
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONFIGURABLE PARALLEL EXECUTION OF SYSTEM
TESTS WITHIN THE STRIMZI PROJECT
KONFIGURATEĽNÁ PARALELNÁ EXEKÚCIA SYSTÉMOVÝCH TESTOV V RÁMCI PROJEKTU STRIMZI

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MAROŠ ORSÁK
AUTOR PRÁCE

SUPERVISOR Doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Master's Thesis Specification |||||||||||||||||||||||||
25008

Student: Orsák Maroš, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Software Verification and Testing
Title: Configurable Parallel Execution of System Tests within the Strimzi Project
Category: Software analysis and testing
Assignment:

1. Get acquainted with Apache Kafka and Strimzi project to understand distributed systems
deployed on top of Kubernetes.

2. Study current system testing of Strimzi project, understand the architecture, principles of
execution on different environments and theory of parallelism.

3. Identify bottlenecks related to testing the Strimzi system tests.
4. Design and implement a parallel approach of execution tests that will solve problems from

the previous point.
5. Verify the implementation part to find the ideal configuration for parallel tests execution on

different sizes environments.
6. Evaluate and summarize your findings and successfully contribute to the implementation into

the Strimzi organization.
Recommended literature:

1. Stopford, Ben. Designing Event-Driven Systems. O'Reilly Media, Inc. 2018.
2. Narkhede, Neha, Gwen Shapira, and Todd Palino. Kafka: the definitive guide: real-time data

and stream processing at scale. O'Reilly Media, Inc. 2017.
3. Seymoure, Mitch. Mastering Kafka Streams and ksqIDB. O'Reilly Media, Inc. 2021.
4. Poulton, Nigel. The Kubernetes Book. Amazon, 2021.
5. Pacheco, Peter. An introduction to parallel programming. Elsevier, 2011.

Requirements for the semestral defence:
• Items 1,2,3 and the initial proposal for the fourth item.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Češka Milan, doc. RNDr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: November 3, 2021

Master's Thesis Specification/25008/2021/xorsak02 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
In recent years, many companies have adopted Kubernetes and the microservices architec­
ture it enables. This technology was opened up many new possibilities not just for large
companies, but also for small software developers. Kubernetes is a container-orchestration
system and recently a new concept has emerged arround how to orchestrate the containers
more efficiently - the Operator pattern. One such operator is developed and maintained
under an open-source project called Strimzi. The Strimzi project gathers together several
tools, which take care of the deployment of Apache Kafka on Kubernetes. Since Kafka is a
complex, horizontally scalable, distributed system, you can imagine that its installation is
a relatively complex action. Therefore, one of the biggest challenges of using Kubernetes is
how to effectively and quickly test projects such as Kafka and Strimzi and at the same time
verify integration with other similar products. The resources needed by Kubernetes are
much more demanding compared to the deployment of Kafka on virtual machines or typi­
cal container instances. To tackle this problem, we adopt the principles of parallel execution
and created a mechanism within Strimzi system tests, which runs tests in parallel against
only a single Kubernetes cluster. Furthermore, we proposed a brand new architecture for
the end-to-end tests. The improvements aim at scalability and reduction of execution time.
Through several experiments, this paper shows that proposed mechanism with different
configurations of the Kubernetes cluster (including number of Kubernetes nodes, number of
tests and suites executed in parallel) significantly accelerated execution of the tests.

Abstrakt
V posledných rokoch mnoho spoločností prijalo Kubernetes a architektúru mikroslužieb,
ktorú umožňuje. Táto technológia otvorila nové možností nielen pre veľké spoločnosti, ale
aj pre malých vývojárov softvéru. Kubernetes je systém riadenia kontajnerov a nedávno
sa objavil nový koncept, ako efektívnejšie organizovať kontajnery - vzor operátora. Jeden
takýto operátor je vyvinutý a udržiavaný v rámci open-source projektu s názvom Strimzi.
Projekt Strimzi spája niekolko nástrojov, ktoré sa starajú o nasadenie Apache Kafka na
Kubernetes. Keďže Kafka je komplexný, horizontálne škálovateľný, distribuovaný systém,
viete si predstaviť, že jeho inštalácia je pomerne zložitá akcia. Preto jednou z najväčších
výziev používania Kubernetes je, ako efektívne a rýchlo otestovať projekty ako Kafka a
Strimzi a zároveň overiť integráciu s inými podobnými produktmi. Zdroje, ktoré potrebuje
Kubernetes, sú oveľa náročnejšie v porovnaní s nasadením Kafka na virtuálne stroje alebo
typické inštancie kontajnerov. Aby sme tento problém vyriešili, prijali sme princípy par­
alelného vykonávania a vytvorili mechanizmus v rámci systémových testov Strimzi, ktorý
paralelne spúšťa testy iba proti jedinému klastru Kubernetes. Okrem toho sme navrhli
úplne novú architektúru pre end-to-end testy. Vylepšenia sú zamerané na škálovateľnost a
skrátenie času vykonávania. Prostredníctvom niekoľkých experimentov tá to práca ukazuje,
že navrhovaný mechanizmus s rôznymi konfiguráciami klastra Kubernetes (vrátane počet
uzlov Kubernetes, počet paralelne vykonávaných testov a sád) výrazne urýchlil vykonávanie
testov.

Keywords
Strimzi, Kubernetes, Orchestration, Clustering, Azure, Openstack, AWS, Apache Kafka,
Distributed systems, middleware, end-to-end tests, paralelism, multi-threaded execution,
race condition, synchronization, scalability, operators

K lícová slova

Strimzi, Kubernetes, Orchestrácia, Klastering, Azure, Openstack, AWS, Apache Kafka,
Distribuované systémy, middleware, systémové testy, paralelizmus, multi-vláknové vykoná­
vanie, súbeh, sychronizácia, škálovateľnosť, operátory

Reference
ORSÁK, Maros. Configurable parallel execution of system tests within the Strimzi project.
Brno, 2022. Master's thesis. Brno University of Technology, Faculty of Information Tech­
nology. Supervisor Doc. RNDr . Milan Češka, Ph.D.

3

Rozšířený abstrakt
V dnešnej dobe sa čoraz častejšie stretávame s paralelnými programami. Tucet programov,
ktoré boli napísané typickým spôsobom pre jednojadrové systémy, nedokáže využiť prítom­
nosť počítačov s viacerými jadrami. Ked sme chceli urýchliť riešenie problémov, chceli sme
vytvoriť niečo, čo by eliminovalo náš čas na výpočty. Tak sme vynašli počítač, ktorý na
začiatku nevedel relatívne nič robiť. To všetko sa však po pár rokoch zmenilo a počítač
vyriešil problémy, ktoré človeku zabrali veľa dní. V súčasnosti žijeme v dobe, kedy počítače
výrazne skrátili čas vykonávania riešením rôznych problémov pomocou paralelizmu.

Pred niekoľkými rokmi Google vydal technológiu, ktorá definovala a zmenila našu per­
spektívu nasadzovania a správy aplikácií. Túto revolúciu spôsobil iteratívny sled malých
krokov (t.j., fyzická, virtuálna a kontajnerová éra). Kubernetes [1, 17] je systém na správu
kontajnerov a v ďalšej mini iterácii priniesol nový koncept, ako efektívnejšie organizovať
kontajnery - vzor operátora . Vzor operátora má za cieľ zachytiť, ako rozšíriť a imple­
mentovat úlohy automatizácie nad rámec Kubernetes. Jeden takýto operátor je vyvinutý
a udržiavaný ako súčasť projektu s otvoreným zdrojom s názvom Strimzi [7, 6]. Projekt
Strimzi spája niekoľko nástrojov, ktoré sa starajú o nasadenie Apache Kafka [12, 19, 11, 2]
na Kubernetes. Komplexnosť, horizontálna škálovateľnosť a distribučný systém; sú všetky
atribúty Apache Kafka. Žiaľ, tieto atribúty robia systém mimoriadne zložitou entitou na
overenie. Preto je jednou z najväčších výziev používania Kubernetes efektívne a rýchle
testovanie projektov ako Kafka a Strimzi pri overovaní integrácie s podobnými produktmi.
Co sa týka zdrojov potrebných na nasadenie Kafka na virtuálně stroje alebo kontajnery, je
relatívne jednoduché porovnať nasadenie Kafku na Kubernetes. Napriek tomu to spôsobuje
časové problémy pri testovaní nášho projektu Strimzi. Na vyriešenie tohto problému sme
prijali princípy paralelného vykonávania a vytvorili mechanizmus v rámci Strimzi testov
systému, ktorý spúšťa testy paralelne iba proti jednému klastru Kubernetes.

Súvisiaca práca sa zameriava na zlepšenie celkového času overenia produktu Strimzi.
Niekoľko vydaní Strimzi nám dáva empirické poznatky, že testovanie pomocou sekvenčného
výpočtového modelu bolo extrémne pomalé. Okrem toho produkt obsahuje asi pätnásť
najkritickejších možných kombinácií nasadenia produktu, z ktorých každá trvá viac ako
šesťdesiat hodín. Tento sekvenčný výpočtový model nie je odporúčaným kandidátom na
overenie takého množstva nasadení.

Napriek tomu, ako súčasť tohto úsilia o coarse-grained paralelizmus pri vykonávaní vi­
acerých nasadení produktov, čiastočne urýchlil celkový výpočet. Tento prístup však nie
je horizontálne škálovateľný kvôli našim cloudovým službám, ktoré poskytujú zdroje (t.j.,
bare metal, virtuálně stroje, kontajnery). Dostali sme sa preto k poslednej príležitosti
na zlepšenie výpočtov pomocou vertikálnej škálovateľnosti zdrojov (t.j., pamäte, centrál­
nych procesorových jednotiek), ktoré nám cloudové služby ponúkajú. Tieto informácie
nás motivovali navrhnúť a implementovat mechanizmus fine-grained paralelizmu v našom
testovacom rámci.

Experimenty, ktoré sme vykonali nad danou implementáciou ukázali celkové zlepšenie
výpočtového času na viacerých podmnožinách testovacích prípadov. Napríklad u method-
wide paralelizácií sme mohli vidieť zrýchlenie z troch hodín na takmer dvadstať minút
pri využití 12 vlákien (jednalo sa však o podmnožinu testov, ktoré všetky podporovali
parallelizmus). Zároveň sme tak mohli vidieť zrýchlenie pri využití reálnej produkčnej
vzorky, ktorá obsahovala viac než tristo testov.

Configurable parallel execution of system tests
within the Strimzi project

Declaration
Hereby I declare that this master's thesis was prepared as an original author's work under
the supervision of Doc. Milan Ceska, further information was provided by Ing. Jakub
Stejskal. A l l the relevant information sources used during this thesis's preparation are
appropriately cited and included in the reference list.

Maroš Orsák
May 5, 2022

Acknowledgements
I would like to thank my supervisors, Ing. Jakub Stejskal, Doc. Milan Češka and Dr.
Thomas Cooper for their time. This thesis is realized in cooperation with Red Hat Czech,
s.r.o.

Contents

1 Introduction 2

2 Preliminaries 5
2.1 Kubernetes 5
2.2 Apache Kafka 11
2.3 Strimzi 19
2.4 Strimzi system tests 24

3 Theory of parallelisation 29
3.1 Amdahl's law 29
3.2 Shared memory 30
3.3 Processes and Threads 31
3.4 Dependencies and Protection 32
3.5 Synchronisation 33
3.6 Asynchronous tasks 34

4 Proposal of parallel approach 35
4.1 Bottlenecks of current approach 35
4.2 Possible approaches 37
4.3 Architecture changes 39
4.4 Method wide parallelisation 42
4.5 Class wide parallelisation 43

5 Implementation 47
5.1 Stage 1 - method-wide parallelisation 47
5.2 Stage 2 - class-wide parallelisation 50

6 Experimental evaluation 57
6.1 Experiments design 57
6.2 Preliminary experiments 58

6.3 Production experiments 62

7 Conclusion 67

Bibliography 68

A Manual 70

B Implementation details 71

1

Chapter 1

Introduction

These days, we are increasingly encountering parallel programs. A dozen programs that
have been written in a typical way for single-core systems cannot take advantage of the
presence of computers with multiple cores. When we wanted to speed up problem-solving,
we wanted to create something that would eliminate our time on calculations. Thus, we
invented the computer, which knew relatively nothing to do at the beginning. However,
after a few years, all this changed, and the computer solved problems that took a person
many days. Nowadays, we live in a time when computers have significantly improved
execution time by solving different problems using parallelism.

Several years ago, Google released a technology that defined and changed our applica­
tion deployment and management perspective. A n iterative sequence of small steps caused
this revolution (i.e., physical, virtual and container era). Kubernetes [3, 1, 17] is a container
management system, and in another mini-iteration, brought a new concept of how to or­
ganise containers more efficiently - the Operator pattern. Operator pattern aims to capture
how to extend and implement automation tasks beyond Kubernetes. One such Operator
is developed and maintained as part of an open-source project called Strimzi [7, 6]. The
Strimzi project brings together several tools that take care of Apache Kafka [12, 19, 11, 2]
deployment on Kubernetes. Complexity, horizontal scalability and distribution system; are
all attributes of Apache Kafka. Unfortunately, these attributes make the system an exceed­
ingly complex entity to verify. Therefore, one of the biggest challenges of using Kubernetes
is effectively and quickly testing projects like Kafka and Strimzi while verifying integration
with similar products (i.e., Prometheus1, Grafana 2, Jaeger3, Keycloak 4). Regarding the
resources required to deploy Kafka on virtual machines or containers, it is relatively simple
to compare Kafka's Deployment on Kubernetes. Nevertheless, this causes time problems
for our Strimzi project testing. To solve this problem, we have adopted the principles of
parallel execution and created a mechanism within the Strimzi system tests, which runs
tests in parallel against only one cluster of Kubernetes.

1 Prometheus - open-source metrics-based project. Moreover, it provides an alerting system with incred­
ible features, in case of interest h t tps : / /p rometheus . io /

2 Grafana - open-source project, which primary responsibility is to show user interactive visualisation to
track crucial parts of the system via the great user interface, (ht tps: / /grafana.com/)

3Jaeger (Jaeger Tracing) - is a product which finds and helps troubleshoot problems in distributive
systems, (ht tps : / /www.jaegert racing. io/)

4 Keycloak - open-source project for securing applications (authentication and authorization), (ht tps :
/ / www.keycloak.org/)

2

https://prometheus.io/
http://grafana.com/
http://www.jaegertracing.io/
http://www.keycloak.org/

Key Contributions Related work focuses on improving the overall verification time
of a Strimzi product. Several releases of Strimzi give us empirical insights that testing
using a sequential computational model has been extremely slow. Furthermore, the product
contains about fifteen of the most critical possible combinations of product deployment, each
of which lasts over sixty hours. This sequential computational model is not a recommended
candidate for verifying such numerous deployments. A n attentive reader could see the
entire test time approaching one thousand hours, which is approximately one and a half
month. Nevertheless, as part of this effort for coarse-grained parallelism in performing

Sequential model
of computing

Setup
Kubernetes

cluster

mainthread

Start
system tests

(configuration 1)

Setup
Kubernetes

cluster

mainthread

Start
system tests

(configuration 2)

Setup
Kubernetes

cluster

mainthread

Start
system tests

(configuration n)

Parallel model of computing
(coarse-grained parallelism)

Setup
Kubernetes

cluster

mainthread

Start
system tests

(configuration 1)

Setup
Kubernetes

cluster

mainthread

Start
system tests

(configuration 2)

Setup
Kubernetes

cluster

mainthread

Start
system tests

(conf. n)

Setup
Kubernetes

cluster

'mainthread

Start
system tests
(conf. n+1)

Parallel model of computing
(fine-grained parallelism)

Setup
Kubernetes

cluster

threadl
thread2

j—>threadn
Start

system tests
(conf. n)

Setup
Kubernetes

cluster

threadl
thread2

^g="i>threadn
Start

system tests
(conf. n+1)

Figure 1.1: Evolution of our test framework execution

multiple product deployments, it partially accelerated the overall computation. However,
this approach is not horizontally scalable due to our cloud services that provide resources
(i.e., bare metals, virtual machines, containers). Therefore, we got to the last opportunity to
improve the computation using the vertical scalability of the resources (i.e., memory, central
processing units) that the cloud services offer us. This information motivated us to design
and implement a mechanism of fine-grained parallelism in our test framework. Figure 1.1
shows the overall evolution of our test framework and summarises the previously mentioned
sentences. The experiments on the implementation show that the given parallelization can
significantly improve the execution time. The author contributed the given code to the
open-sourced project Strimzi, available on Github 5 , which also makes it possible to inspire

5 S t r i m z i Github repository - h t t p s : / / g i t h u b . c o m / s t r i m z i / s t r i m z i - k a f k a - o p e r a t o r

3

https://github.com/strimzi/strimzi-kafka-operator

other kube-native products to implement such solutions. The comprehensive benefit of this
work is the acceleration of the verification process.

The structure of the diploma thesis The author decomposed the whole work into
seven chapters together with an introduction. In Chapter 2, the reader learns about the
theoretical background to understand the overall thesis (i.e., Kubernetes, Apache Kafka,
Strimzi). Subsequently, we explain the fundamental concepts of parallelism (i.e., Amdahl's
law (3.1), Shared memory (3.2), Process and Thread (3.3), Synchronisation (3.5) in Chap­
ter 3. Chapter 4 presents bottlenecks in the current approach to testing the Strimzi product
and proposes a brand-new computational architecture that solves many issues. Moreover,
in Chapter 5, we describe the implementation of the proposed architecture. In the penul­
timate part of this thesis (Chapter 6), we summarise the results from many experiments
with a deep analysis of the thesis implementation. Finally, we conclude the entire diploma
thesis with the knowledge that has been acquired in Chapter 7.

Kube-native - it is a product that has been moved from the standalone world to the Kubernetes
world. Moreover, it provides a communication interface (i.e., Kubernetes R E S T API) wi th which it manages
individual components (i.e., Apache Kafka is a standalone application, and Strimzi is a kube-native product
because it encapsulates Apache Kafka and provides a communication interface for the user.

4

Chapter 2

Preliminaries

This chapter provides the fundamentals of the technologies used across the whole the­
sis. Notable technologies used are Kubernetes 1, Apache Kafka 2 and Strimzi' 5, which are
described in details in the following sections. Note that high-level descriptions of these
technologies were already published in bachelor's thesis [13] written by the same author as
this thesis. In this chapter, the author aims to explain the technology in more technical
depth. Furthermore, some ideas related to Kubernetes were taken from the The Kubernetes
book [17]. Section 2.4 describes the e2e (end-to-end) Strimzi tests that run on the top of
the Kubernetes cluster. Also note that author described this topic in series of blogs posts
Introduction to system tests [15] and How system tests work [14].

2.1 Kubernetes

In 2014, Google came up with a new concept of container management. This concept has
opened the door for many products to simplify their management of applications deploy­
ments. This technology defined a set of primitives, which collectively provide mechanisms
that deploy, maintain and scale applications based on C P U , memory, or custom metrics.
Moreover, it does not create a virtual machine but uses the kernel of the physical computer.
Also known as the lightweight approach compared to virtual machines. Kubernetes follows
the leader and follower architecture. The leader node controls Kubernetes resources, and
the follower node is responsible for resource creation. The definition of these resources is
given in a declarative way using Y A M L formatted files.

2.1.1 History

So far, we have developed four approaches to managing applications on the top of the
operating system [3]. In each direction, we have eliminated certain disadvantages based on
empirical knowledge.

1. Running a physical machine— The first phase of how to deploy applications was
to execute the program on the physical computer. This approach was not as practical

1 Kubernetes - orchestration system created in 2014 by Google (h t tps : / /kuberne tes . io /)
2 Apache Kafka - distributed messaging system initially created in 2013 by Linkedln (h t t p s : / /

kafka.apache.org/)
3 S t r i m z i - collection of operators for deploying and managing Apache Kafka on top of the Kubernetes

(ht tps : / / s t r i m z i . i o /)
4 Y A M L - human-readable serialization format (h t tps : / /yaml .o rg /)

5

http://kubernetes.io/
http://kafka.apache.org/
http://yaml.org/

as it seemed at first. The main issues were scalability, hardware management, security,
and price. Besides that, sharing memory between five running applications in an
identical environment is not ideal. Moreover, to isolate the applications from one
another, one has to buy five physical servers, significantly increasing costs.

2. Virtualisation— The next phase has solved problems like scalability, security, and
also price. This allows an application to run on a single machine without sharing
memory, which means it is isolated and encapsulated from other applications. Fur­
thermore, one can run many of these virtual machines on a single physical server, and
the only limitations are the server resources. These virtual machines are independent
of each other, and therefore the security is much higher. However, resource con­
sumption is still high since each virtual machine includes an entire operating system.
At the same time, the management of these entities is not accessible if we imagine
production with hundred virtual machines. Another limitation is that sometimes ap­
plications need to share information, and the intense isolation of V M s makes this
problematic.

3. Containerisation— In the last phase, containerisation is considered a lightweight
alternative to virtualisation. The difference between these two phases is that virtual­
isation is using hypervisors0 to manage all the virtual machines which have operating
systems. The container shares the operating system with the server. Similar to virtu­
alisation, they have their filesystem, memory, and space. Containerisation has become
the most popular technology due to the several benefits it offers:

• Isolation - predictable application performance,
• Observability - gathering of information, providing metrics, logs,

• Portability of distribution in the cloud and OS - runs on basically all available
OS, public clouds, and so on,

• Agile approach - easy to create and manage smaller container images instead
of using virtual machine images, which are usually much larger.

Unfortunately, containerisation still has several shortcomings, such as managing more
running containers simultaneously and making debugging challenging.

4. Container orchestration— The phase of the present. Let us imagine a situation
where we run several containers and want to know the container's current state or
metadata information. It is not straightforward to get such information because we
have to look at each running container separately and analyse it. Kubernetes brings
us a solution to this problem. While in containers, we have to search each one indi­
vidually, so in Kubernetes, we all have it simultaneously. Figure 2.1 illustrates and
summarises the phases of managing an application on top of the operating system,
starting in 1950 when the first computer, E N I A C , was assembled—moving to the
virtualisation era, which started in the early 70s. I B M Cambridge Scientific Center
began the development of CP-40, the first operating system that implemented com­
plete virtualisation. However, what is very important to note is that the first known
virtualisation software was VMware, created in 1997. Afterwards, the lightweight era
came with an idea whose functionality was based on containerization [10]. Finally, we
have a manager who takes care of the overall management of the individual containers

5 Hypervisor - It is a software that manages virtual machines, for instance, VMware or Vir tua lBox.

G

2013
1950

(gl ©
Figure 2.1: Evolution of virtual technologies

and guarantees their reliability, scales them effectively and more. This is what we call
a container orchestration system [1]. It has the following properties:

(a) Deployment, StatefulSet, ReplicaSet, and Custom resource definitions (CRDs).
(b) Service and Load balancing (Service discovery).
(c) Storage (Storage orchestration).
(d) Secrets (Secret and configuration management).

2.1.2 Essential components of Kubernetes

The Linux hosts can be virtual machines, bare-metal servers in the data center, or private
or public cloud instances. Production environments typically have more than one master
node running because of the need for High Availability 0). Kubernetes services from the

most significant cloud providers, such as Azure Kubernetes Service (AKS) , Amazon Elastic

6 H i g h availability (HA) - is the characteristic of the system to run without failing for some period of
time.

Figure 2.2: Representation of the Master node

7

Kubernetes Service (EKS), and Google Kubernetes Service (GKS), have five controller
nodes, which are replicated in case of any failure. The master node 2.2 contains several
components such as kube-controller-manager, kube-scheduler and kube-apiserver. These
components are also called the „control plane". The kube-controller-manager takes care
of all controllers where each of these controllers runs as a separate process. The Node
controller's responsibility is to control and respond to the current status of the node. In
other words, do a health check of nodes. There is also the Endpoint controller for Service
and Pod objects, Job controller for Job objects, etc. A l l these controllers follow algorithm 1.

Algorithm 1 Generic algorithm for each Kubernetes controller
l : desired_state <— controller.obtain_desired_state{)
2: while True do
3: desired_state <— controller.obtain_desired_state{)
4: current_state — controller.observe_current_stateQ
5: if current_stateVz desired_state then
6: controller, reconcile®
7: desired_state •— current_state

The kube-apiserver works like the controller of A P I calls and communicates with the
kube-scheduler. It makes sure that every created Pod is assigned to run there. It is worth­
while to mention that we also have a component called etcd, which works as a backup for
cluster data. Slave node components 2.3 such as kubelet have taken care of containers run­
ning inside the Pod. Kube-proxy, which reflects all the services defined in the kube-apiserver.
In the following Figure 2.4, one can see relation between master and slave nodes.

kube-proxy

Pod 1 Pod

r »

Container Container

kubelet

Pod

Container

r

Slave node

Figure 2.3: Representation of the Slave node

2.1.3 Common objects

1. Pod - is the atomic unit of Kubernetes. For instance, in the VMware environment,
the atomic unit is a virtual machine, and in Docker, it is a container. The term
Pod originated from the Docker logo. If we think about it, Docker has one whale on
his logo, and we call a group of such whales Pod or, in other words, Pod of whales.
Deductively, we can find out the property of the Pod, that is, that one or more
containers can run in it. These containers share storage, network, and specification

8

Slave node Slave node Slave node Slave node

Figure 2.4: Relation between master and slave nodes

of how to run the container. If the container wants to communicate with the other
container, this can be achieved using the localhost interface. One of the disadvantages
of these resources is their lifecycle. If the Pod crashes or is deleted, it will no longer be
possible to copy this Pod. Instead, Kubernetes will create a new Pod with a unique
ID and a new IP address assigned.

2. Service - represents how particular components communicate. Services provide reli­
able networking for a set of Pods. If Pod fails and Kubernetes creates a new Pod, its
IP address is changed. Moreover, operations like scaling up or scaling down do the
same. This is where Services come into play. They provide reliable names/alias and
IP addresses. Furthermore, the Kubernetes service has its DNS name and port. It
is a stable network abstraction, which provides T C P and U D P load-balancing across
a dynamic set of Pods. By default, a service in Kubernetes has a type of ClusterIP,
which means that communication can be established only inside of the Kubernetes
cluster. The way one can expose an application outside of the cluster is to use the
following type of service which Kubernetes offers:

• nodeport - exposes the service to be accessible via node IP with a specific port.
For instance, one wants to expose an H T T P server to be publicly accessible on
a specific port.

• load balancer - exposes the service externally using a cloud provider's load
balance. The load balancer is shown in the definition. .status.loadBalancer field,
where one can find a real IP address. For example, if demands are high and one
wants an application that requires more ports on specific IPs, then the usage of
load balance is a wise choice.

• ingress - the previously mentioned types of how to expose a service were service
types, but ingress is an entry point for the cluster. It lets you consolidate your
routing rules into a single resource as it can expose multiple services under the
same IP address [5].

9

3. Namespace - this concept of namespaces was introduced in order to run numerous
virtual clusters inside a physical one. It is great for applying different quotas and
access control policies. On the other hand, it is not suitable for strong workload
isolation. By default, Kubernetes starts with three initial namespaces:

• default - the objects which do not have another namespace belong to the default
namespace,

• Kube-system - namespace for objects created by the Kubernetes system, i.e.
Pods, Kube-proxy, Kube-DNS. Furthermore, the service account in this names­
pace is used to run the Kubernetes controllers.

• Kube-public - this namespace is created automatically and is recognizable by
all users (including those not authenticated). In other words, there is a situation
we need to have shared resources across the whole cluster; then we have to make
sure that these resources are inside this namespace [4]

4. Volume - is data storage. The Volume is a separated object which binds to a Pod.
The main ideas behind volumes are: at first, assume a scenario when Pod crashed,
and the application will lose all its data, and one would like to retrieve it secondly if
one wants to share the same data between more Pods. The answer to these problems
is the Kubernetes Volume abstraction.

2.1.4 Controllers

1. ReplicaSet - is the controller that is responsible for the correct number of running
Pods. Furthermore, ReplicaSet plays a significant role in the Deployment controller,
supplying a self-healing mechanism and scale operations. The self-healing mechanism
guarantees that the Pod is running, and in the event of any error or termination of
the Pod, a new one will be created immediately. Scale operations guarantee an easy
way to increase the number of Application Pods if necessary in a heavy load. The
same applies even if the given number of Pods is already high (we use a scale-down
operation). ReplicaSet also has responsibility for the Rolling Update and Rollback
operations available to Deployment.

2. Deployment - it is one of the most widely used application management controllers
in the Kubernetes environment.

Figure 2.5: Hierarchy of Deployment, ReplicaSet and Pod inspired by The Kubernetes Book
[17]

10

Based on our knowledge, the skilful reader will realise that Pod as an atomic unit
will not be sufficient. This is mainly since Pod has no self-healing mechanism, does
not support scale operations; Rolling Update 7 or Rollback. Deployment has all these
features at its disposal. Importantly, this controller manages the ReplicaSet, which
manages self-healing and scale operations. This means that the ReplicaSet checks
whether the desired state is equal to the current state, such as the number of replicas
being equivalent to the current state. Additionally, Deployment supplies the remain­
ing properties, Rolling Update and Rollback. Since Deployment is a fully-hedged
object in the Kubernetes A P I similar to Service, Pod, or Volume, that gives us the
ability to define such an object in Y A M L files, such an object can then be edited,
which will trigger a Rolling Update. Figure 2.5 shows us the hierarchy of mentioned
the controllers.

3. StatefulSet - The last major controller is StatefulSet. This controller has many
features in common with Deployment, such as the reconciliation loop described in 1,
scaling operations, and a self-healing mechanism. The difference between Deployment
and StatefulSet £1X6 ctS follows:

• storage - with the Deployment controller, it is possible to specify PersistentVol-
umeClaim, which is shared between all Pod replicas. On the other hand, in the
case of StatefulSet controllers, each Pod has its own PersistentVolumeClaim. For
clarity, one can use Deployment in the case of a stateless application, where each
node does not need a unique identity, and in the case of StatefulSet, one can use
it in the form of databases (i.e., Cassandra, MySQL) where each node has its
unique storage.

• unique identity to Pods - in case of failure remains the same (Deployment
will create a new Pod with a completely new name). Moreover, StatefulSet guar­
antees that Pods are created/deleted in order (Deployment does ensure order).

• scaling operation - ensures that each new Pod is installed only after the pre­
vious one is ready and running. This process is repeated until we reach the
number of replicas required. Figure 2.6 illustrates a scaling up scenario, where
firstly Pod_l is being deployed and after a while when Pod_l is running and
ready, the Pod_2 is being deployed.

In Figure 2.6, we see that architecturally StatefulSets has a different self-healing and
scaling operations mechanism compared to the Deployment. In addition, Volumes
play a significant role in the StatefulSet. When the Pod is created, the Statefulset
immediately creates an associated volume and attaches this Volume to the Pod. This
guarantees that the Pod can keep all its information even in an unexpected failure.

2.2 Apache Kafka
This section describes and explains the basics of the Apache Kafka system. The descrip­
tion is based on two books: Designing Event-Driven Systems [19] and Real-Time Data and
StreamProcessing at Scale [12]. Moreover, the Kafka streams subsection is based on Master­
ing Kafka Streams and ksqlDB Building real-time data systems [11]. We also used Kafka's

7 Rol l ing Update - is the process when one updates the Deployment configuration, and this update
trigger replacements of the Pods with the new desired configuration

11

Figure 2.6: StatefulSet ordered creation of Pods

documentation [2] as the most up-to-date reference. In these books and documentation, a
more detailed explanation of Kafka itself can be found.

Apache Kafka is an event streaming platform that offers many features like high per­
formance, distribution, commit log service8, and more. It offers a publish/subscribe system
to record streams similar to a message queue or enterprise messaging system. Addition­
ally, it stores record streams in a robust, fault-tolerant way. Kafka also creates real-time
data flows that reliably capture data transferred between systems or applications. Kafka is
widely used by many big companies like Linkedln, Spotify, Netflix, and Uber.

2.2.1 Motivation [13]

Companies had applications or systems that shared large amounts of data in the past.
Usually, these applications would provide valuable information to another application. So,
there was one source system and one target system. Nevertheless, what about adding more
source and target systems? Assume an example where one has five source systems and five
target systems. Each source system needs something from each particular target system.

The system without Kafka depicted in Figure 2.7a has twenty-five links, which is not
scalable (quadratic complexity). That is one of the main reasons Kafka was invented.
Let us illustrate the same example with ten systems and Kafka in the middle serving as
Middleware 9, which is placed in the middle of these systems. Each source system only binds
to the Kafka broker, and a single link delivers all data. One can see the updated system in
Figure 2.7b.

^Commit log — is a type of data structure that stores ordered sequences of events.
9 Middleware - Software, that acts as the middle man between two systems and guarantees interoper­

ability between them.

12

r Kafka cluster

r -i r \ Kafka Kafka Kafka
broker 1 broker 2 broker 3

\

(a) Source and Target systems without Kafka (b) Source and Target systems with Kafka

Figure 2.7: How to make system more efficient with Kafka

2.2.2 Fundamental concepts

In this subsection, we describe fundamental concepts of Apache Kafka such as Producer,
Consumer, Kafka broker and Kafka cluster. The description is based on the Real-Time
Data and StreamProcessing at Scale [12] and Kafka documentation [2].

1. Kafka broker/cluster - it is a server application that manages messages that are
sent by producers and at the same time obtained by consumers. In other words, it
takes care of storing the data and the order of the data. Sometimes, we can see a
Kafka broker with Kafka server or Kafka node names. These names are synonymous
with Kafka broker. Kafka broker was designed to be horizontally scalable to create a
Kafka cluster (two and more Kafka brokers). Within a Kafka cluster, there is a single
cluster controller. The cluster controller takes care of fundamental operations such
as assigning partitions to brokers or monitoring for the failure of Kafka brokers. One
broker in the Kafka cluster always owns the topic partition. This broker is called the
leader of this topic partition. Of course, this topic partition can be replicated into
several Kafka brokers, which will result in its replication and thus data redundancy.
On the other hand, if the leader Kafka broker fails, the one who has the replicated
topic partition will take control and become the new partition leader. Figure 2.8
illustrates this type of scenario, where two Kafka brokers shared data between each
other and partitions of the topic are replicated.

2. Producer - is one of the types of clients that Kafka provides. They produce new
messages that are sent to a specific topic. In general, the client does not need to know
which partition it is necessary to send messages. It simply sends messages divided
among several partitions. Thus, producers represent the entity that creates the data
in the Kafka system. Kafka also provides the implementation of these clients in several
languages such as Java, Go, C++, Python, and many others. Kafka also provides
a higher-level abstraction, which means that it is no longer necessary to create the
producers themselves, but those entities are encapsulated in the client. These are,
for example, Kafka Streams for stream processing or Kafka Connect A P I for data
integration.

13

3. Consumer - unlike a producer, a consumer or group of consumers tries to consume
messages. It is necessary to specify the topic from which the consumer will read in the
consumer configuration. However, the consumer can also read from a group of topics.
The consumer maintains an internal offset value that represents a position from where
the consumer should read the data from the topic. The method that consumers use
to read messages is called pol l ing 1 0 . The consumer group behaves as a single logical
unit. Kafka does not support reading from one specific partition to more than one
consumer simultaneously. The reason why this concept was created is based on a
straightforward question - How are we able to consume data concurrently? Likewise,
what is worth mentioning is that we can not have more consumers than partitions
because, in that type of example, some of them are inactive. This concept differs
from other messaging solutions and describes why Kafka is so flexible compared to
traditional messaging based on A M Q P protocols like ActiveMQ or RabbitMQ.

Kafka cluster

Figure 2.8: Kafka topic partition replication scenario in Kafka cluster inspired by Real-Time
Data and StreamProcessing at Scale [12]

4. Kafka Topic - is not a simple concept and includes several parts such as the replica­
tion factor, partitions, and more. Kafka topic is equivalent to database table as one
can see in the Figure 2.9.

Messages are being stored on a specific topic. A replication factor is a number which
defines how many replicas will be available on the other brokers from the Kafka
cluster. Imagine the following scenario - we have a Kafka cluster with three Kafka
brokers. We create a new topic with a unique name using an administration client. (In
Section 2.3, we will talk about alternative ways of creating resources.) The question
can be what happens if we set higher replication factor then we have available Kafka

^Pooling - periodic querying to the server, in that case, to the Kafka broker

14

Topic

Partition

msg_0

offset 0

msg_1

offset 1

msg_n

offset n

Database table

message_content

0 msg_0

1 msg_1

•

n msg_n

Figure 2.9: Equivalence of Kafka topic and database table

brokers. We are notified that the Topic can not be created because we do not have
enough accessible Kafka brokers. More about this in ??. Partitions are entities that
split KafkaTopic into separate parts. It means that in each partition, we have different
data; using this feature, we allow the consumer to fetch data in a concurrent 1 1 way.
A partition contains offsets, which serve as ids for the specific messages. A n Offset is
an integer value assigned to each consumer indicating the following message, which
will be read. Consider the scenario when we have one Kafka broker and one Topic
with a hundred messages. According to Offset implementation, the maximum offset
value is 100 because it reflects the position of the last message in the Topic. If we
configure consumers to subscribe to that Topic, it uses the polling method and starts
with offset zero. The first poll gets twenty messages, so offset moves on to nineteen.
The Figure 2.10 illustrate this scenario. In general, we can understand offset as the
message index.

offset 0 offset 2 LT offsetTÖ] offset 98

msgO msgl msg2 msg3 msg19 msg20
A

z
msg98 msg99

Figure 2.10: Partition offset

2.2.3 Kafka Streams

It is a stream processing tool created by the Kafka community that does expose the low
level of the Consumer A P I and Producer A P I . These client APIs are very flexible, and
the user can create the data processing logic he wants. However, there is a tradeoff, and
it is writing many lines of code. Unfortunately, we cannot classify these APIs as stream
processing APIs because they do not contain primitives that would classify them there,
such as Local and Fault-tolerant state and a set of transformers that work with data (a
transformer is an operator that transforms data).

In 2016, Kafka introduced the Kafka Streams API, which solved these problems. Inex­
perienced users in Kafka Streams would think it is just a matter of sending messages to and

^Consumes more than one message at the specific period.

15

from Kafka. Instead, we can see that Kafka has a part of Producer and Consumer, where
it offers a wide range of libraries for data transformation. Kafka streams also support two
crucial operating characteristics:

1. Scalability - In Kafka Streams, the smallest unit of work is a single partition. If
we want to scale the Kafka Streams application, we have to divide KafkaTopic into
several partitions. Practically speaking, one uses the Kafka Streams A P I to deploy
multiple instances of an application, each of which will handle a subset of the work.
For illustration, one KafkaTopic has sixteen partitions, and it is up to us how we scale
it. One scenario could be to deploy two instances, and each of them would trade eight
partitions. Figure 2.11 shows example with three partitions.

f Topic A

' ' Y '

K

Partition
1

Partition Partition

2 I 3

J K J

f Topic B >

Partition
1

Partition
2

Partition
3

Topic C

Partition Partition Partition
1 2 3

/ /

Partition Partition Partition
1 2 3

-

Figure 2.11: Kafka Streams with local state stores inspired by Kafka Documentation [2]

2. Reliability - If an error occurs on any node, Kafka automatically distributes the
load to other nodes. However, we must realise that if the node that crashed is the
last, we may lose the data if we do not use some Volume or other external storage.
At the same time, when the node returns the given error is corrected, Kafka will
rebalance again.

One of the main differences between other similar systems is the processing model that
Kafka Streams offers. These systems, such as Apache Spark Streaming12 or Tridentl'\ use
micro-batching, which occurs very much in machine learning where work is divided into
several batches. These groups are then loaded into memory and emitted at a pre-selected
interval (typically Is or less). Figure 2.12 shows a micro-batching strategy, where one can
see that events are coupled into groups. By contrast, Kafka Streams offers us event-at-a-
time processing, where events are processed as soon as they arrive. This approach gives us

1 2 Apache Spark Streaming - is a extension of Spark A P I wi th many transformation methods.
1 3 Trident - high-level abstraction for stream processing based on the Apache Storm. It provides multiple

transformation methods such as filters, grouping, and aggregations.

16

Figure 2.12: Micro-batching processing (typical for different systems) inspired by [11]

low latency and is considered true data streaming. Figure 2.13 illustrates the event-at-a-
time processing strategy.

ofoini>lo rjoica
E v e n t "

at a time

Figure 2.13: Kafka Streams uses event-at-a-time processing inspired by Mastering Kafka
Streams and ksqlDB Building real-time data systems [11]

Kafka Streams is thus a set of libraries that offer developers incredible power over
data processing. Additionally, it has a model of parallelism, where the smallest logical
unit is partition. Easily scalable by either increasing or decreasing partitions, and lastly,
Fault tolerance is rooted in Kafka itself (dependent on Topic replicas). This collection of
characteristics makes it the perfect choice for today's data-intensive applications. These
types of applications could be, for instance:

• email tracking, monitoring,

• chat infrastructure (Slack), virtual assistants, chatbots,
• machine-learning pipelines (Twitter),
• smart home (IoT sensors).

There are many such types of applications. However, what brings together all the examples
is real-time data processing.

2.2.4 Kafka Connect

One of the most critical questions that every data engineer has is: „How to move data
from Kafka to a datastore or vice versa?". Moreover, how to create data pipelines that

17

connect several systems, for instance, by selecting data from Twitter and then sending it
to Elasticsearch or other external storage. Of course, Kafka will play a middleware role
in this data transfer. We can answer the previous question and solve the data integration
problem thanks to the Kafka Connect component.

Kafka Connect offers many features that are transparent to the users. These include
configuration, parallelisation, error handling, and much more. Moreover, for data inte­
gration, Kafka Connect offers two types of connectors. Connectors are already predefined
templates. These connectors need metadata information to work. We give this connector
information such as the names of one or more Topics to follow. In addition, these are
attributes such as the connector class, the number of tasks executed in parallel, and the
connector U R L . The first type of connector is Kafka Connect Source, which obtains the
data from the datastore. Information about what datastore and other metadata are pro­
vided in the connector configuration files. If the data in the datastore are changed, the
data is automatically sent to one or more Topics. The second type is the Kafka Connect
Sink, analogous to the Source connector. In the connector configuration, we define which
datastore it should add data to and from which Topic it should monitor changes. When
Topic changes his state, this data is automatically pushed into the given datastore. The
simplest examples of connectors already mentioned above are the FileSource and FileSink
connectors.

However, to properly understand Kafka Connect, it is necessary to know how the fol­
lowing fundamental mechanisms work:

Kafka Mirror
Maker 2

J

Figure 2.14: The entire Apache Kafka ecosystem.

18

1. Connector - As mentioned above, the connectors are used to transfer data to and
from Kafka. Among the essential responsibilities of connecting connectors to a given
datastore, it maps the data structure that the external storage has at its disposal and
decides how many tasks (threads) will run simultaneously during the transformation.

2. Worker - This entity is responsible for the R E S T A P I available to Kafka Connect.
They check R E S T A P I requests and respond accordingly. If a worker error occurs,
the other workers in Kafka Connect will know this information as soon as possible
and then perform rebalance and redistribute the work.

3. Data model and converters - Kafka Connect A P I contains endpoints of data
objects and the scheme. These objects can be database tables, JSON, X M L , and
A V R O schemas. Converters transform this schema to a Connect Schema object.
Subsequently, this Connect Schema object is sent to the target system. There are
currently many such converters available.

A l l the mentioned Kafka components can be divided into three stages. The first mile­
stone was the emergence of a new messaging system with basic functionality and no enter­
prise libraries. These included Kafka Broker, Topic, Consumer, and Producer components.
The lack of libraries and the writing of vast amounts of code in data processing brought
Kafka Streams. Kafka Connect solved data integration problems between other systems.
Finally, the Kafka Mirror Maker 2 concept came along, which improved the Kafka Mirror
Maker predecessor with many capabilities. It was a way to move data from one Kafka clus­
ter to another. The whole Kafka ecosystem is not trivial. Figure 2.14 shows these stages,
starting with the Kafka Broker, Producer, Consumer, and Topic. Many other parts, such
as Kafka Quotas or Kafka Rebalance features. Nonetheless, in the thesis, we do not deal
with Rebalance, Mirror Maker, or Kafka Quotas, and therefore it is not necessary to ex­
plain them in detail. However, in case of interest, we recommend the previously mentioned
literature.

2.3 Strimzi

This section describes the fundamental parts of the Strimzi project. Moreover, it explains
the whole architecture with all Operators (i.e., Topic, User, Cluster). The description is
based mainly on Strimzi documentation and blog posts[7, 6].

The information described in Sections 2.1, 2.2 was a precursor to a complete under­
standing of the Strimzi system. Strimzi is an Apache Kafka orchestrator in the Kubernetes
environment. Therefore it is a collection of operators that simplify working with Kafka.
The Operator in Kubernetes is a component that is always in one of the following three
states:

• Observe - gain the desired and current state,
• Analysis - compares these two states and finds the differences,
• Act - subsequently, if the given differences were found, it will do a reconciliation that

will make the current and desired state identical

One can understand these Operators as a superset of the Deployment controller, which,
like other controllers, followed the 1 algorithm. The main difference is that the Operator
oversees Custom Resources - CR. A Custom Resource is an extension of the Kubernetes

19

A P I . These CRs define application objects in the Kubernetes environment. Moreover, this
is associated with the Custom Resource Definition, which declares what values and types a
given Custom Resource can acquire. We can also imagine that Custom Resource Definition
is a template comparable to classes in the Object-Oriented programming world, and Custom
Resource is an instance of the class. Strimzi defines a Custom Resource Definition for each
Kafka component we described in section 2.2 except for clients. For example, for the
KafkaBroker component, Strimzi has Kafka Custom Resource Definition.

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:

name: kafkas.kafka.strimzi.io
labels:

app: strimzi
spec:

group: kafka.strimzi.io
names:

kind: Kafka
...

scope: Namespaced

schema:
openAPIV3Schema
type: object
properties:

spec:
type: object
properties:

kafka:
type: object
properties:
version:
type: string

replicas:
type: integer
minimum: 1

image:
type: string

listeners:
type: array
min Items: 1

(a) Example of Kafka Custom Resource Definition (Un­
necessary parts omitted for brevity).

apiVersion: kafka.strimzi.io/v1 beta2
kind: Kafka
metadata:

name: my-cluster
spec:

kafka:
version: 2.8.1
replicas: 3
listeners:
- name: plain

port: 9092
type: internal
tls: false

- name: tls
port: 9093
type: internal
tls: true

config:
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
log.message.format.version: "2.8"
inter.broker.protocol.version: "2.8"

storage:
type: ephemeral

zookeeper:
replicas: 3
storage:
type: ephemeral

entityOperator:
topicOperator: {}
userOperator: {}

(b) Example of Kafka Custom Resource

Figure 2.15: Kafka Custom Resource Definition and Kafka Custom Resource (Class and
Instance)

Figure 2.15 illustrates the mentioned Custom Resource and Custom Resource Defini­
tions. In Figure 2.15 (left side), one can see Kafka Custom Resource Definition that shows
several essential parts:

• labels.app.strimzi - every Kafka Custom Resource in Kubernetes contains this
label, and with that, it is easier to find these resources

• spec.names.kind.Kafka - by this attribute, we specify how the Custom Resource
type will be uniquely named. In this case, the label is Kafka.

20

http://apiextensions.k8s.io/v1

• spec.scope.Namespaced - type of environment scope. It distinguishes between
Custom Resource, which works multi-namespace or single-namespace. Because Kafka
Custom resource has value Namespaced (single-namespace), it can work in one names­
pace. On the other hand, we also know the Custom Resource can have the scope set
to cluster (multi-namespace), which means they will observe all the namespaces that
the Kubernetes cluster has.

• spec.schema - this is the whole declaration of the Custom Resource Definition. In
the child nodes, we can see what types the individual attributes must comply with
and the restrictions on the given types. For example, the attribute replicas has a
restriction that it must be at least one and similarly for other attributes (it can not
be zero).

On the other hand, we have Kafka Custom Resource (Figure 2.15 - right side), which
includes parts worth mentioning:

• apiVersion - This is the R E S T A P I offered by the Custom Resource Definition. The
prefix must also match the value found in Kafka Custom Resource Definition in spec:
group.

• metadata.name - Custom Resource name,
• spec.kafka.version - version of Kafka to be used,
• spec.kafka.replicas - number of Kafka Pods to be deployed,

• spec.kafka.listeners - types of listeners to be supported by a given Kafka instance.
In this case, we see two types, one with plain communication listening on port 9092,
and the second listener with encrypted communication using T L S technology and
listening on port 9093.

• spec.kafka.config - these are additional configuration features that are added to
Kafka (i.e., broker.id, log.dirs, zookeeper.connect, compression.type, cleanup.policy,
delete.retention.ms),

• spec.kafka.storage [18] - the storage type. Kubernetes supports two storage types.
In Figure 2.15, it is ephemeral storage. Ephemeral storage is usually a directory
somewhere in the operating system on our Kubernetes node. It works the same as
a temporary directory. There are also risks associated with this; if the Kubernetes
node crashes, then the data stored in the ephemeral storage will be lost. The same
thing will happen if we get a running Pod that will use ephemeral storage. In case of
a restart, together with the new Pod, empty storage will be created, not containing
the previous data. The second type of storage is Persistent, which eliminates these
risks.

• spec.zookeeper.replicas - number of Zookeeper Pods to be deployed,
• spec.entityOperator - configuration for Entity Operator.

2.3.1 Architecture

Strimzi's architecture consists of two central units where the first unit is the Kafka ar­
chitecture and the other components with which it communicates. The second unit is
the Operators architecture, consisting of a Cluster Operator, an Entity Operator, a Topic
Operator, and a User Operator. These Operators each have control loops, which control
the already defined Custom Resources, (i.e, Kafka User, Kafka Topic, Kafka and Kafka
Connect, Kafka Bridge, Kafka Mirror Maker, Kafka Mirror Maker 2, Kafka Rebalance)

21

The Kafka Architecture consists of several components, each performing specific tasks.
Zookeeper is one of the most significant dependencies for Kafka and limits it in several areas,
scalability, metadata management and Deployment itself. The answer to these problems
came in a 2020 Kafka Improvement Proposal (K I P) 1 4 . As a result, Kafka 3.0 should run
without Zookeeper. Its responsibilities include, for example, leader election of partitions
or storing the status of Kafka Brokers or Consumer offsets. Clients in Figure 2.16 are
classically Producer and Consumer as we know from the section 2.2, so their objective is
clear. On the other hand, H T T P clients communicate with the Kafka Bridge (a component
provided by Strimzi) and thus connect the Kafka cluster and the clients themselves. It

Source Kafka Cluster

Ka fka Broker 1 Kafka Broker 3

Kafka Broker 2 Kafka Broker 4

Kafka Mirror Maker ^)

Zookeeper cluster

Zookeepe r Zookeepe r
node node L_JL

Kafka exporter

Sink Sou rce

Kafka Connec t

Target Kafka Cluster

Kafka Broker 1

Kafka Broker 2

Kafka Broker 3

Kafka Broker 4

Kafka Bridge

H T T P Cl ients

J J Cru ise Control I Cru ise Control

Figure 2.16: Strimzi Kafka architecture

communicates by default via the R E S T A P I , and the user can create, delete, and update
Consumer, Producer, Topic and similar resources that Kafka Bridge offers. So Kafka Bridge
is nothing more than an H T T P proxy that integrates H T T P clients with a Kafka cluster.
Another part of the Kafka architecture is the Kafka Exporter, which is used to extract
additional metrics and supply them to Prometheus 1 5. Then we have Kafka Connect and
Kafka Mirror Maker, where we described the meaning of these components in Section 2.2.
The last essential component, especially for the overall balancing of the Kafka cluster, is
Cruise Control. This component collects data on C P U usage, partitions status, and many

1 4 K I P - 5 0 0 - removal of Zookeeper wi th replacing him with self-managed metadata quorum h t t p s : / /
cwiki .apache .org /conf luence /d isp lay /KAFKA/KIP-500

1 5 Prometheus - open-soured metrics-based project. Moreover, it provides an alerting system with incred­
ible features, in case of interest h t tps : / /p rometheus . io /

22

http://cwiki.apache.org/confluence/display/KAFKA/KIP-500
https://prometheus.io/

other metrics. Cruise Control creates a workload model and analyses it when necessary to
perform balancing and rearrange the load across the Kafka cluster. Everything we have
described is shown in Figure 2.16.

The second part of the Strimzi architecture is the collection of Operators. In the be­
ginning, we described what such an Operator does (reconciliation/control loop). Strimzi
contains three Operators, where hierarchically, the highest is Cluster Operator. This man­
ages Kafka, Kafka Mirror Maker, Kafka Mirror Maker 2, Kafka Connect, Kafka Connector,
Kafka Rebalance, and Kafka Bridge Custom Resources. Furthermore, since Kafka Custom
Resource encapsulates the Entity Operator (Topic and User Operator running within the
same Pod but in different containers) and Zookeeper, the Operators mentioned above are
also deployed with each Kafka Custom Resource deployment. Figure 2.17 illustrates whole
Strimzi ecosystem, for which the Cluster Operator is responsible.

1 1
Kafka Rebalance Kafka Mirror
(Cruise Control) Maker 2

CRs CRs

Figure 2.17: Strimzi Operators architecture with Strimzi ecosystem

The Topic Operator takes care of creating, deleting and updating individual Topics. It
is also necessary to mention that the Topic Operator ensures synchronisation between the
Custom Resource Topic and the Topic located inside Kafka and keeps them in sync. Strimzi
documentation says - For instance, assume the scenario where the user changes different
topic properties in Kubernetes but simultaneously in Kafka itself. Also, imagine another
scenario where one changes topic property simultaneously. The first action is considered
allowed, and the solution for this is a 3-way diff (more about this method in section 2.19).
In general, this method constructs these two differences' union and finds out where the
intersection is not empty. The second one is treated as incompatible change. It must be
deterministically selected by some winner policy implemented inside Topic Operator.

The User Operator is responsible for the Kafka User Resource, which specifies authen­
tication and authorisation for individual components. It can be, for example, the Producer
that can not change data in a Topic with a particular name or prefix. In other words,
we can define read and write rules for Topics. In addition, we can create different types
of Kafka Users, which support authentication such as T L S or S C R A M - S H A . Nevertheless,
if we use S C R A M - S H A authentication, we must also configure one of the Kafka Broker
listeners. When one creates Kafka Custom Resource, then immediately the User Operator
creates an associated Secret with the credentials. These credentials are then submitted to

23

the Consumer or Producer configuration. Credentials ensure that the Producer or Con­
sumer can connect to Kafka Broker and send or receive messages. Several components can
also be used in authorisation, such as A C L s (access control lists). There is support for the
Keycloak or Hydra authorisation server for more complex rules. Another exciting feature
is User quotas, ensuring that one client will never overload the entire Kafka Broker, and
the total load will be limited.

2.4 Strimzi system tests
This section describes the basics of the Strimzi system tests. At first, we will go through a
short description of how we test Strimzi. Then in Section 2.4.1 we explain the fundamentals
of JUnit5 and how tests are discovered and executed. Lastly, in Section 2.4.2 we explain
Strimzi system test management and execution flow.

Overall testing begins, as we know from textbooks with unit testing. Subsequently,
if this phase is successful, we move on to integration tests and then to system tests. Of
course, the most time-consuming is the system tests, which in our case take about 40 hours
to complete. The testing phases are dependent on each other in the order in which they

ResourceManager

pointer stack

[c lass stack] \ method stack]

Kafka
Resource

KafkaTopic
Resource

Ka fkaUser
Resource

KafkaMir rorMaker
Resource

Test Suite

Test case 1

Test case 2

Test case n

Figure 2.18: Strimzi system tests top-level component architecture

are executed. For instance, integration tests will not run if unit tests fail, similarly to
integration and system tests. Furthermore, system tests run on multiple infrastructures
such as Openstack, Microsoft Azure or Amazon Web Services. There are certain limitations

24

to the set of tests on each of these infrastructures. Since these are Kubernetes system tests,
it is essential to realise that the total load on the computing resource is enormous. At the
same time, the preparation of resources and their cleaning is time-consuming. Therefore,
our system tests have two essential parts. The first is resource classes that provide the user
interface for creating, retrieving, deleting, and updating these resources. Moreover, we have
three independent stacks that serve as resource storage. These stacks are responsible for
storing all resources based on the test case. Furthermore, the deletion of these resources
is transparent for the user just as if it is a resource created in a @BeforeAlllb annotated
method. The second fundamental part is auxiliary classes such as U t i l s 1 7 , Apache Kafka
clients for external communication, Kubernetes client offering an A P I for communication
with the Kubernetes cluster and finally classes such as Constants and Environment. This
can be seen in Figure 2.18.

2.4.1 JUni t5 relation and execution of test cases

Junit5 Engine handles the entire implementation and management of the test lifecycle. The
Engine facilitates the discovery and execution of tests for a specific programming model. In
other words, it is the entity in charge of discovering and executing tests. Discovering can
be thought of as scanning all the classes and methods in specific directories. The Engine
has specified in advance which signatures to include in the test tree. In the case of the
Junit5 Engine, it is a sequence of chaining methods, which gradually add all classes (test
suites) and methods (test cases) to the test tree. They also add the test types defined by
them (i.e., @TestFactory, @ParametrizedTest, @TestTemplate). Everything is depicted in
Algorithm 2.4.1.

Algorithm 2 Junit5 Engine: Discovery selector resolver
1: procedure RESOLVESELECTORS(DiscoveryRequest request, Descriptor descriptor)
2: EngineDiscoveryRequestResolver.<JupiterEngineDescriptor>builder()
3: .addClassContainerSelectorResolver(new IsTestClassWithTests())
4: .addSelectorResolver(c —• new ClassSelectorResolver(classFilter, config))
5: .addSelectorResolver(c —• new MethodSelectorResolver(config))
6: .addTestDescriptorVisitor(c —• new ClassOrdering Visitor (config))
7: .addTestDescriptorVisitor(c —• new MethodOrdering Visitor (config))
8: .addTestDescriptorVisitor(c —• TestDescriptor::prune)
9: .build();

10: .resolve(request, descriptor):

Once the resolver is created, we can run the following algorithm, using the resolver and
creating the already mentioned tree of TestDescriptors. Here is a detailed description of
how the algorithm works:

1. Enqueue all selectors in the supplied request to be resolved.
2. While there are selectors to be resolved, get the next one. Otherwise, the resolution

is finished.
1 6 @BeforeAl l - is JUni t5 annotation, where one specifies what must be executed before all tests in the

test suite.
1 7 U t i l s - type of class that consists of static methods, which in general dynamically wait for a specific

event. For instance, waiting for Roll ing Update, if one changes Kafka configuration

25

(a) iterates over recorded resolvers in the directive that they were recorded in and
discover the foremost one that yields a resolution other than unresolvedQ.

(b) If such a resolution exists, enqueue its selectors.

(c) For each exact match in the resolution, expand its children and enqueue them
as well.

3. Iterate over all registered visitors and let the engine test descriptor accept them.

The second phase after the correct scan of test cases that the user wants to perform
is execution. In this case, TestEngine already has a TestDescriptor in which all the in­
formation needed to run is available. At this stage, the TestEngine must always notify
the Junit5 platform of the success or failure of the test case. Moreover, Engine instanti­
ates the SameThreadHierarchicalTestExecutorService class, which ensures that each test is
performed sequentially.

2.4.2 Strimzi system test management and execution flow

In the previous Section 2.4.1, we described the intricate parts of loading and the type of
tests performed. In the case of the Strimzi part, adding several mechanisms (i.e., creation of
Kubernetes cluster, communication with Kubernetes cluster, management of Kubernetes
resources, waiting for conditions) is necessary. We solve all these parts in Strimzi. We
create Kubernetes clusters in several ways as we test the product on several infrastructures.
For example, on Microsoft Azure, we create a Minikube (a subset of the Kubernetes cluster,
one-node cluster) with approximately eight CPUs and 16GB of R A M . In Openstack, we
typically create a six-node cluster with three master nodes and three worker nodes. Each
has eight CPUs and 16GB available (similarly to Amazon Web Services).

Communication with the Kubernetes cluster is guaranteed by the Fabri8 Kubernetes
client https://github.com/fabric8io/kubernetes-client. This client provides a Java
client with many methods that communicate directly via the Kubernetes R E S T A P I . Most
methods are designed to create, update, delete and retrieve a given resource. In practice,
we will also encounter the term C R U D methods. To illustrate, we can imagine getting
all the namespaces on a given Kubernetes cluster. A l l namespaces are obtained using the
command client.namespacesQ.ListQ;.

The overall orchestration of Kubernetes resources is handled by the ResourceManager
class and its additional resource classes. As we wrote at the beginning of Section 2.4,
it includes three stacks where the main/pointer stack points to the method or class stack
based on context. For example, suppose the execution is located in @BeforeAll or ©AfterAll
annotation, we add elements to the class stack. In other scenarios, such as in the test case
or ©BeforeEach, we add elements to the method stack. This data structure will guarantee
the correct order of resources deletion at the end of each test or test class. This is because
we want to delete resources in the order they were created. So if we create first Kafka,
Producer, and lastly Consumer, then in the clean-up phase, we will first delete Consumer,
Producer, and finally Kafka. Thus, the user who creates the test cases does not have to
delete individual resources created for the entire test. In other words, the clean-up phase is
transparent to the user. However, if one wants to delete the resource explicitly, it is possible
via the following command ResourceType.delete(name). Algorithm 2.4.2 defines clean-up
phase.

26

https://github.com/fabric8io/kubernetes-client

Algorithm 3 Resource Manager generic deletion algorithm
1: procedure DELETELATER,(MixedOperat ion<T, ?, ?, ?> operation, T resource)
2: switch(resource.getKindQ) {
3: case K a f k a . R E S O U R C E K I N D :
4: pointerResources.push(() —•
5: operation.inNamespace(resource.getMetadata().getNamespace())
6: .withName(resource.getMetadata() .getName())
7: .withPropagationPolicy(DeletionPropagation.FOREGROUND)
8: .delete();
9: waitForDeletion((Kafka) resource):

10:);

11: break:
12: case KafkaConnect .RESOURCE_KIND:
13: case KafkaMir rorMaker .RESOURCE_KIND:
14: . . . (other resource)
15: / / similar to Kafka resource
16: default:
17: pointerResources.push(() —•
18: operation.inNamespace(resource.getMetadata().getNamespace())
19: .withName(resource.getMetadata() .getName())
20: .withPropagationPolicy(DeletionPropagation.FOREGROUND)
21: .delete();
22:);

23: }

24: return resource:

By contrast, when creating any resources, the user has at his disposal, for example,
KafkaResource, KafkaTopicResource, and the like. Each of these classes contains predefined
templates that include specific configuration settings. A typical example is Kafka, which
can be seen in Listing 2.1.

private s t a t i c KafkaBuilder defaultKafka(Kafka kafka,
S t r i n g name, i n t kafkaReplicas, i n t zookeeperReplicas) {

return new KafkaBuilder(kafka)
. withNewMetadataO

.withName(name)

.withNamespace(ResourceManager.kubeClient().getNamespace())
.endMetadataO
.editSpecO

.editKafkaO
.withVersion(Environment.ST_KAFKA_VERSION)
.withReplicas(kafkaReplicas)

.endKafkaO

.editZookeeper()
.withReplicas(zookeeperReplicas)

.endZookeeper()
.endSpecO ;

}

27

Listing 2.1: Default Kafka Custom Resource in KafkaResourceclass

Another part of the Strimzi system tests is the wait for methods mechanism. It is used
primarily in scenarios where it is necessary to wait for an event to occur. A n example could
be waiting for a Rolling Update to occur when Kafka's original Statefulset changes. The

Project test directory

JUnit5 Engine

Test Discovery

Test descriptor
Test execut ion

Kuberenetes cluster

TestSui te2 namespace

Cluster

Kubernetes R E S T API

Test case 1
(succed)

Test case 2
(failed)

Test case n
(succed)

Test case 1
(under test)

Current execution

Test Suite n

Test case 1

Test case 2

Test case n

Figure 2.19: Strimzi system tests execution flow

second example could be while waiting for a particular pessimistic scenario (i.e., the Cluster
Operator Pod will switch to the CrashLoopBack state, and the KafkaBridge Deployment
Status will contain the text in the message).

So if we summarise everything we have learned. It all starts with scanning the test
directory, which provides a tree of TestDescriptors. This is the primary responsibility of
TestEngine, which uses selectors to filter out all test cases and the visitors who accept
the individual test cases. As soon as we have a tree available consisting of TestDescriptor
nodes, TestEngine starts execution. This execution is sequential for each test case. At the
same time, thanks to our management and defined resources, we can communicate with
the Kubernetes cluster. For example, in Figure 2.19 we can execute n Test cases where
Test Suite 2 is currently executed and specifically Test Case 1. The attentive reader will
realise that the execution model is sequential due to Java's main thread, the primary thread
identifier.

28

Chapter 3

Theory of parallelisation

This chapter describes the fundamental theory of parallelisation (i.e., Amdahl's law (3.1),
Shared memory (3.2), Threads and Processes (3.3), Mutual Exclusion (3.4), Synchroniza­
tion (3.5), Asynchronous tasks (3.6)). Moreover it is based on the following books An
Introduction to Parallel Programming [16] and The Art of Multiprocessor Programming [9].

In the past, computers did not have an operating system. They could only execute
one program at a time. The programmers of the time were as respected as the virtuoso
in music. Writing such programs has been highly challenging. This problem was solved
by developing operating systems that can run several processes (programs). At the same
time, processes use the so-called variant of coarse-grained communication. Coarse-grained
communication includes primitives such as sockets, signals, semaphores, shared memory,
and files. These primitives allow them to communicate with each other using signals, files
or shared memory. Processes were virtually von Neumann computers, which contained
their own memory space that included instructions and data. Subsequently, the processes
executed these instructions according to the semantics of the assembly language. The last
part was a set of I /O operations to communicate with each other. Thus, if we combine
all the elements, we will have a model called Sequential. Most of today's programming
languages use this model. Hence, the sequential programming model is intuitive, and it
creates a sequence of operations that follow each other, thus making the expected result.
However, it has limitations on performance and time consumption on specific tasks. During
the twentieth century, technological advances brought a regular increase in the processors's
clock speed so that the speed of operations "accelerated" itself over time. Nevertheless, this
scenario is not repeated in the twenty-first century. Today's advances in technology bring
about a regular increase in parallelism but only a slight increase in clock speeds. The use
of parallelism is one of the significant challenges of modern software engineering.

3.1 Amdahl 's law

If we imagine ourselves as a user that would like to migrate from a single-processor pro­
gram to a multi-processor program, it would be helpful to know that if we begin with the
parallelisation of such a system, it will eventually pay off. Moreover, many people often
believe that if we build a multi-processor program from a one-processor program and run
it on 3-cores, the overall acceleration will be three times. This is an illusion, and we will
never get such a result. The main problem is the division of labour which is not uniform for
all parts. For clarity, we will illustrate with an example. Imagine that one has to construct

29

a table. In this case, it is a sequential approach. Adding four identical tables (so there
will be five) will take five times more time than one. Suppose four friends come to help
(we assume they are just as skilled and start simultaneously). The acceleration for such
identical tables will be five times. Nevertheless, everything gets complicated if the tables
are not the same. For example, the second table might be more complicated to build and
take more time than the others. Furthermore, the first will be smaller, and thus the total
time will be lower. These discrepancies imply that the acceleration will not be close to
5-times, but it will probably be only 3-times. This kind of analysis is crucial for concurrent
computation, and thanks to Mr . Amdahl [8], we have a formula for such calculation. It is
called Amdahl's law, which can be seen in Equation (1).

- 1 (i)

The formula defines the acceleration S, which depends on the quantities n and p. n is a non­
zero positive number that represents the number of concurrent processors performing the
same job. p is a non-zero positive number that defines how much work is done in parallel.
The sequential part that cannot be parallelised is defined as the difference between the total
work and the work that can be parallelised {1 - p). The parallel component is expressed as
the ratio of the parallel part and the number of competitors by the processor [p / n). So if
we sum up these two parts, we get the total time performed by parallel computation (1 - p
+ p / n). Then, finally, we have to put the ratio between the sequential (single-processor)
time and the parallel time, and we get the already mentioned Equation 1. If we apply this
formula to the previous example with five friends who want to build five tables, we get such
an Equation (3).

25/13 =~2x acceleration (2) 3

1

Before we dive into the overall terminology and discuss the Critical section, Mutual
exclusion, it is necessary to know the program's correctness. The correctness of the program
consists of two essential properties. The first is the safety property, which states: „Bad
thing never happens". To illustrate, imagine the concurrent program never ends up in a
deadlock1. The second is the liveness property, which tells us: „An excellent thing will
happen eventually". So, for instance, the program always terminates. Thus, if we combine
these two properties, we say that the program is correct.

3.2 Shared memory
One needs to understand how memory is organised and how a computer accesses individual
data. The speed of memory in a computer is usually much slower than the speed at which
the processor operates, and if one processor overwrites data in memory, the others must
wait. A l l processors access the same memory in the global address space in this type of
memory.

1 Deadlock - is one of the possible situations that occur in an environment where two or more thread­
s/processes operate with shared memory. Specifically, this situation occurs when Process/Thread A and
Process/Thread B enter a wait state because a given shared resource is held by another Process/Thread
that is waiting for another resource held by another waiting Process/Thread.

30

Definition 1 Shared memory - is a type of memory where all CPUs has access to the
same address space.

So if one processor makes a change to the data, all the other processors will know about it.
The shared memory architecture is classified as U M A (Uniform Memory Access) and N U M A
(Non-uniform Memory Access). This classification tells us how the individual processors
are connected to the memory and how fast the data can be accessed. The wise reader
might realise that memory access will be the same for all processors in Uniform memory
access architecture. While at Non-uniform Memory Access, the time will be different.
Each processor has its cache memory in the Uniform Memory Access, storing the most
frequent data. However, if the processor uses cache memory, there is a very high risk for
cache coherence2. Fortunately, this cache coherence is handled by hardware in multicore
processors.

3.3 Processes and Threads

If one imagines a shell script with a predefined set of instructions (bash commands), the
moment someone runs it, it becomes a process running in the Operating System.

Definition 2 Process - is a dynamic entity, which has its own global address space (set
of instruction and data).

We can also imagine it as a static entity (written shell script) and a dynamic entity (shell
script execution). The Process contains program code, its data, and status information.
Each Process is independent of the other and has its own address space in memory. On the
other hand, there is also a subset of the Process, and it is a thread.

Definition 3 Thread - is a lightweight variant of the Process that has an independent
execution path and shares code and data within a specific Process.

Each thread must be part of a process. Thus, the data we work with is shared with all
threads inside the Process. Furthermore, each thread has an independent path of program
execution. Therefore, one can imagine a thread as a lightweight variant of the Process. It is
well known that threads take up less memory. Moreover, the operating system can switch
faster between individual threads than between processes (context switching 3). In general,
threads can be in one of four states:

1. New - If the main thread spawns a new thread, that thread will be in the New state.
Moreover, the descendants of the main thread can further create a tree hierarchy of
new threads.

2. Runnable - If one creates a thread, it automatically acquires the New state. Sub­
sequently, in order to change to the Runnable state, it is necessary to run the thread
explicitly.

2 Cache coherence - this is a situation where one of the processors obtains a value from shared memory
and tries to make a change in its cache memory but fails to do so. For example, update to shared memory
(while the other processor reads a value that has not yet been updated and wi l l work with the wrong value)

^Context switching - it is a situation where the Process scheduler finds out that some processes have
spent a fair share of their time on the processor and swap it with the different Process. When this happens,
the Operating system stores the state of the Process or thread and then loads the state of a different process.

31

3. Blocked - If a thread needs to wait for an event, it switches to the Blocked state.
This is very useful in terms of resource utilisation. If the event occurs, the operating
system assigns the C P U time and returns the thread to the Runnable state.

4. Terminate - The thread switch to the Terminate state if it was previously aborted
abnormally (i.e., using inter-process communication) or complete its execution.

3.4 Dependencies and Protection

One of the main challenges in parallel programming is detecting dependencies between
threads. Imagine a situation where two threads access the shared variable x. Then, Thread
A reads a value from the shared variable x and starts execution. Subsequently, the scheduler
switches the context, and Thread B reads the value of the shared variable x. Then Thread
B modifies the value of x = 10. The scheduler switches the context again, and Thread A is
currently operating with the wrong value. This is one of the possible faults that can occur
in parallel programming. Wi th this example, we have described the Data race failure.

Definition 4 Data race - is a situation where two or more concurrent threads access the
same address space, and one of these threads has changed it.

Fortunately, as programmers, we can eliminate such errors. The process begins with the
detection of critical sections in the code.

Definition 5 Critical section - section of code, where two or more concurrent threads
have write-access (simultaneously), and at least one of them can write to it and can produce
erroneous behaviour.

As can be seen from Definition 5, the programmer must look for such places. It can be
a simple increment of a shared variable or a complex structure or object change. If these
places are detected, it is necessary to perform the next step - use Mutual Exclusion (Mutex).

Definition 6 Mutual exclusion - two threads are excluded from being in the critical
section at the same time.

By using a mutex, we guarantee that only one thread will access the shared resource at a
time. One will have to acquire a lock whenever one wants to modify a thread or read from
a shared resource. Then one modifies the source and finally releases the lock. Acquiring a
lock is an atomic operation performed as single action and cannot be interrupted by other
threads.

We know several lock implementations, but not all of them guarantee us the liveness
property. As a reminder, the liveness property tells us that: „4 particularly good thing
will happen eventually". For example, a program never „hangs". However, they usually
guarantee the safety property, and the attentive reader would undoubtedly notice that
Mutual Exclusion has a safety property. Some of the leading implementations of lock are
the following:

• Reentrant lock - This type of lock can be locked unlimited times. Nevertheless,
the important thing is that if we want to unlock the lock, we have to do it the same
number of times. The use of this type of lock can be seen, for example, in recursive
functions, when we lock the lock several times and unlock it the same amount of
times.

32

• Try lock - Non-blocking version of the classic lock, if the Mutex is available, it
acquires the lock and returns instantly true at the same time. Otherwise, it returns
false. This behaviour is beneficial if the thread can do other things than the critical
section. Therefore, it will not be blocked as a classic lock.

• Read-write lock - Multiple readers can read from a shared resource. However, once
a thread is locked in ReaderLock, it is not possible to get a thread that wants to
modify the value of the shared resource. This is only possible if the thread that reads
the value released ReaderLock for the shared resource. At this point, the thread can
be locked using WriterLock, and no other thread can access it. This type of lock is
intended mainly for situations where we have more threads that will read from a given
shared resource and fewer threads that will write (i.e., databases).

3.5 Synchronisation

The main problems posed by mutexes are, for example, busy-waiting, deadlock, livelock or
starvation.

Definition 7 Busy waiting - waiting until thread, which is in the critical section, release
lock or flag. The mutual exclusion problem requires waiting, and there is no way to avoid
it.

Elimination of busy-waiting is possible using another synchronisation primitive such as
Semaphore or Condition variable. The Condition variable represents a queue of threads
waiting for a specific event and associated with a Mutex. Using these two parts, they
implement a higher abstraction called the Monitor. The Monitor is a high-level synchro­
nisation primitive that ensures mutual exclusion while giving threads the ability to wait
until an event occurs. Noteworthy is the fact that the Condition variable involves three
operations:

• Wait - If a thread locks the Mutex and then verifies the Condition variable and
finds that the condition is not satisfactory, it immediately switches to the Wait state,
unlocks the Mutex, and queues in the wait queue, until the notify() signal, which
automatically locks the Mutex again and tests the Condition variable.

• Signal - If a thread has finished executing, it signals with notify() and thus wakes
one thread from the Waiting state.

• Broadcast - A variant of the signal operation that wakes up all threads in the queue.

Another synchronisation mechanism is a Semaphore. Sometimes also referred to as a su­
perset of a mutex. If we imagine the simplest Semaphore, we get a mutex. The main
difference between a mutex and a semaphore is that the Semaphore allows access to a crit­
ical section to more than one thread simultaneously. The amount added to such a section
is conditioned by the number one initialises in the Semaphore. The basic principle is that
if a thread wants to critical section, it must increment this number. If the number
reaches zero at that moment, no other thread can access the critical section. If the thread
wants to exit the critical section, it decrements the counter. Another difference between a
mutex and a semaphore is that a mutex can lock and unlock the same thread, whereas a
semaphore can lock and unlock a different thread.

33

3.6 Asynchronous tasks
Another crucial aspect of parallelisation is knowing what an asynchronous task is. It is an
object that is in charge of a predetermined task. This task is performed parallel to the
main thread. Imagine a situation where we have to perform several tasks. For example,
create several different objects that take a certain amount of time to create. If we used
the classical strategy of creating one object after another, the whole process would take a
very long time. Hence, we have another alternative; for each of these objects, we submit
an asynchronous task. However, it is essential to remember that if we have only four CPUs
available and want to create more tasks, for example, twelve, this will result in a situation
where the other eight will have to wait until these first threads are done. Therefore, it is
better to use ThreadPool to create a new thread for each task.

ThreadPool is an object that creates and manages several threads, also called worker
threads. If one thread completes its task, ThreadPool immediately assigns a new job to the
free thread. This eliminates the creation process and thus relieving the load on resources.
However, if we want to submit one asynchronous task, then in the main thread, we want
the future result. Thus, we use the Future mechanism.

Future is another object that creates one asynchronous task. According to intuition, we
could deduce that the name was given to this mechanism because we do not know the value
initially, but it will be available soon. It also provides access to asynchronous operations, so
most implementations have the get() method. This operation is blocking and will usually
be called if one is at a point where one needs a given result from the asynchronous task.
The result will be available as soon as the task is completed.

We could go on to more complex parallelisation concepts, such as partitioning, mapping,
agglomeration, concurrent objects and consensus algorithms. However, these topics are
not necessary to understand the following chapters. Nevertheless, if the reader has these
interesting ones, we recommend reading these facts from the books An Introduction to
Parallel Programming [16] or The Art of Multiprocessor Programming [9].

34

Chapter 4

Proposal of parallel approach

In this chapter, the author describes the overall design for parallelism in the computation of
the Strimzi system tests. At first, Section 4.1 explains the prevailing problems in the Strimzi
system tests. Then, Section 4.2 describes alternatives to solve these problems. Finally, the
best possible option is proposed that meets all the necessary needs. Next, in Section 4.3
we propose changes that have to be made, especially in the ResourceManager, where the
current algorithms for resource management are implemented and which currently do not
support a thread-safe implementation. Finally, in Section 4.4 and Section 4.5 a proposal for
method-wide and class-wide parallelisation is specified, which is described in detail with the
steps that need to be done for its construction (conflicts it contains and solutions proposed
using learned knowledge from previous chapters).

4.1 Bottlenecks of current approach

As discussed in Section 2.4, the time required for a given test set is exceptionally time-
consuming. It is easier to maintain the correctness of a program using the sequential
computing model, but the benefit that parallelism offers are hard to ignore. Nevertheless,
one has to ask oneself whether it is possible and worth the investment. To answer such a
question, we can use Amdahl's law, which we learned about in Section 3.1. For simplicity,
assume that the unit of work will be a test case. It will therefore be necessary to map
how many tests can be parallelised. We can find out that by analysing whether a test
case contains any shared variable with other tests (i.e., shared Kafka, KafkaMirrorMaker,
KafkaConnect, KafkaUser, KafkaTopic resource). Once it does not contain any variable,
we can declare the test as parallelisable. If a given test contains such a shared variable, it
implies that it will have to run in an isolated environment. The manual analysis found that
250 tests could be run in parallel, and 115 must be isolated. So if we apply Equation (1),
(which we learned in Section 3.1), the total number of tests is 365. The parallelisable part is
p = 250/365. The sequence part will be equal to seq = 1 - p = 115/365. For only four-core
CPUs, we get the following acceleration (3).

S= —^3- =~2.lx acceleration (3)
i _ 250 , 365.
1 365 i

l
If we increase the number of CPUs to 8, the total acceleration will be 2.5 times, and if
we scale it to 16 CPUs, the acceleration will be almost three times. Consequently, if we
imagine that our system tests have a total executive time of 40 hours, all tests will last

35

approximately 13 hours with parallelisation. Thus, we just showed that it pays to parallelise
with this first step.

Another disadvantage of the current approach is that it does not use multiple Names­
paces. In our case, for each test suite, we always have one Namespace in which we operate.
Parallelism allows us to manage multiple namespaces simultaneously while ensuring that
the test cases do not overlap. Subsequently, we create in each Namespace a Cluster Op­
erator, again and again; this process usually takes one minute. The ideal approach should
be that the Cluster Operator should see all Namespaces and share them for all test suites.
Using this approach eliminates much lost time. However, we must be aware of a particular
test suite or the test case that will require a different Cluster Operator configuration. At
that moment, we must guarantee that some label will annotate that single test case for the
entire test suite to run in isolation.

The disadvantages of the current approach mentioned above may be a clear argument
for why such a change is necessary. What is also necessary to mention is the structure of
the Resources classes in the Strimzi system tests. These are classes that encapsulate both
pre-prepared templates and, at the same time, the whole mechanism of creation. If we want

Azure Pipeline 1

Build
Strimzi

Setup
minikube

Start
system tests

Azure Pipeline 2

Azure Pipeline 3

Azure Pipeline 4

Azure Pipeline 5

Azure Pipeline 6

' <
Test

results

Oh 6h

execution time

Figure 4.1: Azure pipelines in form parallelism used to execute our system tests

to create a resource, we do it using KafkaResource.kafkaEphemeral(...).done() method calls
and similarly with other resources. The correct A P I should propagate everything for the
client writing the tests via the ResourceManager class where a simple create() method
would be called. Nevertheless, this fact is more a matter of architecture and not a form of
the execution model.

Finally, we can discuss the last limitation for which it is necessary to change. In the 2.4
section, we did not mention such a fact, but there is an attempt at parallelism when using
the Microsoft Azure Pipelines. On this infrastructure, we decompose our system tests into
several distinctive subsets and run them as Azure separate pipelines 1. In Figure 4.1 one
can see such decomposition. The attentive reader might ask why we cannot run 40 or 100

1 Azure pipeline - one can imagine a pipeline as an Object which encapsulates multiple commands
executed in order. Moreover, it is also executed as a separate process.

36

Azure pipelines and thus reduce the total execution time of the tests. Unfortunately, we
are limited only to running six Azure Pipelines simultaneously. By this limitation, the
complete set of tests takes approximately 6 hours, which is still a significant amount of
time. Similarly, we try to reduce the time at the Jenkins pipeline when using OpenStack 2

and Amazon Web Services infrastructure3. However, this Strimzi product must be verified
for multiple configurations when running a separate Kubernetes cluster for the entire test
suite. Once we launch several such Kubernetes clusters, we are also limited by infrastructure
quotas. Overall execution time reduced can be seen in the following Figure 4.2.

Jenkins Pipeline 1

f ' Build
Strimzi cluster

Start
system tests

(configuration 1)

Test
results

Jenkins Pipeline 2

Jenkins Pipeline 3

Build
Strimzi

' s
Setup Kubernetes

1
cluster

Start
system tests

(configuration 2)

Test
results

Jenkins Pipeline 4

Oh 20h

execution time

Figure 4.2: Jenkins pipelines in a form parallelism used to execute our system tests

It is also important to mention that we are limited by the number of processes (i.e.,
pipelines) that use the separate Kubernetes cluster. On Amazon Web Services and Open-
stack infrastructures, we have not limited the computing resources. This is the fact that
we must use and thus think about how parallelisation will lead the way. Undoubtedly, this
will not be at the levels of processes, but parallelisation is possible directly in the test set
(i.e., using threads) thanks to the available computational resources. However, this decision
evokes the approaches described in the next section.

4.2 Possible approaches
From the previous section, we could notice that any attempt to parallelise at the process
level (i.e., spawn more pipelines) was impossible, especially in terms of individual infras-

2 OpenStack - is a cloud computing infrastructure that manages physical machines, vir tual servers or
containers. A t the same time, this product is one of the three most active open-sourced products globally,
(h t tps : //www.openstack.org/)

^Amazon Web Services - also like OpenStack, is a cloud computing infrastructure that offers a myriad
of services (i.e., Amazon Elastic Compute Cloud, Amazon Simple Storage Service). A very admirable
attribute of this service is the availability level according to S L A (service level agreement) up to 99.9%.
(ht tps : //aws.amazon.com/)

37

http://www.openstack.org/
http://amazon.com/

tructures' constraints. As a result, we have no choice but to go one level lower and try to
parallelise at the test level and thus use the threads.

4.2.1 Writ ing own testing framework

The first and the most challenging alternative is to write a new testing framework. One
would say that this may be an old-fashion approach, but it also has its advantages. One
of the leading benefits is flexibility. Imagine that we want to configure how many test
cases and test suites we want to run simultaneously. The natural way to do this is using
Futures. Each parallel suit is associated with its Future, and one uses a composite future to
await the completion of all of them. We could do that by using JDK Executor Service4 and
CompletableFuture . However, the problem is that writing a new tool would mean writing
new tests and partially rewriting them all. Since our tests are currently designed on top of
the JUnit5 platform, it is not very acceptable for us to do such a thing.

4.2.2 Writ ing our own Junit5 Engine

Another alternative to reduce the overall load of rewriting all tests would be to write a new
JUnit5 Engine. In this case, we would have to write the overall logic of the lifecycle test.
It would help if one remembered how we described the dependencies of the current Strimzi
system tests in Section 2.4.1. This dependency eliminates the worry of TestDiscovery and
TestExecution. Therefore, if we want to create our TestEngine, we have to implement
our own TestDiscovery and thus create our implementation similar to Algorithm 2.4.1.
Furthermore, we need to create our TestExecution mechanism. The testing mechanism
could be very similar to the previous subsection, thus using the CompletableFutures and
Executor Service classes that Java offers. One may invoke the idea that this is the best
approach that eliminates the discovery of all tests and the overall work of designing a new
tool. Unfortunately, it also has its disadvantages. One of them is that if one decides to
write their TestEngine, they must realise that this eliminates all the annotation support
offered by Junit5 TestEngine (i.e., ©Test, ©TestFactory, ©ParametrizedTest, ©Isolated
and ©TestTemplate). It is clear that if we write a new TestEngine, we have to write our
own annotated tests and write our annotations. Wi th this knowledge, even this approach
does not meet our needs.

4.2.3 JUni t5 parallelisation

The last alternative is the use of Junit5 TestEngine parallelisation. These almost three-
year-old features of the Junit5 platform (released 3rd September in 2018) have a lot to offer.
For example, parallelisation support for running multiple test cases at one time is possible
using the Java Fork / Join framework. This framework also includes the implementation
of the ThreadPool object, which we described in Chapter 3. The overall logic utilises
reusable Threads, where, for example. Thread A completes the execution of Test 1; it
will be assigned another test immediately and thus, we eliminate the redundant creation of
threads. The main advantage of such an approach is that it is not necessary to rewrite a
complete performance of the tests. Moreover, it is unnecessary to implement TestDiscovery

4 ExecutorService - is a Java object, which provides a way to execute tasks on threads asynchronously.
5 CompletableFuture - is a superset to Future, which we learned about at the end of Chapter 3.

Moreover, it provides exception handling, allows us to combine CompletableFuture, and has many auxiliary
methods

38

and TestExecution because JUnit5 TestEngine already offers them. Related to this is
keeping all the annotations mentioned in the previous subsection. Another advantage is
the possibility of configuration where we can enable parallelisation using the following
commands:

j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . e n a b l e d = true
junit.jupiter.execution.parallel.mode.default = same_thread
junit.jupiter.execution.parallel.mode.classes.default = concurrent

With this setting, it is possible to run the suite test in parallel using Junit5 parallelisation. If
we change junit.jupiter.execution.parallel.mode.default = concurrent then we let concurrent
execution of test cases and test suite run simultaneously. Another good aspect of this feature
is the ability to choose the best variant of the parallelisation strategy:

• Fixed - ThreadPool has a predefined number of threads to work with and can be
changed in the configuration using parallel, config.fixed.parallelism.

• Dynamic - ThreadPool has a predefined number of threads based on the calculated
available processors multiplied by the number specified by parallel, config. dynamic.factor.

• Custom - possible custom implementation of the strategy.

However, this configuration does not apply to scenarios where we want to run a particular
set of tests in parallel and the other sequentially. Therefore, Junit5 also provides a possible
dynamic rewrite of the configuration at build time using the ©Execution annotation, which
can contain two values for sequential execution (©Execution (S A M E _ T H R E A D)) of a test
suite or test case or ©Execution (C O N C U R R E N T) for concurrent execution of class or test
case. Thanks to the mentioned annotations, we can achieve decompositions of tests that
will run in parallel and sequentially. It may be apparent to the reader that our needs will
be met by using this feature of the Junit5 Engine offers.

However, another common problem with the approach we have described is that the
current ResourceManagement is not ready for parallelisation. This problem forces us to
rewrite our test architecture, and with that comes the rewriting of the ResourceManager
class and its Resource classes.

4.3 Architecture changes

In this section, we will describe all the necessary changes in our system test architecture.
We start with designing thread-safe algorithms responsible for managing the resources with
which the individual test cases operate. Finally, we describe the design of individual resource
classes that will use the Interface pattern 0

4.3.1 Resource classes

If we think about the whole architecture of the system tests from Section 2.4, one will
notice that the Resource classes contain two large pieces. The first is management methods
(i.e., create(), deleteQ), and the second part is predefined templates, which are then used
in test cases. Therefore, we suggest that the given parts of the code must be divided into
classes, where the methods used for management would be left in these classes. However,

^Interface pattern - one of the most popular design patterns, which defines a set of operations and
creates a contract for a class that must implement these operations.

39

predefined templates moved to the so-called Templates classes. Wi th further improvements
and better design, we propose to create an interface that will contain methods for resource
management, and each type of Resource class will need to implement such an interface.
The given interface should consist of the following abstract methods:

• g e t K i n d Q - an abstract method that will serve as a type identifier of the given
resource instance,

• get() - the abstract method that will serve as a single resource,
• createQ - the abstract method responsible for creating the resource,

• delete() - the abstract method responsible for deleting a given resource,
• wai tForReadinessQ - the abstract method, for waiting for a given resource until it

is ready.

Thanks to this change, we will create a generic method at the heart of the ResourceManager
class.

4.3.2 ResourceManager

The most critical part of the system test module is ResourceManager. In Section 2.4, we
described how this class works and what exactly it contains. To maintain the context of
all resources with which the three types of stacks are currently used. If we are in the
©BeforeAll context, then it is clear that we switch the pointer stack to the class stack. On
the other hand, we switch to the method stack before each test case. However, the cautious
reader will realise that such a mechanism will not work in parallel executions.

As part of the change, we propose eliminating all three stacks used to maintain the
context and creating a HashMap that will have the name of the test case as an identifier
(key). We create a contract for a person who creates the tests to do not equal themselves.
As a value in the given map, we will store a Stack that will store all types of resources,
i.e. there will always be one stack for each test case. Related to this section is a change
in resource creation management. We propose the following thread-safe algorithm 4, which
eliminates the invocation of methods from individual Resource classes, but all this will be
done within the ResourceManager class. In the given algorithm, there are 3 phases:

• F i n d - finding the resource type and invoking it within the Kubernetes A P I ,
• Store and future delet ion - save the resource to the stack and automatically delete

it throughout the lifecycle,
• Readiness check - waiting if a given resource is deployed in a Kubernetes cluster

(optional).

40

Algorithm 4 Thread-safe algorithm for creation resources inside Resource manager
Input: ExtensionContext context, GenericType resources

1: for each resource £ resources do
2: type i — f indResour ceType{r esour ce)
3: type.create{resource)
4: / / here starts critical section
5: all_r esour ces.computel f Absent{{test_name),k- > newStack <> 0)
6: all_r esour ces.get((test_name).push(deleteResource(r esour ce)
7: / / here ends critical section
8: if wait for resource readiness then
9: for each resource & resources do

10: type i — f indResour ceType(resource)
11: wait for resource readiness
12: end for each
13: end for each

A n essential aspect of this proposed algorithm is also the ExtensionContext, which will
identify the current place of execution. There is an ExtensionContext for each test case,
and it contains metadata about the test.

Another part is in case the user wants to create ten resource instances independently
of each other asynchronously and then create a Barrier 7 because the following verification
steps require all resources. Another thread-safe algorithm 5 does a very similar process,
waiting for all resources to be created asynchronously. The identification of which resource
to wait for is within the given ExtensionContext.

Algorithm 5 Thread-safe algorithm for sychronising resources inside the Resource manager
Input: ExtensionContext context

1: Stack<Resource> resources = resourceStack.get(context.getTestNameQ):
2:

3: / / sync all resources
4: for each resource & resources do
5: if resource == null then
6: continue;
7:

8: type i — f indResour ceType{r esour ce)
9: <£>•— getResourceWaitCondition(type)

10: wait(resource,<b)
11: end for each

Finally, we have the last part, which is deleting resources from the stacks. We propose a
thread-safe algorithm 6, which will be used for the overall cleaning of the test environment.
Its functionality is configurable. In the beginning, it finds out the condition of the emptiness
of the map that contains all the resources. Subsequently, if it does not contain anything,

7 Barr ier - is a mechanism in concurrency, which is used to synchronise multiple threadsprocesses.
Therefore, any threadprocess has to wait for al l the threadsprocesses in that place. Subsequently, if all
threadsprocesses arrive at the given place, the threadsprocesses are awakened and can continue their execu­
tion

41

the whole execution ends. However, if the map is not empty, deletion begins. Once this
phase is completed, everything will be deleted from the map.

Algorithm 6 Thread-safe algorithm for deletion of resources the inside Resource manager
Input: ExtensionContext context

l: W — mapResourceEmptinessCondition(context)
2: if ¥ then
3: break; // everything is deleted
4: while do
5: / / checking if some exception in scope of extension context arised
6: resources.get(context.getDi splayNameQ).popQ.getThrowableRunnerQ.runQ;
7: J) remove stack from map
8: resources.remove{context.getDisplayNameQ);

4.4 Method wide parallelisation
In this section, we will describe our proposal for a possible method-wide parallelisation.
Method-wide parallelisation is where each test suite will be isolated, and each test case will
run in parallel, if possible. We have already approached the condition for running the tests
in parallel in Section 4.1. So this is a test that does not use any shared resources. The
proposal is decomposed into several steps: which are described in the next paragraphs.

The first step is to create a unique name mechanism for all the resources that are used
in the test cases. Since these are Kubernetes system tests, the created resources do not have
a random naming generated. By randomisation, we eliminate possible conflicts in parallel
execution in a given test suite. Furthermore, random naming does not require additional
synchronisation of conflicting resources because each newly created resource will have a
different name.

The second step is to create Kubernetes methods that will support namespace opera­
tions. This is possible thanks to the Kubernetes client, which we already have in the system
tests. However, it contains too complicated invocations of methods, and so for our purposes,
it is better to encapsulate this complexity into factory methods. These are mainly methods
for communication with the Kubernetes environment (i.e., Pod, ReplicaSet, Deployment,
Services, Custom Resource, Custom Resource Definition).

The third step provides a mechanism that determines which methods can be performed
parallel and which need to be isolated. For parallel tests, we propose use the ©Parallel-
Test annotation. This annotation will encapsulate the ©Test annotation, so the JUnit5
framework recognises it as a test. It will also be necessary to add information so that the
test can run in parallel. Thanks to the ©Execution annotation, which will be set to the
value CONCURRENT, the test will always run in parallel. On the other hand, tests that
will require isolation will use ©IsolatedTest annotation. This annotation will be a bit more
complex because it will contain not only the ©Test annotation but also the read-write lock.
As a reminder from Chapter 3, the read-write lock consists of two types of locks. Reader-
Lock allows multiple readers to read from a shared source. However, no thread can write
to the source if even one reader reads. If no reader reads anymore and one thread wants
to write, the file will be locked using WriterLock. Here, however, another thread cannot
access until the same thread releases it. So for the ©IsolatedTest annotation, we propose
using this type of lock to guarantee the system's safety property (mutual exclusion).

42

® enaö/ed=true
strategy=fixeü
in-parallel=7
method=true

|-thread-1

thread-2

thread-3

ForkJoinPool

Resource Manager

ts1-td ts1-tc2 ts1-tc3 ts1 mm

Test case 1
(under test)

Test case 2
(under test)

Test case 3
(under test)

Test case n
(@lsolatedTest)

Current
execution

Test case 1

Test case 2

Test case 3

Test case n

'

Figure 4.3: The best scenario in method-wide parallelism, n number of threads are exe­
cuted, and there is no one @IsolatedTest in the test suite, which means that all test runs
simultaneously. Note that Tc means Test case in short.

In Figure 4.3 it is possible to see the best scenario that can happen in method-wide
parallelisation. Moreover, we must realise that if the test suite theoretically contains all
@IsolatedTest, it would be a sequential execution. Of course, if the computer on which the
tests would run contained no more than two CPUs, then it is not possible to run multiple
parallel threads with each other (it is possible, but the processor would then have to make
many context switches, which would lead to a significant decrease in performance). Thus,
the more CPUs a given computer/cluster will have, the quicker the results are.

4.5 Class wide parallelisation

In this section, we will describe and suggest what steps are needed to support class-wide
parallelisation. At first, in Section 4.5.1, we describe all the necessary changes that need to
be made. Furthermore, it is restructuring and creating a new class for managing all possible
Cluster Operator configurations. Next, we describe the rollback mechanism needed to solve
the problem with two test suites that need different configurations. We follow up on this
in Section 4.5.2, where we solve the given problem completely. Finally, in Section 4.5.3 we
propose a mechanism that determines when to execute test suites in parallel.

4.5.1 Shared Cluster Operator

This change requires multiple interventions in the test suite. Since a new Cluster Operator
is currently being created in each test suite, we must always have this Cluster Operator

43

available in a shared context. This is accompanied by how it will be possible to obtain such
a context. In Section 4.3, especially in the description of the ResourceManager compo­
nent, we partially described the ExtensionContext object, which serves as a test identifier
thanks to a hashcode*. However, we must be aware that any ExtensionContext in either
the @BeforeEach or @BeforeAll scopes of the code cannot be used. If we used such an
ExtensionContext, the Shared Cluster Operator would be deleted after the test suite in
©AfterAll has perished. One elegant approach to solving this problem is to use the ex-
tensioncontext.getRoot() context, which ensures that the Cluster Operator is not deleted
prematurely. Another problem is the lack of an annotation/extension that creates a shared
Cluster Operator only once if multiple test suites are run. We propose to create such an
annotation @BeforeAUOnce. Thanks to JUnit5 and its flexibility, it will be possible to
implement such a mechanism by overriding @BeforeAUCallback.

Another significant change that needs to be made is the unification of the Cluster
Operator installation. This requires a design that encapsulates multiple configurations of
the Cluster Operator and would be easy to use for the client. The answer to this is the
Builder design pattern, which will allow the client to specify the necessary configuration it
will require. On the other hand, a person implementing this mechanism will disable parts
that he does not want to make available to the user using operators' visibility (i.e., private,
protected, package-protected). This eliminates the number of factory methods currently in
the project and increases the overall readability of the code. A n example of the resulting
implementation and invocation for a given client might look exactly like the code shown
in 4.4.

// c l u s t e r operator deployment configuration
clusterOperatorDeployment = new SetupClusterOperatorBuilder()

(1) .withClusterOperatorName("my-cluster-operator")
(2) .withExtensionContext(sharedExtensionContext)
(3) .withNamespace("infrastructure-namespace")
(4) .withWatchingNamespaces("*")
(5) .withOperationTimeout(...)
(6) . w i t h R e c o n c i l i a t i o n l n t e r v a K . . .)
(7) .withExtraEnvVars(...)
(8) . c r e a t e l n s t a l l a t i o n O

. r u n l n s t a l l a t i o n O ;

Figure 4.4: One of the possible invocation of Cluster Operator deployment using the Builder
desing pattern.

This may not be clear from the Figure 4.4, but the runInstallation() method should en­
capsulate all installations such as R B A C , H E L M , and B U N D L E . Each of these installations
has its preparation of the environment, and therefore it is necessary to distinguish them.
For clarity, we will also describe the individual parameters that we indicated in Figure 4.4.

1. withClusterOperatorName - will be used to specify the exact name of the Cluster
Operator Deployment.

8 Hashcode - hashcode in Java is usually an integer value that has the same number for the identical
objects. However, if the objects differ in one of the instance attributes, the hashcode must have a different
value. This is a known contract between a Class and its implemented int hashCode() method.

44

2. withExtensionContext - possible ExtensionContext specification for resource man­
agement. In this case, ci shared ExtensionContext object that will ensure that the
instance is not deleted prematurely.

3. withNamespace - specification of the Namespace name to be created for the Cluster
Operator. In this case, the infrastructure Namespace is used.

4. withWatchingNamespaces - specification of the Namespaces that the Cluster Op­
erator must observe. In most cases, this will be a configuration where the Cluster
Operator is set to *, which semantically means that it observes all Namespaces avail­
able in the Kubernetes cluster.

5. withOperationTimeout - timeout specification for Cluster Operator internal op­
erations (ie, Kafka cluster, Kafka Mirror Maker creation).

6. withReconciliationlnterval - specification of the control loop loop interval.

7. withExtraEnvVars - additional possible configurations using environment variables
(i.e., Strimzi operator namespace labels or Strimzi network policy generation).

8. createlnstallation - instance construction with pre-supplied attributes.

The last change within the shared Cluster Operator is to create a rollback mechanism
that will solve the problem if we have two test suites with different Cluster Operator config­
urations. Note that it is not possible to have multiple Cluster Operator deployments, as this
would overlap and at the same time disrupt the operators. Therefore, we propose to create
a rollback mechanism that will solve this problem. The 7 algorithm shows the principle of
operation. Specifically, we suggest that the algorithm be divided into two phases where the
first is to delete all currently deployed resources. The second phase is the deployment of a
new Cluster Operator with a default configuration.

Algorithm 7 Cluster Operator rollback algorithm
l : / / 1st phase
2: / / trigger that we will again create namespace
3: if Environment.isHelmInstall() then
4: helmResource.delete():
5: if Environment.is01mlnstall() then
6: olmResource.delete():
7: if Environment.isBundleInstall() then
8: / / clear all resources related to the extension context
9: ResourceManager.getInstance().deleteResources(sharedExtensionContext)):

10: KubeClusterResource.getInstance() .deleteNamespace(infrastructure-namespace):
l l : //2nd phase
12: defaultlnstance <— buildDefaultlnstallationQ:
13: deployedlnstallation <— defaultlnstance.runlnstallationQ:
14:

15: return deployedlnstallation:

However, there is another problem that even this mechanism will not solve, and that
is the guarantee that test suites with different Cluster Operator configurations will run in
isolation. This issue will be resolved in the following Section 4.5.2.

45

4.5.2 OlsolatedSuite

One way to solve the problem is when we have different configurations of Cluster Operator,
it is necessary to supply some form of synchronisation. Recall @IsolatedTest from method-
wide parallelisation. In this case, we suggest making a different approach because in the
@IsolatedTest, we used ©ResourceLock. @ResourceLock locks the overall computation, and
no other threads can proceed with its execution. In the scope of method-wide parallelisation,
this approach is applicable. However, if we use this approach in class-wide parallelisation
and thus annotate such test class with @ResourceLock using read_write lock, it will always
execute only one test case. The reason why is that that @ResourceLock will be propagated to
each test method and thus resulting in sequence mode. Because of this problem, we propose
to create @IsolatedSuite as a labelling unit and implement an additional synchronisation
mechanism, which will take care of multiple @IsolatedSuite. The easiest way how to tackle
such a problem would be using AtomicBoolean as a flag. When @IsolatedSuite starts its
execution, it will set such a flag, and after everything is complete, it will release it.

4.5.3 OParallelSuite

Additionally, we will have to design a mechanism for running multiple test suites in parallel.
One way how to tackle this problem is to create an annotation that overrides configuration
same as @ParallelTest that will contain an ©Execution annotation with the value CON­
CURRENT and thus guaranteeing parallel execution. Nevertheless, we would not be able
to configure method-wide parallelisation with such an approach. So the final solution is
to override configuration using system property 9, when we need it. For instance, we left
the default value system property for method-wide parallelisation (i.e., same_thread). By
contrast, we set it to concurrent if we need to execute test suites in parallel. At the same
time, we supply metadata in the form of ©ParallelSuite annotation to these classes, which
can be run in parallel with other classes.

j unit .j upiter. execution, parallel. mode, classes. default

46

Chapter 5

Implementation

This chapter is devoted to the implementation of additional functionality (i.e., parallelism)
into the test framework within the Strimzi project. Implementation Listings (e.g, 5.1, 5.2...)
are presented in Java programming language. Moreover, in Section 5.1 we describe an
implementation of the first possible level of parallelism for more minor instances of the
Kubernetes cluster. Finally, for more comprehensive instances (i.e., multi-node Kubernetes
clusters), we explain the implementation of even higher-level parallelism in Section 5.2.

The author contributed the given code to the open-sourced project Strimzi, available
on Github 1 . Specifically, these changes can be found in the systemtest module 2. Instal­
lation and configuration of individual parallelisation levels are described in Appendix A .
Eventually, we move more complex and extensive code snippets into Appendix B.

5.1 Stage 1 — method-wide parallelisation

In this section, we describe the solutions of the individual steps proposed in Section 4.4,
which were necessary to perform an adaptation to method-wide parallelisations. We start
with an explanation of how to resolve the uniqueness of test resources in Section 5.1.1.
Furthermore, we describe the core implementation and the necessary reworking of test
resources, as well as ResourceManager in Section 5.1.2. Next, in Section 5.1.3 the author
present a mechanism that determines whether a given test case has to be executed in
parallel or in isolation. Finally, in Section 5.1.4 we explain how such parallelisation can be
configured, and in Section 5.1.5 we describe its usability within our infrastructure.

5.1.1 Unique Naming for each resource 3

Several sources (e.g, Kafka cluster, KafkaConnect, KafkaMirrorMaker), which are used in
test cases, are necessary to work with unique names to avoid conflict (e.g, replace existing or
already created resources). That is why we created the class TestStorage1, which will include
unique generated name of the necessary resources (e.g, name of the Namespace, Kafka
cluster, KafkaTopic, Producer, Consumer). A l l is possible thanks to ExtensionContext
object, where each test case has a different ExtensionContext, and therefore it can be used
as a unique identifier between test cases. Eventually each test case has to instantiate

^Strimzi Github repository - h t t p s : / / g i t h u b . c o m / s t r i m z i / s t r i m z i - k a f k a - o p e r a t o r
2systemtest module - h t t p s : / / g i t h u b . c o m / s t r i m z i / s t r i m z i - k a f k a - o p e r a t o r / t r e e / m a i n / s y s t e m t e s t
^Upstream pul l request - h t t p s : / / g i t h u b . c o m / s t r i m z i / s t r i m z i - k a f k a - o p e r a t o r / p u l l/4092
4TestStorage - https://github.com/strimzi/strimzi-kafka-operator/pull/5446/

47

https://github.com/strimzi/strimzi-kafka-operator
https://github.com/strimzi/strimzi-kafka-operator/tree/main/systemtest
https://github.com/strimzi/strimzi-kafka-operator/pull/4092
https://github.com/strimzi/strimzi-kafka-operator/pull/5446/

TestStorage class and then access resources (e.g, Namespace, Kafka cluster, KafkaTopic,
Producer, Consumer).

5.1.2 Resource Manager re-work 5

As described in Section 4.3, we created Interface ResourceType <T extends HasMetadata>.
Where T is a generic type and can take subtypes (e.g, Kafka, KafkaBridge, KafkaMirror-
Maker). In other words, everything that contains the object HasMetadata(). Listing 5.1
shows the individual method signatures in the given interface.

public i n t e r f a c e ResourceType<T extends HasMetadata> {
Str i n g getKindO;
T ge t (S t r i n g namespace, S t r i n g name);
void c r e a t e d resource);
void d e l e t e d resource);
boolean waitForReadinessd resource);

}

Listing 5.1: Interface used across all resources

Each resource then signs a contract with the ResourceType interface in our test framework.
For instance, the Kafka resource implementation (Listing 5.2).

public class KafkaResource implements ResourceType<Kafka> {
©Override
public S t r i n g getKindO { return Kafka.RES0URCE_KIND;>
©Override
public Kafka get (Str i n g namespace, S t r i n g name) {...]•
©Override
public void create (Kafka resource) {...]•
©Override
public void delete (Kafka resource) {...]•
©Override
public boolean waitForReadiness(Kafka resource) {...}
// implementation of each methods omitted f o r c l a r i t y

}

Listing 5.2: Kafka resource sings contract with ResourceType interface

Nevertheless, the most critical part of the entire Strimzi test framework is ResourceM-
anager. As described in the design 4.3.2, instead of three stacks (i.e., pointer, class, and
method), we had to adapt a solution with hash maps, which for each test case will keep
each stack in which will contain the test resources. At the same time, thanks to the pro­
posed algorithms (4, 6), the algorithm for creating resources according to the generic type
T finds out which method to invoke. Moreover, a parallel algorithm for deleting individual
resources from a given stack. Finally, the 5 algorithm for synchronisation of parallel gener­
ating resources is most useful in the parallel preparation of individual resources for a given
test case. A n example of such a preparation phase (Listing 5.3).

5https: //github.com/strimzi/strimzi-kaf ka-operator/pull/4137
6 HasMetadata - is an interface of Kubernetes resources that contain metadata object

18

// create resources i n p a r a l l e l (simultaneously)
resourceManager.createResource(extensionContext, f a l s e ,

KafkaTemplates.kafka().build()
KafkaTemplates.kafkaWithMetricsO.build(),
KafkaMirrorMakerTemplates.kafkaMirrorMaker().build(),
KafkaConnectTemplates.kafkaConnect().build(),
KafkaClientsTemplates.kafkaClients().build()

) ;
// synchronize point (barrier)
resourceManager.synchronizeResources(extensionContext);

Listing 5.3: Example of parallel preparation of resources

The overall implementation of individual algorithms (4, 5 and 6) can be seen in the Ap­
pendix B.

5.1.3 Injection of the runtime annotations

Another crucial part is creating a mechanism that will provide information, which test
case may be executed in parallel mode or run in complete isolation. In Section 4.4, we
propose such annotations offered by the Java language. We implemented three types of
annotations for method-wide parallelisation. The most concise annotation is ©Parallel-
Test, which overrides the parallelism configuration at runtime. It is possible to see the
given implementation of such an annotation on Listing 5.4. A n essential part is @Exe-
cution(ExecutionMode. CONCURRENT), where the semantics of this line means that the
given annotation will overwrite the given configuration from a sequential mode to parallel
mode and thanks to @Retention(RUNTIME) it will do so at runtime.

©Target(ElementType.METHOD)
©Retention(RUNTIME)
©Execution(ExecutionMode.CONCURRENT)
@ResourceLock(mode = ResourceAccessMode.READ, value = "global")
©Test
public ©interface P a r a l l e l T e s t { }

Listing 5.4: Implementation of the ©ParallelTest annotation

Another annotation (Listing 5.5) we have implemented to be responsible for the complete
isolation of is @IsolatedTest. At an initial glance, it is remarkably similar to the previous
annotation. However, there is one major difference when using @ResourceLock. When
©ParallelTest uses a read lock, @IsolatedTest uses a read_write lock. The idea is that
read_write lock will completely isolate us from other tests. Multiple ©ParallelTest will be
performed at the same time, and @IsolatedTest will wait until this lock is released (because
these two annotations share the same CDResourceLock named global).

©Target(ElementType.METHOD)
©Retention(RUNTIME)
©Inherited
@ResourceLock(mode = ResourceAccessMode.READ_WRITE, value = "global")
©Test
public ©interface IsolatedTest {

49

S t r i n g value() default ""; // reason why i t needs i s o l a t i o n
}

Listing 5.5: Implementation of the ©IsolatedTest annotation

Finally, we implemented the last annotation due to product requirements @ParallelNames-
paceTest (i.e., each Kafka cluster has to be in its own namespace). This annotation is
equivalent to @ParallelTest, but there is a slight distinction. We create an additional
namespace for each test case. Scenarios where we mainly use it are when multiple Kafka
clusters are deployed for a given test or when we use KafkaMirrorMaker (by default, we
need two Kafka clusters).

5.1.4 Configuration

The method-wide parallelisation configuration can be set up in several ways (a) using
system properties (Listing 5.16), (b) using the junit-platform.properties configuration file
(Listing 5.17).

-Djunit.jupiter.execution.parallel.enabled = true
- D j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . c o n f i g . f i x e d . p a r a l l e l i s m = <n>
// parallel.mode.default has default value same_thread
// parallel.mode.classes.default has default value same_thread

Listing 5.6: (a) Configuration via system properties

In both cases, n threads will be released, where each thread will perform one test case at a
time, and if it finishes its work, it will move on to the next test case. This is repeated until
there is no more test to execute in the given test class.

j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . e n a b l e d = true
junit.jupiter.execution.parallel.mode.default = same_thread
junit.jupiter.execution.parallel.mode.classes.default = same_thread
j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . c o n f i g . s t r a t e g y = f i x e d
j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . c o n f i g . f i x e d . p a r a l l e l i s m = <n>

Listing 5.7: (b) Configuration via file

5.1.5 Application

Method-wide parallelisation for our testing framework is most efficient for more diminutive
infrastructures, typically with parameters e.g, 24GB R A M and eight cores. We use such
infrastructure as part of nightly testing. In the circumstances, we have less power available:
it is necessary to count on it that in more demanding test cases (i.e., a test case using
KafkaMirrorMaker or several Kafka clusters), the cluster will be unstable, which will lead to
poor test results and overall test timeouts. On the other hand, in the case of more powerful
infrastructure (i.e., multi-node Kubernetes cluster), it is possible to use the following form
of parallelism.

5.2 Stage 2 — class-wide parallelisation

In this section, we explain the solutions of the individual steps proposed in Section 4.5, which
were necessary to perform for adaptation to class-wide parallelisations. At first we describe

50

complete re-work of Cluster Operator installation in Section 5.2.1. Next, in Section 5.2.2
and Section 5.2.3 we exemplify mechanism for isolation of test suites and describe common
problems in relation of isolation. Moreover, we present another component required for
class-wide parallelisation and management of all Namespaces in Section 5.2.4. Finally, in
Section 5.2.5 we explain how such parallelisation can be configured, and in Section 5.2.6 we
describe its usability within our infrastructure.

5.2.1 Deployment of shared Cluster Operator across all suites

As we proposed in Section 4.5.1 for class-wide parallelisation, we want to create a shared
Cluster Operator alongside all test classes. Such an approach is possible thanks to root
ExtensionContext, which guarantees that the Cluster Operator instance will be deleted
only after the overall execution. We will describe the two primary phases of our proposed
JUnit5 extension (i.e., BeforeAUOnce setup phase - Listing 5.8). The method must use
synchronised to prevent multiple threads in a race condition. This situation would occur
if two or more @ParallelSuite threads passed the IBeforeAUOnce.systemReady condition
and then started to create an instance of C O twice. At the same time, we may notice
that it is necessary to change the configuration of the given Cluster Operator to different
configurations.

synchronized p r i v a t e s t a t i c void systemSetup(
ExtensionContext extensionContext) {
i f (IBeforeAUOnce.systemReady) {

sharedExtensionContext = extensionContext.getRoot();
i f (S t U t i l s . i s P a r a l l e l S u i t e (e x t e n s i o n C o n t e x t)) {

BeforeAUOnce. systemReady = true;
i f (Environment.isNamespaceRbacScope() &&

!Environment.isHelmlnstall()) {
clusterOperator = SetupClusterOperator

.SetupClusterOperatorBuilder()

.withExtensionContext(sharedExtensionContext)

. c r e a t e l n s t a l l a t i o n O

. r u n l n s t a l l a t i o n O ;
} else {
// setup c l u s t e r operator before a l l suites only once

clusterOperator = SetupClusterOperator
.SetupClusterOperatorBuilder()
.withExtensionContext(sharedExtensionContext)
.withNamespace(Constants.INFRA_NAMESPACE)
.withWat chingName space s(Const ant s.WATCH_ALL_NAMESPACES)
. c r e a t e l n s t a l l a t i o n O
. r u n l n s t a l l a t i o n O ;

>
}

sharedExtensionContext.getStore(ExtensionContext.Namespace.GLOBAL)
.put(SYSTEM_RESOURCES, new BeforeAUOnce());

}

}

51

Listing 5.8: Setup phase of shared Cluster Operator

The last essential aspect is the last line in Listing 5.8, where we create an instance of
the given extension and thus implicitly call the closeQ method. The class implements
the Autocloseable Interface, which ensures that such a method is called at the end of an
instance's life. Inside the closeQ method, we have to reset the flag counter and also call
the Singleton1 instance of the shared Cluster Operator to uninstall all components (Listing
5.9).

public synchronized void close () throws Exception {
Bef oreAHOnce. systemReady = f a l s e ;
// complete u n - i n s t a l l a l l components
SetupClusterOperator.getlnstanceHolder().uninstall();

}

Listing 5.9: Teardown phase of shared Cluster Operator

Furthermore, recall from Section 4.5.1, when we proposed the unification of the Cluster
Operator configuration option via the Builder design pattern. Due to the numerous factory
methods already becoming difficult to manage, it was necessary. The overall implementation
without auxiliary methods (omitted for brevity) can be found in Listing B.5.

The last part we proposed in Section 4.5.1 was the Rollback algorithm (7). This is
necessary if we have a situation of two classes that require a distinct configuration of the
Cluster Operator e.g, Thread A terminates the execution of test class X and thread B will
start the execution of test class Y, which needs a default configuration8 that differs from
the current. In such a situation, we trigger the Rollback algorithm.

5.2.2 Isolation of test Suites

The problem of isolating several classes that need different Cluster Operator configurations
has been described and explained in Section 4.5.2. We implemented an annotation, which
primarily serves as a label for that class.

©Retention(RetentionPolicy.RUNTIME)
©Target({ElementType.TYPE >)
public ©interface IsolatedSuite { }

Listing 5.10: Implementation of the ©IsolatedSuite annotation

Moreover, we have implemented an additional mechanism that will ensure synchronisation
between such test suites (i.e., ©IsolatedSuite. We create SuiteThreadController class, and
one of the synchronisations that are implemented inside this class is for ©IsolatedSuite. If
©IsolatedSuite starts its execution, it sets the given boolean value to true, which prevents
the following thread from going through the given while loop. If ©IsolatedSuite completes
its execution, it sets the given boolean value to false, and the following thread will be able
to start its execution. Furthermore, we notice the keyword synchronised in the method

7 Singleton pattern - it is one of the creational design patterns, restricting instantiation of the class to
only one instance. Thus invocation of getlnstanceHolder method results always in the same instance.

^Default configuration - Such configuration is used alongside with @ParallelSuite. Thus if ©IsolatedSuite
ends its execution and starts @ParallelSuite, it always comes with triggering Rollback algorithm.

52

definition. The main reason why this keyword is necessary is that for multiple threads
(i.e., @IsolatedSuite), they will have to wait until the thread that is currently in the loop is
dropped and unlocks the lock, which implicitly adds synchronised (Listing 5.11).

public synchronized void waitUntilEntryIsOpen(
ExtensionContext extensionContext) {
// only one thread at a time
while (this.isOpen.get()) {

// Suite Y i s waiting to lock to be released.
Thread.currentThread().sleep(...);

}

// Suite X has locked the OlsolatedSuite and other
// OlsolatedSuites must wait u n t i l lock i s released,
this.isOpen.set(true);

}

Listing 5.11: Implementation of the ©IsolatedSuite synchronisation mechanism

5.2.3 SuiteThreadController

As mentioned in Section 5.2.2, the SuiteThreadController class provides multiple synchro­
nizations. We have already described the first type in the previous Section for @IsolatedSuite
classes. However, there are several other scenarios between classes (i.e., ©ParallelSuite and
©IsolatedSuite) that can occur:

1. case - only @ParallelSuite will be executed, (no need synchronisation)
2. case - only ©IsolatedSuite will be executed, (Section 5.2.2)
3. case - several @ParallelSuite will be executed followed by a few ©IsolatedSuite,
4. case - several @IsolatedSuite will be executed followed by a couple of @ParallelSuite,
5. case - @ParallelSuite starts, then @IsolatedSuite and finally @ParallelSuite,
6. case - @IsolatedSuite starts, then @ParallelSuite and finally @ParallelSuite.
7. case - ForkJoinPool spawning additional threads, which exceeding our configured

parallelism limit.

In the first case, it is clear that we will not need any synchronisation between classes because
they all use the same Cluster Operator configuration. Nevertheless, in the third case, it
is necessary to provide some form of synchronisation. The scenario that could occur is
that ©IsolatedSuite would be the last to be executed, and at the same time, our testing
framework runs a few ©ParallelSuite. However, this means nothing for ©IsolatedSuite,
because no lock is attached to it, and it would start modifying the shared Cluster Operator
and thus disrupt the execution of ©ParallelSuite classes. Therefore, we have implemented
an atomic counter into the SuiteThreadController class, which will increase if the thread
starts executing ©ParallelSuite and decreases as soon as it completes. Subsequently, the
thread (i.e., ©IsolatedSuite) that wants to start executing will not be able to start until
the ©ParallelSuite counter is equal to zero. In this case, the previous possible pessimistic
scenario is eliminated (Listing 5.12).

public void w a i t U n t i l Z e r o P a r a l l e l S u i t e s (
ExtensionContext extensionContext) {

53

// u n t i l more that 0 p a r a l l e l s uites running i n p a r a l l e l 'active
waiting'

boolean precondition = true;
while (precondition) {

Thread.sleep(...);
// runningTestSuitesInParallelCount v a r i a b l e i s
// changed by other threads (i . e . , OParalleSuites)
precondition = runningTestSuitesInParallelCount.get() > 0;

}

}

Listing 5.12: ©ParallelSuite and ©IsolatedSuite synchronisation mechanism

For the fourth case, when we start executing a few ©IsolatedSuite and then ©Parallel-
Suite, we can reduce this to the problem when we only run the ©IsolatedSuite (2nd case)
because it is necessary to synchronise between ©IsolatedSuite and none for ©ParallelSuite.

In the fifth case, when we begin to execute ©ParallelSuite, then several ©IsolatedSuite,
we eventually start running several ©ParallelSuite. Thus, this includes the combination
of synchronisation from cases 2 and 3. The analogy for the sixth case is a combination of
these two cases.

In the last case, synchronisation is required when ForkJoinPool spawns multiple threads
that exceed our configured parallelism limit. It does this because ForkJoinPool uses a
worker-steal algorithm. Unfortunately, this technique spawns additional threads when syn­
chronisation primitive blocks thread (e.g, this can lead to a situation where the user sets a
fixed value of parallelism to two when he expects to run at most two test classes with two
test cases. However, in some borderline situations, it could be that ForkJoinPool will spawn
five threads instead of two. Because of this, we have implemented an additional mechanism
that will make such threads sleep if they exceed the value of parallelism (Listing 5.13).
Noteworthy is that if ©ParallelSuite completes its execution, then in ©AfterAll (i.e., at the
end of the test class), it notifies and sets the value of isParallelSuiteReleased to true. Thus
allow one of the waiting ©ParallelSuite to start its execution.

public void waitUntilAllowedNumberTestSuitesInParallel(
ExtensionContext extensionContext) {
f i n a l S t r i n g testSuiteToWait =

extensionContext.getRequiredTestClass().getSimpleNameO;
waitingTestSuites.add(testSuiteToWait);

// wait zone f o r threads, which exceed maximum
// of allowed t e s t suites i n p a r a l l e l
while (!isRunningAllowedNumberTestSuitesInParallel()) {

// waiting to proceed with execution but current thread
// exceed maximum of allowed t e s t suites i n p a r a l l e l
Thread.currentThread().sleep(...);

// release and lock again
i f (i s P a r a l l e l S u i t e R e l e a s e d . g e t ()) {

// lock
i s P a r a l l e l S u i t e R e l e a s e d . s e t (f a l s e) ;
// remove selected t e s t s u i t e to continue i t s execution

54

waitingTestSuites.remove(testSuiteToWait);
break;

}

}

// selected t e s t s u i t e i s released
}

Listing 5.13: Additional synchronization for multiple ©ParallelSuite that exceed our
configured parallelism limit and are spawned by ForkJoinPool

5.2.4 TestNamespaceManager

Another component that is required for class-wide parallelisation is TestNamespaceMan­
ager. Recall the ©ParallelNamespaceTest annotation, creating its namespace for such a
test case. Also, assume the situation of multiple test classes (i.e., ©ParallelSuites) running
in parallel. If we run more than one such class, it is necessary to ensure that each test class
operates with its namespace. Of course, we can think of several approaches to solve this
problem by using static information to define separate Namespaces for each test suite that
would need it. However, it would require a manual approach when adding another such test
class. Another approach, using dynamic information, would be to find out which classes
will need such a namespace at runtime. We obtain this information using the recursive
method we implemented, which obtains all ©Parallelsuite (Listing 5.14).

private void retrieveAHSystemTestsNames (F i l e s t F i l e s) {
i f (stFiles.getNameO.endsWith(Constants.ST + ".Java") &&

!stFiles.getNameO.contains(Constants.ISOLATED)) {
this.stParallelSuitesNames.add(stFiles.getName());

}

F i l e [] c h i l d r e n = s t F i l e s . l i s t F i l e s () ;
i f (children == n u l l) {

return;
}

f o r (F i l e c h i l d : children) {
retrieveAHSystemTestsNames (c h i l d) ;

}

}

Listing 5.14: Dynamically list all ©ParallelSuites

Subsequently, we will make a namespace for each of these classes and store it in a hash
map where the key will be the class name (e.g, TracingST.getClass().getName()), and if
the given test class wants to get this namespace it will do so simply as illustrated in Listing
5.15.

O P a r a l l e l S u i t e
class TracingST {

private f i n a l S t r i n g namespace =
testSuiteNamespaceManager.getMapOfAdditionalNamespaces()

.get(TracingST.class.getSimpleName())

.stream().f i n d F i r s t () . g e t () ;

55

// other a t t r i b u t e s ommited f o r b r e v i t y .
}

Listing 5.15: ©Parallelsuite query generated (dynamically) namespace

5.2.5 Configuration

Recall from Section 5.1.4, where we present configuration of the method-wide paralleli-
sation. To enable class-wide parallelisation, we can use two ways same as describe in
Section 5.1.4 but with different values (a) using system properties (Listing 5.16), (b) using
the junit-platform.properties configuration file (Listing 5.17). Note that we have to over­
ride system property parallel.mode.classes.default to concurrent. Wi th that we can run
multiple test classes simultaneously. Moreover, we may notice that the system property
parallel.mode.default is not concurrent. That is because we override this value using the
annotations ©ParallelTest and ©ParallelNamespaceTest.

-Djunit.jupiter.execution.parallel.enabled = true
-Djunit.jupiter.execution.parallel.mode.classes.default= concurrent
- D j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . c o n f i g . f i x e d . p a r a l l e l i s m = <n>

Listing 5.16: (a) Configuration via system properties

j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . e n a b l e d = true
junit.jupiter.execution.parallel.mode.default = same_thread
junit.jupiter.execution.parallel.mode.classes.default = concurrent
j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . c o n f i g . s t r a t e g y = f i x e d
j u n i t . j u p i t e r . e x e c u t i o n . p a r a l l e l . c o n f i g . f i x e d . p a r a l l e l i s m = <n>

Listing 5.17: (b) Configuration via file

5.2.6 Application

The class-wide parallelism for our testing framework is used mainly in the more extensive
infrastructures we have at our disposal (i.e., multi-node Kubernetes or Openshift cluster,
where each node has 8 C P U cores and 16GB R A M) . Therefore, the implemented solution
was tested on AWS infrastructures and, at the same time Openstack. The question is, what
is the optimal configuration for each infrastructure (Listing 5.1). The next chapter, which
is devoted to experimentation, can answer such a question.

•guamazon
10 web services

parallelism, ena bled =t rue
parallel. mode.default=?
parallel.mode.classes.default=?
parallelism, strategy=fixed
parallelism.in-parallel=?

Azure Pipelines

parallelism.ena bled =t rue
parallel.mode.default=?
parallel.mode.classes.default=?
parallelism. strategy=fixed
parallelism.in-parallel=?

openstack.

parallelism. enabled=true
parallel.mode.default=?
parallel.mode.classes.default=?
parallelism. strategy=fixed
parallelism.in-parallel=?

Figure 5.1: Find optimal configuration for each infrastructure

56

Chapter 6

Experimental evaluation

This chapter is devoted to testing and experimentally evaluating of proposed parallel exe­
cution designed and implemented in Chapters 4, 5. In addition, we designed experiments
to prove the parallelism we created scales (i.e., method or class-wide).

6.1 Experiments design

The overall design of the experiments is divided into three main categories; (a) prelimi­
nary experiments to prove that the parallelisation we propose is capable of vertical scaling.
These experiments will be performed for small Kubernetes instances (i.e., Minikube) and
multi-node Kubernetes clusters. The expected results should be positive because paral­
lelisation will have the best possible implementation environment (e.g, for method-wide
parallelisation, it will be a test class containing only tests that are capable of parallel com­
putation, similarly to class-wide parallelisation.); (b) the next part will be the acceptance
of production-based experiments, which will primarily provide information on whether it is
beneficial to use parallelisation in a small subset of tests, where mostly half of the tests are
capable of parallel execution. Acceptance experiments will include a subset of our system
of tests, where of course, there will also be tests and test classes, which are not capable
of parallel execution, and thus synchronisation will occur. Possibly the parallelisation will
not be suitable for acceptance experiments because most test suites consist of one or two
test cases, and the overall preparation phase of the test suite is long.; (c) the last type of
experiment, socalled regression, will already include the entire test suite currently offered
by the Strimzi project. It will tell us whether the given parallelisation is eligible for the
Strimzi. Moreover, a significant acceleration is expected because test classes often contain
ten or more tests. On the other hand, we also have many tests that need total isolation,
which potentially can slow down the whole performance.

We mainly use the Openstack and Amazon Web Services infrastructures to perform all
the experiments, which will provide us with the necessary hardware resources. Furthermore,
for preliminary experiments, we use four types of instances:

• Kubernetes cluster - multi-node, where this instance will provide 24 virtual cores
and 48 G B R A M (without taking into account master nodes)

• Minor instance of minikube - single-node, where this instance will provide two
virtual cores and 8GB R A M

57

• Typical instance of minikube - single-node, where this instance will provide four
virtual cores and 16GB R A M

• Comprehensive instance of minikube - single-node, where this instance will
provide eight virtual cores and 32GB of R A M

6.2 Prel iminary experiments
Recall 3.1 Amdahl's formula from Chapter 3. We will not count the unit of work as the
number of tests capable of parallel execution, but we will use a more accurate way (i.e.,
execution time). We also introduce a new formula (4), which also calculates the theoretical
time after acceleration and then, thanks to this the result, we calculate the total possible
acceleration using the formula (5). A l l markings are the same as described in Chapter 3
under Amdahl's law; we have Tnew and T0id- Told describes the time necessarily performed
(i.e., sequentially) by a given task. On the other hand, Tnew describes the time after
acceleration Equation (4)

Tnew = (1 - p) * T0id + - * Told (4)
5

S=I^- (5)
Tnew

In the case of our experiment, we have the test class Security ST, which includes twenty-
one test cases. A l l these tests can be performed in parallel and are a perfect candidate to
obtain information that parallelisation is capable of vertical scaling. What should be noted
is the fact that the shared Cluster Operator is deployed before the execution tests, where
usually this deployment lasts from one to six minutes (we choose a mean value of three
minutes). So in our case, the part that can be parallelised will be equal to p = The
first instance we use is a multi-node Kubernetes cluster with 24 virtual cores and 48 G B
of R A M . Empirically, we obtained data on how long it takes to complete a given test class
sequentially, using such information in Amdahl's law.

171 m

T„ew = 0--—) * 174 + -^-* 174= 10 minutes (6)

In Equation (6), one can see the theoretical time we should approach in first experiments
executing Security ST test suite. Furthermore, the entire acceleration could be up to 17
times (i.e, Equation (7)). Of course, we know from practice that we will not get exactly
such an acceleration; we can solely get nearer to it.

S= — = 17 Ax (7) 10 v '
Additionally, we use the following notation in the tables:

• X - disabled parallelism (e.g, method or class-wide), or test execution containing
errors (e.g, cluster crashed, because of out of memory problem)

• J - enabled parallelism (e.g, method or class-wide), or test execution without any
issues

• ^ - test execution with flaky tests because of resource capacity

58

In the following Table 6.1, we can see the individual preliminary experiments performed
over our implementation. For clarity, a sequential variant is also included. We slowly
increased the threads used to determine if a given parallelisation scales there (i.e., we
started from two to sixteen). As part of our experimentation, we found that up to twelve
threads would be the best candidate for SecurityST. As shown in Table 6.1, when using
sixteen threads, the given Kubernetes cluster was destroyed. The reason was mainly the
capacity resources (i.e., we deploy Kafka cluster and many other resources for each test
case). At the same time, we can notice that we did not reach the theoretical acceleration
that we calculated in Equation (6). However, this is due to several factors (e.g, tests do
not take the same time or slower deployment volumes within Kafka clusters). Nevertheless,
one needs to realise that if we had hypothetically unlimited resources (i.e., cores, R A M) ,
we would not be able to overcome the acceleration we calculated (i.e., Equation (8)).

Number of
Threads

• —

Method-wide
r —

Class-wide Resource J Execution
issues \ time

1 X K • 02:54 h

2 • K • 01:40 h

3 • K • 01:04 h

4 • X • 50:58 min

5 • X • 43:53 min

6 • X • 39:42 min

7 • K • 33:22 min

9 • X • 28:06 min

10 • K • 27:56 min

12 a X • 24:32 min

13 a K A
(7 flake test cases)

01:54 h

16 a X X
(Cluster crashed)

Table 6.1: The SecurityST contains twenty-one test cases, and all of them could be
executed in parallel (i.e., contains ©ParallelTest or ©ParallelNamespaceTest annotation).
Moreover, each test case deploys a Kafka cluster, which perfectly verifies if the Kubernetes
cluster or Minikube (i.e., single-node) can handle such a load.

lim Smax = —— = TtT = 5 8 x (8)
174

Our acquired acceleration in a perfect environment is less than S m a x = 58x and at the same
time Sfeo = 17Ax. However, this is confirmed by the fact that we will never be better than
Smax and also, we will never achieve a possible theoretical acceleration (i.e., Steo) because
such results are entirely typical for this kind of experiment. Overall, our acceleration is
^practical = Wk =

 7 - l x ' w h i c h proves following relation Spractical < S t e o < Smax-
Other preliminary experiments we performed were on more minor instances where it

was a matter of course that the results accelerations compared to a multi-node cluster

59

will be significantly lower and slower. Therefore, Amdalh's law will also contain a much
lower theoretical acceleration. For a machine containing four virtual cores, the estimated
theoretical time is Tnewteomedium, which is equal to Tnewteomedium = (1 - ±||) * 185 +

182

if- * 185 = approximately 49 minutes. So the theoretical acceleration of the instance could
be S'new_teo_medium = i|f = 3.8x. Nevertheless, as we can see in Table 6.2, we did not
accomplish such a same acceleration. However, we have come close enough, and the practical
acceleration is Snew_practiCal_medium = y§ = 2.34x. We could use a maximum of three cores
because, in the case of four cores, the virtual machine crashes due to a lack of memory.
C P U utilisation was approximately 80% during the use of the four cores.

Number of
Threads

Method-wide Class-wide
Resource

issues
Execution

time

Flavour: 8 G B R A M 2 v C P U s

1 K K • 03:19 h

2 a K X
(Cluster crashed)

Flavour: 16GB R A M 4 v C P U s

1 K X • 0 3 : 0 5 h

2 a X • 0 1 : 4 5 h

3 • X • 01:19 h

4 • K X
(Cluster crashed)

Flavour: 3 2 G B R A M 8 v C P U s

1 K K • 0 3 : 0 4 h

2 a K • 0 1 : 4 6 h

3 a K • 0 1 : 1 6 h

4 a K • 5 9 : 5 2 min

5 a K • 4 9 : 1 6 min

6 a K • 48:16 min

7 • X X
(Cluster crashed)

Table 6.2: Multiple experiments for various flavours of single-node Kubernetes instances
for the Security ST suite. Both of these flavours (i.e., orange and red one prove that
parallelisation is vertically scaling on more minor instances), the yellow one (i.e., using two
virtual cores and eight G B R A M) is not able to run either two test cases in parallel resulting
in O O M problem (i.e., Out of memory).

We also have done other experiments to prove that our implemented class-wide par­
allelisation is capable of vertical scaling. Therefore, we selected a set of test classes that
do not need any form of synchronisation or isolation (that is, they do not contain @Iso-
latedSuite annotation). Specifically, these will be classes containing the ©Parallelsuite
annotation, and they are HttpBridgeScramShaST, HttpBridgeTlsST, ThrottlingQuotaST,
TopicST, UserST, ReconciliationST and CruiseControlConfigurationST. Together they con-

60

tain thirty test cases where twenty-nine do not need any form of synchronisation, and only
one test case needs isolation from other tests. More precisely, we have ten ©Parallel-
NamespaceTest, for repetition; these are tests that deploy the Kafka cluster and thus rank
among the more resource-intensive. Next, we have 19 ©ParallelTest can also be said to be
lightweight variants on the need for total resources, and finally, one ©IsolatedTest guar­
anteeing isolation from other parallel tests. In case we would like to calculate a possible
theoretical acceleration, it is necessary to know the sequence time and, at the same time,
the time of one ©IsolatedTest. The total time of our selected tests is 107 minutes, of which
©IsolatedTest lasts two and a half minutes. If we add the preparation time of the shared
Cluster Operator to this, we get to five and a half minutes and therefore, the possible par­
allel time will be equal to p = . The speedup factor is equal to the number of virtual
CPUs we have available (i.e., S = 24), and thanks to that, all values can be set to formula
as defined above (i.e., Equation (4)).

1 0 i 5 101-5

Tnew = (1 _ _ [7 ^ * 1 0 7 + _ ^ f * 1 0 7 = 1 0 m i n u t e s (6)

After the calculation, it turns out that the theoretical acceleration using twenty-four cores
will approach ten minutes, and by this outcome, we can compute theoretical speed up which
is Sfeo =

 = T f T = 10.7JC and linis^oo Smax =
 TTT; = "i ToTT

 = 19x.
lnew l u 1 P 1—jp=-

What should be noted is that for class-wide parallelisation, the best possible scenario
is to have a consistent test distribution. Ideally, such distribution where most test cases
support parallel execution and in each test class are enough tests, (i.e., have test classes
containing more minor parallel test cases than configured parallelism). This gives us the
most out of the given type of parallelisation. For instance, suppose that we have five
test classes, and each of them will have two tests (these tests will be capable of parallel
execution). The best possible scenario would be to run such a set of tests with ten threads,
guaranteeing that all threads will be busy. However, the test classes generally do not
provide such an even distribution, which is almost impossible in practice (i.e., have the
same number of tests for each test class).

Number of
Threads

Method-wide Class-wide
Resource

issues
Execution

time

1 K K Q 01:47 h

5 a a Q 43:53 min

6 a a Q 34:06 min

10 a x Q 01:06 h

10 a Q • 29:49 min

15 a Q 1 flake
39:21 min

Table 6.3: Experiments aimed at class-wide parallelisation and one execution for method-
wide by which we compare these two approaches and found non-correlation. Overall thirty
test cases were executed (i.e., nineteen ©ParallelTest, ten ©ParallelNamespaceTest and
one@IsolatedTest).

The experiments we performed can be seen in Table 6.3 similar to method-wide we
first added a total sequential run to the parallelisation; then, we increased the number of

61

threads. Furthermore, we also compared the implementation of method-wide (i.e., orange
row colour), where the overall implementation took significantly more than in the case of
class-wide parallelisation (i.e., green row colour). The main reason why the use of ten
threads of class-wide parallelisation was more than half an hour better was because not
more than ten tests were in each test class, and therefore unnecessarily, many threads were
used in method-wide parallelisation, which were not actually used. On the other hand,
class-wide parallelisation has made full use of ten threads, as it can perform several classes
simultaneously, thus significantly increasing the total time.

6.3 Production experiments

In this section, we will include two different experiments. First, in Section 6.3.1 they will be
described as shown experiments on a small production set of system tests. Moreover, these
experiments provide information on whether parallelisation is applicable even for a small
production-based set of tests. In the next section (i.e., Section 6.3.2), we get a different
view of the extensive set of system tests that are currently available in the Strimzi.

6.3.1 Subset of our Strimzi system test

This type of experiment will enclose our genuine subset of tests. These tests also give
us whether it is beneficial to perform them parallel. Since we know that the profile also
contains enough test cases for which isolation is necessary (i.e., ©IsolatedTest) and test
classes (i.e., ©IsolatedSuite). Therefore, a significantly weaker acceleration is expected
than the preliminary experiments, which have the best possible parallelisation environment.
Furthermore, since we found out that flavour 2CPUs and 8GB RAM is not able to perform
even two parallel tests, it is thus unnecessary for this type of experiment.

So if we look at a more detailed way in our production-based tests, we find out precisely
that it contains 13 test classes and 35 tests. Of these, 6 test classes require complete isola­
tion (i.e., ©IsolatedSuite) and the same for 5 test cases (i.e., ©IsolatedTest). However, what
is interesting is to be careful, and parallel tests could sometimes be in border situations
taken as ©IsolatedTest. One of the cases is where we have three isolated classes containing
only one test that can perform the parallel implementation. This is because test cases in
©IsolatedSuite will only be executed after the calculation is completed by ©ParallelSuite
or another ©IsolatedSuite. We have eight tests that require complete isolation and 27 tests
capable of parallel execution. However, this fact still does not guarantee that the problem
will scale vertically. One reason is that the MetricsIsolatedST test class contains 18 parallel
tests, where almost all of them do not last more than a few seconds. Thus, there will be little
success in this class for parallelisation. At the same time, the overall test set is not an ideal
sample for method-wide parallelisation because these are test classes that do not contain
several tests. However, where it can be a potential success, the use of class-wide paralleli­
sation is not great. Some paralleled classes (i.e., ©Parallelsuite) contain pre-preparation of
their test environment (i.e., HttpBridgeTlsST, RollingUpdateST). Furthermore, in the case
of class-wide parallelisation, they create it independently of the second test class, meaning
that where it will be possible to save time will be mainly in these parts. However, we do
not think we will see an intense acceleration.

The experiments we performed on a given test sample do not differ much from the previ­
ous ones. We started with typical sequential execution and gradually increased the number
of threads (see Table 6.4). We found out that during the use of method-wide parallelisa-

62

tion, there was no acceleration at all. Thus, a scenario where this form of parallelisation
is not very suitable due to the small number of tests in the given test classes. However,
where we could potentially succeed was by using class-wide parallelisation. Within the more
powerless machine (i.e., 16GB RAM and four virtual CPUs), the acceleration was almost
non-existent, even in the class-wide case. On the other hand, using a more robust machine

Number of
Threads Method-wide Class-wide

Resource
issues

Execution
time

Flavour: 16GB R A M 4 v C P U s

1 K K • 0 1 : 3 6 h

2 a X • 01 :31 h

2 a a • 01 :31 h

3 a a • 0 1 : 2 5 h

4 a a • 01:24 h

5 a a (Cluster crashed)

Flavour: 3 2 G B R A M 8 v C P U s

1 K K • 01 :31 h

2 a K • 0 1 : 3 0 h

3 a a • 01 :21 h

4 a a • 0 1 : 1 8 h

5 a a • 0 1 : 1 5 h

6 a a • 0 1 : 0 6 h

7 a a • 0 1 : 0 6 h

8 a a • 01:03 h

9 a a • 0 1 : 0 6 h

Table 6.4: Combination of experiments (i.e., using method and class-wide parallelisation)
primarily aiming at class-wide parallelisation. Moreover, experiments were performed for
more-minor instances of Kubernetes.

(i.e., 32GB RAM and eight virtual CPUs), we could get to eight threads with only 1.4x
acceleration, which is not very advantageous in using the number of resources needed for
parallelisation. Hence, it is clear that more minor instances of Kubernetes are not suitable
for this type of sample (i.e., acceptance production-based) due to the above facts.

At the same time, we wanted to try a similar scenario in the case of using a more
significant instance of Kubernetes (i.e., multi-node). The results we obtained were the
same as for the more minor instances of Kubernetes, also due to the size of the test set
(i.e., Table 6.5).

63

Number of
Threads

Method-wide Class-wide
Resource

issues
Execution

time

1 X K Q 01:31 h

5 Q a Q 01:04 h

7 Q a Q 01:03 h

10 Q a Q 01:12 h

Table 6.5: Experiments performed by using class-wide parallelisation for a more robust
Kubernetes cluster.

6.3.2 Entire system tests of the Strimzi

The last type of experiment we tried was a regression (i.e., productionbased). In other
words, a very robust set of test cases contains everything (i.e., ©IsolatedTest, ©Isolated-
Suite, ©ParallelTest, ©ParallelSuite). Currently, this test sample contains approximately
65 test classes, and more than half of them are classes requiring synchronisation (i.e., @Iso-
latedSuite). Specifically, these are 37 isolated classes, and with the use of the add-on, we
find that there are classes that can perform them at the same time precisely 28. This
quantification can give us an approximate possible result of the experiments. Given that
sequential execution takes almost twenty-one hours, the ideal scenario would be to get be­
low half (i.e., ten hours) of execution time. A total of four types of experiments will be
performed; (a) V M with 16GB R A M and four virtual cores, (b) V M with 32GB R A M and
eight virtual cores, (c) Kubernetes cluster with six nodes (three masters and three work­
ers) and (d) Kubernetes cluster with nine nodes (three masters and six workers). We do
not expect much acceleration for (a) because this is a test suite when O O M may have a
problem. This is mainly due to test cases containing the component KafkaMirrorMaker or
KafkaMirrorMaker2, which needs a lot of R A M . On the other hand, for alternative (b),
we already assume an acceleration approaching half. At the same time, however, it will
perform method-wide parallelisation for both types of experiments. In another Kubernetes
instance (c) type, we assume the possible implementation of at least five threads in par­
allel and, thus, some acceleration. Finally, for (d), it is a matter of course that the most
significant possible acceleration is expected and, at the same time, the use of class-wide
parallelisation for a vast number of threads.

In the first run of experiments for small instances of Kubernetes (i.e., using one V M) , we
obtained the following information. For V M s with 16GB R A M and four virtual cores, no
form of parallelisation is possible because already with method-wide parallelisations with
the use of two threads, the given V M falls on the lack of memory (Table 6.6). This is the
case in test cases using the KafkaMirrorMaker or KafkaMirrorMaker2 components. At the
same time, the combination of KafkaConnect with KafkaMirrorMaker/2. Let us remember
that one component of KafkaMirrorMaker/2 requires two Kafka clusters, and hence is very
memory intensive.

The second type of experiment using a more powerful V M was slightly more favourable
in terms of results. We could even use four threads where the total time spent performing
was 12h from the flood 21h. However, using five threads, we got into the same problem
as in previous experiments (i.e., O O M problem), as shown in Table 6.6. Overall, it can be

64

Number of
. Method-wide

Threads]
. — 1_ „ _

Class-wide
Resource

issues
Execution

time

— —
Flavour: 16GB R A M 4 v C P U s

1 K K • 2 0 : 3 3 h

2 a X X
(Cluster crashed)

Flavour: 3 2 G B R A M 8 v C P U s

1 X K • 2 0 : 3 2 h

2 • K • 1 4 : 2 4 h

3 • K • 12:21 h

4 • K • 11:56 h

5 • K X
(Cluster crashed)

Table 6.6: Combination of experiments (i.e., using method parallelisation) on production-
based test sample with different VMs .

assessed (for small instances of Kubernetes) that ideal candidates for this test sample will
use V M with 32GB R A M and eight virtual cores.

Another form of experimentation (i.e., (c) and (d)) they were even more massive on
resources. Therefore, we expected better results. For the Kubernetes cluster using three

Number of
Threads

Method-wide Class-wide
Resource

issues
Execution

time

Flavour: 3 master nodes 3 workers

1 X K Q 2 0 : 2 4 h

5 Q K Q 11:09 h

10 Q K X
(32 test errors)

11:51 h

Flavour: 3 master nodes 6 workers

15 Q Q Q 0 9 : 5 3 h

20 Q Q Q 0 8 : 5 4 h

25 Q Q Q 08:14 h

30 Q Q X
(Cluster crashed)

Table 6.7: Experiments performed by using method-wide and class-wide parallelisation for
a more robust Kubernetes clusters (variation with three and six worker nodes).

master and three worker nodes, we got the best results using five threads and were we can
get from 21h to l l h , as can be seen in Table 6.7. When we used more threads, the result
was worse, or the test cases fell due to a lack of memory (e.g, using ten threads, we got 32
error tests).

65

The results were much better for the Kubernetes cluster using three master and six
worker nodes. We could use up to twenty-five threads, which resulted in a decrease in
computing time. Interestingly, almost half of the test classes that support class-wide par-
allelization (i.e., ©ParallelSuites) improved its total exercise time from about eight hours
to one hour, which results in up to 8-fold acceleration. On the other hand, we could not
fully use the strength within the remaining thirty-seven test classes that need an isolation
environment (i.e., ©IsolatedSuite). It is evident that tests are performed in parallel in a
given class, but occasionally there are five or fewer tests in a given class, which prolongs
the entire execution time. From the sequential execution time (i.e., twenty-one hours), we
got to eight hours (Table 6.7). Moreover, one hypothesis would undoubtedly improve the
overall performance, but it would also worsen the overall readability of the test sample.
For instance, if we were to re-structure the test suites, where we would be test classes
(mainly ©IsolatedSuite). Then we add test cases that require the same Cluster Operator
configuration, and these test suites would contain a maximum of twenty-five test cases. It
would significantly improve overall time because test classes will not contain less than five
test cases, resulting in a situation where most threads are working. Therefore, we eliminate
scenarios where we configure twenty-five threads running in parallel, and some test classes
have only three or fewer test cases, meaning that the seventeenth threads are sleeping.
Re-structuring our test classes can be very friendly at first glance. Unfortunately, we would
sacrifice readability (e.g., tests that should belong to a separate test class we combine into
some most similar), thus reducing scenarios where we can have ©IsolatedSuite with less
than five test cases. Nevertheless, we could end up in a scenario where these test cases in
one ©IsolatedSuite will not have any standard features. From a performance point of view,
this can also be summarized by the following quote said by Donald Ervin Knuth.

Premature optimization is the root of all evil (or at least most of it) in program­
ming.

In the case of using 30 threads, we got to the problem of O O M and Kubernetes cluster
crashing. We can evaluate that Kubernetes for a given test sample is the optimal candidate
cluster using three master and six workers nodes for larger instances.

66

Chapter 7

Conclusion

The thesis began with a description of the basic principles of Kubernetes and Kafka. Further­
more, we described a project that encapsulates Kafka and uses it on top of the Kubernetes
(i.e., Strimzi). We further explained the architecture and principles in the system tests of
the Strimzi project. In addition, we gained knowledge about parallel execution, which we
successfully used in this thesis. Moreover, we identified the challenges of the current system
test architecture. Therefore, we designed and implemented a solution to solve these prob­
lems (i.e., using multiple pipelines and creating sub-sets of tests is not horizontally scalable
due to our cloud services that provide resources). Thus, this information motivated us to
design and implement a mechanism of fine-grained parallelism in our test framework (i.e.,
using memory and central processing units) that the cloud services offer us. Finally, our
experiments showed that parallelisation could scale vertically for different test samples.

Based on the performed experiments, we found that within the environment that fully
supports parallelisation, there were results the acceleration within factor 8. We obtained
the identical factor in the case of production experiments (i.e., from eight to one hour)
when performing only classes that support class-wide parallelisation (i.e., ©ParallelSuite).
By contrast, overall production experiments (i.e., together with ©IsolatedSuite) showed
partially more inadequate results (i.e., a factor of 2.5). We reach such a factor mainly due
to the structure of the test classes and their content (i.e., the number of tests within the test
class; meaning a ©IsolatedSuite with fewer than five test cases when twenty-five threads in
parallel are configured and thus twenty threads sleep). Furthermore, more than half of the
classes require to perform in complete isolation (i.e., ©IsolatedSuite).

We contributed the given code to the open-sourced project Strimzi, available on Github 1 ,
which also makes it viable to inspire other kube-native products to enforce such solutions.
Making parallel execution possible started from 0.23.0 (released in May 2021) to the 0.29.0
Strimzi version. Whether a method or class-wide parallelisation, both steps have been
completed and merged into the main branch of the Strimzi project, where this implemen­
tation will be available from version 0.29.0. Our parallelism model of system tests is used
in continuous integration systems (i.e., Jenkins, Azure Pipelines), where the overall com­
putational time is much faster than in sequential computational computation (proved by
experiments).

Strimzi Github repository - https://github.com/strimzi/strimzi-kafka-operator

67

https://github.com/strimzi/strimzi-kafka-operator

Bibliography

[1] A U T H O R S , K . Kubernetes [online]. 2019 [cit. 2021-08-11]. Available at:
https: //mapr.com/products/kubernetes/assets/k8s-logo.png.

[2] A U T H O R S , T. K . Apache Kafka documentation [online]. 2021 [cit. 2021-08-14].
Available at: https://kafka.apache.org/documentation/.

[3] A U T H O R S , T. K . History [online]. 2019 [cit. 2021-08-11]. Available at: https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/#going-back-in-time.

[4] A U T H O R S , T. K . Namespaces [online]. 2019 [cit. 2021-08-11]. Available at:
https: //kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/.

[5] A U T H O R S , T. K . Service [online]. 2019 [cit. 2021-08-11]. Available at:
https: //kubernetes.io/docs/concepts/services-networking/service/#publishing-
services-service-types.

[6] A U T H O R S , T. S. Strimzi blog posts [online]. 2021 [cit. 2021-09-26]. Available at:
https: / / s tr imzi. io/blog.

[7] A U T H O R S , T. S. Strimzi Kafka Operator [online]. 2021 [cit. 2021-09-26]. Available at:
https: / / strimzi.io/docs/operators/latest.

[8] G U S T A F S O N , J . L . Amdahl's Law. In: P A D U A , D. , ed. Encyclopedia of Parallel
Computing. Boston, M A : Springer US, 2011, p. 53-60. DOI:
10.1007/978-0-387-09766-4_77. ISBN 978-0-387-09766-4. Available at:
https: / / d o i . o r g / 1 0 . 1 0 0 7 / 9 7 8 - 0 - 3 8 7 - 0 9 7 6 6 - 4 _ 7 7 .

[9] H E R L I H Y , M . , S H A V I T , N . , L U C H A N G C O , V . and S P E A R , M . The Art of

Multiprocessor Programming. 2nd ed. Morgan Kaufmann, 2020. ISBN 0124159508.

[10] I N C . , D . Docker [online]. 2016 [cit. 2021-08-11]. Available at:
https: //s3-us-west-2.amazonaws.com/com-netuitive-app-usw2-public/wp-content/
uploads/2016/06/small_v-trans.png.

[11] M I T C H , S. Mastering Kafka Streams and ksqlDB Building real-time data systems. 1st
ed. O'Reilly Media, Inc., 2021. ISBN 1492062499.

[12] N E H A N A R K H E D E , T. P . Kafka: The Definitive Guide: Real-Time Data and Stream
Processing at Scale. 1st ed. O'Reilly Media, 2017. ISBN 979-8703756065.

[13] O R S Á K , M . Real Time Data Processing with Strimzi Project. Brno, CZ, 2020.
Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
Available at: https://www.fit.vut.cz/study/thesis/22425/.

68

https://kafka.apache.org/documentation/
http://amazonaws.com/
https://www.fit.vut.cz/study/thesis/22425/

[14] ORSÄK, M. HOW system tests work [online]. 2021 [cit. 2021-08-11]. Available at:
https: / / strimzi.io/blog/2020/12/03/how-the-system- tests-works/.

[15] ORSÄK, M. Introduction to system tests [online]. 2021 [cit. 2021-08-11]. Available at:
https: / / strimzi.io/blog / 2020 /09 /21 /introduction-to-system-tests/.

[16] P A C H E C O , P . An Introduction to Parallel Programming. 1st ed. Morgan Kaufmann,
2011. ISBN 0123742609.

[17] P O U L T O N , N. The Kubernetes Book. 1st ed. Independently published, 2021. ISBN
979-8703756065.

[18] S C H O L Z, J. Deploying Kafka on Kubernetes with Local storage using Strimzi [online].
2018 [cit. 2021-09-26]. Available at: https://strimzi.io/blog / 2 0 1 8 / 0 6/ll/deploying-
kafka-on-kubernetes-with-local-storage-using-strimzi/.

[19] S T O P F O R D, B. Designing Event-Driven Systems. 1st ed. O'Reilly Media, Inc., 2018.
ISBN 9781491990650.

69

https://strimzi.io/blog/2018/06/ll/deploying-

Appendix A

Manual

The author assume that one has already prepare Kubernetes cluster and it is connected
to such instance. Here is the a few steps how to run (a) method-wide or (b) class-wide
parallelisation:

1. clone the Strimzi repository - git clone https://github.com/strimzi/strimzi-kafka-
operator

2. enter the cloned repository - cd strimzi-kafka-operator

3. download needed utilities in directory development-docs/DEV_GUIDE.md
4. build Strimzi project - mvn clean install -DskipTests=true -Dmaven.javadoc.skip=true
5. (a) run system tests using five threads by method-wide parallelisation

• mvn verify -pi systemtest -Pall -Djunit.jupiter.execution.parallel.enabled=true
-Dj unit. j upiter. execution. parallel, config .fixed. parallelism=10

6. (b) run system tests using five threads by class-wide parallelisation

• mvn verify -pi systemtest -Pall -Djunit.jupiter.execution.parallel.enabled=true
-Dj unit. j upiter. execution. parallel, config .fixed. parallelism=10
-Djunit.jupiter.execution.parallel.mode.classes.default=concurrent

7. (optional) one can also run such parallelisation in the InteliJ IDE by specifying these
properties inside configuration.

70

https://github.com/strimzi/strimzi-kafka-

Appendix B

Implementation details

@SafeVarargs
public f i n a l <T extends HasMetadata> void createResource(

ExtensionContext testContext,
boolean waitReady, T... resources) {
for (T resource : resources) {

ResourceType<T> type = findResourceType(resource);
LOGGER.info("Create/Update {} {} i n namespace {}",

resource .getKindO , resource .getMetadataO .getNameO ,
resource.getMetadataO .getNamespaceO == n u l l ? "(not s e t) "

: resource .getMetadataO .getNamespaceO);

// ignore t e s t context of shared Cluster Operator
i f (testContext != BeforeAHOnce .getSharedExtensionContext ()) {

// i f i t i s p a r a l l e l namespace t e s t we are gonna replace
// resource a namespace
i f (StUtils.isParallelNamespaceTest(testContext)) {

i f (!Environment.isNamespaceRbacScope()) {
f i n a l S t r i n g namespace = testContext

.getStore(ExtensionContext.Namespace.GLOBAL)

.get(Constants.NAMESPACE_KEY).toStringO;
LOGGER.info("Using Namespace: {}", namespace);
resource.getMetadataO.setNamespace(namespace);

>
}

}

type.create(resource);

synchronized (t h i s) {
STORED_RESOURCES.computelfAbsent(testContext.getDisplayName(),

k -> new Stack<>());
STORED_RESOURCES.get(testContext.getDisplayName()).push(

new ResourceItem<T>(
() -> deleteResource(resource),

71

resource
)) ;

}

}

i f (waitReady) {
for (T resource : resources) {

ResourceType<T> type = findResourceType(resource);
assertTrue(waitResourceCondition(resource,

ResourceCondition.readiness(type)),
S t r i n g , format ("Timed out waiting f o r °/0s °/0s i n namespace
%s to be ready",
resource.getKindO ,
resource.getMetadataO .getNameO ,
resource.getMetadataO .getNamespaceO));

}

}

}

Listing B . l : Complete thead-safe method for parallel creation resources

public void deleteResources(ExtensionContext testContext) throws Exception
{
LOGGER, inf o (S t r i n g . j o i n C " , C o l l e c t i o n s .nCopies (76, "#")));
i f (!STORED_RESOURCES.containsKey(testContext.getDisplayName()) ||

STORED_RESOURCES.get(testContext.getDisplayName()).isEmptyO) {
LOGGER.info("In context {} i s everything deleted.",

testContext.getDisplayName());
} else {

LOGGER.info("Delete a l l resources f o r {}",
testContext.getDisplayName());

}

// i f stack i s created f o r s p e c i f i c t e s t s u i t e or tes t case
Atomiclnteger numberOfResources =

ST0RED_RES0URCES.get(testContext.getDisplayName()) != n u l l ?
new Atomiclnteger(ST0RED_RES0URCES.get(
testContext.getDisplayName()).size()) :
// stack has no elements
new Atomiclnteger (0) ;

while (ST0RED_RES0URCES.containsKey(testContext.getDisplayName()) &&
numberOfResources.get() > 0) {
ST0RED_RES0URCES.get(testContext.getDisplayName())

.parallelStreamO . p a r a l l e l O .forEach(
resourceltem -> {

t r y {
resourceltem.getThrowableRunner().run();

} catch (Exception e) {
e.printStackTrace();

72

}

numberOfResources.decrementAndGet();
>

) ;
}

STORED_RESOURCES.remove(testContext.getDisplayName());
LOGGER, in f o (S t r i n g . j o i n C " , C o l l e c t i o n s .nCopies (76, "#")));

Listing B.2: Complete thead-safe method for parallel deletion resources

public f i n a l <T extends HasMetadata> void synchronizeResources(
ExtensionContext testContext) {
Stack<ResourceItem> resources = STORED_RESOURCES.get(

testContext.getDisplayName());

// sync a l l resources
fo r (Resourceltem resource : resources) {

(resource.getResource() == n u l l) {
continue;

}

ResourceType<T> type = findResourceType((T) resource.getResource());

waitResourceCondition((T) resource.getResource(),
ResourceCondition.readiness(type));

Listing B.3: Complete thead-safe method for synchronize resources

private f i n a l ResourceType<?>[] resourceTypes = new ResourceType[] {
new KafkaBridgeResource(),
new KafkaClientsResourceO ,
new KafkaConnectorResource(),
new KafkaConnectResourceO ,
new KafkaMirrorMaker2Resource(),
new KafkaMirrorMakerResource(),
new KafkaRebalanceResource(),
new KafkaResourceO ,
new KafkaTopicResource(),
new KafkaUserResource(),
new BundleResource(),
new ClusterRoleBindingResource(),
new DeploymentResource(),
new JobResource(),
new NetworkPolicyResource(),
new RoleBindingResource(),
new ServiceResource(),
new ConfigMapResource(),

73

new ServiceAccountResource(),
new RoleResource(),
new ClusterRoleResource(),
new ClusterOperatorCustomResourceDefinitionO,
new SecretResource(),
new ValidatingWebhookConfigurationResource()

Listing B.4: List of supported resources inside ResourceManager

public class SetupClusterOperator {

private ExtensionContext extensionContext;
private S t r i n g clusterOperatorName;
private S t r i n g namespacelnstallTo;
private S t r i n g namespaceToWatch;
private List<String> bindingsNamespaces;
private long operationTimeout;
private long r e c o n c i l i a t i o n l n t e r v a l ;
p r ivate List<EnvVar> extraEnvVars;
private Map<String, String> extraLabels;
private ClusterOperatorRBACType clusterOperatorRBACType;

public SetupClusterOperator(SetupClusterOperatorBuilder builder) {
this.extensionContext = builder.extensionContext;
this.clusterOperatorName = builder.clusterOperatorName;
this.namespacelnstallTo = builder.namespacelnstallTo;
this.namespaceToWatch = builder.namespaceToWatch;
this.bindingsNamespaces = builder.bindingsNamespaces;
this.operationTimeout = builder.operationTimeout;
t h i s . r e c o n c i l i a t i o n l n t e r v a l = b u i l d e r . r e c o n c i l i a t i o n l n t e r v a l ;
this.extraEnvVars = builder.extraEnvVars;
this.extraLabels = builder.extraLabels;
this.clusterOperatorRBACType = builder.clusterOperatorRBACType;

// assign defaults i s something i s not s p e c i f i e d
i f (this.clusterOperatorName == n u l l II this.clusterOperatorName.

isEmptyO) {
this.clusterOperatorName = Constants.STRIMZI_DEPLOYMENT_NAME;

}

// i f namespace i s not set we i n s t a l l operator to 'infra-namespace'
i f (this.namespacelnstallTo == n u l l II this.namespacelnstallTo.

isEmptyO) {
this.namespacelnstallTo = Constants.INFRA_NAMESPACE;

}

i f (this.namespaceToWatch == n u l l) {
this.namespaceToWatch = this.namespacelnstallTo;

}
i f (this.bindingsNamespaces == n u l l) {

74

this.bindingsNamespaces = new ArrayList<>();
this.bindingsNamespaces.add(this.namespacelnstallTo);

}

i f (this.operationTimeout == 0) {
this.operationTimeout = Constants.C0_0PERATI0N_TIME0UT_DEFAULT;

}

i f (t h i s . r e c o n c i l i a t i o n l n t e r v a l == 0) {
t h i s . r e c o n c i l i a t i o n l n t e r v a l = Constants.RECONCILIATION_INTERVAL;

}
i f (this.extraEnvVars == n u l l) {

t h i s . extraEnvVars = new A r r a y L i s t o () ;
}

i f (this.extraLabels == n u l l) {
this.extraLabels = new HashMap<>();

}
i f (this.clusterOperatorRBACType == n u l l) {

this.clusterOperatorRBACType = ClusterOperatorRBACType.CLUSTER;
}

instanceHolder = t h i s ;
}

public s t a t i c class SetupClusterOperatorBuilder {

private ExtensionContext extensionContext;
private S t r i n g clusterOperatorName;
private S t r i n g namespacelnstallTo;
private S t r i n g namespaceToWatch;
private List<String> bindingsNamespaces;
private long operationTimeout;
private long r e c o n c i l i a t i o n l n t e r v a l ;
p r ivate List<EnvVar> extraEnvVars;
private Map<String, String> extraLabels;
private ClusterOperatorRBACType clusterOperatorRBACType;

public SetupClusterOperatorBuilder withExtensionContext(
ExtensionContext extensionContext) {
this.extensionContext = extensionContext;
return s e l f () ;

}

public SetupClusterOperatorBuilder withClusterOperatorName(
S t r i n g clusterOperatorName) {
this.clusterOperatorName = clusterOperatorName;
return s e l f () ;

}

public SetupClusterOperatorBuilder withNamespace(
St r i n g namespacelnstallTo) {
this.namespacelnstallTo = namespacelnstallTo;
return s e l f () ;

75

}

public SetupClusterOperatorBuilder withWatchingNamespaces(
S t r i n g namespaceToWatch) {
this.namespaceToWatch = namespaceToWatch;
return s e l f () ;

}

public SetupClusterOperatorBuilder withBindingsNamespaces(
List<String> bindingsNamespaces) {
this.bindingsNamespaces = bindingsNamespaces;
return s e l f () ;

}

public SetupClusterOperatorBuilder withOperationTimeout(
long operationTimeout) {
this.operationTimeout = operationTimeout;
return s e l f () ;

}

public SetupClusterOperatorBuilder w i t h R e c o n c i l i a t i o n l n t e r v a l (
long r e c o n c i l i a t i o n l n t e r v a l) {
t h i s . r e c o n c i l i a t i o n l n t e r v a l = r e c o n c i l i a t i o n l n t e r v a l ;
return s e l f () ;

}

// cur r e n t l y supported only f o r Bundle i n s t a l l a t i o n
p ublic SetupClusterOperatorBuilder withExtraEnvVars(

List<EnvVar> envVars) {
this.extraEnvVars = envVars;
return s e l f () ;

}

// cur r e n t l y supported only f o r Bundle i n s t a l l a t i o n
p ublic SetupClusterOperatorBuilder withExtraLabels(

Map<String, String> extraLabels) {
this.extraLabels = extraLabels;
return s e l f () ;

}

// cur r e n t l y supported only f o r Bundle i n s t a l l a t i o n
p ublic SetupClusterOperatorBuilder withClusterOperatorRBACType(

ClusterOperatorRBACType clusterOperatorRBACType) {
this.clusterOperatorRBACType = clusterOperatorRBACType;
return s e l f () ;

}

private SetupClusterOperatorBuilder s e l f () {
return t h i s ;

}

76

public SetupClusterOperator c r e a t e l n s t a l l a t i o n O {
return new SetupClusterOperator(this);

}

}

}

Listing B.5: Cluster Operator builder pattern

77

