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Abstract 
This thesis deals w i t h the problem of determining the location of a person and its approxi­
mat ion. The location is derived from video which is captured using a drone. The goal here is 
to propose and test existing solutions, and state-of-the-art algorithms for each encountered 
subproblem. This means overcoming challenges such as object detection, re-identification of 
persons in t ime, estimating object distance from camera and processing data f rom various 
sensors. T h e n , I a m using the methods to design the f inal solution which can operate in 
nearly real-time. Implementation is based on the use of Intel N C S accelerator unit w i t h the 
cooperation of smal l computer Raspberry P i . Therefore, the setup may be easily mounted 
directly to a drone. The resulting applicat ion can generate tracking metadata for detected 
individuals in the recording. Afterwards, the positions are visualised as paths for better 
end-user presentation. 

Abstrakt 
Práca rieši možnosť zaznamenávať pozíciu osôb v zázname z kamery drona a určovať ich 
polohu. Absolútna pozícia sledovanej osoby je odvodená vzhľadom k pozícii kamery, teda 
vzhľadom k umiestneniu drona vybaveného príslušnými senzormi. Zistené dáta sú po ich 
spracovaní vykreslené ako príslušné cesty. Práca si ďalej dáva za cieľ využiť dostupné rieše­
nia čiastkových problémov: detekcia osôb v obraze, identifikácie jednotlivých osôb v čase, 
určenie vzdialenosti objektu od kamery, spracovanie potrebných senzorových dát. Následne 
využiť preskúmané metódy a navrhnúť riešenie, ktoré bude v reálnom čase pracovať na uve­
denom probléme. Implementačná časť spočíva vo využití akcelerátoru Intel N C S v spojení 
s Raspberry P i pr iamo ako súčasť drona. Výsledný systém je schopný generovať výstup 
o polohe osôb v zábere kamery a príslušne ho prezentovať. 
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Rozšírený abstrakt 
Sledovanie polohy ľudí pomocou kamerového záznamu bolo a stále je zložitým problémom. 

Prebiehajúci výskum však v pravidelne poskytuje nové metódy, ktoré zlepšujú presnosť 
detekcie objektov a zároveň znižujú potrebný výpočtový výkon na ich fungovanie. Dnes sa 
pochopenie snímaného obrazu počítačom stáva vďaka pokroku takou bežnou súčasťou, ako 
fungovanie počítačov samotných. 

Ľudia dokážu pomerne ľahko rozpoznať bežné objekty okolo seba na jmä na základe 
vizuálnych podnetov. D v a hlavné problémy, ktorým čelí detekcia objektov sú identifikácia 
tých častí obrazu, kde sa objekt nachádza a druhým je jeho následná klasifikácia. Tá 
z pohľadu dneška už nie je takým vážnym problémom. A b y bolo možné predmety alebo 
ľudí v zázname detekovat a následne pozorovať ich pohyb je nevyhnutné vedieť, že daný 
obraz obsahuje osoby. Dôležité je ale tiež poznať ich polohu a v ideálnom prípade vidieť 
celú si luetu, ktorá poskytuje informácie k dalším fázam spracovania. 

K t o m u aby bolo možné zistiť polohu osoby sú potrebné údaje nielen z kamery, ale aj 
z dalších senzorov. N a ich spracovanie sa využívajú metódy strojového učenia, ako napríklad 
sofistikované detektory objektov, modely klasifikátorov, detekcia geometrických primitív 
a ďalšie. P o d povrchom týchto algoritmov sa najčastejšie skrývajú spôsoby založené na 
neurónových sieťach, respektíve ich variante s využitím operácie konvolúcie. Dnes môžeme 
tvrdiť, že súčasné architektúry sietí sú takmer porovnateľne presné ako ľudský mozog, pokiaľ 
ide o špecifické rutinne činnosti akou je aj detekcia a klasifikácia objektov. 

Následne potrebné vstupy zahŕňajú použitie informácií o polohe kamery a jej vlastnosti­
ach, ako napríklad konkrétne natočené a uhol snímania. Všetky tieto premenné parametre 
udávajú lepšiu predstavu toho, k a m kamera smeruje p r i vyhotovovaní záznamu. Jej or i ­
entácia je pochopiteľne nevyhnutná kvôli jej obmedzenému zornému poľu kamery. Poloha 
musí byť založená na použití správnych meraní údajov opisujúcich stav zariadenia, spolu 
so súčinnosťou už spomínanej konkrétnej pozície objektu vo v ideu. Ideálny výber by m a l 
zahŕňať sledovanú osobu ako celok od nôh až po hlavu, čo umožní dosahovanie najlepších 
výsledkov. 

Väčšina metód zaoberajúcich sa meraním vzdialenosti pochádza z oblastí automobilového 
priemyslu, či experimentálnej robotiky, kde sa určuje rozostúp medzi zariadením a predme­
t o m pomocou rôznych senzorov. Z hľadiska tejto práce sú zásadné iba vizuálne prístupy, 
ktoré opomínajú technológie založené na ultrazvukových alebo laserových meraniach. V o 
všeobecnosti môžeme tvrdiť, že kamera je t u využitá ako senzor na meranie vzdialenosti , 
čo prináša značné nepresnosti a náročnosť spracovania. N a druhej strane je ale kamera 
ľahko dostupný a cenovo nenáročný senzor. Prípadne prezentované metódy sa testujú a 
skúmajú ako vhodné riešenia asistentov vodičov, údaje získané z jednej kamery sa použí­
vajú na odhad vzdialenosti medzi dvoma účastníkmi cestnej premávky. Tieto znalosti teda 
môžu byť zovšeobecnené na určenie vzdialenosti objektu od kamery. 

Dostupné metódy odhadu vzdialenosti sú odvodené z princípov elementárnej opt iky a 
zákonitosti výslednej projekcie. Objektív kamery ukazuje zaznamenaný objekt v rovine 
senzora v pomere, ktorý vytvára vzťah medzi veľkosťou objektu a jeho vzdialenosťou od 
objektívu. P r i použití jedinej kamery bez dodatočných senzorov je skúmaným spôsobom 
merania vzdialenosti objektu práve odhad vzdialenosti podľa známej veľkosti objektu samot­
ného a odhade založenom na pozícii objektu v obraze. Každá z týchto metód má voči tej 
druhej niekoľko výhod, pričom každá z nich má špecifické obmedzenia pre samotný objekt 
alebo jeho okolie. V prípade odhadu založeného na veľkosti je nutné vedieť rozmery sní­
maného objektu, zatiaľ čo p r i druhej metóde je dôraz kladený na nájdenie b o d u dotyku 
objektu a rovnej plochy, na ktorej sa objekt pohybuje. 



D r u h o u dôležitou časťou sledovania osôb sú teda spôsoby ich nájdenia a zaškatuľkova-
nia. Inšpirácia pre dnešné algoritmy vychádzala z pôvodnej práce, ktorá navrhla kombiná­
ciu odhadu potencionálnych miest obsahujúcich objekt s konvolučnou neurónovou sieťou na 
ich klasifikáciu, známou ako R - C N N , čo je v preklade Regionálna konvolučná sieť. Všetky 
ostatné hlavné architektúry detektorov vychádzali z tejto myšlienky a postupne zlepšovali 
svoju presnosť a výkon. Evolúcia jednotlivých detektorov viedla k veľmi populárnej a efek­
tívnej architektúre detektorov objektov Y O L O . Prístup, ktorý zaviedla táto rada riešení, je 
výrazne iný ako systémy založené na klasifikátoroch. Pokúša sa spracovať obraz ako celok 
a jeho predpovede sú odvodené z globálneho kontextu v samotnom obraze. Skra tka Y O L O 
v preklade znamená pozrieť sa iba raz. Jeho cieľom je byť univerzálnou odpoveďou pre 
akýkoľvek systém, ktorý vyžaduje detekciu objektu. Táto architektúra je p r i svojej vysokej 
rýchlosti stále dostatočne presná a umožňuje operácie v takmer reálnom čase. Týmto spô­
sobom dosahuje výsledky porovnateľné s oveľa zložitejšími modelmi . 

Riešenie práce definuje dve hlavné časti respektíve dve aplikácie, kde jedna je určená pre 
zostavu, ktorá môže byť umiestnená priamo na malé bezpilotné lietadlo. Takáto aplikačná 
časť beží na kompaktnom kartovom počítači Raspberry P i štvrtej generácie, doplneným 
o výpočtovú jednotku Intel M o v i d i u s , v tomto konkrétnom prípade Intel I N C S 2. V ideo a 
potrebné merania telemetrie prúdia do systému, kde sú spracovávané a užitočné výsledky 
sú štandardnými spôsobmi komunikácie prenesené na serverovú časť. V nej sú následne 
agregované a sprístupnené pre užívateľa. Spracovanie prebieha začlenením detektora objek­
tov, pričom tá to úloha patrí medzi najnáročnejšie a preto je jej výpočet delegovaný práve 
čipu na I N C S 2. Výsledky sa zo zariadenia presunú späť a tvor ia vstup pre identifikáciu 
osôb v čase, kde sa rozpoznajú ľudia z predošlých snímkov. V prípade keby bola osoba 
neidentifikovateľná, nebola skôr videná alebo systém si nie je istý či j u už videl , je namiesto 
toho vytvorená nová identi ta v podobe jej samostatného nového profi lu. Informácie z oboch 
metód potom poskytujú základ algori tmu odhadu vzdialenosti , kde sa súradnice v obraze 
prevedú na vzdialenosť od kamery. Tieto odhady sú relevantné k fyzickej polohe a rotácii 
kamery v čase zachytenia snímku. 

Implementované riešenie je schopné spracovať video priamo na hardvéri pr ipojenom 
k dronu. T ie to výsledky sú prenesené do sekundárnej časti aplikácie a prezentované uží­
vateľovi vo forme grafu, ktorý obsahuje jednotlivé trajektorie. Systém je testovaný s m o d ­
elmi detektorov objektov Y O L O a S S D , ktoré poskyt l i pomerne presné výsledky iba za 
ideálnych podmienok a inak sa trajektorie dosť odlišovali od skutočnosti, čo sa týka v z d i ­
alenosti od kamery. Táto chyba v umiestnení je spôsobená nepresnou detekciou osôb a ich 
umiestnením v obraze v kombinácii s nedostatkami a rôznymi reštrikciami, ktoré si kladú 
metódy odhadu vzdialenosti . 
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Chapter 1 

Introduction 

Tracking people by video was and s t i l l is a difficult problem; however, ongoing research 
provides new methods every year that improve the precision of object detection, as well 
as decrease the computing power required. The understanding of different shapes, light 
conditions, camera angles and so many other factors make the problem hard to tackle by 
the machines. W h e n humans are looking around, we see lots of objects. We can recognise 
at least the common ones quite easily. O u r pr imary visual cortex is superior to o ld methods 
which have been implemented in computers. 

The trend might be changing right now, and computers are getting better and better at 
the task, which enables many new applications. Two central problems of object detection 
are to identify what is an object and classify i t . Identifying an object includes f inding its 
exact locat ion in the image. Then , the marked area can be assigned a certain class label . 
For this thesis, it is not only essential to know that an image can be classified as it includes 
a human, but also to know their location and ideally see a whole silhouette. A neural 
network is a way to overcome most of these issues. The current architectures of networks 
are almost as good as the human brain when it comes to object detection and classification. 

The pr imit ive detector design, which can be quickly proposed, is to create bounding 
boxes and scan the image parts one by one. It was indeed the in i t i a l approach of the 
first available a lgor i thm which first searched for regions inclusive of potential objects. The 
detectors then used a method from machine learning to classify each region. Last ly, they 
would adjust the boundary boxes i n the image. A s it seems, it was quite a complex system. 
In the following chapters, a l l different improvements to this design are shown. Especial ly 
recently, the more popular single-pass solutions are available. They have a quick, straight­
forward processing pipeline w i t h comparable accuracy to the previous multi-pass generation 
of detectors. Nevertheless, it is always a trade-off battle between speed and accuracy of the 
algorithms. 

In order to achieve fu l l t racking capabilities, people in the image have to be re-identified 
between frames as the need to follow a subject i n the video is essential. A l l this image 
processing work is not a simple task in computer science and requires a vast amount of 
resources. Therefore, a f inal complexity must be an important aspect of a designed solution. 
Th is thesis aims to perform a l l the analysis on video captured f rom a drone exclusively. 
W h e n a person is found and identified i n the image, the f inal output of the proposed system 
is their locat ion. Therefore, f inding the subject's distance from the camera is expected. The 
location approximat ion is derived according to the camera posit ion, which is effectively the 
location from drone sensors. 
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The drone industry is fast growing and offers interesting new uti l isations, many of which 
have yet to be discovered. One of the m a i n improvement i n this segment was the ease of 
control over t ime. Smal l drones are packed w i t h sensors and sophisticated electronics to 
enable simple usage for any type of user. Research and new inventions i n the field itself and 
the field of robotics are helping to br ing drones to the current market. Tracking people may 
be one of these crucial features. Overa l l , a l l the popular i ty opens up the new opportunities 
for research as vehicles get cheaper and more and more data is available at a m i n i m a l cost. 
A l l that played a major role for me to pick this project as well . The thesis is t ry ing to b u i l d 
upon those existing systems and use them to create a reliable system and solve the task of 
posit ioning a person. The m a i n goal of the resulting appl icat ion is a capabi l i ty to generate 
tracking metadata from detected individuals i n the video. 

There are several problems w i t h tracking objects and est imating their locations, as out­
l ined above. Hence, addressing the solutions is split into i n d i v i d u a l chapters i n which each 
part of the f inal system is analysed f rom a different perspective. Th is way, I identified sev­
eral major fields to cover. In Chapter 2, distance estimation methods, along w i t h necessary 
image processing techniques, are explained. Especially, showing available algorithms for 
measuring the distance how far is the object from the camera i n Section 2.1, and defining 
the posit ion of an object w i t h i n the image i n Section 2.5. 

K n o w i n g this information is an adequate start for proposing a solution, more i n C h a p ­
ter 3. There could be found a l l important decisions as selected methods and a lgor i thm 
or used hardware description. The chapter deals w i t h both the proposed design and its 
implementat ion as well . Subsequently, the last two chapters cover a l l the experimenting 
work which was done, Chapter 4, and followed by the concluding chapter. 
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Chapter 2 

Determining location of a person 
using video recording 

In order to get the locat ion of a person captured i n video, the data from the camera 
and other sensors has to be processed using a l l the needed fundamental methods and ideas 
which are presented i n this chapter. It includes using information about a camera's location, 
rotat ion and more as it gives a better indicat ion about where the camera is point ing . For 
example, the orientation is essential due to l imi ted field of view of the camera, more on 
that i n Section 2.3. The locat ion can be only obtained by ut i l is ing the correct telemetry 
data as well as w i t h a part icular posit ion i n a video frame. This selection of pixels should 
include a tracked person as a whole, f rom feet to head for the best results. Therefore, the 
second part of the chapter deals w i t h the problem of detecting and identifying people in 
the image. 

The field has been improving by leaps and bounds since it was possible to solve computer 
vis ion problems w i t h machine learning. N e u r a l networks models, trained w i t h enormous 
publ ic ly available data, helped many new applications. Convolut ional N e u r a l Network 
( C N N ) has become the standard for image classification as a next milestone. They first 
gained popular i ty when they were used to compete w i t h others using the ImageNet visual 
database. The image classifier based on C N N s won the database challenge in 2012 w i t h a 
significant improvement of error rate [23]. The start of these types of networks was purely 
as a classifier of well-framed images. Short ly after that success, C N N techniques were used 
in object detection and image segmentation. It a l l led to the cutting-edge object detectors 
models that are described later on in Section 2.5. 

In this chapter, I would like to briefly describe methods to approximate a relative 
posit ion f rom camera, and neural networks, inc luding ones w i t h convolutional layers. T h e n , 
the chapter covers and summarises object detectors, followed by methods which explain re-
identification (Re-ID) of person i n t ime. Re - ID helps to mainta in a person location history 
when there are mult iple people in the frame. A l l these solutions help to implement a system 
which understands the image data and locates the persons. 

2.1 Object distance f r o m a camera 

Most of the ideas stated i n this section derive f rom the always emerging robotics segment of 
computer science. The distance measurement is taken between a robot and an object using 
various sensors. In terms of this work, only the visual ranging approaches are considered 
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and leave behind the technologies based on ultrasonic or laser measurements. General ly 
speaking, ct CctlXlCrct ctS cl distance measurement sensor is rather inaccurate and processing 
heavy one, on the other hand, is the one which comes w i t h a low cost for the sensor itself. 
Robots can be equipped w i t h cameras to avoid obstacles, to interact w i t h the right objects 
i n an appropriate way or to navigate i n the environment. 

The measurements based on camera sensors are likewise popular w i t h i n the automotive 
industry. T h e y are used for various assisting systems to help prevent accidents. Moreover, it 
gives vehicles extensive smart functionality, inc luding pedestrian detection, lane departure 
warning, and forward-coll ision warning. The coll ision avoidance has an enormous impact 
on the society which encourage the new development in the field. The eventually presented 
methods are tested and researched as the demand for a cost-effective solution for drivers 
assistants. D a t a collected f rom a single camera is used to estimate a range between two 
road users. In the next section, this knowledge is generalised for determining the object's 
distance from the camera. 

P o s s i b l e a l t e r n a t i v e s t o a s i n g l e c a m e r a s e n s o r 

Alternatives are a stereo-vision, a laser rangefinder instrument, a sonar, or other active 
sensors. However, some of them might struggle w i t h measuring mult iple objects at once or 
in a short per iod of t ime. A completely different design was proposed i n work [25], where 
the dual off-axis colour filter is attached to a single camera. T h i s is just one example of 
an innovative approach to estimate an object's distance f rom a camera using the advanced 
computat ional method of enhanced general opt ical system. Such works prove that the 
problem of distance estimation is an important issue i n many applied areas. 

Besides the contemporary academic ideas and stand-alone advanced sensors, there are 
also complete solutions ready to answer the question of tracking distance. This new optics 
and sensors are available as a package, brought to the market by D J I company and its com­
mercial industry drone Matr i ce 300. The vehicle's new p a y l o a d 1 opt ion combines mult iple 
sensors, and it is capable of determining the distance and effectively the locat ion as well of 
the object directly recorded in real-time. The range of the instrument like that can exceed 
1 k m w i t h reasonable accuracy. 

2.2 Distance es t imat ion i n a single-camera system 

The available among vehicle distance estimation methods derive f rom elemental optics 
principals and the resulting projection perspective. A camera lens shows a recorded object 
in the image plane that creates a relationship between these two. The simplif ied system 
w i t h no lens is an ideal pinhole camera, shown in Figure 2.1. U s i n g just a single camera 
and no other sensors, the researched ways to measure the object's distance are size based 
distance estimation and posit ion based distance estimation. B o t h of which are explained in 
further detai l i n [22], which provides the basis of distance estimation methods following in 
this section. The two methods have each a set of advantages one over the other, disputed 
that each has specific restrictions for the object itself or its surroundings. 

x h t t p s : //www.dj i.com/hk-en/zenmuse-h20-series 
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Figure 2.1: A diagram of a pinhole camera. [31]. 

lens 

Figure 2.2: Size based distance estimation geometry [31]. 

2 . 2 . 1 S i z e b a s e d d i s t a n c e e s t i m a t i o n 

The size based approach uses the imaging properties of the camera, namely inversely pro­
port ional dimensions of the real object and its image. The object thereby has to mainta in 
the same shape over t ime, and that is highly restrictive. Therefore, the typica l case of use is 
often w i t h the immutable structured object or rather a special m a r k i n g sign. The mark has 
got another benefit as wel l , it is easy to detect i n the image using much simpler methods, 
for example, colour fi ltering due to a known mark's colour. In contrast, a person as the 
object is a more variable element. The detected person should be standing straight or in 
general needs to keep a selected dimension relatively unchanged. T h i s brings yet another 
problem into account that people's silhouettes come in a l l sorts of formats. Hence, a person 
height makes it the best candidate for the somewhat stable feature. The average height 
w i t h i n the populat ion forms one of the key parameters. To sum it up, the method imposes 
the restrictions for the object of interest. 

The estimation fundamentals are i l lustrated i n Figure 2.2, where x is the known object 
height, Y is the image plane, the object's height is y, f is a focal length of a used camera 
and d is a real distance f rom the object to the camera. The described system assumes that 
the image plane is paral lel to the object height measuring plane. Accordingly, any deviat ion 
of the image plane or variance i n the object height may affect the accuracy. The values are 

G 



related as follows 
f d f • x 
— = — where d = (2-1) 
y x y 

both / and x are the parameters of the system, set upfront. The y on the other is inferred 
from the image i n the same units as the rest. Image data is given ordinar i ly as a pixel 
matr ix . Thus , the object, person, needs to be first precisely located in the image and then 
its height i n pixels is converted to standard metric units . T h e distance is then calculated 
as 

f • x • h , 
d = (2.2) 

where h is a height of the image i n pixels, s is a camera sensor height. B o t h are constant for 
the part icular camera recording. xp is a height of the object i n pixels; therefore, a way to 
detect and identify the object f rom the pixel input is required. In Section 2.5, the necessary 
methods called object detectors are presented. The detectors are based on neural networks 
which are also covered below to the necessary extent. The information about the object 
posit ion i n the image is as well needed for the next distance estimation principle. 

2 . 2 . 2 P o s i t i o n b a s e d d i s t a n c e e s t i m a t i o n 

Posi t ion based estimation is again heavily dependant on an actual camera state. In compar­
ison to the first method, it requires more information about the exact posit ion and rotat ion 
of the camera. The m a i n restrict ion of this est imation procedure is that it assumes the 
objects are located on a flat surface. The significant point i n the image is a point of the 
object's contact w i t h the ground. Therefore, there is no obligation to a person's height or 
posture, al though the person s t i l l needs to be recognised in the image. 

The distance d is defined as 
d = a-tan9 (2.3) 

where a is camera alt i tude and 9 is the angle of the observed object's contact w i t h the 
flat ground and camera's alt i tude plane, as demonstrated by Figure 2.3. The angle can be 
deduced from 9 = 9C — 9Qbj, 9C is the angle of camera direction, and 9Qbj is the angle of 
camera direction and the object's contact point . The camera posit ion and rotat ion can be 
obtained f rom addi t ional sensors and systems onboard. However, 9Qbj needs to be computed 
from the data. P r o b l e m schema shows that 

9obj = t a n " 1 (^J^j (2-4) 

where / is the focal length of the camera, h is the sensor height, and y is the distance 
from the bot tom of the sensor to the object's ground contact point P. The equation (2.4) 
assumes that the camera's lateral axis, or pi tch axis, is paral lel w i t h the ground flat plane. 
In order to avoid using the focal length, it can be expressed as 

/ = 2 ~ t a ^ A ' ( 2 - 5 ) 

9r is the half-angle of the camera's field of view angle, thus 9fov = 29r. T h e n , it is possible 
to deduce that distance 

(n ! (h- 2y) • t a n 0 r \ , , 
d = a • tan [ 9C - t a n " 1 ^ yj- . (2.6) 
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Figure 2.3: Pos i t ion based distance estimation geometry, created w i t h GeoGebra and based 
on the figure in [22]. 

2.3 A d d i t i o n a l data f r o m various sensors 

The m a i n focus here is on video captured f rom a drone; therefore, the intended camera 
placement is one attached to the aerial vehicle. Then , the camera is usually mounted 
using a gimbal which allows better camera stabil isation. Addi t iona l ly , it can also provide 
extra control labi l i ty i n some axes. The principle and terminology are based on typical 
aircraft rotations [2]. A drone gimbal often allows a camera adjusting i n pi tch axis, or more 
advance gimbal supports rotations in yaw axis as wel l . A l l of it w i t h the general location 
data mentioned above makes an apparent view on how and where the camera is posit ioned. 

Next important information is the parameters of the camera, not only the image spec­
ification, but also details about its lens, focal length, sensor size, and field of view. The 
camera is the pr imary source of data , but its posit ion i n surroundings is also essential for ex­
tract ing the objects' distances. Support ing sensors are the drone instruments for measuring 
the precise location in a l l three dimensions. 

2.4 N e u r a l networks i n image processing 

A neural network is a type of machine learning model . Its pr imary purpose nowadays is to 
understand speech and image and support us, humans, at various labour (medicine, science, 
repeating jobs). The real advantage of the networks shows up when the task to be solved is 
easy for people to perform but hard for people to describe formally to computers. Neura l 
networks consist of interconnected art i f ic ial neurons; effectively, these neurons are nodes in 
an oriented graph and often organised i n layers. In the context of computer vis ion, art i f ic ial 
neural networks are usually deep neural networks. These are neural networks w i t h mult iple 
hidden or inner layers. C o m p u t i n g system w i t h the structure like that vaguely mimics the 
biological neural network, thus the name neural network. Th is section draws main ly from 
book Deep Learning [16], other more specific sources are referenced when used i n the text. 
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The difficulties faced by the inabi l i ty to describe task formally suggest that neural net­
works need the abi l i ty to acquire the necessary knowledge by extract ing patterns from raw 
data. E a c h neuron acts as an independent comput ing unit that takes a set of input values, 
performs computat ion and produces a single output value. The computat ion uses internal 
neuron's parameters, weights and biases. The weight represents the relative importance of 
input value or connection value. The bias can shift the resulting value of the output . T h e n , 
neuron, also called perceptron, operates as follows: weights are applied to input values by 
f inding the dot product , 

m 

w • x + b = WiXi + b (2-7) 
i=l 

where w is the vector of weights, x is the vector of input values, and 6 is a bias [42]. The 
output, as shown i n equation (2.7) can vary a lot; therefore, its value is given to act ivation 
function. Th is function adjusts neuron's behaviour according to the f inal appl icat ion. A 
simple use-case for the desired output can be states ON (1) or OFF (0), depending on 
input connections. Various examples of act ivation functions can be found i n the following 
Section 2.4.2 alongside w i t h their typica l usages. 

Neurons can be connected i n almost any possible configuration, al though there are 
several well-researched architectures of the neural connections [51]. The most important 
ones, f rom this work perspective, are feed-forward networks. Where the information flows 
from the front to the back, there are no cycles nor loops i n the network. In general, two 
adjacent layers are usually ful ly connected. Feed-forward network architecture consists of: 

1. Input layer - holds the in i t i a l input data, it can be numeric data, p ixe l values of an 
image (frequently converted to greyscale), text or any digi ta l signal data (speech). 
The layer typica l ly holds data from the environment, no computat ion takes place 
here, the information is passed to the hidden layer. 

2. H i d d e n layers - are a l l the interconnecting layers between the input layer and the 
output layer. The layers hold information about recognised patterns, each hidden 
layer can perform different computat ion (specialised layers). 

3. O u t p u t layer - provides results based on outputs of a l l previous layers, it can be a 
discreet value (affiliation to a part icular class), or a continuous value (probabil i ty) . 

This architecture facilitates straightforward training, tuning the weights and biases, of 
the network. Feed-forward neural networks are usually trained w i t h back-propagation, a 
popular supervised learning method. 

2 . 4 . 1 C o n v o l u t i o n a l N e u r a l N e t w o r k s 

E q u a l l y important convolutional neural network ( C N N ) [24] is the improvement of machine 
learning methods which were mentioned above. Th is part icular method is pr imar i ly used 
for image processing but can also process other types of input , such as audio or t ime series. 
In general, C N N s handle well any data which has a known grid-like topology. 

A s the name of the network suggests, it employs a mathematical operation called convo­
lut ion. The input data is fed through convolutional layers instead of normal ones, meaning 
not a l l neurons are connected to a l l neurons. E a c h neuron only connects w i t h adjacent 
neighbouring cells f rom the previous layer, usually not more than a few. These convolu­
t ional layers also tend to decrease in size as they are deeper i n the network. Furthermore, 
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the pre-processing required for C N N s is a lot lower when compared to other architectures. 
A s i n feed-forward networks, data is filtered by manual ly engineered algorithms. Convo­
lut ion layers have the abi l i ty to learn these filters w i t h enough tra ining examples. For 
instance, the layers reduce the image into a structure which is easier to process, without 
losing features which are cr i t ical for getting an accurate predict ion. Besides the convolu-
t ional layers, C N N also incorporates downsampling layers, called pool ing layers. Th is type 
reduces the level of details for afterwards more unequivocal predict ion making . B o t h layers 
are l inked using R e L U as an activation function. 

A n example of underlying C N N architecture is shown in Figure 2.4. A l l the newly 
introduced layers are part of the diagram as they would be in real network design, the 
order of operations as shown is rather typica l for C N N s . 

Fully-connected 

Conventional Pooling 1 Convolutional Pooling 2 
layer 1 layer 2 

Figure 2.4: D i a g r a m shows the fundamental architecture of the convolutional neural net­
work [49]. It consists of convolutional layers, subsampling layers also called pool ing layers, 
and ful ly connected feed-forward network layer at the most right which predicts the final 
category for input . 

C o n v o l u t i o n 

In machine learning applications, convolution as a front operation extracts and preserves 
essential features from the input dur ing the learning stage. T h e operation takes as the 
input a mult idimensional array of data, and the kernel which is a mult idimensional array 
of parameters. 

F inal ly , an image is a two-dimensional array therefore for an input image / and a two-
dimensional kernel K of size m x n convolution [16] is 

S(i,j) = (I * K)(i,j) = (K * = ]T - m, j - n)K(m, n) . (2.8) 
m n 

The formula is straightforward to implement and well -known i n image processing. However, 
when it comes to pract ical usage, machine network libraries often implement a related 
function called the cross-correlation. It is the same as convolution but without f l ipping 
the kernel and frequently s t i l l refers to that as convolution. A pract ical example of the 
operation for a two-dimensional 3 x 3 kernel applied to a two-dimensional array of size 5 x 5 
is i l lustrated i n Figure 2.5. 

Each convolutional layer holds the self-obtained characteristics. W h e n the network 
tries to predict an output, this layer type indicates if the feature is included in an input 
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Figure 2.5: A n example of a convolution operation from [9], a kernel at the top in grey, an 
input array i n blue, and a result i n green. 

or not. Last ly , the ful ly connected feed-forward layers predict the output of network based 
on presence or absence of the features. The features are a more abstract concept of a l l the 
i n d i v i d u a l pixels of an image. Front layers tend to carry information about fundamental 
aspects such as edges and their orientation. G o i n g deeper into the network, layers holds 
more and more abstract characteristics. They detect the object as a whole and understand 
its image representation better. This brings efficiency to the terminal layers but also enables 
more precise predictions regardless of infinite variations of objects sizes and angles it was 
captured from. 

P o o l i n g 

Downsampl ing layers called pool ing layers generally succeed the convolutional ones. Pool ing 
is a method to filter out the level of detai l , by reducing the input size of the layer which 
comes next. The goal is to scale down the dimensionality of each input matr ix but retain 
important information. E a c h pool ing defines a neighbouring window of a given size which 
is downsampled to a single value. There are a few commonly used types of funct ion. Max 
pooling takes the largest element from the set feature subregion. Besides that, average 
pooling could take the average of a l l elements. Analogical ly , output t ing sum of a l l elements 
in the subregion is called sum pooling. Two of the types used i n C N N s are shown i n Figure 
2.6. 
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A process of adjusting the pool ing layers can reduce the computat ional power needed, 
as dimensionality decreases for following layers. The drawback, of course, is losing the 
possibly significant details which might improve precision. Hence, max pool ing also helps 
to suppress noise from its input and can deliver better results than, for instance, average 
pool ing [44]. A n o t h e r expected benefit of pool ing is persisting the necessary dominant 
features in rotat ional and posit ional invariant manner. 

12 21 86 1 
8 51 19 38 

35 28 76 95 
54 15 42 63 

pooling w i t h 2x2 window and stride 2 

if max pooling 

if avarage pooling 

51 86 

54 

23 36 

33 69 

Figure 2.6: P r a c t i c a l example of different pool ing operations. 

2 . 4 . 2 A c t i v a t i o n f u n c t i o n s 

A c t i v a t i o n functions [18] add non-linear transformation, which enables neural networks to 
perform better and learn more complex patterns. T h e y sit in between the raw output of 
the current neuron and its output going to the next layer. Another aspect of them is that 
the function has to be incomplex to compute as it must be calculated over and over for 
sometimes mil l ions of neurons. The important non-linear functions, w h i c h are normal ly 
used in image classifiers and C N N s , are listed here: 

• tanh - Hyperbol i c tangent is usually used as act ivation for hidden neurons, its values 
are zero-centred and set between — 1 to 1. Th is helps to make the learning of neurons 
much easier. It is very s imilar to a popular sigmoid function, also known as a logistic 
function. However, bo th of them are computat ional ly expensive: 

f(x) = tanh(x) . (2.9) 

R e L U - Recti f ied Linear U n i t is the most widely used act ivat ion funct ion nowadays. 
S imi lar ly to tanh, it is part of hidden layers, especially implemented right after con-
volut ional ones. O n the contrary, the m a i n advantage of the funct ion is its simplicity, 
using just basic mathematical operations. The efficiency allows the network to con­
verge faster; therefore, R e L U is a go-to function for an arbi t rary problem. A l t h o u g h , 
it has some disadvantages, for example, the dying R e L U problem [28] which for some 
cases can be suppressed by Leaky ReL U version of the function (gives proport ional ly 
small negative output for negative input ) . R e L U gives an output of x if x is positive 
and 0 otherwise: 

„, , f 0 for x < 0 , 
f{x) = { . " (2.10) 

I x ior x > 0 . 

Softmax - This funct ion often outputs overall predictions of a neural network. Where 
the output is normalised by the sum of a l l the outputs, which gives a value between 0 
and 1. For instance, the result of softmax can be directly interpreted as the probabi l i ty 
of a part icular class i n the context of classifiers. Hence, the function can handle 
yielding probabilit ies for mult iple categories. 
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Besides the listed act ivation functions, other ones can be used as well , which depend on 
the data and intended applicat ion. W h e n bui ld ing a model and t ra ining a neural network, 
the choice of the right function is crucial . Often, experimenting w i t h different act ivation 
functions might lead to much better performance. Researchers s t i l l br ing new proposals 
for the task, promising replacement of R e L U could be seen i n Swish [33] funct ion. The 
final choice for act ivation function is generally influenced by a problem domain and the 
designer's experience. 

2 . 4 . 3 W e l l - u s e d C o n v o l u t i o n a l N e u r a l N e t w o r k s a r c h i t e c t u r e s 

The arrangement of convolutional layers and their properties are evolving across t ime, which 
resulted i n many popular network architectures. The networks compound of many diverse 
layers sizes and incorporate complicated operations i n pursuit of achieving the best results. 
They are slowly becoming just tools to get the job done, and systems often treat them 
as black-boxes. The fundamental performance of each model replaces the importance of 
knowing and understanding its internal structure. For instance, uti l ised models include 
A l e x N e t , V G G , Inception or ResNet . They are usually incorporated into the frameworks 
i n order to get their most optimised versions to end-users. 

The mentioned designs, as well as other ones, form a fundamental core of object detectors 
covered in following Section 2.5. The overall history of a l l different architectures is evolving, 
and new innovative layer arrangements are frequently researched. T h e y might be intended 
as both general purpose ones or narrowly focused for a part icular task where they can excel 
and beat human craftsmanship. Table 2.1 illustrates that the commonly used C N N s can 
differ from each other by accuracy but also by the size of each model . The fact, how large 
the model is, determines its eventual computat ional complexity and plays a crucial role in 
the f inal product ion applicat ion. It is always the speed vs accuracy trade-off; the used table 
is just an example from one of the deep learning frameworks. The applications may r u n 
the inference for each one of them using straightforward calls that can give programs an 
added value for the user. 

The models are also peeled off their t ra ining envelopes, which speed up the weights 
setting up phase. The extra processing allows the back-propagation of the errors while 
processing the t ra ining samples. W i t h o u t a l l this, they are efficient and prepared to infer 
the knowledge they gathered f rom a t ra ining dataset. Next , the number of parameters, the 
depth, or inference processing t ime are yet another defining factors for the C N N s pract ical 
applicat ion. 
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M o d e l Size Top-1 acc Top-5 acc Parameters D e p t h 

Xcept ion 88 M B 0.790 0.945 22,910,480 126 
V G G 1 6 528 M B 0.713 0.901 138,357,544 23 
V G G 1 9 549 M B 0.713 0.900 143,667,240 26 
ResNet50 98 M B 0.749 0.921 25,636,712 -
R e s N e t l O l 171 M B 0.764 0.928 44,707,176 -
R e s N e t l 5 2 232 M B 0.766 0.931 60,419,944 -
ResNet50V2 98 M B 0.760 0.930 25,613,800 -
R e s N e t l 0 1 V 2 171 M B 0.772 0.938 44,675,560 -
R e s N e t l 5 2 V 2 232 M B 0.780 0.942 60,380,648 -
InceptionV3 92 M B 0.779 0.937 23,851,784 159 
Incept ionResNetV2 215 M B 0.803 0.953 55,873,736 572 
Mobi leNet 16 M B 0.704 0.895 4,253,864 88 
M o b i l e N e t V 2 14 M B 0.713 0.901 3 ,538 ,984 88 
DenseNet l21 33 M B 0.750 0.923 8,062,504 121 
DenseNet l69 57 M B 0.762 0.932 14,307,880 169 
DenseNet201 80 M B 0.773 0.936 20,242,984 201 
N A S N e t M o b i l e 23 M B 0.744 0.919 5,326,716 -
N A S N e t L a r g e 343 M B 0.825 0 .960 88,949,818 -

Table 2.1: Compar ison of different C N N s architectures i n terms of their size and accu­
racy [8]. The accuracy (acc) was measured using the ImageNet dataset. 

2.5 Object Detec t ion — object local isat ion and classification 

The state-of-the-art detectors are described i n the next few sections. Inspiration for to­
day's algorithms originated f rom the i n i t i a l paper which proposed a combination of region 
proposals w i t h a convolutional neural network, also known as R - C N N [15] or Region-based 
Convolut ional Network. A l l other m a i n detectors architectures buil t upon this idea and 
incrementally improved each previous architecture's precision and performance. 

The goal of an object detector is to f ind a boundary box that contains an object and 
then classifying the located object, an example of results can be seen i n Figure 2.7. To 
summarise, this was an i n i t i a l approach of the first available algorithms which integrated 
convolutional neural networks i n detection. R - C N N was demanding a lot of computat ional 
power to do so as a result of many redundant operations. The follow-up architectures fixed 
one problem after another to gain better performance. Popular methods to locate mult iple 
objects i n a single image are summarised i n this section below. 
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Figure 2.7: A n example of output images f rom an object detector w i t h various detected 
objects [40]. Showing bounding boxes for each detected object w i t h its type and confidence 
score (from not confident - 0.000 to very confident - 1.000) 

2 . 5 . 1 R - C N N , F a s t R - C N N , F a s t e r R - C N N 

Object detection is effectively f inding regions w i t h different objects i n the image and clas­
sifying them as i n d i v i d u a l segments, i n the same way, R - C N N [15] performs l i teral ly that. 
The previous generation of detectors was a sophisticated collection of specific methods to 
cover a l l the different aspects of an image. R - C N N authors proposed a much more straight­
forward and scalable approach. They combined region suggestions and the breakthrough 
algorithms [23] from convolutional neural networks field. 

R - C N N detector is organised into three m a i n modules, as shown i n Figure 2.8. The first 
extracts region proposals by using selective search method without an obligation to know 
what exactly is i n the actual region. T h e second part wraps the proposals pixels to fulf i l 
constraints of C N N which then obtains defining features. The f inal stage is composed of 
a support vector machine ( S V M ) that classifies whether it is an object and to which class 
it belongs. Addi t iona l ly , resulting bounding boxes can be tightened by linear regression, 
so the coordinates suit better the actual dimensions of the objects. The cr i t ica l drawback 
of this solution is that the last two parts are executed for each proposed region. However, 
there are no doubts about the genuine accuracy of R - C N N , w i t h an improvement by more 
than 50% relative to the previous algorithms. 

R - C N N : R e g i o n - b a s e d C o n v o l u t i o n a l N e t w o r k 

1. Input 2, Extract region 3. Compute 4. Classify 
image proposals (~2k) C N N features regions 

Figure 2.8: R - C N N object detection method proposed in [15], showing the outcomes of the 
input image processing dur ing the detection stages. 

The number of generated regions for the method is around 2000 category-independent 
proposals [15] for an average input image. Every one of them requires a forward pass of the 
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C N N , and that could be a computat ional ly complex task. Moreover, models included in 
R - C N N are trained separately, which makes the learning phase hard too. A n improvement 
was then inevitable, a new design of Fast R - C N N [14] tackled both these issues. 

Fast R - C N N s t i l l generates a set of object proposals then passes the image through 
C N N only once. Th is development was achieved w i t h a new algor i thm known as Region of 
Interest (Rol) pool ing that allowed a shared computat ion over the proposals. It effectively 
shares the forward pass of the convolutional network, and the output features for each 
region are obtained by selecting a corresponding region of the convolutional feature map, 
as shown in Figure 2.9. Specifically, for each object proposal , the R o l pool ing layer extracts 
a fixed-length feature vector. Furthermore, the number of models is also reduced w i t h the 
intention of s impl i fy ing the t ra ining process and fine-tuning each. The original S V M is 
replaced by a softmax classifier where their bo th performed equivalently. T h a t a l l led to 
more unified training, rather than having the three t ra ining stages of the first R - C N N . 

Deep 
ConvNet 

Rol 
—^projection 

C o n v 
f e a t u r e m a p 

Rol 
pooling 
layer 

0 u f p u t s : bbox 
softmax regressor 

^ F C c • FC 

FCs 

Rol f e a t u r e 

v e c t o r For each Rol 

Figure 2.9: Fast R - C N N object detection method, showing the improved architecture w i t h 
the shared convolutional neural network (Conv feature map) and a much straightforward 
tra ining process, proposed i n [14]. 

B o t h proposals are s t i l l suggesting to use selective search that is a complicated and slow 
algori thm. M ore important ly , this part of the detector was identified as the next bottleneck. 
Therefore, it led to the succeeding architecture called Faster R - C N N [40]. Selective search is 
replaced by already in place convolutional network, reusing it to search for region proposals 
as wel l . A one C N N which helps to f ind an object and classifying i t , also enabled tra ining 
only a single model . The improvement is pushing R - C N N detectors family towards the 
faster single-pass detectors. It is accomplished by a ful ly convolutional network which is 
added after the features extract ion step, creating the independent region proposal network 
or R P N . The idea behind the R P N is that it moves a s l iding window over the feature map 
and proposing the bounding boxes and scores for them. These bounding box proposals are 
afterwards examined even further to determine how likely they really include an object. 
The picked s l iding windows should accommodate the objects of certain common aspect 
ratios and sizes, then these are also called anchor boxes. 

2 . 5 . 2 M a s k R - C N N 

The previously covered methods are detecting an object, and the result is a rectangular 
bounding box, more specific its coordinates. M a s k R - C N N [19] added to the m i x complete 
binary map as a more granular result. The detector predicts, for each pixel i n the input 
image, if it is part of the object or not. 
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The new architecture direct ly adopts both stages from previous improved R - C N N net­
works, namely the R P N network and following class predictor. However, M a s k R - C N N 
outputs a b inary mask for each proposed region. Th is is achieved by another convolutional 
network added in paral lel w i t h the second stage of the original design. T h e extra branch 
predicts segmentation masks i n order to separate the objects from their background. 

The authors soon realised that the regions of the feature map selected by R o l pool ing 
in prior Fast R - C N N were sl ightly misaligned. The level of pool ing precision needed for 
bounding boxes was much lower than one needed for the pixel segmentation. R o l pool ing 
is using quantisation when downsampling a feature map that causing the misalignment 
between regions i n the input image and the extracted features. T h e classification is yet 
robust enough to compensate for these smal l translations. Nevertheless, this negative effect 
on the segmentation had to be handled by a new method called RoIAlign. In R o I A l i g n , a 
sampled point is computed by bilinear interpolat ion from its neighbourhood, to get a more 
precise b inary map predict ion and avoid the problematic rounding of R o l pooling. 

2 . 5 . 3 S i n g l e S h o t M u l t i B o x d e t e c t o r 

Single Shot M u l t i B o x Detector [26] or S S D is one of the next-generation architectures of 
object detectors. In contrast to R - C N N based detectors, S S D focuses on a single forward 
pass detection from the beginning hence its name. Outs tanding performance w i t h low 
computat ional power required is a key to real-time object detection. 

SSD skips the process of generating object proposals and instead sets default boxes w i t h 
various aspect ratios and scale. The architecture is composed of several convolutional layers 
or filters. T h e n , the outstanding high accuracy is obtained by delivering predictions at dif­
ferent scales of feature maps as well as at diverse aspect ratios. Th is led to improvements in 
low-resolution input images correspondingly. The one convolutional neural network concept 
also makes it easier to t r a i n and creates better ground for optimisations. S S D design s t i l l 
competes rather well against previous cut t ing edge object detectors, but it is much faster. 

2 . 5 . 4 Y O L O , Y O L O 9 0 0 0 , Y O L O v 3 

A n approach, which was introduced by this line of detectors, is significantly unlike classifier-
based systems. It tries to process the entire image as a whole, and this way, predictions 
can derive information from the global context i n the image itself. Y O L O , which stands 
for you only look once, is therefore another example of a single-pass detector. It has got 
much popular i ty and aims to be a versatile solution for any system that demands object 
detection. There are three m a i n sequential versions of the detector where each is improving 
part icular deficiencies of its predecessor. Moreover, the 4th i teration of the detector [4] was 
published just recently, this t ime by a different group of authors. The architecture is fast 
and yet precise, enabling real-time operation capabilities, and accuracy reaches the results 
of far more complex models. 

The architecture details, shortly explained i n this very paragraph, are gathered mostly 
from the original paper You Only Look Once: Unified, Real-Time Object Detection [36]. 
The goal was simple, to create one neural network and feed it w i t h an image, then get the 
detection done i n a single-pass thus the network output is a collection of labelled bounding 
boxes. Th is brings to a m i x main ly a problem of how to t ra in the model such as that. 
Authors of Y O L O came up w i t h new methods to tackle the d i lemma. F i r s t , they had to 
define a structure of the single-pass output . It consists of many predictions and accordingly, 
their confidence score. N e u r a l networks can output these many values without any prob-
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lems, for instance, ImageNet works w i t h predictions for hundreds of different classes. To 
summarise, Y O L O transforms the problem of detection to a problem where an input image 
outputs the corresponding tensor. T h i s tensor encodes a l l the possible object predictions as 
the separate sets of values which represents location, class and confidence properties. A n 
i n d i v i d u a l image is cut into S by S gr id then each of these gr id cells is responsible for B 
bounding boxes, the boxes centres fal l in that cell . The box details involve five attributes 
altogether: confidence value, x coordinate, y coordinate, w i d t h and height. In addi t ion , ev­
ery cell determines C class probabilit ies which means it predicts only one object regardless 
of the number of boxes B. The f inal output tensor Y of the Y O L O architecture is then 
defined as 

Y : S x S x (B *5 + C) . (2.11) 

For example, a cell i n Y O L O implementat ion, trained on P A S C A L V O C dataset [10], has 
two bounding boxes, for each the 5 values, and it holds 20 different class probabilit ies. The 
used gr id size is 7, f inal tensor is 7 x 7 x 30, which prompts neural network to generate 
about 1500 output parameters. 

A Y O L O network has 24 convolutional layers, or 9 for its fast version, followed by 2 
fully connected layers. The t ra ining process of the proposed network is more important 
than the further details about the structure which are covered well by the original paper. 
F r o m the definit ion of the output tensor, only one bounding box is responsible for object 
detection. The right box is selected based on the m a x i m a l s imilar i ty w i t h the ground t r u t h 
from a t ra ining set. Boxes specialise at predict ing specific sizes and aspect ratios this way. 
The architecture optimises for a simple sum-squared error between the output and the 
ground t r u t h . Subsequently, the loss calculation adds together classification, localisation 
and confidence loss. It weights a l l the errors equally, which might lead to instabi l i ty during 
t ra ining. Therefore, the authors use two extra parameters A c o o r d and A n o o b j , the first 
to increase a box posit ion loss and the second to decrease confidence loss of a box that 
only contains background. The labelled images are converted to tensor representation 
accordingly. The right class is assigned to a cell which includes the centre of an object. 
A cell's box w i t h an object and the highest I o U , see Section 2.5.5, gets its confidence 
increased, a l l other boxes get it decreased. The coordinates of the box, which its confidence 
is being increased, are also adjusted to match the ground t r u t h . Th is high-level description 
of loss funct ion demonstrates the ideas behind the method, the equations describing the 
whole error ar i thmetic can be found i n [36]. The network t ra ining process addit ional ly uses 
pre-training on ImageNet, stochastic gradient descent w i t h decreasing learning rate and 
necessary data transformations. The tensor represents a raw output, hence the predict ion 
sets are effectively filtered by a m i n i m a l confidence threshold and reduced by removing the 
duplicates. If the cell contains a bounding box w i t h high enough confidence score, then the 
box class is decided based on the cell class probabilit ies. F ina l ly , the box is the concluding 
object detection result. 

However, there are a few disadvantages to Y O L O architecture. It struggles w i t h detect­
ing smal l objects since the gr id cell can only predict a finite number of bounding boxes and 
just one class, which results i n ignoring some of these objects. Another essential flaw, which 
was discovered i n comparison to other systems, was misalignments in the localisation. The 
loss funct ion does not compensate for errors in smal l bounding boxes versus large bounding 
boxes. A l i t t le mismatch i n a large box is generally negligible, a l though the same shift in a 
small box has a much greater effect on I o U . Last ly, the model uses quite rough granularity 
of features as it downsamples the input mult iple times. A s an i l lustrat ion, S S D architecture 
has higher accuracy while s t i l l mainta ining the real-time processing capabilities. Despite 
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these facts, Y O L O ' s authors also tested the final model on artwork images, the network 
outperforms other object detectors. It is often interpreted as the model generalising better 
i n other domains or for unseen images. Certainly, the new approach is strongly present, 
but the used methods depend on previous conclusions and past work i n fields of image 
processing, especially in the object detection domain . In general, Y O L O has performed 
well in real-time applications, has got a high frames-per-second rate, but Faster R-CNN 
was s t i l l better w i t h respect to accuracy. 

Another paper f rom the same authors shortly followed a l l the work above. The sec­
ond version of the Y O L O object detector was revealed in YOLO9000: Better, Faster, 
Stronger [37]. The new version tries to a t ta in an objective of compensating for imperfec­
tions in the architecture, main ly improving localisation and sensitivity i n order to get a l l the 
detections. The first improvement was adding a pre-training phase to the used ImageNet 
model w i t h a bigger image resolution. The effect was an increase i n features extract ion and 
better overall accuracy when compared to the original design, pre-trained w i t h just the half 
image resolution. The model tuning w i t h the larger input size is rather t ime-consuming, 
therefore, it is done at the beginning of the t ra ining for only 10 epochs. Next , the au­
thors decided to experiment w i t h the anchor boxes, s imi lar ly to the Faster R - C N N ones. 
Quite a novel approach was extract ing the common boxes sizes and aspect ratios from the 
tra ining data by K - M e a n s Cluster ing method. However, the anchor boxes resulted i n a 
slight decrease in detection quality. The fu l l list of a l l incremental enhancement is nicely 
summarised in the paper, these are just the m a i n ones. 

The original Y O L O uses the fixed input resolution, w i t h robustness in m i n d the support 
of various input sizes was incorporated to the model for both t ra ining and inference. The 
only constraint is that the image size should be dividable by 32, as the network is down­
sizing images by this factor. Th is is possible on the grounds that the network uses ful ly 
convolutional layers and parameters can be reused when used like that. The variable input 
size enables the model to be used w i t h smaller or bigger images to improve the processing 
speed or the accuracy, respectively. The hypothesis behind this is that the change acts as 
data argumentation, and the network is able to recognise various object sizes, as the object 
size inevitably change accordingly w i t h the image resolution. Th is way, the original dataset 
can be extended, moreover, it might prevent the over-fitt ing to some extend dur ing a large 
number of t ra ining epochs while looking at the images repeatedly. 

Next change is a custom network design as a backbone, introducing Darknetl9. The 
model has 19 convolutional layers, hence the name, and several max pool ing layers. It 
comes as an object detection network that can be a foundation for the next innovations. 
B y detaching the classification error back-propagation and the object detection error, Dark-
n e t l 9 has the abi l i ty to t ra in itself on both the detection datasets ( C O C O ) and also on the 
classification datasets (ImageNet). W h e n the image metadata includes a known class label , 
then the classification error is back-propagated as i n a regular classifier. However, when the 
image data is richer and includes a class label along w i t h its location, then both errors are 
back-propagated. The pract ical impl ica t ion could be a creation of object detector which 
can detect, for example, dogs but the enhanced classification labels their bounding boxes 
even furthermore w i t h the respective breed. 

Moreover, the authors showed the network could detect objects for which it has never 
seen the bounding boxes dur ing the t ra ining phase while encountered just their classes alone. 
Th is was main ly possible w i t h the defined structure of words and hierarchical classification. 
The words are sorted in a tree structure which goes f rom abstract root of physical object 
label to more and more specific labels down to specific leave labels, such as part icular 
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dog breed. The structure also solved the problem of t ra ining w i t h a dataset composed of 
less specific labels. In this case, the network can s t i l l give a high confidence inference for 
dog object while giving a less confident answer for its exact breed. W i t h the hierarchical 
classification, the architecture is capable of detecting more than 9000 classes that explain 
the name YOLO9000. 

The latest version of Y O L O v 3 [38] object detector was another incremental update 
and followed well the original message of the architecture: being extraordinari ly fast and 
accurate. It came w i t h just smal l improvements and changes in the design which reflect the 
recent breakthroughs in detection at the t ime. 

New network design is now ful ly responsible for feature extraction, as D a r k n e t l 9 is 
replaced by 53 layer Darknet53. T h e structure needs less floating point operations than 
state-of-the-art residual networks; however, achieves an a k i n accuracy much faster, authors 
claims about two times speeding up . The accuracy comes w i t h a price though as version 
3 is sl ightly slower than its predecessor. In general, the improvements helped Y O L O to 
achieve similar accuracy as Faster R - C N N and therefore f inally overcame S S D detector as 
well . Nonetheless, it is s t i l l a reasonable opt ion when speed matters. 

2 . 5 . 5 m A P ( m e a n A v e r a g e P r e c i s i o n ) 

M e a n average precision ( m A P ) serves as a metric to compare the accuracy of popular 
object detectors l isted above. Intersection over U n i o n (IoU) measures the overlap between 
2 boundary boxes. I o U w i t h a set threshold determines whether the predict ion is a true 
positive or a false positive. The m A P is an average precision among a l l different classes 
which system can recognise. Then , average precision is gathered using I o U over some 
threshold. If I o U value is above the threshold then the predict ion is considered as correct. 

2.6 Re- ident i f i ca t ion of person i n frames 

The re-identification or re- id problem is often related to mult iple cameras surveillance sys­
tems where the system needs to able to monitor a person's movement. This work intends 
to use only a single camera setup which makes the problem much more manageable. The 
implementat ion can depend on relative localisation constraints w i t h i n the frames, meaning 
the person cannot suddenly relocate from one side of one frame to another side of the next 
frame while the premise is that the frames are taken i n a short per iod of t ime. Besides, the 
system has to operate w i t h such a restriction wisely and consider a person leaving a field 
of view and then reappearing somewhere else as a va l id case. Th is section gives a solution 
for the system problem of connecting the location estimates for a specific person i n time 
w i t h the intention of assembling the trajectory of their movement. However, re- id can be 
difficult, but for the part icular proposed system, a false negative recognition is not a major 
flaw. The system would create a new identity for a person when the match is not confident 
enough, which results in the trajectory interruption. 

A Person re-identification task is the problem of identifying identical people across 
images i n t ime or across images f rom mult iple cameras. The re- id method extracts and 
compares the features of a person from an image w i t h the already saved features of other 
persons i n past images, and determines whether there is a match. It is a well -known 
problem in surveillance systems, and a l l the knowledge of the field can be clearly applied 
for the solution. Moreover, video recordings are usually taken from a distance that makes 
the video very s imilar to the one f rom drone's camera. In the context of this work, the 
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identification is a crucial part of the tracking mechanism which allow the system to match 
mult iple individuals w i t h i n camera frames in time. 

For instance, face recognition is not a val id approach as the people are captured f rom a 
significant distance. Instead, it is necessary to use information about their whole body look. 
Therefore, the methods, which allows the use of features such as body figure proport ion, 
clothing, or walking pattern, are better suited for this. The resulting a lgor i thm needs to 
take into account that people's images have very low resolution, the l ight ing conditions are 
unstable, and the background around them may change drastical ly i n t ime. The pose of 
people may vary too, and they can be part ia l ly or entirely occluded. A l l of this makes precise 
identification hard and challenging. The methods which can tackle the stated problem and 
help to b u i l d the f inal system are Rethinking Person Re-Identification with Confidence [1], 
AlignedRelD [29], [53], SORT a lgor i thm [3], [52], or pr imary image features comparison 
methods for example based on histograms. 
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Chapter 3 

System Proposal and 
Implementation 

Training people in video solution can be s imply described as estimating the distance to 
each i n d i v i d u a l i n a currently processed image. The estimate is further used to locate the 
i n d i v i d u a l relatively to a camera posit ioning system. This chapter consists of bo th hardware 
and software implementat ion parts of the proposed solution. The first few sections a i m to 
describe the targeted use case and its hardware, inc luding the important l imitat ions of the 
hardware. The choices for the hardware are also defined by used software toolki t , especially 
O p e n V I N O 1 software to take advantage of Intel N e u r a l Compute Stick 2, the U S B stick 
featuring a manycore vis ion processing unit . Its brief description and relevant usage are 
i l lustrated below, together w i t h other design choices. The essential part of Solut ion Design, 
Section 3.5, goes through the system architecture proposal . Then , the f inal realisation 
section, Section 3.6, analyses the parts of the f inal implementation. 

The almost like real-time processing is the goal here, however using restrictive hardware, 
advanced object detection, and identif ication methods may adversely affect this target. The 
more realistic solution of getting the locations of people in a frame would achieve results in 
subsecond t ime or achieving frames per second ( F P S ) rate i n the orders of ones per second. 
This is covered more comprehensively i n Chapter 4, which immediately follows. 

3.1 S imi lar works tack l ing these problems 

A l l the comparable systems are briefly presented i n this very section. The cr i t ical aspect 
of the discussed solutions here is the use of a single camera sensor as the m a i n source for 
examining the surroundings. A s proposed earlier, the monocular camera setup is quite 
popular i n the automotive industry. The camera as a sensor is a cheap multi-purpose 
detection device. 

Some of the key studies, which are by some means related to the overall problem of 
object tracking, are [32], [43], [46] and especially [22] which provides the basis for distance 
estimation methods, Section 2.2. They a l l use video from a camera to detect enclosing 
vehicles and est imating their distance i n order to assist a driver. The detection methods 
vary and are aimed, of course for vehicle detection. T h e y often use unique features of the 
environment such as the road which might be a notable restriction i n terms of using these 
proposed solutions. For example, f inding the posit ion of vanish line or the vanishing point 

1 O p e n V i s u a l Inference a n d N e u r a l n e t w o r k O p t i m i s a t i o n 
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in an image could be an essential clue which is based on road lines. B y knowing its accurate 
posit ion, it gives this approach much-needed precision over the t radi t ional pinhole camera 
principle. Another widespread technique across previous works was an object behaviour 
predict ion. A n object's trajectory is modelled to obtain the most l ikely future posit ion, 
based on its previous positions and mot ion . It sl ightly shifts the object tracking from a 
single frame processing to a more mot ion like analysis, where speed and movement direc­
t ion are the crucial factors depending on mult iple frames sequence. Nonetheless, the later 
proposed system intends to process only the current image to mainta in its own complex­
ity. In addi t ion , papers include lots of well covered past work surveys that make them a 
valuable information source. Besides vehicles centred works, there are several more general 
ones dealing w i t h distance estimation [7], [45]. B o t h articles relate to depth or distance 
estimation, respectively. In the case of the second one, the distance is useful information to 
orient i n 3D space, i n part icular , to navigate. A camera on a drone provides supplementary 
knowledge about the environment for the purpose of much stable flight and landing. 

Another analogous system could be provided w i t h a drone itself, manufactures often 
include better or worse tracking systems to capture improved aerial footage. The D J I 
is a world-leading manufacturer of these smal l aerial vehicles, further i n this chapter the 
data from D J I drone is handled as well . The early solutions used a G P S beacon worn 
by a tracked subject, often it was the drone controller itself. G P S information supplies 
unprecedented accuracy but lacks any intelligence needed for obstacle avoidance. Nowadays, 
the tracking uses both the visual sensors and G P S information to keep itself focused. It 
usually works well w i t h a range of popular objects like persons, bikers, cars, or others. This 
conception mimics , to some extent, the desired intended applicat ion or at least its in i t i a l 
steps. However, the so far briefly described combination of the two purposes for intuit ive 
f lying action, described solution from D J I is called Act ive Track system [12]. 

The next available sources are examples of par t ia l problems solutions which could be 
the most influential for the proposed system below. M a i n l y , the independent projects show 
ways to track either people or other objects i n the image, not necessarily taken f rom a 
higher viewpoint . They use a variety of object detection methods and r u n it efficiently on 
the hardware, namely Raspberry P i smal l single-board computer. Moreover, an accelerator 
device regularly supports the l imi ted performance of such a compact board. The complex 
task of the object detector inference is offloaded to this dedicated device [17] [41]. There 
is undoubted performance improvement using the accelerator chip overrunning the whole 
detection network just on C P U . These found blog posts generally create a comparative idea 
that tracking would be possible even w i t h lower performance hardware. Complementary to 
this, i n [21] for the sake of strengthening Raspberry P i ' s performance, the remote machine 
learning A P I can be uti l ised to get an inference of an object detector network. W h e n the 
A P I is accessed over a common U R L request, the detection is as simple as it could get. A n 
input image is attached to the request, and the response would necessarily be the detected 
entities. S imi lar to a local ly ran detector, it returns i n d i v i d u a l bounding boxes, encoded in 
a standard J S O N format. 

In terms of the vis ion accelerator units , there are several affordable devices available 
on the market, usually i n the shape of a U S B stick: C o l a r 2 U S B Accelerator by Google, 
P L A I ' ^ P L U G U S B art i f ic ial intelligence accelerator chip by Gyr fa lcon Technology, Jetson 
Nano a pocket-size board module by N V I D I A . A n d the list is completed by perhaps the 

2 h t t p s : //co r a l , ai/products/accelerator 
3People Learning Artificial Intelligence, https://www.gyrfalcontech.ai/solutions/plai-plug/  
4https://www.nvidia. com/en-us/autonomous-machines/embedded-systems/jetson-nano/ 
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most popular U S B device Intel N e u r a l C o m p u t e S t i ck 5 , covered below i n Section 3.2.2. 
A l l have a vis ion processing unit capable of accelerating machine vis ion algorithms, for 
instance, convolutional neural networks which are the backbones of the advanced object 
detection methods. Secondly, the object detection as a service is again offered by mult iple 
A P I provides: The Machine Learning A P I 6 by NanoNets , V i s i o n A I 7 by Google C l o u d , 
Watson V i s u a l Recogni t ion 8 by I B M , A m a z o n R e k o g n i t i o n 9 . E v e n though, this approach 
is only stated as an alternative for the overall picture, it is not considered any further in 
this solution. 

3.2 P l a t f o r m — T h e chosen hardware 

A n idea for the whole work is to create a flexible and lightweight positions tracking system 
for aerial footage. Requirements for such a system are that it should be compact enough and 
yet s t i l l powerful to handle advanced computer vis ion tasks. A s mentioned i n the previous 
section, there are a few proven setups for object detection on the card size computers. 
These t iny single-boards could be attached to an unmanned aerial vehicle ( U A V ) or, as 
it has been already mentioned, commonly known as a drone. A n appl icat ion intended for 
this supplementary hardware payload should be able to perform the inference of a deep 
neural network and transmit the results over for further processing. T h e well established 
and advised combinat ion to use for the case is Raspberry P i 4 smal l computer w i t h Intel 
Neura l C o m p u t e Stick 2 accelerator unit , bo th shown i n Figure 3.1. The supervisor of this 
thesis lent the recommended computat ional devices i n order to test the f inal solution. 

A l t h o u g h , the f inal solution for tracking people is wri t ten i n P y t h o n programming lan­
guage as a generic mul t ip la t form applicat ion, only dependant on the specific constraints 
where it is essential. Therefore, extending the appl icat ion to a different type of accelerator 
can be quickly done by adapting the specific single method implementat ion, which was 
responsible for ut i l is ing the previously used unit . 

F ina l ly , the second part of the applicat ion receives locations and ensures a user can 
freely review them. It performs a visualisation of trajectories based on the obtained relative 
coordinates. Th is is the brief definition of the targeted plat form, and more details follow. 

3 . 2 . 1 R a s p b e r r y P i 4 

Raspberry P i is a smal l single-board computer which is dedicated for educative purposes in 
schools. Despite that, it is quite popular for prototyping and research work or even used in 
robotics. A l l the technical details i n this section are sourced from [34], the latest Raspberry 
P i 4 family, which is the pr imary testing device for the work here, part icular ly M o d e l B w i t h 
4 G B of R A M , and an insertable 64 G B M i c r o - S D card as internal storage. The board can 
be managed by the officially supported operating system (OS) called Raspbian [35]. The 
guides and setting up of the computer is straightforward as there is a focus on teaching and 
opening up the process to the less technical publ ic . The 4th generation obviously includes 
wireless connection, after the i n i t i a l configuration of a W i - F i adapter, the development could 

https://ark. intel.com/content/www/us/en/ark/products/140109/intel-neural-compute-stick-
2.html 

6https://nanonets.com/ 
7 h t t p s : //cloud.google.com/vision 
8https://www. ibm.com/cloud/watson-visual-recognition 
9 h t t p s : //aws.amazon.com/rekognition/ 
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(a) R a s p b e r r y P i 4 [48] 

L 

(b) I n t e l N e u r a l C o m p u t e S t i c k 2 [20] 

Figure 3.1: I l lustrations of Raspberry P i 4 (schematic blueprint) and Intel N e u r a l Compute 
Stick 2, both devices are displayed w i t h their realistic dimensions, of to ta l w i d t h 85 m m 
and 72.5 m m , respectively. 

continue remotely. The O S is based on a Debian L i n u x dis t r ibut ion, and besides the minor 
modifications, the system can be operated the same way as any other L i n u x system. The 
community has grown over the previous board generations and offers necessary support. 
Raspberry 4 embeds a quad-core A R M Cor tex -A72 processor and can be powered from 
a battery pack or a drone internal power circuit v ia a U S B - C port . In terms of power, 
the inserted Intel N e u r a l Compute Stick has to be taken into consideration, and a needed 
current should be supplied. 

3 . 2 . 2 I n t e l N e u r a l C o m p u t e S t i c k 

Intel N e u r a l Compute Stick ( I N C S ) , also known as M o v i d i u s N e u r a l C o m p u t i n g Stick, is a 
low-cost U S B stick that has inside a M y r i a d vis ion processing unit ( V P U ) . These k i n d of 
processors are a reasonably new concept of microprocessors which can accelerate a various 
computer vis ion task, often seen i n the robotics applications. The Intel M o v i d i u s V P U is as 
well embedded i n many smart devices on the market for automated analysis and a better 
understanding of the real wor ld around us. I N C S itself is enhancing the capabilities of a 
regular m a i n processor from the host computer. The stick and its V P U is optimised for the 
models' inferencing, for instance, the convolutional neural networks. In general, it can be 
an alternative to a c loud vis ion comput ing service. 

There are two generations of I N C S and the second one from 2018 accelerates the pro­
posed solution later on. The I N C S 2 unit can be powered direct ly f rom a U S B 3 port of 
the host device. The V P U is uti l ised for the interface through Intel's O p e n V I N O Toolkit 
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which is introduced the next section. A pre-trained model can be loaded to the chip for 
inferencing either from the targeted Raspberry P i or any laptop. The toolkit helps to relieve 
the user of a hardware specific configuration and instead let them focus on the applicat ion. 

3 . 2 . 3 O p e n V I N O 

O p e n V I N O is a set of tools to orchestrate the whole developing and deploying process of 
vision-oriented solutions on Intel's supported hardware. T h e toolki t is a set of versatile 
software to complete any image or video related project. It can not only help w i t h I N C S 
2, as it was already stated but, the tools are bui l t for much more hardware options, the kit 
supports Intel's F P G A init iat ive, Intel Graphics or even their t radi t ional C P U s . The deep 
learning or machine learning frameworks and formats are widely supported, namely Ten-
s o r F l o w 1 0 , C a f f e 1 1 , O N N X 1 2 the exchange format and others. The v i t a l aspect is though 
support for Raspbian , the toolkit includes guidelines on how to insta l l and configure every­
th ing on a resource-constrained device such this. T h r o u g h the experience, the guidance is 
sufficient but required a l i t t le amount of t ime. 

3.3 Inputs — T h e necessary data for t rack ing 

The objective i n this part is to answer a question of what data it takes to track people in 
the drone footage. The details in the section are based on the data samples provided by 
the supervisor of this work, notwithstanding the ideas might be applied to any source w i t h 
a s imilar range and flavour of data. 

General ly speaking, two separate data types include what is necessary for providing the 
applicat ion results. M a n y times discussed and analysed sensor is a camera, it gives the 
rich data which demand a high level of processing i n order to extract the knowledge of it . 
T h e n , a more state describing data is essential too; it defines the angles of the camera, 
its posit ion and other miscellaneous yet s t i l l crucial information. P r a c t i c a l examples of 
the available dataset well support a l l this and give better insides for each part . The used 
drone for data collection was an affordable m i n i drone D J I S p a r k 1 3 . Despite that small 
size, it is capable of capturing high-quali ty video and carries mult iple sensors for intelligent 
flight control , moreover it features a mechanical g imbal as well . Despite this, the following 
analyses are demonstrated on this type of device, but nonetheless, a considerable amount of 
the principals would be the same for other U A V s , especially the ones manufactured by D J I . 
The less portable parts are the descriptions of gathering the pieces of data f rom the specific 
logs of the drone. Whereas the structure of information and its scope is comparable to the 
other DJ I ' s drones has not been determined, but one can assume a high level of s imilar i ty 
w i t h i n the same brand. 

The drone has its own controller, which is connected to a smartphone and the operation 
is administered by installed D J I G O 1 1 appl icat ion. The applicat ion is responsible for video 
recording and flight tracking. A flight log can be extracted for each drone's take-off, the 
recorded video samples and the entire flight log file specifically. The flights, dur ing which the 
samples were captured, are described further on. The flight journal incorporates assorted 

1 0 h t t p s : //www.tensorflow.org/  
n h t t p s : / / c a f f e.berkeleyvision.org/  
1 2 h t t p s : //onnx.ai/ 
1 3 h t t p s : //www.dj i.com/spark 
https: //www.dj i.com/goapp 
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details about every possible drone component, w i t h the overall entries recorded several 
times per second. In summary, the extensive list of drone's states has to be filtered for the 
essential and the most accurate information which is then used for precise people tracking. 
This section deals w i t h where the data can be found and how are they structured, it extends 
Section 2.3 and gives a pragmatic view of the needed measurements. 

3 . 3 . 1 C a m e r a 

A camera is an excellent sensor to capture the environment around us. Nowadays, it is an 
important source of information for countless applications. The camera attached to a drone 
is the m a i n source for people tracking i n the proposed solution here too. Its image data 
is crucial for object detection and subsequently for re-identification of previously detected 
objects. A s a result of the past research, covered i n Chapter 2, pr imar i ly Section 2.4, the 
pixels i n the image can be well interpreted and understood by machines. The i n d i v i d u a l 
frames of video are processed to obtain the positions of objects, persons, in the image 
coordinates. A s mentioned, the coordinates define the bounding boxes around objects, to 
clarify, a l l this is done just w i t h image data alone. U p to this point , the input for the 
analysis is a camera stream, and the quali ty aspects are the high resolution and sharpness 
of the frames. 

Next , addit ional insides about the camera are required i n order to convert the object's 
positions from the pixel domain to their real locations relative to the camera placement. 
The sensors, among other things, responsible for intelligent flight assisting of a drone, are 
used to define accurate camera posit ion and rotat ion. The telemetry data reflects the 
drone's and also effectively the camera's physical posit ioning as well , more on that i n the 
following block. In contrast, not only the posit ion information is necessary, but the camera 
parameters as well . Unl ike the movement of the camera, which is constantly changing as it 
is attached to the vehicle, this information is associated w i t h the camera itself and remains 
constant dur ing the entire flight. The essential values for distance estimates evaluation are 
focal length and field of view of the used camera lens, then the camera sensor size. These 
specifications are based on the camera type; therefore, it should be quite straightforward to 
f ind them the related datasheets. For the unknown camera, the selected properties can be 
set by a cal ibrat ion process [6] and derived from the images of the cal ibrat ion chessboard. 
Another aspect is the image resolution, which is set from the image frame, and there is no 
need to include that i n the parameters. A l l the found values are passed to the proposed 
applicat ion by a configuration file at the solution start. 

According to D J I Spark Specification sheet [47], the mounted camera uses 1/2.3" C M O S 
sensor, w i t h dimensions of 6.17 m m x 4.55 m m . The lens has a field of view angle of 81.9° , 
and its focal length is 25 m m . A n example of the configuration file is shown in A p p e n d i x A . 2 . 

3 . 3 . 2 T e l e m e t r y — C a m e r a p o s i t i o n i n g 

The proposed solution tries to achieve people tracking in a video captured from a drone 
which implies that the camera is regularly moving. In comparison to a static camera, it 
is demanded to monitor this movement, and accordingly, the system should be able to 
adapt to new geometry caused by posit ion changing. Secondly, the positions related to 
a previous camera's locations should again be taken into consideration the new state for 
always displaying the relevant information. Thus , the requisite information is longitude and 
lati tude from the radio-navigation system and an az imuth measured by a compass. This 
defines the location of the camera and which direction it is looking. 
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For improving the distance estimation of the captured objects, the accurate posit ion 
based method from Section 2.2.2 requires an alt i tude of the camera as well as its t i l t 
towards the ground or p i tch . The camera should be i n a stable posit ion so that the readings 
from the sensors are as accurate as possible. The drone's camera is normal ly mounted to 
the vehicle w i t h a g imbal pivot . For the best recording capabilities, the g imbal can be 
mechanically controlled. Th is gives the camera a much-needed image stabil isat ion and 
reports the momentary camera rotations to the f inal applicat ion. If the g imbal supports a 
yaw axis rotat ion, the f inal az imuth has to consider this too as the camera's direction is the 
needed one. To summarise, the posit ioning data is dynamic dur ing the recording process: 
hence, it should be streamed together w i t h the frames. 

In terms of D J I Spark drone, a l l this information is l isted i n the log file and available 
through D J I M O B I L E S D K 1 5 A P I too. The desired Spark data includes [47]: a longitude 
and a lat i tude from G P S or G L O N A S S systems, an alt i tude measured by vis ion posit ioning 
system up to 8 metres then the G P S data is used, a drone's yaw rotat ion f rom the compass, a 
gimbal's pi tch rotat ion value, speed i n each of the axes. The alt i tude measurement accuracy 
is ± 0 . 1 m for the vis ion system, and ± 0 . 5 m for G P S . 

3.4 A d d i t i o n a l software — T h e frameworks and l ibraries 

W i t h an idea of not t r y i n g to reinvent the wheel, this section gives a comprehensive overview 
of a l l the convenient software solutions which are uti l ised for the f inal work implementa­
t ion . The foundation to every stated choice here was the implementat ion programming 
language, it was decided at the beginning of the project to use P y t h o n language as this 
developing environment is broadly used in academia and is well suited for the computer 
vis ion projects. The extra benefit is that I have been already famil iar w i t h this technology 
due to its versati l i ty and used it for several smal l assignments in the past. The support 
for O p e n C V visual data processing l ibrary is a matter of course among w i t h an excellent 
backing for convolutional neural networks frameworks, a l l briefly discussed in the next few 
paragraphs. A s well as O p e n V I N O offers its well-optimised A P I s for P y t h o n , besides the 
industry standard for fast computations the C + + language. The complete list of every 
used software w i t h their part icular versions is summarised i n A p p e n d i x B . 

V i d e o p r o c e s s i n g a n d a n a l y s i n g 

So far, the previous sections summarised the hardware requirements and available data , yet 
another essential point is the assessment of feasible libraries to assemble the f inal appl icat ion 
prototype. It is a good practice knowing which parts need to be worked on and which have 
been already figured out and are well implemented that they can be purely incorporated in 
the design. 

O p e n C V [30] is an open source computer vis ion and machine learning l ibrary. It is cross-
plat form too w i t h great support for mult iple programming languages. The l ibrary offers 
many ready to use algorithms for image and video processing, has convenient interfaces to 
work w i t h a video stream. T h e n , the transformations of stream's i n d i v i d u a l frames, pre­
processing, or basically, any needed standard operation upon image data are included. The 
data representation i n P y t h o n ' s O p e n C V module is covered by another package, N u m P y 1 6 

1 5 h t t p s : //developer.dji.com/mobile-sdk/  
1 6 h t t p s : //numpy.org/ 
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which is typical ly used for scientific computing. The package supplies addi t ional high-
performance array operations. 

The O p e n C V l ibrary from version 3.3 has got its own deep learning inference module 
the D N N 1 7 . It supports pre-trained networks from various frameworks and considerably 
accelerates the forward pass, even can employ a V P U of an accelerator or other chips 
which offers parallel execution. The process aims to be as simple as possible, the interface 
allows to load and r u n the selected network. However, inference outputs demand extra 
post-processing, especially i n the object detection sphere. The model support , to a great 
extent, overlaps w i t h what is supported i n the once covered O p e n V I N O . The f inal pool of 
implemented models is determined by ease of use and availabil i ty of the pre-trained model , 
and secondly by its inference support on the I N C S 2 accelerator. 

In general, the solution is using the pre-trained models which are proven to work well 
w i t h resource-restricted hardware. It focuses namely on Y O L O models as they have a great 
ratio of speed and accuracy, then experiments next w i t h S S D models. A l l are single-pass 
models w i t h computat ional complexity as low as possible. The extensive list of a l l used 
models is i n the experimenting chapter where the models are compared and discussed. A s 
for the designing part , the most important aspect is a fact that models are available and 
perform well w i t h used hardware. Moreover, the solution architecture should count and be 
prepared to work w i t h different methods and should also allow their smooth switching. 

E x p o s i n g a n d v i s u a l i s a t i o n o f t h e r e s u l t s 

The results are sequences of relative locations or coordinates that form trajectories which 
are updated continuously. Therefore, the overall requirements for visualisat ion l ibrary were 
f lexibil i ty of updates, ease of use, and ideally rendering into a web browser. Bokeh [5] is 
fulf i l l ing a l l of these w i t h a good performance and also adding interactive manipulat ion 
w i t h the resulting paths. It includes A P I s for data handl ing and management, which was 
an extra benefit too. The l ibrary offers good tutorials , even for the more advance use-cases 
which show numerous plot t ing options and high level of customisation. For completeness, 
there are also the countless other alternatives such as P y c a i r o 1 8 , M a t p l o t l i b 1 9 , or even the 
O p e n C V among its many other functionalities offers the methods to visualise data. 

Bokeh serves a web page that contains the resulting visualisat ion created by the l ibrary's 
interfaces which made the graphs accessible f rom anywhere after proper configuration. The 
results could be reshaped for a better view or exported w i t h the b u i l t - i n tooling, it handles 
a l l the zooming and moving at the client's browser. T h e work w i t h datasets and colour 
palettes are supplementing the broad range of features. 

The solution expects to transmit data from a drone side program for further processing 
to the second program. This could be achieved by exposing the information through R E S T -
ful [11] service at the drone side computer. Python ' s minimal is t ic web framework Flask [13] 
conducts exactly that, it quickly creates a simple service which serves the data. A service 
client can request the drone's system and obtain the resources by using the predefined 
addresses. 

1 7Deep Neural Network Module, https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV  
1 8 h t t p s : //pycairo.readthedocs.io/ 
1 9 h t t p s : //matplotlib.org/ 
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M i s c e l l a n e o u s p a c k a g e s a n d l i b r a r i e s 

P y t h o n environment comes w i t h a large standard l ibrary of different modules, extending 
the language by common data structures, algorithms, maths operations, b u i l t - i n types, t ime 
util i t ies, paral lel ism interfaces, operating system services and much other functionali ty the 
applications might require. O n l y a few relevant ones are briefly described i n this text, their 
functionality usually covers much more than the number of details stated here. The P y t h o n 
Standard L i b r a r y 2 0 is well documented, and a l l further information could be sourced from 
the referenced documentat ion pages. 

The applicat ion deals w i t h re-identification of the people i n t ime; therefore, the identity 
has to be represented i n a certain unique way. The standard implements U U I D s [50] (Uni ­
versally Unique Identifier) which can represent the temporary identifications for detected 
objects. These ids are afterwards replaced by previously recognised persons. In the same 
way, a logging facil i ty [27] is available f rom the standard, track event and statistics across 
the applicat ion r u n . This helps to monitor the implemented parts of the work and gives 
an inside look into i t . M a i n l y , how the i n d i v i d u a l submodules or threads communicate and 
count how much data they exchange, for example, how many persons were detected in the 
given frame. The format of logging messages contains the elements i n this order: creation 
time, logging level, name of the local thread which constructed the message, description of 
the message. 

The communicat ion w i t h the R E S T data resources is handled by the Requests [39] 
library. Th is enables the consumer program to create and send H T T P requests in order 
to obtain the necessary data. The A P I is elegant, simple and as obvious as possible, in 
agreement w i t h its documentation. 

3.5 So lut ion design 

The fundamental details and technologies, which the solution is going to be built upon, 
were a l l resolved earlier to frame its constraints. B y using a l l the knowledge f rom these 
requirements analyses, the solution design proposal is t ry ing to meet the goal of tracking 
people in the video from a movable camera. This has led to a gradual par t i t ioning of a l l 
problems into smaller and smaller fragments which continuously was revealing the solution 
contours. F ina l ly , the idea is to have two separate programs, one responsible for gathering 
and processing the inputs , and the second for collection what was prepared and answering 
the users calls while this architecture tries to accomplish the defined specification of the 
project assessment. 

The presented design here is a foundation for implementing the appl icat ion, it gives a 
general outline of the problems which have to be answered in code. It considers the hardware 
parts and the ways how to employ them into the system, what can r u n where. The C P U of 
the used Raspberry P i board enables concurrent execution so, independent problems can 
be parallelised. A significant port ion of the workload is passed to the mentioned accelerator 
unit . The second, server part , allows user to view the trajectories of monitored individuals . 
The implementat ion then reflects these designing choices which are a blueprint for the 
realisation, described later on. 

2 0 h t t p s : //docs.python.org /3/library/index.html 
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3.5 .1 S o f t w a r e a r c h i t e c t u r e 

The software architecture gets into the depth of the tracking people task for its better 
understanding, resulting consideration can also help you avoid or identify points of failure in 
the system. Consequently, the architecture blocks should represent the isolated components 
for which the solution is well known or straightforward to implement from square one. 

The two m a i n programs definit ion has been already mentioned, the On-vehicle part 
or applicat ion should r u n autonomously by using a smal l computer as a host. The video 
stream and necessary telemetry measurements flow into the system, then the applicat ion 
should transform the inputs into useful results. Th is is done by incorporat ing the object 
detector, the detection has been identified as the most complicated procedure; hence, it is 
given to the I N C S 2 accelerator. T h e results from that detector inference are transferred 
back and passed to a re-identification method where a l l the people, who appeared i n the 
past frames, are recognised. Alternat ively , when the person is unidentif ied, a new record 
is made instead for the profiles database. Thus far, the outcome is the bounding boxes 
of recognised people i n the current image w i t h their identifiers. The ids provide essential 
information to construct trajectories. For clarif ication purposes, a trajectory is a sequence 
of past locations and the current locat ion of a person w i t h a certain, uniquely assigned, 
identity or profile. 

The detection boxes are the base for a distance estimation a lgori thm, and these rectangle 
coordinates i n pixels are converted into the distance from the camera. The estimates are 
then interpolated into locat ion offsets w i t h respect to a physical posit ion and rotat ion of the 
camera, or the drone. The outcome from this system stage is a list of the distinct posit ion 
data for each person. For better insight, the whole architecture is i l lustrated i n the diagram 
in F igure 3.2. L a s t l y discussed segment is the propagation of the list w i t h locations to the 
second applicat ion where the data is cached and accessible through R E S T A P I . The server 
part can, at any t ime, request the processed output from the R E S T service. 

On-vehicle part 
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G E T Communication Bokeh Server 
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Figure 3.2: D i a g r a m of the proposed solution architecture. Showing the two m a i n applica­
t ion parts along w i t h the relevant internal submodules and their hierarchy. 
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A close look to the smaller Server part shows that its logic is composed of a commu­
nicat ion and processing part , and afterwards, the data is suitable for visualisation. The 
connection to the drone appl icat ion is handled by the H T T P requests v i a a predefined 
R E S T resource addresses. The used method for the request should be GET, according to 
the best practises. Th is way, the appl icat ion can receive the data and apply the translations 
if required. In case the camera was rotated, the previously detected locations have to be 
altered as the viewing s i tuation changed and new data are relative to this new state. 

The positions of people in the actual camera shot are constantly updated in the back­
ground of the server applicat ion. The underlying data of visualisation framework is streamed 
w i t h updates, and correspondingly, the user's view is seamlessly changing. The user can at 
any t ime access the recorded trajectories i n their web browser, the user interface is provided 
by the framework. 

O n - v e h i c l e p a r t i n t e r n a l d a t a f l o w 

In a close look at the more complex drone part of the system, the architecture design can 
give more details about which parts can be executed i n paral lel . B y dist inguishing which 
steps of the system can r u n at the same time and the flow of the data they demand, the 
program can complete them in separate threads as the final appl icat ion runs on the mul t i -
core processor. The proposed architecture defined these four m a i n components: Object 
Detection, Re-identif icat ion, Distance E s t i m a t i o n , R E S T service which is powered by Flask 
framework. Furthermore, the data exchange shall be synchronised by ut i l i s ing a chosen 
thread-safe data structure. 

Initially, the frames are obtained from a camera video stream, for s implic i ty presume 
that the next camera image is always available. O n l y a m i n i m a l pre-processing is then 
performed, for instance, the object detection models might demand a certain size of the 
input . Hence, only the object detection module can r u n at this point . A f t e r the detections 
are completed, they can be fed to both re-identification and distance estimation algorithms 
simultaneously. The i r results are subsequently made available by Flask service, for the 
whole execution refer to Figure 3.3. The service exposes the computed location estimates 
to a consumer appl icat ion, F lask creates a new thread for each connection request, i n the 
figure that was simplif ied to a one continuous thread life-cycle. The re-identification and 
distance estimation results are merged dur ing the request i n order to generate the response 
pay load. 

Object Detection l ie - id Distance Est imation Flask 

single frame 
processing time 

Figure 3.3: Sequence diagram of the On-vehicle appl icat ion concurrent r u n . The arrow 
labels represent the different types of exchanged results f rom the thread workers, the Object 
Detection thread assumes the immediate avai labi l i ty of a new frame from the camera stream. 

To conclude, just the two submodules can r u n in parallel , despite that while they are 
running, the object detection for the next frame can r u n as wel l . W h e n the other modules 

detections 

identities 
locations 
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are done before the detection itself, the final performance should demand just on the de­
tection speed. However, this expects that object detection is the hardest problem w i t h i n 
a l l the components. 

3.6 A p p l i c a t i o n implementat ion details 

The implementat ion details of the proposed solution are uncovered w i t h a l l their necessary 
aspects i n the following section. It includes the made implementat ion choices which are 
reflected in the code base of both parts of the appl icat ion. The implementat ion is based on 
the architecture principals , which s t i l l leave a few areas untouched that can be described 
below. 

The first step of the programming part was to configure the developing environment, 
instal l a l l the dependencies and set up a proper communicat ion between Intel's O p e n V I N O 
kit and I N C S stick. The process can be significantly long as O p e n V I N O requires to r u n 
many preparation scripts, but eventually, it can r u n on both Raspberry P i and a standard 
desktop too. Moreover, P y t h o n runs smoothly on both platforms as well , so code is easy 
to move from one to another, which was exploited dur ing development itself. 

3 . 6 . 1 T h e O n - v e h i c l e a p p l i c a t i o n 

The central processing applicat ion which can operate directly on the drone has four neces­
sary subroutines. T h e y have been already explained in the architecture. Besides this, the 
program adds a data provider component at the very beginning of its pipeline. The inputs 
power the other parts of the applicat ion; therefore, this extra abstraction layer creates a 
unified level of access for the data of a l l sources. The provider is shielding the applicat ion 
insides as it converts assorted information from sensors and an on-board compute of the 
drone. 

A n instance of StreamProvider class runs as a new thread w i t h i n the program. It is 
init ial ised w i t h the camera parameters and information source where a video source can be 
either live camera feed of a connected device or a file. O n the other hand, the telemetry is 
sourced f rom a recorded flight log file which format is a standard comma-separated values or 
C S V file. A l l the developing and testing were accomplished w i t h a video file and a C S V file 
combination. Moreover, the web camera feed was used too but only for the object detection 
verification. 

Next , a l l the providers accept a part icular implementat ion of the method which they 
later utilise in the same manner the stream class uses the telemetry data source. That is 
achieved by a polymorphism, a regular property of P y t h o n as an object oriented language 
paradigm representative. F r o m the architecture section, each provider has its thread which 
executes the supplied method whenever the new inputs are available. For example, the 
object detection is handled by DetectionProvider, which is given a specific instance of 
ObjectDetector class where it implements one of the specific detectors such as Y O L O , 
SSD, or others. Similarly, ReldProvider and DistanceProvider are init ial ised w i t h their 
set of methods. This way, the applicat ion can be parametrised, and the methods can be 
swapped easier, which makes experimenting more straightforward process too. Threads are 
independent and responsible for their tasks, though they have to communicate and exchange 
the inner intermediate values. The data structure for synchronous data advancing between 
the tasks is Python ' s queue module, part icular ly its synchronised Queue class. The detailed 
comparison of used algorithms is made i n the next chapter, Chapter 4, where the methods 
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are confronted w i t h each and evaluated. The threads output their statistics through logging 
messages so the level of verbosity can also be tweaked. 

The appl icat ion is a standard command line applicat ion where common start-up argu­
ments define the methods and options. Its thorough usage guide is given in A p p e n d i x A . l . 
The par t ia l results of the object detection and the re-identification stages can be on-demand 
visualised w i t h i n the processed image. The next m a i n stage of distance estimation repre­
sents the final results, and the second separate part program visualises them. A l t h o u g h 
the visualisat ion module can be used directly i n the on-vehicle appl icat ion as well , a l l the 
results of the stages are shown i n F igure 3.4. 

(a) de tec t ions (b) r e - i d (c) l o c a t i o n s 

Figure 3.4: A n internal visualisation of the i n d i v i d u a l appl icat ion stages. The locations 
stage is just an i l lustrat ion of the real text data which this part icular stage outputs. 

The featured methods have their l imitat ions too, and they should be considered during 
interpretation of the results. The found locations are s t i l l just estimates and should be 
treated that way. A s i n the example figure, a miniature person at the top was not recognised, 
and the Y O L O detector also shows the boxes are not ful ly aligned w i t h the objects, persons. 
Accordingly, a trajectory says instead where its owner is heading and at what pace than 
what is their exact locat ion at a given t ime. The results confirm the restrictions which are 
closely summarised for each used method in Chapter 2. 

The data providers are another essential point of the implementat ion, as the provided 
input data comes from t h i r d systems. T h e provider should be adapted or supplied for each 
drone and possibly camera too if that is the case. T h e implementat ion defines data objects 
which unite and simpli fy the work w i t h drones measurements and camera features. The 
responsible classes from settings are Camera, Gimbal, Position and Misc which handles 
addit ional data of a l l sorts. Besides storing the data , the classes offer methods to compare 
or query the knowledge based on the stored information. A good example is the positions 
object which can return a distance between two positions i n metres. These data objects 
are then wrapped into a telemetry class that besides the convenience purposes, offers the 
way to decide whether or not the image is stable. Hence, when the drone i n moving from 
one stationary posi t ion to another the image is often undesirably rotated or unstable. The 
set tolerance set the m a x i m a l speed i n a l l axes to half metre per second when the readings 
are out of the boundaries the frame is not processed. 
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3 . 6 . 2 R E S T e n d p o i n t s s p e c i f i c a t i o n 

The next distinguishable part of the system is the communicat ion. F i n a l estimates should 
be t ransmit ted to the server part for further processing, namely for aggregation and visual i ­
sation. The R E S T service creates a l ink between these two programs. The on-vehicle appl i ­
cation exposes the results at the set route of the used F lask server, /vl/locations/update. 
The service is accessible at port 5000 of the host i n the default configuration. The generated 
response is 

[ 

{ 

"position": { 
" l a t " : 49.217218, 
"long": 16.610695, 
"altitude": 10.4, 
"bearing": 73.6 

}. 
"estimates": { 

"0albf670-lel5-42ea-999d-fdbf76ee5cl5 
Mf4169b7b-e9a0-4680-bll3-cl2b5c36blbf 
II II 

} 

}. 
II II 

] 
where it composes of a list of recently processed frames results. The estimates element 
contains the locations of detected people i n the actual frame. The locations object's ele­
ments are the personal keys, and the posit ion offsets pairs, then the syntax is as follows 
"id-uuid": ["delta x " , "delta y"]. The offsets are represented relative to the posi­
tion element of i n d i v i d u a l items. The posit ion element is the G P S locat ion of the camera at 
the t ime when the image was taken. The information transmitted is also alt i tude and more 
importantly, the camera's bearing, which allows the server app to connect together the 
trajectories even when the camera rotates. Addi t iona l ly , the whole history of a l l processed 
frames is accessible f rom /vl/locations. 

3 . 6 . 3 T h e s e r v e r a p p l i c a t i o n 

The detached part of the proposed solution is responsible for regularly requesting the data 
from the drone and offers it to the user. W h e n the batch response is received, each item's 
distance estimate is appended to the respective current trajectory. Its selection is driven by 
the unique ids of i n d i v i d u a l points or profiles. Moreover, the camera's location determines 
if the view should change before the points inclusion. Therefore, when the vehicle or camera 
rotates, the past locations compensate for this mot ion, so the newly appended points are 
added to the right coordinate system. 

The user can access the trajectories plot at port 5006 v i a H T T P , as the default configu­
rat ion of Bokeh framework. A n example of the f inal results is i l lustrated in Figure 3.5, the 
page includes standard tool ing for resizing and dragging the canvas. T h e trajectories are 
represented as lines w i t h the detected locations highlighted as circles. 

: [0.52, 11.99], 
: [3.23, 14.29], 
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Figure 3.5: U I visualisation - Bokeh U I . The light green triangle represents the camera's 
field of view, its positions is the origin of the used coordinate system. The circles are 
detected person's locations. 
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Chapter 4 

Experiments 

A s stated in the chapter above, the implementat ion is capable to easily swap its part icular 
methods for each of the described subproblems. The methods are covered i n details in 
Chapter 2, and here the most significant ones are tested and tr ied w i t h the testing video 
data. The following part of the offers a view to implementat ion usabil i ty and overall 
performance. Due to a narrow scope of available data, the experiments are l imi ted to 
a dataset provided by the supervisor which the details are discussed i n Section 4.2. The 
obtained outcomes, as well as the issues, are then summarised i n the subsequent sections 4.3, 
and then 4.4. 

4.1 M e t h o d s s u m m a r y 

Object detectors are relatively new models in machine learning, they are only possible w i t h 
recent discoveries i n the field. This was mostly thanks to the growing accuracy of general-
purpose classifiers and the novel t ra ining datasets. The solution which is needed for this 
project must work i n real-time; therefore, good accuracy is as important as a processing 
speed - processing frame rate. N e w specialised hardware accelerators are now available 
which can deliver desired processing performance and power efficiency for the applicat ion 
even on the compact computing boards. 

Most of the models, mentioned above, are not str ict ly trained on aerial images; hence, 
they might be less precise on video taken from a drone. Nevertheless, the image processing 
part of the system should be able to adequately answer two m a i n questions: is a person 
present in the image and where is it w i t h i n the image. Moreover, the system should be 
able to resolve if the person was seen before. Methods for re-identification might be more 
invariant to the different camera view, which can make looking for the right one an easier. 
However, imperfections i n these parts can lead to poor overall localisation. O n l y one camera 
usage can significantly reduce the need to include a sophisticated method of re- id i n the 
system. These methods are commonly used i n mult i -camera non overlapping setups where 
it is hard to i d a person just based on the mult iple independent images. Person's features are 
extracted and compared along w i t h his or her movement constraints if possible. Th is might 
result i n the usage of much simpler algorithms which can offer the corresponding accuracy 
for this very case. Furthermore, the methods like that come w i t h a lower computat ional 
cost that is always advantageous. 

Speaking of re-identification, two m a i n approaches are tr ied. The first is the more 
advanced feature extract ion using an O p e n C V ' s K A Z E key-points detector. The detector 
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can f ind and extract the necessary image description, which is later used to match the 
next image. However, the method d i d not perform that well and is not used i n the final 
comparison. Instead, a t r u l y simple histograms comparison is incorporated to get the 
matches of person's profiles. The histogram composed of 32 bins per each colour channel is 
extracted as a profile template and stored. T h e n , the matching process uses the histograms 
correction comparison, w i t h a threshold of 0.7. W h e n the correlation coefficient is below 
the threshold, a new profile is created for a person as non of the templates i n the database 
get a strong level of similarity. 

A s for the object detectors, three m a i n ones are tested, the S S D detector based on 
Mobi leNet , and then Y O L O second and t h i r d i teration. The Y O L O models are used as 
their tiny modifications for better performance speed on Raspberry P i and I N C S 2. 

The last part of the used algorithms are the ones for distance est imation, bo th proposed 
methods i n Section 2.2 are implemented and tested. The size based estimation assumes the 
average height of 1,74\ the average for bo th genders adult height. The posit ion based 
method is s tr ic t ly defined by method equations. 

4.2 Dataset & data sources 

The provided data f rom a D J I Spark recording session are generally good quali ty footage. 
The video covers a couple of different situations which are also considered dur ing the design 
and implementat ion of the solution. A quite standard posit ional capturing is included 
w i t h a bit of w i n d that is causing a m i n i m a l shaking. Overa l l the available data were 
taken under very good conditions, and this might mean the provided telemetry is quite 
accurate. A l t h o u g h there might be a slight de-synchronisation while using the offline data , 
the provided C S V logs are not synced to the video feed, and this process was taken manually. 

Drone positions vary from approximately 5 to 10 metres of height f rom the ground, the 
G P S signal is strong. The scene is mostly clear, but the samples also include a section 
where people are part ia l ly occluded by a treetop. The camera moves around to get static 
views of the standing, or the walking supernumeraries. The shots also contain a few where 
the camera rotates while mainta ining its locat ion on a map. This part icular case is essential 
to test a l l features of the proposed system. 

4.3 E x p e r i m e n t s and test ing 

The test environment was the Raspberry P i 4 w i t h connected I N C S 2, and the board was 
connected to a local network. The server appl icat ion ran on the separate device w i t h i n the 
same network and was collecting the data of the i n d i v i d u a l test runs. One of the obtained 
results is described i n Figure 4.1 and is analysed in further details below. 

The figure shows the tracking solution results for the T i n y Y O L O detector, the his­
togram comparison method, and the pixel posit ion based distance est imation. The results 
i n 4.1a are captured for about 3 seconds f rom a static camera p o s i t i o n 2 . A s the real loca­
tions of the persons are not available; however, the environmental clues give an estimate 
where they stood. F r o m the map, the assessed distance f rom the camera of the individuals : 
Person A stood on a visible pathway intersection, so its distance f rom the camera is about 
16 m . Person B is about 25 m from the camera, then Person C - 35 m , Person D - 30 m , 

x h t t p s : //ourworldindata.org/human-height 
2 T h e c a m e r a p o s i t i o n was 49.21723697V, 16 .6108169B a n d b e a r i n g of 8 4 . 4 ° . 
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(a) de tec ted l o c a t i o n s o v e r v i e w (b) z o o m - i n v i e w for p e r s o n A 

(c) r e a l v i e w at t h e scene 

Figure 4.1: Testing result example, inc luding the summary view w i t h the persons' locations, 
a zoomed-in for person A, and the real view of the captured scene, people remained mostly 
stationary. 

Person E - again about 35 m . The person i n the white top i n 4.1c was not recognised by 
the detector, or the detection was not confident enough. F igure 4.1c adds the perspective 
of how even the stationary person and get the locations estimates w i t h i n an about metre 
radius as the bounding boxes fit the person differently every t ime. T h a t can be triggered 
not just by moving from place to place but also by simple posture changes. 

The system's estimate for persons A and B are quite accurate, namely 12 m and 28 m , 
respectively. The results are reflecting the true locations, especially i n the lower part of the 
image. T h e n , the error increases as the persons are detected i n the middle and the top half 
of the frame, it is caused by the uneven and sl ightly u p h i l l terrain. Moreover, the objects 
get smaller, and the detected bounding box misalignment has a much significant impact . 
T h a t can also explain the widespread of person C 's locations. Accordingly, the camera t i l t 
is 90 degrees w i t h the vanishing line of flat surface in the middle of the image. 
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4.4 O v e r a l l system performance 

The results coming off the system shall deal at least w i t h the minor changes in the view. The 
rotat ion compensating capabil i ty of the server appl icat ion was tested as well , see F igure 4.2. 
P r i o r to the rotat ion, the test captured just two people from the video sample for these 
part icular results. The tracing methods were the same as i n the previous test case, besides 
the detector used the S S D model this t ime. F r o m the testing, this object detector had 
more precise bounding boxes around detected persons but struggled w i t h detecting a l l of 
them. The video sample composed of a short 4-5 s footage where two persons walking 
and one stayed almost stationary, others are not detected. The camera was rotated for 
almost 30 degrees anticlockwise (locations are rotated clockwise). A s can be seen, the 
detections i n the bo t tom of diagram 4.2b are pushed towards the centre of the camera's 
view. T h e orange trajectory is also transformed accordingly. In 4.2b, the t h i r d person was 
recognised; however, its identity was matched w i t h someone's else. The mismatch i n the 
histograms comparison resulted in the unwanted connection line between the two, see the 
long trajectory line. 

(a) before the r o t a t i o n o c c u r (b) af ter the r o t a t i o n 

Figure 4.2: Results before and after the camera rotated while capturing the analysed video. 

A n interesting observation was made dur ing the implementat ion, where a l l the frames 
of video were processed. The frame rate was about 30 F P S which led to analysing almost 
identical frames one after another. This way, the trajectory was constructed of many 
points really close to each other, and the results were not satisfying. Addi t iona l ly , these 
many points slowed down the U I rendering, the f inal implementat ion is, therefore, f i l tering 
them, and showing indistinguishable locations as one for the same identity profile. That 
might also help for static people i n the image as they could be visualised as a single point . 
The analysis is done on the server part when the data is already processed. 

The tests part ia l ly confirmed that the models s t i l l struggle w i t h small-scale objects, 
especially on the less powerful hardware. W i t h the objective to address the issue, the 
frame can be split into several pieces, and they can be processed on their own. This can 
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increase an absolute number of pixels per person when the image is downsampled, a major 
disadvantage of the approach is the needed processing power. O n the contrary, the split 
image creates a problem w i t h a person at the cut t ing edge. 

One of the comparing cases was dealing w i t h difference in size based and posit ion based 
distance estimation methods. The results of size based method were way too inaccurate, 
resulting i n up to 150 m distance f rom the camera for the same test case as in 4.1. The 
variety i n bounding box size and the actual person size is way out of the proport ion for this 
method to be used, especially w i t h Y O L O detector as the result of this experiment. O n 
the other hand, the implementat ion for size based estimate does not compensate for the 
alt i tude, but the difference of the results is so significant that this would just make a small 
change for the f inal estimates. The drone alt i tude for the experiment case was about 10 
metres which would make a slight difference. 
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Chapter 5 

Conclusion 

The implemented solution is capable of processing the video on board of the drone, using 
the compact computer w i t h the accelerator. T h e n , the results are presented to a user in 
the form of a graph which includes the data points representing locations. The points are 
posit ion estimates of the individuals found i n the video. They are gradually matched w i t h 
their past self, and the points f inally b u i l d the trajectories. T h e system is tested w i t h Y O L O 
and S S D object detectors models which give mixed results as used. Therefore, there I see, 
together w i t h the re-identification, room for improvements. The absolute error in location is 
caused by the inaccurate persons' detections and their misaligned bounding boxes, combined 
w i t h the insufficiency of distance estimation methods. The distance evaluation creates 
substantial demands on the correctness of the detection. 

Next , a source of the input data was a D J I Spark's recordings and telemetry. However, 
the proposed appl icat ion can be further easily extended to accept other data sources of par­
t icular drones while the core of the methods remains intact . Tests on these video recordings 
included the complete pipeline verification and getting the f inal locations of the people in 
the video. 

The implemented system got satisfactory results when the conditions were ideal, though 
when the input is pushing the system and its used methods to their l imits , the decrease of 
accuracy is more than significant. The next work shal l focus even more on the models for 
object detection. M a y b e , it can consider the more advanced re-identification methods w i t h 
neural networks which can r u n a separate I N C S 2 unit too. The models can be adapted for 
the aerial video input by taking advantage of transfer learning of the current state-of-the-art 
detection networks. Moreover, the object detectors are mult i -purpose detectors, inferring 
al l sorts of objects, the idea of post- training on just people samples can also better adapt 
the model for the solution. 

The drone industry is growing rapidly w i t h its business potent ial too, and number of 
new applications w i l l start to be noticeable i n our dai ly life. The proposed solution also 
omitted the increasing capabilities of drone sensors, in part icular , the extra multi-cameras 
mounted to them for better usability. The manufacturers themselves are incorporat ing 
object tracing to the products as the coll ision avoidance systems. A d d i t i o n a l cameras can 
give a better sense of depth to the system. 
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Appendix A 

Usage 

A . l R u n instruct ions 

Quick r u n manual : 

usage: person_tracking.py [-h] -o DETECTOR -m MODEL 
[-1 LABELS] [-r LOG] [-v VIDEO] -s CONFIG 
[-c CONFIDENCE] [-d DEVICE] 

optional arguments: 
-h, — h e l p show this help message and exit 
-o, — d e t e c t o r detector model choice 
-m MODEL, —model MODEL 

path to pre-trained model, directory should 
contain a l l other necessary model f i l e s 

-1 LABELS, — l a b e l s LABELS 
path to labels f i l e , each label should be on 
a new line 

-r LOG, — l o g LOG path to csv log f i l e of f l i g h t record 
-v VIDEO, — v i d e o VIDEO 

path to video recording of the f l i g h t 
which should be analysed 

-s CONFIG, — c o n f i g CONFIG 
path to used camera configuration f i l e 

-c CONFIDENCE, —confidence CONFIDENCE 
minimum probability to f i l t e r weak detections 

-d DEVICE, — d e v i c e DEVICE 
device to run inference on (typ i c a l l y "MYRIAD" or 
"CPU") 
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usage: viewer.py [-h] -1 HOST [-p PORT] 

optional arguments: 
-h, — h e l p show this help message and exit 
-1 HOST, —host HOST set server part host name 
-p PORT, — p o r t PORT set server part port number 

A . 2 E x a m p l e of a conf igurat ion file 

• Configuration file for FC1102 camera type, which is mounted to D J I Spark drone: 

[camera] 
type = FC1102 
sensor_width = 6.17 # in mm 
sensor_height =4.55 # in mm 
focal_length =25 # i n mm 
fov =81.9 # i n degrees 
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Appendix B 

Used libraries summary table 

• P y t h o n 3.6 

. Bokeh 2.0.1 

. F lask 1.1.2 

. N u m P y 1.18.2 

. O p e n C V 4.2.0 

. O p e n V I N O 2020.1.023 

• requests 2.23.0 

• simplejson 3.13.2 

• tornado 5.1.1 

OS versions: 

• Raspbian G N U / L i n u x 10 (buster) 

. U b u n t u 18.04.4 L T S 
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