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Abstract 
Master theses deals with Constructive Neural newtorks. First part describes neural net
works and coresponding mathematical models. Furher, it shows basic algorithms for learn
ing neural networks and desribes basic constructive algotithms and their modifications. 
The second part deals with implementation details of selected algorithms and provides 
their comparision. Further comparision with backpropagation algorithm is provided. 

Abstrakt 
Tato práce se zabývá neuronovými sítěmi - konkrétně sítěmi s proměnnou topologií. Teo
retická část popisuje neuronové sítě a jejich matematické modely. Dále ukazuje základní 
algoritmy pro učení neuronových sítí a rozebírá několik základních konstruktivních algo
ritmů a jejich rozšíření. Praktická část se zaobírá implementací vybraných konstruktivních 
algoritmů a uvádí jejich porovnání. Dále jsou algoritmy srovnány s učícím algoritmem 
backpropagation. 
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Chapter 1 

Introduction 

These days, neural networks are being used in many applications. In reality, the usage 
for neural networks can be found in many technical sectors. We can use them in data 
classification and filtering such as Email filter. They can also be found in games whereby 
they act as our opponents when playing for example poker, classical ping-pong or chess. 
Such opponents can adapt to our game style in order to achieve better results. 

Neural networks can also be used in health care. Hybrid lung cancer detection system 
named "HLND"[2] being based on an artificial neural network improves the accuracy of 
diagnosis and the speed of lung cancer radiology. 

Neural networks are a part of methods called soft computing, which is an alternative 
way of approaching mathematical or computational problems. They are suitable for solving 
many problems, where brute force algorithms fail. NP-complete problems or problems 
with a wide variety of possible solutions could be given as a good example. In many cases 
the goal of these methods is not to find the best solution - sometimes the best solution is 
not known, but to find out a solution that is satisfactory. Moreover, neural networks can be 
used when noisy or incomplete data appear on input - they are able to ignore imprecisions 
and "guess" the rest of information. 

As neural networks are becoming more and more common, a desire to be able to train 
them quickly as well as scale them is arising. In the course of time, many approaches 
to learning and building them have been developed. With increasing power of graphical 
accelerators, the time necessary for computing and training of neural networks is getting 
shorter. The speedup gained through transition from processors to graphical accelerators 
has enabled learning to be realized within few hours instead of days. This speedup allows 
to train networks faster, but the problem of selecting proper size still persists. 

This thesis deals with algorithms for development of topology of neural networks. These 
algorithms try to set the correct size and topology for selected problem to prevent common 
deficients of neural networks - over-fitting or the inability to learn. The task of this thesis 
is to examine current algorithms, propose possible improvements, implement them and 
evaluate their performance on selected experiments. 

5 



1.1 Content of thesis 

This thesis is subdivided into two logical parts. The first part deals with the theoretical 
background of neural networks, training algorithms, constructive algorithms and genetic 
programming. The second part consists of implementation of selected algorithms. Further, 
possible improvements are proposed and experimentally evaluated. 

Chapter 2 describes artificial neural networks and possible classifications of neural net
works according to their topology. Chapter 3 describes standard algorithms for training 
neural networks - Backpropagation, Perceptron learning algorithm and its modification 
Thermal perceptron learning algorithm. Chapter 4 deals with algorithms for topology 
development - constructive algorithms. These algorithms are divided into 3 categories -
constructive, pruning and neuroevolutionary algorithms. Chapter 5 describes genetic pro
gramming, its operators and initialization methods. 

Chapter 6 deals with specific implementation of selected algorithms and genetic pro
gramming, which is used for development of code trees for neuroevolutionary algorithm. 
Chapter 7 proposes possible improvements to implemented algorithms. These improvements 
and original algorithms are compared in chapter 8 and finally evaluation of experiments is 
presented in chapter 9. 
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Chapter 2 

Artificial Neural Networks 

An artificial neural network (ANN) is inspired by a biological neural network we know 
from our brains. A N N is a set of artificial neurons and connections. 

ANNs have been developed over the years and many types of ANNs have been in
vented. These neural networks are different in many aspects. The difference can be found 
in topology, type of activation or basis function or in a type of learning. 

Another but not less important feature of ANNs is their Turing completeness. That 
means they are able to compute all algorithms - as a classical computer. This fact was 
proved by Franklin and Garzon, who have created Turing machine with an A N N [11]. 

2.1 Artif icial neuron 

Artificial neuron is a simplified model of a biological neuron. Artificial neurons are main 
units in an artificial neural network. As the biological neuron, it has only one output 
(Axon) and many inputs (Dendrits). "Body" of a neuron - in biology called Soma is 
described by basis function. 

The biggest difference between biological and artificial neuron is in the way neurons 
"fire" their outputs. Artificial neurons are usually computed in terms of a discrete simu
lation. In every step, the output of neuron is computed. On the other hand - biological 
neuron fires when it has enough power (with every incoming input it consumes power and 
when this gained power gets over value, it fires), this process is known as a continuous 
simulation. 

The first mathematical description of neuron was released in 1943 in the work of War
ren McCulloch and Walter Pitts [12]. It was a very simple model, consisting of a linear 
combination of inputs, a step function and only binary inputs and outputs. This model is 
known as McCulloch—Pitts (MCP) neuron. 

In this thesis neuron is defined more flexibly, as shown in figure 2.1. 
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Figure 2.1: Artificial neuron 

In figure 2.1 array of neuron's inputs x can be seen. Every input has its weight. Such 
neuron can be described by the following equation. 

V = f a ( f b ( £ , w)) 

Neuron consists of two functions - an activation function and a basis function. 
Function ( f t , ) is known as the basis function. This function describes how to combine 

inputs and weights and how to compute the value (also known as a potential) of neuron. 
This is described by the following equation. 

v = fh(x,w) 

Activation function (fa) computes output from neuron's value. Often nonlinear function 
is chosen and is described by the following equation: 

y = f a ( ^ ) 

The activation function can be chosen for its specific behavior. If neural network should 
approximate non-linear function, activation functions of neurons must be chosen from 
non-linear functions. The overview of well known activation and basis functions is intro
duced further. 

Well known basis functions are: 

• Linear basis combination (LBF) 

N 

n=l 

• Radial basis function (RBF) 

N 
(Wn ~ Xn)2 

n=l 
fb(f, w) \ 
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Well known activation functions are: 

• Gaussian function 
- ( x - 6 ) 2 

fa(x) = ae 

• Heaviside (Step function) 

fa(x) 

Linear function 

Logistic function 

J 1 if x > 0 
I 0 otherwise 

fa(x) = ax + b 

fa(x) ' 
1 + e~x 

• Threshold function is a generalization of Heaviside 

fa(x) 
1 if x > a 
0 otherwise 

2.2 Classification of neural networks 

Neural networks can be classified from many points of view, for example by the number of 
layers, topology and application. Every type has its special features. Important classifica
tions for this thesis are: 

2.2.1 Classification according to topology 

Feed-Forward network is a neural network, where every neuron output is connected 
only to inputs of neurons in the successive layers. That means there is no cycle in network. 
These networks are easier to learn and only one iteration is needed to get their output, but 
they do not have a "memory". 

Well known feed-forward networks are fully-connected, in which the output of every 
neuron from previous layer is connected to input of every neuron in the successive layer 
[21]. We can evaluate this network by computing one layer after another starting from the 
input layer. In figure 2.2 a fully-connected feed-forward network is depicted. 
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Figure 2.2: Feed forward network 

Recurrent network is a neural network with at least one cycle. In this type of network 
there are no layers. An advantage of this network is its abilities to memorize. 

Due to recurrent connections, it is not possible to compute network as simply as feed
forward network. These networks are evaluated iteratively - in the first step the value of 
each neuron is computed whereas in the second we get their outputs. 

These networks are well suitable for problems such as prediction, control of system or 
speech recognition. However there is still one problem - it is hard to train them and it 
consumes a lot of time. 

Figure 2.3: Recurrent neural network 
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2.2.2 Classification according to number of layers 

One layer networks are networks which are made of only one layer - the layer is input 
and also output of network. Example of this network is Perceptron. 

Many layer networks are networks which consist of more than one layer - we call this 
layers input, output and hidden according to their position in network. 

2.3 Topologies and computation 

In this section we are going to describe well known networks and their computation models. 

2.3.1 Perceptron 

Perceptron was one of the first artificial neural networks. It is a special type of a single-
layer feed-forward network consisting of perceptrons. Perceptrons are neurons with a 
step activation function and a linear basis function. It was invented by Frank Rosenblatt 
in 1957[18]. At first, it was built as a machine called Mark 1 perceptron and it was 
designed for an image recognition. This network is very limited due to the fact that it can 
only learn and approximate linear functions. Its weights were encoded in potentiometers 
and were updated by electrical motors. 

Algorithm 1 describes, how to compute an output for this network. 

Algorithm 1 Perceptron 
procedure PERCEPTRON(X, network) > x is input of network 

y = 0 
for i = 0; i < network.outputSize; i + + do 

valueOf Neuron = 0 
for j = 0; j < x.size;j + + do 

valueOfNeuron+ = network.weight[i][j] • x[i] 
> weight[i][j] is weight of neuron i to input j 

end for 
y[i] = valueOf Neuron > 0?1 : 0 

end for 
return y 

end procedure 

2.3.2 Feed-forward network 

Feed-forward network is one of the most common networks used. Further algorithm 2 for 
computation of feed-forward network is described For simplicity, algorithm describes only 
Linear basis function. 
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Algorithm 2 Feed-forward Network 
procedure C O M P U T E F F N ( n e t w o r k , input) 

output = Arr ay[network.number O f Layers] 
output[0] = input 
for layer : network.layers do 

for neuron : layer.neurons do 
value = 0 
for weight : neuron.weights do 

value = value + outputs[layer — l][weight] * neuron[weight] 
end for 
ontpnt[£ayer] [neuron] = fa{value) > / a is activation value 

end for 
end for 
return output[network.lastLayer] 

end procedure 

2.3.3 Recurrent neural network 

In this section algorithm 3 for computing new value of fully-connected RNN is being 
provided. This algorithm is more complex than the algorithm for computing feed-forward 
network, because it is necessary to calculate new values for all neurons and then change 
their outputs. This algorithm is provided for one iteration of computing values. For many 
problems, output from one iteration is insufficient and many iterations are necessary to get 
output of network. The number of iterations is usually selected in advance according to 
specificity of case. 

Let us imagine A N N playing chess. When an opponent makes a move, A N N needs 
to respond immediately. If only one iteration has been computed, A N N could respond to 
this move after next few rounds and it is too late to make that move - both the board and 
the situation have changed. 

Algorithm 3 Recurrent neural network 
1: procedure COMPUTERNN(network,input) 
2: for neuron : network.input Neurons do 
3: neuron.setOutputValue{input[neuron]) > Set output of input neurons 
4: end for 
5: for neuron : network.neurons do > /& is basis function of neuron 
6: neuron.value = neuron. fb(network.neurons,neuron.weights) 
7: end for 
8: for neuron : network.neurons do 
9: neuron.output = neuron. fa{neuron.value) > fa is activation function of neuron 

10: end for 
11: Output = [ ] 
12: for neuron : network.outputNeurons do 
13: output[neuron] = neuron.output 
14: end for 
15: return output 
16: end procedure 
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Chapter 3 

Algorithms for learning neural 
networks 

The topic of this chapter are basic algorithms for learning artificial neural networks. These 
algorithms are used by some of constructive algorithms that are introduced later in the 
thesis. 

3.1 Perceptron learning algorithm 

This algorithm 4 was developed by Rosenblatt in 1959 [13]. Algorithm modifies weights Wj 
according to input pattern and difference between the actual computed value and desired 
output. For simplification only algorithm for two-class classification is mentioned. 
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Algorithm 4 Perceptron learning algorithm 
1: procedure ERRFuNCTiON(network,set) 
2: Error = 0 
3: for all (x,y): set do 
4: y' = network.getOutput(x) 
5: Error+ = (y' — y)2 

6: end for 
7: return Error/2 
8: end procedure 
9: 

10: procedure P E R C E P T R O N LEARNING A L G O R I T H M (network, set: {(input, output)}) 
11: network = set weights and thresholds to small random values 
12: iterMax = user defined value 
13: maxError = user defined value 
14: n = user defined value from range 0.0-1.0 
15: while ErrFunction(network, set) > maxError & iter < iterMax do 
16: (x, y) = set[iter mod set.size] 
17: y' = network.getOutput(x) 
18: for all w: network.weights do 
19: w = w + n(y — y')x 
20: end for 
21: iter++ 
22: end while 
23: end procedure 

3.2 Thermal perceptron learning rule 

This algorithm was introduced by Frean M. in 1992[5]. It is a modification of the original 
Perceptron learning algorithm aimed at obtaining a rule that provides stable linearly 
separable approximation to non-linearly separable problems. It redefines the equation for 
updating weight. 

The original equation w = w + n{y — y')x as shown in algorithm 4 is replaced by: 

w = w + x(y - y')Tfac 

The difference is that the thermal perceptron learning rule incorporates the factor Tfac. 
This value depends on the value of weight and on an artificially introduced temperature 
T that is decreased as the learning process advances. This technique is commonly used in 
process called simulated annealing. This value can be computed as shown: 

T , h>k 
Tfac = —exp{-—) 

J-o 1 

In this equation, we define T as an actual temperature, v is value of neuron and To is 
initial temperature set at the beginning of a learning process. 
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3.3 Backpropagation 

Backpropagation is a well known method for supervised learning of neural networks. Back-
propagation calculates the gradient of an error function with respect to all weights in the 
network. Then, the gradient is used by optimization method, which uses computed gra
dients to update the weights in an attempt to minimize the error of network. Network 
learned by backpropagation can be a single or multi-layer feed-forward network. [8] 

Algorithm can be divided into two parts as shown in algorithm 5. First part consists 
of computing slopes for changing weights of neuron. The second part update weights to 
minimize error. 

Algorithm 5 Backpropagation 
1: procedure BACKPROPAGATE(x,y, network) > y is desired output, x is input 
2: Part 1. Compute slopes: 
3: y' = network.getOutput(x) > y' is output of function 
4: 
5: Compute 5n of every neuron n of output layer according to: 
6: 5n = (y'[n\ — y[n\) • neuron./^(neuron.value) 
7: t> f'a is derivation of activation function 
8: 
9: Compute 5n of neurons of hidden layer L starting from layer preceding output layer: 

10: 5n = ^"eurons of L+1{5j • wnj) • neuron./^(neuron.value) 
11: o wnj is weight between neuron n and j 
12: 
13: Part 2. Compute new weights: 
14: For every hidden and output neuron n of network and its weight j change 
15: weights according to: 
16: Anj = a • 5n • (output of neuron that is connected to weight j) 
17: Wnj — Wnj ~\~ ^nj 
18: t> a is learning coefficient 
19: end procedure 
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Chapter 4 

Algorithms for topology 
development 

As neural networks were successfully trained by many algorithms, the problem of selecting 
proper topology by "trial and error" method was still inefficient. This problem involves 
both choosing the right number of layers and hidden units for layered feed-forward network 
and selecting proper connections between neurons in recurrent neural network. Over-sized 
networks with more layers or hidden units are easier to over-fit while smaller networks are 
not able to learn. This problem mostly affects predictive models, where over-fitting is well 
seen and neural networks are not able to globalize this process well. 

Constructive algorithms can be divided into two categories. The first category consists 
of algorithms that start with a small network - usually with one hidden unit and work by 
adding one by one until desired precision is reached. Algorithms from the second category 
are called pruning. These algorithms start with a large network and eliminate unnecessary 
weights and units one after another. 

There is another special group besides these two groups. It is a group consisting of 
algorithms based on evolutionary algorithms and is called neuroevolution. 

4.1 C-Mantec algorithm 

The Competitive Majority Network Trained by Error Correction algorithm creates 
a structure with a single layer of hidden nodes using step activation function. For a two 
classes function, it constructs a network with one output neuron computing the "majority 
function" of the responses of hidden nodes as shown in figure 4.2. That means if more than 
a half of the hidden neurons is activated the output neuron is activated too. We are going 
to describe only a two class classifier, but an algorithm for creating multi-class classifier 
also exists [20]. 
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Figure 4.1: C-Mantec algorithm 

yes 

no 

Select neuron 
with largest Tjact 

T 

Eliminate noisy 
examples 

Algorithm starts with a single neuron in a hidden layer and adds more neurons every 
time when the present ones are not able to classify a whole training set right. Learning is 
separated into two levels. For a single neuron learning it uses Thermal perceptron learning 
rule that was introduced in section 3.2. At a global level competition between neurons is 
incorporated. This approach makes learning more efficient and allows for obtaining more 
complex structures. 
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Figure 4.2: Structure of C-Mantec algorithms for two-class function 

4.2 Marchand's algorithm 

Algorithm has been proposed by Mostefa Golea and Mario Marchand in the article "A 
Growth Algorithm for Neural Network Decision Trees" [6]. Algorithm 6 describes building 
of a feed-forward network for a two-class classification with only one hidden layer. This 
structure is shown in figure 4.3. 

y 

Figure 4.3: Network built with Marchand's algorithm 

The algorithm describes how to add neurons into a hidden layer one by one - when 
the neuron helps ANN to classify at least one more new example to the appropriate class. 
The algorithm ensures that a new neuron does not break correctly-classified examples by 

18 



neurons added previously. Algorithm ensures this by setting weights between newly-added 
unit and output unit according to: 

if neuron k belongs to class 1 
if neuron k belongs to class 2 

This algorithm works with two sets and TK - they represent patterns that are not 
correctly classified in step k. 

Algorithm 6 Marchand's algorithm 
procedure M A R C H A N D A L G O R I T H M 

k = 0 
TQ~ = set of samples from class 1 
Tq = set of samples from class 2 
while T+ ± {} & T~ + {} do 

k = k + 1 
w = 0 
Create neuron n& in hidden layer that satisfies one of next cases, 
case output of neuron nt is 0 for all samples from class 1 and 1 for at least one 

case from class 1 then: 

T++1 = {t\teT+ & output of neuron for t ^ 0} 

end case 
w -

case output of neuron nt is 0 for all samples from class 1 and 1 for at least one 
case from class 2 then: 

1k+l ~±k 
T^+1 = {t\te & output of neuron nt for t ^ 0} 
w = ~h 

end case 
Add neuron to hidden layer with weight w 

end while 
end procedure 

4.3 New Constructive Algori thm 

New Constructive Algorithm (NCA) was proposed in 2009[9]. NCA creates a unique 
topology shown in figure 4.4. Each hidden layer receives outputs of each preceding layer 
(an input layer and hidden layers). Whereas the output layer receives all hidden layer 
outputs. Every neuron from hidden layers uses a sigmoid activation function. 
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hidden layer 0 

hidden layer 1 

Figure 4.4: Structure of NCA 

In figure 4.5 we can see major steps of NCA. These steps are going to be described in 
detail further on. 

Figure 4.5: New Constructive Algorithm [9] 
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• Create an initial A N N structure 
Choose ANN with three layers - input layer, one hidden layer and one output layer. 
Hidden layer contains one neuron. 
Randomize all weights in ANN within a small range. Label the hidden layer C and 
its neuron / . 

• Create a training set 
Create a training set with AdaBoost for the neuron / from layer C. Training set for 
the first neuron / and first layer C is the original training set. 

• Initial partial training 
Use backpropagation to train neuron / from layer C using the set created in the 
previous step. 

• Stop A N N construction? 
Check termination criterion for stopping ANN construction and return created net
work if criterion is fulfilled. 

• Stop initial training? 
Compute error E of ANN on training set. If an error is reduced by a predefined value, 
go to the step Initial partial training, otherwise continue. 

• Final partial training 
Add a small amount of noise to all input and output connection weights of neuron 
/ . Usually Gaussian distribution with a mean of zero and a variance of one is used. 
Train neuron / using backpropagation. 

• Stop final training? 
Compute error E of ANN on training set. If an error is reduced by a predefined value, 
go to step Final partial training, otherwise remove label / and continue. 

• Add hidden layer? 
Check the criterion for adding a new hidden layer. If criterion is fulfilled go to Add 
one hidden layer. Otherwise go to Add one hidden neuron. 

• Add one hidden neuron 
Add new neuron to layer C and label it / . Initialize its input and output connections 
with zero and go to the step Create a training set. 

• Add one hidden layer 
Add a new hidden layer with one neuron above layer C. Label this layer C and the 
first neuron / and randomize all weights in ANN around zero. Continue with the step 
Create a training set. 

4.4 Cascade-Correlation 

Algorithm Cascade-Correlation was proposed in 1990 [4]. This algorithm combines two 
ideas. The first is a cascade structure, where neurons are added one by one, and after an 
addition they never change again. The second one is a learning algorithm which creates new 
hidden neurons. For every neuron, algorithm maximizes the magnitude of the correlation 
between new unit's output and residual error signal. 
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Algorithm starts with inputs and outputs but no hidden units. The number of inputs 
and outputs is determined by a problem definition. Every output is connected to all inputs. 
Either any linear function or any non-linear function can be used as an activation function. 
When a new hidden neuron is added, it receives connections from all inputs and all previ
ously added hidden neurons - thereof the name "cascade". Such a structure is illustrated 
in figure 4.6 

Figure 4.6: Structure of Cascade-Correlation algorithm 

Algorithm defines the sum of magnitude of correlation over all output units o as: 

5 = E ( E (VP-V)(EP,0-K)) 
o \ p / 

Where EPFI is error observed at unit o with pattern p, Vp is value of candidate unit. The 
quantities EQ and V are values averaged over all patterns. The task is to maximize S. For 
this task very similar derivation to backpropagation one is defined in the original paper: 

Where aQ is the sign of correlation between candidate's value and output o, fp is the 
derivative for pattern p of candidate unit's activation function and Ii)P is the input of 
the candidate for input unit i and pattern p. After computing J ^ , gradient ascent can 
be performed. This step trains only output units and the usage of backpropagation or 
quickpropagation is recommended. 

Further algorithm 7 is provided. The provided algorithm uses equations described above. 
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Algorithm 7 Cascade-Correlation 
procedure C A S C A D E - C O R R E L A T I O N 

minimal Err or Step = user defined minimal error step 
maxlterations = user defined maximal number if iterations 
error = error treshold defined by user 

network = network with fully connected input/output layer and zero hidden neurons 
iterations = 0 
error = TrainOutputUnits{network) 
while iterations < maxlterationsanderror < errorTreshold do 

candidates = generateC andidates(network) 
bestCandidate = trainCandidates(network, candidates) 
network.addHiddenNeuron(bestCandidate) 

error = TrainOutputUnits(network) 
iterations + + 

end while 
end procedure 

4.5 Cascade 2 Algori thm 

The algorithm Cascade 2 was proposed and implemented by Scott E. Fahlman. He also 
wrote an article [3] in 1996, but the article was never published and it is not possible to get 
to the original article anymore. Thankfully, it is possible to get C port of the original imple
mentation1. Currently, it is possible to find another implementation of this algorithm in C 
based neural network library FANN. Work done on FANN library is well documented in 
the work "Large Scale Reinforcement Learning using Q-SARSA(A) and Cascading Neural 
Networks" [14]. 

The Cascade 2 is modified Cascade-Correlation algorithm, described in previous section. 
Algorithm changes the way, it trains candidates and adds them to network. The main 
difference is, that this algorithm also trains output weights for candidates. Algorithm is 
trying to minimize the difference between the error of the output layer and the input from 
candidate. Difference between candidate and output can be computed as follows: 

S2 = y~] I eP)0 - op • w0\ 
o \ p / 

ePfi is the error observer at output o for pattern p. This error can be computed as 
Cp,o = Vp,o — y'p, where y is the desired output and y' is output computed by networks. op 

is output of candidate for pattern p and wQ is weight between candidate unit and output o. 
To minimize S2, is calculated. 

q^~o = - 2 (°P " w ° ~ eP>°> " °p 

After computing of Jjp, gradient ascent can be performed. 

1 T h e C port of original Lisp code is possible to find at https://gitliub.com/gtomar/cascade or 
http: / / www.cs.cmu.edu/~sef/sefSoft.htm 
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4.6 Percentage Average Synaptic Act iv i ty 

Pruning algorithm was proposed in the paper Dynamic Pruning In Artificial Neural Net
works [1] by E. R. Caianiello , G. Orlandi , F. Piazza , A. Uncini , E. Guminari and A. 
Ascone. In that paper, new algorithm for eliminating units in a way, that performance of 
network did not worsen over the time. This algorithm develops a multilayer perceptron. 
To verify if connection is necessary or can be removed, a simple formula was defined. For 
understanding of this formula, steps to derive this equation are shown. 

First, we need to define synaptic activity of connection from neuron i to neuron j: 

aij{p) = (wij • Actj(p))2 

This equation is defined relatively to training pattern p. In this equation Actj{p) is the 
activation of neuron j for the input pattern p. 

This value can be averaged through the whole training as follows: 

Cli-i 

Eo»j(p) 
v_ 

Where Np is the whole training set and \Np\ is its size. 
As we defined average synaptic activity between neurons i and j, we need to define 

synaptic activity of neuron, which is defined as: 

Ni 
Ai = ^ &ij 

i 
where Ni are all input neurons of neuron i. Now, we can define the Percentage 

Average Synaptic Activity: 

Ai 
As we can see, PAS A is defined as average activity of connection relatively to neuron's 

average activity. As we defined PASA, we still need to define the function, we can compare 
this value to. Lets define threshold function Th{ep) where ep is number of epoch in learning. 
Parametric threshold function allows us to change threshold dynamically with learning 
epochs. The original paper come with two possible comparisons of PASA and Th(ep) 
[4.1,4.2]. 

J PASAij < Th(ep) connection i — j is pruned 
(4.1) 

otherwise connection i — j is retained 
loo PASA • 

|jv'[

 100 < Th(ep) connection i — j is pruned 
\W\ ' (4.2) 

otherwise connection i — j is retained 
First equation is affected by the number of synapses to neuron j. With higher number 

100 
|JV*I 

of inputs, PASA is lower. This can be modified by introducing yM to equation. In the 
original paper the function Th(ep) was defined as follows: 

Th(ep) = ve ?( <? > 
where v,m and a are constant values. This function is known as Gaussian function. 
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4.7 Neuroevolution 

Neuroevolution is a bit special group within constructive algorithms. These algorithms use 
other Soft-computing methods to develop topology and weights. Some of these methods 
develop only topology, whereas others are able solve both tasks. 

We can put algorithms into two groups - algorithms that use direct encoding and 
algorithms that use indirect encoding. When direct encoding is used, concrete neurons 
and connections are represented by genes. On the other hand indirect encoding describes 
how to construct neural network. It allows to create compact genomes that are able to 
create bigger neural networks or are able to define simply multiple occurrences of the same 
sub-network. 

Many algorithms, that fall within this group have been developed. In the next section 
two of them are described. 

4.7.1 Cellular Encoding 

Cellular Encoding is a method for encoding neural networks. This technique developed 
in 1994 [7] uses indirect encoding. Algorithm introduces cells that execute "cellular 
code" and turn into neurons when they finish code execution. The code is represented by a 
tree (also called "cellular code"). This tree consists of instructions and its nodes - number 
of nodes depends on instruction. Roots with terminal instructions doesn't contain nodes, 
while nonterminal ones contain one or two - depending on whether instruction divides into 
two cells or not. Every cell executes instructions according to its position in the code. 
When the cell gets to the end of code, it "dies" and turns into neuron. 

Algorithm uses the initial tree. There are two types of trees defined - cyclic and acyclic 
as shown in figure 4.7. This tree is used for initial development. 

INPUT INPUT 

f \ 
Cell 1 Cell 1 

OUTPUT OUTPUT 

Figure 4.7: Initial graphs of cells. There is an acyclic graph on the left side and a cyclic 
graph on the right side. 

Further, the algorithm is run for an inspiration with a simple "cellular code". Algorithm 
starts with a single cell pointing to the beginning of the code as shown in figure 4.8. 
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OUTPUT 

Figure 4.8: Starting point of algorithm 

Cell 1 then interprets the instruction - SEQ in this case and it results in creating a 
new cell with an input connection to the first cell and its output to the output as shown in 
figure 4.9 

PAR 

SEQ Position of cell i INF UT 

SEQ P '—-----
\ / Of Ce 11 1 

END END END 

Figure 4.9: State of algorithm after first step 

In the next step of algorithm, all cells interpret next instructions again. Cell 2 in 
this case points to SEQ and cell 1 to PAR. Instruction PAR is also division one. This 
instruction creates a new cell, that inherits the same inputs and outputs as the first cell -
that means a parallel division. This can be seen in figure 4.10. 

Position of cell 1 

INPUT 

/ 
PAR 

/ / \ 
END END 

Position of cell 3 Cell 1 Cell 3 

END Cell 2 

Cell 4 

c m 4 

Figure 4.10: Developing of cells 

OUTPUT 
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In the last step all the cells point to the instruction END. This instruction turns cells 
into neurons. This conversion can be seen in figure 4.11. 

Figure 4.11: Dying of cells and creation of neurons 

The original paper introduces many instructions, nevertheless the instructions provided 
below are satisfactory for development of every possible topology. Other instructions are 
just making process of development quicker and cellular code more compact. 

• SEQ - sequential division of a cell into two. The first created cell inherits all input 
links and second outputs. These two cells are connected with weight 1. 

• PAR - parallel division is the second type of a division. Both new created cells 
inherit inputs and outputs from the original cell. 

• END - ending-program symbol ends editing of a cell. 

• DECBI AS/INCBI AS - these symbols modify bias of neuron - increase or decrease 
it. 

• DECLR/INCLR - these symbols modify a value of link register 

• V A L - / V A L H — these symbols set a value of link register to -1 or +1 

• CUT - it modifies topology by removing link pointed by link register. 

4.7.2 N E A T 

Algorithm NeuroEvolution of Augmenting Topologies was invented by Stanley and 
Miikkulainen [19]. This method develops both topology and weights. This method is based 
on genetic algorithms - it uses direct encoding of genes and crossover. 

This algorithm develops linear genome, consisting of two types of genes (Connection 
Gene and Node Gene). The ability of developing topology comes with problems - how to 
make crossover of two different genomes with different sizes and how to crossover two same 
networks with different topology. NEAT comes with solution - every genome gets its ID, 
that is never changed. This ID is inherited, so it is possible to get ancestor of concrete gene. 
This solves the problem of making crossover of two different genomes. When crossover is 
done, all genes are paired with same IDs and one gene of group gets to newly created 
genome. 

When a new topology is created - i.e. a new neuron or connection is added, it can break 
fitness of newly created individuals. To avoid losing such an individual - its topology can 
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be better, but weights are not developed, NEAT comes with splitting of individuals into 
species. This allows to create continuous development of genomes with different topologies. 
Every time, a new genome that is different from other species is evolved, a new species 
is created. This dissimilarity is computed from number of unpaired genes (number of not 
paired IDs) and the difference in weights. 

s = eg + <f+C3.w (4.3) 
Equations 4.3 describes dissimilarity of two genomes, ci, C2, C3 are coefficients affecting 

impact of factors. N is length of longer genome, W is average of differences between weights. 
E is number of excess genes - the number of genes of one individual, that have higher ID 
than the highest ID of gene from the second genome. D is the number of genes, that can 
not be paired - ID of genes are in only one genome. 
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Chapter 5 

Genetic Programming 

Genetic programming falls into the category of evolutionary algorithms. This algorithm 
works either with linear code or code encoded into trees. In this chapter, genetic program
ming for code encoded into trees is introduced and methods for selection, mutation and 
crossover are described. 

5.1 Population initialization 

Initialization of population is the first step of genetic programming algorithm. The way 
population is initialized affects the speed of convergence to local (global) optimum. Usually 
individuals with short code decrease diversity whereas too complex and deep code tree can 
result in inefficient solutions. For initialization of trees, usually two methods are used -
grow method and full method. These methods need one parameter - the "maximum 
tree depth". This parameter restricts the size of tree. Apart from "maximum tree depth" 
it receives also set of terminals and nonterminals, it generates tree from. 

The Grow method 8 creates tree, where in every step where depth is smaller than 
maximum depth, node is selected from all symbols. In the maximum depth, node is selected 
only from terminal symbols [22]. 

Algorithm 8 Grow method 
1: procedure GROw(depth) 
2: if depth < maximumDepth then 
3: node = random(Terminal U Non Terminal) 
4: for i : node.children do 
5: node.childi = grow(depth + 1) 
6: end for 
7: else 
8: node = random(Terminal) 
9: end if 

10: return node 
11: end procedure 

The Full method 9 is similar to Grow method, but generates trees of the depth equal 
to maximum depth - it selects only non-terminal symbols when the depth is smaller than 
maximum depth. 
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Algorithm 9 Full method 
1: procedure FuLL(depth) 
2: if depth < maximumDepth then 
3: node = random(Non Terminal) 
4: for i : node.children do 
5: node.childi = grow(depth + 1) 
6: end for 
7: else 
8: node = random(Terminal) 
9: end if 

10: return node 
11: end procedure 

There exists one more method - "ramped half-and-half". This method combines the 
two previous. It initializes half of population by grow method and the second half by full 
method. 

5.2 Operators 

Operators are crucial part of genetic programing. Operators define the way individuals 
mutate or crossover. During experiments, new operators were implemented to achieve 
better results. We divide operators into two categories - mutations and crossover. 

5.2.1 Mutations 

Mutation is unary operator and it changes genetic information of individual. This operator 
is useful, when generation is approaching optimum and crossover between individuals makes 
big differences in code trees [16]. 

Subtree mutation 5.1 is basic mutation operator, which selects random subtree in 
individual and replaces it with randomly generated tree. Newly generated subtree must be 
generated with reasonable depth, any algorithm mentioned in Genetic code initialization 
can be used. 

Parent 1 Randomly Offspring 
generated tree 

Figure 5.1: Subtree mutation 

Shrink mutation 5.2 reduces the complexity of code. This operator selects random 
subtree that is replaced by subtree with the first instruction being terminal. This can be 
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pictured on following equation: pow{x) • (x + 0), that can be turned after application of this 
operator to pow(x) • x. 

Parent Offspring 

Figure 5.2: Shrink mutation 

Node replacement mutation 5.3 replaces instruction by another with the same sig
nature (arity, return or parameter types) [10]. 

Parent Offspring 

Figure 5.3: Node replacement mutation 

Hoist mutation 5.4 is very specific operator. This operator can be though as opposite 
to shrink mutation and is also useful for reducing complexity of code. It selects random 
subtree and replaces whole tree node with it - the selected subtree is new solution. 

Parent Offspring 

Figure 5.4: Hoist mutation 

Subtree permutation 5.5 is the last described mutation operator. This operator is 
applicable only, when modified instruction is not commutative. Operator switches operands 
(subtrees of node) of instruction. This can be seen on formula change from a/b to b/a. 
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Parent Offspring 

Figure 5.5: Subtree permutation 

5.2.2 Crossover 

Crossover operators are binary operators. These operators select two individuals from 
generation and creates new one using their genetic information. 

Subtree crossover [17] is the first introduced operator. This operator selects node in 
both parents and switches these two subtrees as can be seen in figure 5.6. 

Parent 1 Parent 2 Offspr ing 

Figure 5.6: Subtree crossover 

Arity-2 combination is specific operator. This operator combines both parents with 
usage of binary instruction. This combination can be seen in figure 5.7. 

Parent 1 Parent 2 Offspr ing 

Figure 5.7: Arity-2 combination 
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Chapter 6 

Implementation 

This chapter describes requirements and implementation of neccessary parts for the thesis. 
Description of specific modules and components is also provided. 

6.1 Requirements for implementation 

The essential requirement for the final design was the possibility of extension of implemented 
features for the future. Due to this fact the code is divided into 3 logical parts. The first 
part is library for neural networks. The second part is library for evolutionary algorithms 
and the last part consists of experiments incorporated in the thesis. Implementation of 
libraries is provided in the two following sections. The second requirement was speed and 
portability. For this fact the language 0++ was chosen. 

6.2 Neural network library 

For the specific needs of this thesis, a personal library was developed. This library is called 
NeuralNetworkLib. This unit is not completely original, it was originally developed as 
a part of my master's degree studies subject. This library is provided as an open-source1. 
For this thesis, this library has been extended by: 

• Recurrent network 

• Cellular encoding 

• Cascade network implementation 

• Constructive algorithms 

• A V X implementation of basis function 

• Problem sets 

• Serialization of networks 
l i b r a r y can be found at https://github.com/Shin-nn/NeuralNetworkLib or 

http: //gitlab.ishin.cz/shin/NeuralNetworkLib 
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This library aims to provide high-speed functionality framework as well as simple object-
oriented design. Due to the fact, that these objectives go against each other, I dropped 
this clean object-oriented design. Every element of this library knows how to serialize itself 
as "JSON object" as well as deserialize. Format JSON was chosen for its lightness and 
easy readability. The ability and uniformity of serialization of every object comes with the 
ability to simply combine parts together and store networks to disks and load once again. 
We can imagine this functionality on serialized neuron in listing 6.1. 

{ 

" c l a s s " : "NeuralNetwork::Neuron" 9 
"activationFunction " : { 

"c l a s s " : "NeuralNetwork: :ActivationFunction: :Sigmoid" , 

"lambda" : -0.800000 

} . 
"basisFunction" : { 

"c l a s s " : "NeuralNetwork: :BasisFunction::Linear" 

} . 
" i d " : 3, 

"output" : 0.483658, 

"value" : -0.081738, 

"weights" : [-8.339814, 3.148232, 3.169152, 6.976029] 

> 

Listing 6.1: Neuron serialised as JSON 

This library is divided into logical parts, each representing part of neural network. 
Further, each part is introduced. 

6.2.1 Activation functions 

Activation functions are first essential part of this library. These classes represent different 
activation functions. We can see implemented functions and class dependency in figure 
6.1. Each function provides function to compute output of neuron from its value - function 
operatorQ as well as function for computing derivation - function derivatedOutput. 
Derivated output is used for example during backpropagation. 
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SerializableObject 

A 

N eu ral N etw ork:: Act iv at i on 
Fu net i on:: Act iv at i on Fu net i on 

NeuralNetwork::Act ivat ion 
Function ::Heaviside 

# lambda 

+ Heavisidef) 
+ derivatedOutputf l 
+ operatorflf l 
+ c loned 
+ serialized 
+ deserializef) 

+ -Act ivat ionFunct ionf l 
+ derivatedOutputf l 
+ derivatedOutputf l 
+ operator()0 
+ clonef l 

NeuralNetw ork: Ac t iva t ion 
Funct i on: :H yperbol ic Tangent 

# lambda 

- HyperbolicTangentf) 
- derivatedOutputf l 
- operatorflf l 
- c loned 
- serialized 
- deserial ized 

NeuralNetw ork: Act ivat ion 
Function::Linear 

# lambda 

• Linearfl 
• derivatedOutputf l 
• operatorflf l 
• c lonef l 
• serializefl 
• deserial izefl 

NeuralNetwork: Ac t iva t ion 
Funct ion::Sigmoid 

# lambda 

- Sigmoidfl 
- derivatedOutputf l 
- operatorflf l 
- c lonef l 
- serializefl 
- deserial izefl 

Figure 6.1: Activation function diagram 

6.2.2 Basis functions 

The second part of library are basis functions. Each function implements the computation 
from weights and inputs - function operator().Due to the fact, that in most cases linear 
basis function is used, it was tuned to be as efficient as possible. 

To satisfy this goal, linear basis function was implemented with streaming instructions 
- AVX and SSE. In the time of compilation, compiler tool decides, whether instruction 
set is available on its platform. This allows to write portable program as well as target 
high speed. The usage of these instruction sets allows neural network to run multiple times 
quicker. Given the fact, that more than 95 percent of time spent on evaluating neural 
network is in linear functions, the speed up is in the case of SSE instruction set almost by 
4 and in the instruction set of AVX almost by 8. 
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SimpleJSON::Serializable 
Object 

NeuralNetwork::BasisFunction 
::BasisFunction 

N eu ral N etw ork:: B as i s Fu net i on 
"Linear 

+ LinearQ 
+ operatorflfl 
+ clonefl 
+ serializefl 
+ deserializefl 

- -BasisFunctionfl 
- operatorflO 
- clonefl 

NeuralNetwork::BasisFunction 
"Product 

- Productfl 
- operatorflfl 
- clonefl 
- serialized 
- deserializefl 

N eu ral N etw or k:: B as i s Fu net i on 
::Radial 

+ Radialfl 
+ operatorflfl 
+ clonefl 
+ serialized 
+ deserialized 

Figure 6.2: Basis function diagram 

6.2.3 Neuron 

Neuron is the most important point of this library. Its interface and attributes can be 
seen in figure 6.3. The neuron's main, and the most computationally intensive function is 
operatorQ. This function receives vector of inputs, uses basis function to compute inner 
value of neuron and activation function to compute its output, which is returned. This 
two values, are then stored inside the neuron for further usage (backpropagation, etc.). 
This composition allows neuron to be used in all types of discrete networks. Networks' 
responsibility is to pass inputs to neuron in correct order, and the rest is done inside 
neuron. Further, the neuron provides interface for changing and getting weights, activation 
and basis function. It also allows to resize number of inputs, to be able to change topology 
on the run. 
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N eu ral N etw ork:: N eu 

+ id 
# weight s 
#_output 
# value 

+ Neuronlnterfaced 
+ NeLironlnterfacefl 
+ -Neuron Interfaced 
+ get W eight sQ 
+ s etW eight s f l 
+ w eight fl 
+ vi eight fl 
+ w eight fl 
+ w eight fl 
+ out put 0 
and 8 more... 

N eu ral N et w ork:: N eu ron 

+ Neuronfl 
+ Neuronfl 
+ -Neuronfl 
+ operator=fl 
+ operátorů ď 
+ clonefl 
+ getBasisFunctionfl 
+ getActivationFunctionfl 
+ setBasisFunctionfl 
+ setActivationFunctionfl 
+ serial izefl 
+ deserializefl 

Figure 6.3: Neuron diagram 

6.2.4 Learning algorithms 

Another part of library are learning algorithms. Implemented algorithms relevant to this 
thesis are backpropagation and quickpropagation. Algortihms can be found in namespace 
LearningAlgorithms. These two algorithms can be used for learning any feed-forward 
network and are used for learning output layers in algorithms Cascade-Correlation and 
Cascade 2. 

6.3 Evolutionary algorithms library 

This library serves as multipurpose library. Library is provided as open-source2. It unifies 
algorithm such as genetic programing, genetic algorithms and so on. Library is based on 
common base - template called Evolutionary Algorithm. This template defines the pro
cess of initializing new generation and generating new one. It provides all core functionality 
to specific routines - only operators and types of individuals are necessary to specify. The 
workflow can be modified in many ways - number of selected individuals from previous 

2 L i b r a r y can be found at http://gitlab.ishin.cz/shin/EvolutionaryAlgorithms 

SerializableObject 

ronlnterface 

N eu ral N etw ork:: Act iv at i on 
Fu net i on:: Act iv at i on Fu net i on 

- -ActivationFunctionfl 
- derivatedOutputfl 
- derivatedOutputfl 
- operatorQfl 
- clonefl 

#activation 

A 

SimpleJSON::Sehalizable 
Object 

N eu ral N etw or k:: B as i s Fu net i on 
::BasisFunction 

+ -BasisFunctionfl 
+ operatordd 
+ clonefl 

#basis 
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generation, size of generation and terminal criterion. It is also responsible for creating 
statistics of generations. 

6.3.1 Selection Operators 

Library implements several selection operators. These operators can be used for selecting 
individuals to next generation or individuals for mutation or crossover. Implemented oper
ators and corresponding diagram can be seen in figure 6.4. Operators are implemented as 
templates. Further, implemented operators are described. 

Ev ol ut í onary Algorit h m 
:; S el ect i on Operát are 

::Elite< T > 

+ EliteQ 
+ operat orQ 

Ev olut i on ary Algorit h m 
:: S el ect i on Operat ors 

: :Random< T > 

- _generator 

- Random0 
- operat orf l f l 

Ev ol ut i onary Algorit h rn 
::SelectionOperator< J> 

# size 

h Sel ect i on Operat orQ 
h ~ Sel ect i on Operat orQ 
h operat orQ Q 
h get Sel ect ion S i zeQ 
r setSizeQ 

Ev ol ut i on ary Algorit h m 
:: S el ect i on Operat ors 

: :Rank< T > 

- _generator 

- RankQ 
- operat orQ Q 

Evol ut i on aryAlgorit h m 
:: S el ect ion Operat ors 

::Roulette< T > 

- _generator 

• RouletteQ 
• operatorOO 

Ev ol ut i on aryAlgorit h rn 
::SelectionOperators 

: Tournament < T > 

- _generator 
- tournament Size 

•i- TournamentQ 
•i- operatorQO 

Figure 6.4: Selection operators diagram 

Elite selection selects first best N individuals. This operator is usually used, when 
best individuals should be placed to new generation. 

Roulette Wheel selection selects individuals according to their fitness. Selection can 
be imagined on a roulette wheel, where every place represents individual and the proportion 
of size is the same as proportion of fitness. This operator suffers from problems, where fitness 
differs very much - that way, only few best individuals are selected. 

Rank Selection is trying to reduce the problems, that comes with Roulette Wheel 
selection. It works, the same way as previous operator, but the proportion of space is 
computed by their rank in population. Worst individual gets rank 1, second worst gets 
rank 2 and the best gets rank N - size of population. There is one problem with this 
operator - as diversity of selected individuals increases, the convergence can be slower. 

Tournament selection comes with an idea of comparing random individuals to each 
other. Operator selects randomly k (the size of tournament) individuals from the popula
tion. The individual with best fitness is the winner of tournament. 

6.3.2 Genetic programing 

Genetic programing is based on previously described class Evolutionary Algorithm. It 
provides individuals with trees. Every tree can contain zero, one or two nodes. Number of 
nodes depends on concrete instruction. Every instruction must specify its number of nodes, 
it uses. 
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6.3.3 Population initialization 

Library implements all initialization methods described in section 5.1. These methods can 
be found in namespace GeneticPrograming::InitializationFunction as we can see in 
figure 6.5. These methods implement method operator()() that returns initialized tree. 

EvolutionaryAlgorithm 
::Genet icPrograming:: 
Genet icPrograming: initialization 

Function 

+ InitializationFunctionO 
+ operatorOO 
+ operatorOO 

Ev olut ion ary Algorit h m 
::Gen et icPrograming:: 
InitializationFunction 

::FullMethcd 

#_maxDepth 

- FullMethodfl 
- operatorOO 

Evolution ary Algorithm 
::GeneticPrcgraming:: 
InitializationFunction 

GrowMethod 

#_maxDeptri 

- GrowMethodO 
- operatorOO 

Figure 6.5: Population initialization methods 

6.4 Cascade-Correlation 

This algorithm is implemented in class ConstructiveAlgorihtms::CascadeCorrelation. 
This class provides all neccessary functions for constructing cascade-network. This algo
rithm needs many configurations, thus functions for setting or getting following configura
tions are provided: 

• Number of candidates - number of candidates generated in each epoch 

• Maximum candidate learning iterations - maximal number of iterations, candi
dates are learned 

• Error treshold - when error on learning set is lower than threshold, algorithm ends 
construction 

• Radom weight range - range, where weights are generated 

• Maximum output layer learning iterations - maximal number of iterations for 
learning output layer 

• Maximum output layer learning iterations without change - maximal number 
of iterations for learning output layer, when response is not getting better 

• Maximum candidate learning iterations without change - maximal number 
of iterations for learning candidates, when correlation is not increasing 

Entrance function for construction of network is construct (vector of TrainingPat-
terns). Function creates Cascade network with empty hidden layer. Then it adds new units 
according to algorithm described in section 4.4. Given, the fact, that Cascade-Correlation 
and Cascade2 algorithm differ only in the way, they train candidates (and their outputs), 
class provides virtual function - trainCandidateQ, that is overridden by Cascade2. This 
function returns candidate neuron and weights to output units. 
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6.5 Cascade 2 

Cascade 2 algorithm is implemented in class ConstructiveAlgorithms::Cascade2 and 
inherits from described class ConstructiveAlgorithms::Cascade2Correlation. This 
class overrides method trainCandidateQ. Given the fact, that no original documentation 
exists, it was complicated to reproduce the original algorithm. During development, original 
code was studied as well as the code provided in FANN library. 

6.6 Cellular Encoding 

Cellular Encoding is implemented in namespace ConstructiveAlgorithms::CellularEncoding. 
This class contains method construct(), which returns common recurrent neural network. 
Implementation consists of many classes, to summarize, it consists of: 

• Cell 

• Cellular Encoding 

• Instructions 

Every part is going to be described in details further. 

6.6.1 Cells 
Cell is implemented in class ConstructiveAlgorithms::CellularEncoding::Cell. Cells 
represent elements of system. Cells are modified by instructions, thus this class provides 
interface for modification of its status. 

Every cell contains information about itself and neuron, it is going to be transformed 
to on the end of algorithm. More specifically, it contains: 

• position in tree - pointer to current position in tree 

• bias - bias value for neuron 

• life - life, for recursive cellular code 

• links - vector of links to the cell 

• link register - index to current position in links vector 

• output flag - whether cell results in output neuron 

• input flag - whether cell results in input neuron 

For all of these attributes functions enabling to set or get the value are provided. Link 
can be pictured as triplet (status, weight, cell), where status is the status of neuron with 
values ON, OFF. Weight is representing weight connection between neurons and cell is 
identification of a cell. 
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6.6.2 Instructions 

Part of Cellular encoding implementation represent instructions. Al l implemented instruc
tions derive from base class. Every instruction needs to implement 3 functions - run(), 
numberOfOperandsQ and toStringQ. 

The last function toStringQ is used for stringification of code. The second function 
numberOfOperandsQ is used for creating and changing code tree. Function returns 
number of nodes it uses. The first function runQ represents entry point for cell. When cell 
gets on the move, it calls run on current instruction it points to. This function modifies 
cell, and its surrounding. 

Every instruction is implemented in its own class and these classes are located in names
pace ConstructiveAlgorithms::CelularEncoding::Instruction. Implemented instruc
tions and classes are: 

• IncBias - This instruction modifies cell by incrementing bias by one. 

• DecBias - This instruction modifies cell by decrementing bias by one. 

• MulBias - This instruction modifies cell by multiplying bias by one. 

• DivBias - This instruction modifies cell by dividing bias by one. 

• SetBiasZero - This instruction modifies cell by setting bias to zero. 

• SetBiasOne - This instruction modifies cell by setting bias to one. 

• SetBiasMinusOne - This instruction modifies cell by setting bias to minus one. 

• Par - This instruction creates new cell from current one. New cell is connected 
parallely and copies all registers to new cell. 

• Seq - Instruction creates new cell, that is connected sequentially to original and 
copies all registers to new cell. 

• End - This instruction ends development of cell and turns cell to neuron. 

• Rec - This instruction conditionally sets the code pointer to the beginning of code 
when the life > 1 and in the case of life equals one, it ends the same way as END. 

• Wait - This instruction does nothing, it just stops cell for one step. 

• On - This instruction modifies the state of link. It turns on the link specified by the 
link register. 

• Off - This instruction modifies the state of link. It turns off the link specified by the 
link register. 

• Div - This instruction modifies the value of link. It divides the value of link specified 
by the link register by 2. 

• Mult - This instruction modifies the value of link. It multiplies the value of link 
specified by the link register by 2. 

• Inc - This instruction modifies the value of link register by incrementing it by one. 
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• Dec - This instruction modifies the value of link register by decrementing it by one. 

• ValPlus - This instruction modifies the value of link. It sets the value of link specified 
by the link register to 1. 

• ValMinus - This instruction modifies the value of link. It sets the value of link 
specified by the link register to -1. 

• Declr - This instruction modifies the value of link. It decrements the value of link 
specified by the link register by 1. 

• Inclr - This instruction modifies the value of link. It increments the value of link 
specified by the link register by 1. 

6.6.3 Cellular Encoding 

Cellular Encoding is the class, that encapsulates whole algorithm to user and "converts" 
cellular code to network. Class provides functions to set initial graph, life and maximum 
number of steps. The last parameter was introduced for possibility of controlling algorithms 
run. In every step, algorithm goes over all cells that are alive and interprets instruction. 
When number of steps overcomes the maximum set by user, exception is thrown and algo
rithm is ended. 

During development, implementation was tested on sample cellular codes provided in 
original thesis to assure correct implementation and the same results. Despite this, it was 
hard to obtain results that are described in original work. This is due to the fact that many 
relevant information are not mentioned in original work. These aspects are covered in the 
following paragraphs. 

Timing of cells step is very important during cell development. Different timing 
results in different topology. To provide same results as original work, new cell must be 
added to execution just right after the cell it was separated from. 

Cell registers must be set in divided cells during development. 
Number of inputs and outputs is given by the cellular code. It is not possible 

to set the number of inputs or outputs and developed network must be tested on the size 
of input and output layers. 

Terminality of symbols is not given by instruction. In the instruction set, there 
is only one instruction that is always terminal - END. Also division instructions are never 
terminal. Other instructions can be both terminal and non-terminal. This depends on 
current set specification. The ability to change the terminality of symbol allows to create 
specific instruction set for problems and increase convergence. 
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Chapter 7 

Proposal of improvement 

This chapter proposes two possible improvements for Cascade-Correlation and Cascade 
2. In the course of experiments, I have observed that in some situations adding candidate 
unit to network made response of network worse. To solve this effect, two modifications are 
proposed. These proposals are described in the two next subsections and then in the next 
chapter these two proposals are evaluated. 

7.1 Random search of output weights 

This modification is based on the idea of wrongly generated weights between input and 
hidden units and output units. There are cases, when backpropagation doesn't converge, 
or convergence is slow. To suppress this effect, I suggest the following addition to the basic 
algorithm: 

Instead of learning output layer by backpropagation, generate pool of N + 1 (the one is 
the original network) copies of current network. Leave one network as it is and randomize 
the connections between input and hidden units and output units in other networks. Then 
learn the whole pool. In the end of the step select network with the best response. 

During experiments with this modification I observed that the profit from this modi
fication comes with more then 95% probability in the first epochs. Thus, the number of 
generated networks can be modified in the following manner without reduction of profit. 

I N'/epoch otherwise 

Where 5 is user specified constant, in this thesis S = 15. N' is the maximal number of 
generated networks. This approach speeds the learning dramatically. 

7.2 Pruning of added neurons 

This modifications introduces a new variable e - floating threshold for minimal convergence 
between added neurons. The modification can be specified as follows: When the response 
of network after learning of output layer is not better by the factor of e, remove the last 
added neuron. This can be written as the following condition: 

Variable e should be set between (0,1). The smaller the variable is, the stricter the pruning. 

N' if epoch mod 5 = 0 

If(e • lastError < error) {remove last added neuron} 
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Chapter 8 

Experiments 

This chapter describes typical benchmark problems and results of implemented algorithms 
and their improvements. These algorithms are compared to each other and to backpropa-
gation. 

As experiments, XOR, Parity of three and four inputs and Chess board 3x3 problems 
had been chosen. 

For each experiment precise parameters and configurations of algorithms are provided 
for the possibility of future reproduction of experiments and corresponding results. For cel
lular encoding, a table describing usage of operators, initialization and other configuration 
is presented. 

If not specified in the text of experiment, experiment was executed for a number (usually 
30) of runs, then compared by resulting mean squared error and the median solution was 
selected. This selection of result gives us an idea of the medium solution. 

44 



8.1 X o r 

Xor is typical benchmark for neural networks. This benchmark was used to show validity of 
algorithms and in case of cellular encoding, it was used to examine the influence of different 
selection operators and activation functions on the speed of convergence. 

Generation size: 
Non-terminals: 

Terminals: 
Fitness function: 

Target fitness: 
Terminal criterion: 

Initialization: 
Selection: 

Activation function: 
Mutation / Crossover: 

500 
PAR, SEQ, INCLR, DECLR, INC, VAL-, INC, DEC, WAIT 
END 
6.0- sum of differences between output and desired output -
size • (size + 2) 
Maximum 
generation >50 or fitness >5.4 
ramped half-and-half(3) 
Elite(15) 
Heaviside(O.O) 
SubTreeMutation(l.O), HoistMutation(0.5), Crossover(l.O), 
Permutation(0.5), NodeReplacementMutation(0.5) 

Table 8.1: Table of genetic programming configuration for XOR 

Table 8.1 represents configuration for cellular encoding. For this configuration, experi
ments with different activation functions were run. Results can be seen in figure 8.1. These 
results were obtained by selecting the best run from 20. In number, 80% of runs were 
successful in the case of Heaviside activation function. Example of generated code can be 
seen in appendix C. In the case of sigmoid function, the rate of success dropped to only 
about 8%. Due to this fact, further experiments only present data for Heaviside activation. 

0.35 

0.3 

0.25 

e 0 2 

W 0.15 

03 
CD 

0.1 

0.05 

• Heaviside(O.O) 
• Sigmoid(-l.O) 

10 15 

Generation 
20 25 30 

Figure 8.1: XOR cellular encoding convergence 

During this experiment, different selection operators for mutations and crossover were 
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compared from the point of convergence speed. Table 8.2 describes results of this compar
ison of selection operators. 

Selection operator Mean generation 

Rank: 52 
Roulette: 43 

Tournament of size 5: 25 
Tournament of size 9: 35 

Tournament of size 15: 37 

Table 8.2: Influence of selection operators on convergence 

Cascade-Correlation and Cascade2 algorithms correctly classify all four patterns in just 
one step with one hidden neuron with 100% success. Due to this fact, no table with results 
is presented. 

LU 
ID 0} 
CO 

co 

CO 

0.25 

0.15 

0.05 

• Backpropagation, 
2 hidden neurons 

• Backpropagation, 
10 hidden neurons 

Iterations 

Figure 8.2: XOR backpropagation convergence 

These results can be compared to backpropagation algorithm featured in figure 8.2. The 
result of backpropagation was selected from 20 runs of this algorithm by selecting median 
solution compared by mean squared error. In this example, backpropagation converges far 
quicker in terms of time than cellular encoding even with minimal possible topology. 

8.2 Parity of 3 values 

This problem represents selecting, whether the number of inputs of value 1 is odd or even. 
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Generation size: 
Non-terminals: 

Terminals: 
Fitness function: 

Target fitness: 
Terminal criterion: 

Initialization: 
Selection: 

Activation function: 
Mutation / Crossover: 

500 
VAL-, PAR, SEQ, WAIT 
BIAS-, BIASO, BIAS+ 
10.0- sum of differences between output and desired output 
Maximum 
generation >50 or fitness >9.0 
ramped half-and-half(3) 
Elite(15) 
Heaviside(O.O) 
SubTreeMutation(l.O), HoistMutation(0.5), Crossover(l.O), 
Permutation(0.5), NodeReplacementMutation(0.5) 

Table 8.3: Table of genetic programming configuration for Parity of 3 values 

Table 8.3 describes configuration of cellular encoding and corresponding genetic pro
gramming. For this configuration, 30 runs of cellular encoding was executed. From these 
runs only 3 runs were successful which makes algorithm successful only in 10% of cases. 
Again, the medial result is presented in figure 8.3. This figure shows, that initially, 3 pat
terns are classified well, and in the future generations, the number of wrongly classified 
patterns decreases one by one. 
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CD 
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CO 
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0 
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Generation 
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Figure 8.3: Parity of 3 inputs Cellular encoding convergence 
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Figure 8.4: Parity of 3 inputs Cascade-Correlation and Cascade 2 convergence 

Figure 8.4 shows the graph of Cascade-Correlation and Cascade 2 algorithms conver
gence. We can see that both algorithms are able to solve this problem Very quickly. In 
this example, algorithms do not profit from proposed improvements. On the other hand, 
backpropagation as can be seen in figure 8.5 needs hundreds to thousands steps to learn 
this function. These results were obtained from 30 runs by selecting the median solution 
compared by mean squared error. Nevertheless, the differences between solutions were 
negligible. 

Figure 8.5: Parity of 3 inputs backpropagation convergence 

8.3 Parity of 4 values 

This problem is similar to the previous one, but the number of inputs is 4. This section 
provides results of Cascade-Correlation and Cascade 2. Results of Cellular-Encoding are 
not provided due to the fact, that algorithm failed to solve this problem. 

18 



• Cascade-Correlation 

• Cascade-Correlation 
Random 

0 1 2 3 4 5 6 7 8 

Epochs 

Figure 8.6: Parity of 4 inputs Cascade-Correlation and Cascade 2 convergence 

In the figure 8.6, we can see the graph of Cascade-Correlation convergence. Classical 
version of Cascade-Correlation converges in 9 learning steps, that means 8 neurons is added 
to network. Proposed improvement random search of output weights decreases the 
number of learning to 4 and three neurons. Both algorithms successfully resolved the 
problem in all executed experiments. 
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Figure 8.7: Parity of 4 inputs Cascade-Correlation pruning, red crosses represent epochs, 
where pruning was performed 

Figure 8.7 describes the convergence of Cascade-Correlation pruning with e = 0.98. Red 
crosses represent epochs, where pruning was performed. We can see, that the number of 
epochs increased to 15, while the number of neurons decreased to three. 
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Figure 8.8: Parity of 4 inputs Cascade2 algorithm 

Figure 8.8 shows convergence of Cascade 2 algorithm. This algorithm was run with 
input in range (—1,1). With usage of proposed improvement random search of output 
weights, the number of epochs decreases to 3 and the number of hidden neurons to 2. 
When pruning was enabled, algorithm failed to converge in all of thirty executions. 

8.4 Chess 3x3 Problem 

This problem consists of classification of boxes on chessboard. For experiments, chessboard 
of size 3x3 had been chosen. Experiments with different number of patterns were run. First, 
experiments with 250 samples were executed. 

• Backpropagation, 
30 hidden neurons 

• Backpropagation, 
50 hidden neurons 
Backpropagation, 
100 hidden neurons 

03 

CO c 
03 
CD 

Iterations 

Figure 8.9: Ches 3x3 backpropagation convergence for 250 samples 

In figure 8.9 we can see convergence of backpropagation. This can be compared to 
convergence of Cascade-correlation, that is depicted in figure 8.10. From this figure, we 
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can see, that random search of output weights resulted in lower error and quicker 
convergence, while pruning made response worse. 

Figure 8.10: Ches 3x3 Cascade-Correlaton convergence for 250 samples 

Figure 8.11 depicts response of network. We can see over-fitting on the picture of 
cascade-correlation, while backpropagation is more fuzzy. 

Figure 8.11: 250 samples for Chess 3x3, response of backpropagation can be seen on the 
left side, cellular encoding right, each axis describe one input of network, and color its class 
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Figure 8.12: Ches 3x3 Cascade-Correlaton convergence for 1000 samples 

Figure 8.12 depicts convergence of Cascade-Correlation. The speed of convergence is 
comparable to the speed of convergence for 250 samples. Random search of output 
weights results in lower error, but the speed of convergence is slower in the first epochs. 
Improvement of pruning fails to converge again. 

Figure 8.13: 1000 samples for Chess 3x3, response of backpropagation can be seen on the 
left side, cascade-correlation right, each axis describe one input of network, and color class, 
network classifies corresponding input to 

We can see, that response of backpropagation in figure 8.13 is blurred, while response 
of cascade-correlation is sharper, but over-fitting is well seen. 

52 



Chapter 9 

Evaluation 

This chapter deals with evaluation of implemented algorithms one by one and in the end 
of the chapter the possibilities of further work are proposed. 

Algorithm Cascade-Correlation gives very good results in all introduced experiments. 
This algorithm was able to resolve parity of 3 and 4 values and XOR very quickly with 
minimal topology in all executed cases. On the chess 3x3 problem, the over-fitting of 
network could be seen. This behavior was also observed by other authors [15]. 

Cascade 2 algorithm shows very promising results for XOR and parities. Even though, 
for chess 3x3 problem algorithm does not converge. Given the fact that algorithm was never 
published, it is not possible to compare this results to other works. This can indicate the 
fact, that the algorithm works well for bipolar inputs, but further work is needed for decision 
about correctness of this claim. 

The first proposed improvement random search of output weights gives promising 
results in the case of Chess 3x3 and parity of 4 values, but further experiment is needed 
for verification of these results. This improvement decreases the number of epochs on both 
Cascade-Correlation and Cascade 2, but on the other hand it increases the time spent 
on learning. 

The second proposed improvement pruning of added neurons decreases the num
ber of neurons added by Cascade-Correlation, but makes the algorithm less stable. In 
the case of Cascade 2, this improvement shows unpredictable behavior and I would not 
recommend to use it. 

Cellular-Encoding is a promising way for developing artificial neural networks, but 
needs extra work. I was not able to obtain the same results as described in the original 
thesis due to the fact, that genetic programming configuration was not precisely described 
in the original dissertation. I see the necessity of setting wide number of configurations 
for this algorithm as a big deficit. The algorithm is dependent on configuration of genetic 
programming and selected instruction set. The convergence when using a wider - complete 
instruction set is much slower and the rate of success in problem solving dramatically 
decreases. Algorithm suffers next to these two deficiencies by the way it develops the 
number of input and output units. This number is given by cellular code and can't be 
hardcoded. The algorithm works relatively well, when these parameters are well tuned, but 
given the complexity of configuration, I would not recommend this algorithm as production-
ready. 
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Chapter 10 

Conclusion 

The goal of this work was the implementation of selected algorithms, exploration of possi
ble improvements and evaluation of algorithms. This goal was achieved by implementing 
algorithms in C++ language. 

The theoretical part of this thesis describes the fundamentals of neural networks, math
ematical models of neurons and networks. Further it presents basic algorithms for learn
ing neural networks and explores algorithms for topology of neural networks development. 
Algorithms are divided into three groups - pruning, constructive and neuroevolutionary. 
Pruning algorithms start with a large network and remove neurons and connections to make 
them smaller. On the other hand constructive algorithms start with small networks - usu
ally without hidden neurons and add neurons and weights. Neuroevolutionary algorithms 
develop neural networks by using evolutionary algorithm, for example genetic programming 
or genetic algorithm. 

The practical part deals with description of concrete algorithm implementation. One 
of the selected algorithms, Cascade 2 was never published. These algorithms were imple
mented as a part of the existing library NeuralNetworkLib. Besides these algorithms, a 
new library for genetic programming was introduced. 

The last part of the thesis describes performed experiments with these algorithms. It 
compares these algorithms with each other and shows influence of proposed improvements. 
These experiments show that one algorithm responds well to all performed experiments -
Cascade-Correlation. The algorithm Cascade 2 provides nice results on bipolar exper
iments. The last selected algorithm - Cellular encoding works on only one experiment. 
Possible reasons for this are described in the evaluation chapter. 

Two proposed improvements random search of output weights and pruning of 
added neurons decrease the number of used neurons, but on the other hand, the time for 
training is increased. 

Further possibility of extensions could be expansion of instruction set for Cellular en
coding or solving its problem of hard-coded sizes of inputs and outputs. Another possible 
extension lies in implementing more constructive algorithms and comparing them. 
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Appendix A 

Contents of attached C D 

• thesis print.pdf - pdf of thesis for printing 

• thesis hyper.pdf - pdf of thesis for viewing 

• src/ - source codes for programs 

— lib/ - folder with library NeuralNetworkLib 

— R E A D M E - file describing how to compile and run programs 
— cascade2.cpp - Cascade 2 experiments 
— cascadecor.cpp - Cascade Correlation experiments 
— cellular encoding.cpp - Cellular encoding experiments 
— setup.sh - setup for configuration and building 

• doc/ - source code for this paper 
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Appendix B 

Manual 

B . l Installation 

Program needs to be compiled, since it is written in language C++. The prerequisites for 
compilation are: 

• cmake version 3.2+ 

• g++ with C++14 support, tested on 5.2.1 

• OpenGL 

• GLUT Library 

When software is installed, run script setup. sh. This script compiles all necessary 
source codes and builds programs in folder build. If argument -f is provided, it downloads 
all libraries that are attached again. 

B.2 Usage 

This work consists of 3 programs - cascade2, cascadecor, cellular_encoding. These 
programs allow to run experiments. When argument -h is passed, they provide documen
tation. If programs are run without argument, they execute experiment with XOR. 
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Cellular code for X O R 


