
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

DIGITÁLNÍ KNIHOVNA PRO MOBILNÍ ZAŘÍZENÍ
DIGITAL LIBRARY FOR MOBILE DEVICES

BAKALÁŘSKÁ PRÁCE
BACHELOR’S THESIS

AUTOR PRÁCE VOJTĚCH ROBOTKA
AUTHOR

VEDOUCÍ PRÁCE doc. RNDr. SMRŽ PAVEL, Ph.D.
SUPERVISOR

BRNO 2011

Abstrakt
V posledních letech za£íná s mírou vyuºívání digitálních knihoven a obsahu v nich nar·stat
i pot°eba zjednodu²it p°ístup k t¥mto dat·m a umoºnit uºivatel·m vyhledávat nap°í£ co
nejv¥t²ím mnoºstvím knihoven a uspokojit tak jejich pot°eby po tak d·leºitých informacích.
Obsahem této práce bylo seznámit se se situací a nedostatky p°ístupu k obsahu v digitálních
knihovnách a na základ¥ t¥chto informací pak navrhnout a implementovat aplikace pro
mobilní platformy Android a iOS (iPad a iPhone), které by vyuºily potenciál mobilních
za°ízení s t¥mito systémy.

Abstract
With exponential growing amount of the content stored in digital libraries, there is a need to
make this content easy accessible and allow the users to search the documents across many
repositories to satisfy their needs for information. The aim of this work is to investigate
the state-of-the-art of accessing digital content and identify the gap in the currently used
solutions. Then design a digital library system and implement applications for the mobile
platforms Android and iOS (iPad and iPhone), that will utilize the potential of the mobile
devices with these systems.

Klí£ová slova
digitální, knihovna, mobilní, za°ízení, Android, iOS, iPad, iPhone

Keywords
digital, libraries, mobile, device, Android, iOS, iPad, iPhone

Citace
Vojt¥ch Robotka: Digital library for mobile devices, bakalá°ská práce, Brno, FIT VUT
v Brn¥, 2011

Digital library for mobile devices

Prohlá²ení
Prohla²uji, ºe jsem tuto bakalá°skou práci vypracoval samostatn¥ pod vedením pana doc.
RNDr. Pavla Smrºe, Ph.D. Dal²í informace a zku²enosti mi poskytl Ing. Petr Knoth. Uvedl
jsem v²echny literární prameny a publikace, ze kterých jsem £erpal.

. .
Vojt¥ch Robotka

May 18, 2011

Pod¥kování
Rád bych pod¥koval Ing. Petru Knothovi za pomoc p°i vypracování této práce. B¥hem práce
na projektu mi p°edal mnoho cenných rad a zku²enosti, které mi umoºnily bakalá°skou práci
dokon£it a ovlivnily její podobu.

c© Vojt¥ch Robotka, 2011.
Tato práce vznikla jako ²kolní dílo na Vysokém u£ení technickém v Brn¥, Fakult¥ infor-
ma£ních technologií. Práce je chrán¥na autorským zákonem a její uºití bez ud¥lení oprávn¥ní
autorem je nezákonné, s výjimkou zákonem de�novaných p°ípad·.

Contents

1 Introduction 4

1.1 Key terms . 5
1.1.1 Digital libraries . 5
1.1.2 Open Access . 6
1.1.3 Related content . 6
1.1.4 Mobile access . 6

1.2 The CORE Project . 6
1.3 Project goals . 7

1.3.1 Realtime search . 7
1.3.2 Mobile interfaces . 7
1.3.3 Access full-text documents . 8
1.3.4 Personalization . 8

2 Related work 9

2.1 Library federations and harvesting . 9
2.1.1 Standalone tools . 9
2.1.2 Web-based applications . 10

2.2 Full-text downloading . 10
2.3 Personalized search . 10
2.4 Mobile access . 11

3 Design 12

3.1 Architecture . 12
3.2 Content harvesting . 12

3.2.1 Metadata harvesting . 12
3.2.2 Fulltext downloading . 13

3.3 Search engine and indexing . 14
3.4 Mobile access . 14

3.4.1 XML-RPC server . 14
3.4.2 Fulltext server access . 14
3.4.3 Data �ow . 14

3.5 Mobile applications . 16
3.5.1 Use cases . 16
3.5.2 The CORE Mobile GUI . 17
3.5.3 Accessing CORE Server . 18
3.5.4 Storing user data . 19

1

4 Results 22

4.1 CORE Server . 22
4.1.1 XML-RPC module . 23
4.1.2 Full-text access module . 23

4.2 Android client . 24
4.2.1 User interface . 24
4.2.2 Activities . 24
4.2.3 Utils class . 26
4.2.4 XML-RPC module . 26
4.2.5 Structure classes . 26
4.2.6 Database and DataHelper class . 26

4.3 iOS client . 27
4.3.1 Graphic interface . 27
4.3.2 Data storing . 27
4.3.3 XML-RPC communication . 27

4.4 Evaluation . 28

5 Conclusion 29

2

List of Figures

1.1 BASE content grow statistics . 5

3.1 CORE architecture . 13
3.2 Data �ow model with protocol description. 15
3.3 Example of OAI-PMH response . 16
3.4 Example of XML-RPC method call . 17
3.5 Example of XML-RPC method response . 18
3.6 Mobile application: Use case diagram - describes the use cases and relations

between actions in CORE Mobile and CORE Server 19
3.7 Mobile application: Graphical User Interface design - describes the

Views (blue boxes) and Actions (yellow boxes) with their relations 20
3.8 Mobile application: Interface for Android phones - the interface for small

screens on the phones has to be clear and simple. The main contains less
components. 21

3.9 Mobile application: Interface for Android tablets - due to bigger screen
can o�er more functionality and components on a screen. 21

4.1 Smartphone OS market share from March 2011. According to Nielsen [4]
statistics, iOS with Android have about 75% of the market. 23

3

Chapter 1

Introduction

In the world of digital libraries, many important steps have been done in the last years.
Many important approaches for manipulating with the metadata and content stored in
digital libraries have been realised and set by the Open Archives Initiative[11], including
standard protocol for Metadata harvesting (OAI-PMH[9]) and standards for the description
and exchange of aggregations of Web resources[10]. It is known that digital libraries can
be used for much more than simple documents or research papers. New approaches focus
on developing ways how to handle in digital libraries with audio and video data, images,
theses, maps or any other primary data. Nowadays, the content is growing every year and
there is a need to continue in improving the accessibility of digital content. The content
stored in digital libraries is essential for scholars to stay in touch with their research �eld.
Researchers should know work of other researchers related to their topic as much as they
can. Digital libraries were developed for these purposes and the content in digital libraries
is growing almost exponentially(Figure 1.1). But how to search and navigate in more than
30 million records of content in digital libraries? This is a crucial task of this �eld for
many companies and academic groups, like for example Google (Google Scholar) or Bie�eld
University (BASE[16]). The production of the content is as important as easy way of
accessing this content. People searching for a research article, do not want to search from
more web pages or learn how to use all these tools for accessing digital content. If they
already �nd some article they are interested in, they will want to read it or even download it.
If the search engine does not allow them to perform these operations, their needs will not be
satis�ed and they will have to try another search engine. These situations reduce accessing
and using digital libraries, since researchers do not want to spend hours by searching articles
on the web.

Now, imagine a life of a researcher or academic teacher. They probably spend much
less time at one place or in their o�ce with PC than any other employee. They travel to
conferences, present their work at universities or just work on a research requiring working on
di�erent places with di�erent people. For these situations they need to make their resources
mobile. New market with many di�erent mobile devices o�ers a signi�cant potential for
improving the way in which they access information. They could read, present and work with
their resources anywhere. However this could very improve productivity of some researchers
or make their lives a bit easier, nowadays, they have no suitable mobile application for these
purposes. Usually, the only way how to access the content in digital libraries is by using
a web browser. This solution does not usually allow them to save the content to device
for reading without need of broadband connection or it could be also di�cult to operate
with these search engine through internet browser in mobile devices, since the websites are

4

Figure 1.1: BASE content grow statistics

usually not optimized for mobile access.
The goal of this work is to �ll this communication gap between the world of digital con-

tent stored in digital libraries and the world of mobile devices that are getting more popular
than ever before. This should help help many researchers that are often out of their o�ce or
traveling abroad without broadband connection to get better access to information. With
connection to the CORE Server we want to o�er standalone tool for di�erent associations
or universities as well as one online system connected to many open access repositories for
accessing huge amount of digital content at one time.

In this section we present the motivation for this work and description of often used key
terms related to this work. Connection between this work and the CORE Project will be
explained afterwards continued with the main goals delimited for this project. In Section 2,
other work related to our project will be discussed and compared with our approaches. Then
process of designing our application with reasons about chosen solutions will be explained
in Section 3. In Section 4, the results of the work will be described further. Finally, the
evaluation of our goals compared to results will be presented in Section 5.

1.1 Key terms

1.1.1 Digital libraries

Digital library (DL) is a web based system for storing any kind of texts, documents or
articles. They have become an important aspect of most (if not all) academic projects
and have consequently been widely utilised in the academic environment. Nowadays, every

5

research paper, article or learning document, appears online, stored usually in some digital
library. Since there are many digital libraries on the world wide web, it can be very di�cult
to �nd the desired document.

1.1.2 Open Access

The term Open Access describes the way of accessing content in a digital library, however
many repositories are covered by subscription. This means only the people that pay sub-
scription fee can access the content in these libraries. Fortunately, there are more than
1, 800 quality checked Open Access repositories worldwide [7] storing more than 30 million
records. Search engines, such as Google Scholar or Vascoda, do not di�erentiate between
the Open Access and subscription-based content. Therefore, the users information needs
are only satis�ed if the resulting links from scienti�c searches lead to full-text versions of
articles that are covered by a subscription or follow the Open Access policies.

1.1.3 Related content

Users, searching only for Open Access content, have to submit their queries to a number
of relevant Open Access repositories or to use systems that harvest metadata from multi-
ple sources, such as BASE [16] or OAIster [6]. However, these metasearch systems do not
currently provide well-grounded information about semantically related content and do not
provide services to digital repositories that would allow them to improve their browsing
capabilities. To improve the navigation across the di�erent articles or repositories, seman-
tically related content should be described by its similarities or dependencies in standard
format (usually RDF). For example if the author of an article is described in RDF format,
another service can easily recognize this information and �nd some more information about
the author.

1.1.4 Mobile access

Digital libraries store the huge amount of the content and contain the most of important
information about the world researches. On the other hand, the growing market with new
mobile devices o�ers great opportunities for accessing digital repositories. People would
not be dependent on their computers when they need to �nd or read articles from a digital
library. Although this is a very simple goal, there is no solution, which allows owners of
mobile devices to access digital libraries. Nowadays the only possibility to access the content
from digital libraries on mobile devices is accessing the articles from built-in internet browser.
In this case, it is usually di�cult to download a full-text document and users are also limited
to a few digital repositories. This means, they sometimes have to search from many di�erent
web pages till they �nd what they want.

1.2 The CORE Project

This work is associated to a project named CORE. The project presents a method for
improving the access to content and navigation between semantically related items across
Open Access repositories. Our approach is based on the use of automatic link generation
algorithms that are applied to discover relations between full-text content. The relation-
ships are represented and published as Linked Data and can be queried using a set of web
services. Making information about related resources publicly available in an interoperable

6

format is an essential step in order to allow its exploitation by various third-party applica-
tions. In addition, we demonstrate the usability of the CORE service on two results. First,
a demonstration client for Open Access repositories is developed to be used by institutions
that administer repositories. The client is implemented as a widget that complements stan-
dard search services of Open Access repositories by providing dynamic links to semantically
similar content stored in other repositories. As the second result, we support ubiquitous
access to information stored across Open Access repositories using mobile technology. With
the current quick spread of smart phones and tablet devices, this application area has a lot
of potential for digital library technology. The following work describes the second part of
the project - developing applications to provide access to digital repositories for users with
mobile devices.

1.3 Project goals

At the beginning of the project there was an idea to create an environment for accessing
digital texts on the internet of any focus as simply as possible. There was also a need to
provide the interface for mobile devices, that are getting more exploit than ever before. This
can make the access to digital libraries much easier since people are not obliged to use their
PCs or laptops to search articles on the internet.

The main goals of the project:

1. Improve the way of searching articles in digital libraries

2. Provide a simple interface for most widely used mobile platforms (Android, iPhone,
iPad)

3. Access the documents directly from the application

4. Personalization

(a) Save documents (also download pdf document)

(b) Save search results

(c) Recommend new articles (based on search history and saved documents)

1.3.1 Realtime search

Search documents in realtime is one of the axiomatic features of our application. To achieve
very fast searching, it is necessary to use indexing technique. This technique have some
requirements to work properly. The indexed structure of the harvested data should be
placed on the same machine where the search engine is running. The harvested content
requires also large storage. The best way, how to solve this problem, is to run the search
engine and the indexer on the separate server and access it remotely from mobile device.

1.3.2 Mobile interfaces

Mobile clients are part of the CORE system and the main topic of this work. While the
CORE Server is on the background of the system, hidden for users and doing all the hard
work like harvesting, downloading content, indexing etc., the mobile clients are the fore-
ground applications, that provide interface to the CORE Server for students and researchers.

7

Interfaces should be very easy to use, but provide all the functionality useful for users. They
should respect common forms and the ways of using mobile applications, to allow users work
with them easily without a need of reading user's manual.

1.3.3 Access full-text documents

Information, stored in digital libraries are usually based on meta-data only and exclude the
full text of a document. They can hold information about the full-text document location
on the internet. Access to the full-text document can be also limited for subscribed users
only. This situation can be very discouraging for users, that spend their time searching
many articles, but ultimately are not successful. People searching for the articles on the
internet do not want to access the meta-data, instead they want to read the whole article.
That is the reason why we want to give them the access to the full-text documents directly
from the CORE Mobile applications.

1.3.4 Personalization

Mobile devices are usually very personal. This gives the potential for mobile applications to
also be well-personalized. Like everybody wants to have their favorite music in their device,
they might want to save the documents and the articles of their interests. There are many
options to improve user's experience using a mobile application. We chose these features to
achieve user-friendly personalized application:

Saving documents

This feature may look like very common functionality, which is available in many appli-
cations, like internet browsers. Actually, for example iPad users are currently unable to
download the content from web browser and store it in their device. This is one of the
reasons why we can not develop the CORE client like web-based application. This feature
is important, since people working in research or universities have to travel a lot and might
want to access their articles without need of internet connection.

Saving search results

Users sometimes make a search, which can lead to very relative results, according to their
interests. In this case, we want to allow them to save these results to read them later. Users
could also want to save all their results (without need to save them manually), so we can
allow them to enable this feature in settings, if they choose this option.

Recommendations

Users usually search for similar topics about their research focus or studies. For experts
in some research �eld, it is important to stay up-to-date. They will be interested if some
new similar article about their topic appears in the library. Unfortunately, in this case,
they will not �nd this article until they make proper search leading to it. But this can do
their application for them, since it can remember his searching and determine their topics of
interest. Then, when the user opens the application, it can do a search to �nd new articles
of his interests for him and serve the results him like recommendations. This can help him
to have up to date overview about the research.

8

Chapter 2

Related work

After setting the main goals of the project, we tried to �nd out all related solutions that focus
on at least some of our goals. We found many ready standalone tools o�ering interesting
features for private use as well as web-based services searching in huge amount of content for
public use. Most of these solutions are open-source or provide free web interface for accessing
their content. We selected most interesting solutions, according to our goals and depicted a
few of their characteristic features and functionalities in Figure 2.1. In the following sections
most relevant features will be discussed further.

2.1 Library federations and harvesting

Federated Digital Libraries (DLs) can act as (a) standalone systems, working on a locally
collected set of harvested data (typically acquired using the OAI-PMH [9] protocol), or (b)
as real-time federations by distributing query messages to external digital libraries [3]. While
standalone systems have full control over their structures (and typically also higher data
storage and computational requirements), it is evident that distributed DLs lack signi�cant
part of the full picture, be it either the control over the information retrieval facilities,
such as ranking algorithms, full-text content for indexing and other internal knowledge of
the host. Since the �rst speci�cation of the OAI-PMH protocol [9] in 2001 a number of
tools for OAI-PMH metadata harvesting or tools relying on OAI-PMH harvesting have
been developed. These include (a) Open Source tools for metadata harvesting, (b) web-
portals providing cross-repository metasearch services and (c) publishing platforms capable
of integrating and exposing information in an OAI-PMH compliant way.

2.1.1 Standalone tools

There are many solutions available for federating multiple digital libraries to use as a stan-
dalone tools in universities or other academic environments. Most of them are Open Source,
so they are easily customizable and extendable. Open Source harvesting tools, such as MOAI
[5] and D-NET [13] aim to deliver a software solution for metadata harvesting that can be
easily integrated into complex and specialised library systems. MOAI [5] can also transform
federated metadata to new collections and serve them through OAI-PMH protocol, so it can
be used as another source or separate module to use in combination with some other appli-
cations. Another system, OJAX [19] is concerned with the development of a user interface
for a federation of OAI-PMH repositories.

9

M
O
A
I[
5]

O
J
A
X
[1
9]

B
A
S
E
[1
6]

O
A
Is
te
r[
6]

D
N
et
[1
3]

C
O
R
E

Metadata aggregation (oai-pmh) X X X X X X
Full-text harvesting X X
Standalone tool X X X
Web-based search/metasearch X X X X
Web-service access X X X X
Mobile access X
Linked data X

Table 2.1: Characteristic features/functionalities of systems using the OAI-PMH protocol
and the features/functionalities o�ered by the CORE system

2.1.2 Web-based applications

On the other hand, web-portals, such as BASE [16] and WorldCat (the OAIster database
[6]) provide metasearch over more than 25 million records large collections directly to end-
users. In addition, BASE allows the use of a programmable API for the searching of their
collection. The last group of systems consist of complex publishing platforms that, among
other functionalities, are capable of exposing the library content using OAI-PMH.

2.2 Full-text downloading

Though there is a number of tools for the metadata harvesting only a few perform full-
text downloading.1 Thus most systems, including the mentioned large metasearch engines
BASE and OAIster, are completely reliant on the provided metadata and their information
retrieval functionalities are limited. Furthermore, it is di�cult to build on top of these
services applications that can automatically generate richer metadata using natural language
processing methods to help better organize library information.

2.3 Personalized search

Described solutions focus on the federated search and consolidating data through the OAI-
PMH protocol. In the case of OJAX using data indexing technique, which helps to provide
results very quickly. But none of these solutions care about the relevancy of found results,
you can get many irrelevant results and pass some articles you might be interested in. To
provide better results, there is a technique called personalized search. This technique is
based on users pro�le, which consists of their focus and recent topics of interest. There
are many di�erent approaches how to determine users pro�le. Many authors focus on users
browse history, actions, browsed documents and past search queries, mostly made in internet
browser [12]. This approach meets many bene�ts for application in an e-commerce Web site
[15]. But in the case of reading articles from digital libraries, the interests are usually based

1To the best of our knowledge the only system that o�ers the full-text download functionality is DNet
[13]

10

on studies or work focus, which can di�er from users interests of shopping or other internet
browsing.

2.4 Mobile access

Full-text information could also be better utilized to support access from mobile devices.
Smart phones and tablet devices o�er high potential for improving accessibility of digital
media[18]. The current attempts to create mobile device applications for digital libraries
[1] are mostly concerned with the development and the optimization of user interfaces for
mobile internet browsers [19, 14]. However, native mobile applications can currently o�er a
more user-friendly solution with better and more natural functionality. For example, web
browsers on iPhone and iPad devices (at the time of writing) do not support the downloading
of full-text documents. Providing a service capable of harvesting both metadata and full-
text content plus delivering it to mobile applications through a native application could
enable mobile users to access their documents from anywhere more easily.

11

Chapter 3

Design

3.1 Architecture

This section describes the architecture of the CORE system (Figure 3.1) and describes
how information is collected, processed and exposed for further use. There are three main
stages in which the system handles data. In the �rst stage, the metadata records and
full-text documents are harvested from available Open Access repositories (represented by
the Metadata Harvester and Full-text Downloader components of the system - Figure 3.1).
In the second stage, the available content is indexed for better searching and processed
in order to discover meaningful relations between papers using automatic link generation
methods (represented by the Semantic Relation Analyser component - Figure 3.1). In the
third stage, the extracted relations are exposed as Linked Data and are represented in the
CORE Triple store and through XML-RPC protocol provided to mobile clients. Semantic
relations were not the main focus of my work, so the second and the third stage will only
be partly described further.

3.2 Content harvesting

3.2.1 Metadata harvesting

The �rst component of the CORE system is responsible for acquiring (1) metadata records
and (2) the associated full-text content from Open Access repositories. The harvesting of
the metadata is performed using standard OAI-PMH requests to the repositories. Success-
ful requests return an XML document which contains information about the papers stored
in a repository. Although the OAI-PMH protocol itself is not directly concerned with the
downloading of full-text content, as it focuses on the transfer of metadata, a good practise
in repositories (which is unfortunately not consistently applied) is to provide as a part of
the metadata the URLs to the full-text documents. Document URLs can be thus extracted
and used to automatically download full-texts from repositories over the HTTP protocol.
The CORE system provides this functionality and is optimized for regular metadata har-
vesting and full-text downloading of large amounts of content. The fact that CORE caches
the actual full-text content in order to process the documents and to discover additional
metadata distinguishes this approach from a number of other Open Access federated search
systems, such as BASE or OAISTER, that rely only on the metadata accessible through
OAI-PMH.

12

Figure 3.1: CORE architecture

3.2.2 Fulltext downloading

At the time of writing, the CORE harvesting system has been tested on 142 Open Access
repositories from the UK. Table 4.1 provides preliminary statistics on the amount of content
harvested from UK repositories. We expect to extend the number of repositories in the
future to all available repositories listed in OpenDOAR. A larger number of repositories will
increase the demand on the storage space as in our case not only metadata, but also full-
text has to be stored as opposed to services, such as OAIster or BASE. To provide a rough
estimate, the Open University's repository Open Research Online (ORO) contains more
than 16,000 records out of which about 5,000 records are accompanied by full-texts. Storing
the full-text records requires about 5GB of storage space. There are currently over 30
million metadata records stored across Open Access repositories worldwide. It is expected
that about 10% of the records contain links to downloadable pdfs, which would account
for about 3 million full-text papers stored across Open Access repositories worldwide. By
generalizing from the ORO data we can estimate that about 3TB of space are required to
cache all these documents. Though the real space needed will be larger due to the index and
metadata, this amount can still be relatively easily managed and the size does not prevent
us from extending the system to the remaining repositories listed in OpenDOAR (more than
1, 600 non-UK repositories).

13

3.3 Search engine and indexing

When the data and metadata are downloaded from remote repositories, another module
starts indexing them. This technique rapidly speeds the searching, since the data is sorted
in a structure optimized for fast manipulation. For indexing we use the Apache Lucene
module, which is probably the most used indexing module. Manipulation with the data in
the index is similar to databases. We can specify the �elds that should be stored to the
index and we can use easy queries to read the data from the index. The main di�erence
is in the way, that the data is stored. In addition to metadata, the full-text pdfs are also
indexed. The Lucene module selects only a few keywords from the full-text document, so it
does not store all the common words, that do not say anything about the document.

3.4 Mobile access

According to our goals, there was a need to make applications for di�erent mobile platforms.
As a result, we had to implement similar functionally, but programmatically very di�erent
applications. Platform iOS for iPad and iPhone devices is based on the Objective C lan-
guage, while the Android applications are usually based on Java. Therefore our e�ort was
to move the most of functionality on the CORE Server and make the mobile applications
as easy as possible. This can also make implementation much easier. The applications
should also be very versatile for di�erent input data and for API changes. If we decide to
make some changes in the future, we would not change the mobile applications, but only
the CORE Server. Also users would not be obliged to update their applications after some
minor changes.

3.4.1 XML-RPC server

XML-RPC server (in Java terminology XML-RPC servlet) is a part of the CORE server,
exposing the data and providing the search functionality through the XML-RPC protocol. It
is basically extension of the HTTP protocol with standard syntax and data formatting. The
CORE Server is based on the Apache server, which supports deploying di�erent modules
(Servlets). XML-RPC servlet is connected to the metadata and the full-text index and uses
the Apache Lucene module for searching the articles.

3.4.2 Fulltext server access

Another module in the CORE Server is a Fulltext download Servlet (based on simple HTTP
Servlet). It processes the requests from the mobile (or any other) devices for the fulltext
documents that are stored in the CORE Server. Proper document is determined by the
identi�er of the selected document and its original repository (For example: {id: 7452;

repository: 'oro.open.ac.uk'}. For the possibility of the bigger pdf �les, it is essential
to send the content using bu�er, to stabilize the downloading process of the document.

3.4.3 Data �ow

Since the CORE System consists of more application modules running on di�erent platforms,
it is important to de�ne standards and select protocols for exchanging data between these
modules. Figure 3.2 describes the processes with data transforming between the modules
of the CORE System. We can split this data �ows into the follpwomg two groups:

14

Figure 3.2: Data �ow model with protocol description.

External data �ows

The CORE Server retrieves data from many digital libraries across the World Wide Web.
It uses OAI-PMH standard for metadata harvesting, which is supported by most digital
libraries on the internet[7]. The OAI-PMH protocol is built on HTTP protocol. The request
for retrieving metadata is usually based on HTTP Get method, but it HTTP Post method
can be used also. If the request is successful, the library returns the HTTP Response with
XML �le encoded by OAI-PMH standards. The metadata are usually represented in Dublin
Core format [8]. Example of OAI-PMH response shows the Figure 3.3.

Internal data �ows

The CORE System consists of 3 main applications. The CORE Server and the CORE
Mobile for Android and iOS platforms. Main communication is realized by the XML-RPC
protocol, also built on the HTTP protocol. When the user submits a search, the CORE
Mobile application makes the XML-RPC request and send it on the CORE Server using
the HTTP Post method. The server performs the search on the index and builds the XML-
RPC response message. This protocol uses standardized format for the standard data types
like the basic types (number, string, boolean) and also advanced data types (structure,
hash, array). In �gures 3.4 and 3.5 you can see the examples of the XML-RPC messages
(method call and method response), transfering between the CORE Server and CORE
Mobile application.

15

<OAI−PMH xmlns="http ://www. openarch ives . org /OAI/2 .0/"
x s i : schemaLocation="http ://www. openarch ives . org /OAI/2 .0/OAI−PMH. xsd">

<responseDate >2011−05−06T09 : 5 7 : 0 2Z</responseDate>
<reques t verb="ListMetadataFormats">http :// oro . open . ac . uk/ cg i / oai2</request>
<ListMetadataFormats>

<metadataFormat>
<metadataPref ix>context_object </metadataPref ix>
<schema>http ://www. openur l . i n f o / r e g i s t r y /docs / i n f o : o f i / fmt : xml : xsd : ctx</schema>
<metadataNamespace>i n f o : o f i / fmt : xml : xsd : ctx</metadataNamespace>

</metadataFormat>
<metadataFormat>

<metadataPref ix>oai_dc</metadataPref ix>
<schema>http ://www. openarch ives . org /OAI/2 .0/ oai_dc . xsd</schema>
<metadataNamespace>http ://www. openarch ives . org /OAI/2 .0/ oai_dc/
</metadataNamespace>

</metadataFormat>
<metadataFormat>

<metadataPref ix>rdf </metadataPref ix>
<schema>http ://www. openarch ives . org /OAI/2 .0/ rd f . xsd</schema>
<metadataNamespace>http ://www.w3 . org /1999/02/22− rdf−syntax−ns#
</metadataNamespace>

</metadataFormat>
<metadataFormat>

<metadataPref ix>rem_atom</metadataPref ix>
<schema>http :// exyus . com/xcs / t a s k l i s t / source /? f=put_atom . xsd</schema>
<metadataNamespace>http ://www.w3 . org /2005/Atom</metadataNamespace>

</metadataFormat>
<metadataFormat>

<metadataPref ix>uketd_dc</metadataPref ix>
<schema>http :// naca . c e n t r a l . c r a n f i e l d . ac . uk/ ethos−oa i /2 .0/ uketd_dc . xsd</schema>
<metadataNamespace>http :// naca . c e n t r a l . c r a n f i e l d . ac . uk/ ethos−oa i /2 .0/
</metadataNamespace>

</metadataFormat>
</ListMetadataFormats>

</OAI−PMH>

Figure 3.3: Example of OAI-PMH response

3.5 Mobile applications

If we want to help people accessing digital content, the design of applications and their
interfaces is very important as well as the whole process of searching and getting the doc-
ument from the library. The application has to put all the functions together to make the
interface user-friendly and intuitive. The user should be able to use the application without
the need to read a user-manual or documentation.

3.5.1 Use cases

Searching articles

The main use case of CORE Mobile applications is searching articles. Users should specify
the words that they want to search and also they can determine, where the words can
appear, whether in the full-text document, title, author etc. When the user speci�es the
search keywords and their appearance, after submitting the query to server, the CORE
system processes the query and returns the results as quickly as possible.

16

<?xml ve r s i on = '1.0 ' ?>
<methodCall>

<methodName>LuceneSearcher . getHitsArray</methodName>
<params>

<param>
<value>

<st r i ng>t i t l e </s t r i ng>
</value>

</param>
<param>

<value>
<st r i ng>model l ing </s t r i ng>

</value>
</param>

</params>
</methodCall>

Figure 3.4: Example of XML-RPC method call

Reading and saving articles

When the CORE Server returns the search results, the mobile client parse the results to a
list. The results should be very clear to read, but they should also show all the information
that could help users to decide which record they might be interested in. When the user
selects any record, the record details open and the user can read all the information about
the article. They also have the options to save the document and to �nd similar articles.

Settings

Every application needs some settings to adapt di�erent conditions and environment. When
user install the application, the settings is preset by default values. These default values
should meet the most used settings, so many users do not have to change the settings at all.

3.5.2 The CORE Mobile GUI

Very crucial task in designing user-friendly application is user interface design (GUI - Graph-
ical User Interface). Main use cases should be accessible as easy as possible. Actions should
be intuitive and should meet common user habits (this means common activities like search-
ing or changing settings should be similar to other applications).

Since the screen on mobile devices, in particular on cell phones, is much smaller than
common PC screen, we had to respect this fact in designing CORE Mobile interface. Users
with speci�c screen sizes, that were not tested in application development process, usually
can be disappointed with the interface, since some components could not display properly
and it could be di�cult for the users to perform some actions. To avoid these situations, we
designed universal interfaces and tested them on multiple screen sizes. The Android system
o�ers very good framework, when designer can make multiple di�erent interfaces for speci�c
screen sizes and the Android system chooses the interface which suits best to users screen.
Since this application should be used both tablet devices and cell phones, it is very useful
feature. These approach is presented in �gure 3.9 (interface for Android tablet device) and
�gure 3.8 (interface for Android phones).

17

<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<methodResponse>

<params>
<param>

<value>
<array>

<data>
<value >101</value>
<value>Symbolic model l ing </value>
<value >2005−02−10</value>
<value></value>
<value>empty</value>
<value>Oxford Un ive r s i ty Press</value>
<value >10</value>
<value>empty</value>
<value>empty</value>
<value>oro . open . ac . uk</value>
<value>empty</value>
<value>Model l ing the dynamics o f indus t ry populat ions </value>
<value >2001−07</value>
<value></value>
<value >2164</value>
<value>empty</value>
<value >10</value>
<value>empty</value>
<value>empty</value>
<value>oro . open . ac . uk</value>
. . .
. . .
. . .

</data>
</array>

</value>
</param>

</params>
</methodResponse>

Figure 3.5: Example of XML-RPC method response

3.5.3 Accessing CORE Server

As mentioned before, the CORE Mobile clients are mobile interfaces that use functionality
of the CORE Server. The CORE Server implements all the functionalities for harvest-
ing the content from digital libraries and searching articles. Communication between the
CORE Mobile application and the CORE Server is implemented using remote function calls
through the XML-RPC protocol. The mobile application creates a text �le containing the
information which function should be called and parameters related to a speci�c function.
The text is structured into an XML �le and send to the CORE Server. The server ap-
plication calls the function with given parameters and sends the result structured to the
XML �les back. The XML-RPC protocol has standard format for manipulating with data
types, so it the CORE Server could communicate with any application sending data in the
XML-RPC format.

While the functions for searching articles are implemented through the XML-RPC pro-
tocol, downloading the articles is done using the HTTP protocol. Each record in results
contains the information about the name of full-text �le stored in the CORE Server. When
the user selects the record he want to download, the HTTP Request is created and sent
to the CORE Server - Downloader module. Then the module tries to �nd the article in

18

Figure 3.6: Mobile application: Use case diagram - describes the use cases and relations
between actions in CORE Mobile and CORE Server

its storage and send it as an HTTP Response back to client. The client stores the �le to
external storage and saves the information about its location.

3.5.4 Storing user data

Since the CORE Mobile application is meant to personalise users needs and interests, it
has to store the data to the device. We can divide this process to two groups � �rst
for the information without direct user access and second for the data accessible directly
from the device without need of using the CORE Mobile application. First group contains
information about users search history, metadata about saved �les and application settings.
In the second group will mostly appear saved documents (full-text pdf �les).

19

Figure 3.7: Mobile application: Graphical User Interface design - describes the Views
(blue boxes) and Actions (yellow boxes) with their relations

20

Figure 3.8: Mobile application: Interface for Android phones - the interface for small
screens on the phones has to be clear and simple. The main contains less components.

Figure 3.9: Mobile application: Interface for Android tablets - due to bigger screen can
o�er more functionality and components on a screen.

21

Chapter 4

Results

In this chapter �nal results of the work and mobile applications will be presented. All
parts of the system will be further described as well as used methods and solutions with
explanation of reasons of their usage.

Target platforms

The main goal of this work was to develop applications for easy accessing digital library
system from mobile devices. Due to reasons discussed in section 3 the server application
maintaining the background processes had to be implemented �rst. For this purpose, we
decided to use desktop server with Apache Tomcat Server. This platform is very modular
and �exible and �ts for our objectives very well.

In case of mobile applications, we had to choose from many various mobile platforms
that are being used. Despite the statistics of the market with mobile devices, we decided to
focus on two most used mobile platforms for smart devices. The �rst, open-source platform
with huge community support, deep software development kit and very well-documented
APIs is the Android platform. On the other hand, the second choice, iOS platform, o�ers
also great potential in spread of users amount. The iPad was also the �rst common-used
tablet device on the market and nowadays it is still a leader on the tablet market. However
there are many other platforms, these two have about 75% of recent acquired smartphones
in USA (Figure 4.1).

4.1 CORE Server

The CORE Server (part of the CORE Server related to mobile applications) is an applica-
tion meant to run on dedicated computer. The base of the application is Apache Tomcat
Server. It is standalone Java application that allows deploying a number of Java modules
(Servlets). The Apache Tomcat Server takes care about the access from the internet, com-
munication between modules and selects which module should be run, according to de�ned
mappings. The CORE Server runs many modules for harvesting, downloading full-text
documents, accessing XML-RPC functions, providing downloaded documents, etc. In this
section, modules related to the mobile applications (XML-RPC module and Full-text access
module) will be discussed further.

22

Figure 4.1: Smartphone OS market share from March 2011. According to Nielsen [4] statis-
tics, iOS with Android have about 75% of the market.

4.1.1 XML-RPC module

is mapped on URL address http://core-server-address/XmlRpcServlet (by default) and
receives remote calls from mobile applications. The used module is XmlRpcServlet from
Java package org.apache.xmlrpc.webserver. In properties of the module, we can de�ne,
which functions will be accepted and how to process them. In the case of the CORE
Server, we implemented class named LuceneSearcher which contains main functions for
searching articles and digital content. As mentioned before, we use Lucene Indexer module
for indexing aggregated content. When the XML-RPC module gets the search request from
the mobile device, it calls the function getHitsArray() of module LuceneSearcher and the
module accesses this index for searching aggregated articles. The module contains some more
functions for example for di�erent result structures (getHitsMultiArray, getHitsStruct)
or for searching similar articles.

4.1.2 Full-text access module

is part of the CORE Server, deployed as a module of Apache Tomcat Server. The module
is implemented as a Servlet derived from javax.servlet.http.HttpServlet. It uses map-

23

ping with parameters, when some parts of the URL are used to determine variables of the
following process. The module has the following mappings:

http ://< core−se rver−address >/Downloader
http ://< core−se rver−address >/Downloader/∗

The �rst mapping can be used for the HTTP POST method when the parameters are send
in the POST message. The second mapping says that every request beginning with this path
and continuing other characters will be handled by this module. The following URL can be
then used to access a speci�c PDF on the server:

http ://< core−se rver−address >/Downloader/ oro . open . ac . uk/2134

The request will be handled by the Downloader module. The last two parts of the URL
specify the repository and the ID of the document we want to download.

4.2 Android client

Although developing an Android application may seem to be similar to developing a desktop
application, Android framework is quite di�erent to other platforms, even those are are also
based on Java language. Android uses activities to split single parts of the application.
Every activity consists of a class, which is de�ned by a simple Activity class or it can be
diferentiated for its special purposes, like browsing list (ListActivity), setting preferences
(PreferenceActivity), watching images (ImageActivity), and many others. These special
activities help the developer with programming, since they have many common tasks already
implemented. The behaviour of the activity is to be implemented by overloading function
onCreate(), which is called imediatelly after creating activity. There are also other methods
for setting the behaviour usually handling the activity life cycle (switching to other activity,
resuming activity, changing screen rotation, etc.).

4.2.1 User interface

In Android platform, developers de�ne user interface in external XML �le. Android frame-
work allows them to de�ne multiple resource �les for di�erent mobile devices. Developer
can create �lesystem with folder naming according to speci�c needs of every device and
environment. Android then chooses the resource that �ts the best to the device. For ex-
ample, developer can de�ne two di�erent user interfaces for one activity for di�erent screen
rotations. The �rst de�nitions will put to folder /res/layout and the second �le with the
same name will put into /red/layout-land. Android then chooses the proper interface
according to screen rotation. This technique was used to handle more screen sizes, screen
orientations and for tablet speci�c interface.

4.2.2 Activities

In CORE Mobile, the Android application consists of these activities:

• StartMain

24

• MainSearch

• SearchResults

• RecordDetails

• SavedDocuments

• BrowseHistory

StartMain

It is the main activity of the application. This activity is run �rst when the application is
started. From the interface of the activity user can navigate to search activity, application
preferences and saved or browsed documents. In this activity the recommendations are
presented to the user and he can navigate directly to these recommended documents and
download them.

MainSearch

MainSearch activity has interface for searching articles from the CORE Server. A user
can search simply by any keyword, or he can select additional �lters like Author, Title,
Publisher, etc. If he does not specify additional �lter, the keyword is searched in all �elds
and in fulltext document also (this behaviour is set in the CORE Server).

SearchResults

When the user submits a search, the request is sent to the CORE Server and when the
application gets the response, it launches new activity SearchResults, which processes the
response message and show the results in a list. Each record in the list contains the title
of the document, publisher (source repository) and date. When the user selects the desired
document, it is sent to another activity RecordDetails.

RecordDetails

The activity class with document details, where the user can see all the metadata of the
document, can save the document and try to �nd similar document. Immediately when the
activity is started, the opened document is saved to the database, to the BrowsedDocuments
table (only metadata). When the user selects to save the document, the record is saved to
the SavedDocuments table and then application tries to download the fulltext pdf from the
CORE Server. If the download is successful, the Save document button disappears and
instead of it the Open document button is shown. If the user clicks on it, the application
sends the request for opening the �le to the operating system with the information about
the �lepath and document type. If the application for viewing pdf �les is installed, it will
launch for opening the document. This means that the CORE Mobile application is not
suitable for viewing pdf �les, but it uses external application for this purpose.

SavedDocuments and BrowseHistory

These activities are run from the main activity and shows the documents stored in database
(in tables SavedDocuments and BrowseHistory. The activities use the same layout as the

25

SearchResult activity. The user can select the record and view the metadata and open (for
the SavedDocuments activity) or download (for the BrowseHistory activity) the documents.

4.2.3 Utils class

All additional functions for other operations used in more activities are situated in the
Utils class. For example, the method for downloading the content from the internet, in
the case of the CORE Mobile application downloading pdf documents from the CORE
Server. Downloading the documents is based on the HTTP Request and the HTTP Response

methods. For better stability of the downloading process, the transfer is realised using a
bu�er. If the document is bigger than 1kB, the content is divided into more messages and
received sequentially.

4.2.4 XML-RPC module

For implementing XML-RPC communication there is an open-source project android-xmlrpc[17]
hosted on Google Code service. This project provides libraries for handling XML-RPC com-
munication, like creating XML-RPC Request messages or parsing the XML-RPC Response
messages. Other important part is serialization, when the structured data are transformed
to serial data that can be written it text form to XML structure. The module can do the
serialization for many standard data types. For the representing data in the CORE modules,
speci�c data structures are de�ned. Because of this, we had to implement the serialization
methods for these speci�c data types and structures (transforming complex structures to
simple array or list of strings).

4.2.5 Structure classes

Data structures are important to de�ne abstract objects of the documents and search results.
Since the applications are sending this data through network, they must use strictly same
data types. The best way how to achieve this to use one module for both the CORE Mobile
and CORE Server applications. This is not a problem for the CORE Server and Android
client, since they are based on Java. The iOS client has to copy these structures to its own
class. There was an idea to make this data universal, when the applications will not have
to understand exactly the incoming message and parse it with strict rules. Unfortunately
it was realized when the most applications was almost �nished and it was not implemented
yet. There are two classes SearchResult which de�ne the structure of the document with its
metadata. The second class SearchResults contains an array of found documents (array of
class SearchResult), other information about searching and also methods for manipulating
the data (converting data from array of structures to simple array of strings and backwards).

4.2.6 Database and DataHelper class

Since the CORE Mobile application needs to store data, there are few options how to do it.
Di�erent operations need di�erent manipulation. For example for downloaded documents
the best way is to store them in separate �les, not in the database. For metadata and
other information about saved and browsed documents it is better to use a database. An-
droid platform provides a framework for using the SQLite database engine. This framework
consists of APIs and classes that make using the database much easier. To create and main-
tain the database, there is a prototype class called SQLiteOpenHelper. To implement own

26

database, developer has to create new class overriding SQLiteOpenHelper class. For the even
better manipulation with database we created the class DataHelper, which contains the sub-
class OpenHelper that overrides the prototype class SQLiteOpenHelper. The DataHelper

class contains also other objects for manipulation with database, like table names constants,
prepared statements, object abstracting the database (class SQLiteDatabase, database con-
structor and methods for data manipulation: insert, selectAll, deleteAll,....

4.3 iOS client

The following issues must be considered for developing an iOS application. At �rst, we had
to choose a form of application, since there are few di�erent frameworks and approaches,
like Nimble kit framework, View-based, Window-based or Navigation-based application, and
others. Since we were developing two clients for di�erent platforms, we wanted to make these
applications similar as much as possible. The most similar approach to Android platform is
View-based application (or special split-view based). The CORE Mobile clients are in the
most functionality very similar. In this section we will discuss only di�erence between this
applications to not repeat all the methods and approaches from section 4.2.

4.3.1 Graphic interface

iOS platform in view-based application mode uses de�ned views for representing graphical
interface. The views are de�ned in Interface Builder module provided in standard iOS
Development Kit. While the components are de�ned globally in Android platform and
developer can access them by calling proper functions, in iOS platform developer has to
connect the components with proper modules in Interface Builder. He can de�ne the actions
and receivers of the actions.

4.3.2 Data storing

Downloading the full-text documents is realized through the HTTP Protocol, in the similar
way like in Android client. The di�erence is in the way of storing the documents. When
user saves the document, it is downloaded and stored to iBooks storage - standard place for
storing digital books and pdf �les on iPad and iPhone devices. For the storing application
data there are also provided libraries for handling with SQL database. The iOS platforms
use SQLite3 database engine.

4.3.3 XML-RPC communication

For the XML-RPC communication in the CORE Mobile for iOS we use the XML-RPC
module from open source project WordPress for iOS[2]. It is the most suitable project
for our purposes, since the implementation is also tested and the functionality is versatile.
The WordPress for iOS project is distributed under the GNU General Public License. The
module is integrated to the CORE Mobile for iOS application and remote calls are the same
as remote calls used in the CORE Mobile for Android application.

27

Repository NrRecords NrPdfs PercentagePdfs

eprints.soton.ac.uk 57232 10975 19,18%

www.leodis.net 56066 0 0,00%

eprints.gla.ac.uk 39160 2961 7,56%

epubs.cclrc.ac.uk 29567 265 0,90%

eprints.lse.ac.uk 24436 4533 18,55%

eprints.lancs.ac.uk 23725 4596 19,37%

oro.open.ac.uk 17167 5245 30,55%

eprints.ecs.soton.ac.uk 15921 7196 45,20%

eprints.cdlr.strath.ac.uk 15534 3397 21,87%

irep.ntu.ac.uk 14183 103 0,73%

...

Average 4888 866 29.14%

Total (142 repositories) 562075 99614 17.72%

Table 4.1: The number of collected metadata and full-text content from 10 largest UK
repositories (in terms of metadata records) and the overall ratio of full-text occurrence to
the number of metadata records from 142 UK repositories

4.4 Evaluation

At the time of writing the CORE harvesting system has been tested on 142 Open Access
repositories from the UK. Table 4.1 provides preliminary statistics on the amount of content
harvested from UK repositories using our tool. We expect to extend the number of repos-
itories in the future to all available repositories listed in OpenDOAR. A larger number of
repositories will increase the demand on the storage space as in our case not only metadata,
but also full-text has to be stored as opposed to services, such as OAIster or BASE. To
provide a rough estimate, the Open University's repository Open Research Online (ORO)
contains more than 16,000 records out of which about 5,000 records are accompanied by
full-texts. Storing the full-text records requires about 5GB of storage space. There are cur-
rently over 30 million metadata records stored across Open Access repositories worldwide.
It is expected that about 10% of the records contain links to downloadable pdfs, which
would account for about 3 million full-text papers stored across Open Access repositories
worldwide. by generalizing from the ORO data we can estimate that about 3TB of space
are required to cache all these documents. Though the real space needed will be due to
the index and metadata larger, this amount can still be relatively easily managed and the
size does not prevent us from extending the system to the remaining repositories listed in
OpenDOAR (more than 1, 600 non-UK repositories).

In �nal period of developing the CORE Mobile applications, di�erent people tested
their functionality and the user interface. These tests were focusing on the main goals of
the mobile applications we set in the section 3. As a result, we discovered, that people used
to speci�c platform (iOS or Android), had no problem using the CORE Mobile applications
for these platforms, since the CORE Mobile applications use the standard methods and
components for viewing and navigating in the application.

28

Chapter 5

Conclusion

This project aims to improve the accessibility of digital content stored in the World Wide
Web. We wanted to make universal platform, that could be used like a standalone tool for
the speci�c needs as well as the centralized application consolidating all the open digital
libraries in the internet. We tested the capability for both these purposes and the CORE
Server was successful in these tests. At the time of writing these work, the CORE Server was
tested on 142 UK repositories and downloaded about 560000 records with almost 100000
full-text PDFs. This content is accessible from the CORE Mobile applications for Android
and iOS devices. These applications focus on easy and intuitive use. The CORE Mobile
users can search the article, save and download it to their device and read it without
broadband connection. This system can be used in di�erent environments or universities.
The CORE Server and the CORE Mobile applications have versatile con�gurations. The
CORE Server can set di�erent source repositories for the content harvesting and the CORE
Mobile applications can set di�erent CORE Servers for searching articles. According to our
goals, we developed mobile applications that personalise user's needs and interests. When
the user browses or saves the articles, application stores their keywords to the database.
Then, when the user starts the application again, it tries to search similar articles and
present the results to the user.
This work presented our approach for improving the accessibility of digital content. However,
there are still many opportunities and approaches for the future researches in this �eld. I
believe this topic is important for researchers from any �eld of interests.

29

Bibliography

[1] Francisco Alvarez-Cavazos, Roberto Garcia-Sanchez, David Garza-Salazar, Juan C.
Lavariega, Lorena G. Gomez, and Martha Sordia. Universal access architecture for
digital libraries. In Proceedings of the 2005 conference of the Centre for Advanced
Studies on Collaborative research, CASCON '05, pages 12�28. IBM Press, 2005.

[2] Inc. Automattic and Wordpress community. Wordpress for ios, 2010.
http://ios.wordpress.org/.

[3] DeWitt Clinton. Opensearch 1.1 (draft 4). Opensearch.org, 2011.

[4] The Nielsen Company. U.s. smartphone market: Who's the most wanted?, April 2011.

[5] MOAI Developers. Moai, an open access server platform for institutional repositories,
2008. http://moai.infrae.com/.

[6] Kat Hagedorn. Oaister: a
�
no dead ends� oai service provider. Library Hi Tech,

21(2):170�181, 2003.

[7] Bill Hubbard. Opendoar : the directory of open access repositories.

[8] Dublin Core Metadata Initiative. Expressing dublin core description sets using xml
(dc-ds-xml). 2000.

[9] Open Archives Initiative. Protocol for metadata harvesting, v2.0, 2002.

[10] Open Archives Initiative. Object reuse and exchange, v1.0, 2008.

[11] Carl Lagoze and Herbert Van De Sompel. The open archives initiative: building a
low-barrier interoperability framework. In In JCDL 01: Proceedings of the 1st
ACM/IEEE-CS joint conference on Digital libraries, pages 54�62, 2001.

[12] Fang Liu, Clement Yu, and Weiyi Meng. Personalized web search for improving
retrieval e�ectiveness. IEEE Trans. on Knowl. and Data Eng., 16:28�40, January
2004.

[13] Paolo Manghi, Marko Mikulicic, Leonardo Candela, Michele Artini, and Alessia
Bardi. General-purpose digital library content laboratory systems. In Mounia Lalmas,
Joemon Jose, Andreas Rauber, Fabrizio Sebastiani, and Ingo Frommholz, editors,
Research and Advanced Technology for Digital Libraries, Lecture Notes in Computer
Science, pages 14�21. Springer Berlin / Heidelberg, 2010.

[14] Johanna McEntyre and David Lipman. Pubmed: bridging the information gap.
CMAJ, 164(9):1317�1319, 2001.

30

[15] Alessandro Micarelli, Fabio Gasparetti, Filippo Sciarrone, and Susan Gauch. The
adaptive web. chapter Personalized search on the world wide web, pages 195�230.
Springer-Verlag, Berlin, Heidelberg, 2007.

[16] Dirk Pieper and Friedrich Summann. Bielefeld academic search engine (base): an
end-user oriented institutional repository search service. Library Hi Tech, 24(4):614 �
619, 2006.

[17] pskink@gmail.com. android-xmlrpc: Very thin xmlrpc client library for android
platform, 2008. http://code.google.com/p/android-xmlrpc/.

[18] Graham Walton, Susan Childs, and Elizabeth Blenkinsopp. Using mobile technologies
to give health students access to learning resources in the uk community setting.
Health Information, Libraries Journal, 22:51�65, 2005.

[19] Judith Wusteman. Ojax: a case study in agile web 2.0 open source development.
ASLIB Proceedings, 61(3):212�231, 2009.

31

