
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

APPLYING CODE CHANGE PATTERNS DURING
ANALYSIS OF PROGRAM EQUIVALENCE
POUŽITÍ ŠABLON ZMĚN KÓDU POČAS ANALÝZY EKVIVALENCE PROGRAMŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

PETRŠILLING

Ing. VIKTOR MALÍK

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

Bachelor's Thesis Specification |||||||||||||||||||||||||
24037

Student: S i l l ing Petr
Programme: Information Technology
Title: App l y ing Code Change Pat terns du r ing Ana lys is of P rogram Equiva lence
Category: Software analysis and testing
Assignment:

1. Study existing works on identification and analysis of software refactoring patterns.
Concentrate on identifying typical patterns of changes occurring in low-level production code,
especially the GNU/Linux kernel.

2. Get acquainted with DiffKemp, a tool for automatic analysis of semantic equivalence of
functions in the GNU/Linux kernel.

3. Propose an encoding of low-level code change patterns, using the intermediate
representation of the Clang/LLVM compiler.

4. Design an extension of DiffKemp that would allow it to accept custom semantics-preserving
change patterns (using the proposed encoding) and to compare code matching the given
patterns as semantically equal.

5. Implement the proposed extension in the DiffKemp framework.
6. Evaluate the implemented solution on at least 3 pairs of past versions of the Linux kernel,

using a set of at least 10 custom patterns that commonly occurred in these versions.
Recommended literature:

• Garrido, Alejandra. Software refactoring applied to C programming language. PhD thesis.
University of Illinois at Urbana-Champaign, 2000.

• Official website of DiffKemp: https://github.com/viktormalik/diffkemp
• Ullmann, Julian R. An algorithm for subgraph isomorphism. Journal of the ACM (JACM) 23.1

(1976): 31-42.
Requirements for the first semester:

• The first 3 items of the assignment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Mal ik Vik tor , Ing.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 12, 2021
Approval date: November 11 , 2020

Bachelor's Thesis Specification/24037/2020/xsilli01 Page 1/1

https://github.com/viktormalik/diffkemp
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to propose a static analysis method for recognition of code change
patterns describing recurrent changes between different versions of low-level code. The
thesis proposes an encoding method of patterns, which uses the L L V M intermediate repre
sentation, and a pattern matching algori thm based on gradual comparison of instructions
according to their control flow. The proposed analysis has been implemented as an ex
tension of D I F F K E M P , a tool for analysing semantic differences between versions of large
C projects. Results of experiments conducted on three pairs of past versions of the L i n u x
kernel show that the extension is able to eliminate a substantial amount of false-positive
or generally undesirable differences from the output of D I F F K E M P , which would otherwise
require manual inspection.

Abstrakt
Cílem t é t o p r á c e je n á v r h s t a t i cké a n a l ý z y pro rozpoznáván í vzorů , popisuj íc ích č a s t o se
vyskytu j íc í z m ě n y mezi r ů z n ý m i verzemi n ízkoúrovňového kódu . V r á m c i p r á c e je n a v r ž e n
způsob kódován í vzorů , využívaj ící v n i t ř n í reprezentaci L L V M , a algoritmus pro h ledán í
vzo rů za ložený na p o s t u p n é m p o r o v n á v á n í ins t rukc í podle toku ř ízení . N a v r ž e n á a n a l ý z a
byla i m p l e m e n t o v á n a jako rozší ření n á s t r o j e D I F F K E M P pro a n a l ý z u séman t i ckých rozdí lů
různých verzí rozsáh lých p r o j e k t ů n a p s a n ý c h v jazyce C . Výs ledky e x p e r i m e n t ů p rovedených
na t ř ech dvojicích m i n u l ý c h verzí l inuxového j á d r a ukazuj í , že n a v r ž e n é rozš í ření dokáže
eliminovat p o d s t a t n é m n o ž s t v í falešně poz i t ivn ích či obecně nežádouc ích rozdí lů z výs ledků
p o r o v n á n í n á s t r o j e m D I F F K E M P , k t e r é by j inak vyžadova ly m a n u á l n í kontrolu.

Keywords
D I F F K E M P , S I M P L L , L L V M , Clang , G N U / L i n u x kernel, code change pattern matching,
code change pattern representation, subgraph isomorphism, semantic difference analysis,
refactoring patterns, L L V M metadata, L L V M intermediate representation, control-flow
graph, el iminat ion of false-positive reports

Klíčová slova
D I F F K E M P , S I M P L L , L L V M , Clang , G N U / L i n u x kernel, p o r o v n á v á n í vzo rů z m ě n kódu ,
reprezentace vzorů z m ě n kódu , izomorfismus podgra fů , a n a l ý z a s éman t i ckých rozdí lů mezi
programy, refaktorovací vzory, L L V M metadata, v n i t ř n í reprezentace L L V M , graf toku
řízení, o d s t r a ň o v á n í falešně poz i t ivn ích h lášení

Reference
S I L L I N G , Petr . Applying Code Change Patterns during Analysis of Program Equivalence.
Brno , 2021. Bachelor's thesis. B rno Universi ty of Technology, Facul ty of Information
Technology. Supervisor Ing. V i k t o r M a l i k

Rozšířený abstrakt
P ř i ú p r a v á c h čás t í programu, k t e r é by v ideá ln ím p ř í p a d ě měly z ů s t a t d l o u h o d o b ě sta
bilní (nap ř ík l ad po celou dobu ž ivo ta m a j o r i t n í verze d a n é h o programu), m ů ž e bý t zcela
zá sadn í m í t informaci o tom, k t e r é dalš í čás t i programu budou z m ě n a m i ovl ivněny a j a k ý
bude dopad na s é m a n t i k u celého programu. A b y si vývojář i z jednoduši l i proces h ledán í
t ě c h t o zpravidla nežádouc ích vedlejších úč inků p rováděných z m ě n , mohou teoreticky využ í t
a u t o m a t i z o v a n é statické analyzátory sémantické ekvivalence, tedy nás t ro j e , k t e r é dokáž í
porovnat programy, p ř í p a d n ě pak r ů z n é verze s te jného programu, a naj í t mezi n i m i rozdí ly
v s éman t i ce . A k t u á l n ě d o s t u p n é a n a l y z á t o r y séman t i cké ekvivalence jsou ovšem zpravidla
založeny na vysoce v ý p o č e t n ě n á r o č n ý c h formálních m e t o d á c h . Vývojář i pracuj íc í na
rozsáhlejš ích projektech se proto i n a d á l e m u s í t é m ě ř zcela spo léha t na m a n u á l n í a n a l ý z u
séman t i ckých rozdí lů a vedlejších úč inků , což je ovšem proces, k t e r ý je obzv láš t ě časově
n á r o č n ý a náchy lný na lidské chyby.

Pomalu se však objevuj í i ana lyzá to ry , k t e r é se snaž í o co nej větš í šká lova te lnos t , a tedy
i použ i t e lnos t na rozsáhlé projekty. J e d n í m z t a k o v ý c h a n a l y z á t o r ů je i D I F F K E M P , n á s t r o j
pro a n a l ý z u s éman t i ckých rozdí lů mezi programy n a p s a n ý m i v jazyce C , k t e r ý se, vzhle
dem k tomu že je vyví jen v r á m c i firmy R e d Hat , zaměřu je ze jména na l inuxové j á d r o .
D I F F K E M P využ ívá vysoce šká lova te lnou techniku pro h l edán í s éman t i ckých rozdí lů , k t e r á
obvykle produkuje jen velmi m a l ý p o č e t falešných h lášení . O b e c n ě lze tedy řici, že se
D I F F K E M P p r inc ip iá lně nacház í p ř í m o mezi fo rmáln ími metodami, k t e r é jsou zcela p řesné ,
ovšem rovněž velmi v ý p o č e t n ě n á r o č n é , a j e d n o d u c h ý m i , v ý p o č e t n ě n e n á r o č n ý m i meto
dami, obvykle z h l avn í čás t i za loženými na p r o s t é m p o r o v n á v á n í textu.

A b y mohl D I F F K E M P d o s á h n o u t p o ž a d o v a n é p řesnos t i a efektivity, p ř evád í oba p o r o v n á
vané programy z j azyka C do v n i t ř n í reprezentace L L V M (L L V M IR) a nás l edně se je pok
ouší porovnat po j edno t l i vých ins t rukc ích . P o k u d však oba programy nejsou syntakticky to
tožné , s a m o t n é p o r o v n á v á n í ins t rukc í generuje značný p o č e t falešně poz i t ivn ích h lášen í o sé
m a n t i c k ý c h rozdí lech. A b y se jejich m n o ž s t v í snížilo na co nejnižší ú roveň , D I F F K E M P p ř ed
s a m o t n ý m p o r o v n á v á n í m aplikuje několik s é m a n t i k u zachovávajících t r ans fo rmac í k ó d u an
alyzovaných p r o g r a m ů , aby je k sobě co nejvíce syntakticky přiblíži l , a rovněž v obou
programech h l edá z a b u d o v a n é vzory z m ě n kódu , o nichž je z n á m o , že zachovávaj í s é m a n
t i ku . T y t o sémantiku zachovávající vzory změn kódu jsou obzv láš t ě dů lež i té , p ro tože s jejich
p o m o c í m á D I F F K E M P m o ž n o s t k o r e k t n ě porovnat i p o m ě r n ě složi té refaktorovací změny.
P r o t o ž e však D I F F K E M P podporuje pouze stat icky z a b u d o v a n é vzory, n e m á m o ž n o s t do
d a t e č n ě reagovat na rozdí lné p o t ř e b y odl i šných vývo já řů a zároveň n e d o k á ž e zajistit př í
padnou podporu z m ě n , k t e r é by ovl ivňovaly s é m a n t i k u (a to ani pokud by byly d a n é z m ě n y
s é m a n t i k y ú m y s l n é a p ř e d e m ověřené) .

S ohledem na výše u v e d e n é nedostatky p e v n ě z a b u d o v a n ý c h s é m a n t i k u zachovávající
vzo rů z m ě n k ó d u tato p r á c e navrhuje a implementuje rozš í ření n á s t r o j e D I F F K E M P , k t e ré
dává u ž i v a t e l ů m m o ž n o s t D I F F K E M P dynamicky rozšíř i t o v l a s tn í vzory z m ě ň kódu , a t í m
i u rč i t , j aké dalš í z m ě n y by mě l D I F F K E M P považova t za s é m a n t i c k y ekviva len tn í . P r o t o ž e
jde nav íc o už iva te l sky definované vzory, n e m u s í již ani n u t n ě respektovat zachování s é m a n
t iky (respektive popisovat re fak torován í) . Naopak m ů ž e v n ě k t e r ý c h p ř í p a d e c h j í t i o vzory
popisuj ící z m ě n y v séman t i ce , k t e r é jsou p ř e d e m ověřené jako b e z p e č n é (nap ř ík l ad n u t n é
b e z p e č n o s t n í opravy).

Konkré tně j i p r á c e z k o u m á existuj ící vzory z m ě n k ó d u vyskytu j íc í se v n ízkoúrovňových
projektech n a p s a n ý c h v jazyce C , jako je n a p ř í k l a d l inuxové j á d r o , a p ř ip r avu je jejich kó
dování za ložené na L L V M I R tak, aby mě l D I F F K E M P m o ž n o s t vzory dynamicky n a č í t a t .
Vzhledem k d r u h ů m vzorů z m ě n k ó d u identif ikovaných v r á m c i a n a l ý z y různých verzí l in -

uxového j á d r a p r á c e p ř í m o navrhuje dvě reprezentace v z o d ů z m ě n kódu , jednu un iverzá ln í
a druhou specializovanou pro vzory popisuj íc í velmi j e d n o d u h é , j e d n o h o d n o t o v é změny.
O b a druhy reprezentace jsou kódovány v L L V M IR, a sice p o m o c í dvou funkcí s p e v n ě
danou strukturou.

P r á c e dá le navrhuje metodu detekce vzorů z m ě n k ó d u v p o r o v n á v a n ý c h programech,
k t e r á je za ložena na p r o b l é m u h l edán í izomorfních pografů větš ích grafů a využ ívá infras
t ruk turu L L V M , ze jména fakt, že funkce jsou v L L V M rep rezen továny jako grafy toku řízení .
Přesně j i řečeno, metoda se pro k a ž d ý vzor pokouš í na j í t t akové podgrafy grafů toku řízení
p o r o v n á v a n ý c h p r o g r a m ů , k t e r é jsou izomorfní s grafy toku ř ízení př ís lušej íc ími d a n é m u
vzoru. Podgrafy se metoda pokouš í na léz t za pomoci p o s t u p n é h o p o r o v n á v á n í ins t rukc í .
M e t o d a byla i m p l e m e n t o v á n a v jazyce C++ jako rozš í ření n á s t r o j e D I F F K E M P .

Výsledné rozš í ření bylo e x p e r i m e n t á l n ě ověřeno na t ř e ch p á r e c h předchoz ích verzí l in -
uxového j á d r a z hlediska jeho dopadu na a n a l ý z u séman t i ckých rozdí lů p r o v á d ě n o u n á s t r o
jem D I F F K E M P . Výsedky e x p e r i m e n t ů ukázaly , že za p ř e d p o k l a d u , že jsou n a č t e n y rel-
eva tn í d y n a m i c k é vzory z m ě n kódu , rozš í ření dokáže eliminovat značné m n o ž s t v í poten
ciálně nežádouc ích rozdí lů z v ý s t u p u n á s t r o j e D I F F K E M P . P r o ověření , že zaveden í rozší ření
neovlivnilo zbylé čás t i n á s t r o j e D I F F K E M P , bylo rovněž s p u š t ě n o všech 122 regresních t e s t ů
použ ívaných n á s t r o j e m D I F F K E M P . Nakonec bylo pro z j ednodušen í b u d o u c í h o ověřování
funkčnost i rozší ření d o d á n o i 16 nových regresních t e s t ů . Všechny regresn í testy skončily
ú spěchem, což dá le svědčí o s p r á v n é funkčnost i rozší ření .

A p p l y i n g Code Change Patterns during Analysis
of Program Equivalence

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. V i k t o r M a l i k . I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

Petr Šilling
M a y 10, 2021

Acknowledgements
I would like to thank my supervisor Ing. V i k t o r M a l i k for his help w i t h the understanding
of important parts of D I F F K E M P and L L V M and for consultations regarding the theoretical
aspects of the thesis.

Contents

1 Introduction 2

2 Ana lyz ing Semantic Differences using D i f f K e m p 4
2.1 Current State of Static Analys is of Semantic Equivalence 5
2.2 Representation of Compared Programs 6
2.3 Defini t ion of Funct ion Equa l i ty 8
2.4 A l g o r i t h m for Checking Funct ion Equa l i ty 9

3 Code Change Pattern Match ing 13
3.1 Code Change Pa t te rn Defini t ion 14
3.2 Refactoring-Based Code Change Patterns 15
3.3 Semantics-Altering Code Change Patterns 17
3.4 F i n d i n g Change Patterns i n Code 19

4 Representation of Change Patterns 21
4.1 Encoding Code Change Patterns 22
4.2 Pattern-Specific L L V M Metada ta Nodes 24

5 Design of the D i f fKemp Extension 26
5.1 Top-Level Ma tch ing A l g o r i t h m 26
5.2 Pat tern Code Fragment Match ing 30
5.3 Generat ing Instruction Patterns from Value Patterns 32

6 Extension Implementation 35
6.1 Architecture of S i m p L L 35
6.2 Integration of the Pat tern Match ing Extension 36
6.3 Ex tend ing the L L V M Funct ion Compar ison Modu le 38

7 Experiments and Testing 39
7.1 Exper imenta l Eva lua t ion on the L i n u x Kerne l 39

7.2 Regression Testing 41

8 Conclusion 42

Bibl iography 43

A Contents of the Attached M e d i u m 46

B Compi lat ion and Execut ion 47

1

Chapter 1

Introduction

W h e n modifying code that should ideally remain stable and consistent for extended periods
of t ime (e.g., for the lifetime of a major software release version), it might be crucial to
know which parts of the program w i l l be impacted, or, perhaps even more importantly, how
w i l l the changes affect semantics. To ease the process of finding unintentional side-effects,
developers may want to uti l ize automated static analyzers of semantic equivalence, i.e.,
tools that can compare programs (or separate versions of the same program), displaying
any potential semantic differences to the user. The problem is that current techniques
for sound checking of semantic equivalence typical ly depend on computat ional ly intensive
formal methods. Consequently, the appl icabi l i ty of such tools to large-scale projects is
fairly l imi ted, forcing developers to rely almost entirely on an especially t ime-consuming
and error-prone manual analysis instead.

Nevertheless, analyzers that concentrate on scalabili ty and usabil i ty on large projects
are slowly emerging as well . One such tool is D I F F K E M P , an analyzer of semantic differences
between C programs, focusing part icular ly on the L i n u x kernel due to the fact that it is being
developed in R e d Hat . D I F F K E M P tries to find the middle ground between formal methods,
which are sound but heavy-weight, and simplified light-weight methods (often based on
plain text s imi lar i ty)—it introduces a highly scalable technique that usually produces only
a smal l number of false non-equivalence results.

In order to achieve this, D I F F K E M P translates both analysed programs from C into
the L L V M intermediate code representation (L L V M IR) and attempts to compare them
instruction-to-instruction. Unfortunately, unless the programs are syntactically the same,
the instruction-to-instruction comparison by itself generates many false non-equivalence
reports. To lower their amount as much as possible, D I F F K E M P also applies several code
transformations i n an attempt to br ing the compared programs syntactically closer together
and searches both programs for predefined patterns that are known to preserve semantics.
These semantics-preserving change patterns (SPCPs) are especially important since they
allow D I F F K E M P to handle even rather complex refactorings. However, as S P C P s are
defined statically, they cannot properly respond to the needs of different developers, nor
can they support changes that impact semantics, even i f the impact is purely intentional.

W i t h respect to the above, this thesis proposes, designs, and implements an extension
of D I F F K E M P that allows to dynamical ly extend D I F F K E M P w i th custom patterns of code
modifications. Compared to the existing S P C P s , which are a fixed part of D I F F K E M P ,

dynamic patterns enable users to specify which kinds of changes should be ignored during
the semantic comparison. These do not necessarily have to be semantics-preserving pat-

2

terns (representing refactorings), but also semantics-altering patterns that represent code
modifications verified to be safe (e.g., security fixes).

This thesis studies existing patterns used in low-level C projects, such as the L i n u x ker
nel, and prepares their encoding based on L L V M I R so that the patterns can be loaded and
used by D I F F K E M P . Furthermore, the thesis proposes a method for detecting patterns in
compared programs. This matching method is based on the subgraph isomorphism problem
and leverages the L L V M infrastructure—in particular, the fact that L L V M functions are
represented as control-flow graphs (CFGs). More specifically, for each pattern, it tries to
find a subgraph of C F G s of analysed programs that is isomorphic to the C F G - b a s e d repre
sentation of the pattern. Last , the thesis evaluates the extension on mult iple past versions
of the L i n u x kernel in terms of its impact on the analysis of semantic differences conducted
by D I F F K E M P , demonstrating that it can eliminate a substantial amount of potential ly
undesirable differences from the output of D I F F K E M P .

The rest of the thesis is organised as follows. F i rs t , Chapter 2 gives a more detailed
description of D I F F K E M P . Second, Chapter 3 presents an analysis of existing code change
patterns, as well as an overview of methods for detecting patterns i n compared programs.
Chapter 4 follows by introducing a novel representation of dynamical ly defined code change
patterns based on the intermediate representation of L L V M . Chapter 5 describes the design
of the proposed D I F F K E M P extension. After that, Chapter 6 provides details about the
implementation of the extension. Then , Chapter 7 evaluates the extension on past versions
of the L i n u x kernel. F inal ly , Chapter 8 concludes the thesis, discussing possibilities for
future work.

3

Chapter 2

Analyzing Semantic Differences
using DiffKemp

This chapter describes the underlying concepts behind D I F F K E M P [17], a static analyzer of
semantic differences between mult iple versions of programs that we use as the target plat
form for our work. Compared to other tools for analysis of semantic differences, D I F F K E M P

aims to scale on large-scale C projects, such as the L i n u x kernel, while maintaining high
accuracy of the results at the same time.

This target objective of D I F F K E M P arises from two fundamental assumptions [17]:
(1) existing techniques for sound equivalence checking 1 have difficulties concerning scal
abi l i ty because they generally depend on heavy-weight formal methods, and, on the other
hand, (2) scalable light-weight analysers based on simple text s imilar i ty (such as the U n i x
d i f f tool) or abstract syntax tree matching [20] cannot conduct a proper analysis of se
mantic equivalence. In light of this, D I F F K E M P seeks the middle ground between the two
approaches: it can analyse large-scale projects i n a matter of minutes while being able to
handle most common code refactorings. However, it is not sound and might fail to show
the equality of some heavily refactored programs.

In its core, D I F F K E M P expects to receive two versions of the same program (with one
being a refactoring of the other). To simplify the semantic comparison, the programs are
translated into a lower-level language, in part icular the L L V M intermediate representation
(L L V M IR) [14]. Checking of semantic equality is then based on the following concepts:

• B y default, an instruction-to-instruction comparison is conducted. Th is is a sim
ple and very scalable approach which is especially useful if the compared programs
are syntactically the same. O n the other hand, it may lead to numerous false non-
equivalence results, also known as false-positives.

• In order to br ing the programs to a state where they can be compared instruction-
to-instruction as often as possible, several code transformations are performed.

• Lastly, D I F F K E M P contains a list of predefined semantics-preserving change patterns.
Changes matching these patterns are evaluated as semantically equal, even if they
contain different instructions.

1Analysis soundness—the properties inferred by a sound analysis hold true for the given program in
all of its possible executions [19].

4

The rest of this chapter is organized as follows. Section 2.1 gives a more detailed de
scription of various existing approaches to static analysis of semantic equivalence. The
representation of the compared programs—which relies on L L V M IR—is explained in Sec
t ion 2.2. Section 2.3 formally defines the concept of semantic equality. F ina l ly , the pr imary
algori thm for equivalence checking used by D I F F K E M P is presented in Section 2.4.

2.1 Current State of Static Analysis of Semantic Equivalence

According to [13], static analysis is a technique for analyzing source code at compile time.
In other words, it is the art of reasoning about the behaviour of computer programs wi th
out actually running them [19] (at least not w i th the original semantics), which derives
properties that hold for a l l possible execution paths. This is in direct contrast w i th dy
namic analysis, which derives properties that are val id for one or more execution paths of
a running program [2].

Static analysis can provide a variety of insights about the analyzed code since its ap
plications range from fairly simple programming error checkers to much more sophisticated
formal analyzers and verifiers [13]. This thesis focuses on so-called differential static analyz
ers, which extract information about the differences between two programs. In particular,
the thesis focuses on the analysis of semantic differences between these programs, which
are expected to be separate versions of the same program.

In recent years, several projects on static analysis of semantic equivalence have emerged,
creating a widely studied field of program analysis. The tools implemented based on these
projects generally rely on costly formal methods, which—while el iminat ing false-positives
common for more relaxed techniques—suffer greatly from scalabili ty issues. App l i ca t i on on
large enterprise projects, such as the L i n u x kernel, is therefore not feasible. Examples of
such works are L L R E V E [11], S Y M D I F F [12] or D i S E [22]. A more complete overview of
analyzers of semantic differences can be seen i n [17].

To give a concrete example, we present an experiment from [17], which evaluates
L L R E V E — a n open-source equivalence checker aimed at C programs compiled to L L V M IR.
Because L L R E V E generates constraints i n the form of H o r n clauses, the analysis is quite
t ime-consuming. Consequently, the tool fails to compare almost a l l functions from the
L i n u x kernel i n the 30-second long time frame provided by the experiment. Furthermore,
L L R E V E does not support some operations common in industr ia l applications, such as calls
v i a function pointers, floating-point ari thmetic, and general bit operations. This results in
several crashes dur ing the comparison, which is unacceptable for commercial use.

Contrary to approaches based on formal methods, simpler and faster alternatives like
the U n i x d i f f tool also exist. W h i l e such tools are easily applicable to projects w i t h the
size of the L i n u x kernel, the information they provide originates from pla in text comparison,
making it unsuitable for a proper analysis of semantic differences.

Addi t ional ly , more advanced light-weight techniques exist as well . For example, [20]
proposes to parse both compared programs and to produce their abstract syntax trees
(ASTs) . A S T s can then be traversed i n parallel, creating a mapping for both variable names
and types. A s a result, simple semantics-preserving changes, such as variable renaming and
type aliasing, may be handled wi th relative ease. However, even such tools would fail when
confronted wi th more elaborate refactorings.

Considering the examples above, two essential properties of industr ial ly applicable se
mantic equivalence analysers can be identified: (a) high evaluation speed and scalability,
and (b) the abi l i ty to support complex refactoring patterns ut i l ized i n real-life projects.

5

W h i l e tools satisfying these conditions already exist, most of them concentrate only on
providing an effective description of differences between the compared programs, and not
on semantic equivalence itself. Th is applies to, e.g., J D I F F [1], which is able to compare
Java programs using their control-flow graphs (defined i n Section 2.2).

Nevertheless, tools focusing on both pract ical i ty and the analysis of semantic equiva
lence exist as well . For example, B I N H U N T [9] generates an intermediate representation
from binary files and uses it to construct control-flow graphs. The resulting graphs are
then matched according to the subgraph isomorphism problem (described i n Chapter 3).
However, the usage of binary files may be quite l imi t ing compared to D I F F K E M P , which
pr imar i ly targets low-level C projects, because the loss of direct access to the corresponding
source files also results i n the loss of source code metadata. Therefore, some changes, e.g.,
regarding offsets of structure members, may be hard to correlate.

2.2 Representation of Compared Programs

Before the analysis of semantic differences may begin, D I F F K E M P needs to lower the level
of abstraction of compared programs. Do ing so not only makes the analysis easier and more
language-independent but also hides mult iple semantics-preserving changes. These may be,
e.g., the syntactical changes between for and while loops, which are present only i n higher
level languages like C .

In particular, D I F F K E M P translates analysed C programs into a low-level source-lan
guage-independent code representation called L L V M IR—the intermediate representation
of L L V M [14]. In general, L L V M is a modular compiler framework designed to provide
high-level metadata useful for program analysis and code transformations. For example,
L L V M provides an explicit function representation based on control-flow graphs, which can
be used to retrieve information about control flow or to traverse analysed programs.

To formalize this representation, we provide the following definitions, which are based
on [1, 14, 16, 17] and describe the relevant parts of L L V M IR . A l l examples and instructions
assume that the C language and the L L V M infrastructure are used, al though they may be
simplified for the sake of brevity.

Control-flow graph (C F G) A directed graph in which nodes represent basic blocks,
and edges represent the flow of control between program branches. Each L L V M function
corresponds to a single C F G and may be perceived as one.

Basic block (B B) A sequence of L L V M instructions where only the first instruction
(called the entry instruction) may be the target of jumps and which ends wi th exactly one
terminator instruction and contains no other branching instructions.

Instruction A n operation performed over a (possibly empty) list of operands, where
each operand is a variable, a constant, or a function. The operation is characterized by the
associated instruct ion k ind , and a l l variables and constants are typed. Instructions may
produce a result. For example, ari thmetic instructions, such as add for integer addi t ion and
f sub for floating-point subtraction, need to store the resulting value. Instruction kinds and
the L L V M type system are defined by [16].

6

Variable Variables may be local to a given function, or global. L o c a l variables in L L V M
do not necessarily correspond to local variables from original programs. In fact, there are
two kinds of local variables: v i r tua l registers and variables allocated on the stack by the
a l loca instruction. Registers are temporary variables produced as results of instructions
and that satisfy the requirement that each of them is assigned to at most once (also known
as the static single assignment property, or S S A) . Registers can get accessed directly. O n
the other hand, variables that get allocated on the stack are operated through pointers
and, therefore, load and store instructions have to be used to read and write their val
ues, respectively. O n l y stack-allocated variables may correspond to variables from original
programs. G loba l variables need to be accessed v i a load and store as well . Funct ion
parameters are a subset of a l l local variables. In the human-readable representation of
L L V M IR, identifiers of local variables (and types) start w i th % while the identifiers of
global variables (and functions) are prefixed by @.

Metadata A d d i t i o n a l information attached to instructions, functions, or global variables.
Metada ta are not typed and, i n the human-readable representation of L L V M IR, are prefixed
in syntax by !. Metada ta can be either strings of characters or nodes. Metada ta nodes
group other metadata and values together (similarly to structured data types). At tached
metadata get identified by name, which may be shared across metadata of the same k ind .

Branching The (possibly conditional) flow of program control between connected ba
sic blocks. Generally, branching occurs when one of the following three instructions gets
executed: (a) the branching br instruction, which can branch both conditionally and un
conditionally, (b) the c a l l instruction, which represents an ordinary function cal l , or (c) the
ret instruction, used to terminate the current function. Instructions that might be executed
immediately after an instruct ion i are called the successor instructions of i.

C Code

int example(int param) {
int resu l t ;
i f (param > 0)

result = fun(param);
return resu l t ;

Contro l - f low graph

L L V M I R Code

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

define i32 © e x a m p l e (i 3 2) {
entryBB:

°/0l = a l l o c a i32 ; resul t a l loca t ion
7.2 = icmp sgt i32 7,0, 0
br i l 7,2, labe l °/ 0trueBB, labe l °/ 0exitBB

trueBB:
7.3 = c a l l i32 <3fun(i32 7,0)
store i32 7,3, 132* 7,1
br labe l °/ 0exitBB

exitBB:
°/„4 = load i32, i32* 7,1
ret i32 °/„4

}

Figure 2.1: Sample function defined in both C and L L V M IR, and the associated C F G .

7

Figure 2.1 shows a simplified structure of L L V M I R for a sample function wri t ten i n C ,
and the corresponding C F G . Addi t ional ly , it shows that uncondit ional branches and stan
dard non-branching instructions have only a single successor, while condit ional branches
(Line 5 i n L L V M IR) typical ly have two successors.

2.3 Definition of Function Equality

After the analysed programs get translated into L L V M IR, a low-level code representation
described i n Section 2.2, D I F F K E M P may start comparing them. It does so by analyzing
pairs of functions, u t i l iz ing one of the key aspects of L L V M IR, where each function is
represented by a C F G composed of basic blocks. Th is not only divides compared programs
into smaller, easily manageable segments (which is important for scalability) but also gives
direct access to a l l instructions present i n currently compared functions through their C F G s .

Since checking semantic equality of entire functions at once would be fairly complicated,
D I F F K E M P achieves it by spl i t t ing each function into the same number of blocks that can be
compared separately. These smal l blocks of code are del imited by so-called synchronisation
points, at which both compared functions are synchronized, i.e., have the same state of
memory (defined by both the stack and the heap). For each block of code located between
two synchronisation points s\ and s\ taken from the first compared function, a block of code
between two corresponding synchronisation points S2 and s'2 that is semantically equal must
exist i n the second compared function [17]. Two blocks of code are considered semantically
equal i f and only if the following two conditions hold [17]:

1) Dur ing execution, the blocks either both terminate, or both do not terminate.

2) If the blocks terminate, they produce the same output for the same input, where input
and output represent the values of a l l input variables and the in i t i a l state of memory,
and the values of a l l output variables and the final state of memory, respectively.

Generally, the sets of (mainly local) variables used i n the corresponding blocks of code
are not the same. Therefore, a variable mapping indicat ing which variables from the first
compared function are corresponding to which variables from the second compared function
has to be created as well.

More formally, let f\ and J2 be two compared functions, and I\, I2 and V i , V2 their
sets of instructions and variables, respectively. The problem of checking semantic equality
can be then defined as the problem of finding two sets of synchronisation points S\ C I\
and S2 Q h and two synchronisation mapping functions: smap : Si «-> S2, creating a
mapping of synchronisation points between f\ and / 2 , and varmap : V\ «-> V2, creating an
analogous mapping of variables, such that the blocks of code between pairs of corresponding
synchronisation points are semantically equal. The above definition is a simplified version
of the formal definition presented i n [17].

Such mapping functions are rather hard to produce. Generally, bo th syntactical and
control flow transformations and a sophisticated matching a lgor i thm are required. A n
example containing a graphical representation of suitable smap and varmap mappings,
and the associated L L V M I R of the two compared functions, is presented i n Figure 2.2.

A s can be seen i n Figure 2.2, synchronisation points are typical ly located at each in
struction. However, the example also shows that in certain scenarios, e.g, when using a
syntactically different, al though semantically equal algori thm, this might not be the case.
For instance, it may be observed that the instruct ion i\ in f\ performs the same operation

8

Funct ion f\ Funct ion fi

1 define 132 Of 1(132 7.x, 132 7,y) { 1 define i32 0f2(i32 7.x, i32 7.y) {
2 7.1 = mul i32 7.x, 5 2 7,1 = shl i32 7.x, 2
3 7.2 = mul 132 7,y, 4 3 °/,2 = add 132 7.x, 7.1
4 7.3 = add 132 7,1, 7,2 4 7.3 = shl 132 7,y, 2
5 7.4 = mul 132 7.3, 7,3 5 7.4 = add 132 7,2, 7,3
6 7.5 = mul 132 7.3, 7,4 6 7.5 = c a l l i32 @ipow(i32 7,4, i32 3)
7 ret 132 7,5 7 ret 132 7,5
8 > 8 >

S i S2 Vi v2

Figure 2.2: Two compared functions f\ and fa w i t h the associated smap and varmap
mappings. For n £ {1, 2 , . . . , 6}, instructions from both functions are represented i n order
by in- Variables used i n / i and ji are represented by the corresponding L L V M I R identifiers.
For two parameters, x and y, f\ and ji are semantically equal, as they both calculate the
result of (5x + 4 y) 3 .

as the sequence of instructions i\, ii in J2- Therefore, the functions are synchronised before
the execution of ii in f\ and iz in J2-

D I F F K E M P currently supports many of these special cases using the list of predefined
semantics-preserving change patterns (SPCPs). W h e n a S P C P is identified, the blocks of
code are considered semantically equal—even i f the standard per-instruction comparison
does not succeed. However, there are plenty of different refactorings which create a diverging
synchronisation mapping, and a static list of S P C P s may be unable to handle a l l of them
appropriately. Therefore, this thesis proposes an extension of D I F F K E M P , which provides
support for dynamical ly defined, configurable patterns as well.

2.4 Algor i thm for Checking Function Equality

This section introduces an algori thm for checking semantic equality of compared functions,
based on the problem presented i n Section 2.3. Specifically, for two functions / i and / 2 , this
section describes a method for finding the appropriate sets Si and 5 2 of synchronisation
points and the associated mapping functions smap and varmap. The code between al l

9

matched synchronisation points should be semantically equal. The algori thm is a slightly
simplified version of the top-level matching a lgor i thm proposed by [17].

The most straightforward approach would be to place synchronisation points at each
instruction, al though this is achievable only when comparing programs that are syntacti
cally the same, or at least extremely similar. However, by applying code and control flow
transformations before the main algori thm begins, even different program constructions
can be brought syntactically closer to each other (i.e., into a state where the ordinary per-
instruction mapping of synchronisation points might be achievable). D I F F K E M P supports
several of such transformations, a l l of which mainta in semantic equivalence. In part icu
lar, transformations like function inl ining, constant propagation, indirect cal l substi tution,
and redundant instructions, dead code, and dead parameter e l iminat ion are performed. To
avoid scalabili ty issues, exhaustive transformations, e.g., the in l in ing of function calls, are
executed only lazily. Further details on supported transformations can be seen in [17].

W h e n a per-instruction mapping of synchronisation points is found, a l l matching instruc
tions are s imply compared against each other, instruction-to-instruction. Two instructions
are considered semantically equal i f and only if they perform the same operation on the
same number of operands that are (a) the same, or (b) can be mapped to each other using
the varmap function [17].

In a l l other scenarios, the selected group of instructions has to be matched against the
semantics-preserving change patterns (SPCPs). A s described in Section 2.3, i f an S P C P
match is found, the corresponding group of instructions is considered semantically equal
as well and the algori thm may continue. However, i f such a match cannot be found and
the instruction-to-instruction comparison fails nonetheless, the functions are evaluated as
semantically non-equal (and the difference may be displayed to the end-user).

A l g o r i t h m 2.1, which is based on [17], formalises these concepts using the ideas from
Section 2.3. For brevity, the consti tut ing functions are described only informally, and the
implementation details behind S P C P s have been omit ted. The full explanation can be
found directly i n [17].

A l g o r i t h m 2.1 operates on two compared functions, f\ and fi, and, for i G {1,2},
introduces Pi as the parameter list of fi and Gi as the set of a l l global variables used
in fi. The algori thm returns true if the comparison succeeds, and operates on a queue Q
of synchronisation point pairs prepared for further analysis.

The algori thm starts by applying a l l available code transformations (Line 1). This ,
among other things, removes a l l parameters which do not affect the output, i.e., those
parameters that cannot change the semantics. If f\ and fi do not have the same number of
parameters (after the mentioned transformations), the functions are considered semantically
different (Line 3).

Then, the ini t ia l isat ion of the synchronisation sets and the mapping functions begins. In
the beginning, only the first instructions i n the entry basic blocks of functions f\ and fi are
considered synchronized. These are denoted by ijn and ifn for f\ and fi, respectively, and are
placed inside the corresponding synchronisation sets (Line 4). O n L ine 5, a synchronisation
mapping is formed between i\n and ifn as well .

Furthermore, a variable mapping between pairs of parameters (Lines 6-7) and between
pairs of global variables (Lines 8-9) is created. Parameters of f\ and fi are mapped based
on their order, while the global variables used i n f\ and fi are mapped according to their
names. The remaining instructions and variables are processed lazily.

Afterwards, the pr imary comparison loop begins, operating un t i l the queue Q of synchro
nisation point pairs is empty. Initially, before entering the main loop, the first synchronized

10

A l g o r i t h m 2.1: Ana lys ing functions for semantic equivalence [17]
Input: Compared functions f\ and fi

Result: true i f f\ and J2 are semantically equal, false otherwise

1: perform code transformations of / i and fi
2: if | P i | 7̂ | P21 then / / Require the same number of parameters
3: return false

// Initialise the synchronisation sets and maps
4: S1 := { i j j , S2 := { 4 J
5: smap(i\n) := ifn

6: for 1 < i < | P i | do
7: varmap(pj) := p |
8: for g i G d do
9: varmap(gi) := #2 £ G 2 s.t. g\ and §2 have the same name

// Start the main comparison loop
10: Q := {(ijn,iin)} // Begin with entry instructions
11: while Q / 0 do
12: take any pair (si, S2) from Q
13: p := detect Patter n(si, S2)
14: foreach (s' 1 ; s'2) G succPairp(si, S2) do
15: if or s'2 has already been visited then
16: ensure that s'x has already been mapped to s'2

17: check semantic equality of blocks (si,Si) and (s2,s'2)

// Update the synchronisation sets and maps
18: Si : = 5 i U { s ; } , S2 :=S2U{s'2}
19: smap(s'1) := s 2

20: update varmap according to p
21: insert (s'i,^) i 1 1 ^ 0 Q
22: return irue

pair of instructions (ijn,ijn) is queued up for analysis (Line 10). The operations performed
during each i teration are described below [17].

1) A single pair of synchronisation points (s i , S2) is taken from the queue Q (Line 12).

2) Funct ion detectPattern checks whether the code blocks starting at s\ and S2 match
some predefined semantics-preserving change pattern p (Line 13).

3) Funct ion succPairp retrieves a l l possible successor synchronisation point pairs follow
ing (si ,S2)- If n o pattern has been identified, the successor pairs are placed at the
instructions immediately following s\ and S2, i.e., a single pair or two pairs (for condi
t ional branches) of synchronisation points are returned. S P C P s may define their own
implementation of succPairp, typical ly returning the instructions located immedi
ately after the blocks that match the pattern. E a c h of the returned pairs is processed
using the following steps:

11

i) If any synchronisation point i n (s^s^) n a s already been visi ted, it is required
that both Si and s'2 are already mapped to each other (Lines 15-16). If no such
mapping exists, the functions are considered semantically different, and false
gets returned.

ii) Blocks of code between the current and the next synchronisation point get se
mantical ly compared (Line 17). Unless a pattern is used, these blocks always
contain only a single instruction, which is matched directly. If the blocks are
semantically different, the algori thm claims that f\ and ji are semantically non-
equal as well, returning false.

iii) The synchronisation sets and maps get updated, and the pair (s' 1 ; s'2) is inserted
into the queue Q (Lines 18-21).

Final ly , i f the queue Q is successfully emptied, the functions f\ and fi are considered
semantically equal (Line 22), and the comparison of the next pair of functions may begin.

12

Chapter 3

Code Change Pattern Matching

Software development is a never-ending process, w i th numerous new features, patches, and
enhancements getting implemented each year. W h e n stabil i ty is a concern, developers
might uti l ize tools like D I F F K E M P (introduced in Chapter 2) to ensure that the changes do
not create unwanted semantic differences i n code which should remain consistent for longer
periods of t ime. Several of these changes can be described using so-called code change
patterns (CCPs), i.e., patterns of recurrent software modifications [18], which are especially
important for D I F F K E M P due to the per-instruction nature of its semantic comparison.
C C P s get formally defined i n Section 3.1.

D I F F K E M P can already handle many C C P s in the form of semantics-preserving change
patterns (S P C P s ; described in Section 2.3). However, since the number of existing patterns
is theoretically unbounded (each developer may use a completely different set of patterns),
supporting a l l of them wi th predefined S P C P s is s imply not feasible. Addi t ional ly , not
al l code change patterns have to describe semantics-preserving changes—on the contrary,
quite a large subset of C C P s is composed of, e.g., security fixes, safety assertions, and other
desirable semantic changes. A s a result, two major kinds of code change patterns may be
identified, bo th of which get described in more detai l i n Sections 3.2 and 3.3, respectively:

1) Semantics-preserving patterns, commonly known as refactoring patterns, i.e., patterns
that modify code i n a way that preserves its observable behaviour [8]. Some of these,
e.g., the addi t ion of a new value into an enumeration type, are already handled by
S P C P s [17].

2) Semantics-altering patterns, corresponding to changes which cause semantic differ
ences. For example, they might add, remove, or rewrite a condit ional expression in
an attempt to fix programming mistakes [21].

Consequently, while some highly repetitive C C P s may get incorporated into D I F F K E M P

directly, it would be most beneficial to introduce dynamical ly defined patterns that can be
tailored to specific developer needs, and a new pattern detection method capable of finding
both types of C C P s in the compared programs.

The process of detecting C C P s may be considered a pattern matching problem since it
compares generic descriptions of patterns wi th segments of code from analysed programs.
In other words, it matches them against each other. Section 3.4 briefly introduces differ
ent approaches to pat tern matching, in part icular those presented in [5], i.e., naive linear
matching, control-flow graph matching, and dependence graph matching, w i th emphasis on
control-flow graph matching due to its straightforward appl icabi l i ty to L L V M functions.

13

3.1 Code Change Pattern Definition

Code change patterns (C C P s) are essential for the D I F F K E M P extension proposed later
in this thesis. Therefore, before the different kinds of C C P s get presented, this section
formally defines C C P s . The definition is tai lored specifically to the proposed extension and
builds on the idea that C C P s describe recurrent software modifications. Furthermore, the
definition uses the notions of input, output, and mapping presented in Section 2.3.

Generally, a code change pattern can be understood as a pair of code fragments whose
input and output can be mapped together. In other words, the code fragments describe
two different ways to transform a semantically equivalent input to a semantically equivalent
output. Addi t ional ly , bo th code fragments should have the following properties:

• One code fragment should be a transformation of the other. The transformation does
not necessarily have to be semantics-preserving, al though the semantics are typical ly
either unchanged or changed only slightly.

• Each code fragment should come from a different version of the same program (or,
in broader terms, from a different program). It is important to know which code
fragment belongs to which version of the program. Therefore, the rest of this thesis
w i l l refer to the original code fragment from the older program version as the old side
of the C C P , and to the modified one as the new side of the C C P .

The above structure of C C P s is depicted visual ly i n Figure 3.1.

Code change pattern

Older

version

Based
on

< . . _ _

O l d side

Original
input

Mapping
*- + 1->

Original
code

Original
output

Mapping
<- + 1 ->

New side

Modified
input

Modified
code

Modified
output

Based
on

>
Newer

version

Figure 3.1: Structure of a code change pattern. The pattern consists of two fragments of
code wi th mapped input and output. B o t h fragments correspond to a different version of
the same program.

Formally, a code change pattern p is a tuple

p = (c 0 , cn, imap, omap)

where

• c0 and c„ are the code fragments associated wi th the older and newer versions of
compared programs, respectively (i.e., the old side and the new side of p), and

14

• imap and omap are mapping functions that map the input of cQ to the input of cn,
and the output of cQ to the output of cn, respectively.

A code fragment c can then be defined tuple

c = (i,o,b)

where

• b is the m a i n body of c, composed of instructions and statements that describe how
to transform an input into an output, and

• i and o are the input and the output of c, respectively.

For brevity, we also define functions in{c) and out(c), which denote the input and the
output of a code fragment c, respectively.

3.2 Refactoring-Based Code Change Patterns

Refactoring is a crucial , albeit often overlooked, part of software development. It is the
process of restructuring programs by applying series of transformations without changing
the observable behaviour, making the programs easier to understand and to modify, and
preventing their decay caused by advancements of other technologies [8].

This process is especially important for D I F F K E M P because, typically, two versions
of the same program get compared (and not two separate programs). Addi t ional ly , it is
expected that the purpose of the whole comparison is to check for the semantic equality of
the two programs. In other words, it is suspected that one of the compared programs is
actually a refactoring of the other. A s stated in Chapter 2, a large number of refactorings is
already supported—either by L L V M I R and code transformations or by S P C P s . However,
there are s t i l l patterns which would cause D I F F K E M P to report semantic differences even
when none are present. Therefore, this section evaluates existing catalogues, i.e., lists,
of refactoring patterns (so-called semantics-preserving patterns), t ry ing to find those that
are not yet supported by D I F F K E M P but could be handled by an extension for matching
dynamical ly defined patterns.

Most refactoring catalogues, e.g., the renowned Fowler's catalogue [8], are created for
high-level, object-oriented languages such as Java. This inadvertently l imits their applica
t ion to source code wri t ten i n C , which is targeted by D I F F K E M P . However, while some
refactoring patterns i n these catalogues are inapplicable to C code, e.g., because they op
erate on classes or interfaces, patterns that can be generalized to lower-level languages get
presented as well . For example, the analysis of refactoring patterns provided by Fowler's
catalogue revealed the following patterns which are currently not supported by D I F F K E M P :

• Combine functions into transform—combines related operations from mult iple func
tions into a single, transformed function. W h i l e this pattern could, i n some cases,
be handled by, e.g., function inl ining, it may result in much more complicated (and
unsupported) refactorings as well.

• Substitute algorithm—replaces a complicated algori thm w i t h a simpler alternative
which preserves the original behaviour.

15

• Code relocation—the process of relocation of some pieces of code wi th in a compared
function. W h i l e D I F F K E M P supports code relocation, it only handles its most simplest
cases, e.g., the extraction of independent variables outside of a loop [17]. Therefore,
more sophisticated code relocation, such as the intertwining blending of two previ
ously independent loops, remains unsupported. This can be considered as a complex
extension of the Slide Statements pattern, which relocates some lines of related code
so that they are placed closer together.

Refactoring catalogues for lower-level languages like C are, on the other hand, far less
common. Nevertheless, some comprehensive lists of C patterns do exist. One such list
is proposed by [10]—the same list that has been used in [17] to evaluate the number of
semantics-preserving changes supported by D I F F K E M P . However, by examining the pat
terns from [10] that were not handled by D I F F K E M P , we were unable to discover any
significant patterns. Th is is because (1) the three patterns related to pointer-to-variable
and variable-to-pointer conversions were flagged by [17] as pract ical ly non-existent i n the
L i n u x kernel (and are, therefore, not relevant), and (2) the two remaining patterns, i.e., the
conversion of a global variable into a parameter and the grouping of a set of variables into
a new structure, could s t i l l not be fully supported without a proper analysis of the global
state of the compared programs.

Consequently, we have conducted our own study of refactoring patterns used wi th in the
L i n u x kernel. The analysis has been performed by running D I F F K E M P on 42 past refactor
ing commits pushed to the L i n u x kernel G i t H u b reposi tory 1 , and by manually reviewing
the reported semantic differences, searching for possibly repetitive patterns. In particular,
four refactoring patterns have been discovered in these commits:

• Replace check before list retrieval—replaces a l inked list emptiness check wi th a func
t ion that returns a NULL pointer i f the accessed list is empty.

• Extract code to function—extracts related code into a new function. Unless it results
in complex control flow refactorings, this pattern could also get handled by, e.g.,
function inl ining.

• Extract conditionally executed statements—moves condit ional ly executed blocks of
code outside of their respective switch or i f - e l s e - i f statements, introducing a new
flag variable that chooses which code to execute instead.

• Introduce loop flag—replaces a condit ion present inside of a loop wi th a new flag
variable. The applicat ion of this pattern is demonstrated i n Figure 3.2.

In total , seven suitable refactoring patterns have been identified. These are, however,
only refactoring patterns, and developers might want to add certain semantics-altering
changes as well . W h i l e such changes should hardly be considered refactorings, they do
tend to accompany changes performed dur ing refactoring sessions quite frequently. For
example, a developer might introduce a new pointer value val idi ty check when rewri t ing an
old function. Therefore, Section 3.3 follows wi th an examination of catalogues of patterns
that do affect program semantics.

1 GitHub repository of the Linux kernel—https://github.com/torvalds/linirx;.

16

https://github.com/torvalds/linirx

Modif ied code

Or ig ina l code

for (int i = 0; i < 5; i++) {
i f (is_prepared(i)) {

perform_action();
break;

>
}

1
2
3
4
5
6
7
8

9
10
11

bool f l a g = false;
for (int i = 0; i < 5; i++) {

i f (is_prepared(i)) {
fl a g = true;
break;

}

i f (flag) {
perform_action();

}

Figure 3.2: Example applicat ion of the Introduce loop flag refactoring pattern. The observ
able behaviour of both code samples is the same.

3.3 Semantics-Altering Code Change Patterns

Section 3.2 explains the importance of refactoring patterns. However, most software modi
fications actually do affect semantics. These changes can also be highly repetitive, and may
already be known to be safe, i n which case they do not have to reviewed again (even though
they impact semantics). For example, security fixes might introduce new condit ional as
sertions, undeniably changing program semantics in the process. W h i l e occasionally, such
changes do get created as byproducts of poorly executed refactoring attempts, i.e., are
purely accidental, in which case the developer should be notified about their existence,
they might also be completely intentional, meaning that the developer may not want to
receive any notifications about them at a l l .

Despite that, D I F F K E M P currently cannot dist inguish between intentional and acci
dental semantic differences i n any way, and always displays a l l of them. Therefore, this
section examines catalogues of code change patterns that—contrary to the refactoring pat
terns presented i n Section 3.2—do not preserve the semantics of affected programs, i.e., are
semantics-altering. Aga in , a part icular focus is given to patterns that are applicable to our
problem domain, and to patterns discovered wi th in the L i n u x kernel.

Simi lar ly to refactoring catalogues, lists of semantics-altering code change patterns for
high-level languages exist as well . For example, [21] presents a list of so-called bug fix
patterns, i.e., descriptions of common changes performed when correcting programming
mistakes. Even though the patterns i n [21] are based solely on Java projects, they rarely
depend on high-level language constructs. A s a result, the vast majority of patterns pre
sented i n [21] are direct ly applicable to C code and, therefore, to D I F F K E M P as well . The
list of relevant patterns from [21] is presented below. Note that some patterns, e.g., the
addit ion and removal of conditions, have been grouped together for the sake of brevity.

• Add or remove condition—adds or removes a condit ion, typical ly a precondition or a
postcondition of the related operation.

• Add or remove conditional branch—adds or removes a condit ional branch from either
a switch statement, or an i f - e l s e - i f statement.

17

Change conditional expression—changes the expression used wi th in a condit ional
statement, e.g., by inverting the whole expression.

• Change assignment expression—changes the expression on the right-hand side of a
variable assignment.

Moreover, for semantics-altering changes, even lists of patterns focusing direct ly on the
L i n u x kernel can be found. In particular, [15] presents a study of bug fix patterns used
wi th in the L i n u x kernel (among other software), based on which the following patterns can
be identified:

• Allocate longer buffer—increases the size of an allocated buffer to prevent its overflow.

• Assign fewer bytes to buffer—reduces the number of bytes wri t ten into a buffer be
cause its capacity is smaller than the original number of assigned bytes.

• Move NULL check before dereference—moves a check for a NULL pointer before the
corresponding dereference of the same pointer.

• Add memory release—adds a new statement for releasing allocated memory. The
same can be achieved by relocating existing memory releasing statements so that
they free the specified blocks of memory in a l l possible execution paths.

Last, we have again conducted our own analysis of frequent changes occurring i n the
L i n u x kernel. Th is t ime, the analysis has been performed on the kernel of the eighth major
version of R H E L 2 due to its focus on long-term stability. Mul t ip l e functions from differ
ent release candidate versions of R H E L 8 have been compared using D I F F K E M P , and the
reported semantic differences have been manual ly examined for the existence of semantics-
altering code change patterns. The list of discovered patterns can be seen below.

• Add single statement—adds a previously missing statement (typically a function call)
to a function.

• Introduce assertion—introduces a kernel-specific assertion statement, which (com
pared to t radi t ional assertions) does create semantic differences.

• Introduce flag parameter—adds a flag parameter to a function. Generally, this also
results in changes of the original function name and semantics (for a l l execution
paths).

• Substitute macro constant—replaces a macro constant w i th a global variable or a
function ca l l . Do ing so often modifies program semantics or—at the very least—
changes the underlying L L V M I R code i n a way that causes D I F F K E M P to detect
semantic differences.

• Wrap expression in macro—envelops an expression using a macro function. Typical ly ,
a condit ional expression gets wrapped i n either the l i k e l y or the unlikely macro,
as can be seen i n Figure 3.3.

Overal l , twenty code change patterns have been identified (including the refactoring
patterns presented i n Section 3.2).

2 Red Hat Enterprise Linux (RHEL)—a commercial Linux distribution developed by Red Hat—
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux.

18

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

Orig ina l code Modif ied code

1 i f (is_prepared()) {
2 perform_action();
3 >

i f (unlikely(is_prepared())) {
perform_action();

Figure 3.3: Example applicat ion of the Wrap expression in macro code change pattern.
Compared to the example presented i n Section 3.2, this pattern changes the semantics of
the sample C code, and, therefore, cannot be considered as a refactoring pattern.

3.4 Finding Change Patterns in Code

Having a set of code change patterns (C C P s) is only a part of the problem. The patterns
s t i l l need to get detected when present i n the compared programs. T h i s creates a matching
problem, where patterns have to be systematically compared w i t h analysed programs in
order to possibly find a match, i.e., to identify the C C P used wi th in the program (if such
a C C P exists). Note that the matching procedure has to find a suitable match i n both
compared programs. Tha t is because—as presented in Section 3.1—a C C P is characterized
by both the original and the modified code (i.e., by its o ld side and its new side, respectively).

Due to the importance of pattern matching, this section briefly describes the three
matching techniques presented in [5]—naive linear matching, control-flow graph matching,
and dependence graph matching. A part icular focus is given to the C F G matching since it
can be applied direct ly to L L V M I R functions, which are the backbone of the semantic anal
ysis conducted by D I F F K E M P . Patterns are expected to be represented by small , specialized
segments of L L V M I R code (the representation is explained in detail in Chapter 4).

The naive matching method is, as its name implies, rather simple: it completely ignores
control flow and str ic t ly l inearly iterates over program instructions, t ry ing to match them
to a pattern (using instruction-to-instruction comparison). Consequently, any patterns that
depend on control flow branching cannot be discovered by naive matching, which makes
it unsuitable for D I F F K E M P because many patterns presented in Sections 3.2 and 3.3 do
rely on program branching. Nonetheless, this approach might be sufficient for some smaller
patterns and may even be used as the backbone of more sophisticated procedures.

O n the other hand, control-flow graph matching does analyse control flow because it
uses C F G s (introduced in Section 2.2), meaning that it can be applied directly to L L V M
functions—even when branching is involved. Specifically, it searches for subgraphs of pro
gram C F G s that are isomorphic to C F G s produced by patterns (which are expected to be
much smaller), i.e., it tries to find a subgraph isomorphism between the two C F G s . Two
graphs are isomorphic i f and only i f there exists a bijection between their sets of vertices
that preserves edge adjacency [23] (other definitions of subgraph isomorphism and related
terms can be found, e.g., in [6]).

A s an example, let us consider the pattern graph and the program graph from Figure 3.4.
There, the pattern graph is isomorphic to a subgraph of the larger program graph, i.e., a
subgraph isomorphism exists between them. This is because for a l l vertices and edges
present in the pattern graph, corresponding vertices connected by edges that have the same
orientation can be found in the program graph.

It should be noted that finding a subgraph isomorphism is not an easy task—on the con
trary, i n its most general form, it is an NP-complete problem [4]. Consequently, many algo
rithms focusing on the subgraph isomorphism problem already exist. The most well-known

19

Figure 3.4: Example of a subgraph isomorphism between two control-flow graphs. The
pattern C F G (left) is isomorphic to a subgraph (denoted by nodes and edges that are not
dashed) of the larger program C F G (right). In order to successfully match a C C P , an
isomorphism of this k ind has to be found for both of its sides.

explore a tree-structured state space, where states represent feasible solutions. Examples
of these include Ul lmann ' s a lgori thm [23], which systematically iterates over matrices that
encode possible subgraph isomorphisms, or the V F 3 algori thm [4], which uses so-called fea
sibility rules to ensure the consistency of visi ted states. However, these approaches would
be rather hard to integrate into the robust L L V M architecture since they typical ly a im
at general graphs and not specifically at C F G s . Therefore, the matching process that we
present in Chapter 5 does not rely on any of the previous algorithms. Despite that, its im
plementation utilizes certain heuristics that are mentioned in previous works (most notably,
the pruning of graph nodes based on the number of neighbours).

Final ly , dependence graph matching is a method that works wi th so-called program
dependence graphs (PDGs)—graphs that portray not only control dependencies but also
data dependencies for each performed operation [7]. In other words, P D G s extend C F G s
wi th data dependencies. A s a result, the general approach to the matching problem is
the same as w i th C F G matching, w i t h the only exception being that a P D G is matched
instead of a C F G . Compared to C F G matching, P D G matching has one major advantage
due to its abi l i ty to analyze data dependencies: it can successfully find a match even if extra
instructions that are unrelated to patterns, e.g., in i t ia l izat ion instructions for isolated blocks
of memory, get inserted into the control flow. Despite that, explicit P D G matching is not
very suitable for D I F F K E M P since D I F F K E M P analyses data dependencies using mapping
functions (introduced in Section 2.3). Therefore, the matching procedure we introduce
works on C F G s but exploits data dependencies as well.

20

Chapter 4

Representation of Change Patterns

Section 3.4 follows the introduct ion to semantics-preserving and semantics-altering code
change patterns (C C P s) , discussing essential preliminaries necessary for the pattern match
ing extension proposed in this thesis. However, before the extension can be described in
further detail , it is important to define exactly how to encode real-world C C P s — o r i g i n a t i n g
directly from fragments of C code—in a way that is suitable for D I F F K E M P . A n encoding
may be considered suitable if, among other things, it (1) uses the two-side pattern structure
proposed in Section 3.1, (2) can describe the patterns presented i n Sections 3.2 and 3.3,
and (3) requires a pattern parsing process that is inexpensive i n terms of both t ime and
implementation complexity.

Since D I F F K E M P utilizes the L L V M infrastructure, the most straightforward approach
that satisfies the above conditions would be the direct use of L L V M IR, as doing so would
not require any new libraries nor sophisticated parsing tools. Addi t ional ly , w i t h a pattern
representation based on L L V M IR, it would theoretically be possible to encode any pattern
that might appear in the compared programs since D I F F K E M P represents programs using
L L V M I R as well .

O n the other hand, L L V M I R is a very low-level language. Therefore, larger patterns
could be rather hard to produce manually, especially without prior knowledge of L L V M .
Moreover, while it might be possible to encode a l l patterns, adding support for certain kinds
of patterns, e.g., those describing changes in control flow, would also involve fairly complex
modifications of the top-level comparison algori thm of D I F F K E M P itself. Chapter 6 further
elaborates on this problem.

Nonetheless, an encoding based on specialized segments of L L V M I R code has been
chosen as the most pract ical option available, mainly because of two reasons:

1. W h i l e it would be possible to, e.g., design a custom, text-based and more user-friendly
encoding, doing so would l ikely be much less efficient as a sophisticated parser would
have to get developed as well.

2. M a n u a l creation of C C P s is not the pr imary focus of the proposed extension. O n
the contrary, since L L V M I R can be easily generated v ia the L L V M infrastructure,
the whole pattern generation process could get automated, e.g., by potential future
extensions of D I F F K E M P .

The rest of this chapter introduces the L L V M I R pattern representation. In particular,
Section 4.1 proposes two kinds of pattern representations, while Section 4.2 provides details
about custom L L V M metadata nodes, which are crucial for pattern parameterization.

21

4.1 Encoding Code Change Patterns

This section builds on the understanding of C C P s presented in Section 3.1 and proposes
representations of C C P s based on L L V M I R (introduced i n Section 2.2).

Since patterns can be, theoretically, created for any code modification, they may have
different levels of complexity and may describe completely unrelated kinds of changes.
Addi t ional ly , the study of patterns presented i n Sections 3.2 and 3.3 suggests that a sub
stantial amount of C C P s describe modifications of ind iv idua l values, e.g., changes i n macro
constants or buffer allocations, or—on the contrary—modifications possibly spanning over
mult iple program branches, e.g., changes i n conditions or code relocation. Therefore, we
propose the following pattern representations:

1) Instruction patterns, capable of encoding a l l kinds of C C P s , including those that affect
multiple program branches (i.e., mult iple basic blocks).

2) Value patterns, which can efficiently encode C C P s that describe single-value changes.

Before describing both representations in detail , it should be noted that instruction
patterns are generic. Therefore, they can also encode C C P s that are more suitable for
value patterns (although doing so would result in a much less compact representation).
To il lustrate the differences between instruct ion patterns and value patterns more clearly,
the following explanation w i l l use the same C C P — d e s c r i b i n g a substi tut ion of an integer
macro for a global constant—for both representations. However, such C C P s would generally
never be represented by an instruct ion pattern, al though the decision ul t imately depends
on exactly how restrictive the given representation should be and is, therefore, s t r ic t ly in
the hands of the end user.

A s stated i n Section 3.1, each C C P can be characterized by two fragments of code, each
from a different program version—the original code and the modified code, i.e., the old
side and the new side of the pattern, respectively, and by the functions imap and omap,
which define mappings between input and output, respectively. Therefore, to encode both
sides of a pattern into L L V M IR, two independent blocks of code have to be present in
the representation. This can either be done using separate L L V M modules or separate
functions. Since having both pattern sides in the same module greatly increases clari ty
and eliminates the need to parse mult iple modules, we propose to use two functions—one
for each pattern side, i.e., each code fragment. To determine which function corresponds
to which pattern side, we use special prefixes of their identifiers. In particular, functions
wi th the d i f f kemp. old prefix belong to the old side of the pattern and functions wi th the
diffkemp.new prefix belong to the new side of the pattern. Th is general idea is used by
both the instruction and the value patterns, described below.

Figure 4.1 shows an example of the general structure of instruction patterns. A s pre
sented above, the representation is composed of two functions, each describing one side of
the encoded C C P . Each function can be split into the following sections, each corresponding
to its respective counterpart from the definition of code fragments provided in Section 3.1.

• Input, which is defined by function parameters.

• Output, which is denoted by the arguments of calls to the special @dif fkemp .mapping
function, which handles output identification and output mapping (explained below).

• Main body, generally consisting of a l l instructions and basic blocks present in the func
t ion. To increase readabili ty and efficiency, custom ! d i f fkemp. pattern metadata

22

nodes can get attached to instructions to l imi t the size of the ma in body. The con
cept of ! diffkemp.pattern metadata gets discussed i n further detail i n Section 4.2.

Instruction pattern representation

1
2
3
4
5
6
7
8

9
10
11
12
13
14

; For RHEL 8.1 (older version)
define void @diffkemp.old.side(i32) {
7,2 = icmp sle i32 7.0, 30
c a l l void @diffkemp.mapping(il 7.2)
ret void

}

; For RHEL 8.2 (newer version)
define void © d i f f k e m p . n e w . s i d e (i 3 2) {
7.2 = load i32, i32* ©node
7.3 = icmp sle 132 7,0, 7,2
c a l l void @dif fkemp. mapping (i l 7,3)
ret void

}

Figure 4.1: Instruction-based representation of a code change pattern extracted from differ
ences reported by D I F F K E M P dur ing the comparison of two versions of the R H E L kernel.
The pattern describes a substi tut ion of an integer macro (old side) for a global constant
©node (new side). The example has been simplified for brevity.

Final ly , in instruct ion patterns, the mapping functions imap and omap are encoded in
the following way:

• imap gets created by mapping function parameters from both functions in order (both
functions must have the same number of parameters).

• omap gets specified by cal l ing the ©di f fkemp.mapping function before returning
from either function. A l l instructions that get used as arguments of this cal l get
mapped together (pairwise i n order, since the ca l l should be present in both func
tions). For single values, the return instruction can be used in the same manner as
the ©di f fkemp.mapping function cal l .

Combin ing a l l parts of instruct ion patterns creates a universal C C P representation that
can be easily parsed by tools from the L L V M infrastructure. However, while instruction
patterns are universal, they are also quite sizeable—even when encoding a relatively simple
C C P , as can be seen i n Figure 4.1. Moreover, they might be rather l imi t ing for certain
use cases, since they need to directly specify a l l instructions that should be present i n the
compared programs. For example, i n Figure 4.1, the representation should encode a macro
substi tut ion pattern. W h i l e it certainly does so, it also has to include specific information
about the instructions present i n the main body of the pattern—for example, it has to
specify that the macro substi tut ion has to be t ied to a value comparison performed by an
icmp instruction. Th i s , however, does not necessarily have to be the case for many places
where the pattern occurs. To address this issue, we propose to use so-called value patterns,
which can encode patterns describing single-value changes much more efficiently.

23

Again , the structure of value patterns consists of two separate functions (one for each
pattern side), as can be seen in Figure 1.2. However, compared to instruct ion patterns, bo th
functions only contain a single return instruction, which returns the value prescribed by the
encoded C C P (global variables, such as the variable ©node, are returned as a pointer). That
is possible since value patterns are no longer generic—they are restricted to single-value
changes. Therefore, they do not need to directly encode code fragments w i th respect to
the definition from Section 3.1. Instead, value patterns only encode a single pair of values
that—even though they might be different—should always be compared as equal when,
e.g., used as instruct ion operands. The complete structure of the pattern (i.e., of its code
fragments and mapping functions) can be then determined lazi ly dur ing pattern matching
depending on the instructions present i n the compared program versions. Th is enables
users to describe single-value changes without ty ing patterns to specific instructions.

For R H E L 8.1 For R H E L 8.2

define i32 Odiffkemp.old.side() {
ret i32 30

}

define i32* Odiffkemp.new.side() {
ret i32* ©node

}

Figure 4.2: Value-based representation of the pattern presented i n Figure 4.1. The pattern
has been simplified using only return instructions referencing the values required by the
pattern. Cont ra ry to the instruction-based representation, this representation does not
enforce the existence of specific instructions, such as an icmp value comparison instruction.

The proposed pattern representations also support several other features, e.g., prefixes
for preventing symbol name collisions. However, these are beyond the scope of this thesis
and have been therefore omit ted for brevity.

4.2 Pattern-Specific L L V M Metadata Nodes

Since instruct ion patterns are robust and universal, it may be necessary to specify addi t ional
details that further define the structure of the encoded C C P . Doing so may not be str ict ly
necessary i n some cases. However, i n others, it might optimize pattern matching. Therefore,
this section introduces a method for encoding auxi l iary information about C C P s into the
generic structure of instruction patterns proposed in Section 4.1.

Since instruction patterns are buil t around L L V M I R instructions, the encoding of
supplementary information should reflect that. For example, it might require addi t ional
instructions—e.g., calls to specialized functions—to be inserted into the main body of
instruction patterns. However, while doing so would be possible, it would increase the
complexity of pattern matching since the L L V M toolchain would parse the addi t ional in
structions as a direct part of pattern control-flow graphs. Therefore, it would be best to
util ize features of L L V M I R that have been designed w i t h auxi l iary information in m i n d — i n
particular, L L V M metadata (introduced i n Section 2.2).

L L V M uses mult iple kinds of bui l t - in metadata. In addit ion, it also enables users to cre
ate custom metadata that can then, for example, be attached to instructions through meta
data nodes, which would be ideal for instruction patterns. Therefore, we propose to support
the metadata presented in Table 4.1. A l l metadata nodes that include the pattern-specific
metadata should be attached to instructions through the Idiffkemp.pattern identifier.

24

Table 4.1: Overview of custom kinds of metadata available for instruct ion patterns.
Metadata kind Semantics

pattern-start
Marks the first pair of differing instructions (used for
pattern matching opt imizat ion) .

pattern-end
Labels the end of the main body of a code fragment.
After this k ind of metadata, only the code fragment
output and its mapping may get specified.

group-start
Denotes the start of an instruct ion group. Grouped
instructions have to be matched as a single block
(no addi t ional instructions are allowed between them).

group-end Indicates that the active instruct ion group has ended.

disable-name-comparison
Disables name-based comparison of structures, replacing
it w i t h a complete type equality verification.

The specific kinds of metadata get specified by metadata strings (i.e., strings that have
the ! metadata prefix), which should be placed inside the attached metadata nodes and
match the identifier of the desired metadata k ind . Addi t ional ly , since metadata nodes are
similar to structured types, it is possible to define mult iple kinds of metadata in a single
metadata node. Figure 4.3 demonstrates how to add two different kinds of metadata,
pattern-start and group-start, to an instruct ion v i a a single metadata node.

!0 = !{ !"pattern-start", !"group-start" }
c a l l void @example(), !diffkemp.pattern !0

Figure 4.3: Simplified example of a c a l l instruction wi th attached ! diffkemp .pattern
metadata. The metadata node ! 0 appends two kinds of metadata: pat tern-start and
group-start.

W i t h the proposed kinds of metadata, instruct ion patterns should be well-prepared to
encode any of the patterns presented i n Sections 3.2 and 3.3. Addi t ional ly , even i f some
other helpful kinds of metadata were to be discovered i n the future, adding support for
them should be straightforward due to the flexibility of L L V M metadata.

25

Chapter 5

Design of the DiffKemp Extension

This chapter builds on the prel iminary ideas behind D I F F K E M P and code change patterns
(C C P s) described i n previous chapters, focusing on the goal of this thesis, the design of
the pattern matching D I F F K E M P extension. Considering the fact that both instruction
patterns and value patterns need to be supported, the extension can be divided into the
following parts.

Firs t , since the two code fragments of each C C P are independent of each other, they
need to be matched to the code i n the corresponding programs separately. Therefore, a
top-level a lgori thm that provides a simple interface for the matching process of instruction
patterns must exist. The top-level a lgori thm can then execute the matching process for each
pattern code fragment and analyse the resulting mapping of pattern input and output. The
top-level matching a lgor i thm for instruct ion patterns gets introduced in Section 5.1.

Second, the matching algori thm for code fragments of instruct ion patterns has to be
created. Th is a lgori thm is presented i n Section 5.2 and is the most sophisticated part of the
extension since instruction patterns are (in contrast to value patterns) fully defined wi th
respect to the C C P definition from Section 3.1. The algori thm must be executed twice for
each instruction pattern—once for each side of the pattern (i.e., pat tern code fragment and
the associated program version). D u r i n g each execution, the a lgori thm gradually compares
instructions from the selected pattern side and its corresponding program. If a match for
al l pattern instructions is found on both sides, and i f a l l input constraints defined by the
pattern are satisfied, the top-level matching a lgor i thm detects a match.

Final ly , value patterns have to be processed. However, since value patterns only specify
a pair of values that should be present i n the compared programs, they need to be ini t ia l ized
based on the code around the instructions to which the pattern should be matched. Do ing
so lazi ly generates fully-defined patterns, which can then be analysed using the matching
algori thm for instruct ion patterns. In other words, for each value pattern, its internal
instruction pattern representation is created according to the given comparison context.
The generation of instruct ion patterns from value patterns is described i n Section 5.3.

5.1 Top-Level Matching Algori thm

This section explains the top-level instruct ion pattern matching algori thm, which controls
the selection and execution of the lower-level control-flow-based pattern code fragment
matching algori thm (described i n Section 5.2). A l l of the presented algorithms expect that
D I F F K E M P is comparing two versions of the same program.

26

Since pattern matching should serve as the final val idat ion step before declaring two
functions as semantically different, pattern matching should be run after the blocks of
code (sijs'i) and (s2,s'2), compared on L ine 17 of A l g o r i t h m 2.1, get determined as not
equal. Then, instead of immediately interrupting the ongoing comparison of functions f\
and fi because the blocks (s i , s^) and (s2, s'2) differ, the pattern matching procedure should
check whether the blocks can be matched to one of the loaded L L V M I R patterns. If a
match is found, the comparison should disregard the difference associated wi th the pattern.
Otherwise, the comparison should keep its original result and return. Addi t ional ly , it
should be noted that the matching of dynamical ly loaded patterns could also theoretically
be incorporated directly into the S P C P detection process from A l g o r i t h m 2.1. However, we
have decided not to do so, mainly because of two things:

1) Since the number of dynamical ly loaded pattern may potential ly be quite large, we
want to only start the matching process after a difference between two compared
instructions gets detected to achieve higher efficiency. Therefore, it is better to begin
matching after the difference first gets detected by the main function comparison
algori thm.

2) The matching procedure for dynamical ly loaded patterns can skip instructions unre
lated to the pattern that is being matched. However, the skipped instructions s t i l l
need to be compared by the pr imary function comparison algori thm afterwards.

The top-level pattern matching procedure is described by A l g o r i t h m 5.1. The algo
r i thm expects to receive the first pair of instructions (i0,in) that has been compared as
semantically different by A l g o r i t h m 2.1, where iQ belongs to the block (si,s'i) from the
older version of the compared program and in belongs to the block (s2, s2) from the newer
version. Addi t ional ly , the algori thm needs access to the original mapping functions smap
and varmap from A l g o r i t h m 2.1, and requires a set Pi of instruction patterns that should
be used as the basis for pattern matching. Value patterns are not given to the algori thm,
since they should be converted to instruct ion patterns based on context (the conversion
process is explained i n detai l in Section 5.3).

A l g o r i t h m 5.1 starts by i terating over patterns (c 0 , cn,imap, omap) un t i l a match is
found or a l l patterns are exhausted (in which case, the algori thm returns an empty set
since no matching pattern has been identified). A t the beginning of each iteration, the
algori thm calls the function matchCFG, which is responsible for single-side instruction
pattern matching (presented i n Section 5.2). In particular, matchCFG is called twice—
the first t ime wi th iQ and the pattern code fragment cQ corresponding to the same pro
gram version (which, in the case of i0, is the older version) and the second time wi th in

and cn (i.e., for the newer program version). The calls to matchCFG return two tuples
(r0,imatch0, omatch0, MQ) and (rn,imatchn, omatchn, Mn)—for the older and newer pro
gram version, respectively—where, for x G {o ,n} , the following holds:

• rx is the pr imary result of the single-side matching process (true i f it successfully
finds a match, false otherwise).

• imatchx is the mapping of input matches, which provides information about how to
map the input of the code fragment cx to variables from the corresponding program
version x. In other words, it maps the input variables of cx to the matching variables
from x.

27

A l g o r i t h m 5 . 1 : Top-level instruct ion pattern matching
Input: Pa i r of differing instructions (i0,in)

smap and varmap from A l g o r i t h m 2.1
Set of available instruct ion patterns Pi

Result: A set of matched instructions, which is empty i f no pattern is matched

1: foreach (c 0 , cn,imap, omap) G Pi do
(r 0 , imatcho, omatch0, MQ) := matchCFG(i0, cQ)
(rn,imatchn, omatchn, Mn) := matchCFG(in, cn)
if rQ A rn then

// Check the mapping of inputs
valid := true
foreach z£J G imatch0 do

i™ := imap(i°)
if varmapii1^) ^ imatchn{i™) then

valid := false
break

if -^valid then continue

// Synchronize outputs
foreach (o°, o £ j G omatchQ do

o" := omap(o°)
smop(o^) := omatchn(Oc)
varmap{o^n) := omatchn(o^

return M 0 U M „
return

• omatcho is the mapping of output matches, which contains a similar mapping of the
output of cx. In particular, it maps the instructions (or, more specifically, the variables
created by them) that got marked as the output of cx to the matching instructions
from x (i.e., to the corresponding variables).

• Mx is the set that contains instructions from x that have been matched to instructions
from the pattern code fragment cx. In other words, the set identifies which instructions
exactly are affected by the matching pattern (the previous mappings only contain
information related to the input and the output of cx and not its ma in body) .

Concrete details about the creation of the tuples returned from calls to matchCFG are
presented in Section 5.2.

After getting the results of both evaluations of matchCFG, the top-level algori thm
checks whether both pattern code fragments have been matched successfully (Line 4). If
so, it continues by val idat ing the correctness of the mappings imatchQ and imatchn w i th
respect to the input mapping function imap of the current pattern. The val idat ion phase
uses a helper variable valid (which holds the input val idat ion result) and iterates over a l l
mapped input match pairs i™) that are given by imatchQ. For each pair, the following
actions are performed:

28

• The corresponding input variable i™ from the newer program version is retrieved from
imap using i°. T h i s is possible since imap maps the input of the code fragment cQ to
the input of cn. Therefore, it must also contain the mapping between i° and i™, since
both belong to the input of c0 and c„ , respectively. Considering the fact that each
code fragment input must be matched to exactly one variable from the corresponding
program version, imap effectively creates a bijective mapping between imatchQ and
imatchn.

• The variables that got matched to i° and i™ (i.e., i°m = imatch0(i°) and imatchn(i^),
respectively) are validated w i t h respect to varmap (Lines 8-10). This ensures that
the matched variables are either the same or can be mapped together, i.e., that
the pattern matches in both cQ and cn use the same (or mapped) input variables.
Doing so is necessary since the matching of input is done separately for each pattern
code fragment. Therefore, the variables matched to code fragment input could be
potentially completely unrelated to each other.

If the input val idat ion fails (i.e., i f false gets assigned to valid), the pattern match is
discarded, and the algori thm continues wi th the following pattern, i f available (Line 11).

Afterwards, the a lgor i thm analogically iterates over the mapped output match pairs
{o°, o^J taken from omatchQ. A t the start of each iteration, it retrieves the corresponding
output variable o™ using the pattern output mapping function omap. Then , the matched
output variables o°m = omatch0{o0

c) and omatchn(o^) are mapped together v i a both smap
and varmap (Lines 14-15). This is in direct contrast w i th the input val idat ion process
since—contrary to the variables matched to code fragment input, which should be created
by instructions placed before the first differing pair of instructions (iQ, in) and, hence, that
should have already been processed and mapped to each other accordingly—instructions
associated w i t h the output variables have not yet been analysed by the ma in function
comparison algori thm (i.e., cannot be mapped together before L ine 14 of A l g o r i t h m 5.1).

Final ly , after the pattern input is successfully validated and the output mappings are
created, the algori thm returns MQ U Mn (Line 16), i.e., the set of a l l instructions that
have been matched to the detected pattern, combined for both of its code fragments cQ

and cn. It should be noted that the algori thm could be extended to support multiple
pattern matches originating from the same instruct ion pair. The extension would be rather
straightforward—instead of returning immediately after the first pattern match is found,
the a lgori thm could continue analysing other patterns, keeping the previous results (i.e., the
unions of Ma and Mn), and merging them into a single set, which would be then returned
after a l l patterns are analysed.

Addi t ional ly , the processing of a pattern match continues even after A l g o r i t h m 5.1
returns. In particular, A l g o r i t h m 2.1 has to retain the results of a l l successful pattern
matches for the durat ion of the whole function comparison and use them to identify which
instructions (from either of the compared functions) have been matched to a pattern. A l l
matched instructions should then be skipped since instructions associated wi th a code
change pattern should always be considered semantically equal, regardless of potential
semantic differences. Th is skipping of instructions should be performed immediately after
the main function comparison a lgor i thm takes the pair («1,^2) of synchronisation points
from its queue Q (i.e., after L ine 12 of A l g o r i t h m 2.1). In particular, i f any of the instructions
represented by s\ and S2 have been identified as parts of a dynamic pattern match, they
should be skipped, i.e., their successors should be used instead.

29

5.2 Pattern Code Fragment Matching

This section follows the explanation of the top-level pattern matching algori thm for instruc
t ion patterns presented in Section 5.1. In particular, it describes the matching procedure
for code fragments, which has to be evaluated twice for each analysed pattern, i.e., it ex
plains the semantics of the function matchCFG used wi th in A l g o r i t h m 5.1. S imi la r ly to
the pr imary function comparison algori thm, the single-side matching procedure utilizes the
L L V M infrastructure to analyse pattern code fragments by their control-flow graphs (C F G s :
defined i n Section 2.2). However, compared to A l g o r i t h m 2.1, it does not a im at finding
instructions that are semantically different. Instead, it searches for instructions that can
be matched to those present i n the main body of the given code fragment.

A l g o r i t h m 5.2: Control-flow-based pattern code fragment matching

Input: Differing instruct ion ip from one of the compared programs
The corresponding pattern code fragment c

Result: r , the result status, which is true i f a match gets found, false otherwise
imatch, the mapping of input matches
omatch, the mapping of output matches
M, the set of a l l matched program instructions

m a t c h C F G (i*,c):
1: M : = { }
2: ini t ial ize varmapc w i th shared global variables

3: Q : = { (& $ }
4: while Q / 0 do
5: take any pair (ic, ip) from Q
6: if ic can be matched to ip then

// Let (o\,..., o^) and (o\,..., o£) be
the operands of ic andip, respectively.

7: foreach 1 < k < n do
8: if oc

k G in(c) then
9: imatch{oc

k) := o\
10: if ic G out(c) then
11: omatch(ic) := ip

12: M := M U {ip}
13: varmapc(ic) := ip

// Queue up the following instruction pair
14: foreach (i'c,i'p) £ succInstPair(ic,ip) do
15: insert (i'c,i'p) into Q

16: if all instructions in c have been matched then
17: return (true, imatch, omatch, M)
18: else
19: return (false, imatch, omatch, M)

The implementat ion of the function matchCFG is shown in A l g o r i t h m 5.2. The algo
r i thm expects to receive the first instruct ion ip from one of the analysed program versions
that has been compared as semantically different and the pattern code fragment c cor-

30

responding to the same program version as ip. In other words, using the notat ion from
A l g o r i t h m 5.1, it requires iQ and cQ for the older program version, and in and cn for the
newer program version. The selected program version is denoted by p.

A l g o r i t h m 5.2 starts by creating the set M of instructions from p that have been matched
to instructions from the main body of c. The set M, as well as the mapping of input
matches imatch and the mapping of output matches omatch, which are also used wi th in
A l g o r i t h m 5.2, are a l l in i t ia l ly empty (their semantics are described in detail in Section 5.1).
Addi t ional ly , a mapping between global variables that are used wi th in both c and p and
that share the same name is established (Line 2).

Then, the pr imary matching loop begins. The loop works s imilar ly to A l g o r i t h m 2.1—it
relies on the queue Q, operating un t i l Q is emptied. However, since pattern matching is
always done instruction-to-instruction and never on larger blocks of code, instructions are
at a l l times queued up in the same sequence as they are present i n the underlying L L V M IR
code. Therefore, synchronisation points and the corresponding mapping function smap are
not necessary. Initially, only the instruct ion pair (ih

c, ip1) is queued up for matching, where
ib

c denotes the first instruction in the ma in body of c.

A t the beginning of each iteration, a single pair of instructions {ic, ip) is taken from Q,
and the a lgori thm checks whether ic can be matched to ip. S imi lar ly to A l g o r i t h m 2.1,
the matching of ind iv idua l instructions is based on simple instruction-to-instruction com
parison. The variable mapping function varmapc is used during the instruct ion matching
process to check the correspondence between already matched variables (and the instruc
tions that created them).

Then, let (o\,..., o^) and (o ^ , . . . , o%) be the operands of ic and ip, respectively. If the
matching of ic to ip succeeds, the a lgori thm first processes the input variables (Lines 7-9).
In particular, it maps each operand oc

k that is also the input of c to the corresponding
operand o\ by the the mapping of input matches imatch, 1 < k < n. In other words, i f oc

k

is the input of c, a mapping between oc

k and the matching operand of ip is created.
Addi t ional ly , Lines 10-11 perform a s imilar analysis w i th the output of c. However, it is

the instructions themselves (or, more specifically, the variables created by them) that may
be used as part of the output of c (i.e., not their operands). Therefore, i f c specifies ic as
its output, ip gets directly mapped to ic by the mapping of output matches omatch. After
the input and the output are processed, the program instruct ion ip (i.e., the instruction
that has been matched to ic) is placed into the set of matched instructions M (Line 12).
Moreover, a variable mapping between ic and ip is generated (Line 13).

Afterwards, the function succInstPair—a specialized variant of succPair from Algo
r i thm 2.1—retrieves a l l instruction pairs (i'c,i'p) that should be queued up after (ic,ip).
The implementat ion of succInstPair is displayed in A l g o r i t h m 5.3, which operates on the
currently analysed instructions ic and ip from A l g o r i t h m 5.2.

If a match between ic and ip has been established, succInstPair behaves analogously
to succPair (Line 2), i.e., it returns the instructions immediately following ic and ip, i f
available. Otherwise, i f ip has a single successor (i.e., i f it is an internal instruct ion of
a basic block or an uncondit ional branch instruction), succInstPair indicates that the
matching algori thm should keep ic and t ry to match it to the instruct ion that immediately
follows ip. In other words, the a lgori thm allows to skip instructions of p when searching
for suitable instructions matching those in the main body of c. The function succ retrieves
the single successor of the given instruction. If the number of immediate successors of ip

is different, succInstPair yields an error, failing the pattern matching process, as it either

31

A l g o r i t h m 5.3: Ca lcu la t ing successor instruct ion pairs
Input: Current ly analysed instructions ic and ip

Result: Tuple of successor instruct ion pairs

succInstPair (ic,ip)'
1: if ic can be matched to ip then

// Use the default successor calculation
2: return succPair(ic, ip)
3: else if ip has a single successor then

// Try to match ic to the next program instruction
4: return (ic, succ(ip))
5: else
6: yield error

cannot continue (ip is a terminator instruct ion and, therefore, has no successors) or would
branch out (ip is a condit ional branch instruction, i.e., has two successors).

It should be noted that since succInstPair yields an error even when ip has two suc
cessors, the pattern matching procedure might fail to match patterns that describe changes
i n control flow (e.g., additions of new condit ional statements)—it may abort the matching
process even when suitable instructions i n p exist in a l l execution paths following ip (which,
in this case, must be a condit ional branch instruction). However, al though the a lgori thm
could potential ly be extended to support this use case, e.g., w i th a backtracking proce
dure, patterns describing changes i n control flow would s t i l l not work properly. Th i s is
because A l g o r i t h m 2.1 expects the compared functions / i and fi to have the same control-
flow graphs (at least i f they should be compared as semantically equal) and would have to
be modified significantly to be able to process matches of the patterns i n question. Such
modifications of the core parts of D I F F K E M P would be beyond the scope of this thesis.

Final ly , after the queue Q is emptied, A l g o r i t h m 5.2 returns the resulting mappings
imatch and omatch, and the set of matched instructions M. Addi t ional ly , i f a l l of the
instructions i n the main body of c have been matched, the a lgori thm returns true to indicate
a successful match. Otherwise, it also returns false since the matching of c to p failed. The
results are then further analysed by the top-level instruction pattern matching algori thm,
as described in Section 5.1.

5.3 Generating Instruction Patterns from Value Patterns

So far, the algorithms presented in this chapter have only dealt w i t h instruction patterns.
However, Chapter 4 also introduced so-called value patterns—specialized variants of pat
terns that are only composed of a single pair of values, i.e., do not properly represent code
change patterns wi th respect to the definition provided i n Section 3.1. Therefore, this sec
t ion presents a conversion process, which can generate instruct ion patterns based on the
descriptions of value modifications given by value patterns loaded into D I F F K E M P and the
context of the code to which the patterns should be matched.

A n overview of the instruct ion pattern generation process is shown in A l g o r i t h m 5.4.
The a lgori thm takes the first pair of instructions (i0, in) that have been compared as se-

32

A l g o r i t h m 5.4: Generat ing instruction patterns from value patterns

Input: Pa i r of differing instructions (i0,in)
Set of available value patterns Pv

Result: Set Pf of instruct ion patterns generated from value patterns

1: P? ••= {}
2: foreach pv = (v0,vn) G Pv do
3: if an instruction pattern can be created from pv, iQ and in then
4: pi := createInstPattern(pv,i0,in)
5: P?:=P?U{pV}
6: return P?

mantical ly different (i.e., the same pair as the one used i n A l g o r i t h m 5.1) and the set Pv of
al l value patterns loaded into D I F F K E M P , and tries to generate a new instruct ion pattern
for each pattern i n Pv.

In particular, the algori thm starts by creating an (ini t ia l ly empty) set P? of generated
instruction patterns, and iterating over a l l value patterns pv = (v0, vn) present i n Pv. Dur ing
each iteration, unless pv cannot be converted, it executes the pattern conversion procedure
createlnstPattern which—based on the value pattern and the pair of differing instructions
given to it—creates an internal-only instruction pattern p\, which is inserted into P?.

The function createlnstPattern generates instruct ion patterns according to the values
(and their types) present i n the given value pattern pv and the instructions that the newly
created instruct ion pattern should be matched to (i.e., the context of the first differing
instructions i0 and in). In particular, the code fragment for the older program version,
which is denoted by pQ, of each of the generated instruct ion patterns is constructed using
one of the methods described below. For vn and in, the code fragment for the newer version
is created analogously.

• If v0, i.e., the value corresponding to pQ, is a constant (for example, an integer) and
iQ uses v0 as one of its operands, the code fragment is constructed as follows:

— The main body w i l l contain the instruction i0 (since it has v0 as its operand).

— The input w i l l consist of a l l of the operands of i0 that are not constant (i.e., that
reference variables that should be present i n the code before iQ).

— The output w i l l be empty i f iQ does not return a value (and, hence, does not
create any variables that need to be mapped) or w i l l be composed of the variable
produced by iQ.

• If v0 is a pointer to a global variable (pointers to local variables cannot be used in
value patterns since only return instructions are allowed) and i0 is a load instruction
that loads from the global variable referenced by vQ (an example of this case can be
seen i n Figure 4.1), the process is similar to the one for constant values. However,
since iQ is a load instruction, it is the instruction i'Q, denoting the instruct ion that
uses the value loaded by iQ, that needs to be placed inside the main body of the
code fragment and analysed wi th regards to the input and the output of the code
fragment. Addi t ional ly , the load instruct ion iQ must be placed into the main body as

33

well (before i'0, since i'0 depends on the result of i0). Hence, the operand of i'a that
references the value loaded by iQ should not be regarded as a part of the input of the
code fragment.

If neither of the above cases can be applied (e.g., since vQ is a pointer to a global variable
but iQ is not a load instruction), the construction of the instruction pattern gets aborted.
The same applies to the case when both fragments could be created, but the instructions
that use the values prescribed by the value pattern do not perform the same operation
i n both program versions (e.g., the older version adds the value, while the newer version
subtracts i t) , as such a change cannot be at t r ibuted to a value pat tern alone.

W h e n both code fragments are constructed successfully, the instruction pattern is
finalized by creating the mapping functions imap and omap, where imap is buil t according
to the order of the instruction operands used as the input of the code fragments, and omap
is generated analogically wi th respect to the output of the code fragments (which, in this
case, can contain at most a single output variable i n each code fragment).

Final ly , after analysing a l l available value patterns, A l g o r i t h m 5.4 returns the set Pf of
newly generated instruct ion patterns (which might possibly s t i l l be empty). This set should
be constructed lazi ly before each evaluation of A l g o r i t h m 5.1, to which it should be passed
on as a part of the set Pi of available instruct ion patterns.

34

Chapter 6

Extension Implementation

This chapter describes the most important implementat ion details of the pattern matching
extension of D I F F K E M P proposed in this thesis. The extension is based on the algorithms
presented in Chapter 5.

Since the extension serves as an addi t ional component of the D I F F K E M P analyser, it is
wri t ten i n the C++ programming language 1 —the same language used by the core parts of
D I F F K E M P — a n d its source code is accessible through the official public G i t H u b repository
of D I F F K E M P 2 under the Apache 2.0 license. The integration of the pattern matching ex
tension into the architecture of D I F F K E M P is described i n Section 6.2, and the most notable
aspects of the implementat ion process are presented i n Section 6.3. Due to the influence
of D I F F K E M P on the implementat ion of the pattern matching extension, Section 6.1 first
introduces the core components of S I M P L L , the function comparison module of D I F F K E M P .

6.1 Architecture of S impLL

This section describes the parts of the architecture of D I F F K E M P that are the most relevant
to the proposed pattern matching extension. In part icular, it explains the operations per
formed by the core components of S I M P L L , the core C++ module of D I F F K E M P , responsible
for the comparison of two functions translated to L L V M I R (i.e., for the checking of seman
tic equivalence of functions presented in Section 2.4). S I M P L L is typical ly executed from
the front-end command-line interface of D I F F K E M P , which is wri t ten i n Py thon . However,
it may operate as a standalone module as well . The essential components of the architecture
of S I M P L L , shown i n Figure 6.1, are described below. The descriptions are inspired by the
source files of D I F F K E M P available i n its G i t H u b repository.

L L V M I R parser A composite component that represents the L L V M I R parsing tools
from the L L V M infrastructure. Despite the fact that S I M P L L only compares two functions
at once, L L V M I R files are always processed i n their entirety. Therefore, the whole modules
represented by the given L L V M I R files are the result of the parsing process.

X A small module related to the extension is also implemented for the front-end of DIFFKEMP (written in
the Python language). However, this module only handles new command-line arguments introduced with
the extension and not the matching of patterns. Therefore, it has been omitted to simplify the presentation.

2 GitHub repository of DiffKemp—https://github.com/viktormalik/difTkemp.

35

https://github.com/viktormalik/difTkemp

First Second
program program / E Q U A L / NOT

E Q U A L

L L V M IR
parser

Module
analyser

Module
comparator

Differential
function

comparator

Figure 6.1: The original architecture of S I M P L L , the core component of D I F F K E M P respon
sible for function comparison.

M o d u l e analyser Controls the analysis of the parsed modules. In particular, it applies
al l available semantics-preserving code transformations (briefly introduced in Section 2.4)
and—with the help of the module comparator—begins the comparison of the selected pair
of functions.

M o d u l e comparator Manages the comparison of the given pair of functions, producing
the final result of the analysis. B y default, it only passes the functions to the differential
function comparator. However, when the default comparison finds semantic differences and
the differences correspond to function calls, the module comparator also iteratively tries
to repeat the comparison after performing function in l in ing (with the goal of potential ly
correcting a false-positive).

Differential function comparator A n extension of the L L V M function comparator^
that allows it to operate on functions from different modules. Compares the given pair of
functions using the control-flow-based analysis presented i n Section 2.4.

6.2 Integration of the Pattern Matching Extension

The extension proposed in this thesis has been implemented as a part of the architecture
of D I F F K E M P or, more specifically, the architecture of the S I M P L L module (introduced in
Section 6.1). The pattern matching algorithms from Chapter 5, which the extension builds
upon, have been implemented in a straightforward manner—with the exception of the value
pattern conversion algori thm presented i n Section 5.3, which is par t ia l ly replaced by a direct
value-to-value comparison. The core components of the pattern matching extension, as well
as the value-to-value comparison, are described below. The integration of the components
into the architecture of S I M P L L is displayed in Figure 6.2.

Y A M L parser Parses pattern configuration files, which are wri t ten i n Y A M L and con
ta in the paths to the L L V M I R patterns that should be loaded. The parsing of pattern
configuration files is performed by the appropriate tools from the L L V M infrastructure, and
the identified pattern files are handed over to the L L V M I R parser.

3 L L V M function comparator—https://llvm.org/doxygen/classllvm 1 lFunctionComparator.html.
4 Y A M L Ain't Markup Language (YAML)—a human-friendly data serialization language designed

to work well with all modern programming languages [3].

36

https://llvm.org/doxygen/classllvm

First Second
program program / E Q U A L / NOT

E Q U A L

L L V M IR
parser

Module
analyser

Module
comparator

Differential
function

comparator

Y A M L
parser

Instruction
pattern

comparator

Pattern
configuration

Value
pattern

comparator

Pattern
comparator

Figure 6.2: Archi tecture of S I M P L L after the integration of the pattern matching extension.

Pattern comparator Controls the pattern matching process, i.e., it implements the top-
level matching algori thm presented i n Section 5.1. In other words, i f a difference is found,
it tries to match the code start ing wi th the first pair of instructions compared as seman-
t ical ly different by the differential function comparator to one of the loaded patterns. To
achieve this, it utilizes the single-side pattern comparators specialized for the specific kinds
of patterns (i.e., the instruction pattern comparator and the value pattern comparator).
Addi t ional ly , the pattern comparator also analyses the code around the received pair of
instructions wi th respect to the value pattern conversion process described i n Section 5.3.

Instruction pattern comparator Implements the control-flow-based matching algo
r i thm for code fragments of instruction patterns from Section 5.2. It does so by extending
the L L V M function comparator, which performs a top-down analysis of function differences,
starting w i t h basic blocks and continuing by comparing ind iv idua l instructions, operands,
and other values and variables. P rogram instructions that are compared as equal to those
present i n the given code fragment are considered to match the corresponding pattern.

Value pattern comparator A specialized variant of the L L V M function comparator
that optimizes the matching of value patterns. Th is is possible since the L L V M function
comparator analyses code i n a top-down manner. In particular, it also analyses instruct ion
operands indiv idual ly and independently of the associated instruction. Therefore, the values
specified i n value patterns can be compared directly, without the need to expl ic i t ly generate
instruction patterns (although the general idea behind the comparison stays the same).
However, any addi t ional load instructions related to value patterns containing pointers to
global variables must s t i l l be processed separately by the higher-level pattern comparator.

37

Together, the newly introduced components enable S I M P L L or, more specifically, the
differential function comparator to receive L L V M I R patterns and use them to validate the
discovered differences. In particular, before the differential function comparator declares
any two instructions as semantically different, it first passes them to the newly added pattern
comparator, which may then match them to one of the loaded patterns (and, in doing so,
allow the differential function comparator to disregard the difference). The differential
function comparator was extended so that it can properly process the results of the pattern
matching analysis. More implementat ion details regarding the pattern matching process
can be found in Section 6.3.

6.3 Extending the L L V M Function Comparison Module

This section gives further details about the implementat ion of the code fragment matching
algori thm introduced i n Section 5.2. In particular, it describes the most notable implemen
tat ion details of the instruct ion pattern comparator, which tries to match a pattern code
fragment (i.e., the L L V M function that represents it) to a function from the corresponding
compared program, in which a differing instruction has been identified.

Generally, to implement the a lgori thm as an extension of the L L V M function com
parator, only minor modifications of the original comparison process were necessary. For
example, the L L V M function comparator can only compare the given pair of functions as a
whole (i.e., from the entry basic block to the terminat ing basic block or blocks). Therefore,
the instruction pattern comparator had to include a mechanism that allows it begin from
the instruct ion where the first known difference between the originally compared programs
is located. Nevertheless, some more substantial changes had to be implemented as well in
order to increase the efficiency and accuracy of pattern matching. These are listed below.

• The instruct ion pattern comparator might skip internal instructions of basic blocks
and uncondit ional branch instructions based on the next expected instruction. In
particular, i f the comparator needs to match a branch instruction (since it is the
next unmatched instruction i n the pattern code fragment), it may j ump to the first
available branch instruct ion that has the same number of immediate successors (if
such an instruct ion exists).

• Since basic blocks connected by uncondit ional branch instructions may be considered
as a single basic block, the instruct ion pattern comparator addi t ional ly allows to
skip uncondit ional branch instructions unless they are directly specified by the given
pattern code fragment. This effectively enables the comparator to match a pattern
even to a function that has a different control-flow graph (provided the differences are
caused by uncondit ional ly connected basic blocks).

38

Chapter 7

Experiments and Testing

The previous chapters have introduced a pattern matching extension of D I F F K E M P w i th the
goal of removing potential ly undesirable or wrongly reported (i.e., false-positive) differences
from the output of D I F F K E M P . Th i s chapter follows by presenting a series of experiments,
which was performed in order to verify that the extension is able to eliminate differences
associated wi th the dynamical ly loaded L L V M I R patterns. A s the target of the experi
ments, R e d Hat Enterprise L i n u x (R H E L) was chosen due to its popular i ty and emphasis
on stabil i ty—its kernel contains a list of functions, a so-called Kernel Application Binary
Interface (K A B I) , that should ideally remain semantically stable for the lifetime of each
major release of R H E L [17]. The outcome of the experiments is discussed in Section 7.1.

Addi t ional ly , to enable faster verification of the extension in the future and to check the
correctness of as many execution paths of the matching process as possible, a number of
new regression tests were created and executed. Moreover, since the incorporation of the
extension also required smal l modifications of the parts of D I F F K E M P related to the main
program comparison, the previously available regression tests were used to ensure that the
core of D I F F K E M P remained unchanged even when no patterns are ut i l ized. The regression
tests also target the kernel of R H E L , and their results are described i n Section 7.2.

The output produced by D I F F K E M P dur ing the experimental evaluation as well as the
L L V M I R patterns from both the evaluation and regression testing are available on the
attached memory medium (contents of which are described in Append ix A) . Addi t ional ly ,
Append ix B presents the steps necessary to execute both the experiments and the tests.

7.1 Experimental Evaluation on the Linux Kernel

This section describes experimental evaluation of the extension proposed i n this thesis. The
extension was evaluated by performing a series of experiments on the kernel of R H E L . In
particular, three pairs of the most recently released versions of R H E L 1 were selected. For
each pair of versions, the following sequence of actions was performed:

1) The K A B I s of both versions were compared by D I F F K E M P without using patterns.

2) The reported differences were saved and manually examined for the existence of code
change patterns (C C P s ; introduced i n Chapter 3). In particular, i n each pair of
versions, we—to the best of our abilities—searched for the five most repetitive C C P s .

x A t the time of testing, the three pairs of the most recent release candidate versions of RHEL consisted
of RHEL 8.0/8.1, R H E L 8.1/8.2, and RHEL 8.2/8.3.

39

Table 7.1: A comparison of pairs of R H E L versions wi th and without L L V M I R patterns

R H E L versions K A B I functions
Non-equal results
without with
patterns patterns

Runt ime (mm:ss)
without with
patterns patterns

8.0/8.1 471 85 75 04:46 04:43
8.1/8.2 521 161 146 05:15 05:13
8.2/8.3 628 178 169 07:26 07:08

3) A l l of the identified C C P s were encoded into L L V M I R (using the encoding methods
proposed i n Chapter 4).

4) The K A B I s of the selected pair of versions were compared again, this t ime wi th a l l of
the created L L V M I R patterns being loaded into D I F F K E M P .

5) The results of both comparisons were analysed i n terms of execution t ime and the
number of K A B I functions proclaimed semantically different (i.e., not equal). A d d i
tionally, it was manual ly verified that only the differences related to the identified
C C P s were affected by the loaded L L V M I R patterns.

The results of the experiments can be seen i n Table 7.1. E a c h experiment was repeated
five times, and the runtimes were calculated as averages of the t ime spent on comparing
K A B I functions compiled to L L V M I R on a 4 core, 2.80 G H z Intel Core i7 K a b y Lake
machine wi th 16 G B of R A M . The compilat ion t ime is not included i n the statistics.

For a l l pairs of the compared versions of R H E L , the results show that by applying few
patterns, the to ta l number of K A B I functions evaluated as not equal can be lowered. In
particular, on average, each pattern removed approximately 2.27 differences declared as not
equal. It should be noted, however, that the actual amount of el iminated non-equal results
varied considerably due to differences in repetitiveness of the C C P s discovered among pairs
of R H E L versions. For instance, across a l l pairs of versions, we were able to find only
a single pattern that could remove more than five non-equal results by itself. The high
number of 15 el iminated non-equal functions between R H E L versions 8.1 and 8.2 can be
at t r ibuted precisely to this repetitive C C P . O n the other hand, the lower repetitiveness of
other patterns does not indicate any potential issues wi th the extension since—according to
our manual inspection—all of their occurrences were successfully identified by the pattern
matching procedure.

Addi t ional ly , the results reveal one rather interesting fact—after applying patterns,
the version comparison was consistently faster by a few seconds. Tha t may come as a
surprise since the proposed extension only introduces a new pattern matching analysis (i.e.,
the execution t ime should generally rise). However, by lowering the number of non-equal
functions, D I F F K E M P does not need to locate the corresponding differences i n the original
C source code nearly as often as before. Since difference localisat ion is one of the most
demanding operations performed by D I F F K E M P , the to ta l execution t ime may be lower
even when analysing patterns.

Based on the findings presented above, we were able to confirm that our extension
can help to improve results reported by D I F F K E M P (at least for the evaluated versions of
R H E L) since many false-positives can be l inked to a part icular C C P . Moreover, the results
indicate that generally, usage of patterns might have a slightly positive impact on runtime
performance (which is one of the most crucial factors related to D I F F K E M P) . Since the

40

proposed pattern representation is generic, these findings also suggest that the extension
should be broadly applicable to C projects other than the kernel of R H E L .

7.2 Regression Testing

To ensure that the changes incorporated into D I F F K E M P do not affect its output i n an
undesirable way, D I F F K E M P contains a set of 122 regression tests, a l l of which were passing
before the development of the extension proposed in this thesis. The tests focus on three
pairs of versions of the R H E L 7 kernel as well as a single pair of versions of the upstream
L i n u x kernel and are specified inside configuration files that, for each pair of versions,
contain a list of symbols (usually a subset of K A B I functions) that should be compared,
and the expected comparison results.

Since the regression tests rely on R H E L 7 (i.e., not the currently most recent version of
R H E L) , we decided not to extend the original tests w i t h pattern-related features. Instead,
we created a completely new set of function comparison tests, which are dedicated to the
verification of pattern matching and—similar ly to the experimental evaluation presented
in Section 7.1—target the K A B I functions in the three pairs of the most recently released
versions of R H E L . The tests, as well as the pattern matching extension itself, support a l l
L L V M versions from 5.0 to 11. Therefore, they can be used direct ly i n the continuous
integration of D I F F K E M P .

The set of regression tests for pattern matching consists of 16 new tests, each of which
requires a selected group of L L V M I R patterns to be loaded into the testing instance of
D I F F K E M P . W h e n a pattern matching test gets executed, it first loads the necessary
L L V M I R patterns. Afterwards, it compares the two K A B I functions that are specified in
the configuration file of the test. F ina l ly , the test checks whether the obtained equality
verdict is the same as the expected result. The patterns used for regression testing were
designed wi th the goal of analysing as many execution paths of the pattern matching
procedure as possible. Repet i t ive patterns were preferred as well . A n overview of the new
set of regression tests can be seen i n Table 7.2. A single regression test for R H E L versions
8.1 and 8.2 depends on two L L V M I R patterns. A l l other pattern matching tests only
require a single pattern.

Table 7.2: A n overview of the new set of regression tests dedicated to pattern matching
R H E L versions N u m b e r of tests N u m b e r of patterns A l l tests passed

8.0/8.1 6 6 yes
8.1/8.2 5 6 yes
8.2/8.3 5 5 yes

After fully incorporating the pattern matching extension into D I F F K E M P , we executed
al l available regression tests again. A l l 138 (122 original and 16 new) tests successfully
passed, suggesting that the extension works as intended on a l l of the selected K A B I func
tions and that the previous features of D I F F K E M P remain unaffected by its addit ion.

41

Chapter 8

Conclusion

In this thesis, we have analysed so-called code change patterns (C C P s) , i.e., patterns of
repetitive software modifications. Due to the presence of C C P s in low-level C code, includ
ing the L i n u x kernel, we have also proposed, designed, and implemented an extension of
D I F F K E M P (an analyser of semantic differences), capable of identifiying C C P s i n compared
programs. The extension is able to load a selected set of patterns, each of which must be
encoded i n L L V M I R as a pair of functions. The dynamical ly loaded patterns can then
be matched to the code from the compared programs, potential ly e l iminat ing unwanted
differences (e.g., false-positives) from the output of D I F F K E M P . The matching process is
based on an instruction-to-instruction comparison, which proceeds i n sequence according
to control flow.

The extension was evaluated on mult iple pairs of the most recent versions of the kernel
of R e d Hat Enterprise L inux , showing that w i th a proper set of patterns, it can eliminate a
number of non-equivalence results reported by D I F F K E M P . Do ing so should further decrease
the amount of work required to check semantic stabil i ty between different versions of a
program—especially since a substantial number of reported differences related to patterns
is composed of false-positives. The extension was also evaluated by mult iple regression
tests, which showed that its addi t ion d id not negatively impact other parts of D I F F K E M P .

Future work could improve the pattern matching extension and the related aspects of
D I F F K E M P i n several ways. For example, a more user-friendly and, ideally, fully automated
method of generating L L V M I R patterns might be introduced. Addi t ional ly , C C P s that
describe modifications of control flow, e.g., introductions of new condit ional statements,
could get supported (although doing so would require extensive changes i n the core parts
of D I F F K E M P) . Last , the extension could be improved by lowering the t ime complexity
of the matching algori thm, e.g., by adding more heuristics. However, since the conducted
experiments do not reveal any issues regarding t ime complexity, focusing on other aspects
of the extension might be better.

42

Bibliography

[1] A P I W A T T A N A P O N G , T . , O R S O , A . and H A R R O L D , M . J . A Differencing A l g o r i t h m for
Object-Oriented Programs. In: Proceedings of the 19th IEEE International
Conference on Automated Software Engineering. Los Alami tos , C A , U S A : I E E E
Computer Society, September 2004, p. 2-13. A S E '04. D O I :
10.1109/ASE.2004.1342719. I S B N 0-7695-2131-2.

[2] B A L L , T . The Concept of Dynamic Analys is . In: Proceedings of the 7th European
Software Engineering Conference Held Jointly with the 7th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. Ber l in ,
Heidelberg: Springer-Verlag, October 1999, vol . 24, no. 6, p. 216-234. E S E C / F S E - 7 .
D O I : 10.1145/318774.318944. I S B N 978-3-540-48166-9.

[3] B E N K I K I , O. , E V A N S , C . and N E T , I. dö t . Y A M L A i n ' t M a r k u p Language
(Y A M L ™) Version 1.2. [online]. J u l y 21, 2009. Revised 1. 10. 2009 [cit. 2021-05-02].
3rd edition. Available at: h t tp s : / / yaml .0rg / spec / l .2 / spec .h tml .

[4] C A R L E T T I , V . , F O G G I A , P . , S A G G E S E , A . and V E N T O , M . Introducing V F 3 : A New
A l g o r i t h m for Subgraph Isomorphism. In: F O G G I A , P . , L i u , C . - L . and V E N T O , M . ,
ed. Graph-Based Representations in Pattern Recognition. C h a m , Switzerland:
Springer International Publ i sh ing , M a y 2017, p. 128-139. L N C S 10310. I S B N
978-3-319-58961-9.

[5] C O N R A D i , T . Matching of Control- and Data-Flow Constructs in Disassembled Code.
Hamburg, Germany, 2015. Bachelor's thesis. Hamburg Universi ty of Technology,
Institute for Software Systems.

[6] C O N T E , D . , F O G G I A , P. , S A N S O N E , C . and V E N T O , M . T h i r t y Years O f G r a p h
Ma tch ing In Pa t te rn Recognit ion. International Journal of Pattern Recognition and
Artificial Intelligence. Singapore: W o r l d Scientific Publ i sh ing Company. M a y 2004,
vol . 18, p. 265-298. D O I : 10.1142/S0218001404003228. I S S N 0218-0014.

[7] F E R R A N T E , J . , O T T E N S T E I N , K . J . and W A R R E N , J . D . The P rogram Dependence
G r a p h and Its Use i n Opt imiza t ion . ACM Transactions on Programming Languages
and Systems. New York , N Y , U S A : Associa t ion for Comput ing Machinery. Ju ly
1987, vol . 9, no. 3, p. 319-349. D O I : 10.1145/24039.24041. I S S N 0164-0925.

[8] F O W L E R , M . Refactoring: Improving the Design of Existing Code. 2nd ed. Boston,
M A , U S A : Addison-Wesley Professional, November 2018. I S B N 978-0-13-475759-9.

[9] G A O , D . , R E I T E R , M . K . and S O N G , D . B i n H u n t : Automat ica l ly F i n d i n g Semantic
Differences i n B i n a r y Programs. In: C H E N , L . , R Y A N , M . D . and W A N G , G . ,

43

https://yaml.0rg/spec/l.2/spec.html

ed. Information and Communications Security. Ber l in , Heidelberg: Springer-Verlag,
October 2008, p. 238-255. I C I C S '08. D O I : 10.1007/978-3-540-88625-9_16. I S B N
978-3-540-88624-2.

[10] G A R R I D O , A . Software Refactoring Applied to C Programming Language.
Urbana-Champaign , U S A , 2000. Master 's thesis. Univers i ty of Illinois.

[11] K I E F E R , M . , K L E B A N O V , V . and U L B R I C H , M . Rela t ional P rogram Reasoning Using
Compi ler IR . Journal of Automated Reasoning. Ber l in , Heidelberg: Springer-Ver lag.
September 2017, vol . 60, no. 3, p. 337-363. D O I : 10.1007/sl0817-017-9433-5. I S S N
0168-7433.

[12] L A H I R I , S. K . , H A W B L I T Z E L , C , K A W A G U C H I , M . and R E B E L O , H . SymDiff: A
language-agnostic semantic diff tool for imperative programs. In: P A R T H A S A R A T H Y ,

M . and S E S H I A , S. A . , ed. Computer Aided Verification. Ber l in , Heidelberg:
Springer-Verlag, Ju ly 2012, p. 712-717. C A V '12. D O I :
10.1007/978-3-642-31424-7_54. I S B N 978-3-642-31423-0.

[13] L A H I R I , S. K . , V A S W A N I , K . and H O A R E , C . A . R . Differential Static Analysis :
Opportunit ies, Appl ica t ions , and Challenges. In: Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research. New York , N Y , U S A :
Associat ion for Compu t ing Machinery, November 2010, p. 201-204. F o S E R '10. D O I :
10.1145/1882362.1882405. I S B N 978-1-4503-0427-6.

[14] L A T T N E R , C . and A D V E , V . L L V M : A Compi la t ion Framework for Lifelong Program
Analys is & Transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization. Pa lo
A l t o , C A , U S A : I E E E Computer Society, M a r c h 2004, p. 75-86. C G O '04. D O I :
10.1109/CGO.2004.1281665. I S B N 0-7695-2102-9.

[15] L i u , C , Y A N G , J . , T A N , L . and H A F I Z , M . R 2 F i x : Automat ica l ly Generat ing B u g
Fixes from B u g Reports . In: Proceedings of the 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. Washington, D C , U S A :
I E E E Computer Society, M a r c h 2013, p. 282-291. I C S T '13. D O I :
10.1109/ICST.2013.24. I S B N 978-0-7695-4968-2.

[16] L L V M P R O J E C T . L L V M Language Reference Manua l . LLVM 11 Documentation
[online]. January 14, 2021. Revised 15. 1. 2021 [cit. 2021-01-21]. Available at:
h t t p s : / / r e l e a s e s . l l v m . o r g / 1 1 . 0 . 1 / d o c s / L a n g R e f . h t m l . Pa th : L L V M Home:
Documentat ion; Reference; L L V M Language Reference Manua l .

[17] M A L Í K , V . and V O J N A R , T . Automat ica l ly Checking Semantic Equivalence between
Versions of Large-Scale C Projects. In: Proceedings of the 2021 lJ^th IEEE
Conference on Software Testing, Verification and Validation. Por to de Galinhas,
B r a z i l : I E E E Computer Society, A p r i l 2021, p. 329-339. I C S T '21.

[18] M A R T I N E Z , M . , D U C H I E N , L . and M O N P E R R U S , M . Automat ica l ly Ex t rac t ing
Instances of Code Change Patterns wi th A S T Analys is . In: Proceedings of the 2013
IEEE International Conference on Software Maintenance. Washington, D C , U S A :
I E E E Computer Society, September 2013, p. 388-391. I C S M '13. D O I :
10.1109/ICSM.2013.54. I S B N 978-0-7695-4981-1.

44

https://releases.llvm.org/11.0.1/docs/LangRef

[19] M 0 L L E R , A . and S C H W A R T Z B A C H , M . I. Static Program Analysis [online]. Aarhus:
Department of Computer Science, Aarhus University, October 2018, revised 30. 11.
2020 [cit. 2021-16-01]. Available at: h t tp : / / cs .au .dk /~amoel le r / spa / .

[20] N E A M T I U , I., F O S T E R , J . S. and H I C K S , M . Understanding Source Code Evo lu t ion
Using Abst rac t Syntax Tree Match ing . In: Proceedings of the 2005 International
Workshop on Mining Software Repositories. New York , N Y , U S A : Associat ion for
Comput ing Machinery, M a y 2005, vol . 30, no. 4, p. 1-5. M S R '05. D O I :
10.1145/1083142.1083143. I S B N 1-59593-123-6.

[21] P A N , K . , K I M , S. and W H I T E H E A D , E . J . Toward an Understanding of B u g F i x
Patterns. Empirical Software Engineering. Norwel l , M A , U S A : Kluwer Academic
Publishers. June 2009, vol . 14, no. 3, p. 286-315. D O I : 10.1007/sl0664-008-9077-5.
I S S N 1382-3256.

[22] P E R S O N , S., D W Y E R , M . B . , E L B A U M , S. and P Ä S Ä R E A N U , C . S. Differential
Symbolic Execut ion . In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. New York , N Y , U S A :
Associat ion for Comput ing Machinery, November 2008, p. 226-237. S I G S O F T
' 0 8 / F S E - 1 6 . D O I : 10.1145/1453101.1453131. I S B N 978-1-59593-995-1.

[23] U L L M A N N , J . R . A n A l g o r i t h m for Subgraph Isomorphism. Journal of the ACM.
New York , N Y , U S A : Associa t ion for Comput ing Machinery. January 1976, vol . 23,
no. 1, p. 31-42. D O I : 10.1145/321921.321925. I S S N 0004-5411.

45

http://cs.au.dk/~amoeller/spa/

Appendix A

Contents of the Attached Medium

The most notable directories on the attached memory medium are the following:

• /diffkemp/

- /diffkemp/ - Source codes of D I F F K E M P .

- / t e s t s / - Automated tests used by D I F F K E M P .

• /experiments/ - Results of experiments and the patterns used to generate them.

• / tex / - DTgX source codes of this thesis.

• / i n i t . sh - Project ini t ia l isat ion script.

• /README.txt - Readme file containing the manual for compilat ion and execution.

. / x s i l l i 01_bp .pdf - Th is thesis in P D F .

The source codes of the pattern matching extension of D I F F K E M P proposed i n this thesis
can be found i n the /diffkemp/diffkemp/simpll directory. The modules that contain the
extension are listed below.

• InstPatternComparator - Ma tch ing of instruct ion patterns.

• PatternComparator - Top-level pattern matching controller.

• PatternSet - Set of loaded L L V M I R patterns.

• ValuePatternComparator - Ma tch ing of value patterns.

The regression tests created for the extension (as well as the original regression tests)
are located i n the / d i f fkemp/tests/regression directory. The relevant files and subdi
rectories are the following:

• patterns/ - Required L L V M I R patterns and pattern configuration files.

• rhel-80-81-patterns .yaml - Specification of tests for R H E L versions 8.0 and 8.1.

• rhel-81-82-patterns .yaml - Specification of tests for R H E L versions 8.1 and 8.2.

• rhel-82-83-patterns .yaml - Specification of tests for R H E L versions 8.2 and 8.3.

46

Appendix B

Compilation and Execution

This appendix describes how to compile the project and execute both the evaluation ex
periments and pattern matching regression tests. It assumes that the working directory
contains a l l files and directories from the attached memory medium (contents of which are
outlined in Append ix A) . It should also be noted that since mult iple kernels of R e d Hat
Enterprise L i n u x (R H E L) have to be downloaded, prepared, compiled and compared, the
whole process may be rather t ime-consuming and requires a large amount of disk space, as
well stable internet connection.

Compilation and Kernel Preparation

Firs t , the dependencies of D I F F K E M P and rhe l -kernel -get 1 have to be installed. These
are presented in the README.md files placed i n their respective public G i t H u b repositories.
To summarize, the following dependencies and packages are required:

• Kerne l bu i ld dependencies: gcc, make, bison, flex, l ibe l f -dev , l ibss l -dev .

• Arch iva t ion util i t ies: cpio, tar, xz, bzip2.

• C lang and L L V M for development (to run the experiments, versions 9, 10 or 11 should
be used; otherwise, versions 5, 6, 7 and 8 are also supported).

• CScope, C M a k e and the Nin ja bu i ld system.

• P y t h o n 3 for development and wi th C F F I .

• P y t h o n packages from diffkemp/requirements .txt.

• The progressbar P y t h o n package (can be installed automatical ly by the included
ini t ial isat ion script as well).

Second, the included i n i t . sh ini t ia l isat ion script can be used to download and prepare
the necessary versions of the kernel of R H E L 8 or, if not on an internal R e d Hat network, the
equivalent versions of the Cen tOS kernel. The script might require superuser privileges since
it needs to use pip. The kernel preparation can be performed by the following command:

. / i n i t . s h kernels
1rhel-kernel-get—an open-source tool for automatic downloading and preparing of Linux kernels—

https: / / gitliub.com/viktormalik/rhel-kernel-get.

47

http://gitliub.com/viktormalik/

After the necessary versions of the kernel of R H E L 8 are placed i n the d i f f kemp/kernel
directory, D I F F K E M P should be compiled into the d i f f kemp/bin directory using the same
ini t ial isat ion script:

. / i n i t . s h compile

Final ly , D I F F K E M P has to translate the K A B I s of the prepared kernel versions into
L L V M I R (i.e., it has to generate so-called kernel snapshots). The following command
should generate the required snapshots into the d i f f kemp/snapshots directory:

. / i n i t . s h snapshots

Since the compilat ion process is quite complicated and requires many dependencies,
D I F F K E M P also provides a Docker container image that contains a l l of the necessary pre
requisites. The image can be init ial ised by running the run-container. sh script from the
d i f fkemp/docker/dif fkemp-devel directory.

Experiments and Tests

Contrary to the ini t ia l isat ion phase, the commands for evaluation and regression testing
expect to be executed from the top-most d i f f kemp directory.

The evaluation experiments have to be run for each pair of the prepared kernel snap
shots separately. D u r i n g each experiment, the snapshots should be first compared without
patterns. Then , the comparison should be repeated wi th the corresponding pattern config
urat ion file. The following commands execute the experiments:

RHEL 8.0 vs 8.1 without patterns
bin/diffkemp compare snapshots/ l inux-4.18.0-80.el8 \
snapshots/l inux-4.18.0-147.el8 —report-stat —stdout

RHEL 8.0 vs 8.1 with patterns
bin/diffkemp compare snapshots/ l inux-4.18.0-80.el8 \
snapshots/l inux-4.18.0-147.el8 —report-stat —stdout \
—pattern . . /experiments/rhel-80-81-config.yaml

RHEL 8.1 vs 8.2 without patterns
bin/diffkemp compare snapshots/l inux-4.18.0-147.el8 \
snapshots/l inux-4.18.0-193.el8 —report-stat —stdout

RHEL 8.1 vs 8.2 with patterns
bin/diffkemp compare snapshots/l inux-4.18.0-147.el8 \
snapshots/l inux-4.18.0-193.el8 —report-stat —stdout \
—pattern . . /experiments/rhel-81-82-config.yaml

RHEL 8.2 vs 8.3 without patterns
bin/diffkemp compare snapshots/l inux-4.18.0-193.el8 \
snapshots/l inux-4.18.0-240.el8 —report-stat —stdout

RHEL 8.2 vs 8.3 with patterns
bin/diffkemp compare snapshots/l inux-4.18.0-193.el8 \
snapshots/l inux-4.18.0-240.el8 —report-stat —stdout \
—pattern . . /experiments/rhel-82-83-config.yaml

The pattern matching regression tests can be executed using the following command:

pytest tests -k patterns

18

