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Abstract 

Modelling of hydrological extremes and drought modelling in par­
ticular has received much attention over recent decades. The thesis 
gives an overview of the drought definitions and drought indices and 
approaches to extreme value analysis including the regional frequency 
analysis with focus on drought. The main aim of the thesis is the 
application and comparison of regional frequency analysis models 
for drought characteristics based on various parameter estimation 
methods, that involves modifying the methods in order to work with 
intermittent variables. The attention is be paid to the reduction of 
uncertainty in the estimated return levels, in the periods of drought 
events and in the parameters of the extremal model. The goodness-
of-fit of the models is be evaluated through discordance analysis, as 
well as the Anderson-Darling tests, with the critical values estimated 
by a bootstrap procedures. Performance of presented methods is eval­
uated by designed experiments focusing on behaviour of parameter 
estimation algorithms with increasing sample size in various situations. 
Experiment is also assessing the index flood method performance with 
increasing po (probability of zero values, e.g. the fraction of years 
without drought). As part of the thesis a case study is presented that 
deals with development of an index flood model for deficit volumes 
for 133 catchments in the Czech Republic (1901-2015) that are simu­
lated by hydrological model B I L A N . The parameters of the regional 
distribution are estimated using L-moments. The goodness-of-fit of 
the statistical model is assessed by the Anderson-Darling test ( A 2 ) 
test. For the estimation of critical values, sampling methods allowing 
for handling of years without drought were used. 



Preface 

It has been a little over six years since I have started working on the problems 

concerning drought modelling, little did I know about about the lion's den I 

am throwing my self into. Stochastic modelling of drought is an complex 

process wi th no unified set of methodologies. Therefore I tried approaches 

used for other extremes with little to no success. M y state of mind halfway 

thru my studies could be neatly surmised by quote from Dante's Divine 

Comedy: 

All hope abandon, ye who enter here. 

Dante Alighieri 

Now at the end of my journey, overlooking the path I walked (stumbling), 

I wish I could tel l my former self that "there indeed is light at the end of 

the tunnel". This is the biggest motivation write the dissertations in this 

form - as a guide for people who would want to walk on the same road as I 

did telling them (borrowing again from Dante): 

The devil is not as black as he is painted. 

Dante Alighieri 

v 
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brother and my mother, my office buddy Vašek, my good friends Petr Baš ta 

and Honza Čadek , my partner in crime Ivana, bartenders of the former 
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C H A P T E R 

Introduction 

When it comes to hydrological extremes, flooding events receive most atten­

tion, both in the news and in scientific literature, due to their fast, clearly 

visible, and dramatic consequences (Bloeschl et al . , 2019). Drought events 

however - also called the creeping disaster - develop slowly and are often 

unnoticed and have diverse and indirect consequences. 

Droughts can, however, cover extensive areas and can last for months 

to years, wi th devastating impacts on the Ea r th system linked to many 

economic sectors (Ciais et al . , 2005). The probabilistic nature of drought 

phenomenon requires development of drought forecasting probabilistic frame­

works extending current available knowledge. The crucial part of drought 

modelling is the description of probability distribution. 

Est imat ing the type and parameters of the Cumulative Distribution 

Function ( C D F ) of the available data-sets is therefore a fundamental goal 

in estimating the risk of occurrence of a particular events. Probabi l i ty 

1 
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distr ibution models are useful tools for the statistical description of high 

quantiles. 

Statistical modelling of extremes in general is subjected to large uncertain­

ties due to the rarity of extreme events or problems with their measurement. 

This applies especially to droughts since drought does not occur every year 

and thus the length of series typical ly available for hydrological analysis 

provides only limited information. This can be, at least partly, overcome by 

trading space for time, i.e., combining data from several sites over homoge­

neous regions. The effect of adding sites/catchments is maximal when the 

data are independent. This is seldom true, however, thus the real reduction 

of uncertainty not only depends on the number of data but also on the 

spatial covariance structure of the analysed data. 

1 . 1 The thesis aim 

The main focus of this work is exploring various methods used for quantifying 

hydrological extremes, w i th a specific emphasis on drought events. The 

goal is to provide a comprehensive assessment of the methods and their 

performance in the context of drought quantification, with the ultimate aim 

of reducing the uncertainties in high quantiles estimations. The methods 

presented in this work are chosen wi th clear focus on their applicability in 

real-world situations. B y providing a thorough evaluation of these methods 

and their strengths and weaknesses, this work seeks to contribute to the 

ongoing efforts to improve our understanding of hydrological extremes and to 

develop more effective strategies for managing and mitigating their impacts, 

which is crucial for effective water resource management and planning. 

The thesis also aims to evaluate the performance of different methods 

and algorithms for high quantile estimation of intermittent variables i . e. 
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drought events. The focus of this work is on modifying existing methods 

to effectively deal with intermittent data, which can provide more accurate 

and reliable estimates of high quantiles. Through experiments, the strengths 

and weaknesses of various approaches w i l l be identified, and guidance wi l l 

be provided on selecting the most appropriate methods for different scenar­

ios. The ultimate goal is to reduce uncertainties associated wi th drought 

quantification, thereby contributing to more accurate and reliable estimates 

of high quantiles, which are crucial for effective drought risk assessment and 

management. 

To summarise the aims of this thesis, they can be listed as follows: 

• To evaluate the performance of different methods and algorithms 

for drought high quantile estimation, wi th a focus on modifying the 

methods to work wi th intermittent variables. 

• To identify the strengths and weaknesses of different approaches for 

high quantile estimation, and provide guidance on selecting the most 

appropriate methods for different scenarios. 

• To reduce uncertainties associated with drought quantification, partic­

ularly in the estimation of high quantiles, which are crucial for drought 

risk assessment and management. 

• To investigate the l imitations of the extreme value paradigm, specif­

ically in the context of hydrological modelling, and provide insights 

into ways to overcome these limitations. 

• To develop and test new bootstrapping methods for extreme value 

analysis that account for spatial dependence and compound distribu­

tions. 
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1 . 2 The structure of the thesis 

The work is divided into four main parts - Methods (Chapter 2); Simulations 

(Chapter 3); Case Study (Chapter 4) and Thesis summary (Chapter 5). 

Chapter 2, is giving a summary of methods used to define and describe 

drought and methods used in extreme events estimation. There is a list of 

widely recognised drought definitions (section 2.1) as well as indices used to 

identify and quantify drought events. Section 2.2 is dealing with subjective 

choices one can come across when choosing the right distributions for drought 

indices and indicators and section 2.3 is listing methods for distr ibution 

parameters estimation. 

Methods, more specifically distribution parameter fitting methods and 

index flood, are then tested in Chapter 3 by Monte-Car lo simulations in 

order to evaluate their behaviour in various situations. 

In Chapter 4, there is a case study, where indicators of drought (maximum 

deficit volumes) were estimated and validated for the period 1900-2015 over 

the Czech Republic. Index flood method is then employed in order to reduce 

uncertainties in deficit volume return levels estimation. 

Final part of the thesis - Chapter 5 - is an introspection of methods used in 

previous parts of the thesis, giving recommendations for drought high quantile 

estimation based on the results presented in Chapter 3 wi th comments on 

each step within the Regional Frequency Analysis ( R F A ) scheme. 



C H A P T E R 

Methods used for high quantile 
estimation &; drought 

quantification 

Since no universal definition of drought exists (Lloyd-Hughes, 2014) (nor 

should exist, according to Wi lh i t e and Glantz (1985)) and drought affects 

so many sectors in environment and society, there is a need for different 

definitions. The particular problem under study, the data availability and 

the climatic and regional characteristics are among the factors influencing 

the choice of drought event definition. Wi lh i t e and Glantz (1985) found 

more than 150 published definitions of drought, which might be classified 

in a number of ways. Some of the most common drought definitions are 

summarised in Demuth and Bakenhus (1994); Dracup et al. (1980); Svoboda 

et al. (2016); Tate and Gustard (2000); V a n Loon (2015). 

5 
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Est imat ing the occurrence of drought events is a challenging task that 

is plagued by significant uncertainty. The problem wi th data availability 

inherent to extreme value analysis (the extremes are rare by definition) is 

even more serious pronounced for drought compared to extreme rainfall, 

since the drought does not occur every year. Thus the statistical analysis 

is often challenging due to short record lengths. In fact, many regions 

may experience drought only sporadically, wi th the most severe and long-

lasting events occurring only once every few decades. This variabili ty and 

unpredictability make it difficult to accurately estimate the likelihood and 

impact of drought. This uncertainty can however be reduced by employing 

methods like extreme value theory in conjunction wi th Regional Frequency 

Analysis ( R F A ) . 

Extreme value theory has emerged as one of the most important statistical 

disciplines for the applied sciences over the past 70 years. Extreme value 

techniques are also being used in many other disciplines. The distinguishing 

feature of an extreme value analysis is the objective to quantify the stochastic 

behaviour of a process at unusually large or small levels. In particular, 

extreme value analyses usually require estimation of the probability of events 

that are more extreme than any that have already been observed. Extreme 

value theory provides a framework that enables extrapolations of this type. 

This chapter describes methods widely used for estimation of high quantiles 

and methods employed in lowering their uncertainties. 

2 . 1 Drought definition and quantification 

Most common classification of drought, based on a disciplinary perspective 

can be found in Dracup et al. (1980), where droughts are related to precipita­

tion (meteorological), stream-flow (hydrological), soil moisture (agricultural) 
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or any combination of the three. A similar classification can be found 

in Wilh i te and Glantz (1985), where four categories are identified: 

• Meteorological drought: departure of precipitation from normal over 

some period of time. Reflects one of the primary causes of a drought. 

• Hydrological drought: deficiency of surface and subsurface water sup­

plies. Reflects effects and impacts of droughts. 

• Agricul tural drought: low soil moisture, sometimes related to need of 

a particular crop at a particular time. 

• Socio-economic drought: defined as a situation in which the water 

supply fails to satisfy water demand, thus resulting in negative conse­

quences for society, the economy, and the environment. 

To identify and quantify drought, several drought indicators can be used. 

Mawdsley et al. (1994) defined two classes or types of indicators: 

• Environmental indicators are those hydro-meteorological and hydro-

logical indicators, which measure the direct effect on the hydrological 

cycle. The nature of the water deficit might be related to precipitation, 

stream-flow or soil moisture. These indicators can help identifying the 

duration and/or severity of a drought and can be used to analyse the 

drought frequency. Environmental definitions usually determine the 

degree of departure from average conditions. 

• Water resource indicators measure severity in terms of the impact of the 

drought on the use of water in its broadest sense, for example, impact on 

water supply for domestic or agricultural use, impact on groundwater 

recharge, abstractions and surface levels, impact on fisheries or impact 
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on recreation. This implies that an element of human interference as 

an increased water demand or mismanagement of water supply, as well 

as a lack of rainfall or runoff determines the drought. Hence, there is 

shortage of water to meet water supply needs. 

Wilhi te and Glantz (1985) categorise drought definitions into conceptual 

(definitions formulated in general terms) not applicable to current (i.e., real 

time) drought assessments, and operational. The latter category includes 

definitions attempting to identify the onset, severity and termination of 

drought episodes. In some publications (e.g. Tate and Gustard, 2000) the 

term operational drought is applied equivalent to water resource indicators, 

hence not consistent with the broad definition of Wilhi te and Glantz (1985). 

Throughout this work, the following definition of drought, proposed by 

Tallaksen and Van Lanen (2004) is considered: 

Drought is a sustained period of below-normal water availabil­

ity. It is a recurring and worldwide phenomenon, with spatial and 

temporal characteristics that vary significantly from one region 

to another 

Tallaksen and Van Lanen (2004) 

2.1.1 D r o u g h t indices 

In Beran et al. (1985) a distinction is made between stream-flow droughts 

and low flows. The main feature of a drought is the deficit of water for some 

specific purpose. Low flows are normally experienced during a drought, but 

they feature only one element of the drought, i.e. the drought magnitude. 

Low flow studies are described as being analyses aimed at understanding 
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the physical development of flows at a point along a river at a short-term 

(e.g. daily time resolution). Hydrological drought analyses in terms of stream-

flow deficits are studies over a season or longer time periods and in a regional 

context. However, also short-term (less than a season) stream-flow deficits 

might be defined as droughts and treated at a fixed point in space. 

The most widely used drought indicators are the Palmer Drought Severity 

Index (PDSI) (Alley, 1984; Wayne, 1965), with temperature and precipitation 

as an input; the Standardised Precipitation Index (SPI) (McKee et al., 1993) 

using only precipitation; the Standardised Precipitation Evapotranspiration 

Index (SPEI) (Vicente-Serrano et al., 2010) facilitating both - the sensitivity 

of P D S I and the simplicity of the SPI calculation; and the Reconnaissance 

Drought Index (RDI) (Tsakiris and Vangelis, 2005) incorporating directly 

potential evapotranspiration. 

The P D S I is a measure of long-term drought that takes into account both 

precipitation and temperature, and is based on the water balance equation. 

The P D S I is calculated for a given location using monthly temperature and 

precipitation data, and takes into account the soil moisture conditions at 

the start of the month. 

In contrast, the SPI is a drought index that is based only on precipitation 

data. The SPI is calculated using monthly precipitation data and is designed 

to provide a measure of drought severity that is standardised across different 

time scales and locations. 

Another modification of SPI was made by (Nalbantis and Tsakiris, 2009), 

introducing an analogous approach for stream-flow and thus capturing 

the hydrological droughts. (Mishra and Singh, 2010) offered a review of 

multiple climatological and hydrological parameters concerning drought 

and summarized drought modelling methods in (Mishra and Singh, 2011). 

(Myronidis et al . , 2018b) performed stream-flow and hydrological drought 
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trend analysis using Streamflow Drought Index (SDI) (Nalbantis and Tsakiris, 

2009). 

The Soil Water Supply Index (SWSI) is designed to be an indicator of 

surface water conditions, Hayes (2006) described the index as "mountain 

water dependent," in which snowpack is a major component. The objective 

of the SWSI is to incorporate both hydrological and climatological features 

into a single index value resembling the Palmer Index for each major river 

basin in the state of Colorado. These values would be standardised to 

allow comparisons between basins. Four inputs are required for the SWSI 

calculation: snowpack, stream-flow, precipitation, and reservoir storage. The 

SWSI is computed from only the snowpack, precipitation, and reservoir 

storage in the winter. Dur ing the summer months, stream-flow replaces 

snowpack as a component within the SWSI equation. Each component has 

a monthly weight assigned to it depending on its typical contribution to 

the surface water wi th in that basin, and these weighted components are 

summed to determine a SWSI value representing the entire basin. 

A s such, standardised indices derived by quantile mapping (figure 2.1) 

are better suited for cross temporal and spatial comparison rather than high 

quantile estimation. Depending on the viewpoint and more importantly 

the needs of a stakeholder it is sometimes more appropriate to employ 

indicators such as deficit volumes derived from the threshold method that 

are in absolute values to estimate return levels of drought events. 

Myronidis et al. (2018a) compared ten most widely used meteorological 

drought indices and tracked the indicated effect of drought on stream-flow. 

The study found that the Standardized Precipitat ion Index (SPI) and the 

Standardized Precipi tat ion Evapotranspirat ion Index (SPEI) performed 

best in capturing the impact of drought on streamflow, while other indices 

such as the Palmer Drought Severity Index (PDSI) and the Reconnaissance 
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F I G U R E 2.1: The process of quantile mapping - 1st probability is calculated 
by supplying corresponding quantile to the C D F of the precipitation (gener­
alised gamma distribution in this specific case), 2nd calculated probability 
is supplied to the quantile function of the normal distr ibution - A/"(0, 1) -
which wi l l give corresponding quantile of the standardised index. 

Drought Index (RDI) showed weaker performance. The study also found 

that the choice of index can have a significant impact on the severity of 

drought identified, with some indices underestimating the severity of drought 

compared to others. Finally, the authors recommend using multiple drought 

indices in combination to provide a more comprehensive understanding of 

drought conditions and their impact on streamflow. 

2.1.2 T h r e s h o l d m e t h o d 

The most frequently applied quantitative definition of a drought is based on 

defining a threshold, qo, below which the river flow is considered as a drought. 
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The threshold level method generally study runs below or above a given 

threshold and was originally named method of crossing theory (Tallaksen, 

2000). The method is relevant for storage/yield analysis and is associated 

wi th hydrological design and operation of reservoir storage systems. Im­

portant areas of application are hydropower and water management, water 

supply systems and irrigation schemes. 

The method was first developed by Rice (1945) and later extended and 

summarised by Leadbetter (1967). Ea r ly application of crossing theory in 

hydrology includes Yevjevich et al. (1967), where the method is based on the 

statistical theory of runs for analysing a sequential time series. Statistical 

properties of the distribution of water deficits, run-length (drought duration), 

run-sum (deficit volume or severity) are recommended as parameters for 

at-site drought definition. Simultaneously it is possible to consider the 

minimum flow, and time of occurrence. The minimum flow can be regarded 

as a low flow measure, one of several characteristics of a stream-flow drought 

event. The time of drought occurrence has been given different definitions as 

for instance the starting date of the drought, the mean of the onset and the 

termination date or the date of the minimum flow. Often another drought 

index, the drought intensity, is defined as the ratio between drought deficit 

volume and drought duration. 

The threshold might be chosen in a number of ways and the choice is 

amongst other a function of the type of water deficit to be studied (Dracup 

et al . , 1980). In some applications the threshold is a well-defined flow 

quantity, e.g. a reservoir specific yield (Bonacci, 1993). 
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2.2 Choice of distribution 

[...] it is important to be aware of the limitations implied 

by adoption of the extreme value paradigm. First, the models 

are developed using asymptotic arguments, and care is needed 

in treating them as exact results for finite samples. Second, 

the models themselves are derived under idealised circumstances, 

which may not be exact (or even reasonable) for a process under 

study. Third, the models may lead to a wastage of information 

when implemented in practice. 

Coles et al. (2001) 

The statement "it is important to be aware of the l imitations implied 

by adoption of the extreme value paradigm" is in line wi th the arguments 

presented in V i t Klemes ' papers "Ta l l Tales about Tails of Hydro logical 

Distributions" (Klemes, 2000a,b). In this paper, Klemes argues that there 

are many misconceptions and misunderstandings surrounding the use of 

extreme value theory in hydrology, and that caution must be exercised 

when applying this theory to real-world situations. Klemes also emphasises 

the need to consider the l imitations of extreme value models, such as the 

asymptotic nature of the models and the potential wastage of information 

when implementing them in practice. Therefore, both the statement and 

Klemes ' paper highlight the importance of understanding the limitations 

of extreme value models and exercising caution when applying them to 

real-world hydrological problems. 

Bo th Boughton (1980) & Laursen (1983) saw need for only bounded 

distributions to be used for high quantile estimation since some numerical 

values are so unlikely as to be physically impossible, however Hosking and 
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Wallis (1997) maintain that this argument is misguided. They argue that the 

aim of an analysis is to estimate quantiles of return periods up to 100 years, 

that the estimated quantile at return period 100,000 years is "physically 

impossible" is of no relevance and should not be any cause for concern. 

Imposing the requirement that the distr ibution have a physically realistic 

upper bound may compromise the accuracy of quantile estimates at the 

return periods that are of real interest. 

Two most common ways of assessing usability of a distribution visually are 

L-moment ratio diagrams and Gumbel plots. The L-moment ratio diagrams 

are constructed by plotting the estimated sample L-moment (see section 2.3.2 

for L-moment definition) ratios versus the theoretical L-moment ratio curves 

for the candidate distributions. Gumbe l plot is a quantile function wi th 

transformed Gumbel variate (—log(—log(F))) instead of probability (F) on 

the horizontal axis. This transformation is done in order to better visualise 

values wi th high return periods. Then, F, which is cumulative probability 

P of non exceedance of the m t h value in n order ranked observations, can 

be calculated by the plotting position 

F = m - ° - 3 . (2.1) 
n + 0.4 v ' 

where m is the rank from the smallest (m = 1) to the largest (m = n) 

observation and n is the number of observations. This specific plott ing 

position method (or empirical ranking method) was ini t ia l ly proposed by 

Beard (1943) and assumes that the data come from Gumble distribution. 

Chegodaev (1953) then rounded the numerical values of the parameters to 

a = 0.3 and (3 = 0.4. However, different plotting positions are available and 

can be used in the case that the data deviate from Gunble distribution. 

Another approach to see whether selected distr ibution is usable, is 
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to employ statistical tests (test description and cri t ical values estimation 

methods are described in sections 2.5.2 and 2.5.2.1). According to extreme 

value theorem, properly scaled and independent seasonal and annual (i.e. 

block) maxima, converge towards Generalised Extreme Value distribution 

( G E V ) . For threshold methods Generalised Pareto Distribution ( G P D ) is 

much better suited due to inherent intermittent nature of threshold method 

results. (Tallaksen and Hisdal , 1997) used Generalized Extreme Value 

distribution, Generalized Pareto, three-parameter lognormal and Pearson 

type III distributions to describe drought durations and deficit volumes. 

This study did not add much in the context of different drought indices 

discussed here, but it is important for the discussion of which C D F to use 

to estimate large quantiles of said variables. 

A s discussed droughts are more rare than floods and an extreme event 

does not necessarily occur every year. It there are block maxima wi th no 

drought event, it is necessary to make a correction for years without droughts. 

This can be done by following Stedinger (1993) that considers the model 

wi th a probability mass concentrated in zero 

where po is the probability of year without drought. We estimate po as 

the proportion of zero drought years (Engeland et al. , 2004). 

2.2.1 General i sed E x t r e m e Va lue d i s tr ibut ion 

The G E V distr ibution is a family of continuous probabil i ty distributions 

developed within extreme value theory to combine the Gumbel, Frechet and 

reverse Weibull distributions. B y the extreme value theorem the G E V distri­

c t DROUGHT QUANTIFICATION 15 

(2.2) 
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bution is the only possible limit distribution of properly scaled maxima of a 

sequence of independent and identically distributed random variables (Hosk-

ing and Wallis , 2005). 

G E V is a three-parameter distribution given by 

F(x) = exp 

( ¥ ) -exp K = 0. 
(2.3) 

where £ G R is location, a > 0 scale and « G i? shape parameter wi th 

range of x: ^<x<^ + a/n\in>Q and £ < x < o o i f f t < 0 . 

Probability density function of GEV 
with various values of scale and shape parameters 

Locat ion - 0 

Shape = -0.5 

S h a p e - 0 

S h a p e - 0 . 5 

<:;;-... \ \\ \ Sca le - 1 

S c a l e - 2 

Value 

F I G U R E 2.2: Probability Density Function ( P D F ) of the Generalised Extreme 
Value distribution ( G E V ) showing various values of parameters 

2.2.2 General i sed Pareto D i s t r i b u t i o n 

Generalised Pareto Distribution ( G P D ) is a continuous probabil i ty distri-
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butions, which has been often used to model the tails of another distribu­

tion (e.g., Papalexiou et al., 2013). Although it is defined by three parameters: 

location, scale and shape parameters (Coles et al., 2001; Hosking and Walks, 

1997), it has been shown that can be defined by only scale and shape or just 

by its shape parameter (Hosking and Wall is , 1987). The three-parameter 

G P D is formulated as 

F(x) = a - 1 e - ^ y , y = T 8 L J ' T (2.4) 

where £ G R is location, a > 0 scale and K G R shape parameter wi th 

range of x: £ < x < £ + o ; / « i f « > 0 and £ < x < o o i f « < 0 . 

Probability density function of GPD 
with various values of scale and shape parameters 

1.00 

0.75 

Q. 

0.00 

Locat ion = 0 
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Shape = 20 

\ \ Sca le - 1 

O 0 25 5SS 7i 1 0 0 
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F I G U R E 2.3: Probability Density Function ( P D F ) of the Generalised Pareto 
Distribution ( G P D ) showing various values of parameters 
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2.3 Parameter estimations methods 

Several methods may be used for parameter estimation. Methods can be 

divided into the parametric and non-parametric ones. Th is work deals 

only wi th the parametric methods. These methods may produce quite 

different results with the small sample of extremes that is usually available, 

even though their results become asymptotically identical as the number of 

observed extremes becomes large (Von Storch and Zwiers, 2001). 

2.3.1 M a x i m u m l ikel ihood 

A general and flexible method of estimation of the unknown parameter 6$ 

with in a family F is maximum likelihood. Each value of 6 G 0 defines a 

model in F that attaches (potentially) different probabilities (or probability 

densities) to the observed data. The probabili ty of the observed data as a 

function of 6 is the likelihood function. Values of 6 that have high likelihood 

correspond to models which give high probability to the observed data. The 

principle of maximum likelihood estimation is to adopt the model wi th 

greatest likelihood, since this is the one that assigns highest probability to 

the observed data. 

Suppose independent realisations of a random variable 

having Probability Density Function ( P D F ) f(x;9o), the likelihood function 

is 

n 
L(0) = Y[f(x;0o). (2.5) 

i=i 

It is often more convenient to take logarithms and work wi th the log-
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likelihood function 

n 

1(0) = \ogL(0) = J2^gf(x;00). (2.6) 

Bo th equation 2.5 and 2.6 generalise the situation where the X j are 

independent, but not necessarily wi th identical distributions. In this case, 

denoting the P D F of X{ by fi(xf, 9). 

n 

L(0) = Y[fi(xtíeo). (2.7) 

í=i 
and 

n 

l(e) = J2^gfi(xi;e0). (2.8) 
i=\ 

is obtained. Generally, ií F = {f(x;do) : 6 £ 0 } denotes a family of joint 

P D F s for a set of (not necessarily independent) observations x = {x\, ...,xn), 

then the likelihood is L{6) = f(x;6o), regarded as a function of 9 w i th x 

fixed at the observed value. 

The maximum likelihood estimator 6$ of 6$ is defined as the value that 

maximises the appropriate likelihood function. Since the logarithm function 

is monotonie, the log-likelihood takes its maximum at the same point as 

the l ikelihood function, so that the maximum likelihood estimator also 

maximises the corresponding log-likelihood function. In practise (software 

implementation of the maximum likelihood) however values of log-likelihood 

are transformed to its negatives and are minimised. 
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2.3.2 L - M o m e n t s 

L-moments are measures of the location, scale and shape of probabili ty 

distributions. They are analogous to the conventional moments but can be 

estimated by linear combinations of order statistics. L-moments are related 

to expected values of order statistics. 

Let X be a random variable and let Xj-n denote an order statistic, a 

random variable distributed as the j t h smallest element of a random sample 

of size n drawn from the distr ibution of X. Hosking (1990) defined the 

L-moments of X to be the quantities 

where Xj-n denotes the j t h order statistic in an independent sample of 

size n from the distribution of X and E is the expected value. 

2.3.3 N o r m s 

Another convenient yet not widely used method is minimisat ion of the 

modified Mean Squared Error (mMSE) norms introduced in Papalexiou et al. 

& DROUGHT QUANTIFICATION 20 

(2.9) 

(2013) 

(2.10) 

(2.11) 

i=i 
(2.12) 
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N4 = - J2 (xu - x{i)f . (2.13) 
i=l 

where F(x^) are theoretical values of the distr ibution under study, 

Fn{x{i)) are empirical values calculated using Weibull plotting position and, 

xu = Q(u) is value predicted by the quantile function Q of the distribution 

for u equal to the empirical probabil i ty of according to the Weibul l 

plotting position. These norms are implemented in Strnad et al. (2020) using 

Nelder-Mead Simplex algorithm for minimisation. 

2.4 Regional frequency analysis 

Since drought is a phenomenon that needs a long period of time to evolve 

and is an intermittent process, another l imitation is usually short length of 

available observed data (Fekete et al . , 2000). Due to the rarity of extreme 

events, modelling of drought extremes is related to large uncertainties. One 

possible way how to prolong the study period is the use reconstructed climate 

fields or climate models to obtain sufficient period length, this may however 

introduce new uncertainty. To cope with the uncertainty issue, it is possible 

to employ methods such as Regional Frequency Analysis ( R F A ) (Hosking 

and Wallis , 1997). 

R F A uses data from a number of measuring sites. A "region" is a group of 

sites each of which is assumed to have data drawn from the same frequency 

distribution after scaling the at-site data wi th corresponding scaling factor 

(Hosking and Wallis, 1993). The R F A consists of two steps. In the first one 

the homogeneous regions are identified. The second establishes a regional 

frequency distr ibution curve for each region. A region is considered to be 

homogeneous when the sites belonging to it exhibit a similar behaviour when 
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the non-dimensional local frequency distribution curves have similar shapes 

wi th in a sampling error. 

A convenient way of pooling summary statistics for R F A from different 

data samples is the index-flood technique (Dalrymple, 1960). The term 

index-flood was coined because early applications of the pooling algorithm 

were to flood data in hydrology. The application of the method to low flows 

was termed regional frequency analysis (Tallaksen and V a n Lanen, 2004) 

and index low flow method (Bloschl et al . , 2013). 

2.4.1 Index-flood 

Suppose the data are available at N sites, with site i having sample size n{ 

and observed data Qij,j = 1, ...,7ij. Let Qt (F),0 < F < 1, be the quantile 

function of the frequency distr ibution at site i. The key assumption of an 

index-flood procedure is that the sites form a homogeneous region, that is, 

that the frequency distributions of the N sites are identical apart from a 

site-specific scaling factor, the index flood. This can be written as 

Qi(F)=m(F), i = l,...,N (2.14) 

here the index flood m is considered to be the mean of the at-site 

frequency distribution, however any location parameter of the distribution 

can be used instead. For example the 90% quantile Qj(0.9) was used by Smith 

(1989). The remaining factor in 2.14, q(F), is the regional growth curve, 

a dimensionless quantile function common to every site. It is the quantile 

function of the regional frequency distribution, the common distribution of 

the Qij/fii (Hosking and Wallis, 2005). 

The index flood is naturally estimated by the sample mean of the data 

at site i. Other location estimators such as the median or a tr immed mean 
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could be used instead. The dimensionless rescaled data qij = Qij/^iiJ = 

1, ...,rii,i = 1 , N , are the basis for estimating the regional growth curve 

q(F),0 < F < 1. It is usually assumed that the form of q(F) is known 

apart from p undetermined parameters 9\,...,9P so it can be wri t ten q(F) 

as q(F;0i, ...,0P). These parameters may for example be the coefficient 

of variation and the skewness of the distribution, or the L-moment ratios 

r , T 3 , T h e mean of the regional frequency distribution is not an unknown 

parameter, because by taking [ii in 2.14 to be the mean of the frequency 

distr ibution at site i it is ensured that the regional frequency distr ibution 

has mean of 1. In this approach the parameters are estimated separately 

at each site, the site-i estimate of 9k being denoted by 9k These at-site 

estimates are combined to give regional estimates 

Ei=i ni 
This is a weighted average, wi th the site-i estimate given weight pro-

portional to rii because for regular statistical models the variance of 9y

k' is 

inversely proportional to n^. Substi tuting these estimates into q(F) gives 

the estimated regional growth curve q(F) = q(F;9^, ...,9p). This method 

of obtaining regional estimates is essentially that of Wall is (1980), except 

that the weighting proportional to ni is a later addition, suggested by Wallis 

(1982). Somewhat different methods were used by (Dalrymple, 1960). 

The quantile estimates at site i are obtained by combining the estimates 

Hi and q(F) 

Qi(F) = faq(F) (2.16) 

This index-flood procedure makes the following assumptions. 
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• Observations at any given site are identically distributed, 

• observations at any given site are serially independent, 

• observations at different sites are independent, 

• frequency distributions at different sites are identical apart from a 

scale factor and 

• the mathematical form of the regional growth curve is correctly speci­

fied. 

The first two assumptions are plausible for many kinds of data, particu­

larly for annual totals or extremes, which are free from seasonal variations. 

It is a basic assumption of most methods of frequency analysis that the 

events observed in the past are likely to be typical of what may be expected 

in the future. This assumption may be undermined when obvious sources 

of time trends are present; frequency distributions for stream-flow data, for 

example, are affected by changes in land use and by artificial regulation of 

the flow. W h e n sites affected by such obvious sources of non-stationarity 

are removed from the data-set, the assumption of identical distributions for 

a site's observations is often reasonable (Hosking and Wallis , 2005). 

The effect of serial dependence on at-site frequency analysis has been 

investigated by Landwehr et al . (1979) and M a c M a h o n and Srikanthan 

(1982). They considered frequency distributions of extreme-value type I 

and log-Pearson type III, respectively, and found that serial dependence 

caused a small amount of bias and a small increase in the standard error 

of quantile estimates. It can be concluded that a small amount of serial 

dependence in annual data series has little effect on the quality of quantile 

estimates (Hosking and Wallis, 2005). 
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The last three assumptions are unlikely to be satisfied by environmental 

data. Correlation between nearby sites may be expected for many kinds of 

data. Meteorological events such as storms and droughts typical ly affect 

an area large enough to contain more than one measuring site, and the 

event magnitudes at neighbouring sites are therefore likely to be positively 

correlated. The last two assumptions wi l l never be exactly valid in practice. 

A t best they may be approximately attained, by careful selection of the 

sites that are to be regarded as forming a region and by careful choice of 

a frequency distr ibution that is consistent wi th the data. Therefore an 

index-flood procedure can be appropriate only if it is robust to physically 

plausible departures from these three assumptions. Research conducted by 

Hosking and Wall is (1988); Hosking et al. (1985); Lettenmaier and Potter 

(1985); Lettenmaier et al . (1987); Wall is and W o o d (1985) has shown that 

it is possible to construct index-flood procedures that yield suitably robust 

and accurate quantile estimates. 

A n alternative approach to regional estimation is to model log Q rather 

than Q, basing the analysis on log-transformed data. Taking logarithms in 

2.14 gives 

l o g Q i ( F ) = l o g ^ + logg(F) (2.17) 

The index flood enters as an additive term, which makes some aspects 

of the analysis easier. For example, if unbiased estimators of log/Uj and 

log q(F) can be found, their sum wil l be an unbiased estimator of log Qi{F). 

The disadvantage of using log-transformed data is that low data values may 

become low outliers after logarithmic transformation and have an undue 

influence on the estimates. In applications in which estimation of quantiles in 

the upper tai l of the distribution is of principal importance, it is particularly 
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unfortunate for low data values to have a strong effect on the upper tai l of the 

estimated frequency distribution. For this reason it is generally preferable 

to work wi th the original untransformed data (Hosking and Wallis, 2005). 

2.4.2 Selection of homogeneous regions 

As descried in the previous section, the main assumption of the index flood 

method is that the probability distributions of extremes at different sites in 

the region are identical, except for a scaling factor. Therefore the selection 

of homogeneous regions is an important step in R F A . 

Nathan and M c M a h o n (1990) claims that spatial pooling methods tra­

dit ionally encompassed geographically contiguous areas. However, if the 

subregions are defined on the basis of hydrological similarity or basin char­

acteristics it is not necessary for region wi th in a given grouping to be 

geographically contiguous. 

There is a number of problems associated with spatial pooling in general. 

The first issue common to al l pooling techniques is related to the selection 

of variables used to assess the degree of similarity between different regions. 

Furthermore, literally any group of variables is capable of generating clusters, 

and it is necessary to select variables according to their relevance to the 

problem. 

The selection of the most suitable algorithm for a given data-set and op­

timisation criterion is critical, and requires careful consideration by the user. 

Nevertheless, these issues can be mitigated by incorporating prior knowledge 

of the data into the spatial pooling process. Furthermore, determining the 

optimal number of regions for partitioning the data is a common challenge 

faced by most algorithms. However, this can be addressed by utilising objec­

tive approaches like gap statistics. It is worth noting that some methods, 
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such as region of influence, may not require explicit determination of the 

number of regions, and thus can alleviate this issue. 

The methodology used to identify a set of homogeneous regions used to 

estimate regional quantiles is summarised by the steps below 

• Selection of predictor variables 

• Selection of the most appropriate cluster analysis 

• Identification of homogeneous regions 

• Evaluation of homogeneous groups 

2.4.2.1 G a p statistics 

Gap statistic is an objective method for estimating the optimal number of 

clusters in a clustering algorithm proposed by Tibshirani et al. (2001). The 

goal of gap statistic is to identify the number of clusters that best captures 

the underlying structure of the data, without overfitting or underfitting. 

The method works by comparing the Within-cluster Sum of Squares (WSS) 

of the data to its expected value under a null reference distribution. W S S 

is calculated as the sum of the squared Eucl idean distances between each 

data point and the centroid of the cluster it belongs to. The null reference 

distr ibution is created by generating a large number of random data sets 

that are similar to the original data, but have no underlying structure or 

clustering. The expected W S S value of the null reference data is then used as 

a benchmark to compare the W S S of the original data. The optimal number 

of clusters is identified as the point where the gap between the observed 

W S S and the expected W S S is maximized as seen on figure 2.4. 
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To compute the gap statistic, the algorithm first determines the optimal 

number of clusters for a range of values. For each number of clusters, it 

computes the W S S of the original data, as well as the expected W S S of the 

nul l reference data. The gap statistic is then calculated as the difference 

between the observed W S S and the expected W S S , minus a correction term 

that accounts for the variabil i ty in the nul l reference data. The opt imal 

number of clusters is identified as the value where the gap statistic is 

maximised. The gap statistic method has been shown to be effective in a 

variety of clustering applications and is widely used in practice. 

The algorithm can be surmised as follows 

1. Cluster the observed data, varying the number of clusters from k = 

1 , k m a x , and compute the corresponding total W S S variation Wk, 

which is a measure of the clustering quality. This step helps to identify 

the range of k values that should be considered for further analysis. 

2. Generate B reference data-sets wi th a random uniform distribution. 

Cluster each of these reference data-sets with varying number of clusters 

k = l,...,kmax, and compute the corresponding total intra-cluster 

variation for each value of k (Wkb)-

3. The estimated gap statistic is computed as the difference between 

the observed W S S for the observed data and the expected W S S 

for the reference data-sets under the nul l hypothesis: Gap(k) = 

l E w ^ W ~ log(Wk). The expected W S S is the average of 

the W S S values obtained from the reference data-sets. The gap statis­

tic is computed for each value of k, and the standard deviation s of 

the statistics is also computed. 
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4. Choose the number of clusters as the smallest value of k such that the 

gap statistic is wi th in one standard deviation s of the gap at k + 1: 

Gap{k) > Gap(k + 1 ) — S f c + i - This step helps to identify the number 

of clusters that provides the best balance between clustering quality 

and model complexity. 

0.25 

2 4 6 8 

Number of clusters k 

F I G U R E 2 . 4 : Gap statistic estimated for the randomly generated data-set, 
determining the ideal number of clusters for K-means method. (Clustered 
data-set can be seen on figure 2 . 5 ) 

2.4.2.2 K-means 

K-means clustering is a popular unsupervised learning algorithm, developed 

between years 1 9 7 5 and 1 9 7 7 and surmised in Hartigan and Wong ( 1 9 7 9 ) and 

used to partition a given data-set into K clusters or groups. The goal of this 
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algorithm is to minimise the sum of squared distances between data points 

and their corresponding cluster centres. The algorithm starts by randomly 

selecting K in i t ia l cluster centres, which are usually chosen from the data 

points themselves. It then iteratively performs two steps unt i l convergence 

is reached. In the first step, each data point is assigned to the cluster wi th 

the nearest centroid based on the Euclidean distance between the data point 

and the centroid. In the second step, the centroid of each cluster is updated 

as the mean of al l the data points assigned to that cluster. The algorithm 

terminates when the centroids no longer change or a predefined maximum 

number of iterations is reached. 

The choice of K is an important decision when applying k-means clus­

tering. If K is too small, the clusters may be too broad and not capture the 

underlying structure of the data. If K is too large, the algorithm may create 

smaller, less meaningful clusters. In addit ion to the above described gap 

statistic, various other methods can be used to estimate the optimal number 

of clusters such as the elbow method or silhouette method. In addition, 

k-means clustering can be sensitive to the initial random selection of cluster 

centres and may converge to sub-optimal solutions. To mitigate this issue, 

the algorithm is often run multiple times wi th different init ialisation, and 

the best result is chosen based on some predefined criteria (Arthur and 

Vassilvitskii , 2007; Jain, 2010). 

Step by step the algorithm can be described as 

1. Choose the number of clusters - K. 

2. Select random K points - the centroids 

3. Assign each data point to closest centroid that forms K clusters. 

4. Compute and place the new centroid of each region. 
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5. Reassign each data point to new cluster. 

6. Repeat steps 3 and 5 until convergence, which occurs when the assign­

ments of data points to centroids no longer change. 

Raw data Clustered data 

0 5 10 0 5 10 

X X 

F I G U R E 2.5: Left panel show randomly generated data-set drawn from 
multivariate normal distr ibution consisting of three groups (denoted by 
shapes); Right panel shows the same data-set clustered using K-means 
algorithm (clusters are highlighted using various colours) 

2.4.2.3 Hierarchical clustering 

Hierarchical clustering is as simple as K-means, but instead of there being a 

fixed number of clusters, the number changes in every iteration. It creates a 

tree-like structure of nested clusters, also called a dendrogram, where the 

top-level node represents all the data, and each subsequent level represents a 

subset of the data that is increasingly similar. There are two main types of 
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hierarchical clustering: agglomerative and divisive. Agglomerative clustering 

starts with each data point as a separate cluster and iteratively merges the 

closest pairs of clusters unt i l only one cluster remains. Divisive clustering 

starts with all data in one cluster and iteratively splits it into smaller clusters 

unti l each data point is in its own cluster. 

In agglomerative clustering, each data point starts as a separate cluster. 

Then, the algorithm computes a distance matrix between all pairs of clusters 

and merges the two closest clusters. The distance between clusters can be 

computed in various ways, such as the minimum distance between any two 

points in the two clusters, the maximum distance, or the average distance. 

The algorithm continues merging the closest clusters until all the data points 

are in one cluster, or unt i l a stopping criterion is met, such as a desired 

number of clusters or a threshold distance. The result is a dendrogram that 

shows the hierarchical structure of the clusters. The dendrogram can be cut 

at any level to obtain a specific number of clusters. Hierarchical clustering 

has the advantage of being able to capture the nested structure of clusters 

and can be useful in exploratory data analysis, but it can be computationally 

demanding for large data-sets (Szekely et al. , 2005). 

Put in steps, the algorithm works as follows: 

1. Begin by considering each data point as a separate cluster. 

2. Calculate the distance between al l pairs of data points. 

3. Merge the two closest clusters into a single cluster. 

4. Recalculate the distance between the new cluster and all other clusters. 

5. Repeat steps 3 and 4 unti l al l data points are in a single cluster. 

6. Plot a dendrogram to visualise the clustering process. 
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7. Choose a cutoff point on the dendrogram to determine the number of 

clusters. 

2.4.2.4 Self-Organizing Maps 

Self-Organising Map (SOM) algorithm is an iterative process, that transforms 

the original data-set to a smaller representative set of nodes. The subset is 

usually presented through a two-dimensional output layer, where each node 

corresponds to a group of members of the original data-set that share some 

features (unified-distance matr ix or U - M a t r i x ; Ul tsch and Siemon (1990)). 

After a large number of iterations, each data point would be assigned 

to a specific node, wi th adjacent or neighbouring nodes of the U - M a t r i x 

representing points being more similar than the distant ones. This allows 

for easier visualisations of the data space, not only presenting clusters with 

similar properties, but also their non-linear relationships. Another interesting 

concept in S O M is that not only the number of classes is presented, but also 

the features that define each class. 

1. Initialise the S O M network: 

• Set the number of neurons 

• Set neuron ini t ia l weights and topology 

• Set the learning parameters 

2. Select a data point randomly from the data-set. 

3. Calculate the distance between the input vector and each neuron's 

weight vector. 

4. F ind the neuron with the smallest distance to the input vector, known 

as the Best Matching Unit ( B M U ) . 
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5. Update the B M U and its neighbouring neurons' weights to move closer 

to the input vector. The amount of weight adjustment decreases with 

distance from the B M U . 

6. Repeat steps 2-5 for each input vector in the data-set, adjusting the 

learning rate and neighbourhood size at each iteration. 

7. Visualise the resulting S O M to identify clusters and patterns in the 

data. 

A n advantage of the method is that neither the number of classes nor 

their range is determined a priory but results from the process itself. The 

number of nodes of the S O M is predefined though, wi th no single method 

for its determination. The most common practice is based on the compari­

son of differently sized S O M s and the selection of the one that minimises 

homogeneity measure, while at the same time preserving noticeable levels 

of clustering and offers a substantial comprehensibility (Chang et al., 2010: 

Ley et a l , 2011; Rousi et a l , 2017). 

2.5 Mode l assessment 

Various tools can be used to check the resulting R F A model. In particular, 

the homogeneity of the regions and the goodness-of-fit for the distribution 

used in the R F A should be assessed. 

2.5.1 D i scordancy 

One way to test the homogeneity assumption of pooled regions is through the 

local discordancy measure, here denoted as Di, as proposed by (Hosking and 

Wallis , 1993). This measure assesses the similarity between the L-moment 
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ratios of a site i and those of the entire pooling group, and identifies sites 

with L-moment ratios that are significantly different from the group average. 

A formal definition of discordance (Hosking and Walks, 1997) for N sites 

is 

N 
u = A f - 1 ^ u i . (2.18) 

i=l 

which is the group average wi th U j being a transpose vector containing 

values of L-moment ratios r , T3 and T4 for site i, 

N 
A = ^ ( u i - u ) ( u i - u ) T . (2.19) 

i=i 

is matrix of sums of squares and cross-products and 

Di = ^N(ui - u)TA-\ui - u) . (2.20) 

is discordance measure D for site i. The criterion for finding site as 

discordant is an increasing function of the number of sites in the region. This 

is because large regions are more likely to contain sites with large values of 

D. However it is recommended to regard any site with Di > 3 as discordant, 

since such sites have the L-moment ratios that are markedly different from 

the average for the other sites in the region (Hosking and Wallis , 2005). 

2.5.2 A n d e r s o n - D a r l i n g test 

In contrast to the discordancy measure which serves as homogeneity check, 

Anderson-Darling test ( A 2 ) is a test that is pr imari ly used to asses the 

consistency between the data and fitted distribution (it can however be used 

in context of homogeneity test as well within the region of influence scope). 
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A 2 is a modification of the Cramer-von Mises test (Cramer, 1928: 

Smirnov, 1936; V o n Mises, 1931). It differs from the Cramer-von Mises 

test in such a way that it gives more weight to the tails of the distribution 

(Farrell and Rogers-Stewart, 2006). A 2 is the most powerful empirical C D F 

test (Masqat, 2003). The A 2 statistic belongs to the quadratic class of 

the empirical C D F statistic in which it is based on the squared difference 

where F is theoretical C D F under the null hypothesis and Fn is empirical 

cumulative distribution function. 

2.5.2.1 Estimation of critical values 

Cr i t i ca l values for the Anderson-Darling test ( A 2 ) depend on the values 

of the parameters of the distribution and therefore are often derived using 

bootstrap resampling as suggested by Davison and Hinkley (1997) and used 

by Hanel et al. (2009). In addition, in the R F A context the at-site tests do 

not provide information whether the model is adequate since even in the 

case of a correct model it is expected that some sites may not pass the test. 

Therefore more complex resampling is needed to provide "global" cri t ical 

value. 

Let t(s) be the value of A 2 calculated for site s(s = 1, . . . , £ ) and let 

tl(s) be the value of A 2 from bootstrap sample b (6 = 1, ...,B) for this site. 

For a chosen significance level OILOC, the local cri t ical values caLOC(s) are 

obtained for each site as the fcth smallest value tfkJs) of the t£(s), where 

(2.21) 

k = (l-aLOC)(B + l). 
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The determination of the global critical values of the A 2 requires simula­

tion from the model under the null hypothesis. In particular, the preservation 

of spatial dependence is important. This is done by bootstraping the data 

for a certain year simultaneously, rather than bootstrapping the data of 

the sites individual ly (Faulkner and Jones, 1999; K h a r i n et al . , 2007). Let 

c " ^ o c ( s ) be the local cri t ical values that we get if bootstrap sample b is 

excluded. The bootstrap estimate of the global error rate acLOB is obtained 

as 

OLGLOB 
#{b: tl(s)>ca_L

b

oc(s), for any s } 
(2.22) 

where #{b : Af,} is the number of b for which Af, is true. This error 

rate can be calculated using the fact that bootstrap sample b fulfils the 

condition t*b(s) > ca_L

h

oc(s), for anys if and only if rank > 
hus, if the values of tl(s) are stored (1 — aLOc)(B + 1) for at least one s. 

in a matr ix wi th stations in columns and bootstrap samples in rows, then 

we first calculate the columnwise ranks and subsequently the proportion of 

rows in which the maximum rank is greater than or equal to k. The value 

of k is chosen such that CXGLOB is as close as possible to the desired global 

significance level. 



C H A P T E R 

Simulation Experiments 

In order to assess methods described in sections 2.2-2.4.1 simulation (boot­

strapping) experiments were designed. The experiments a im to evaluate 

the performance of parameter estimation algorithms in different scenarios. 

This can help identify the strengths and weaknesses of these algorithms 

and provide insights into their accuracy and reliability. The experiments 

examine the effects of sample size on parameter estimation. Larger sample 

sizes are often associated with more accurate parameter estimates, however 

the scarcity of data usually leads to unreliable results and higher uncer­

tainty thus requiring careful consideration. Understanding the relationship 

between sample size and estimation accuracy can help improve the accuracy 

predictions and its application in real world scenarios. 

The bootstrap is a resampling method that can be used to estimate 

the distr ibution of a test statistic or estimator. Essentially, it involves 

treating the available data as if they represent the entire population, and 
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then generating multiple "bootstrapped" samples by drawing observations 

from this data wi th replacement. Under certain conditions, the bootstrap 

can yield a reliable approximation to the distr ibution of interest, and this 

approximation is often more accurate than those obtained from traditional 

asymptotic theory. A s such, the bootstrap is a useful tool for situations 

where calculating the asymptotic distribution of an estimator or test statistic 

is difficult or impractical, and provides a way to substitute computational 

methods for more traditional mathematical analysis (Efron and Tibshirani, 

1994). 

3 . 1 F i t t ing methods 

The first part of the experiment aims to investigate the behaviour of param­

eter estimation algorithms. Specifically, the study focuses on evaluating the 

performance of these algorithms as sample size increases. Additionally, the 

experiment assesses the algorithm's performance in cases where the "wrong" 

target distribution is chosen. This can occur due to the subjective nature of 

selecting the appropriate distribution for a given data-set, and it is important 

to evaluate the robustness of the algorithms in such scenarios. The results 

of this part of the experiment w i l l provide insights into the behaviour of 

parameter estimation algorithms and their limitations in different scenarios, 

contributing to the development of more accurate and reliable methods for 

drought high quantile estimation. 

Methods described in previous chapter come wi th their own strengths 

and weaknesses. Some methods may be more appropriate for certain types 

of data or modelling scenarios, while others may be more robust or efficient. 

Understanding the strengths and weaknesses of fitting methods can help make 

informed choices when selecting a method for their particular application. 
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M a x i m u m Likelihood: 

Pros: 

• Often results in the most ef­

ficient estimators (in terms of 

being unbiased and having the 

smallest variance). 

• Well-established method wi th 

a large body of literature. 

• Can be used with a wide range 

of distributional assumptions. 

• C a n be easily modified to ac­

count for non-stationarity. 

L-moments: 

Pros: 

• Provides a method to estimate 

distributional parameters with­

out specifying a particular dis­

tribution. 

• Generally less sensitive to out­

liers than maximum likelihood. 

• Can be used with a wide range 

of distributions. 

Cons: 

• Assumes a specific parametric 

form for the distribution, which 

may not always be appropriate 

or accurate. 

• Can be sensitive to outliers. 

• C a n be computationally de­

manding, especially for com­

plex distributions. 

Cons: 

• Requires more computation 

than maximum likelihood, par­

ticularly for distributions wi th 

more than three parameters. 

• Requires estimation of higher-

order moments, which can be 

difficult wi th limited data. 

Works well with smaller sample 

sizes 



CHAPTER 3. SIMULATION EXPERIMENTS 41 

Norms 

Pros: Cons: 

• Simple to compute and imple-
• May not be as efficient as other 

methods. 
ment. 

• Can be sensitive to the choice of 

• Can be used with a wide range 

of distributions. 

reference distr ibution and spe­

cific norm. 

The performance of the three fitting methods described in Section 2.3 

was evaluated in various conditions using a designed experiment, which 

involved the following steps: 

1. A data sample of size n was generated with specified set of distribution 

parameters. 

2. The sample was fitted using the three methods described in Section 

3. For each fit (fitting method), the Anderson-Darling statistic ( A 2 ) was 

estimated according to Sections 2.5.2 and 2.5.2.1, as follows: 

a) A 2 was calculated for the fitted set of parameters. 

b) New samples were generated using the fitted set of parameters. 

c) The new samples were fitted using the corresponding method. 

d) A 2 was calculated for the new sample parameters. 

2.3. 
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e) The p-values were estimated using Equation 2.22. 

4. Steps 1-4 were repeated 1000 times for various sample sizes n. 

5. Calculate The 5th, 25th, 50th, 75th, and 95th quantiles of the fitted 

parameters were calculated. 

3.2 Index flood and uncertainty reduction 

The choice of spatial pooling method prior to regional frequency analysis 

can significantly impact the results of the analysis. Spatial pooling involves 

aggregating data from multiple sites within a region in order to estimate a 

single set of frequency parameters. The choice of spatial pooling method 

should be made carefully based on the available data and the characteristics 

of the study area in order to ensure the accuracy and precision of the 

estimated frequency parameters. Additionally, it is important to assess the 

advantages and limitations of each method. 
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K-means clustering: 

Pros: 

• Computat ional ly efficient for 

large data-sets. 

• Easy to implement and widely 

used. 

• Results can be easily inter­

preted and visualised. 

• C a n handle non-hierarchical 

structures. 

Hierarchical clustering: 

Pros: 

• Can handle any shape and size 

of clusters. 

• No need to specify the number 

of clusters beforehand. 

• Results can be easily inter­

preted and visualized. 

• Provides a hierarchy of clusters 

that can be useful in some ap­

plications. 

Cons: 

• Can be sensitive to ini t ial clus­

ter centres and may converge 

to local optima. 

• Assumes clusters are spherical 

and equally sized. 

• M a y not work well wi th noisy 

or overlapping data. 

• Requires the user to specify the 

number of clusters beforehand. 

Cons: 

• Can be computationally expen­

sive for large datasets. 

• M a y not work well wi th noisy 

or overlapping data. 

• Results can be affected by the 

choice of linkage method and 

distance metric. 

• Once a merge is made, it cannot 

be undone. 
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Self-Organising Map (SOM) 

Pros: 

• C a n handle high-dimensional 

data and non-linear structures. 

• Provides a topological represen­

tation of the data. 

• C a n handle missing data and 

noisy data. 

• Can be used for data visualisa­

tion and dimensionality reduc­

tion. 

Cons: 

• Can be computationally expen­

sive for large data-sets. 

• M a y not work well wi th small 

data-sets. 

• C a n be sensitive to the choice 

of the S O M size and topology. 

• Results can be difficult to inter­

pret compared to other cluster­

ing methods. 

To assess the impact of pooling methods on uncertainty reduction, we 

designed the following experiment: 

1. Generate multivariate sample: 

a) Draw data from multivariate normal distr ibution using a set 

correlation structure with set seed to ensure the "base" sample is 

constant over the course of the experiment 

b) Use probability integral transformation to convert the sample to 

G E V 

2. Employ a pre-defined pooling method wi th a specific cluster number 

and split the data into clusters 
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3. For each cluster than 

a) F i t the G E V parameters to the sample using L-moments 

b) Generate a bootstrap sample using one the methods described 

bellow 

c) F i t the G E V parameters to the bootstrap sample using the L -

moments 

d) Est imate quantiles using the at-site quantile functions and the 

regional quantile function for probabilities 0.80, 0.90, 0.95, 0.98, 

0.99 (i. e. return periods of 5, 10, 20, 50 and 100 years) 

e) Calculate Inter Quantile Range ( IQR) of return levels and eval­

uate the relative difference between the at-site and the regional 

quantile function IQRs in order to quantify the reduction of 

uncertainties in return level (high quantile) estimation 

4. Repeat steps 2 and 3 for al l pooling methods 

5. Repeat a l l of the previous steps unt i l desired number of samples is 

reached (in this case 3000 times) 

The bootstrapping methods employed in this study were developed to 

account for the spatial dependence of block maxima, a common approach in 

extreme value analysis (e. g. Hanel et ah, 2009). However, previous work 

has only evaluated these methods in the absence of compound distributions 

(probability mass concentrated in zero wi th probability po). 

To assess the performance of the bootstrapping methods for index flood 

estimation, the most stable process identified in the parameter fitting test 

described in Section 3.1 was selected. Specifically, the L-moments method for 
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parameter estimation and the generalized extreme value ( G E V ) distribution 

was used. The experiment consisted of the following steps: 

1. Generate multivariate sample: 

a) Draw data from multivariate normal distr ibution using a set 

correlation structure with set seed to ensure the "base" sample is 

constant over the course of the experiment 

b) Introduce po to the sample 

c) Use probability integral transformation to convert the sample to 

G E V 

2. F i t the G E V parameters to the sample using L-moments 

3. Generate a bootstrap sample using one of the methods described bellow 

4. F i t the G E V parameters to the bootstrap sample using the L-moments 

5. Estimate quantiles using the at-site quantile functions and the regional 

quantile function for probabilities 0.80, 0.90, 0.95, 0.98, 0.99 (i. e. 

return periods of 5, 10, 20, 50 and 100 years) 

6. Calculate Inter Quantile Range ( IQR) of return levels and evaluate 

the relative difference between the at-site and the regional quantile 

function IQRs in order to quantify the reduction of uncertainties in 

return level (high quantile) estimation 

7. Repeat a l l of the previous steps unt i l desired number of samples is 

reached (in this case 3000 times) 

Results of the parameter estimation for different methods can be seen in 

figure 3.7 and the reduction of uncertainties in figure 3.8. 
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3.2.1 B o o t s t r a p p i n g methods 

The three bootstrapping methods used here are defined as follows: 

Method 1 (nonparametric): 

1. Shuffle the block maxima of the original sample in a way that preserves 

spatial correlation - keep the corresponding block maxima for all sites 

intact when shuffling 

Method 2 (parametric - po structure from original sample): 

1. F i t the statistical model to the original sample 

2. Calculate standard normal residuals wi th the parameter estimates 

from step 1 using quantile mapping 

3. Calculate the average correlation p of the standard normal residuals 

4. Generate a sample of equicorrelated standard normal variables wi th 

correlation p 

5. Transform the sample from step 4 to the G E V scale using the parameter 

estimates from step 1 

6. Transfer the po structure from the original sample to the bootstrap 

sample 

Method 3 (parametric - po structure created using the C D F of 

the normal distribution): 

1. F i t the statistical model to the original sample 

2. Calculate standard normal residuals wi th the parameter estimates 

from step 1 using quantile mapping 
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3. Calculate the average correlation p of the standard normal residuals 

4. Generate a sample of equicorrelated standard normal variables wi th 

correlation p 

5. Introduce po to the bootstrap sample using where p is the proba­

bi l i ty calculated using C D F of the normal distr ibution and po is the 

desired probabil i ty of missing value, after the calculation negative 

probabilities are replaced by zeros 

6. Transform the sample from step 5 to the G E V scale using the parameter 

estimates from step 1 

3.3 Experiments summary 

Two main experiments were performed - experiment testing the performance 

of fitting methods and an experiment to assess the index flood method used 

for intermittent processes. 

For the fitting methods experiments the base sample parameter values 

were set as follows: parameter values for G P D being location = 1, scale 

= 2 and shape = .1; parameters for G E V location = 10, scale = 1.5 and 

shape = .1; reasoning for the selection of parameter values in the fitting 

methods experiments for the G P D and G E V was provided by following work 

of Beirlant et al. (2006); Coles et al. (2001); E l Adlouni and Ouarda (2008); 

Hosking and Wall is (1987); Hosking et al . (1985); Salvadori and Michele 

(2006). 

The index flood ran with following setting: number of sites = 17, sample 

size for each site = 50, scaling factor values ranging from 12.21 to 17.12 

and regional parameters location = 0.78, scale = 0.33 and shape = -0.06, 
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these values were taken directly from data-set used in Hanel et al . 

Correlation structure of the base sample can be seen in figure 3.1. 

49 

(2009). 

F I G U R E 3.1: Base sample correlation structure used throughout the index 
flood experiment 
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F i t t ing methods of L-moments and the fitting norms performed as an­

ticipated for al l scenarios (converging to the same value of the parameters 

wi th wi th sample size increasing), maximum likelihood however exhibited 

unstable behaviour whenever P D F of the G P D was used. This could be 

caused by several factors, first being the infinite nature of the distribution 

tai l , second is the implementation of the maximum likelihood estimator 

algorithm itself, another possibility is the implementation of the distribution 

P D F and the fact that maximum likelihood does not always have a solution 

for G P D (Grimshaw, 1993; Hiisler et a l , 2011). 

In Figure 3.2, the upper panel illustrates the expected behaviour of the 

fitting methods. A s the sample size increases, the uncertainty decreases, 

and there is consistency between the fitting methods. O n the other hand, 

the lower panel shows the p-values of the Anderson-Darling goodness-of-fit 

test, which is used to assess the performance and robustness of parameter 

estimation for different fitting methods. The maximum likelihood method 

shows good performance and consistency, as reflected by the low p-values 

obtained for various sample sizes. 

Very similar image can be seen on figure 3.3 with two differences being the 

nonstandard behaviour of the maximum likelihood method and noticeable 

underperformance of fitting norms in estimation of the shape parameter for 

lower sample sizes (50 and less) that can be caused by the infinite variance of 

the G P D with the shape parameter being higher that zero or flexibility of the 

fitting norms that are employing minimisation of the parametric functions 

( C D F and/or quantile function) in order to estimate the parameters, this 

behaviour of the fitting norms can be seen throughout the entire experiment. 

Figure 3.4 shows the erratic behaviour of the maximum likelihood when 

used with the G P D P D F (fitted to the G E V sample), the other two methods 

exhibit a bias in parameters trying to compensate in order to fit the "wrong" 
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GEV fitted to GEV 
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F I G U R E 3 . 2 : G E V fitted to G E V ; brighter colour on the upper panel 
represents 90% confidence interval, darker colour 50% confidence interval, 
coloured line represents the median and the dashed line is the original 
parameter value. 

distribution. W h e n looking at the A 2 , for smaller sample sizes the null 

hypotheses (i.e. that the data being drawn from G E V ) cannot be rejected. 

This corresponds to the envelope of the 50th percent confidence interval 

overlaying the original parameter value on the panel showing the fitted 

parameters. 
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GPD fitted to GPD 
M a x i m u m l ikel ihood 
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F I G U R E 3.3: G P D fitted to G P D ; brighter colour on the upper panel 
represents 90% confidence interval, darker colour 50% confidence interval, 
coloured line represents the median and the dashed line is the original 
parameter value. 

Comparable behaviour can be seen on figure 3.5 wi th the difference of 

stable maximum likelihood method and increased chance of rejecting the 

nul l hypothesis of the test caused by the arguably higher flexibility of the 

G E V . 

As mentioned previously the most stable process from the fitting method 
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GEV fitted to GPD 

Anderson-Darling statistic p-values for GEV sample fitted to GPD 
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F I G U R E 3.4: G E V fitted to G P D ; brighter colour on the upper panel 
represents 90% confidence interval, darker colour 50% confidence interval, 
coloured line represents the median and the dashed line is the original 
parameter value. 

tests section was chosen for the index flood method assessment - L-moments 

fitting of the G E V . The base sample for bootstrapping consisted of 17 sites 

and had a 50 year record length of simulated block maxima. 

Parameter fits can be seen on figure 3.7, the figure shows performance 

of index flood method for regional parameters estimates and as expected 
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GPD fitted toGEV 
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F I G U R E 3.5: G P D fitted to G E V ; brighter colour on the upper panel 
represents 90% confidence interval, darker colour 50% confidence interval, 
coloured line represents the median and the dashed line is the original 
parameter value. 

with increasing po (that shortens the sample size) the range of the estimated 

parameters is increasing, biases in the parameters are comparable to those 

on figure 3.2 for lower sample sizes. 

Figure 3.6 provides a clear visual representation of the uncertainty re­

duction achieved by the different pooling methods and can be used as a 
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Uncertainty reduction with for different pooling methods 
Cluster 1 

F I G U R E 3.6: Uncertainty reduction in return levels for return periods of 
5, 10, 20, 50 and 100 years, calculated from the relative difference of the 
IQRs for the at-site and the regional quantile functions estimates wi th use 
of different pooling methods. 

reference for future studies in the field of extreme value analysis. Whi le the 

results of the pooling experiment show that the different pooling methods 

perform similarly across the board, wi th a slightly higher uncertainty re­

duction for S O M , it is important to keep in mind that the experiment did 

not follow the recommendation of Hosking and Wallis (2005) to use at-site 

characteristics as inputs for the pooling, but rather at-site statistics (block 

maxima) since the test was designed for set conditions. Therefore, when 
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choosing a pooling method, one should rely on the recommendations made 

earlier in the literature. 

Regional parameters 
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F I G U R E 3.7: Estimates of regional parameters for the three bootstrapping 
methods and varying values of PQ. 

W h e n comparing the lowering accuracy of the parameter estimation 

(figure 3.7) to the uncertainty reduction (figure 3.8) wi th increasing po, it 
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Uncertainty reduciton with varying pO (probability of missing values) 
0 0.1 0.2 

0 . 2 -
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F I G U R E 3.8: Percentual reduction of uncertainty in return levels for return 
periods of 5, 10, 20, 50 and 100 years, calculated from the relative difference 
of the IQRs for the at-site and the regional quantile functions estimates for 
the bootstrap samples, brighter colour represents 90% confidence interval, 
darker colour 50% confidence interval and the coloured line represents the 
median. 

can be seen that the percentual reduction of uncertainty is not affected the 

same way the parameters are (although there is an apparent increase of the 

90% confidence interval wi th increasing po). 

It can be concluded that the uncertainty reduction effect of the index 

flood method remains relatively constant wi th increasing po however the 
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absolute values of the return level (high quantile) estimates can be skewed 

due to the bias in parameter estimation. 



C H A P T E R 

Case study 

Central Europe recently experienced a number severe drought events (e.g., 

2000, 2003, 2015, 2018; e.g. F i n k et al. (2004); Ionita et al. (2017); Laaha 

et al. (2016)). These events attracted public, media and scientific attention 

as well as stimulated drought research, development of drought legislation 

and adaptation strategies. M a n y of these activities require assessment of 

drought characteristics (like severity, intensity, duration and frequency). 

Whi le these characteristics are routinely estimated for heavy precipitation 

events and floods (e.g., Blazkov and Beven (1997); Burn (1990); Dalrymple 

(1960); Iacobellis et al. (2010)), the applications in the drought context are 

less common. 

This could be at least partly attributed to the vague definition of drought 

(described in section 2.1) potentially leading to contradicting assessments. 

A common definition of such drought is the deficit of water with respect to 

variable of interest or specific water use. 

59 
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In contrast to extreme precipitation or runoff, the definition of drought 

is not straightforward and various definitions do exist. In the present study, 

deficit volume is considered, due to its clear physical interpretation. On the 

other hand, one may also consider drought indices, based on cumulative 

deviation from the mean, e.g., Drought Severity Index (Phillips and McGre­

gor, 1998) or indices inspired by the Standardised Precipitation Index (SPI). 

The use of the latter within regional frequency analysis, however, is complex 

since often the temporal dimension of drought is characterised by different 

time-scales for which the SPI is calculated. 

Moreover, even the definition of deficit volume allows for several sub­

jective choices like threshold level, form of the threshold (variable or fixed 

within a year), number of days/months needed for the discharge to be above 

threshold to end the drought event etc. This increases the uncertainty in 

the estimation of drought characteristics. 

In this chapter the application of an R F A model based on L-moments 

for estimation of drought characteristics is presented, more specifically the 

distribution of maximum deficit volumes for the period 1900-2015 over the 

Czech Republic is assessed. The model aims at reduction of uncertainty 

in the estimated return levels, in the periods of drought events and in the 

parameters of the extremal model. The goodness-of-fit of the model is 

evaluated through discordance analysis, as well as the A 2 , wi th the critical 

values estimated by a bootstrap procedure. 

A s described in section 2.4, R F A uses spatial pooling of data from a 

homogeneous region to reduce the standard error of the estimates, i.e., it 

trades time for space. The vast majority of its applications is for runoff 

(e.g., Clausen and Pearson (1995); Noto and L a Loggia (2009)), precipitation 

(e.g., Fowler and Ki l sby (2003); Modarres (2010); Santos et al . (2011)) or 

temperature maxima (e.g., Brown and Ka tz (1995)), while the applications 
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in the drought context are rare. Some noteworthy exceptions are Madsen 

and Rosbjerg (1998) who carried out R F A of deficit runoff volumes, or Chen 

et al. (2006) who presented regional analysis of low flows over South China. 

The R F A method based on L-moments was carried out by Nunez et al. (2011) 

and A b d i et al. (2017). 

Identification of the homogeneous regions for R F A requires the greatest 

amount of subjective judgement of al l stages of regional frequency analysis. 

When using K-mean clustering, methods uncertainties stem from the choice 

of the number of clusters, which can actually be mitigated by using methods 

like gap statistics (Tibshirani et al . , 2001; Y a n and Ye, 2007). However in 

this study we had a predefined number of clusters from the very beginning 

since the init ial idea was to classify the catchments into three groups based 

on the level of threat by drought. Another ways to proceed wi th spatial 

pooling would be by using Self-Organising Map (SOM) (Kohonen, 1998; 

L i n and Chen, 2006), dimensionality reduction technique (Kraemer et al . , 

2018), or pooling methods first suggested by (Acreman and Wiltshire, 1987) 

and (Acreman, 1987) with subsequent implementation of the method referred 

to as the region of influence approach by (Burn, 1990). 

4 . 1 Study Area — Czech Republic 

Although Czech Republic is a small country in central Europe, weather 

conditions differs markedly among its various regions. The variability of the 

weather is strongly driven by the unstable location and magnitude of two 

main pressure centres. In particular during the warm period of the year, 

the expansion of the high pressure projection into Czech Republic causes 

warmer temperatures and dry weather, whereas the Icelandic Low manifests 

itself wi th a greater number of atmospheric fronts bringing more clouds 
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and precipitation. 

The average air temperature is strongly dependent on the altitude and 

ranges from 0.4 °C on the highest elevation point (mountain Sněžka; 1603 m) 

to almost 10 °C in the lowlands of southeast Moravia . The annual rainfall 

is also strongly dependent on the altitude and orography. The wettest areas 

are the mountain ranges with steep slopes facing northwest in Jizerské hory 

(Jizera Mountains) wi th average total rainfall exceeding 1700 millimetres. 

On the other hand, the driest regions are the lowlands in southeast Moravia 

and northwest Bohemia receiving approximately 400 m m on average (the 

latter is influenced by rain shadow east of the Krušné hory (Ore Mountains) 

Figure 4.1 left. 

For the purpose of the study all of the 133 catchments defined by (Zítek, 

1965) are considered covering the entirety of the Czech Republic (Figure 4.1 

right) with respective areas ranging from 154 to 1928 k m 2 . The catchments 

are based on hydrological division of the Czech Republic as provided by 

the Czech Hydrometeorological Institute, which is also considered in the 

application of water management policies. 

4.2 Da ta &; methods 

4.2.1 D a t a 

Since 80 out of the 133 catchments over the study area are ungauged, the 

B I L A N hydrological model (Horáček et ah, 2009; K a š p á r e k et ah, 2016; 

Tallaksen and V a n Lanen, 2004; V i z i n a et ah, 2015) was used to estimate 

runoff from each catchment. B I L A N has been frequently applied in various 

hydrological studies, as well as for the assessment of possible climate change 

impacts on water resources in the Czech Republic (Beran and Hanel, 2015; 
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)f the Czech Republic Catchment regionalization 
Dicsordance and Anderson-Darl 

Elevation 

F I G U R E 4.1: Left panel: Dig i ta l Elevation model of the Czech Republic; 
Right panel: Resulting clusters, discordance measure and results of at-site 
A 2 test. 

Beran et al. , 2016; Hanel et al . , 2013; Horáček et al., 2008). It is a lumped 

hydrological model for assessment of water balance components in monthly or 

daily step. The catchment is schematised as a system of reservoirs and flows, 

wi th catchment precipitation, air temperature and relative air humidity as 

inputs and total stream-flow as output. 

Precipitation and air temperature from the HadCRU-TS3.21 (Harris et al., 

2014) data-set was used for the period 1900-1960 and the gridded data-set 

of precipitation and temperature provided by (Štěpánek et al., 2011) for the 

period 1961-2015. The latter is derived from a larger number of stations and 

therefore the HadCRU-TS3.21 data-set was adjusted to have same monthly 

mean over the period 1961-2015. The gridded data were transferred to the 

river catchment areas using a weighted average, wi th weights proportional 

to the area of the intersection between the catchment and grid boxes. 

Since the spatial resolution of the gridded data set used for derivation of 

catchment precipitation and temperature might be too coarse for smaller 
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catchments with large altitude differences, the mean monthly catchment pre­

cipitation and temperature were finally corrected for error in long-term mean 

(1980-2010) by comparing the long-term average of the derived catchment 

data with long-term average precipitation and temperature calculated from 

fine-scale (1 km) gridded product provided by Czech Hydrometeorological 

Institute (Tolasz et al. , 2007). 

The B I L A N model simulates water balance at three vertical levels: on the 

land surface, in the soil layer and in groundwater aquifer. The three water 

balance algorithms that are applied were developed for winter conditions, 

snow melting and summer conditions. Surface water balance depends on 

evapotranspiration, which is derived using temperature based empirical 

formula derived by (Oudin et al. , 2005). Excess water (precipitation minus 

evapotranspiration) forms direct runoff or infiltrates to a deeper zone, where 

it is divided into inter-flow and groundwater recharge (Horáček et al., 2008). 

To estimate water balance at ungauged catchments, a database of cali­

brated B I L A N models available for more than 300 catchments in the Czech 

Republic was used. For each catchment of interest models from catchments 

intersecting the catchment area were transferred . The simulated runoff for 

the catchment of interest was calculated as a weighted average of runoff from 

transferred models. The weights were proportional to the area of intersection 

between the catchment of interest and the transferred model. Thus, for each 

catchment a time series for the period 1900-2015 was obtained. 

4.2.2 D r o u g h t Def in i t ion 

To analyse drought characteristics, a cumulative deficit volume below a pre­

selected threshold is considered (Luo et al., 2017; Tallaksen, 2000; Van Loon, 

2015). The volume was first developed by (Rice, 1945) and later extended 



CHAPTER 4. CASE STUDY 65 

and summarised by (Leadbetter, 1967). A n early application in hydrology 

includes (Yevjevich et al., 1967), where the method is based on the statistical 

theory of runs for analysing a sequential time series. 

The threshold level is either representing a certain water demand, e.g., power 

plants or water supply, or the boundary between normal and unusually low 

stream flow conditions. The threshold level can be fixed or varying over the 

year to reflect seasonal variability of hydrological regime or water demands, 

and can be chosen in a number of ways. 

In the present study a varying monthly 80% quantile of the flow ex-

ceedance curve was chosen, similarly to (Hisdal et al., 2000) or (Fleig et al., 

2006). Basic characteristics describing the deficit event include: 

• event severity (deficit volume), D [mm or m 3 ] : 

• event length, L [months]: 

• event intensity, / = D/L [mm/month or m 3 /month] : 

• relative severity (i.e., deficit volume to monthly runoff ratio), rD [-]: 

• relative event intensity, rl = rD/L [ t - 1 ] . 

While all of the above mentioned characteristics were used for the evalu­

ation of the simulation of hydrological model, for the extreme value analysis 

annual maximum event severity (deficit volume) were considered. 

4.2.3 Statist ical M o d e l 

The R F A approach based on L-moments (Hosking and Wall is , 2005) was 

applied in order to estimate quantiles of the distr ibution of maximum 

deficit volumes. 
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In this study, the Hartigan-Wong fc-means algorithm Hartigan and Wong 

(1979) described in section 2.4.2.2 was used to identify the homogeneous 

regions. K-means algorithm identifies k number of centroids, and then 

allocates every data point to the nearest centroid, while keeping the clusters 

as small as possible. The input to the algorithm is a set of points defined by 

the coordinates in the n-dimensional space, and the number k, defining the 

number of clusters. The cluster analysis was carried out with scaled data of 

runoff minus potential evapotranspiration. 

The parameters of the regional distr ibution are estimated using the 

L-moments method (Papalexiou and Koutsoyiannis, 2016). The at-site L -

moments for annual maximum deficit volumes were estimated using the 

algorithm developed by Hosking (2017). (Section 2.3.2) 

Following Stedinger (1993) we consider the model wi th a probabili ty 

mass concentrated in zero 

where po is the probability of year without drought. We estimate po as 

the proportion of zero drought years (Engeland et al . , 2004). Further we 

describe the model for the distribution of non-zero deficit volumes, F(x). 

4.3 Mode l Assessment &; Results 

Model was checked visually by the Ratio diagrams and Gumbel plots. The ra­

tio diagrams ere constructed by plott ing the estimated sample L-moment 

ratios versus the theoretical L-moment ratio curves for the candidate dis­

tributions. Gumbe l plot is a quantile function wi th transformed Gumbel 

variate (—log(—log(F))) instead of probabili ty (F) on the horizontal axis. 

(4.1) 
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A discordance analysis was performed in order to assess whether the dis­

tributions of at-site deficit volumes wi th in each cluster were acceptably 

similar. Anderson-Darling test ( A 2 ) test was chosen over goodness-of-fit 

framework within Hosking and Wallis (1997) based on the findings presented 

by Viglione et al. (2007) which specifically compares the A 2 wi th methods 

used in Hosking and Wall is (1997) in order to make recommendations for 

test selection based on the assumed skewness of the data. Methods are 

described in section 2.2 

The characteristics of simulated deficit events in four successive 30-year 

(climatic) periods starting in 1901 are given in Table 4.1. The average 

values of event severity (D), intensity (/), length (L) , relative severity (rD) 

and relative intensity (rl) are varying over the periods wi th largest values 

of event severity in the periods 1931-1960 and 1961-1990. These periods 

are in good agreement wi th the extreme droughts that manifested in 1947, 

1953-1954, 1959, 1963-1964, 1973-1974, 1983 (Blinka, 2005; Brázdi l et a l , 

2016; Hanel et a l , 2018; Spinoni et a l , 2015; Treml, 2011). 

Table 4.1: Average values of severity (D), intensity (/), length (L) , relative 
severity (rD) and relative intensity (rl) of deficit events derived from 
simulated data. 

Period D J L rD rl 

1901 1930 4.46 1.70 2.34 0.24 0.09 
1931-1960 6.01 1.97 2.76 0.36 0.11 
1961-1990 6.68 2.19 2.95 0.44 0.12 
1991-2015 4.74 1.79 2.38 0.29 0.10 

The relatively lower values of a l l variables in the last period might be 

linked wi th the rather wet conditions that prevailed in Central Europe 
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(Markonis et al . , 2018). In addition, the current dry period over the Czech 

Republic spans the years 2014-2018, so considerable part is not considered 

here. A steady decrease in soil moisture has been reported for the same period 

(Trnka et al., 2015), due to the increasing temperature and consequently to 

the rising evapotranspiration. The latter can be also seen in the drought 

representation by the S P E I index (Potopova et al. , 2014). 

In the 53 gauged catchments, the properties of simulated deficit vol­

umes for the period 1980-2010 were compared to the observational records. 

The validation showed that the characteristics of simulated deficit volumes 

correspond well to those based on observed data, as shown in Figure 4.2 and 

Table 4.2. In Figure 4.2, the simulated event severities and lengths are well 

represented through the median, as well as through the confidence interval in 

all ranges. The simulated low event intensities correspond quite well to the 

observed ones, despite the overestimation of the high intensities by the model. 

The simulated relative severity and intensity are slightly overestimated in 

the whole range, due to the cumulative effect in their computation. This 

overestimation pattern is well shown in Table 4.2 through the average of the 

individual variables. 

Table 4.2: Validation of simulated deficit volumes. D: severity, / : intensity, 
L : length, rD: relative severity and rl: relative intensity. 

D J L rD rl 

Observed runoff 
Simulated runoff 

5.25 
6.15 

1.94 
2.35 

2.29 
2.36 

0.24 
0.28 

0.09 
0.10 

In the spatial pooling step of R F A , input to K-means algorithm was 

mean runoff and mean potential evapotranspiration for each catchment which 

resulted in three clusters of catchments. The algorithm ran ten times, each 
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Event severity Event length Event intensity 

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 
P P P 

Relative severity Relative intensity 

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 

P P 

F I G U R E 4.2: Comparison of drought characteristics for observed and simu­
lated runoff. The empirical quantiles of the individual characteristics are 
indicated on the horizontal axis, the vertical axis shows values of drought 
characteristics, the polygons correspond to interquartile range. 

time starting with cluster centres in a different random position. W i t h i n fifty 

iterations, each run converged to a local ly-optimal solution. Cluster 1 

represents the catchments at high elevations with a lot of precipitation (see 

Table 4.3 for average precipitation for individual clusters), low land dry 

catchments wi th l imited precipitation form cluster 3, while cluster 2 is a 

transition between the low drought risk cluster 1 and severe drought event 

risk cluster 3. Table 4.3 reports also the probability of year without drought. 

It may be surprising that the low-risk cluster 1 has the lowest probability of 

year without drought (0.3), while this probability is 0.49 for severe drought 

event risk cluster 3. However, it has to be noted (and is demonstrated 

further) that the tai l of the distribution of deficit volume is much heavier in 

cluster 3 than in cluster 1 (see, e.g., K parameter in Table 4.4 or the quantile 
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functions in Figure 4.4). 

Al though we used unsupervised clustering algorithm it is worth noting 

that the resulting regions used for regional frequency analysis shown in 

Figure 4.1, correspond well with the distribution of hydro-climatic variables 

relevant to drought such as aridity index (Tolasz et al., 2007), which supports 

the relevance of the clustering algorithm. 

Table 4.3: Mean values of annual precipitation sum (P[mm]) for each cluster, 
average deficit volumes DV [mm] for each cluster and probabilities po of 
year without drought event per cluster. 

P [mm] DV [mm] Po 

Cluster 1 993.87 21.65 0.30 
Cluster 2 699.80 10.73 0.36 
Cluster 3 574.50 6.43 0.49 

At-site distributions were chosen on the basis of L-moment ratio diagrams 

and at-site A 2 . The diagrams were constructed by plott ing the estimated 

sample L-moment ratios versus the theoretical L-moment ratio curves for 

the candidate distributions (Figure 4.3). From the considered distributions, 

the estimated L-moment ratios for deficit volumes correspond best to those 

of the Generalised Pareto Distribution ( G P D ) . In addition, the A 2 at the 

significance level CVLOC = 0.05 rejected the G P D only at six out of 133 

catchments, which is very close to the nominal level of the test. 

For each cluster a stationary index flood model for scaled deficit volumes 

was developed. The scaling was performed by the at-site first L-moment, 

wi th the scaling factors varying between 1.94 and 23.5 mm. The fitted 

regional parameters of the model are presented in Table 4.4. It is evident 

that the cluster 3 (dry catchments) exhibits quite different behaviour than 
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the other two clusters. In particular, the low value of the shape parameter 

indicates heavy ta i l . In addition, the smaller scale parameter also points 

towards dry regime prone to heavy extremes. 

L-moment ratio diagram 

/ * / * 
CT V V 

V 
y I • T • • • • 

V 

y > • 
o 

r 

• • 
V V 

Passed A test 
O FALSE 

• TRUE 

Distribution 
. . . . GEV 

— GPD 

F I G U R E 4.3: L-moment ratio diagram with highlighted clusters and results 
of at-site A 2 . The dashed lines show the theoretical L-moment ratio for 
Generalised Pareto Distribution ( G P D ) and Generalised Extreme Value 
distribution ( G E V ) and the points the L-moment ratios for each catchment. 

Table 4.4: Fi t ted regional parameters with estimated regional A 2 critical val­
ues. 

hi 
A 2 Crit ical 

Value 

Cluster 1 -0 .01 0.86 —0.15 2.42 
Cluster 2 -0 .02 0.83 —0.19 2.64 
Cluster 3 -0 .04 0.71 -0 .32 2.79 

The goodness-of-fit was assessed using Gumbel plots, discordance measure 
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and regional A 2 (Figure 4.4). It is clear that the regional model fits the 

deficit volumes scaled by the first L-moment well. The same figure, highlights 

1-2 catchments in every cluster demonstrating different behaviour than the 

rest of the cluster (discordant catchments). Regions were checked for within-

cluster discordance based on a critical value set at 3 with a 10% significance 

level as defined by Hosking and Wallis (2005), and five catchments in total 

were found discordant. In the A 2 , the regional critical values were estimated 

using the methods described above wi th 3000 bootstrap samples for each 

region (Table 4.4). A l l clusters passed the regional A 2 for significance level 

OLGLOB = 0.10. 

The bootstrapping method used here is described by (Hanel et al., 2009) 

(and in section 2.5.2.1) in steps as: 

1. F i t the statistical model to the original sample. 

2. Calculate standard normal residuals wi th the parameter estimates 

from step using quantile mapping. 

3. Calculate the average correlation p of the standard normal residuals. 

4. Generate a sample of S equicorrelated standard normal variables with 

correlation p. 

5. Transform the sample from step 4 back to the original scale using the 

parameter estimates from step 1. 

6. F i t the statistical model again. 

7. Calculate the A2 statistics. 

8. Repeat steps 4-7 unt i l the desired number of bootstrap samples is 

obtained. 
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The annual maximum deficit volumes analysed in the present study 

cannot be regarded as standard block maxima, since there is often only 

one drought event (and only seldom more than two) for individual year 

and catchment. Therefore the annual maximum deficit volume are not 

theoretically expected to follow Generalised Extreme Value distribution 

( G E V ) . Indeed, the results suggest that for most stations the G P D is 

appropriate for the description of the distribution of the annual maximum 

deficit volume (though generalised normal and generalised extreme value 

distributions could be also good candidates for stations that d id not pass 

the A 2 or are being an outliers in Figure 4.3). 

Similar results can be seen in (Tallaksen and Hisdal, 1997), where annual 

deficit volumes were fitted to various distributions and G P D presented 

the best results. However, no spatial pooling was employed in that study. 

In another study that employed R F A for deficit volumes (Madsen and 

Rosbjerg, 1998) the Generalised Exponential Distr ibution was used, which 

is a reparameterisation of the Generalised Pareto Distr ibution. 

In addition, the analyses conducted within searching for the optimal at-

site distribution revealed that Generalised Extreme Value distribution cannot 

be used to characterise the distr ibution of deficit volumes, although it is 

very often found appropriate for maximum discharges or heavy precipitation 

indices. This result can be, at least partly, region-specific, therefore the at-site 

distribution should be always checked prior the regional frequency analysis. 

To assess the increase in precision of the parameter estimates owing to 

spatial pooling, G P D parameters were fitted for each individual catchment 

and the 25th and 75th percentiles of the parameter estimates were calculated 

using 500 bootstrap samples. Then, for each region and each parameter 

the average interquartile range was obtained as the difference between the 

average 75th and 25th percentile of the estimates. These average interquartile 
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ranges were compared wi th those of the regional model. Results are shown 

in Table 4.5. 

Increase in precision for the return levels was calculated by substituting 

the estimated parameters of the bootstrap sample to G P D quantile function 

with corresponding probability p, p = 1 — 1/T, where T is the return period 

in years. The estimated return levels for each cluster together with calculated 

confidence intervals can be seen in Figure 4.5. 

Table 4.5: Percentage decrease in uncertainties in parameter and return 
level estimation. 

OL hi 2 y r 

Cluster 1 99.86 69.97 67.99 66.44 
Cluster 2 99.84 75.03 74.95 72.82 
Cluster 3 99.40 55.94 56.28 52.04 

Another option how to increase the sample size is to consider recon­

structed climate data (e.g., (Dobrovolný et al. , 2015)) in combination wi th 

a hydrological model. This introduces addit ional sources of uncertainty, 

though, through the reconstructed climate fields and the parameterisation of 

the hydrological model. On the other hand, the spatial and temporal scales 

relevant for drought may allow to obtain reliable information even based on 

data wi th limited spatial coverage. 

4.4 Case study summary 

Statistical model using index-flood method based on L-moments was used 

on simulated runoff series for the period 1900-2015 for 133 catchments 

in the Czech Republic. Goodness-of-fit of the model was assessed using 
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Gumbel plots and A 2 . Cri t ical values of the test were estimated by bootstrap 

resampling, which also provided the estimate of the confidence intervals 

allowing for calculation of the reduction in uncertainties of the regional 

parameter and return level estimation. 

The main conclusions that can be drawn are: 

• Regional frequency analysis reduces uncertainty of estimated drought 

characteristics and parameters of its distribution. 

• Use of Generalised Pareto Distribution ( G P D ) is appropriate to de­

scribe the deficit volumes on majority of catchments, which is not the 

case for Generalised Extreme Value distribution ( G E V ) . However, it 

is not clear to what extent this result depends on characteristics of 

the area under study and other parameters of the analysis like the 

threshold defining drought. 

• The most subjective part of the regional frequency analysis is the 

definition of homogeneous regions—methods such as region of influence 

or Self-Organising Map (SOM) could be considered to minimise the 

subjective decisions within the regional frequency analysis. 
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F I G U R E 4.4: Left panels: Gumbel plot—Continuous black lines represent 
fitted regional quantile functions, grey points wi th lines are scaled deficit 
volumes wi th probabilities calculated using plott ing position, dashed lines 
highlight discordant catchments; Right panels: Discordance measure showing 
ratio between coefficient of L-variation and L-skewness, discordant ratios lie 
outside the notional ellipsis (critical value) that would be drawn around the 
concordant values. 



CHAPTER 4. CASE STUDY 77 

F I G U R E 4.5: Estimated return periods of deficit volumes. Dashed line shows 
regional quantile function, darker area the 25th and 75th, light area 5th and 
95th percent quantile calculated from the bootstrap samples. 



C H A P T E R 

Discussion &; Conclusions 

Estimation of extreme events is subject to considerable uncertainty. In the 

context of drought, this uncertainty is strengthen by the fact that drought 

does not occur every year and more significant droughts occur in only a small 

fraction of years. Since there is no unified drought definition, addit ional 

uncertainty is introduced by the choice of the indicator used for drought 

quantification, which has to be always based on the objective of the study 

or the needs of the stakeholders. 

W h e n selecting the most suitable probabil i ty distr ibution for drought 

indicators/indices, two distributions are commonly considered: the Gener­

alised Extreme Value distribution ( G E V ) distr ibution and the Generalised 

Pareto Distribution ( G P D ) . The choice between these two distributions 

is relatively straightforward as it is based on the nature of the data. The 

extreme value theorem dictates that the G E V distribution should be used to 

describe properly scaled block maxima, while threshold-based indices cannot 

78 
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be treated as standard block maxima. A s there is often only one drought 

event (and only seldom more than two) for individual year and catchment 

in threshold-based indices, the G P D distribution is the appropriate choice. 

It should be noted that while G E V and G P D are commonly used distri­

butions for drought indices, they are not the only two distributions that can 

be used. Other distributions such as Weibull or Lognormal distributions can 

also be used to model drought events. However, the choice of distr ibution 

should be based on the characteristics of the drought data and the purpose 

of the analysis. The selection of the appropriate distribution should always 

be verified prior to proceeding wi th Regional Frequency Analysis ( R F A ) . 

This can be done through a variety of methods such as Gumbel plots and 

other visual aids, as well as statistical tests such as the Anderson-Darl ing 

test ( A 2 ) . This verification step is essential to ensure accurate and reliable 

results in R F A . 

Each of the three presented methods (Maximum likelihood, L-moments 

and fitting norms) has its strengths and weaknesses based on which an 

appropriate method can be chosen for specific situations. 

W h e n searching for the opt imal distr ibution of the drought indica­

tor/indices, it is important to consider the strengths and weaknesses of 

each fitting method, as presented in previous sections. 

M a x i m u m likelihood method is appropriate for higher sample sizes and 

can also be easily modified to account for non-stationarity employing methods 

like local likelihood smoothing (Davison and Ramesh, 2000) or parametric 

trend estimates. The implementation of the algorithm can, however, be 

unstable in some instances. The likelihood functions have to be specifically 

derived for a given distribution and estimation problem. The mathematics 

is often non-trivial , part icularly if confidence intervals for the parameters 

are required. It is also important to note that maximum likelihood does not 
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always have a solution for G P D (Grimshaw, 1993; Hiisler et al., 2011). 

L-moments perform better than the maximum likelihood for the smaller 

sample sizes, the difference between the two methods however should asymp­

totically approach zero with increasing sample size. L-moments relationship 

to the distr ibution parameters has to be defined a priory which can be a 

major drawback in certain situations. Definitions for selected two and three 

parameter distributions (including G E V and G P D ) can be found in appendix 

of Hosking and Wall is (2005). The approach of estimating the parameters 

for four parameter distributions (or distributions with two shape parameters) 

can be found in Papalexiou and Koutsoyiannis (2012). A n advantage of the 

L-moment method worth noting is the computational time of the estimation 

that can be, depending on the complexity of the P D F or C D F used by other 

methods, orders of magnitude faster since the method is estimating linear 

combination of moments using simple order statistics. 

Unlike the other two methods discussed previously, norms method can be 

used with any distribution that has an analytical solution for its distribution 

and/or quantile function (Papalexiou et al., 2013). This means that the user 

has more freedom to choose the distribution that best fits the data, without 

being restricted to a specific set of distributions as in the case of maximum 

likelihood or L-moments. However, the success of the fitting norms method is 

dependent on the specific implementation of the minimising algorithm, and 

the user must carefully select appropriate criteria for evaluating the goodness 

of fit. In terms of computational efficiency, the fitting norms method may 

be the slowest of the three methods, especially if the quantile or distribution 

function used for fitting is complex. 

W h e n employing the index flood method in order to reduce the uncer­

tainty, one is basically pooling available data from different sites/catchments 

(that are considered to be homogeneous), in order to increase the sample 
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size. The effect of these additions is maximal when the data are independent. 

This is seldom true, however, therefore the real reduction of uncertainty not 

only depends on the number of data but also on the dependence structure 

of the analysed data, therefore the selection of homogeneous regions (spatial 

pooling) should receive extra attentions. 

Spatial pooling is a subjective process as there is no single "correct" 

method for pooling data, and the choice of algorithm depends on various 

factors such as the spatial structure of the data, the sampling design, the 

type of response variable, and the research question being investigated. 

If there are data of the site characteristics available one should employ 

either K-means, Hierarchical clustering or Self organising maps. If only 

the data of the extreme events are available, region of influence method 

(Burn, 1990) can be used. If the number of clusters is known in advance, 

K-means method is recommended (Govender and Sivakumar, 2020). K -

means method is also the fastest algorithm. If the similarities between the 

sites are based on an a priory knowledge, hierarchical clustering should 

be used to pool the data (Govender and Sivakumar, 2020). Hierarchical 

clustering produces a dendrogram (i.e., a graph which shows the order with 

which segments are grouped together) that helps to determine the number 

of clusters. Self-organising maps can be used when there is a large number 

of input (site characteristics) data as it creates clusters that are ordered 

on a two dimensional lattice (map). However, a drawback is that complete 

data for all characteristics at all sites is required to generate the map (Chon, 

2011). 

M a i n aim of this work was presentation of approaches used for quantifi­

cation of extremes and pragmatic assesment of the applicability of presented 

methods. 

Performance of selected methods was evaluated in chapter 3 where 
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experiment focusing on behaviour of parameter estimation algorithms with 

increasing sample size in various situations was designed. Other experiment 

was designed to see how the index flood method performs with increasing po 

(probability of zero values, e.g. the fraction of years without drought). 

In chapter 4 cl CclSG study was presented that dealt with development of 

an index flood model for deficit volumes for 133 catchments in the Czech 

Republic (1901-2015) that were simulated by hydrological model B I L A N . 

The parameters of the regional distribution were estimated using L-moments. 

The goodness-of-fit of the statistical model was assessed by the A 2 test. For 

the estimation of critical values, sampling methods allowing for handling of 

years without drought were used. 

There are st i l l some areas that might deserve further study. One being 

the impact of using various spatial pooling methods in the index flood 

performance since there is s t i l l a lot of subjective decisions being made 

in selection of homogeneous regions. Other is the performance of different 

bootstrapping methods in context of the regional Anderson-Darling test ( A 2 ) . 

Bo th of these areas would be a good stepping stone for cl CclSC study where 

non-stationarity of drought indices is examined in context of the climate 

change in order to tackle the most urgent needs of drought estimation 

(Brunner et a l , 2021). 

In addition, it is important to keep in mind the concerns raised by Klemes 

(2000a,b) regarding the high quantile modelling in hydrology. Whi le there 

are many areas that deserve further study, it is crucial that researchers do 

not simply apply statistical methods without a solid understanding of the 

underlying physical processes. This is particularly relevant for the analysis of 

hydrological extremes, where the complexities of the processes involved can 

be easily oversimplified. Therefore, it is important to approach the study of 

hydrological extremes wi th caution and to strive for a balance between the 
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use of statistical methods and the physical understanding of the underlying 

processes. 

The focus on flooding events in the field of hydrology is understandable, 

given their immediate and striking impacts. However, it is important to 

recognise that drought can be just as, if not more, damaging in the long term. 

Unlike floods, droughts can have insidious effects on natural and human 

systems, often resulting in complex, indirect, and long-lasting consequences. 

For example, prolonged droughts can lead to reduced crop yields, water 

scarcity, increased risk of wildfire, and adverse impacts on ecosystems and 

biodiversity. Therefore, it is crucial to devote more attention to the study 

of drought and its impacts, including the development of more effective 

monitoring, prediction, and management strategies. B y doing so, we can 

better prepare for and mitigate the effects of droughts, and ensure the 

sustainable use and management of water resources. 
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Regionalization of deficit runoff volumes in the 
Czech Republic 

Available at https: //doi. org/10.46555/VTEI. 2017.05.002 

Abstract 

The aim of the study is the regionalization of the Czech Republic 
with respect to drought characteristics in individual catchments. The 
regionalization was done for a set of 133 catchments and for the period 
1901-2015. The basic index describing the hydrological drought is the 
deficit discharge, i.e. the cumulative volume bellow 20th percentile 
of the monthly runoff distribution. The regionalization of drought 
characteristics was based on the mean precipitation, evaporation, total 
and base flow and hydrogeological districts. This regionalization was 
revised by experts. The deficit volumes in the simulation of the Bilan 
model were estimated and the statistical model for estimation of N-year 
deficit volumes was developed and validated 
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A n Index-Flood Statistical Mode l for Hydrological 
Drought Assessment 

Available at https://doi.org/10.3390/wl2041213 

Abstract 

Modelling of hydrological extremes and drought modelling in par­
ticular has received much attention over recent decades. The main aim 
of this study is to apply a statistical model for drought estimation (in 
this case deficit volume) using extreme value theory and the index-flood 
method and to reduce the uncertainties in estimation of drought event 
return levels. Deficit volumes for 133 catchments in the Czech Repub­
lic (1901-2015) were simulated by hydrological model B I L A N . The 
validation of severity, intensity and length of simulated drought events 
revealed good match with the available observed data. To estimate 
return levels of the deficit volumes, it is assumed (in accord with the 
index-flood method), that the deficit volumes within a homogeneous 
region are identically distributed after scaling with a site-specific factor. 
The parameters of the scaled regional distribution are estimated using 
L-moments. The goodness-of-fit of the statistical model is assessed by 
Anderson-Darling test. For the estimation of critical values, sampling 
methods allowing for handling of years without drought were used. 
It is shown, that the index-flood model with a Generalized Pareto 
distribution performs well and substantially reduces the uncertainty 
related to the estimation of the shape parameter and of the large 
deficit volume quantiles. 
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Representation of European hydroclimatic 
patterns wi th self-organizing maps 

Available at https : / / d o i . org/10.1177/0959683620913924 

Abstract 

Self-organizing maps provide a powerful, non-linear technique of 
dimensionality reduction that can be used to identify clusters with 
similar attributes. Here, they were constructed from a 1000-year-long 
gridded palaeoclimatic dataset, namely the Old World Drought At­
las, to detect regions of homogeneous hydroclimatic variability across 
the European continent. A classification scheme of 10 regions was 
found to describe most efficiently the spatial properties of Europe's 
hydroclimate. These regions were mainly divided into a northern 
and a southern subset, linked together with a northwest-to-southeast 
orientation. Further analysis of the classification scheme with com­
plex networks confirmed the divergence between the northern and 
southern components of European hydroclimate, also revealing that 
is not strongly correlated to the Iberian Peninsula. On the contrary, 
the region covering the British Isles, France and Germany appeared 
to be linked to both branches, implying links of hydroclimate with 
atmospheric/oceanic circulation. 
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C o S M o S v2.0: Mak ing Time Series Generation 
Simple 

Available at https: //doi . org/10.5194/egusphere-egu2020-22357 & https : 
//cran.r-proj ect.org/web/packages/CoSMoS/index.html 

Abstract 

Many physically based models aiming to quantify the vulnerability 
and risk of hydrologic and geomorphic hazards need as input or forcing 
time series of processes such as precipitation, temperature, humidity, 
etc. The reliability of their output depends on how realistic the inputs 
are. CoSMoS is a multi-platform software that generates reliable time 
series from hydroclimatic variables (precipitation, temperature, wind, 
relative humidity, streamflow, etc.). It is developed in R (version 2.0) 
as well as in other platforms (Matlab, Mathematica, Excel). It can 
be used to generate univariate and multivariate time series at any 
time scale by reproducing the marginal distributions and the linear 
correlation structures (including intermittency) of the process under 
investigation. CoSMoS implements a unified stochastic modelling 
scheme that expands and enhances a generic modelling approach based 
on the transformation of "parent" Gaussian time series. By design it 
aims to offer a simple and easy-to-apply solution to the user requesting 
minimal information, such as the target marginal distribution and 
the correlation structure. The software is accompanied by a complete 
users' manual. 
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Experiments &; case study 
implementation 

The codes used to calculate all the results for the dissertation are available on 

the Gi tHub repository at https : //github. com/ strnda/dissert at ion-codes. 
The repository includes all the codes used in the data analysis, visualization, 

and modeling. The codes are written in R (R Core Team, 2023). The Gi tHub 

repository is publicly accessible, and anyone can download, use, and modify 

the codes under the G P L 3 license. The G P L 3 license ensures that the codes 

are open-source and free to use, but any modified versions of the code must 

also be made available under the same license. Therefore, the codes can be 

used not only to reproduce the results presented in the dissertation but also 

to build upon them and develop new research directions. 
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