
the register file and memory. The branch predictor can be configured to either static with
a taken or not taken state, dynamic 1-bit predictor, or 2-bit predictor, where initial bits
can be configured.

The ISA is a subset of MIPS instruction set architecture. The code can be edited
inside the application using a basic text editor. The simulator package comes with sample
programs with basic constructs in MIPS ISA.

This simulator offers only a simple insight into the pipeline processing. It does not show
a detailed view of the processor like the previous two. The simulator has a deterministic

16

Figure 3.3: OpenDLX simulation window.

branch predictor, but it lacks any visualization of this unit apart from deriving it from
executed instructions in the pipeline window.

3.4 Ripes

Ripes is a graphical processor simulator built around the RISC-V instruction set architec-
ture. It offers similar functionality as QtMips with a few enhancements. [16]

The application is split into 3 tabs: Processor, Memory, and Editor. The processor
tab shows the simulation window with the RISC-V pipeline, values inside the register file
and instruction memory, console for program outputs, and basic statistics about processor
performance. The processor can be changed to a single cycle processor, default five-stage
pipeline, pipeline processor with hazard detection without forwarding, and pipeline proces-
sor with hazard detection and forwarding. The layout of the processor can also be either
simplified for only showing the necessary components, or can show an extended version with
control, hazard, and forwarding unit. The processor can only simulate RISC-V I (integer
operations) and M (multiplications and divisions operations) extensions. Apart from the
processor view, users can access a dialogue with a pipeline stage table where stalls between
stages can be seen as well as stages already completed for each instruction.

The memory tab displays values stored inside the memory. It also shows data and
instruction caches. Caches can be customized by changing the number of lines, ways, and
blocks, the cache have. The replication policy can be configured too, as well as write hit
and miss policies. During and after the simulation, the statistics about cache performance
and a graph of the cache hit ratios can be seen.

The code tab offers a basic IDE for editing assembly code in RISC-V ISA with keyword
highlighting. The input code can also be written and compiled in C, but for that one needs
official SiFive Freedom RISC-V tools with a C compiler available on SiFives GitHub?. When
running, the simulation will display compiled code with highlighted instructions and their

*https:/ /github.com/sifive/freedom-tools

17

https://github.com/sifive/freedom-tools

Figure 3.4: Processor and Memory windows of Ripes simulator

current pipeline stage in the right window, where the highlighted instructions are currently
being simulated.

As QtMips, it has the same lack of features, being only in-order processing, static branch
predictions, and simple load/store implementation, which is enough for scalar pipeline
processors, but not for modern ones.

3.5 Jupiter

Jupiter is a runtime RISC-V simulator. It simulates the IMF extensions of the RISC-V
instruction set architecture. This simulator focuses on the programming side of the things,
compared to other simulators. [5]

The simulation window shows compiled instructions, register files (integer and float),
memory values, and data cache. The data cache is configurable, offering a setting of the size
of the cache block, number of blocks, and associativity. One can also change whether the
cache is fully associative, directly mapped, or n-way associative. Registers in the register
file are tagged by their standardized names, which is called the RISC-V application binary
interface. The simulation itself can be either run as a program where you can see states of
the program when being interrupted or at the end, or you can step over the instructions
and see direct changes in registers, memory, or cache. The user can either step forward
or even backward in the instruction flow. The inputs and outputs are introduced through
the console inside the simulation window. The simulator offers a simple code editor of the
RISC-V assembler with save and load functionality.

Figure 3.5: Code editor and simulation window of Jupiter

The simulator can only interpret instructions with some simple views into register files
and memory. This can be used in courses which study assembly language and its use. How-
ever, for our purposes, it is lacking any kind of visualization for the processor’s instruction
flow, either pipeline processing, like in QtMips, or out-of-order processing, like in VSIM.

18

3.6 RISC Simulator by Peter Higginson

This web-based simulator® was developed in 2016 and is trying to visualize how a RISC-
based processor inspired by ARM Cortex-M3 design works. [11]

The simulator page shows a basic processor block layout with one register file, arithmetic
unit, PC counter, control unit for decoding and dispatching, and a memory block. During
the simulation, a data bubble displays the data flow in the processor. Users can choose the
number format for data from signed, unsigned, or hex format.

Assembly Language) Main Memory (16 bit words as signed)
Registers

n to try to do

>

Arithmetic
and Logic
Unit

cocoocococcococcoooo0000O0OOC S D W
coococococococoTcooo00000000OS SR M
cssccccccccccoscosoocsccocccccocan e

coocococccccecnsscncocnccocccccccoon000000c00CaD R
00O ECOCCo 000000000 COCCOo0000000000SCD R
0000000 COCCO0000000C0COCCO00000000000SCDa
0000000 C0CCo0000000CCCOCCO00000000000CCD 4
coocococcccaccssccococcoccccoscosoo00000c0acED®

g
&
coocooccccaccssccoonccocccccccnonnon0000c0acaD e

5 A 0 0 0
2t a5 ENE 26 320 ¢ 0 0
o MOV E1,IR 330 0 0 0
31 op 26 // S 395 ¥ 340 0 0 0

L porro i/ sr 222 Ml Input fon H H 0

ASSEMBLE RUN| STEP Out: put 360 0 0 0

370 0 0 0
RESET| LOAD| HELP| instest ~| |defexecute v 380 0 0 0
390 0 0 o]
Ingam stopped. RUN or STEP to continus, RESET to abort I .
RISC V1.05 © Peter L ITigginson 2016

Figure 3.6: RISC Simulator by Peter Higginson.

The assembly language is a subset of the instruction set used by ARM with a few
extensions. One of them being a special multiplication, which works similarly as in Intel
or AMD processors where two x-length variables will create a new double x-length result.
The same extension is made for divide instruction, which again works the same way as in
Intel or AMD processors. The code can be inputted and edited through a text box at the
website.

This takes a unique way of processing visualization, nevertheless, it shows only the
basic blocks. The code has a small instruction set and offers only integer instructions. The
simulator cannot be configured in any way.

3.7 BRICS-V simulator

The BRISC-V simulator is a runtime web-based simulator’ developed at Boston university
simulating RISC-V assembly including all extensions from RISC-V ISA. [13]

The simulator is composed of multiple panes, the code pane, register file pane, memory
pane, instruction breakdown pane, and console pane. The register file pane displays separate
registers and their values. The registers are labelled by their standardized names. The
memory pane shows memory values either in binary, hexadecimal, or decimal format. The
instruction pane is a unique feature. In this pane, you can see the breakdown of instruction

Shttps:/ /peterhigginson.co.uk/RISC/
“https:/ /ascslab.org/research/briscv/simulator /simulator. html#

19

https://peterhigginson.co.uk/RISC/
http://ascslab.org/

into separate parts defined by ISA with values of a currently executed instruction. The
console pane operates as both the input and output of an assembly program.

BRISC-V Home BRISC.Y Simulitor Manual & Eamples

VE & SECURE

i BASCS| St
Sc-V Simulator LABORATORY

nd Sezure Camputing Syztzrs Lok

Registers Mamory

regene M R EEIEE
e ol g i m © 20003000 £003E003 00IEC03E OIEO0GEQ
P Bl o 3 Bl a 20002000 ce0zeeos eoaceoce oacedcee
e e
P “ o 151 o 0030 UGS GOUEU GILUOILE
o eassae e e
- 1] a k5 m ARAAAAN FANAFARA AAAFANAF AAFARAFA
P S S e e
e e e
D gm0 ® o e e
e
a2 2] e [1E PUBOUDBD LOBDLOBY BOULOBIL BULOBULY
- 1) O ns1 20003000 £0036003 003E003E 03E00GEQ
Yo e o e e e e o]
e e
> | 0 ® @@ o e e e
e e e oo
“ 10 o & 1”1y ANAAIAGE FAAIAAN AAIRAAIE AIRAANA
e e e
=5 1221 o =] 20003000 20030003 0032003 03200620
e pi ¢ s m e e
e e e
510 126] C 11 27 YUOBUUOE LOBULOBY BBULOBUL BULOBULY.
3 128 0 “ 129] o ANAAAAN FANAFARA AAAFANAF AAFANAFA
e — e e
e e
e e e
e e e e
Instutlion breakdown

Figure 3.7: Boston university RISC-V simulator.

As mention before, the simulator interprets the RISC-V assembly code with all exten-
sions including compressed format instructions, single, double, and quad precision instruc-
tions, and 32, 64, and 128 integer instructions. The editor pane supports saving, loading,
and also includes example programs for demonstrations.

The advantage of this simulator is that it implements the whole RISC-V ISA and shows
raw values for the instructions, which is unique compared to other simulators. The disad-
vantage is that it does not show the inner workings of a RISC-V processor, only the register
file and memory values are shown. The processor cannot be configured.

3.8 Summary

This chapter reviewed some of the existing simulators that can be found and used for
educational purposes. These simulators can be classified into interactive interpreters with
memory and register details, or into interactive configurable processors, where users set
parameters of their processor and see instruction phases in action. Examples of the first
category are OpenDLX, Jupiter, and BRISC-V simulators. Examples of the second category
are VSIM, QtMips, Ripes, and RISC Simulator by Peter Higginson. I have concluded that
the further development should focus on interactive configurable simulators because they
can show the inner workings of a processor where each dependency and function block can
be demonstrated for the students.

20

Chapter 4

Proposal of implementing system

According to the findings in the previous chapter, I would like to propose my version of
the superscalar processor simulator. This version should implement most of the missing
features identified in the previous chapter. The look should be inspired by the VSIM
simulator with some added features such as an internal text editor for coding, load/store
unit simulation, and branch simulation. The simulator will be built around the RISC-V ISA
[3], moreover, the user should be able to add new arithmetic instructions. The simulator
should have a configurable number of ways in fetch, the delays for each function unit, branch
predictor, and others. The register file and the program instructions should be visible in the
simulation window, as many other simulators had similar features. The simulator should
be implemented using the object oriented programming paradigm and and be able to run
on various operating systems. That’s why, Java programming language was chosen as the
implementation language.

4.1 Decomposition of the implementing system

The implementation of the simulator shall be divided into 4 layers: Loader, Code, Blocks,
and UI. Each layer should depend on the lower layer to be fully functional. Also, the
implementation should go from the lowest layer to the top. The layered model can be seen
in the figure 4.1.

Loader layer ———@{ Code layer ——® Blocks layer ——@ Ul layer

Figure 4.1: Abstract layer diagram.

The Loader layer shall consist of loading the ISA instructions and architectural register
files. These should be stored in a suitable serializable format. The ISA should be organized
as a folder containing all allowed instructions. Each instruction must contain the infor-
mation about its syntax and how it should be interpreted. The register file must contain
information about the data type of the whole file, and the registers names.

The Code layer shall implement the parser and interpreter logic. Since the parser needs
to know how to parse each instruction, it needs the information from the loader. The
same applies to the interpreter where the interpreter needs to know how to interpret each
instruction. The interpreter should be divided into 3 minor interpreters for arithmetic
instructions, load and store instructions, and the last branch instructions.

21

The Block layer shall implement the logic for each "block" of the superscalar processor,
namely ROB, BTB, FUs, reservation stations, etc. All of these blocks must be connected
to a central timer class simulating clock ticks. Each FU should have a configurable de-
lay to simulate processing of instructions with different time complexity such as addition,
multiplication and division.

The UI layer shall implement graphical views for the application. Each block from
the Block layer must have a Ul wrapper displaying important values to the user. This
layer shall also implement interactions with the simulator, dialogue windows for configuring
the processor, and also implement transitions between the text editor and the simulation
window.

4.2 Simulator mockup

The processor model can be seen in Figure 4.2. The model was inspired by the model of
RISC-V BOOM!, which is an "explicit renaming" model with the physical register file. The
view of the block should have the same ordering as the implemented data structure in the
block. If there is no specific ordering in the data structure, the updated instructions should
be displayed at the top in the view’s list. The FU must display the instruction that is being
processed. The load-store FU should detail load /store buffers. The main purpose of this
simulator is to show interactions between blocks and reactions on different programs, so
the main memory shall be simulated with delays on the load-store unit.

Reservation station #1
fmul t5 16 t7 FPU

fadd t8 19110

Rename map tables Unified physidal regiter file

aliclity . Regist| Type [Value Validity)
Validity | Register | Rename Reservation station #2

addi 120 121 (x234

FXU

[Subﬁoﬁﬂ 132
PC+ Decode and Dispatch unit

station #2 -\\
FC add 123 addi B3 14 0234 FXu
0:521d addix5x2 016 > ——|
A2 1B add o111 sz
BHT BTAC

jump addr | state | |jump addr | target addr L
+ X

0x152 +2 0x152 0x564
Ox66a -1 0x56a 0x888

Reservation station #3
bne t112 fag

B2#1

bnz 140 0x643

Reorder buffer
Instruction State
bne t1 t2 tag
addit3 14 0x234
addi {20 121 0x234
Tmul t5 t6 t7
faddtgtot10
sub 130131132
add 110 t11 112
bnz 140 0x648

|

Figure 4.2: The mockup of the processor simulator.

The mockup’s main window is featuring a control panel for controlling the execution,
detail of architectural register files, and a left sidebar with the currently executed program.

"https:/ /riscv.org/wp-content /uploads /2016 /01 /Wed1345-RISCV-Workshop-3-BOOM. pdf

22

https://riscv.org/wp-content/uploads/2016/01/Wedl345-RISCV-

The left sidebar should show which instructions are currently being fetched into the proces-
sor in a certain step. The values in registers should be either hexadecimal, signed decimal,
or unsigned decimal. To move between a code editor and a simulation window, there are
tabs to switch between these two windows.

[code [Help |
AN 4 integer registers™. ” FPU registers s
a0 Jp— 0 0 x5 | 54865 [x10 0 X15 0 20 0 25 0 30 0 %
x| 451623 |6 0 it 0 ¥16 0 2 0 %26 0 31 0o |t
0x144 Subx5x1x3 2 456 |« 0 x12 0 17 0 22 0 27 0
B 554 |6 0 *13 0 ¥18 0 23 0 28 0

0148 addx6 x5 x1 0 5 9 0 4 0 19 0 24 0 29 0 [
0x152 bnz6 x0 error S
0x156 fmul B

ox160 adai X6 X2 0234

0c164 addix7 X6 0234

ox168 bne 7 x1tag

o172 adax1:2 13

0176 addi x5 x2 0x16

ox180 flRBE

ox184 nop

oc188 nop

g2 nop

0x196 nop

0200 nop

o004 nop

0208 nop

oe12 nop

0216 nop

Figure 4.3: The mockup of the main simulation window.

The code editor shall have a different control panel from the simulation window to
open, load, save, and compile user program. Compilation results shall be seen in the console
window below the code. The console should show either success on a successful compilation,
or point out rows with errors with the type of the error. After successful compilation, there
should be a dialogue serving as a shortcut for switching to the simulation window.

[code [Help |

0 3

1 [mddn2e@
2 [subxsxix
3 |add¥6x5x1
4 | bnzx6 xoerror
5
6
7
8

Simulator |

fmul 4 713
addi 6 x2 0234
addi a7 6 0x234
8 | bnextxstag

g |addxiaxs

0 | addix5x2 0x16
1 |faddRT3H

12 |emor

Code

g

Compiling

Error at line 34: Expected arguments
Stop compiling

Compiling
Success!

Figure 4.4: The mockup of the code editor window.

23

Chapter 5

Implementation of the proposed
system

Based on the proposal and findings from previous chapters, I implemented the system in
the Java language. This chapter goes through the important features of the interactive
simulator in a bottom-up manner starting from the Loader layer explaining how initial
register and instruction load works, then moving to the Code layer to explained how the
source code gets parsed and interpreted, after that going up to the Blocks layer to explain
the algorithms used inside the simulator, and finally, moving to the UI layer to address
simulation state is visualization.

During the development, the Gitlab from the SCQFIT research group was used to
commit and version the application source code, where each feature were tracked using
the Gitlab issues. FEach issue have its own description, branch name and most of them
have a class diagram, showing the relations between classed, that were implemented in the
specified branch. Each issue also had a checklist, where the progress was tracked.

5.1 Loader layer

The Loader layer is composed of 3 classes, the main loader singleton class (InitLoader)
and its sub-loaders for instructions and registers. Most of the higher-up classes have their
own reference to this class, either because they need to know available instructions, or the
structure of the register files. For that reason, the loader class needs to be the first thing
that is created and called even before the simulation window is rendered. Both register files
and instructions are saved in a JSON file, not just because of its human readability but
also because it is meant to be modified and extended by the users.

24

InitLoader

List<RegisterFileModel> registerFileModelList
List<InstructionFunctionModel> instructionFunctionModelList
String registerFileDir

String instructionsDir

load()

getRegisterFileModelList()
getInstructionFunctionModelList()
getErrorMessage()

RegisterSubloader InstructionSubloader

loadRegisterFile(String filePath) loadlInstruction(String filePath)
T r
i i
; |
/

i

v
InstructionFunctionModel

»
RegisterFileModel _
String name
DataTypeEnum dataType
String name BitSizeEnum registerBitSize
DataTypeEnum dataType String instructionSyntax
BitSizeEnum bitSize String interpretableAs
List<RegisterModel> registerList List<InstructionRawltemModel> rawltemModelList
toString() toString()
getName() getName()
getDataType() getDataType()
getBitSize() getRegisterBitSize()
getRegisterList() getinstructionSyntax()
getinterpretableAs()
getRawltemModelList()
. InstructionRawltemModel
RegisterModel
String name
String name int bitLow
boolean isConstant int bitHigh
int value String value
toString() toString()
getName() getName()
isConstant() getBitLow()
getValue() getBitHigh()
setValue(int newValue) getBitSize()
getValue()

Figure 5.1: Loader class diagram

Register file structure

A register file is a JSON object composed of these subobjects:

e name - displayed name of the register file in the UI layer
e dataType - the data type of each register

e registerList - the list of all available registers in the register file

The allowed data types in the dataType field are: the integer (kInt), the long integer
(kLong), the float (kFLoat), and the double (kDouble). The register file with larger data
type can also fit values of a smaller data type. For example, the integer date type can only
fit 32-bit integers inside the registers, but the long data type can fit both 64-bit and 32-bit
integer values.

The register list entries are also JSON objects holding information about its name
(name), value (value) and if it is constant (isConstant). The name is again the dis-

25

play name of the register, the value is a initial number value inside the register, and the
isConstant marks, whether the register value is constant or a variable.

As a example, let’s take the integer register register from the RISC-V. Depending on
the ISA extension, the file contains either 32-bit (kInt) or 64-bit (kLong) wide registers. It
contains 32 different registers (and a PC counter register, which is represented differently
in the simulator and therefore should be omitted), with the first one being constant 0. Such
register file can be seen in the Figure 5.2. Each new register file is stored in a separate file
for a loader to load at the start of the program.

{

"name": "Integer physical register”,

"dataType": "kInt",

"registerList": [
"isConstant": true,"value": B},
"isConstant": false,"value": 25},
"isConstant": false,"value": 8},
"isConstant": false,"value": @},
"isConstant": false,"value": 8},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": 8},
"isConstant": false,"value": @8},
"isConstant": false,"value": 0},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": 0},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": 0},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": 0},
"isConstant": false,"value": @},
"isConstant": false,"value": 0},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": @},
"isConstant": false,"value": 0},
"isConstant": false,"value": @},
"isConstant": false,"value": 0},
"isConstant": false,"value": @},
"isConstant": false,"value": @}

1

¥

Figure 5.2: Example of a JSON register file object

Instruction structure
An instruction is a JSON object containing these subobjects:
e name - a unique identifier for one instruction
o inputDataType - data type of source values
e outputDataType - data type of the destination register
o instructionType - type of the instruction (arithmetic, branch, etc.)
e instructionSyntax - syntax of the instruction

e interpretableAs - how the instruction should be interpreted

26

The unique identifier for the instruction is its name since in most ASM languages there
are no 2 instructions sharing the same name. Therefore, the name can be used for searching
through all available instructions and then unambiguously verified and interpreted.

{

"hame™: "de"_,

"instructionType™: "kArithmetic”,
"inputDataType": "kInt",
"outputDataType": "kInt",
"instructionSyntax": "add rd rsl rs2",

"interpretableAs”: "rd=rsl+rs2;"

Figure 5.3: Example of a JSON instruction object

The syntax of the instruction in the instructionSyntax field is used during parsing
with the combination of the output and input data types to verify and notify the user in
the case an invalid parameter is provided. The explanation of the syntax can be found
in chapter 5.2 in Code parser section. The interpretableAs value is then used when the
instruction is evaluated inside the function unit. The interpretableAs has different syntax
based on the value inside the instructionType, where the types are:

o Arithmetic type (kArithmetic) - Syntax explained in section 5.2 in Arithmetic inter-
preter subsection

o Branch type (kBranch) - Syntax explained in section 5.2 in Branch interpreter sub-
section

o Load/Store type (kLoadstore) - Syntax explained in section 5.2 in Load/Store inter-
preter subsection

A simple example can be shown on the add instruction. This is a simple addition
instruction where 2 register values are added together and the result is stored in the desti-
nation register. In RISC-V ISA, add is a 32-bit integer instruction where both source and
destination registers have the same value. The JSON representation of such instruction can
be seen in the figure 5.3.

5.2 Code layer

The Code layer can be divided into 2 parts: the parser, and interpreters. The parser is used
to parse the user’s source codes and transform them into an internal representation, which
is held by the parser on the successful compilation. Interpreters can be further divided
into arithmetic, load and store, and branch interpreters, where each of them has their own
implementation on how to process the source code line.

Code parser

The task of the code parser is to take an input code, break it down onto separate code
lines, try to parse it, and in turn validate each line using the loaded list of instructions.
Every code line is first matched with some instruction in the loaded instruction list, and
if matched, a InputCodeModel object storing the information about the instruction name,

27

type, data type, code line itself, and unmatched arguments is created. After that, the
new object is validated with the matched instruction, and its arguments are matched with
abbreviations stored in the instruction syntax.

InputArgumentModel

String name
String value

InputCodeArgument(InputCodeArgument argument)
InputCodeArgument(String name, String value)
5tring getName

setName(String name)

getValue|

setValue(String value)

InputCodeModel

String instructionName
String codeLine
List<TnputCodeArgument> arguments

InputCodeModel Slrin%in;trudionName, Sln‘n)% codeline, List<InputCodeArgument> arguments)
InputCodeModel(InputCodeModel inputCodetiadel)

getinstructionName()

getCodeLine()

getArguments()

CodeParser

Pattern hexadecimalPattern
Pattern decimalPattern

InitLoader initLoader
List<InputCodeModel> parsedCode
Pattern registerPattern

Pattern immediatePattern
List<String> errorMessages

int codeLineNumber

CodeF('?(selr IEi@Loaogedr glliQLo)ader)
>y parse(final String codeString] iy
/’7 getParsedCode() b
o getErrorMessages() ™~

.

InitLoader

—
COdEPrOCESSl n gMOdU Ie List<RegisterFileModel> registerFileModelList
List<InstructionFunctionModel> instructionFunctionModelList
String registerFileDir
provideCodeParser(initLoader loader) String instructionsDir
providesCodeArithmeticlnterpreterﬂnitLoader loader, PrecedingTable precedingTable)

ser

providesCodeBranchinterpreter(InitLoader loader, CodeParser codeParsel load()

providesCodelLoadStorelnterpreter(InitLoader loader, SimulatedMemory memory) getRegisterFileModelList()
getinstructionFunctionmodelList()
getErrorMessage()

Figure 5.4: Class diagram for the Code parser

The syntax of the instruction is a string value following a simple pattern of name,
argumentl, argument2, argument3, etc. split by a whitespace. The argument is either the
destination register marked by the rd abbreviation in the string’s syntax, source register
marked as rsX, where X is a natural number starting from 1, or an immediate value marked
by the immX abbreviation, where the X is optional and can be either empty or a natural
number starting from 1. The parser uses these abbreviations to validate arguments on each
position. The destination or source registers can only be matched with registers in the
loaded register files, while immediate values can be matched with either a numerical value
or a jump target label in case of branch instructions.

If the instruction is successfully parsed and verified, the created object is stored inside
of the parse list, which serves as an instruction cache during the simulation. In case of a
failure, the parser stores each error message in a list along with hints where the user made
a mistake and what was expected.

28

Code interpreters

As already mentioned, there are 3 types of interpreters. The Arithmetic interpreter is
used to evaluate arithmetic expressions supplied by the instruction interpretable pattern.
The Branch interpreter is used to calculate the difference between the code line position
in the instruction cache and the target if the condition inside the interpretable pattern is
true. The Load/Store interpreter is used to calculate address pointing to a value inside the
simulated memory, and consequently, either load from or store the value to the address.
The interpretable pattern inside the interpretableAs value uses the same abbreviations
as the instructionSyntax value to link the parsed arguments inside the InputCodeModel
object with the pattern.

Arithmetic interpreter

The Arithmetic interpreter is the core component of the ALU and Floating point unit. It
takes the InputCodeModel and interprets it based on the matched instruction. The syntax
of the interpretableAs field is as follows. The field contains multiple statements split
using the semicolon. Each statement has format "lvalue = rvalue", where lvalue is the
destination register, a part of the destination register or a temporary value. The rvalue is
an arithmetic expression evaluated using the precedence table where the same instructions
are left-associative. The supported instructions are:

OperandModel

String valve
int bitHigh
int bitlow

OperandModel(String operandValus, int bitHigh, int bitLow)
OperandModel(String operandValue)
(String ope: . InputCod argument)

getValue()
getBitHigh()
getBitLow)
getBitRanga()

CodeArithmeticlnterpreter

Pattern hexadecimalPattern
Fattern decimalPattern
InitLoader initloader
PrecedingTable precedingTable
String temporaryTag

double temporaryValue
Stack<String> operationStack
Stack<String? valueStack

CodeArithmeticinterpretsr (InitLoader initLoader, PrecedingTable precedingTable)
¥ interpretinstruction(inputCodeNodel parsedCode)
mver valug, DataTypeEnum d

// ~ ~.

InitLoader PrecedilngTabIe

CodeProcessmgModule CireRegimerFi b registerFi = ;.gip’;sgm, Maﬁ;i::li:rgé;reoedimwioﬂw{mmn precedingTable
U String[] unaryOperations

String[] binaryOperations

String registerFiieDir
provideCodeParser (InitLoader loader) String instructionsDir
providesCodeArithmeticlnterpreter (InitLoader loader, PrecedingTable precedingTable]
providesCodeBranchinterpreter (Initloader loader, CodeParser codeParser) load()
providesCodel sadStorelnterpreter (InitLoader loader, SimulatedMemory memory) getRegisterFilaModelList()

getinstructionFunctionMedelList()

getErrorMessage{)

PrecedingTable()
getPrecedingPriority(String stackTop, String readCharacter)
ishllowedOperation(String operation]
isBinaryOperation(String operation)

isUnaryOperation(String cperation)

Figure 5.5: Class diagram for the Code arithmetic interpreter

o Addition, subtraction, multiplication, division, modulo

Logical shift left, logical shift right, arithmetic shift right
o DBrackets

« AND, OR operators and unary NOT operator

29

o Comparison operators greater than, greater than or equal, equal, less than or equal,
and less than

e Unary operators for incrementing, decrementing and squaring a value, and a blank
operator

An example let’s have an instruction multiply-and-add, which takes 3 source registers
and 1 destination register. The first two registers are added together and then multiplied
by the third one. The interpretableAs value can look like "rd=rsi+rs2;rd=rd*rs3", or
alternatively like "rd=(rsi+rs2)*rs3".

To make rotation instructions possible, the interpreter can also interpret writes to spe-
cific bits. This is done by specifying the input or output bit range in the square brackets
starting with the highest bit, separated by a colon. It can also target only one bit by
specifying the index of the bit. As an example, let us take an instruction which takes the
destination register and sets the lowest bit and the 16 highest bits to 0. Such a pattern
would be "rd[0]=0; rd[32:16]1=0;"

Branch interpreter

The Branch interpreter is used inside of the Branch function unit to calculate the difference
between evaluated branch instruction and its target based on the success of the condition.
The interpretable pattern format is (unsigned|signed) : compareFExpression, where the
unsigned or the signed value specifies how the source register’s value should be handled
and the compareExpression is similar to the single expression in the arithmetic interpreter’s
pattern, where only comparison operators are used. Since the interpreter expects a single
expression, the pattern is not ending with the semicolon. In the case of an unconditional
jump, the pattern contains a single word jump

CodeBranchinterpreter

char[] allowedOperators
e

Initl oader initl oader
Pattern hexadecimalPattern
Pattern decimalPattern

"y CedeBranchinteroreter(CodeParser codeParser, Initloader initloader)
—7 interpretlnstruction|inputCodeModel parsedCode, int instructionPosition|

o
_— T~
" —
- ~
d :
/ CodeParser
‘ .
| InitLoader
CodeProcessingModule Patter decimaiation
em decimalPattern
g ListzRegisterFileModel> registerFileModellist InitLoader initLoader
ListzInstructionFunctionMadel> instructionFunctionModelList ListzInputCodeModel> parsedCode
String registerFileDir Pattern registerPattern
provideCodeParser(InitLoader loader) String instructionsDir Pattern immediatePattern
providesCodeArithmeticInterpreter(InitLoader loader, PrecedingTable precedingTable] List<String> errorMessages
providesCodeBranchinterpreter{initLoader loader, CodeParser codeParser) load() int codelineNumber
providesCodeloadStorelnterpreterinitLoader loader, Simulatedhemory memory) petRepisterFileModellist()
getinstructionFunctionModellist() CodePar'ser}lmlLoader m|tLoader’]
getErrorMessagel) parse(final lnng codeString)

eetPa
gelErrorMessages:)

Figure 5.6: Class diagram for the Code branch interpreter

Let us take the RISC-V instruction BGEU, which is a "greater than or equal" branch
instruction, where the source register values are compared as unsigned values. The pattern
for such instruction would be "unsigned:rsl >= rs2".

IF the condition is met or the jump instruction is unconditional, the interpreter calcu-
lates the offset between the current instruction and the target label. For that, each branch
interpreter is supplied with the compiled list of instructions where the label and the posi-
tion of the instruction can be searched. After that, the offset is returned as the result. If

30

the condition is not met, the resulting offset is 1 representing the next instruction in the
program order.

Load/Store interpreter

The Load/Store interpreter is used for address calculations in Load/Store function units,
for loading a value from the simulated memory in Memory Access blocks, and at the commit
stage for storing a value inside the memory in Store Buffer.

The pattern for a load instruction is "load dataType: (signed|unsigned) what where
offset" and for a store is "store dataType what where offset", where the first argument
specifies how the instruction should be interpreted (load for load instructions, store for
store instructions), dataType specifies the data type of the loaded or stored value inside
the what argument. The what argument specifies either the destination register, where the
value should be loaded or the source register, which holds the value to be stored. The where
argument is a source register telling the interpreter the position in the memory where the
value should be taken from or should go to. The offset is an immediate value which can be
used to specify offset from the position pointed by the where value. The signed or unsigned
flag inside the load pattern serves as a hint telling the interpreter whether the value in the
memory should be loaded as a signed or unsigned value.

CodeloadStorelnterpreter

Simulatediemory memory
InitLoader initLoader
Pattern hexadecimalPattern
Pattern decimalFattern

CodeLoadStorelnterpreter(lnitLoader initLoader, Simulatediemory memory)
| interpretinstruction{InputCodeModel parsedCode)

— H\\
T “\
(InitLoader : -
CodeProcessingModule SimulatedMemory
List<RegisterFileModel= registerFileModellist
List<InstructionFunctionModel instructionFunctioniodellist Iap<String,Byte> memorylap
String registerFileDir
provideCodeParser(InitLoader loader) String instructionsDir Simulatediemory()
providesCodeArithmeticinterpreter(InitLoader loader, PrecedingTable precedingTable) insertIntoMemoryiString address, byte value)
providesCodeBranchinterpreter (InitLoader loader, CodeParser codeParser) Ioady) getFromMemory(String address)
providesCodeLoadStarelnterpreter{initLoader loader, SimulatedMemory memory) getRegisterFileModellist{) isIniemory(String address)
getinstructionFunctionModelList{) deleteFromMemory(String address)

getErrorhessagei)

Figure 5.7: Class diagram for the Code load/store interpreter

As an example, we can consider the LHU (load halfword unsigned) instruction where the
interpreter has to load a 16-bit value from the memory as an unsigned value. The pattern
would be "load half:unsigned rd rsl imm'.

The interpreter has two functions, evaluating whole load/store instructions (meaning
calculating address, recognizing if the instruction is load or store, and processing the rec-
ognized instruction), and simple address calculation. The address calculation is used in the
Load and Store buffers to simulate load forwarding and bypassing. The whole instruction
processing is used only at a certain point in the simulation (Memory Access for load and
commit for store instruction), which will be explained in the next section.

The simulated memory is implemented as a hash map. The value that is inserted into
the memory is broken into separate bytes, which are then stored on the address specified by
the where argument. The endianness used by the simulated memory is little-endian, where
the specified address is the least significant byte. If there is no value at the specified address
or one or more bytes are missing, the simulated memory will generate random bytes which
take place of the missing ones, and create the value from those bits.

31

http://provideCwJeParseMlriilL.oa.iJer

5.3 Block layer

The Block layer is composed of the block classes, from which the superscalar processor is
build. The implementations of the blocks are based on the RISC-V BOOM processor, where
the blocks are mimicking the functionality of separate parts as closely as possible. Each
block, that is modified at the clock tick, has to implement AbstractBlock class, which has
3 main methods that must be implemented. Those are:

e simulate() - simulate the behavior of the block during one clock tick
o simulateBackwards() - restore the state before the simulate() method

o reset() - clear all lists, maps and variables inside the block affected by the simulate()
method

The simulate () behavior takes the values inside either the simulated block itself or the
neighboring block and transforms them according to the block’s logic. Each block’s logic
will be discussed in detail later in this section.

The simulateBackwards() behavior works on the ticket system, where the extended
InputCodeModel class, called SimCodeModel, stores IDs from each block that it passes
through during the forward simulation. The ID generation is block specific, where each
block either gives out its ID when the instruction leaves or enters the block. When sim-
ulating backward, the block checks the ID specific to its stage and decides, whether the
instruction should be moved back or not. If the InputCodeModel reaches the initial block,
the object is unmapped from the simulation and destroyed.

All the blocks are controller using the BlockScheduleTask class controlling the order
the blocks are executed in. All used blocks have to add themselves to the list of listeners
before the simulation can start. The following subsections explain how each of the blocks
implements their simulate and simulateBackwards methods.

Instruction fetch

The Instruction fetch is implemented by the class InstructionFetchBlock. The block
takes the InputCodeModel objects from the parser, loads a certain amount of instructions,
and makes them available for the decode and dispatch stage. The PC counter also resides
inside this block and is incremented each cycle by the amount of fetched instructions.

The amount of fetched instructions depends on several factors. The most common is
the number of ways, which is the upper bound of the number of instructions that can be
fetched in one clock. This value along with the current PC counter value creates a range
in the parser list which new instructions are pulled from.

Another factor is branching. Since the block does not use a trace cache, only one branch
instruction can be inside the fetch range, which often results in fetching fewer instructions
than the number of ways. The PC counter can be modified during the branch fetch if there
is an entry inside the Branch Target Buffer.

The last factor is stalling, which happens when one or more buffers (Reorder, Load, or
Store buffer) are full and the instruction inside the decode and dispatch will not fit. In that
case, decode and dispatch tells the instruction fetch that it has to stall with the number of
instructions that were pulled and decoded. Based on that knowledge, the instruction fetch
fetches only a limited amount that fills all available empty ways. If all ways are filled and
decode and dispatch was not able to pull any instructions the block will stall.

32

AbstractBlock BlockSheduleTask

simulate() run()

simulateBackwards() runBackwards()

reset() reset()
InstructionFetchBlock

int PCcounter

List<InputCodeModel> fetchedInstructions
List<Integer> fetchVector

Stack<Integer> previousPcStack

setNumberOfWays(int)
setProgramCounter(int)
getNumberOfWays()
getFetchVector()
getFetchedInstructions()

CodeParser] BranchTargetBuffer
GShareUnit

InitLoader initLoader int size
List<InputCodeModel> parsedCode PatternHistoryTable pht List<BranchTargetEntryModel> buffer

List<String> errorMessages GlobalHistoryRegister ghr B—

CodeParser(InitLoader initLoader) : clearEntry(pcTag)

- . : getPredictor() ; <
gggégﬁgggégégag AT E=tBEdictoriiomald (ploerameonptergelind) :'selzsgttg'ﬁ?;(o;gllat;o'}ﬂls(t%‘lc'ahggnId commitld)
getErrorMessages() reallocate(size) ’

Figure 5.8: Class diagram for the Instruction fetch block

For restoring the previous simulation state, the instruction fetch block keeps a stack
of previous PC counter positions, which are then used in the backward simulation. The
position is pushed into the stack at the start of the simulate () method. When the previous
PC counter value is restored, the backward simulation then proceeds to do the same steps as
the forward simulation did, calculating the fetch range and then fetching the instructions.

Decode and dispatch

The Decode and dispatch stage is implemented in DecodeAndDispatchBlock. The block
takes the fetched instructions from the Instruction Fetch block, extends the InputCodeModel
objects to the SimCodeModel objects and renames the registers. This stage works closely
with the Rename map table where all the speculative register mappings are stored. This
block also filters the NOP instructions and unexpected labels.

After filtering, the rest of the instructions are renamed. The renaming has three stages,
renaming to generic names, renaming the destination register, and renaming the source
registers executed in order. The renaming to generic stage changes the registers in the
code line string to its generic abbreviations, which is done with the help of the instruction
syntax. After that, the renaming destination register stage is executed. Here the block
uses the Rename Map Table to create a new map entry mapping the speculative register
to the provided destination one. The last renaming the source registers stage renames the
registers from the generic either to the same architectural register, or if Rename Map Table
has a map entry for such register, to the last speculative register mapped to this particular
architectural register.

Same as in the Instruction Fetch, the number of processed instructions in the Decode
and Dispatch block can be reduced by either the number of branch instructions or buffer
stalling. The branch instructions can cause mispredictions during the Instruction Fetch

33

AbstractBlock BlockSheduleTask

simulate () run()
simulateBackwards() runBackwards()
reset() reset()

CodeParser ﬁ RenameMapTableBlock

InitLoader initLoader
List<InputCodeModel> parsedCode

List<String> errorMessages Map<String,RenameMapModel> reghap

e List<String> freeList
. ‘ [Map<String,Integer> referenceMap
CodeParser(InitLoader initLoader) DecodeAndDispatchBlock| — mapregister(archres, orderid)

g:{;i(éi;‘;ééég(")g codestring) increaseReference(speculative)

getErrorMessages() reduceReference(speculative)

| List<InputCodeModel> beforeRenameList </ reeNene B
List<SimCodeModel> afterRenameList - f:ggggg;ﬁ@%é;ﬁggg?)

int idCounter i i
i oomeen getMappingForRegister(archReg)

boolean stall

InitLoader | B et Satudstack BranchTargetBuffer

Stack<Integer> stallPullCount

e}

List<RegisterFileModel> registerFileModelList

] : /<] shouldstall (boolean) < priles
;‘fﬁ;;ﬁé;f{;?ﬁ:gxcrtmmndd) insList - setstall(boolean) List<BranchTargetEntryModel> buffer
String instructionsDir setstallPullCount(int) T resetl)

. ClearEntry(pcTag)
load() o) O isEntryUnconditional (pcTag)
)i resetEntry(pc, insld, commitld)
— reallocate(size)
GlobalHistoryRegister InstructionFetchBlock

boolean[] register

Map<Integer, boolean]> history
Stack<boolean[]> releasedHistories
int size

int PCcounter

List<InputCodeModel> fetchedlnstructions
List<Integer> fetchVector

Stack<Integer> previousPcStack

res.et(?{ _— setNumberOfWays(int)
resizeRegister (size) setProgramCounter(int)
shiftRegister(boolean) getNumberOfWays()

removeHistoryValue(id) getFetchVector(

restoreFromHistory(id))
restoreFromReleased(id) paierdedisucuasy)

Figure 5.9: Class diagram for the Decode and Dispatch block

To generics Rename dst Rename src

add x1 x1 %2 ﬁ add rd rs1 rs2 ﬁadd t1 rs1 rszﬁ add t1 t0 x2

Figure 5.10: Decode stage renaming

stage caused by the Branch Target Buffer having an old target address causing the program
flow to fetch instructions from a wrong address. In the case of misprediction, all instructions
after the branch instruction have to be removed from Decode and Dispatch and a new value
of the PC counter has to be set. The buffer stalling happens when one of the buffers is full.
The Reorder Buffer notifies the Decode and Dispatch of such an event with the number of
successfully pulled instructions into the buffers. The Decode and Dispatch then remove all
pulled instructions and tries to pull new instructions from the Instruction Fetch. The limit
is specified by the number of ways the instruction fetch has.

For the backward simulation, the Decode and Dispatch gives out numerical IDs from its
ID counter, specifying the order in which the instructions leave the block. The ID is then
later used for state restoration a step ago. When the instruction is supposed to leave the
block during the backward simulation, it has to unmap all architectural registers from the
Rename Map Table. The block also keeps a history of the moments when it was stalled and
how many instructions have been pulled from the Instruction Fetch to know the number
of instructions to be removed in one step. The moments in history are marked with the
values from the ID counter.

Issue Window SuperBlock

This block connects the in-order part of the processor with the out-of-order side. When
the simulate () method is called, it takes all instructions in the decode block, that were
loaded in the Reorder buffer, and transfers them to their appropriate Issue window. For

34

selecting the appropriate window for the instruction, each window provides a public method
for checking whether the instruction can be placed inside the selected window or not. When
the suitable window is found, the instruction is moved from the decode to the found window.
This repeats until no more instructions can be pulled.

AbstractBlock BlockSheduleTask
simulate() run()

simulateBackwards() runBackwards()

reset() reset()

IssueWindowSuperBlock

List<AbstractlsuueWindow> issueWindowList
Stack<SimCodeModel> failedInstructions

DecodeAndDispatchBlock

List<InputCodeMadel> beforeRenameList I ni tLoade r
List<SimCodeModel> afterRenamelList

int idCounter

boolean flush List<RegisterFileModel> registerFileModelList

boolean stall List<InstructionFunctionModel> instructionFunctionModelList
int stallPullCount String registerFileDir

Stack<Integer> stallldStack String instructionsDir
Stack<Integer> stallPullCount

load()
shouldStall(boolean)
setStall(boolean)
setStallPullCount(int)

Figure 5.11: Class diagram for the Issue Window SuperBlock

When simulating backward, the superblock checks using the Decode and Dispatch ID
counter which instructions can be pulled back to the Decode and Dispatch, where the
speculative registers are freed. In case of instruction flush, the superblock stores failed
instructions and releases them on Decode and Dispatch ID counter match.

Rename map table

The Rename map table is used to map any architectural register to a speculative one to
avoid WAR and the WAW hazards. The table keeps names of all speculative register in a
Free list. When the decode stage asks for a new mapping of the register, the table checks
the Free list, takes the first speculative register, and saves the mapping in a hash map. The
table also keeps a reference counter to each of the mapped speculative registers. Until the
count does not reach 0 and references are not freed, the speculative register holds the result
value. As soon as the counter reaches zero, the speculative register is added to the Free list
and the value is copied to the mapped architectural register.

35

RenameMapTableBlock

List<String> freeList
Map<String,RenameMapModel> regMap
Map<String,Integer> referenceMap

mapRegister(archReg, orderld)
increaseReference(speculative)
reduceReference(speculative)
freeMapping(speculative)
freeAndCopy(speculative)
getMappingForRegister(archReg)

UnifiedRegisterFileBlock

List<RegisterFileModel> registerList
List<RegisterReadinessEnum> readyMap

getRegisterList(dataType)
getRegisterValue(registerName)
setRegisterState(registerName, registerState)
setRegisterValue(registerName, double)
copyAndFree(String fromRegister, String toRegister)

Figure 5.12: Class diagram for the Rename Map Table Block

Unified register file block

The Unified register file block holds all architectural register files as well as the speculative
register file, crated based on the size of architectural ones. The architectural register files
are pulled from the InitLoader during the simulator initialization. The register block also
keeps the state of each register in a hash map where the architectural registers are always
assigned and only the states of the speculative ones can be modified.

UnifiedRegisterFileBlock

List<RegisterFileModel> registerList
List<RegisterReadinessEnum> readyMap

getRegisterList(dataType)
getRegisterValue(registerName)
setRegisterState(registerName, registerState)
setRegisterValue(registerName, double)
copyAndFree(String fromRegister, String toRegister)

InitLoader

List<RegisterFileModel> registerFileModelList
List<InstructionFunctionModel> instructionFunctionModelList
String registerFileDir

String instructionsDir

load()

Figure 5.13: Class diagram for the Unified Register File Block

The states of all speculative registers are set to Free during initialization. When the
register is mapped in the decode stage, the speculative register is set to Allocated. After an
instruction is executed, its destination speculative register is set to Executed. And when
the instruction is ready to be committed, the register is set to Assigned and the value is
held until all mappings for a certain speculative register are freed. Finally, the register
becomes Free and can be allocated again.

36

Issue window blocks

The issue windows are used to queue instructions before they are ready to be executed inside
an appropriate function unit. The issue window works as an Age-ordered queue, where the
elder instructions have higher priority than the younger ones. To track the readiness of
each instruction, the issue window has list of IssueItem objects for each instruction, which
is used to track the readiness of an instruction.

AbstractBlock BlockSheduleTask
simulate() run()
simulateBackwards() runBackwards()

reset() reset()

AbstractlssueWindowBlock

Map<Integer, List<IssueltemModel>> argumentValidityMap
List<SimCodeModel> issuedinstructions
Stack<SimCodeModel> failedInstructions
Stack<List<IssueltemModel>> failedValidityMaps

createArgumentValidityEntry(codeModel)
dispatchinstruction(codeMadel)

UnifiedRegisterFileBlock

InitLoader

List<RegisterFileModel> registerList
List<RegisterReadinessEnum> readyMap List<RegisterFileModel> registerFileModelList

List<InstructionFunctionModel> instructionFunctionModelList
getRegisterList(dataType) String registerFileDir
getRegisterValue(registerName) String instructionsDir
setRegisterState(registerName, registerState)
setRegisterValue(registerName, double) load()

copyAndFree(String fromRegister, String toRegister)

Figure 5.14: Class diagram for THE Abstract Issue Window Block the other windows are
created from

The IssueItem object list stores information about destination tag, source tags, their
values, and validity bits. The validity bits are configured at each clock cycle. The state of
the source register are observed, and if the state is either Executed or Assigned, the valid
bit is set to true and the register value is copied inside the IssueItem. When all validity
bits are set, the instruction is ready to be executed. Issuing is done in the Age-order until
all function units associated with the issue window are filled with compatible instructions,
or no other instruction is ready.

Instructions are dispatched into the issue windows according to their type. There are 4
Issue windows in the simulation being ALU (FX) issue window, Floating point issue window,
Branch issue window, and Load/Store issue window. The conditions for dispatching are:

e ALU issue window - Instruction has to be arithmetic and all data types are integers

o Floating point issue window - Instruction has to be arithmetic and at least one data
type (input or output) is not an integer

e Branch issue window - Instruction has to be a branch instruction

o Load/Store issue window - Instruction has to be memory instruction (either load or
store)

37

Backward simulation is done by pulling instructions from the function units when the
backward simulation inside the function unit is complete. Each window also has its ID
counter where the instructions are marked by the counter value when they leave the issue
window. The instructions then update their lists of IssueItem objects until they are pulled
by the Issue window superblock to the Decode and Dispatch. In the case the instruction
flush caused by misprediction, each issue window has its own stack for failed instructions
with the counter value when being flushed for previous state restoration.

Function units

The function units are the computing core of the simulator working closely with the ap-
propriate interpreters to give out instruction results. The instructions are placed inside
the function unit block by the issue window. To simulate the computation delay, each
function unit has a set delay. When the unit registers that an instruction has been placed
into the unit, its counter is incremented each clock cycle. When the counter reaches the
delay value, the interpreter is ask for execution and modification of the destination register.
The function units are split into 4 categories being Arithmetic, Branch, Load /Store address
calculation, and Memory access.

AbstractlssueWindowBlock
AbstractBlock BlockSheduleTask

Map<Integer, List<IssueltemModel>> argumentValidityMap
List<SimCodeModel> issuedInstructions
Stack<SimCodeModel> failedInstructions

simulate() i B i
simulateBackwards() Stack<List<IssueltemModel>> failedValidityMaps

reset()

run()
runBackwards()

createArgumentValidityEntry(codeModel) reset()

dispatchlnstruction(codeModel)

AbstractFunctionUnitBlock

int functionUnitld

int functionUnitCount

SimCodeModel activeModel

int delay

int counter

Stack<Integer> failedCounters
Stack<SimCodeModel> failedInstructions

setDelay(delay)

resetCounter()
resetReverseCounter()
setSimCodeModel(simCodeModel)

ReorderBufferBlock

int commitid

int commitLimit

int bufferSize

Stack<SimCodeModel> releaseStack
Stack<PreCommitModel> preCommitModelStack
Stack<ReorderFlags> flagsStack

Map<Integer, ReorderFlags> flagsMap
Queue<SimCodeModel> reorderQueue

setBufferSize(bufferSize)
setCommitLimit(commitLimit)

Figure 5.15: Class diagram for the Abstract Function Unit Block other function units are
created from

The Arithmetic function unit instances are used by the ALU and Floating point issue
windows where each window has its own list of function units. They use an Arithmetic
interpreter to evaluate the active instruction inside the unit. Each arithmetic unit has an

38

array of instructions, which can interpret. This limits access to some instructions which
can be used to introduce a difference between multiplication and division function units,
for example.

The Branch function unit instances are used by the Branch issue window. They use a
Branch interpreter to get the jump offset, and after that, they calculate the exact address
of the jump. Because the branch instructions require additional information, the argument
list of the InputCodeModel is appended during the simulation. The appended arguments
are: the PC counter value, if the instruction have taken the branch during the decode stage,
and address of the taken branch. The PC counter value is used to compute the real target
address, which is appended to the list for later evaluation during the commit stage.

The Load/Store address function units are used by the Load/Store issue window. They
use the Load/Store interpreter’s address calculation feature to give the address pointing to
the first byte. The result is then written into either Load or Store buffer according to the
instruction type.

The Memory access unit processes load instructions to return the data at a certain
address. Its instances are used by the Load buffer. The instructions are only issued when
the data address is ready, and no store address is blocking it. The result is written inside
the destination register after a predefined delay, and the data flag inside the Load buffer is
set to true.

The backward simulation is done by pulling instructions from the Reorder buffer when
the match the Function unit ID counter. Each function unit inside the issue window list
generates unique values to correctly restore the previous state. The unique ID generation
is done by setting the initial ID counter value to position in the Issue window list. Con-
sequently the set offset is set for each function unit to the count of function units in the
list. Therefore, no two ID counter values of different function units will be the same. The
ID is set when the instruction enters the function unit and is incremented by the offset
each time there is no instruction in the function unit. In the case of instruction flush, each
function unit has a stack for failed instructions, instructions are pulled from when the ID
counter value matches the ID saved inside the instruction model. The function unit counter
is restored with the instruction as well.

Reorder buffer

The Reorder buffer block serves as a queue for keeping instruction in their program order.
It is the last block before the changes caused by the instruction are committed into the
memory of the register file. The Reorder buffer can commit only a limited amount of
instruction specified by the commit limit value in the buffer, which can be configured.
Each instruction has its reorder flags specifying the readiness of the instruction. The
flags are: isValid, isBusy and isSpeculative, representing whether the instruction is
valid, busy, or speculative respectively. The valid bit represents the validity of the instruc-
tion which can be changed by misprediction or bad load forwarding. When it is set to
false, the Reorder buffer removes such an instruction from the queue. The busy bit is set to
false when the instruction enters the issue window and is set to true when the instruction
is evaluated in the function unit. The speculative bit is set to true for all instructions
preceding a speculative branch instruction stay speculative until the branch instruction is
evaluated. The speculative bit is also set for instructions preceding a speculative load for-
warding. When the speculative instruction is committed and there is no misprediction, the
reorder buffer starts setting the speculative bits to true until it reaches another speculative

39

AbstractBlock| |BlockSheduleTask

simulate() run()
simulateBackwards() runBackwards()
reset() reset()

UnifiedRegisterFileBlock * InstructionFetchBlock

List<RegisterFileModel> registerList) s

List<RegisterReadinessEnum> readyMap int PCcounter

| List<InputCodeModel> fetchedinstructions
| List<Integer> fetchVector

getRegisterList(dataType)] ™ N
getReg\'sterVall}e(registelgName) \ ReorderBufferBlock | Stack<Integer> previousPcStack
setRegisterState(registerName, registerState) \ (berOfw: .
setRegisterValue(registerName, double) setNumberOfWays(int)

copyAndFree(String fromRegister, String toRegister) — '": comrmEILd = <> setProgramCounter(int)
int buffersize el
etretchVectory

Stack<SimCodeModel> releaseStack getFetchedlnstructionsl)

R M T bl BI k Stack<PreCommitModel> preCommitModelStack

ename ap a e ocC Stack<Reorderflags> flagsStack
p[.lkapdnf_gegodl?eﬂdgrflagp cflla%sMap
ueue<SimCodeModel> reorderQueue

List<String> freeList Pt e BranChTal'getBuffer

Map<String,RenameMapModel> regMap / setBufferSize(bufferSize)

Map<String, Integer> referenceMap / setCommitLimit(commitLimit) | int si

e
mapRegister(archReg, orderld) . List<BranchTargetEntryModel> buffer
increaseReference(speculative) \/
reduceReference(speculative) [
freeMapping(speculative) J \
freeAndCopy(speculative) - ~——

Y reset()

\ clearEntry(pcTag)
isEntryUnconditional (pcTag)
resetEntry(pc, insld, commitld)

getMappingForRegister(archReg) , e \:‘ el
[;
L ¥
GShareUnit DecodeAndDispatchBlock
PatternHistoryTable pht List<InputCodeModel> beforeRenameList
GlobalHistoryRegister ghr List<SimCodeModel> afterRenameList
int idCounter
getPredw‘cturp boolean flush
getPredictorFromOld(programCounter, ghrid) boolean stall

int stallPullCount
Stack<Integer> stallldStack
| Stack<Integer> stallPullCount

shouldstall(boolean)
setStall(boolean)
setStallPullCount(int)

Figure 5.16: Class diagram for the Reorder Buffer Block

instruction. When the Reorder buffer commits the mispredicted instruction, all instruc-
tions in the Reorder buffer are set to invalid and flushed from the buffer. The PC counter
value is set to the correct position consequently. The position is either the correct branch
target or a PC counter value of the first failed instruction. The instruction is ready to be
committed as soon as the valid is set to true and the busy and speculative are set to false.

Each clock cycle, the reorder buffer is responsible for pulling newly decoded instruction
into the buffer. It also has to create a new flags object for each instruction. Before pulling
from decode, the buffer has to ensure the buffers have enough available space by comparing
the queue size and its limit. If one buffer failed to pull decoded instructions due to overflow,
the Reorder buffer would rise the stall flag and the count of the instructions that it was
able to pull. During the backward simulation, the buffer is responsible for removing all
instructions that appear in the Decode and Dispatch block.

When the instruction is committed, all the speculative registers inside the instruction
have to lower their reference count, and the instruction has to be saved for later backward
simulation. The released instruction, either released on commit or removal, are therefore
stored in the release stack together with the reorder flags. The released instructions are also
marked with the commit ID counter value used in the backward simulation. The Reorder
buffer block also stores the register values before commit and their mappings.

Store buffer

The Store buffer keeps track of all in-flight store instructions. The instructions are stored
in the queue with additional information about the store address and the state of the source
register kept in the StoreBufferItem object. The store instructions are loaded into the

40

buffer in the decode stage and kept there until committed. When being committed, the
store buffer simulates the writeback by calling the Load/Store interpreter and writing the
data to the memory. All store instructions during its time between the decode and commit
stage are used for load bypasses and for stopping the speculative load forwards.

AbstractBlock| |BlockSheduleTask

simulate() run()
simulateBackwards() runBackwards()
reset() reset()
CodeloadStorelnterpreter A ¢
p ReorderBufferBlock
— P
SimulatedMemory memory | { = i
InitLoader initLoader JEERWIL
Pattern hexadecimalPattern N StOFeBUffeI'B lOCk mt gﬁ?}g“rstiligmt
Pattern decimalPattern EsitaclfgirmgodeModeb lreleascestacktM elstack
| < ——1 St itMod: tar
interpretinstruction(InputCodeModel parsedCode) __~_| Queue<simCodeModel> storeQueue P gtgﬁkigeirggrﬁ;w ﬁ;gfgrteacim"" odetac
<>/ Maps<Integer, StoreBufferltem> storeMap < o e et i b (T
int bufferSize | Queue<SimCodeModel> reorderQueue
int commitld
Stack<StoreBufferltems flagsStack setBufferSize(buffersize)
) Stack<SimCodeModel> releaseStack setCommitLimit(commitLimit
DeCOdeAnd D‘spatch BlOCk int possibleNewEntries {)
List<inputCodeModel> beforeRenameList ::zg‘j;{gfﬁﬂ'})Stc're(CDdEMc'del) InitLoader
List<SimCodeModel> afterRenameList | setAddress(codeModelld, address) ~
int idCounter i B i7e) N
boolean flush f Szigt;ﬁzg&:ﬂgﬁﬁiﬁlzei \ List<RegisterFileModel> registerFilsModelList
boolean stall B ‘.| List<InstructionFunctionModel> insList

int stallPullCount — releaseStoreFirst() o String registerFileDir
Stack<Integer> stallldStack String instructionsDir
| Stack<Integer> stallPullCount N
N load()
shouldStall(boolean)
setStall(boolean)

seseallPullCount{int) UnifiedRegisterFileBlock
List<RegisterFileModel> registerList
List<RegisterReadinessEnum> readyMap

tRegisterList(dataTy
Egtgggisterwl&e(regiggslzName]
setRegisterState(registerName, registerState)
setRegisterValue(registerName, double
copyAndFree(String fromRegister, String toRegister)

Figure 5.17: Class diagram for the Store Buffer Block

Like the Reorder buffer, the store buffer has to pull store instructions from the decode.
Since it is allowed to pull only store instructions, the buffer block has an internal filter
permitting only this kind of instructions. Apart from the Reorder buffer, the store buffer
does not rises the stall flag. It only has to stop pulling when becoming full. During the
backward simulation, store instructions return to the decode stage from the Load/Store
issue window, so the store buffer has to remove all store instructions that appear in the
decode stage, as if it was returning the instructions to the decode stage.

the store buffer also keeps all committed instructions in the stack for the state restoration
and uses an ID counter, which values are the same as in the Reorder buffer. Apart from
instructions, the Store buffer keeps track of the StoreBufferItems also being restored with
the instruction.

Load buffer

Similarly to the Store buffer, the Load buffer keeps all in-flight load instructions in its queue
with its LoadBufferItem object, which has the information about the address, whether
the load bypassed or not, if the Memory Access unit was accessed and when, and if the
destination register is ready. The address is gained when the Load/Store address calculation
is executed.

Apart from the Store buffer and its instructions, load instruction has to go through
the memory access stage. This is implemented by the Memory Access unit, where the
instruction is simulating the access to the memory. This can be bypassed if there is a store

41

AbstractBlock| |BlockSheduleTask

simulate() run()
simulateBackwards() runBackwards()
reset() reset()
CodeloadStorelnterpreter * o
) ReorderBufferBlock
SimulatedMemory memory N\ P
InitLoader initLoader . /-~ int commitid
Pattern hexadecimalPattern ~, / int commitLimit
Pattern decimalPattern \ | int buffersize
\
LoadBufferBlock Stack<SimCodeModel> releaseStack
interpretinstruction(InputCodeModel parsedCode) | _—— Stack<PreCommitModel> preCommitModelStack
\ Queve<SimCodeModel> loadQueue J |
e,
> l\LhaD \nteger LosdBufferitem> loadMap < ngue'lggn% oderogefbﬂrgesor e
it> memor itList
DecodeAndDispatchBlock i Eg;[;@g*" N setBuffersize(buffersize)
StackSmCodeogel relrssestack setCommitLimit (commitLimit)
List<InputCodeModel> beforeRenameList islnstructionLoad(codeModel)
List<SimCodeModel> afterRenamelist se:gufterﬁltz?(;lze]l T
int idCounter | setDestinationAvailable(code! lef | A~ &
ety < ,Sgﬁgggu,ﬁgﬁfg;gg;glwdfModfl"d) T InitLoader
booleaﬂpstﬁlcl B relﬁil.&adﬁ e []l() \
int stallPullCount = LB { n - — —
Stack<Integer> stallldStack List<RegisterFi registerFil ist
| Stacks<Integer> stallPullCount 7o)) “___ | List<InstructionFunctionModel> insList
Y Y String registerFileDir
shouldstall(boolean) \ String instructionsDir
setStall(boolean) I —
setStallPullCount(int) yd ™ load()

UnifiedRegisterFileBlock StoreBufferBlock

List<RegisterFileModel> registerList

List<RegisterReadinessEnum> readyMap Queue<SimCodeModel> storeQueue

Map<Integer, StoreBufferltem> storeMap
int bufferSize

getRegisterList(datalype) int itid
getRegisterValue(registerName) Unt LI

setRegisterState(registerName, registerState) gzct<§_t°rce‘3‘§'f;frl|;elm> ftlagssg‘?ckk
setRegisterValue(registerName, double) sledsSlniE 2 i [ElsanEd
copyAndFree(String gister, String ister) intp NewEntries

islnstructionStore(codeModel)
isBufferFull()
setAddress(codeModelld, address)
setBufferSize(bufferSize)
getStoreQueueFirst()
releaseStoreFirst()

Figure 5.18: Class diagram for the Load Buffer Block

instruction having the same address, which would cause to skip this stage and take the
value from the store buffer resulting in the load bypass. The load forwarding policy inside
the RISC-V BOOM is optimistic. Thus, if there is no match with the store buffer addresses
and the load address is ready, the instruction is placed into the Memory Access unit. The
result is kept until the instruction is committed, or there is a match causing the memory
ordering failure. The instruction that has been forwarded has to check each cycle until it is
at front of the Reorder buffer if there is another store instruction with a matching address.

the Load buffer behaves similarly to the store buffer when pulling the instructions into
the buffer, however, it only has to pull load instructions. Like the Store or Reorder buffer,
the released instructions are kept in a stack with the additional LoadBufferItem for later
state restoration.

Branch Target Buffer

The Branch target buffer serves as a buffer for different branch instruction entries and their
targets. Each entry has information about the PC of the branch instruction, whether the
instruction is conditional or unconditional, and the target of this instruction. The entry
also keeps the order ID of an instruction and also commit ID when the instruction gets
committed. These last two values are used in the backward simulation.

The Branch target buffer is accessed in three stages, instruction fetch, decode, and
commit. The instruction fetch stage uses BTB to get an entry for the currently fetched
instruction and possibly update its own PC counter. The update happens if there is an
entry inside the BTB and the target is not set to -1. The instruction is then marked

42

BranchTargetBuffer

int size
List<BranchTargetEntryModel> buffer

reset()

clearEntry(pcTag)
isEntryUnconditional(pcTag)
resetEntry(pcTag, instructionld, commitld)
reallocate(size)

BranchTargetEntryModel

int (:Tagb
boolean branch
int target

int instructionld
int commitld

Figure 5.19: Class diagram for the Branch Target Buffer Block

according to have been taken or not, which is then used in the next stage. In the Decode
and Dispatch, the prediction is checked whether have been correct or not by consulting the
PHT’s bit counters. If there is a mismatch between the BTB target and the prediction,
the entry is updated and the instructions after the evaluated branch has to be flushed.
When the instruction gets on top of the Reorder buffer and becomes ready, the third stage
happens. In the commit stage, the result from the Branch function unit is compared with
the existing BTB entry. If there is no mismatch, and therefore, the prediction was correct,
the instruction is committed and the PHT’s bit vector is updated.

Indexing into the BTB is done by using the lower part of the PC counter. The number
of entries in the BTB can be configured, but it has to stay constant during the simulation.
The BTB also stores old values that get rewritten for state recovery during the backward
simulation.

Pattern history table and bit predictors

The Pattern history table is composed of separate bit vector counters used to predict
whether the branch should be taken or not. The bit vector counters can be configured to
be either zero, one, or two-bit wide with each implementing its own logic. The zero-bit
counter is set during the simulation initialization and the value does not change during
the simulation. The one-bit predictor changes to either Taken or Not taken. The two-bit
predictor has two more states telling whether the prediction is weakly or strongly taken or
not. The behavior can be seen in figure 5.20.

Same as the BTB, the PHT is accessed in the instruction fetch and at commit. In
instruction fetch, PHT is used to determine whether the branch should be taken or not.
At commit, the prediction is compared with the result and updated accordingly. Each bit
predictor has to implement the behavior on increasing or decreasing the probability. Same
as the BTB, each PHT entry has to remember previous states of its bit vector when the
state restoration is needed.

Global history register

The Global history register is a bit vector. Fach bit is marking according to the branch
being taken or not in the program order. The register is updated in the decode stage, and

43

1 .
Strongly — Slightly
Taken Taken
0
1
Strongly —

0

Figure 5.20: From left: Zero bit predictor, One bit predictor, and Two bit predictor

if misprediction happens, also at commit. Because of the mispredictions, the register has to
remember previous bit vector states to either restore and fix, or to correct PHT indexing.
When the branch instruction reaches the commit stage, the old values are released from the
list of history values to the stack of history values later used in the backward simulation.
An example of a bit vector can be a value 00001101. It can be seen that from the last eight
branch instructions, five were not taken (marked by 0 bit), 3 were (marked by 1 bit), and
the last instruction was taken.

GShare unit

The GShare unit is used in branch prediction to give an index to the certain PHT’s counter
based on the hashing function. The hashing employs the XOR function between the lower
part of the PC counter and the Global history register bit vector. The Global history
register introduces the globality of the prediction, making the prediction dependant on the
branching pattern. The PC introduces the locality of the predictions. The GShare unit is
only used for the hash computation, therefore, it does not have to save any previous states
as long the PHT and the GHR can successfully restore themselves.

GShareUnit

PatternHistoryTable pht
GlobalHistoryRegister ghr

getPredictor()
getPredictorFromOld(programCounter, ghrid)

PatternHistoryTable GlobalHistoryRegister

List<IBitPredictor> historyList
int size

boolean[] defaultTaken
boolean reallocated

boolean[] register

Map<Integer, boolean[]> history
Stack<boolean[]> releasedHistories
int size

reset()
resizeRegister(size)
shiftRegister(boolean)
removeHistoryValue(id)
restoreFromHistory(id)
restoreFromReleased(id)

reset()

getPredictor(index
initiateZeroBitPredictors(size, defaultState)
initiateOneBitPredictors(size, defaultState)
initiateTwoBitPredictors(size, defaultState)

Figure 5.21: Class diagram for the Gshare Unit

44

5.4 UI layer

This layer provides a wrapper for all mentioned blocks in the Block layer, while also pro-
viding control features to interact with the simulator. The simulator uses JavaFX for views
and controllers. Every unique block has its own view and a controller specifying the looks
and behavior. The Ul layer can be split into 3 main categories, the Simulation window, the
Code window, and the Configuration window.

Code window

The Code window serves as a simple text editor for inserting the assembly code into the
simulation. The instruction in the code has to correspond to the instructions loaded from
the ISA folder. The code window provides a menu for creating a new code list, loading
the existing one from a file, saving the code into the file, and compilation by calling the
CodeParser.parse () method for parsing and loading the input code into the simulation.

W] RISC-V simulator — o X
File Simulation Code Help

h & & 2

- = 3

E

: b

saxpi.r5 X g.

1 #loop counter E

2 addi x1 x0 10 o

3 o

2

o

a 10 x0 20
6 fovt.s.w fl x10

11 addi x3 x0 512

13 addi x4 x0 10
14 addi x5 x0 100

16 loopInit:
17 beq x1 x0 loopInitZnd

18
1
30
3
3
3
3

9 mul x6 x4 x1
mul x7 x5 x1

sw x6 x2 0
sw x7 x3 0

PR

& o

subi x1 x1 1
subi x2 x2 4
subi x3 x3 4
jal %0

rose

addi x3 x0 512

42 peq x1 x0 loop

44 1w x12 x2 0
45 1w x13 x3 0

46

47 fevt.s.w f£2 x12
48 fovt.s.w £3 x13
4

50 fmul f£2 £2 f1
fadd f2 f2 f3

3 fevt.w.s x12 £2
sw x12 x2 0

56 subi x1 x1 1

Console

Code compiled with no errors!
Loaded to simulation.

Figure 5.22: Code window

45

file:///loopSaxpiEnd

The code is inserted into the upper text code area. The text area supports highlighting
of the input source code, where the highlight color is chosen based on the code type, whether
it is an instruction, a register, an immediate value, or a label. When the user is writing
down the source code, the code text area is dynamically creating a list of valid labels, so if
there is a branch instruction pointing to an existing label, it will be highlighted. The lists
of instructions and registers for highlighting are created from the loaded register files and
instructions upon the app has started or when the configuration has changed.

In case of a successful compilation, the console text area will write out a message
informing of a successful compilation and a dialogue will be shown to switch from the Code
to the Simulation window. In case of failed compilation, the console shows the formatted
output of the CodeParser’s error log giving hints where the users should look for mistakes.

Simulation window

In the Simulation window, users can see how the code is being processed at different stages.
The window offers a control menu to run the simulation for a specified period, or step by
step. Other controls include resetting the simulation to the initial state, stepping to the
previous step, and fast-forwarding to the simulation end.

The block wrappers can be seen in the Simulation view in the center of the screen. On
the left side, a list of compiled instructions can be found. During the simulation, the fetch
range is highlighted. The highlighted places are taken from the fetch vector created during
the simulate method in the instruction fetch. The fetch vector’s size is always the same as
the number of ways of the Instruction fetch block. If the fetching is stopped due to loading
multiple branch instructions, fetch vector is filled with the incremented values of the last
position in the vector. The top window shows all architectural registers in their current
state. The individual register values change during the simulation after their mappings have
been released by the Rename map table. At the bottom the user is able to see statistics
window, which shows information about CPI, clock ticks, number of committed and failed
instruction, and branch prediction accuracy.

The main Simulation view shows all blocks wrapped behind the TableView primitive,
where all the important values for each block are shown. There are different policies for each
block when it comes to highlighting. The issue windows and the Reorder buffer highlight
the instruction row in green once they are ready. The branch blocks and Rename map
table move the new values on the top of the table and highlight them in yellow. All bit
values are interpreted by some string value, either "YES" and "NO" in case of Reorder flags
and Issue items, or "READY" and "WAIT" in the case of the Load and Store buffers. Each
block is also connected with the line to the blocks which it interacts to. The function units
are represented by a list of function unit blocks, where the number of units can be changed
and their properties either configured or changed in the Configuration window.

46

- r x
Code _Help
weme reie) [Pl WP ES
£
Code | Integer physical register | Flcating point ph 2
DO addix 010 e e e e T T e T T 3
o1 adeix10x020 xv w oo 00 @ 0w 00w 0 g
o2 atswhixid xt a0 a6 %00 a1 00 6 00 o1 0 w6 00 a1) 2
B addinzx0 128 x 1240 7 %000 x12 00 w7 00 @ 00 w7 00
Db add 05T 0 80 0 00 x3 00 xo 0w @ 0 w0 00
o6 addixax0 10 1 W o0 xm w o ay 00w 0w W 0o
06 eddi x50 100
x loopinit
o2 baq il 0 leopinite, Global history register
06 mulxexsxl it vector,
b ol Branch Issue window Branch Function Units B ool
it Sv ° >: Code swtuloe VI Sz 2 R Ey——
beqtal xUlo.. 0 NO 00 G PCtag Branch Target
€ |erle) NO 00 F: ol 172 loopinit ™10 NO o
e Rename map table NO 00 vis | 1] -
o Temp register Mapped register NO 00 " | L
e) 2 f beq 1255010 0D NO 00 F Al Function Units
ot 150 a7 ————
B2 eddix1 010 [% ALU Issue window ALUIL
D13 i 50 178, 51 = Sic2value V2 Operations:
o014 addi 30512 [0 1 0 s Eaticnlstury b
015 loopsapi = - 40 VS L Index Prediction
X1 bea x1 X0 loopsaxp. 56 xt 00 NO e o Stonuly Taken
o oo - . < a0 No o012 Strongly Taken
oxie a0 =2 10 © PP Function Unkes . Lo Strongly Taken —
o1 fotswi2xi2 w1 w10 stongly aken
U2 fotsw 313 Operations: e Stonaly
Src2 value V2 o Frem
L (A EEXHS Decode and Dispatch J i B
e faddf2f273 = T Reorder buffer
oxle fotwsx272 b e Code
e Subit/0t11 o /3
— fal 78 loopinil = L/S Function Units > %6320
»e0 s K720
o2l Load/Store Issue window Load/Store FU 1 subix1x1
22 Code Srclvalue VI SicZvalve V2 - x4
o3 sw3R2011 00 NO 0o no [seeonTote wibi 333 4 -
o4 0o NO 00 wo UL jalx0 loopinit
o nop L oo NO 00 o bea X1 x0 loopiitend
B0 oy SwB2129012 00 NO 00 No
o7 nop SwB/B1011 0D NO 00 HO <
%28 nop peTesan o en e - ¥es
% nop VS
B4 ooy 11 Vs VRS
meb nop
02c nop Store buffer Load buffer Memory Access Units
e Code Address Data Code Address | Data | Bypass At
e oy Swt9tIGo1l % RLADY
oef,|nop SWRUN/ 012 AT READY
#30 nop w25 120011 VI AT
31| [Tsweszon AT WA |
b2 oy s oieaon AT AT | e p—
o3 nop w2012 AT Al —
®04 - nop w137 132 VI AT
oy [nop SwBEs012 AT WAT
36 oy SwUI@0011 AT AT
oe7 nop SwT1012 AT WAl
*3 nop 49145011 VI AT §
vy nop
%2 nop Az Clock cycles: 40 |Cnmmimd: 27 Failed: 0 Branch: 5 Prediction accuracy: 100%

Figure 5.23: Simulation window

Configuration window

The last of the three mentioned windows is the Configuration window, where the simula-
tion properties can be changed. The configurations are hidden under tabs named Loader,
Buffers, Function unit, Branching, and Fetch and Commit.

In the Loader tab, users can specify the location of a new ISA folder or register file
folder, which will be loaded on the confirmation of the dialogue. The Buffers tab allows
to set size limits for the Load, Store and Reorder buffers, which would cause stalling for
the lower values or free execution without stalling for the higher values. The Branching
tab allows to configure the BTB, the PHT, and the GHR sizes and allows to change bit
predictors and their initial state. The Fetch and Commit tab has a form for configuring the
number of ways specifying how many instructions can be fetched in one clock cycle, and
for configuring the commit size, specifying how many instructions can be committed in one
clock cycle.

A special tab is the Function unit tab. This tab serves for creation of new function
units. The tab provides a tool for "what if" scenarios, where users can add or remove
certain function units. While adding the arithmetic function units for either the FX or the

47

&7 Simulation configuration o x 7 Simulation configuration o | X &7 Simulation configuration o x

Loader | Buffers || Function Unit | Branching | Fetch and Commit Loader | Buffers | Function Unit | Branching | Fetch and Commit Loader | Buffers | Function Unit | Branching | Fetch and Commit

ALU | Floating point | Load/Store | Branch | Mem

Branch Target Buffer size 1024 Name Operations Delay
Reorder buffer maximum size (no. of entries) 256
ALUT oA BB <52 2
le/GlobalHistory
10
ize (27%)
Load butfer maximum size (no. of entries) 64
Predictor type in PHT Two bit prediictor -
Store buffer maximum size (no. of entries) 64
Predictor default value Weakly Not Taken -
Add | | Edit | | Remove
Confirm Caneel Confirm Cancel Confirm Cancel

Figure 5.24: Configurations for buffers, branching and function units

FP issue window, users are also able to limit the functionality of a unit by specifying which
instructions are allowed in that unit. All function units have configurable delays to make
certain units faster than others. The tab also provides editing of already existing function
units. When the configuration window is closed, all the function unit changes are rendered
inside the function unit lists.

48

Chapter 6

Testing

To test this application before going public, these steps have to be taken. The loader layer
has to ensure correct parsing of the JSON files ensuring that correct files are loaded into
the application and forbid loading of false files with wrong JSON structure.

In the Code layer, the program has to be able to parse the source code according to the
loaded instructions and verify arguments based on their type. If the argument is a register,
it must be one from the loaded register files and forbid any other inputs. If the parsing
is supposed to fail, it should be able to spot the mistake and log such incidents for higher
layers. The interpreters must be able to interpret the source code according to the rules
specified in loaded instructions. The arithmetic interpreter should be able to provide a
sufficient array of instructions to implement most RISC functions and some CISC functions
for experimenting. The branch interpreter needs to provide a correct offset where to move
the program counter. The load and store interpreter has to provide simulated memory for
loading and storing and also it should be possible to load only a certain part of the memory.

The block layer must provide expected results at the end of the simulation after a certain
number of steps were completed. The main testing focus should be on the ability to simulate
in both ways (forward and backward). It has to provide a simulated implementation of the
Tomasulo’s algorithm. There should be a noticeable increase in CPI when the instruction
has a higher number of function units or function units with a small delay or by increasing
the buffer size or all of the above. In contrast, there should be a decrease in CPI if there are
fewer function units, function units with higher delay or really small buffers, or all of the
above. The simulator should be able to simulate load forwarding and bypassing. Testing
should also focus on the branch prediction and its impact on the order program execution.

In the Ul layer, testing should focus on the correctness of displayed values according to
the simulation time. The code input should highlight only loaded instructions. The changes
in the configuration should be distinguishable either before or during the simulation.

6.1 Business logic testing

All the bottom layers were tested using the JUnit framework for creating Unit tests with
Mockito! for mocking the needed classes from other layers. The Loader layer was tested
on several JSON inputs with different config values, missing lines, or corrupted files. In
the code layer, I tested if the parser can parse a specified source code based on the mocked
loader values, and whether it can spot mistakes at specified places.

"https:/ /github.com/mockito/mockito

49

https://github.com/mockito/mockito

Since the arithmetic interpreter is the most feature-heavy out of all of the available
interpreters, there are multiple unit test files, testing the different operators and their com-
binations, e.g., multiply and add, using operators with different precedence, and indexing
certain bits. In the load and store, the testing was focused on the memory manipulation
and loading of different byte sizes, where for example, an integer value was stored and after
that loaded as a short or byte, or a float was stored and when pulled by an integer load
function, the computation resulted in an invalid value. The branch interpret was tested
by mocking a code snippet and presenting a branch instruction with conditions of different
outcomes.

The block layer tests verified the functionality by constructing programs that cause a
RAW hazard, load forwarding and bypassing, branching, and so on. The validation was
done by checking the values inside the blocks at each step of the simulation. The backward
simulation was done similarly by simulating its end and then stepping it back to the initial
state, while checking the simulation state.

6.2 UI and Application testing

The UI testing was done by hand by checking the simulation table views during the simu-
lation and its correct highlighting when instruction was either ready or changed. The block
layer was also tested by pressing the control buttons in different configurations, where a few
bugs were discovered and promptly fixed. The Code window was tested by trying different
inputs and seeing how they get colored. Moreover, the behavior of new, open, save, and
compile options was verified.

The Application was tested on different platforms, which covered Windows 10 64-bit,
Manjaro Linux with I3 display manager, and Ubuntu 20.04 and 16.04 with gnome display
manager. Based on these testing, I've created a package for all these systems with in-
structions on how to run the application. This was tested on a couple of volunteers, which
I provided with a package and a survey, for additional suggestions. I was able to get 5
people to go through the survey and based on their answers I've been able to do some Ul
style fixing and I've able to verify that they were able to run the application with provided
instructions.

50

Chapter 7

Conclusion

The goal of this thesis was to create an interactive simulator where users can change certain
configurations and see the behavior on their source codes. This goal was met.

In the second chapter, i summarized required information about pipelining, data haz-
ards, and different parts of the suprescalar processor. The third chapter includes my review
on current existing simulators, where i talked about its features and possible upgrades. The
forth chapter chapter includes my proposed system, in which i created mockup and planned
my approach to the problem. Then in the fifth chapter, i described the my implementation,
layer by layer, as was proposed. This concludes items 1 through 6 in the thesis specification.

The current state of the simulation can show most of the things that compose the core
of the AVS course, being RAW dependency, Tomasulo’s algorithm for out-of-order execu-
tion, load bypassing and forwarding, and also all the different units inside the superscalar
processor. Apart from other simulators, I've devised a system of modifying the count of
function units into the system, which can illustrate speedup or slowdown depending on the
configuration. Another thing different from all of the reviewed simulators is the visual-
ization and deterministic approach to processing branch units, which can be also used to
explain branching processes. Due to its modular approach, other ISA’s can be programmed
into the simulator, as long as it follows syntax restrictions. Thanks to the layer layout, the
application is fairly easy to extend and implement or modify certain parts.

A limitation of this simulator is the lack to configure the number of speculative registers.
Another limitation is the issue window size. Both of these can be easily added by adding a
checked on register/space exhaustion and link it to existing stalling mechanism. Another
limitation is the size of the simulator, where the blocks are stretched over the Y axis of
the window, which results in lack of ability to fit everything in one window and needs to
be scrolled to. I've placed similar blocks to each other, which allows to see behaviour of
certain parts of the simulator in one place.

Although this is build mainly on RISC-V ISA, I had to study a lot of other instruction
sets and it’s architectures its runs on before settling to this one. Also I've learned a lot
about different approaches to the branching and to the load forwarding problem.

The future work should focus on other forms of a configuration of the processor, such
as the mentioned speculative register file size, or implementing a slow mode, which would
show sending the instructions as in Cisco’s Packet Tracer [8]. Another feature would be a
memory view to inspect the current state of all memory cells, where one cell would contain
a specified number of bytes.

51

Bibliography

1]

[10]

Branch prediction using Selective Branch Inversion. Parallel Architectures and
Compilation Techniques - Conference Proceedings, PACT. 1999. DOI:
10.1109/pact.1999.807405. ISSN 1089795X.

ALBUQUERQUE, N., PRAKASH, K., MEHRA, A. and GAUR, N. Design and
implementation of low power reservation station of a 32-bit DLX-RISC processor.
In: Proceedings - 2016 International Conference on Information Science, ICIS 2016.
2017. DOI: 10.1109/INFOSCI.2016.7845330.

ANDREW WATERMAN, K. A. The RISC-V Instruction Set Manual, Volume I:
Unprivileged ISA [online]. CS Division, EECS Department, University of California,
Berkeley: SiFive Inc., december 2019 [cit. 2021-05-07]. Available at:
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/
riscv-spec-20191213.pdf.

BAER, J.-L. Microprocessor architecture : from simple pipelines to chip
multiprocessors. New York: Cambridge University Press, 2010. ISBN
978-0-521-76992-1.

CASTELLANOS, A. Jupiter, RISC-V Assembler and Runtime Simulator [online]. 2019
[cit. 2020-12-03]. Available at: https://github.com/andrescv/Jupiter.

Co, M., WEIKLE, D. A. and SKADRON, K. Evaluating Trace Cache Energy
Efficiency. ACM Transactions on Architecture and Code Optimization. 2006, vol. 3,
no. 4. DOI: 10.1145/1187976.1187980. ISSN 15443973.

Faraz, A., HAQUE ZEYA, F. U. and KALEEM, M. A Survey of Paradigms for
Building and Designing Parallel Computing Machines. Computer Science €
Engineering: An International Journal. 2015, vol. 5, no. 1. DOI:
10.5121/cseij.2015.5101. ISSN 22313583.

FrEZzZO, D., WANG, M., CHEN, M., ANDERSON, B., Hou, J. et al. Cisco Packet
Tracer. Cisco Networking Academy, 2010.

GARciA ORDAZ, J. R., RAMIREZ SALINAS, M. A., VILLA VARGAS, L. A., LOZANO,
H. M. and MAcias, C. P. A reorder buffer design for high performance processors.

Computacion y Sistemas. 2012, vol. 16, no. 1. DOI: 10.13053/cys-16-1-1369. ISSN

14055546.

HavasHi, T. and KANAsuGr, A. A design of EPIC type processor based on MIPS
architecture. Artificial Life and Robotics. 2020, vol. 25, no. 1. DOI:
10.1007/s10015-019-00554-w. ISSN 16147456.

52

https://github.com/andrescv/Jupiter

[11] HiGGINSON, P. RISC Simulator by Peter Higginson [online]. 2016 [cit. 2020-12-03].
Available at: https:
/ /www.gwegogledd.cymru/wp-content/uploads/2018/04/RISC-Simulator-Design.pdf.

[12] KiaT, W. P, Mok, K. M., LeEg, W. K., GoH, H. G. and ANDONOVIC, I. A
comprehensive analysis on data hazard for RISC32 5-Stage pipeline processor.
In: Proceedings - 81st IEEE International Conference on Advanced Information
Networking and Applications Workshops, WAINA 2017. 2017. DOI:
10.1109/WAINA.2017.20.

[13] KiNsy, M. A Browser-based RISC-V Simulator [online]. 2019 [cit. 2020-12-03].
Available at: https://ascslab.org/research/briscv/simulator/files/tutorial.pdf.

[14] Koci, K. Graphicall CPU Simulator with Cache Visualization. May 2018. Diploma
thesis. Faculty of Electrical Engineering CVUT in Prague.

[15] MIKLOS, D. S. Arpad. VSIM - A Superscalar CPU Simulator. H-1034 Budapest,
Nagyszombat u. 19.: John von Neumann Faculty of Informatics, Budapest
Polytechnic, 2001.

[16] PETERSEN, M. B. Ripes Introduction [online]. 2020 [cit. 2020-12-03]. Available at:
https://github.com/mortbopet/Ripes/wiki/Ripes-Introduction.

[17] SHRIVASTAV, S., KUMAR, S., GUPTA, S. and BHUSHAN, B. Qualitative Analysis of 32
Bit MIPS Pipelined Processor [online]. International Journal of Engineering
Research and. 2020-05-01 [cit. 2021-05-07], V9, no. 05, p. 558-561. DOI:

10.17577 /TJERTV9IIS050484. ISSN 2278-0181. Available at:

https://www.ijert.org/qualitative-analysis-of-32-bit-mips-pipelined-processor.

[18] STEFAN METZLAFF, N. K.-L. DLX MIPS processor simulator [online]. University of
Augsburg, 2013 [cit. 2020-12-03]. Available at:
https://github.com/smetzlaff/openDLX.

[19] VAcLAv DVORAK, V. D. Architektura procesori [online]. 2006 [cit. 2020-01-04].
Available at: https://wis.fit.vutbr.cz/FIT/st/cfs.php.cs?file=
%2Fcourse’,2FACH-IT%2Ftexts’,2F2008%2FACH-cast1.pdf&cid=13577.

[20] WANG, C., L1, X., ZHANG, J., ZHOU, X. and NIE, X. MP-Tomasulo. ACM
Transactions on Architecture and Code Optimization. 2013, vol. 10, no. 2. DOIL:
10.1145/2459316.2459320. ISSN 1544-3566.

[21] ZHAO, J., KORPAN, B., GONZALEZ, A. and AsaNovic, K. SonicBOOM: The 3rd
Generation Berkeley Out-of-Order Machine [online]. Fourth Workshop on Computer
Architecture Research with RISC-V. May 2020 [cit. 2021-05-07]. Available at:

https://github.com/riscv-boom/riscv-boom.

53

http://www.gwegogledd.cymru/wp-content/uploads/2018/04/RISC-Simulator-Design.pdf
http://ert.org/qualitative-analysis-of-32-bit-mips-pipelined-processor
https://wis.f
http://vutbr.cz/FIT/st/cf

Appendix A

Contents the included storage
media

The DVD disc contains following folders:

e ./Misc/Mockups - The mock-ups of the early version of the app

e ./Source - The folder contains the source codes for the app itself. It also contains
doxygen file for generating source code documentation

e ./Thesis - The root folder for the I4TEXfiles used to generate this report

o ./Application' - The application itself with the README file containing instruc-
tions on how to run the application

!The current version is also available on https://nextcloud.fit.vutbr.cz/s/eWSxejPno3pxnQW

54

https://nextcloud.fit.vutbr.ez/s/eWSxejPno3pxnQW

Appendix B

User manual

This chapter explains how to install, use, and configure the RISC-V simulator.

Installing dependencies

Linux

You need to have JDK 15 or higher installed on your system. If you don’t have JDK 15
installed, follow the steps below:

Ubuntu

You will need at least openjdk-15-jre and openjdk-15-jdk packages. To install then use
the following commands:

sudo apt-get install openjdk-15-jre
sudo apt-get install openjdk-15-jdk

Usually, after installing these packages they should be set as default. To check the set
version, use:

java --version
If not, use update-alternatives to change the default version of java.

sudo update-alternatives --config java

Arch Linux/Manjaro
To install required packages, use the following command:

sudo pacman -S jrelb-openjdk-headless jrelb-openjdk
sudo pacman -S jdkl5-openjdk openjdkl5-doc openjdklb-src

After that, you need to set the default JDK using the following command:
sudo archlinux-java set java-15-openjdk

To check which version is active you can use archlinux-java statusor java --version.

55

All versions

After installing the required packages, you need to run the run.sh script. Most of the time,
you will need to set up permission to be able to run this script. Use chmod +x run.sh to
make it runnable. After that, you’ll be able to run the application.

Windows

Download and install the Java SE Development Kit 16.0.1 from the official Oracle site:
https://www.oracle.com/java/technologies/javase-jdkl6-downloads.html and after
that, run the ‘run.bat‘ file.

Application window

The simulator consists of two main windows that are linked to the control tabs on the right
side of the screen, being the Simulation and Code windows. The Simulation window can
be seen at the start of the application. It is used for controlling and the visualization of
the simulation. The Code window serves as an input for user-made source code, following
the ISA loaded by the application. There is also the main menu on the top of the screen
where users can configure the simulator properties, load existing examples, and find out
which instructions got loaded.

The main menu

The window selection tabs|

Figure B.1: The main application controls

Code window

The Code window is used for entering source code and loading it into the simulation logic.
For entering the source code, please use the Code text area in the middle. The code
window menu is located at the top of the window, providing controls for file manipulation
and compiling the source code. At the bottom, there is a console output, for the result of
the compilation, which on success, loads the code into the simulation.

h [1]

h = £
New Open Save Compile
sheet file file code

Figure B.2: The Code control buttons

The window button functions are from the left as follows:
e New - Opens a new sheet for the source code

e Open - Opens a file dialogue to selected the file to be loaded into the code window. If
the selected sheet is empty, it will load into the selected one. Otherwise, a new sheet
with file contents will be opened.

56

http://www.oracle.com/java/technologies/javase-jdkl6-downloads.html

o Save as/Save - The selected sheet will be saved. If not saved before, a file dialogue
opens, expecting the user to specify the path and filename. If the sheet has been
saved before, changes will be saved into that file.

o Compile - Takes the selected sheet and tries to load it into the simulation. If an error
arises, the output is written into the Console window.

W] RISC-V simulator

no Code Help

E ¢' The Code window menu

5poD | uopejuns

The source code sheets

fmul £2 £2 £1
fadd 12 12 12

ool

The console text area

Code compiledt with no amrars!

Figure B.3: The Code window
The Code window sheets support basic highlighting, where the style is as follows:

e Green - Represents the instructions loaded into the simulator.
e Red - Represents the registers loaded into the simulator.

o Blue - Represents numerical values.

57

o Orange - Represents labels. List of acceptable labels if formed dynamically based on
the source code

e Grey - Represents comments

The list of allowed instructions and their syntax can be found inside the Help->Instruction
list in the main menu.

Simulation window

In the simulation window, users can simulate their code after a successful compilation. If
the user is inside the Code window during the compilation, a dialogue will ask him, if they
want to move to this window. Inside the window, the user can find:

=

LR PR L
s Srurke s er

i » The simulation control buttons |3
The [The register file view 2

compiled | ’
code

The simulation wiew

— R

Evanh Fuamtion Urits
Sruawh Loyt bl

Ce B Target
Bl 7 b, v i

Branh 11

Fesane i e

Terap, regies Mappesd raghter . -
n: a2

B

Au Fanctian Ushs

At

Futtwm hiseary ta b
I,

17 Functon Lt i

5 w1
Pzt winikon 1
Co artwie W Sciuie W

15 Fusction Lnits
LoaikStees kst i LoadStora Fll |

a1 11200

cre A e o Rideer Db Bypae

[T v

an; e |- | rabed 0 The statistics view

Figure B.4: The Simulation window

e Control menu - Placed on the very top of the window, with controls to the simulation
o Register file window - Situated on the top of the screen, displaying all loaded registers.
¢ Code window - Situated on the right, showing the compiled code.

e Simulation view - Showing all the blocks of the simulation

58

o Statistics - At the bottom, showing the gathered statistics from the run
The control menu button functions are from the left as follows:

o Pause - Stops the periodic execution.

e Play - Steps the simulation at fixed intervals. The period can be changed in the
Period text field located also in the menu

o Reset - Resets the simulation to the initial state

e Previous step - Simulator will take one step back in the simulation. If the simulation
is in the initial state, nothing happens.

o Next step - Simulator will take one step forward in the simulation.

¢ Fast-Forward - Simulator will simulate the whole input source code and shows the
result. (WARNING: may take some time)

II > 1000ms Period ¥) H H »

Pause the Play the Play simulation Resetthe Previous Next Fast-
simulation simulation period simulation step step forward

Figure B.5: The Simulation control buttons

As soon as the simulation reaches the end, the user is notified using the dialogue window.

Basic configuration

The configuration inside the simulator can be accessed by locating the Simulation->Confi-
guration in the main menu. A dialogue will pop out showing multiple tabs featuring different
configuration options.

e Loader - Configuration of the locations of the register file and ISA folders
o Bulffers - Configuration for buffer sizes

e Function Unit - Configuration of function units for different issue windows
e Branching - Configuration of the branch units

o Fetch and Commit - Configuration of the amount of instruction fetched /committed
in one cycle

The function unit configuration tab offers additional configuration options. The users
can create their own function unit or edit the existing ones here. The function unit con-
figuration tab contains additional tabs for each issue window plus the load buffer. Each
sub-tab has a table, showing all the existing function units and at the bottom options for
modifying the table. The options are:

59

e Add - A pop-up window will show up, with a form for creating a new function unit.
The field delay is required.

e Edit - A pop-up window will show up, with a filled form from the selected function
unit.

¢« Remove - Removes all selected field in the table

Each of the pop-up windows has a Confirm button and a Cancel button. The Confirm
button either adds new correctly configured unit into the list or edits selected function unit
with new values. The Cancel button closes the window without committing the changes.
The ALU and Floating-Point function units have one extra field in the creation pop-up
window, where operators can be specified. The list of allowed binary operators is as follows:

o Add (+)

o Subtract (-)

o Multiply (*)

 Divide (/)

o Modulo (+)

o AND (&)

« OR (])

o Arithmetic shift right (»>)
o Logical shift right (»)

o Logical shift left («)

o Less than or equal (<=)

o Greater than or equal (>=)
o Equal (==)

o Less than (<)

o Greater than (>)

List of allowed unary operators is as follows:
o Increment (++)

o Decrement (-)

« NOT (!

o Squared (#)

o Assign (<-)

60

The comparator operators are used only for the ALU function unit, while they return 1
if the condition is true or 0 if it is false. The assign operator is mainly used for the convert
functions between integer and floating-point values.

When the user wants to confirm his changes, there is a confirm button inside the config-
uration window, which will reflect the changes and reset the simulation. If the user wants to
exit without confirming the changes, there is a cancel button at the bottom of the window.

Advanced configurations

Apart from the configurations done inside the simulation, users can extend, modify, or
change completely the register files and instructions used inside the application. The default
configuration files can be found in ./riscisa and ./registers folder. These folders are
free to be configured or copied to create different configurations. The configuration files are
written in JSON with a fixed structure of the object names, which every file in a certain
category must follow.

Register file

The JSON of the register file structure can be seen in listing B.1. Each register file object
must have the name, dataType, and registerList. The name specifies the display name
that is used in the Register file window. The dataType is used for comparing with the
instruction argument data types during the compilation. The data type can be either
integer (kInt), long integer (kLong), float (kFloat), or double (kDouble).

{

"name": "Integer physical register",

"dataType": "kInt",

"registerList": [
{"name": "x0", "isConstant": true,"value": 0},
{"name": "x1", "isConstant": false,"value": 0},
{"name": "x2", "isConstant": false,"value": 0},

Listing B.1: Register file example

The register list must be composed of one or more register objects. The Register object
can be seen in listing B.2. It has 3 objects, a name, an isConstant flag, and a value. The
name is used to address the specified register in the source code, and the user can also see
it in the Register file window. The flag isConstant is telling the simulator, whether the
register value is read-only (flag set to true) or read/write (flag set to true). In the value,
the user can specify the initial value for a certain register.

{
"name": "x1",
"isConstant": false,
"value": O

}

Listing B.2: Single register example

61

Instruction

The instruction is also a JSON object. The structure can be seen in listing B.3.

{
"name": "add",
"instructionType": "kArithmetic",
"inputDataType": "kInt",
"outputDataType": "kInt",
"instructionSyntax": "add rd rsl rs2",
"interpretableAs": '"rd=rsl+rs2;"

Listing B.3: Instruction example

The name is used to address certain instructions when writing the source code. The
instructionType is to specify the type of the instruction. The simulator uses three types,
being arithmetic (kArithmetic), load

The inputDataType is specifying the data type of input arguments. It is used to validate
the data type of an argument if it is the register or used to cast the argument if it is an
immediate value. The outputDataType is used to specify the data type of the output
register argument.

The instructionSyntax is telling the parser the syntax of the instruction with the
types of each argument. The arguments are either destination register (rd), source register
(rsX, where X is a natural number), or an immediate value (immX, where X is a natural
number). Lastly, the interpretableAs is used to tell the interpreter how arguments should
be processed.

The interpretableAs field has different syntax depending on the type of instruction.
FExamples can be found in the ./riscisa folder. The syntax uses the abbreviations used
by the instructionSyntax to link arguments together. The syntax can be divided into
the 3 categories.

Arithmetic expressions that are similar to the Java expression (rd = rsl — rs2 + +,
Increments the value inside the rs2). The arithmetic expressions allows brackets (rd =
(rsl — rs2) * rs3), and also indexing separate bits (rd[5 : 0] = rs1[31 : 25]), where the
range needs to be specified in the "downto" fashion. See the FX and FP instructions in
Help->Instruction list for more examples.

Branch instruction syntax has two versions: unconditional jump (by specifying jump in
the interpretableAs field), or conditional jump, where the syntax is as follows:
"(unsigned|signed) : compareEzpression". The first part of the conditional jump syntax
tells the interpreter, whether the expression should be evaluated as signed or unsigned.
The second part is the condition, where compare operators and either the register, the
immediate value, or the numerical constants are allowed. An example of such a condition
would be rsl == 0. See the branch instructions in the Help->Instruction list for more
examples.

The load/store instruction syntax is different depending, whether it is a store instruction
or a load instruction. The load instruction syntax is "load dataType: (signed|unsigned)
what where offset", where load literal specifies the load instruction, dataType specifies how
many bytes are loaded from the memory (allowed values: byte, half, word, doubleword
for the integer values, float, double for floating-point values). The signed or unsigned
literals tells the interpreter, whether the loaded value should be signed or unsigned. The

62

what, where and offset can be either the register, the immediate value, or the numerical
constant, where what is the value to be saved, where points to the certain place in the
memory, and offset specifies the offset from the where value. The store instruction has
similar syntax being "store dataType what where offset", where the store literal specifies
the store instruction and other arguments has the same rules as in the load syntax.

Use cases

I want to run a simulation

1.

S

Run the application

Move to the Code window using the tabs in the top right corner
Either write a new code or load the existing one

Press the Compile button (cog icon in the menu)

Confirm the pop-up dialogue

Use the buttons in the simulation window menu to control the simulation

I want to open the existing code

Exp
1
2
3
4

ecting you are already running the application.

. Move to the Code window using the tabs in top right corner

. Click the open icon (the folder icon in the menu) or press CTRL+S combination
. Select the file, which you want to load

. Confirm the dialogue

I want to save my new code

Exp

1.
2.

ecting you are already running the application.
Move to the Code window using the tabs in the top right corner

Click the save button (the floppy disk icon in the menu) or press CTRL+S combina-
tion

Enter the name of the file
Specify the path, where to store your source code

Confirm the dialogue

I want to save my existing code

Expecting you are already running the application.

1

. Move to the Code window using the tabs in top right corner

2. Click the save button (the floppy disk icon in the menu) or press CTRL+S combina-

tion

63

I want to simulate at certain period
Expecting you are already running the application and code has been compiled.
1. Move to the Simulation window using the tabs in the top right corner

2. In the simulation menu, specify your period in the Period text field (supported units:
S, ms)

3. Press the play button (the play icon in the simulation menu)

4. If simulation needs to be stopped, press either the play button or stop button (the
pause icon)

I want to see each step of the simulation
Expecting you are already running the application and code has been compiled.
1. Move to the Simulation window using the tabs in the top right corner

2. Use the Previous and the Next step buttons to carefully observe the state in each step
(the fourth and the fifth buttons in the Simulation window)

I want to see the result state of my source code
Expecting you are already running the application and the code has been compiled.
1. Move to the Simulation window using the tabs in the top right corner

2. Use the Fast-forward button to see the end state of the simulation (the sixth button
in the Simulation window)

I want to edit the buffer sizes
Expecting you are already running the application.
1. Navigate to the very top menu
2. Go to Simulation->Configuration
3. In the configuration select the Buffers tab
4. Specify the desired sizes

5. Click the confirm button at the bottom of the configuration window
I want to edit the branch configurations
Expecting you are already running the application.

1. Navigate to the very top menu
2. Go to Simulation->Configuration

3. In the configuration select the Branching tab

64

4. Set the desired BTB size

5. Change the GHR and the PHT sizes

6. Change the predictor type in the selector
7. Change the initial state of all predictors

8. Click the confirm button at the bottom of the configuration window

I want to edit the commit or the fetch size
Expecting you are already running the application.
1. Navigate to the very top menu
2. Go to Simulation->Configuration
3. In the configuration select the Fetch and Commit tab
4. Change the fetch size and the number of ways text field
5. Change the commit size in the text field

6. Click the confirm button at the bottom of the configuration window

I want to add new function unit
Expecting you are already running the application.
1. Navigate to the very top menu
2. Go to Simulation->Configuration
3. In the configuration select the Function unit tab

4. Select the function unit list from the sub-tabs to which you want to add the new
function unit

5. Press the Add button in the Function unit sub-tab

6. Set the Function unit name

7. If configuring ALU or FP units, write down allowed instruction split by the coma
8. Specify the delay of the unit

9. Create the unit by clicking Confirm button

10. To confirm your changes into the simulation, press Confirm button in the configuration
dialog

65

I want to edit existing function unit

Expecting you are already running the application.

1.

Navigate to the very top menu

. Go to Simulation->Configuration
. In the configuration select the Function unit tab

. Select the function unit list from the sub-tabs in which you want to edit the function

unit

. Select the function unit from the table that you want to edit

. Press the Edit button in the Function unit sub-tab

Edit the values in the forms

. Press the Confirm button

. When done editing, pres the confirm button in the configuration window

I want to delete function unit

Expecting you are already running the application.

1.

Navigate to the very top menu

. Go to Simulation->Configuration
. In the configuration select the Function unit tab

. Select the function unit list from the sub-tabs in which you want to delete the function

unit

. Select the function unit from the table that you want to delete

. Press the Delete button in the Function unit sub-tab

When done deleting the function units, pres the confirm button in the configuration
window

66

