
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONSTRUCTIVE NEURAL NETWORKS
NEURONOVÉ SÍTĚ S PROMĚNNOU TOPOLOGIÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. TOMÁŠ ČERNÍK
AUTOR PRÁCE

SUPERVISOR doc. Ing. FRANTIŠEK ZBOŘIL, CSc.
VEDOUCÍ PRÁCE

BRNO 2016

Zadáni diplomové práce/6929/2015/xcemi08

Vysoké učení techn ické v Brně - Fakulta in formačních technologi í

Ústav inteligentních systémů Akademický rok 2015/2016

Zadání diplomové práce
Řešitel: Čern ík T o m á š , Bc.
Obor: Intel igentní systémy
Téma: N e u r o n o v é s í tě s p r o m ě n n o u t o p o l o g i í

C o n s t r u c t i v e N e u r a l N e t w o r k s
Kategorie: Umělá inteligence

Pokyny:
1. Prostudujte zadanou l i teraturu.
2. Vypracuj te přehled existujících algori tmů pro změnu topologií neuronových sítí.
3. Vyberte alespoň dva z těchto algor i tmů a implementu j te je .
4. Posudte možné modif ikace/vylepšení vybraných algor i tmů.
5. S vybranými /modi f ikovanými algori tmy provedte exper imenty se zaměřením buď na

klasifikaci, nebo heteroasociaci.
6. Zhodnoťte dosažené výsledky.

Literatura:
• Sharma, S. K., Chandra, P.: Constructive Neural Networks: A review, International

Journal of Engineering Science and Technology Vol. 2(12) , 2010
• Franco, L , Elizondo, D. A., Jerez, J. M. (eds): Constructive neural networks,

Springer, 2009, ISBN 978-3-642-04511-0
• Ondráček, T.: Adaptivní vícevrstvé neuronové sítě, disertační práce, FIT VUT v Brně,

2005
Při obhajobě semestrální části projektu je požadováno:

• První dva body zadání

Podrobné závazné pokyny pro vypracování diplomové práce naleznete na adrese
h t tp : / /www. f i t .vu tbr .cz / in fo /szz /

Technická zpráva diplomové práce musí obsahovat formulaci cíle, charakteristiku současného stavu,
teoretická a odborná východiska řešených problémů a specifikaci etap, které byly vyřešeny v rámci dřívějších
projektů (30 až 40% celkového rozsahu technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy,
úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou uloženy
na standardním nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do písemné
zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: Z b o ř i l F r a n t i š e k V., doc . I n g . , C S c , UITS FIT VUT
Datum zadání: 1. l istopadu 2015
Datum odevzdání: 25. května 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

doc. Dr. Ing. Petr Hanáček
vedoucí ústavu

http://www.fit.vutbr.cz/info/szz/

Abstract
Master theses deals with Constructive Neural newtorks. First part describes neural net
works and coresponding mathematical models. Furher, it shows basic algorithms for learn
ing neural networks and desribes basic constructive algotithms and their modifications.
The second part deals with implementation details of selected algorithms and provides
their comparision. Further comparision with backpropagation algorithm is provided.

Abstrakt
Tato práce se zabývá neuronovými sítěmi - konkrétně sítěmi s proměnnou topologií. Teo
retická část popisuje neuronové sítě a jejich matematické modely. Dále ukazuje základní
algoritmy pro učení neuronových sítí a rozebírá několik základních konstruktivních algo
ritmů a jejich rozšíření. Praktická část se zaobírá implementací vybraných konstruktivních
algoritmů a uvádí jejich porovnání. Dále jsou algoritmy srovnány s učícím algoritmem
backpropagation.

Keywords
Neural Networks, Soft Computing, Constructive Neural Networks, C++, Recurent Neural
Networks, Cascade network

K lícová slova
Neurónové síté, Soft Computing, konštruktívni neurónové síté, C++, rekurentní neurónové
site, Kaskádová sít

Reference
C E R N I K , Tomáš. Constructive Neural Networks. Brno, 2016. Master's thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Zboril František.

Constructive Neura l Networks

Declaration
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of doc. Ing. František Zbořil, CSc. Al l the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

Tomáš Černík
May 23, 2016

Acknowledgements
I would like to thank doc. Ing. František Zboril, CSc, my master's thesis supervisor, for
his great guidance and valuable advice, he helped to complete this work. I would also like
to thank to my family for their support during my studies.

© Tomáš Černík, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 5
1.1 Content of thesis 6

2 Artificial Neural Networks 7
2.1 Artificial neuron 7
2.2 Classification of neural networks 9

2.2.1 Classification according to topology 9
2.2.2 Classification according to number of layers 11

2.3 Topologies and computation 11
2.3.1 Perceptron 11
2.3.2 Feed-forward network 11
2.3.3 Recurrent neural network 12

3 Algorithms for learning neural networks 13
3.1 Perceptron learning algorithm 13
3.2 Thermal perceptron learning rule 14
3.3 Backpropagation 15

4 Algorithms for topology development 16
4.1 C-Mantec algorithm 16
4.2 Marchand's algorithm 18
4.3 New Constructive Algorithm 19
4.4 Cascade-Correlation 21
4.5 Cascade 2 Algorithm 23
4.6 Percentage Average Synaptic Activity 24
4.7 Neuroevolution 25

4.7.1 Cellular Encoding 25
4.7.2 NEAT 27

5 Genetic Programming 29
5.1 Population initialization 29
5.2 Operators 30

5.2.1 Mutations 30
5.2.2 Crossover 32

6 Implementation 33
6.1 Requirements for implementation 33
6.2 Neural network library 33

1

6.2.1 Activation functions 34
6.2.2 Basis functions 35
6.2.3 Neuron 36
6.2.4 Learning algorithms 37

6.3 Evolutionary algorithms library 37
6.3.1 Selection Operators 38
6.3.2 Genetic programing 38
6.3.3 Population initialization 39

6.4 Cascade-Correlation 39
6.5 Cascade 2 40
6.6 Cellular Encoding 40

6.6.1 Cells 40
6.6.2 Instructions 41
6.6.3 Cellular Encoding 42

7 Proposal of improvement 43
7.1 Random search of output weights 43
7.2 Pruning of added neurons 43

8 Experiments 44
8.1 Xor 45
8.2 Parity of 3 values 46
8.3 Parity of 4 values 48

8.4 Chess 3x3 Problem 50

9 Evaluation 53

10 Conclusion 54

Bibliography 55

Appendices 57

List of Appendices 58

A Contents of attached CD 59

B Manual 60
B . l Installation 60
B.2 Usage 60

C Cellular code for XOR 61

2

List of Figures

2.1 Artificial neuron 8
2.2 Feed forward network 10
2.3 Recurrent neural network 10

4.1 C-Mantec algorithm 17
4.2 Structure of C-Mantec algorithms for two-class function 18
4.3 Network built with Marchand's algorithm 18
4.4 Structure of NCA 20
4.5 New Constructive Algorithm 20
4.6 Structure of Cascade-Correlation algorithm 22
4.7 Initial graphs of cells 25
4.8 Starting point of algorithm 26
4.9 State of algorithm after first step 26
4.10 Developing of cells 26
4.11 Dying of cells and creation of neurons 27

5.1 Subtree mutation 30
5.2 Shrink mutation 31
5.3 Node replacement mutation 31
5.4 Hoist mutation 31
5.5 Subtree permutation 32
5.6 Subtree crossover 32
5.7 Arity-2 combination 32

6.1 Activation function diagram 35
6.2 Basis function diagram 36
6.3 Neuron diagram 37
6.4 Selection operators diagram 38
6.5 Population initialization methods 39

8.1 XOR cellular encoding convergence 45
8.2 XOR backpropagation convergence 46
8.3 Parity of 3 inputs Cellular encoding convergence 47
8.4 Parity of 3 inputs Cascade-Correlation and Cascade 2 convergence 48
8.5 Parity of 3 inputs backpropagation convergence 48
8.6 Parity of 4 inputs Cascade-Correlation and Cascade 2 convergence 49
8.7 Parity of 4 inputs Cascade-Correlation pruning 49
8.8 Parity of 4 inputs Cascade2 algorithm 50
8.9 Ches 3x3 backpropagation convergence for 250 samples 50

3

8.10 Ches 3x3 Cascade-Correlaton convergence for 250 samples 51
8.11 250 samples for Chess 3x3 5 1

8.12 Ches 3x3 Cascade-Correlaton convergence for 1000 samples 52
8.13 1000 samples for Chess 3x3 5 2

C . l XORtree 6 1

1

Chapter 1

Introduction

These days, neural networks are being used in many applications. In reality, the usage
for neural networks can be found in many technical sectors. We can use them in data
classification and filtering such as Email filter. They can also be found in games whereby
they act as our opponents when playing for example poker, classical ping-pong or chess.
Such opponents can adapt to our game style in order to achieve better results.

Neural networks can also be used in health care. Hybrid lung cancer detection system
named "HLND"[2] being based on an artificial neural network improves the accuracy of
diagnosis and the speed of lung cancer radiology.

Neural networks are a part of methods called soft computing, which is an alternative
way of approaching mathematical or computational problems. They are suitable for solving
many problems, where brute force algorithms fail. NP-complete problems or problems
with a wide variety of possible solutions could be given as a good example. In many cases
the goal of these methods is not to find the best solution - sometimes the best solution is
not known, but to find out a solution that is satisfactory. Moreover, neural networks can be
used when noisy or incomplete data appear on input - they are able to ignore imprecisions
and "guess" the rest of information.

As neural networks are becoming more and more common, a desire to be able to train
them quickly as well as scale them is arising. In the course of time, many approaches
to learning and building them have been developed. With increasing power of graphical
accelerators, the time necessary for computing and training of neural networks is getting
shorter. The speedup gained through transition from processors to graphical accelerators
has enabled learning to be realized within few hours instead of days. This speedup allows
to train networks faster, but the problem of selecting proper size still persists.

This thesis deals with algorithms for development of topology of neural networks. These
algorithms try to set the correct size and topology for selected problem to prevent common
deficients of neural networks - over-fitting or the inability to learn. The task of this thesis
is to examine current algorithms, propose possible improvements, implement them and
evaluate their performance on selected experiments.

5

1.1 Content of thesis

This thesis is subdivided into two logical parts. The first part deals with the theoretical
background of neural networks, training algorithms, constructive algorithms and genetic
programming. The second part consists of implementation of selected algorithms. Further,
possible improvements are proposed and experimentally evaluated.

Chapter 2 describes artificial neural networks and possible classifications of neural net
works according to their topology. Chapter 3 describes standard algorithms for training
neural networks - Backpropagation, Perceptron learning algorithm and its modification
Thermal perceptron learning algorithm. Chapter 4 deals with algorithms for topology
development - constructive algorithms. These algorithms are divided into 3 categories -
constructive, pruning and neuroevolutionary algorithms. Chapter 5 describes genetic pro
gramming, its operators and initialization methods.

Chapter 6 deals with specific implementation of selected algorithms and genetic pro
gramming, which is used for development of code trees for neuroevolutionary algorithm.
Chapter 7 proposes possible improvements to implemented algorithms. These improvements
and original algorithms are compared in chapter 8 and finally evaluation of experiments is
presented in chapter 9.

(i

Chapter 2

Artificial Neural Networks

An artificial neural network (ANN) is inspired by a biological neural network we know
from our brains. A N N is a set of artificial neurons and connections.

ANNs have been developed over the years and many types of ANNs have been in
vented. These neural networks are different in many aspects. The difference can be found
in topology, type of activation or basis function or in a type of learning.

Another but not less important feature of ANNs is their Turing completeness. That
means they are able to compute all algorithms - as a classical computer. This fact was
proved by Franklin and Garzon, who have created Turing machine with an A N N [11].

2.1 Artif icial neuron

Artificial neuron is a simplified model of a biological neuron. Artificial neurons are main
units in an artificial neural network. As the biological neuron, it has only one output
(Axon) and many inputs (Dendrits). "Body" of a neuron - in biology called Soma is
described by basis function.

The biggest difference between biological and artificial neuron is in the way neurons
"fire" their outputs. Artificial neurons are usually computed in terms of a discrete simu
lation. In every step, the output of neuron is computed. On the other hand - biological
neuron fires when it has enough power (with every incoming input it consumes power and
when this gained power gets over value, it fires), this process is known as a continuous
simulation.

The first mathematical description of neuron was released in 1943 in the work of War
ren McCulloch and Walter Pitts [12]. It was a very simple model, consisting of a linear
combination of inputs, a step function and only binary inputs and outputs. This model is
known as McCulloch—Pitts (MCP) neuron.

In this thesis neuron is defined more flexibly, as shown in figure 2.1.

7

y

Figure 2.1: Artificial neuron

In figure 2.1 array of neuron's inputs x can be seen. Every input has its weight. Such
neuron can be described by the following equation.

V = f a (f b (£ , w))

Neuron consists of two functions - an activation function and a basis function.
Function (f t ,) is known as the basis function. This function describes how to combine

inputs and weights and how to compute the value (also known as a potential) of neuron.
This is described by the following equation.

v = fh(x,w)

Activation function (fa) computes output from neuron's value. Often nonlinear function
is chosen and is described by the following equation:

y = f a (^)

The activation function can be chosen for its specific behavior. If neural network should
approximate non-linear function, activation functions of neurons must be chosen from
non-linear functions. The overview of well known activation and basis functions is intro
duced further.

Well known basis functions are:

• Linear basis combination (LBF)

N

n=l

• Radial basis function (RBF)

N
(Wn ~ Xn)2

n=l
fb(f, w) \

8

Well known activation functions are:

• Gaussian function
- (x - 6) 2

fa(x) = ae

• Heaviside (Step function)

fa(x)

Linear function

Logistic function

J 1 if x > 0
I 0 otherwise

fa(x) = ax + b

fa(x) '
1 + e~x

• Threshold function is a generalization of Heaviside

fa(x)
1 if x > a
0 otherwise

2.2 Classification of neural networks

Neural networks can be classified from many points of view, for example by the number of
layers, topology and application. Every type has its special features. Important classifica
tions for this thesis are:

2.2.1 Classification according to topology

Feed-Forward network is a neural network, where every neuron output is connected
only to inputs of neurons in the successive layers. That means there is no cycle in network.
These networks are easier to learn and only one iteration is needed to get their output, but
they do not have a "memory".

Well known feed-forward networks are fully-connected, in which the output of every
neuron from previous layer is connected to input of every neuron in the successive layer
[21]. We can evaluate this network by computing one layer after another starting from the
input layer. In figure 2.2 a fully-connected feed-forward network is depicted.

9

Figure 2.2: Feed forward network

Recurrent network is a neural network with at least one cycle. In this type of network
there are no layers. An advantage of this network is its abilities to memorize.

Due to recurrent connections, it is not possible to compute network as simply as feed
forward network. These networks are evaluated iteratively - in the first step the value of
each neuron is computed whereas in the second we get their outputs.

These networks are well suitable for problems such as prediction, control of system or
speech recognition. However there is still one problem - it is hard to train them and it
consumes a lot of time.

Figure 2.3: Recurrent neural network

10

2.2.2 Classification according to number of layers

One layer networks are networks which are made of only one layer - the layer is input
and also output of network. Example of this network is Perceptron.

Many layer networks are networks which consist of more than one layer - we call this
layers input, output and hidden according to their position in network.

2.3 Topologies and computation

In this section we are going to describe well known networks and their computation models.

2.3.1 Perceptron

Perceptron was one of the first artificial neural networks. It is a special type of a single-
layer feed-forward network consisting of perceptrons. Perceptrons are neurons with a
step activation function and a linear basis function. It was invented by Frank Rosenblatt
in 1957[18]. At first, it was built as a machine called Mark 1 perceptron and it was
designed for an image recognition. This network is very limited due to the fact that it can
only learn and approximate linear functions. Its weights were encoded in potentiometers
and were updated by electrical motors.

Algorithm 1 describes, how to compute an output for this network.

Algorithm 1 Perceptron
procedure PERCEPTRON(X, network) > x is input of network

y = 0
for i = 0; i < network.outputSize; i + + do

valueOf Neuron = 0
for j = 0; j < x.size;j + + do

valueOfNeuron+ = network.weight[i][j] • x[i]
> weight[i][j] is weight of neuron i to input j

end for
y[i] = valueOf Neuron > 0?1 : 0

end for
return y

end procedure

2.3.2 Feed-forward network

Feed-forward network is one of the most common networks used. Further algorithm 2 for
computation of feed-forward network is described For simplicity, algorithm describes only
Linear basis function.

11

Algorithm 2 Feed-forward Network
procedure C O M P U T E F F N (n e t w o r k , input)

output = Arr ay[network.number O f Layers]
output[0] = input
for layer : network.layers do

for neuron : layer.neurons do
value = 0
for weight : neuron.weights do

value = value + outputs[layer — l][weight] * neuron[weight]
end for
ontpnt[£ayer] [neuron] = fa{value) > / a is activation value

end for
end for
return output[network.lastLayer]

end procedure

2.3.3 Recurrent neural network

In this section algorithm 3 for computing new value of fully-connected RNN is being
provided. This algorithm is more complex than the algorithm for computing feed-forward
network, because it is necessary to calculate new values for all neurons and then change
their outputs. This algorithm is provided for one iteration of computing values. For many
problems, output from one iteration is insufficient and many iterations are necessary to get
output of network. The number of iterations is usually selected in advance according to
specificity of case.

Let us imagine A N N playing chess. When an opponent makes a move, A N N needs
to respond immediately. If only one iteration has been computed, A N N could respond to
this move after next few rounds and it is too late to make that move - both the board and
the situation have changed.

Algorithm 3 Recurrent neural network
1: procedure COMPUTERNN(network,input)
2: for neuron : network.input Neurons do
3: neuron.setOutputValue{input[neuron]) > Set output of input neurons
4: end for
5: for neuron : network.neurons do > /& is basis function of neuron
6: neuron.value = neuron. fb(network.neurons,neuron.weights)
7: end for
8: for neuron : network.neurons do
9: neuron.output = neuron. fa{neuron.value) > fa is activation function of neuron

10: end for
11: Output = []
12: for neuron : network.outputNeurons do
13: output[neuron] = neuron.output
14: end for
15: return output
16: end procedure

12

Chapter 3

Algorithms for learning neural
networks

The topic of this chapter are basic algorithms for learning artificial neural networks. These
algorithms are used by some of constructive algorithms that are introduced later in the
thesis.

3.1 Perceptron learning algorithm

This algorithm 4 was developed by Rosenblatt in 1959 [13]. Algorithm modifies weights Wj
according to input pattern and difference between the actual computed value and desired
output. For simplification only algorithm for two-class classification is mentioned.

13

Algorithm 4 Perceptron learning algorithm
1: procedure ERRFuNCTiON(network,set)
2: Error = 0
3: for all (x,y): set do
4: y' = network.getOutput(x)
5: Error+ = (y' — y)2

6: end for
7: return Error/2
8: end procedure
9:

10: procedure P E R C E P T R O N LEARNING A L G O R I T H M (network, set: {(input, output)})
11: network = set weights and thresholds to small random values
12: iterMax = user defined value
13: maxError = user defined value
14: n = user defined value from range 0.0-1.0
15: while ErrFunction(network, set) > maxError & iter < iterMax do
16: (x, y) = set[iter mod set.size]
17: y' = network.getOutput(x)
18: for all w: network.weights do
19: w = w + n(y — y')x
20: end for
21: iter++
22: end while
23: end procedure

3.2 Thermal perceptron learning rule

This algorithm was introduced by Frean M. in 1992[5]. It is a modification of the original
Perceptron learning algorithm aimed at obtaining a rule that provides stable linearly
separable approximation to non-linearly separable problems. It redefines the equation for
updating weight.

The original equation w = w + n{y — y')x as shown in algorithm 4 is replaced by:

w = w + x(y - y')Tfac

The difference is that the thermal perceptron learning rule incorporates the factor Tfac.
This value depends on the value of weight and on an artificially introduced temperature
T that is decreased as the learning process advances. This technique is commonly used in
process called simulated annealing. This value can be computed as shown:

T , h>k
Tfac = —exp{-—)

J-o 1

In this equation, we define T as an actual temperature, v is value of neuron and To is
initial temperature set at the beginning of a learning process.

14

3.3 Backpropagation

Backpropagation is a well known method for supervised learning of neural networks. Back-
propagation calculates the gradient of an error function with respect to all weights in the
network. Then, the gradient is used by optimization method, which uses computed gra
dients to update the weights in an attempt to minimize the error of network. Network
learned by backpropagation can be a single or multi-layer feed-forward network. [8]

Algorithm can be divided into two parts as shown in algorithm 5. First part consists
of computing slopes for changing weights of neuron. The second part update weights to
minimize error.

Algorithm 5 Backpropagation
1: procedure BACKPROPAGATE(x,y, network) > y is desired output, x is input
2: Part 1. Compute slopes:
3: y' = network.getOutput(x) > y' is output of function
4:
5: Compute 5n of every neuron n of output layer according to:
6: 5n = (y'[n\ — y[n\) • neuron./^(neuron.value)
7: t> f'a is derivation of activation function
8:
9: Compute 5n of neurons of hidden layer L starting from layer preceding output layer:

10: 5n = ^"eurons of L+1{5j • wnj) • neuron./^(neuron.value)
11: o wnj is weight between neuron n and j
12:
13: Part 2. Compute new weights:
14: For every hidden and output neuron n of network and its weight j change
15: weights according to:
16: Anj = a • 5n • (output of neuron that is connected to weight j)
17: Wnj — Wnj ~\~ ^nj
18: t> a is learning coefficient
19: end procedure

15

Chapter 4

Algorithms for topology
development

As neural networks were successfully trained by many algorithms, the problem of selecting
proper topology by "trial and error" method was still inefficient. This problem involves
both choosing the right number of layers and hidden units for layered feed-forward network
and selecting proper connections between neurons in recurrent neural network. Over-sized
networks with more layers or hidden units are easier to over-fit while smaller networks are
not able to learn. This problem mostly affects predictive models, where over-fitting is well
seen and neural networks are not able to globalize this process well.

Constructive algorithms can be divided into two categories. The first category consists
of algorithms that start with a small network - usually with one hidden unit and work by
adding one by one until desired precision is reached. Algorithms from the second category
are called pruning. These algorithms start with a large network and eliminate unnecessary
weights and units one after another.

There is another special group besides these two groups. It is a group consisting of
algorithms based on evolutionary algorithms and is called neuroevolution.

4.1 C-Mantec algorithm

The Competitive Majority Network Trained by Error Correction algorithm creates
a structure with a single layer of hidden nodes using step activation function. For a two
classes function, it constructs a network with one output neuron computing the "majority
function" of the responses of hidden nodes as shown in figure 4.2. That means if more than
a half of the hidden neurons is activated the output neuron is activated too. We are going
to describe only a two class classifier, but an algorithm for creating multi-class classifier
also exists [20].

16

Figure 4.1: C-Mantec algorithm

yes

no

Select neuron
with largest Tjact

T

Eliminate noisy
examples

Algorithm starts with a single neuron in a hidden layer and adds more neurons every
time when the present ones are not able to classify a whole training set right. Learning is
separated into two levels. For a single neuron learning it uses Thermal perceptron learning
rule that was introduced in section 3.2. At a global level competition between neurons is
incorporated. This approach makes learning more efficient and allows for obtaining more
complex structures.

17

Figure 4.2: Structure of C-Mantec algorithms for two-class function

4.2 Marchand's algorithm

Algorithm has been proposed by Mostefa Golea and Mario Marchand in the article "A
Growth Algorithm for Neural Network Decision Trees" [6]. Algorithm 6 describes building
of a feed-forward network for a two-class classification with only one hidden layer. This
structure is shown in figure 4.3.

y

Figure 4.3: Network built with Marchand's algorithm

The algorithm describes how to add neurons into a hidden layer one by one - when
the neuron helps ANN to classify at least one more new example to the appropriate class.
The algorithm ensures that a new neuron does not break correctly-classified examples by

18

neurons added previously. Algorithm ensures this by setting weights between newly-added
unit and output unit according to:

if neuron k belongs to class 1
if neuron k belongs to class 2

This algorithm works with two sets and TK - they represent patterns that are not
correctly classified in step k.

Algorithm 6 Marchand's algorithm
procedure M A R C H A N D A L G O R I T H M

k = 0
TQ~ = set of samples from class 1
Tq = set of samples from class 2
while T+ ± {} & T~ + {} do

k = k + 1
w = 0
Create neuron n& in hidden layer that satisfies one of next cases,
case output of neuron nt is 0 for all samples from class 1 and 1 for at least one

case from class 1 then:

T++1 = {t\teT+ & output of neuron for t ^ 0}

end case
w -

case output of neuron nt is 0 for all samples from class 1 and 1 for at least one
case from class 2 then:

1k+l ~±k
T^+1 = {t\te & output of neuron nt for t ^ 0}
w = ~h

end case
Add neuron to hidden layer with weight w

end while
end procedure

4.3 New Constructive Algori thm

New Constructive Algorithm (NCA) was proposed in 2009[9]. NCA creates a unique
topology shown in figure 4.4. Each hidden layer receives outputs of each preceding layer
(an input layer and hidden layers). Whereas the output layer receives all hidden layer
outputs. Every neuron from hidden layers uses a sigmoid activation function.

19

hidden layer 0

hidden layer 1

Figure 4.4: Structure of NCA

In figure 4.5 we can see major steps of NCA. These steps are going to be described in
detail further on.

Figure 4.5: New Constructive Algorithm [9]

20

• Create an initial A N N structure
Choose ANN with three layers - input layer, one hidden layer and one output layer.
Hidden layer contains one neuron.
Randomize all weights in ANN within a small range. Label the hidden layer C and
its neuron / .

• Create a training set
Create a training set with AdaBoost for the neuron / from layer C. Training set for
the first neuron / and first layer C is the original training set.

• Initial partial training
Use backpropagation to train neuron / from layer C using the set created in the
previous step.

• Stop A N N construction?
Check termination criterion for stopping ANN construction and return created net
work if criterion is fulfilled.

• Stop initial training?
Compute error E of ANN on training set. If an error is reduced by a predefined value,
go to the step Initial partial training, otherwise continue.

• Final partial training
Add a small amount of noise to all input and output connection weights of neuron
/ . Usually Gaussian distribution with a mean of zero and a variance of one is used.
Train neuron / using backpropagation.

• Stop final training?
Compute error E of ANN on training set. If an error is reduced by a predefined value,
go to step Final partial training, otherwise remove label / and continue.

• Add hidden layer?
Check the criterion for adding a new hidden layer. If criterion is fulfilled go to Add
one hidden layer. Otherwise go to Add one hidden neuron.

• Add one hidden neuron
Add new neuron to layer C and label it / . Initialize its input and output connections
with zero and go to the step Create a training set.

• Add one hidden layer
Add a new hidden layer with one neuron above layer C. Label this layer C and the
first neuron / and randomize all weights in ANN around zero. Continue with the step
Create a training set.

4.4 Cascade-Correlation

Algorithm Cascade-Correlation was proposed in 1990 [4]. This algorithm combines two
ideas. The first is a cascade structure, where neurons are added one by one, and after an
addition they never change again. The second one is a learning algorithm which creates new
hidden neurons. For every neuron, algorithm maximizes the magnitude of the correlation
between new unit's output and residual error signal.

21

Algorithm starts with inputs and outputs but no hidden units. The number of inputs
and outputs is determined by a problem definition. Every output is connected to all inputs.
Either any linear function or any non-linear function can be used as an activation function.
When a new hidden neuron is added, it receives connections from all inputs and all previ
ously added hidden neurons - thereof the name "cascade". Such a structure is illustrated
in figure 4.6

Figure 4.6: Structure of Cascade-Correlation algorithm

Algorithm defines the sum of magnitude of correlation over all output units o as:

5 = E (E (VP-V)(EP,0-K))
o \ p /

Where EPFI is error observed at unit o with pattern p, Vp is value of candidate unit. The
quantities EQ and V are values averaged over all patterns. The task is to maximize S. For
this task very similar derivation to backpropagation one is defined in the original paper:

Where aQ is the sign of correlation between candidate's value and output o, fp is the
derivative for pattern p of candidate unit's activation function and Ii)P is the input of
the candidate for input unit i and pattern p. After computing J ^ , gradient ascent can
be performed. This step trains only output units and the usage of backpropagation or
quickpropagation is recommended.

Further algorithm 7 is provided. The provided algorithm uses equations described above.

22

Algorithm 7 Cascade-Correlation
procedure C A S C A D E - C O R R E L A T I O N

minimal Err or Step = user defined minimal error step
maxlterations = user defined maximal number if iterations
error = error treshold defined by user

network = network with fully connected input/output layer and zero hidden neurons
iterations = 0
error = TrainOutputUnits{network)
while iterations < maxlterationsanderror < errorTreshold do

candidates = generateC andidates(network)
bestCandidate = trainCandidates(network, candidates)
network.addHiddenNeuron(bestCandidate)

error = TrainOutputUnits(network)
iterations + +

end while
end procedure

4.5 Cascade 2 Algori thm

The algorithm Cascade 2 was proposed and implemented by Scott E. Fahlman. He also
wrote an article [3] in 1996, but the article was never published and it is not possible to get
to the original article anymore. Thankfully, it is possible to get C port of the original imple
mentation1. Currently, it is possible to find another implementation of this algorithm in C
based neural network library FANN. Work done on FANN library is well documented in
the work "Large Scale Reinforcement Learning using Q-SARSA(A) and Cascading Neural
Networks" [14].

The Cascade 2 is modified Cascade-Correlation algorithm, described in previous section.
Algorithm changes the way, it trains candidates and adds them to network. The main
difference is, that this algorithm also trains output weights for candidates. Algorithm is
trying to minimize the difference between the error of the output layer and the input from
candidate. Difference between candidate and output can be computed as follows:

S2 = y~] I eP)0 - op • w0\
o \ p /

ePfi is the error observer at output o for pattern p. This error can be computed as
Cp,o = Vp,o — y'p, where y is the desired output and y' is output computed by networks. op

is output of candidate for pattern p and wQ is weight between candidate unit and output o.
To minimize S2, is calculated.

q^~o = - 2 (°P " w ° ~ eP>°> " °p

After computing of Jjp, gradient ascent can be performed.

1 T h e C port of original Lisp code is possible to find at https://gitliub.com/gtomar/cascade or
http: / / www.cs.cmu.edu/~sef/sefSoft.htm

23

https://gitliub.com/gtomar/cascade
http://www.cs.cmu.edu/~sef/

4.6 Percentage Average Synaptic Act iv i ty

Pruning algorithm was proposed in the paper Dynamic Pruning In Artificial Neural Net
works [1] by E. R. Caianiello , G. Orlandi , F. Piazza , A. Uncini , E. Guminari and A.
Ascone. In that paper, new algorithm for eliminating units in a way, that performance of
network did not worsen over the time. This algorithm develops a multilayer perceptron.
To verify if connection is necessary or can be removed, a simple formula was defined. For
understanding of this formula, steps to derive this equation are shown.

First, we need to define synaptic activity of connection from neuron i to neuron j:

aij{p) = (wij • Actj(p))2

This equation is defined relatively to training pattern p. In this equation Actj{p) is the
activation of neuron j for the input pattern p.

This value can be averaged through the whole training as follows:

Cli-i

Eo»j(p)
v_

Where Np is the whole training set and \Np\ is its size.
As we defined average synaptic activity between neurons i and j, we need to define

synaptic activity of neuron, which is defined as:

Ni
Ai = ^ &ij

i
where Ni are all input neurons of neuron i. Now, we can define the Percentage

Average Synaptic Activity:

Ai
As we can see, PAS A is defined as average activity of connection relatively to neuron's

average activity. As we defined PASA, we still need to define the function, we can compare
this value to. Lets define threshold function Th{ep) where ep is number of epoch in learning.
Parametric threshold function allows us to change threshold dynamically with learning
epochs. The original paper come with two possible comparisons of PASA and Th(ep)
[4.1,4.2].

J PASAij < Th(ep) connection i — j is pruned
(4.1)

otherwise connection i — j is retained
loo PASA •

|jv'[

 100 < Th(ep) connection i — j is pruned
\W\ ' (4.2)

otherwise connection i — j is retained
First equation is affected by the number of synapses to neuron j. With higher number

100
|JV*I

of inputs, PASA is lower. This can be modified by introducing yM to equation. In the
original paper the function Th(ep) was defined as follows:

Th(ep) = ve ?(<? >
where v,m and a are constant values. This function is known as Gaussian function.

24

4.7 Neuroevolution

Neuroevolution is a bit special group within constructive algorithms. These algorithms use
other Soft-computing methods to develop topology and weights. Some of these methods
develop only topology, whereas others are able solve both tasks.

We can put algorithms into two groups - algorithms that use direct encoding and
algorithms that use indirect encoding. When direct encoding is used, concrete neurons
and connections are represented by genes. On the other hand indirect encoding describes
how to construct neural network. It allows to create compact genomes that are able to
create bigger neural networks or are able to define simply multiple occurrences of the same
sub-network.

Many algorithms, that fall within this group have been developed. In the next section
two of them are described.

4.7.1 Cellular Encoding

Cellular Encoding is a method for encoding neural networks. This technique developed
in 1994 [7] uses indirect encoding. Algorithm introduces cells that execute "cellular
code" and turn into neurons when they finish code execution. The code is represented by a
tree (also called "cellular code"). This tree consists of instructions and its nodes - number
of nodes depends on instruction. Roots with terminal instructions doesn't contain nodes,
while nonterminal ones contain one or two - depending on whether instruction divides into
two cells or not. Every cell executes instructions according to its position in the code.
When the cell gets to the end of code, it "dies" and turns into neuron.

Algorithm uses the initial tree. There are two types of trees defined - cyclic and acyclic
as shown in figure 4.7. This tree is used for initial development.

INPUT INPUT

f \
Cell 1 Cell 1

OUTPUT OUTPUT

Figure 4.7: Initial graphs of cells. There is an acyclic graph on the left side and a cyclic
graph on the right side.

Further, the algorithm is run for an inspiration with a simple "cellular code". Algorithm
starts with a single cell pointing to the beginning of the code as shown in figure 4.8.

25

OUTPUT

Figure 4.8: Starting point of algorithm

Cell 1 then interprets the instruction - SEQ in this case and it results in creating a
new cell with an input connection to the first cell and its output to the output as shown in
figure 4.9

PAR

SEQ Position of cell i INF UT

SEQ P '—-----
\ / Of Ce 11 1

END END END

Figure 4.9: State of algorithm after first step

In the next step of algorithm, all cells interpret next instructions again. Cell 2 in
this case points to SEQ and cell 1 to PAR. Instruction PAR is also division one. This
instruction creates a new cell, that inherits the same inputs and outputs as the first cell -
that means a parallel division. This can be seen in figure 4.10.

Position of cell 1

INPUT

/
PAR

/ / \
END END

Position of cell 3 Cell 1 Cell 3

END Cell 2

Cell 4

c m 4

Figure 4.10: Developing of cells

OUTPUT

26

In the last step all the cells point to the instruction END. This instruction turns cells
into neurons. This conversion can be seen in figure 4.11.

Figure 4.11: Dying of cells and creation of neurons

The original paper introduces many instructions, nevertheless the instructions provided
below are satisfactory for development of every possible topology. Other instructions are
just making process of development quicker and cellular code more compact.

• SEQ - sequential division of a cell into two. The first created cell inherits all input
links and second outputs. These two cells are connected with weight 1.

• PAR - parallel division is the second type of a division. Both new created cells
inherit inputs and outputs from the original cell.

• END - ending-program symbol ends editing of a cell.

• DECBI AS/INCBI AS - these symbols modify bias of neuron - increase or decrease
it.

• DECLR/INCLR - these symbols modify a value of link register

• V A L - / V A L H — these symbols set a value of link register to -1 or +1

• CUT - it modifies topology by removing link pointed by link register.

4.7.2 N E A T

Algorithm NeuroEvolution of Augmenting Topologies was invented by Stanley and
Miikkulainen [19]. This method develops both topology and weights. This method is based
on genetic algorithms - it uses direct encoding of genes and crossover.

This algorithm develops linear genome, consisting of two types of genes (Connection
Gene and Node Gene). The ability of developing topology comes with problems - how to
make crossover of two different genomes with different sizes and how to crossover two same
networks with different topology. NEAT comes with solution - every genome gets its ID,
that is never changed. This ID is inherited, so it is possible to get ancestor of concrete gene.
This solves the problem of making crossover of two different genomes. When crossover is
done, all genes are paired with same IDs and one gene of group gets to newly created
genome.

When a new topology is created - i.e. a new neuron or connection is added, it can break
fitness of newly created individuals. To avoid losing such an individual - its topology can

27

be better, but weights are not developed, NEAT comes with splitting of individuals into
species. This allows to create continuous development of genomes with different topologies.
Every time, a new genome that is different from other species is evolved, a new species
is created. This dissimilarity is computed from number of unpaired genes (number of not
paired IDs) and the difference in weights.

s = eg + <f+C3.w (4.3)
Equations 4.3 describes dissimilarity of two genomes, ci, C2, C3 are coefficients affecting

impact of factors. N is length of longer genome, W is average of differences between weights.
E is number of excess genes - the number of genes of one individual, that have higher ID
than the highest ID of gene from the second genome. D is the number of genes, that can
not be paired - ID of genes are in only one genome.

28

Chapter 5

Genetic Programming

Genetic programming falls into the category of evolutionary algorithms. This algorithm
works either with linear code or code encoded into trees. In this chapter, genetic program
ming for code encoded into trees is introduced and methods for selection, mutation and
crossover are described.

5.1 Population initialization

Initialization of population is the first step of genetic programming algorithm. The way
population is initialized affects the speed of convergence to local (global) optimum. Usually
individuals with short code decrease diversity whereas too complex and deep code tree can
result in inefficient solutions. For initialization of trees, usually two methods are used -
grow method and full method. These methods need one parameter - the "maximum
tree depth". This parameter restricts the size of tree. Apart from "maximum tree depth"
it receives also set of terminals and nonterminals, it generates tree from.

The Grow method 8 creates tree, where in every step where depth is smaller than
maximum depth, node is selected from all symbols. In the maximum depth, node is selected
only from terminal symbols [22].

Algorithm 8 Grow method
1: procedure GROw(depth)
2: if depth < maximumDepth then
3: node = random(Terminal U Non Terminal)
4: for i : node.children do
5: node.childi = grow(depth + 1)
6: end for
7: else
8: node = random(Terminal)
9: end if

10: return node
11: end procedure

The Full method 9 is similar to Grow method, but generates trees of the depth equal
to maximum depth - it selects only non-terminal symbols when the depth is smaller than
maximum depth.

29

Algorithm 9 Full method
1: procedure FuLL(depth)
2: if depth < maximumDepth then
3: node = random(Non Terminal)
4: for i : node.children do
5: node.childi = grow(depth + 1)
6: end for
7: else
8: node = random(Terminal)
9: end if

10: return node
11: end procedure

There exists one more method - "ramped half-and-half". This method combines the
two previous. It initializes half of population by grow method and the second half by full
method.

5.2 Operators

Operators are crucial part of genetic programing. Operators define the way individuals
mutate or crossover. During experiments, new operators were implemented to achieve
better results. We divide operators into two categories - mutations and crossover.

5.2.1 Mutations

Mutation is unary operator and it changes genetic information of individual. This operator
is useful, when generation is approaching optimum and crossover between individuals makes
big differences in code trees [16].

Subtree mutation 5.1 is basic mutation operator, which selects random subtree in
individual and replaces it with randomly generated tree. Newly generated subtree must be
generated with reasonable depth, any algorithm mentioned in Genetic code initialization
can be used.

Parent 1 Randomly Offspring
generated tree

Figure 5.1: Subtree mutation

Shrink mutation 5.2 reduces the complexity of code. This operator selects random
subtree that is replaced by subtree with the first instruction being terminal. This can be

30

pictured on following equation: pow{x) • (x + 0), that can be turned after application of this
operator to pow(x) • x.

Parent Offspring

Figure 5.2: Shrink mutation

Node replacement mutation 5.3 replaces instruction by another with the same sig
nature (arity, return or parameter types) [10].

Parent Offspring

Figure 5.3: Node replacement mutation

Hoist mutation 5.4 is very specific operator. This operator can be though as opposite
to shrink mutation and is also useful for reducing complexity of code. It selects random
subtree and replaces whole tree node with it - the selected subtree is new solution.

Parent Offspring

Figure 5.4: Hoist mutation

Subtree permutation 5.5 is the last described mutation operator. This operator is
applicable only, when modified instruction is not commutative. Operator switches operands
(subtrees of node) of instruction. This can be seen on formula change from a/b to b/a.

31

Parent Offspring

Figure 5.5: Subtree permutation

5.2.2 Crossover

Crossover operators are binary operators. These operators select two individuals from
generation and creates new one using their genetic information.

Subtree crossover [17] is the first introduced operator. This operator selects node in
both parents and switches these two subtrees as can be seen in figure 5.6.

Parent 1 Parent 2 Offspr ing

Figure 5.6: Subtree crossover

Arity-2 combination is specific operator. This operator combines both parents with
usage of binary instruction. This combination can be seen in figure 5.7.

Parent 1 Parent 2 Offspr ing

Figure 5.7: Arity-2 combination

32

Chapter 6

Implementation

This chapter describes requirements and implementation of neccessary parts for the thesis.
Description of specific modules and components is also provided.

6.1 Requirements for implementation

The essential requirement for the final design was the possibility of extension of implemented
features for the future. Due to this fact the code is divided into 3 logical parts. The first
part is library for neural networks. The second part is library for evolutionary algorithms
and the last part consists of experiments incorporated in the thesis. Implementation of
libraries is provided in the two following sections. The second requirement was speed and
portability. For this fact the language 0++ was chosen.

6.2 Neural network library

For the specific needs of this thesis, a personal library was developed. This library is called
NeuralNetworkLib. This unit is not completely original, it was originally developed as
a part of my master's degree studies subject. This library is provided as an open-source1.
For this thesis, this library has been extended by:

• Recurrent network

• Cellular encoding

• Cascade network implementation

• Constructive algorithms

• A V X implementation of basis function

• Problem sets

• Serialization of networks
l i b r a r y can be found at https://github.com/Shin-nn/NeuralNetworkLib or

http: //gitlab.ishin.cz/shin/NeuralNetworkLib

33

https://github.com/Shin-nn/NeuralNetworkLib
http://ishin.cz/shin/NeuralNetworkLib

This library aims to provide high-speed functionality framework as well as simple object-
oriented design. Due to the fact, that these objectives go against each other, I dropped
this clean object-oriented design. Every element of this library knows how to serialize itself
as "JSON object" as well as deserialize. Format JSON was chosen for its lightness and
easy readability. The ability and uniformity of serialization of every object comes with the
ability to simply combine parts together and store networks to disks and load once again.
We can imagine this functionality on serialized neuron in listing 6.1.

{

" c l a s s " : "NeuralNetwork::Neuron" 9
"activationFunction " : {

"c l a s s " : "NeuralNetwork: :ActivationFunction: :Sigmoid" ,

"lambda" : -0.800000

} .
"basisFunction" : {

"c l a s s " : "NeuralNetwork: :BasisFunction::Linear"

} .
" i d " : 3,

"output" : 0.483658,

"value" : -0.081738,

"weights" : [-8.339814, 3.148232, 3.169152, 6.976029]

>

Listing 6.1: Neuron serialised as JSON

This library is divided into logical parts, each representing part of neural network.
Further, each part is introduced.

6.2.1 Activation functions

Activation functions are first essential part of this library. These classes represent different
activation functions. We can see implemented functions and class dependency in figure
6.1. Each function provides function to compute output of neuron from its value - function
operatorQ as well as function for computing derivation - function derivatedOutput.
Derivated output is used for example during backpropagation.

34

SerializableObject

A

N eu ral N etw ork:: Act iv at i on
Fu net i on:: Act iv at i on Fu net i on

NeuralNetwork::Act ivat ion
Function ::Heaviside

lambda

+ Heavisidef)
+ derivatedOutputf l
+ operatorflf l
+ c loned
+ serialized
+ deserializef)

+ -Act ivat ionFunct ionf l
+ derivatedOutputf l
+ derivatedOutputf l
+ operator()0
+ clonef l

NeuralNetw ork: Ac t iva t ion
Funct i on: :H yperbol ic Tangent

lambda

- HyperbolicTangentf)
- derivatedOutputf l
- operatorflf l
- c loned
- serialized
- deserial ized

NeuralNetw ork: Act ivat ion
Function::Linear

lambda

• Linearfl
• derivatedOutputf l
• operatorflf l
• c lonef l
• serializefl
• deserial izefl

NeuralNetwork: Ac t iva t ion
Funct ion::Sigmoid

lambda

- Sigmoidfl
- derivatedOutputf l
- operatorflf l
- c lonef l
- serializefl
- deserial izefl

Figure 6.1: Activation function diagram

6.2.2 Basis functions

The second part of library are basis functions. Each function implements the computation
from weights and inputs - function operator().Due to the fact, that in most cases linear
basis function is used, it was tuned to be as efficient as possible.

To satisfy this goal, linear basis function was implemented with streaming instructions
- AVX and SSE. In the time of compilation, compiler tool decides, whether instruction
set is available on its platform. This allows to write portable program as well as target
high speed. The usage of these instruction sets allows neural network to run multiple times
quicker. Given the fact, that more than 95 percent of time spent on evaluating neural
network is in linear functions, the speed up is in the case of SSE instruction set almost by
4 and in the instruction set of AVX almost by 8.

35

SimpleJSON::Serializable
Object

NeuralNetwork::BasisFunction
::BasisFunction

N eu ral N etw ork:: B as i s Fu net i on
"Linear

+ LinearQ
+ operatorflfl
+ clonefl
+ serializefl
+ deserializefl

- -BasisFunctionfl
- operatorflO
- clonefl

NeuralNetwork::BasisFunction
"Product

- Productfl
- operatorflfl
- clonefl
- serialized
- deserializefl

N eu ral N etw or k:: B as i s Fu net i on
::Radial

+ Radialfl
+ operatorflfl
+ clonefl
+ serialized
+ deserialized

Figure 6.2: Basis function diagram

6.2.3 Neuron

Neuron is the most important point of this library. Its interface and attributes can be
seen in figure 6.3. The neuron's main, and the most computationally intensive function is
operatorQ. This function receives vector of inputs, uses basis function to compute inner
value of neuron and activation function to compute its output, which is returned. This
two values, are then stored inside the neuron for further usage (backpropagation, etc.).
This composition allows neuron to be used in all types of discrete networks. Networks'
responsibility is to pass inputs to neuron in correct order, and the rest is done inside
neuron. Further, the neuron provides interface for changing and getting weights, activation
and basis function. It also allows to resize number of inputs, to be able to change topology
on the run.

36

N eu ral N etw ork:: N eu

+ id
weight s
#_output
value

+ Neuronlnterfaced
+ NeLironlnterfacefl
+ -Neuron Interfaced
+ get W eight sQ
+ s etW eight s f l
+ w eight fl
+ vi eight fl
+ w eight fl
+ w eight fl
+ out put 0
and 8 more...

N eu ral N et w ork:: N eu ron

+ Neuronfl
+ Neuronfl
+ -Neuronfl
+ operator=fl
+ operátorů ď
+ clonefl
+ getBasisFunctionfl
+ getActivationFunctionfl
+ setBasisFunctionfl
+ setActivationFunctionfl
+ serial izefl
+ deserializefl

Figure 6.3: Neuron diagram

6.2.4 Learning algorithms

Another part of library are learning algorithms. Implemented algorithms relevant to this
thesis are backpropagation and quickpropagation. Algortihms can be found in namespace
LearningAlgorithms. These two algorithms can be used for learning any feed-forward
network and are used for learning output layers in algorithms Cascade-Correlation and
Cascade 2.

6.3 Evolutionary algorithms library

This library serves as multipurpose library. Library is provided as open-source2. It unifies
algorithm such as genetic programing, genetic algorithms and so on. Library is based on
common base - template called Evolutionary Algorithm. This template defines the pro
cess of initializing new generation and generating new one. It provides all core functionality
to specific routines - only operators and types of individuals are necessary to specify. The
workflow can be modified in many ways - number of selected individuals from previous

2 L i b r a r y can be found at http://gitlab.ishin.cz/shin/EvolutionaryAlgorithms

SerializableObject

ronlnterface

N eu ral N etw ork:: Act iv at i on
Fu net i on:: Act iv at i on Fu net i on

- -ActivationFunctionfl
- derivatedOutputfl
- derivatedOutputfl
- operatorQfl
- clonefl

#activation

A

SimpleJSON::Sehalizable
Object

N eu ral N etw or k:: B as i s Fu net i on
::BasisFunction

+ -BasisFunctionfl
+ operatordd
+ clonefl

#basis

37

http://gitlab.ishin.cz/shin/EvolutionaryAlgorithms

generation, size of generation and terminal criterion. It is also responsible for creating
statistics of generations.

6.3.1 Selection Operators

Library implements several selection operators. These operators can be used for selecting
individuals to next generation or individuals for mutation or crossover. Implemented oper
ators and corresponding diagram can be seen in figure 6.4. Operators are implemented as
templates. Further, implemented operators are described.

Ev ol ut í onary Algorit h m
:; S el ect i on Operát are

::Elite< T >

+ EliteQ
+ operat orQ

Ev olut i on ary Algorit h m
:: S el ect i on Operat ors

: :Random< T >

- _generator

- Random0
- operat orf l f l

Ev ol ut i onary Algorit h rn
::SelectionOperator< J>

size

h Sel ect i on Operat orQ
h ~ Sel ect i on Operat orQ
h operat orQ Q
h get Sel ect ion S i zeQ
r setSizeQ

Ev ol ut i on ary Algorit h m
:: S el ect i on Operat ors

: :Rank< T >

- _generator

- RankQ
- operat orQ Q

Evol ut i on aryAlgorit h m
:: S el ect ion Operat ors

::Roulette< T >

- _generator

• RouletteQ
• operatorOO

Ev ol ut i on aryAlgorit h rn
::SelectionOperators

: Tournament < T >

- _generator
- tournament Size

•i- TournamentQ
•i- operatorQO

Figure 6.4: Selection operators diagram

Elite selection selects first best N individuals. This operator is usually used, when
best individuals should be placed to new generation.

Roulette Wheel selection selects individuals according to their fitness. Selection can
be imagined on a roulette wheel, where every place represents individual and the proportion
of size is the same as proportion of fitness. This operator suffers from problems, where fitness
differs very much - that way, only few best individuals are selected.

Rank Selection is trying to reduce the problems, that comes with Roulette Wheel
selection. It works, the same way as previous operator, but the proportion of space is
computed by their rank in population. Worst individual gets rank 1, second worst gets
rank 2 and the best gets rank N - size of population. There is one problem with this
operator - as diversity of selected individuals increases, the convergence can be slower.

Tournament selection comes with an idea of comparing random individuals to each
other. Operator selects randomly k (the size of tournament) individuals from the popula
tion. The individual with best fitness is the winner of tournament.

6.3.2 Genetic programing

Genetic programing is based on previously described class Evolutionary Algorithm. It
provides individuals with trees. Every tree can contain zero, one or two nodes. Number of
nodes depends on concrete instruction. Every instruction must specify its number of nodes,
it uses.

38

6.3.3 Population initialization

Library implements all initialization methods described in section 5.1. These methods can
be found in namespace GeneticPrograming::InitializationFunction as we can see in
figure 6.5. These methods implement method operator()() that returns initialized tree.

EvolutionaryAlgorithm
::Genet icPrograming::
Genet icPrograming: initialization

Function

+ InitializationFunctionO
+ operatorOO
+ operatorOO

Ev olut ion ary Algorit h m
::Gen et icPrograming::
InitializationFunction

::FullMethcd

#_maxDepth

- FullMethodfl
- operatorOO

Evolution ary Algorithm
::GeneticPrcgraming::
InitializationFunction

GrowMethod

#_maxDeptri

- GrowMethodO
- operatorOO

Figure 6.5: Population initialization methods

6.4 Cascade-Correlation

This algorithm is implemented in class ConstructiveAlgorihtms::CascadeCorrelation.
This class provides all neccessary functions for constructing cascade-network. This algo
rithm needs many configurations, thus functions for setting or getting following configura
tions are provided:

• Number of candidates - number of candidates generated in each epoch

• Maximum candidate learning iterations - maximal number of iterations, candi
dates are learned

• Error treshold - when error on learning set is lower than threshold, algorithm ends
construction

• Radom weight range - range, where weights are generated

• Maximum output layer learning iterations - maximal number of iterations for
learning output layer

• Maximum output layer learning iterations without change - maximal number
of iterations for learning output layer, when response is not getting better

• Maximum candidate learning iterations without change - maximal number
of iterations for learning candidates, when correlation is not increasing

Entrance function for construction of network is construct (vector of TrainingPat-
terns). Function creates Cascade network with empty hidden layer. Then it adds new units
according to algorithm described in section 4.4. Given, the fact, that Cascade-Correlation
and Cascade2 algorithm differ only in the way, they train candidates (and their outputs),
class provides virtual function - trainCandidateQ, that is overridden by Cascade2. This
function returns candidate neuron and weights to output units.

39

6.5 Cascade 2

Cascade 2 algorithm is implemented in class ConstructiveAlgorithms::Cascade2 and
inherits from described class ConstructiveAlgorithms::Cascade2Correlation. This
class overrides method trainCandidateQ. Given the fact, that no original documentation
exists, it was complicated to reproduce the original algorithm. During development, original
code was studied as well as the code provided in FANN library.

6.6 Cellular Encoding

Cellular Encoding is implemented in namespace ConstructiveAlgorithms::CellularEncoding.
This class contains method construct(), which returns common recurrent neural network.
Implementation consists of many classes, to summarize, it consists of:

• Cell

• Cellular Encoding

• Instructions

Every part is going to be described in details further.

6.6.1 Cells
Cell is implemented in class ConstructiveAlgorithms::CellularEncoding::Cell. Cells
represent elements of system. Cells are modified by instructions, thus this class provides
interface for modification of its status.

Every cell contains information about itself and neuron, it is going to be transformed
to on the end of algorithm. More specifically, it contains:

• position in tree - pointer to current position in tree

• bias - bias value for neuron

• life - life, for recursive cellular code

• links - vector of links to the cell

• link register - index to current position in links vector

• output flag - whether cell results in output neuron

• input flag - whether cell results in input neuron

For all of these attributes functions enabling to set or get the value are provided. Link
can be pictured as triplet (status, weight, cell), where status is the status of neuron with
values ON, OFF. Weight is representing weight connection between neurons and cell is
identification of a cell.

40

6.6.2 Instructions

Part of Cellular encoding implementation represent instructions. Al l implemented instruc
tions derive from base class. Every instruction needs to implement 3 functions - run(),
numberOfOperandsQ and toStringQ.

The last function toStringQ is used for stringification of code. The second function
numberOfOperandsQ is used for creating and changing code tree. Function returns
number of nodes it uses. The first function runQ represents entry point for cell. When cell
gets on the move, it calls run on current instruction it points to. This function modifies
cell, and its surrounding.

Every instruction is implemented in its own class and these classes are located in names
pace ConstructiveAlgorithms::CelularEncoding::Instruction. Implemented instruc
tions and classes are:

• IncBias - This instruction modifies cell by incrementing bias by one.

• DecBias - This instruction modifies cell by decrementing bias by one.

• MulBias - This instruction modifies cell by multiplying bias by one.

• DivBias - This instruction modifies cell by dividing bias by one.

• SetBiasZero - This instruction modifies cell by setting bias to zero.

• SetBiasOne - This instruction modifies cell by setting bias to one.

• SetBiasMinusOne - This instruction modifies cell by setting bias to minus one.

• Par - This instruction creates new cell from current one. New cell is connected
parallely and copies all registers to new cell.

• Seq - Instruction creates new cell, that is connected sequentially to original and
copies all registers to new cell.

• End - This instruction ends development of cell and turns cell to neuron.

• Rec - This instruction conditionally sets the code pointer to the beginning of code
when the life > 1 and in the case of life equals one, it ends the same way as END.

• Wait - This instruction does nothing, it just stops cell for one step.

• On - This instruction modifies the state of link. It turns on the link specified by the
link register.

• Off - This instruction modifies the state of link. It turns off the link specified by the
link register.

• Div - This instruction modifies the value of link. It divides the value of link specified
by the link register by 2.

• Mult - This instruction modifies the value of link. It multiplies the value of link
specified by the link register by 2.

• Inc - This instruction modifies the value of link register by incrementing it by one.

41

• Dec - This instruction modifies the value of link register by decrementing it by one.

• ValPlus - This instruction modifies the value of link. It sets the value of link specified
by the link register to 1.

• ValMinus - This instruction modifies the value of link. It sets the value of link
specified by the link register to -1.

• Declr - This instruction modifies the value of link. It decrements the value of link
specified by the link register by 1.

• Inclr - This instruction modifies the value of link. It increments the value of link
specified by the link register by 1.

6.6.3 Cellular Encoding

Cellular Encoding is the class, that encapsulates whole algorithm to user and "converts"
cellular code to network. Class provides functions to set initial graph, life and maximum
number of steps. The last parameter was introduced for possibility of controlling algorithms
run. In every step, algorithm goes over all cells that are alive and interprets instruction.
When number of steps overcomes the maximum set by user, exception is thrown and algo
rithm is ended.

During development, implementation was tested on sample cellular codes provided in
original thesis to assure correct implementation and the same results. Despite this, it was
hard to obtain results that are described in original work. This is due to the fact that many
relevant information are not mentioned in original work. These aspects are covered in the
following paragraphs.

Timing of cells step is very important during cell development. Different timing
results in different topology. To provide same results as original work, new cell must be
added to execution just right after the cell it was separated from.

Cell registers must be set in divided cells during development.
Number of inputs and outputs is given by the cellular code. It is not possible

to set the number of inputs or outputs and developed network must be tested on the size
of input and output layers.

Terminality of symbols is not given by instruction. In the instruction set, there
is only one instruction that is always terminal - END. Also division instructions are never
terminal. Other instructions can be both terminal and non-terminal. This depends on
current set specification. The ability to change the terminality of symbol allows to create
specific instruction set for problems and increase convergence.

42

Chapter 7

Proposal of improvement

This chapter proposes two possible improvements for Cascade-Correlation and Cascade
2. In the course of experiments, I have observed that in some situations adding candidate
unit to network made response of network worse. To solve this effect, two modifications are
proposed. These proposals are described in the two next subsections and then in the next
chapter these two proposals are evaluated.

7.1 Random search of output weights

This modification is based on the idea of wrongly generated weights between input and
hidden units and output units. There are cases, when backpropagation doesn't converge,
or convergence is slow. To suppress this effect, I suggest the following addition to the basic
algorithm:

Instead of learning output layer by backpropagation, generate pool of N + 1 (the one is
the original network) copies of current network. Leave one network as it is and randomize
the connections between input and hidden units and output units in other networks. Then
learn the whole pool. In the end of the step select network with the best response.

During experiments with this modification I observed that the profit from this modi
fication comes with more then 95% probability in the first epochs. Thus, the number of
generated networks can be modified in the following manner without reduction of profit.

I N'/epoch otherwise

Where 5 is user specified constant, in this thesis S = 15. N' is the maximal number of
generated networks. This approach speeds the learning dramatically.

7.2 Pruning of added neurons

This modifications introduces a new variable e - floating threshold for minimal convergence
between added neurons. The modification can be specified as follows: When the response
of network after learning of output layer is not better by the factor of e, remove the last
added neuron. This can be written as the following condition:

Variable e should be set between (0,1). The smaller the variable is, the stricter the pruning.

N' if epoch mod 5 = 0

If(e • lastError < error) {remove last added neuron}

43

Chapter 8

Experiments

This chapter describes typical benchmark problems and results of implemented algorithms
and their improvements. These algorithms are compared to each other and to backpropa-
gation.

As experiments, XOR, Parity of three and four inputs and Chess board 3x3 problems
had been chosen.

For each experiment precise parameters and configurations of algorithms are provided
for the possibility of future reproduction of experiments and corresponding results. For cel
lular encoding, a table describing usage of operators, initialization and other configuration
is presented.

If not specified in the text of experiment, experiment was executed for a number (usually
30) of runs, then compared by resulting mean squared error and the median solution was
selected. This selection of result gives us an idea of the medium solution.

44

8.1 X o r

Xor is typical benchmark for neural networks. This benchmark was used to show validity of
algorithms and in case of cellular encoding, it was used to examine the influence of different
selection operators and activation functions on the speed of convergence.

Generation size:
Non-terminals:

Terminals:
Fitness function:

Target fitness:
Terminal criterion:

Initialization:
Selection:

Activation function:
Mutation / Crossover:

500
PAR, SEQ, INCLR, DECLR, INC, VAL-, INC, DEC, WAIT
END
6.0- sum of differences between output and desired output -
size • (size + 2)
Maximum
generation >50 or fitness >5.4
ramped half-and-half(3)
Elite(15)
Heaviside(O.O)
SubTreeMutation(l.O), HoistMutation(0.5), Crossover(l.O),
Permutation(0.5), NodeReplacementMutation(0.5)

Table 8.1: Table of genetic programming configuration for XOR

Table 8.1 represents configuration for cellular encoding. For this configuration, experi
ments with different activation functions were run. Results can be seen in figure 8.1. These
results were obtained by selecting the best run from 20. In number, 80% of runs were
successful in the case of Heaviside activation function. Example of generated code can be
seen in appendix C. In the case of sigmoid function, the rate of success dropped to only
about 8%. Due to this fact, further experiments only present data for Heaviside activation.

0.35

0.3

0.25

e 0 2

W 0.15

03
CD

0.1

0.05

• Heaviside(O.O)
• Sigmoid(-l.O)

10 15

Generation
20 25 30

Figure 8.1: XOR cellular encoding convergence

During this experiment, different selection operators for mutations and crossover were

45

compared from the point of convergence speed. Table 8.2 describes results of this compar
ison of selection operators.

Selection operator Mean generation

Rank: 52
Roulette: 43

Tournament of size 5: 25
Tournament of size 9: 35

Tournament of size 15: 37

Table 8.2: Influence of selection operators on convergence

Cascade-Correlation and Cascade2 algorithms correctly classify all four patterns in just
one step with one hidden neuron with 100% success. Due to this fact, no table with results
is presented.

LU
ID 0}
CO

co

CO

0.25

0.15

0.05

• Backpropagation,
2 hidden neurons

• Backpropagation,
10 hidden neurons

Iterations

Figure 8.2: XOR backpropagation convergence

These results can be compared to backpropagation algorithm featured in figure 8.2. The
result of backpropagation was selected from 20 runs of this algorithm by selecting median
solution compared by mean squared error. In this example, backpropagation converges far
quicker in terms of time than cellular encoding even with minimal possible topology.

8.2 Parity of 3 values

This problem represents selecting, whether the number of inputs of value 1 is odd or even.

46

Generation size:
Non-terminals:

Terminals:
Fitness function:

Target fitness:
Terminal criterion:

Initialization:
Selection:

Activation function:
Mutation / Crossover:

500
VAL-, PAR, SEQ, WAIT
BIAS-, BIASO, BIAS+
10.0- sum of differences between output and desired output
Maximum
generation >50 or fitness >9.0
ramped half-and-half(3)
Elite(15)
Heaviside(O.O)
SubTreeMutation(l.O), HoistMutation(0.5), Crossover(l.O),
Permutation(0.5), NodeReplacementMutation(0.5)

Table 8.3: Table of genetic programming configuration for Parity of 3 values

Table 8.3 describes configuration of cellular encoding and corresponding genetic pro
gramming. For this configuration, 30 runs of cellular encoding was executed. From these
runs only 3 runs were successful which makes algorithm successful only in 10% of cases.
Again, the medial result is presented in figure 8.3. This figure shows, that initially, 3 pat
terns are classified well, and in the future generations, the number of wrongly classified
patterns decreases one by one.

0.4

0.35

0.3

o
LU 0.25

T3
CD

cii 0.2

w 0.15 c 0.15
CO
CD

0.1

0.05

0

• Heaviside(O.O)

10 15 20 25 30

Generation
35 40 45 50 55

Figure 8.3: Parity of 3 inputs Cellular encoding convergence

47

Figure 8.4: Parity of 3 inputs Cascade-Correlation and Cascade 2 convergence

Figure 8.4 shows the graph of Cascade-Correlation and Cascade 2 algorithms conver
gence. We can see that both algorithms are able to solve this problem Very quickly. In
this example, algorithms do not profit from proposed improvements. On the other hand,
backpropagation as can be seen in figure 8.5 needs hundreds to thousands steps to learn
this function. These results were obtained from 30 runs by selecting the median solution
compared by mean squared error. Nevertheless, the differences between solutions were
negligible.

Figure 8.5: Parity of 3 inputs backpropagation convergence

8.3 Parity of 4 values

This problem is similar to the previous one, but the number of inputs is 4. This section
provides results of Cascade-Correlation and Cascade 2. Results of Cellular-Encoding are
not provided due to the fact, that algorithm failed to solve this problem.

18

• Cascade-Correlation

• Cascade-Correlation
Random

0 1 2 3 4 5 6 7 8

Epochs

Figure 8.6: Parity of 4 inputs Cascade-Correlation and Cascade 2 convergence

In the figure 8.6, we can see the graph of Cascade-Correlation convergence. Classical
version of Cascade-Correlation converges in 9 learning steps, that means 8 neurons is added
to network. Proposed improvement random search of output weights decreases the
number of learning to 4 and three neurons. Both algorithms successfully resolved the
problem in all executed experiments.

o-

03
0)

0.3

0.25

0.2

0.15

0.1

0.05

Cascade-Correlation
Pruning

- X — * — * — * — * — K — * — K — K — X

6 7 8

Epochs
10 11 12 13 14

Figure 8.7: Parity of 4 inputs Cascade-Correlation pruning, red crosses represent epochs,
where pruning was performed

Figure 8.7 describes the convergence of Cascade-Correlation pruning with e = 0.98. Red
crosses represent epochs, where pruning was performed. We can see, that the number of
epochs increased to 15, while the number of neurons decreased to three.

49

1.2

1

o
LU
" O 0.8
CD

CC

c r 0.6
(/)

0.6

CO

M
e 0.4

0.2

0

• Cascade 2

• Cascade 2
Random

0 1 2 3 4 5 6 7

Epochs
8 9

Figure 8.8: Parity of 4 inputs Cascade2 algorithm

Figure 8.8 shows convergence of Cascade 2 algorithm. This algorithm was run with
input in range (—1,1). With usage of proposed improvement random search of output
weights, the number of epochs decreases to 3 and the number of hidden neurons to 2.
When pruning was enabled, algorithm failed to converge in all of thirty executions.

8.4 Chess 3x3 Problem

This problem consists of classification of boxes on chessboard. For experiments, chessboard
of size 3x3 had been chosen. Experiments with different number of patterns were run. First,
experiments with 250 samples were executed.

• Backpropagation,
30 hidden neurons

• Backpropagation,
50 hidden neurons
Backpropagation,
100 hidden neurons

03

CO c
03
CD

Iterations

Figure 8.9: Ches 3x3 backpropagation convergence for 250 samples

In figure 8.9 we can see convergence of backpropagation. This can be compared to
convergence of Cascade-correlation, that is depicted in figure 8.10. From this figure, we

50

can see, that random search of output weights resulted in lower error and quicker
convergence, while pruning made response worse.

Figure 8.10: Ches 3x3 Cascade-Correlaton convergence for 250 samples

Figure 8.11 depicts response of network. We can see over-fitting on the picture of
cascade-correlation, while backpropagation is more fuzzy.

Figure 8.11: 250 samples for Chess 3x3, response of backpropagation can be seen on the
left side, cellular encoding right, each axis describe one input of network, and color its class

51

Cascade-Correlation
i-Correlation

^-Correlation

o
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Epochs

Figure 8.12: Ches 3x3 Cascade-Correlaton convergence for 1000 samples

Figure 8.12 depicts convergence of Cascade-Correlation. The speed of convergence is
comparable to the speed of convergence for 250 samples. Random search of output
weights results in lower error, but the speed of convergence is slower in the first epochs.
Improvement of pruning fails to converge again.

Figure 8.13: 1000 samples for Chess 3x3, response of backpropagation can be seen on the
left side, cascade-correlation right, each axis describe one input of network, and color class,
network classifies corresponding input to

We can see, that response of backpropagation in figure 8.13 is blurred, while response
of cascade-correlation is sharper, but over-fitting is well seen.

52

Chapter 9

Evaluation

This chapter deals with evaluation of implemented algorithms one by one and in the end
of the chapter the possibilities of further work are proposed.

Algorithm Cascade-Correlation gives very good results in all introduced experiments.
This algorithm was able to resolve parity of 3 and 4 values and XOR very quickly with
minimal topology in all executed cases. On the chess 3x3 problem, the over-fitting of
network could be seen. This behavior was also observed by other authors [15].

Cascade 2 algorithm shows very promising results for XOR and parities. Even though,
for chess 3x3 problem algorithm does not converge. Given the fact that algorithm was never
published, it is not possible to compare this results to other works. This can indicate the
fact, that the algorithm works well for bipolar inputs, but further work is needed for decision
about correctness of this claim.

The first proposed improvement random search of output weights gives promising
results in the case of Chess 3x3 and parity of 4 values, but further experiment is needed
for verification of these results. This improvement decreases the number of epochs on both
Cascade-Correlation and Cascade 2, but on the other hand it increases the time spent
on learning.

The second proposed improvement pruning of added neurons decreases the num
ber of neurons added by Cascade-Correlation, but makes the algorithm less stable. In
the case of Cascade 2, this improvement shows unpredictable behavior and I would not
recommend to use it.

Cellular-Encoding is a promising way for developing artificial neural networks, but
needs extra work. I was not able to obtain the same results as described in the original
thesis due to the fact, that genetic programming configuration was not precisely described
in the original dissertation. I see the necessity of setting wide number of configurations
for this algorithm as a big deficit. The algorithm is dependent on configuration of genetic
programming and selected instruction set. The convergence when using a wider - complete
instruction set is much slower and the rate of success in problem solving dramatically
decreases. Algorithm suffers next to these two deficiencies by the way it develops the
number of input and output units. This number is given by cellular code and can't be
hardcoded. The algorithm works relatively well, when these parameters are well tuned, but
given the complexity of configuration, I would not recommend this algorithm as production-
ready.

53

Chapter 10

Conclusion

The goal of this work was the implementation of selected algorithms, exploration of possi
ble improvements and evaluation of algorithms. This goal was achieved by implementing
algorithms in C++ language.

The theoretical part of this thesis describes the fundamentals of neural networks, math
ematical models of neurons and networks. Further it presents basic algorithms for learn
ing neural networks and explores algorithms for topology of neural networks development.
Algorithms are divided into three groups - pruning, constructive and neuroevolutionary.
Pruning algorithms start with a large network and remove neurons and connections to make
them smaller. On the other hand constructive algorithms start with small networks - usu
ally without hidden neurons and add neurons and weights. Neuroevolutionary algorithms
develop neural networks by using evolutionary algorithm, for example genetic programming
or genetic algorithm.

The practical part deals with description of concrete algorithm implementation. One
of the selected algorithms, Cascade 2 was never published. These algorithms were imple
mented as a part of the existing library NeuralNetworkLib. Besides these algorithms, a
new library for genetic programming was introduced.

The last part of the thesis describes performed experiments with these algorithms. It
compares these algorithms with each other and shows influence of proposed improvements.
These experiments show that one algorithm responds well to all performed experiments -
Cascade-Correlation. The algorithm Cascade 2 provides nice results on bipolar exper
iments. The last selected algorithm - Cellular encoding works on only one experiment.
Possible reasons for this are described in the evaluation chapter.

Two proposed improvements random search of output weights and pruning of
added neurons decrease the number of used neurons, but on the other hand, the time for
training is increased.

Further possibility of extensions could be expansion of instruction set for Cellular en
coding or solving its problem of hard-coded sizes of inputs and outputs. Another possible
extension lies in implementing more constructive algorithms and comparing them.

54

Bibliography

[1] Caianiello, E. R.; Orlandi, G.; Piazza, F.; et al.: Dynamic Pruning In Artificial
Neural Networks. 1991.

[2] Chiou, Y.; Lurecorrespondence, Y.: Hybrid Lung Nodule Detection (HLND) system.
In Cancer Letters. 1994. pp. 119-126. doi:doi:10.1016/0304-3835(94)90094-9.

[3] Fahlman, S. E.; Boyan, J. E.; Baker, D.: The cascade 2 learning architecture
(UNPUBLISHED). In Technical Report CMU-CS-TR-96-184. Carnegie Mellon
University. 1996.

[4] Fahlman, S. E.; Lebiere, C : The cascade-correlation learning architecture. In
Advances in Neural Information Processing Systems 2. Morgan Kaufmann. 1990. pp.
524-532.

[5] Frean, M . R.: A „Thermal" Perceptron Learning Rule. Neural Computation, vol. 4,
no. 6. 1992: pp. 946-957.

[6] Golea, M.; Marchand, M. : A Growth Algorithm for Neural Network Decision Trees.
EUROPHYSICS LETTERS, vol. 12. 1990: pp. 205-210.

[7] Gruau, F.; lyon I, L. C. B.; Doctorat, O. A. D. D.; et al.: Neural Network Synthesis
Using Cellular Encoding And The Genetic Algorithm. 1994.

[8] Hecht-Nielsen, R.: Neural Networks for Perception (Vol. 2). chapter Theory of the
Backpropagation Neural Network. Orlando, FL, USA: Harcourt Brace & Co.. 1992.
ISBN 0-12-741252-2. pp. 65-93.

[9] Islam, M . M.; Sattar, M. A.; Amin, M . F.; et al.: A New Constructive Algorithm for
Architectural and Functional Adaptation of Artificial Neural Networks. 2009.

[10] Koza, J. R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA, USA: MIT Press. 1992. ISBN 0-262-11170-5.

[11] Kárny, M. ; Warwick, K.; Kůrková, V.: The Psychological Limits of Neural
Computation. In Dealing with Complexity. Perspectives in Neural Computing.
Springer London. 1998. ISBN 978-3-540-76160-0. pp. 252-263.
doi:10.1007/978-l-4471-1523-6_17.

[12] McCulloch, W.; Pitts, W.: A Logical Calculus of Ideas Immanent in Nervous
Activity. In Bulletin of Mathematical Biophysics. 1943. ISBN 0007-4985. pp. 115-133.
doi:doi:10.1007/BF02478259.

55

[13] Michel, O.; Herrmann, A.: Perceptron Learning Algorithm. 1999.
Retrieved from:
http://len.epf1.ch/tutorial/english/perceptron/html/learning.html

[14] Nissen, S.: Large Scale Reinforcement Learning using Q-SARSA(A) and Cascading
Neural Networks. 2007.

[15] Ondráček, T.; učení technické v Brně. Fakulta informačních technologií, V.:
Adaptivní vícevrstvé neuronové sítě. Vědecké spisy: PhD Thesis. Vysoké učení
technické. 2006. ISBN 9788021431263.

[16] Piszcz, A.; Soule, T.: A Survey of Mutation Techniques in Genetic Programming. In
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation.
GECCO '06. New York, NY, USA: A C M . 2006. ISBN 1-59593-186-4. pp. 951-952.
doi:10.1145/1143997.1144165.

[17] Poli, R.; Langdon, W. B.: Genetic Programming with One-Point Crossover and Point
Mutation. In Soft Computing in Engineering Design and Manufacturing.
Springer-Verlag. 1997. pp. 180-189.

[18] Rosenblatt, F.: The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory.
1957.

[19] Stanley, K. O.; Miikkulainen, R.: Evolving Neural Networks through Augmenting
Topologies. Evolutionary Computation, vol. 10: page 2002.

[20] Subirats, J. L.; Franco, L.; Jerez, J. M. : C-Mantec: A novel constructive neural
network algorithm incorporating competition between neurons. Neural Networks.
vol. 26. 2012: pp. 130-140. doi:10.1016/j.neunet.2011.10.003.

[21] Svozil, D.; Kvasnička, V.; Pospíchal, J.: Introduction to multi-layer feed-forward
neural networks. Chemometrics and Intelligent Laboratory Systems, vol. 39, no. 1.
1997: pp. 43 - 62. ISSN 0169-7439.

[22] Walker, M. : Introduction to Genetic Programming. 2001.
Retrieved from:
https://www.es.montana.edu/~bwall/cs580/introduction_to_gp.pdf

56

http://len.epf1.ch/tutorial/english/perceptron/html/learning.html
https://www.es.montana.edu/~bwall/cs580/introduction_to_gp.pdf

Appendices

57

List of Appendices

A Contents of attached CD 59

B Manual 60
B . l Installation 60
B.2 Usage 60

C Cellular code for XOR 61

58

Appendix A

Contents of attached C D

• thesis print.pdf - pdf of thesis for printing

• thesis hyper.pdf - pdf of thesis for viewing

• src/ - source codes for programs

— lib/ - folder with library NeuralNetworkLib

— R E A D M E - file describing how to compile and run programs
— cascade2.cpp - Cascade 2 experiments
— cascadecor.cpp - Cascade Correlation experiments
— cellular encoding.cpp - Cellular encoding experiments
— setup.sh - setup for configuration and building

• doc/ - source code for this paper

59

Appendix B

Manual

B . l Installation

Program needs to be compiled, since it is written in language C++. The prerequisites for
compilation are:

• cmake version 3.2+

• g++ with C++14 support, tested on 5.2.1

• OpenGL

• GLUT Library

When software is installed, run script setup. sh. This script compiles all necessary
source codes and builds programs in folder build. If argument -f is provided, it downloads
all libraries that are attached again.

B.2 Usage

This work consists of 3 programs - cascade2, cascadecor, cellular_encoding. These
programs allow to run experiments. When argument -h is passed, they provide documen
tation. If programs are run without argument, they execute experiment with XOR.

60

Appendix C

Cellular code for X O R

