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Abstrakt

Tato vyzkumna préce se zamétuje na probadani fyzikalni interakce,
ktera vznika mezi lidskym operatorem a primyslovym vozikem
s pohonem (IPAC). Cilem vyzkumu je zlep$it spolupréci ¢lovéka
a IPAC tim, 7Ze se nalezne spravny mechanicky design a zpusob in-
teligentni kontroly za tcelem dosazeni takového stavu, ve kterém
vozik umi rozpoznat zamér operatora a je schopen nastavit svoje
parametry tak, aby doslo k lepsi interakci voziku s ¢lovékem a bylo
zajisténo pohodli a celkovy vykon.

V ramci této disertacni prace byl vyvinut prototyp priamyslového
voziku, ktery byl vybaven sadou senzorti na méreni parametri in-
terakce clovéka s vozikem. Tento vyvinuty primyslovy vozik je
schopen rozpoznat zamér clovéka na zakladé sledovani parametri
procesu interakce. Na zacatku této prace byla provedena analyza
soucasného stavu techniky a byly vybrany nejslibnéjsi kon-
trolni techniky. Analyzovali jsme soucasti prumyslového voziku
a vytvorili jsme kinematicky a dynamicky popis modelu. Tento
vyvinuty vozik ma dva stupné volnosti a byly pouzity regulatory
impedance tak, aby ovladaly oba stupné.

Presto je vsak tato disertacni prace hlavné zameérena na zpétnou
vazbu a pohodli ¢lovéka. Proto byl proveden soubor experimentii
s cilem odhadnout uc¢inky parametri proménné impedance, co se
tyce regulatoru translacnich a rotac¢nich pohybi. Za tcelem vy-
hodnoceni emocionalni zpétné vazby lidského operatora byl vyv-
inut objektivni parovy dotaznik. Ve vysledku jsme nasli vztah
mezi nezavislymi proménnymi, jako jsou napriklad parametry kom-
fortu obsluhy. Pomoci regresivni analyzy jsme zjistili, Ze ne vsechny
parametry regulatoru impedance maji vyznamny vliv na interakci.
Také jsme zjistili, Zze parametry impedance pro pohodlnou interakci
se lisi u riznych operatori. Zjistili jsme, Ze existuje vyznamna ko-
relace mezi pramérnou a standardni odchylkou absolutni hodnoty
interakéni sily a rychlosti voziku a pohodlim ¢lovéka.

Pomoci vysledkii regresivni analyzy jsme pouzili algoritmus
zesileného uceni, ktery mohl prepinat stavy reguldtori impedance
podle zaméru operatora. V ramci této diplomové prace je pred-
staven proces vyvoje voziku a metodologie vyzkumu.



Abstract

The research work is focused on the study of physical interaction
between the human-operator and an industrial power-assisted cart
(IPAC). The research goal is to improve the cooperation between
human and IPAC by finding a proper mechanical design and meth-
ods of intelligent control in order to achieve a state in which the
cart can recognize operator’s intention and adjust its parameters for
a better human-cart interaction, comfort and overall performance.

In the scope of the thesis a prototype of an industrial cart was devel-
oped and equipped with a set of sensors to measure the human-cart
interaction parameters. Developed industrial cart could recognize
human intention by observing interaction process parameters. In
the beginning of the work the analysis of the state of art was per-
formed and the most promising control techniques were selected.
We analyzed the components of the industrial cart and created the
kinematic and dynamic description of the model. The developed
cart has two degrees of freedom and impedance controllers were
implemented to manage both of these degrees.

Nevertheless, The thesis is mainly focused on human feedback and
comfort. Therefore, a set of experiments was performed to esti-
mate the effect of variable impedance parameters for the controller
of transnational and rotational motions. In order to evaluate emo-
tional feedback of the human-operator an objective pair-based ques-
tionnaire was developed. As a result, we found a relationship be-
tween independent variables such as impedance control parameters
and operator’s comfort experience. Using regression analysis we
found out that not all the parameters of the impedance controller
have a significant effect on the interaction. We also learned that
the impedance parameters for comfortable interaction are different
for different operators. We learned that there is a strong correlation
between the mean and the standard deviation of absolute value of
interaction force and cart speed and human comfort.

Using the regression analysis results we implemented the reinforce-
ment learning algorithm that could switch states of the impedance
controllers according to the operator’s intention. The process of
cart development and the research methodology is presented in the
scope of the thesis.
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1 Introduction

Nowadays, a huge amount of the wheeled devices exist around us. Industrial carts
and transporters are used in nearly every industry and warehouse. Over decades,
a number of studies have shown that the use of manual vehicles improves human
efficiency and decreases the stress level in manual handling tasks [1] ,[2], [3], [4].

In this work the complex approach to the study of human-mobile cart interaction
was applied. The topic itself brings together physics, control theory, the emotional
side of human being such as pleasure or comfort and reinforcement learning. This
work contributes to different levels from information collection to hardware devel-
opment and statistical analysis.

The thesis consists of twelve parts. The first part is introduction that describes
the thesis content and explains how to navigate through the work. In the second
part the problem statement is defined. By analysis of world statistics the weak
points material handling process were collected. Known risk factors, topic relevance
and demand as well as their root causes were evaluated. Current state of the art in
the area of human-cart interaction was described in the part three. In the fourth
part author’s motivation to carry out the research is formulated. To find out more
about the research objectives and design of the research project, please follow the
chapter for more details.

Methods used in this work were presented in chapter 6. Chapter 7 reviews
the process of the test platform development including the main requirement HW
design, SW implementation, description of cart kinematics and dynamics. Chapter
8 presents the workflow of human-operator study starting with the description of
the human motion and following description of applied methods for evaluation of
the operator’s feedback.

Chapter 9 describes the process of human - industrial cart interaction. It includes
analysis of raw data and experiment design. In the chapter 10 regression analysis of
the experiment results is performed in order to find dependencies between measured
physical values from industrial cart and emotional feedback from the operator.

Chapter 11 reinforcement learning demonstrates the implemented algorithm that
uses rating system based on actions, states and rewards. Based on the rewards the
learning system gets for the actions, algorithm could change the system state and
adjust impedance controllers according to the intentions of the operator.

Thesis is concluded by the collection of outcomes and technical solutions, high-
lights of the thesis, as well as suggestions for possible future research opportunities
and the area of human-industrial cart interaction.
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2 Problem statement

“If you define the problem
correctly, you almost have the
solution.”

Steve Jobs

In this chapter the statement of the problem is formulated and later resolved in
the workflow of the thesis. Starting with the world statistics overview, it would be
possible to estimate an effect of human-cart interaction problem. In the following
steps we collected the information about the factors that could affect the interaction
process and lead to injuries or hazards. Possible injuries and hazards are joined up in
a system. The problem that is addressed by the thesis is formulated in the following
pages.

Industrial cart manipulation is a physical activity of a human operator that
involves exertion of considerable force in order to overcome the forces that resist
motion and reach target position. When operator carries a loaded or empty indus-
trial cart, he generates force and transmits that force through a contact points to
the cart. Previous researchers [5] have identified a number of key factors that have
a great effect on the human — cart interaction process during manual pushing and
pulling tasks. The key factors for pushing/pulling task are shown in the figure 2.1.

Task Factors
= distance moved
- movement initiation force requiremants
- sustained motion force requirements
- direction and nature of movement
- duration of pushing / pulling task

Human Factors

* height

= weight

- age

= gender

- strength

* posture

= physiological
capacity

Cart / Equipment Factors
+ handhold height
+ handhold orientation
- handhold type
- caster / wheel design specifications
« stability
- size
* weight

Floor / Ground Factors
= surface characteristics
- slope
= contaminants

Figure 2.1: Key factors for pushing/pulling task from [5]

Several studies have reported a relationship between pushing/pulling and shoul-
der pain, such as increased shoulder pain from pushing/pulling wheeled equipment

16



[6]; pushing/pulling heavy weights [7] and pushing against a high handle [8].

A review and provided recommendations about maximum acceptable pushing
and pulling forces was developed by Garg et al. [9]. Cross-sectional epidemiological
studies show that cart manipulation activities are associated with shoulder and low-
back pain and musculoskeletal disorders [10] and [11]. Pushing and pulling of carts
and objects exposes workers to two types of hazards: stresses to the musculoskeletal
system from applied hand force, and (ii) accidents due to slipping or tripping [12].

Pushing, pulling, and maneuvering hand carts involves some common hazards
(overexertion). The most common injuries that result from hand cart operations
are:

o fingers and hands being caught in, on, or between the cart and other object
o toes, feet and lower legs being bumped into or crushed by the cart

o slips, trips, and falls, and strain injuries predominantly for the lower back,
shoulder, and arm muscles and joints

The size-weight illusion (SWI) describes the phenomena of underestimation or
overestimation of the required effort when moving or lifting the loads. SWI effect
often happens to inexperienced operators. However, even experienced users may
belong to the risk-prone group. Underestimation of SWI effect may lead to injures
described in the section 8.2.

2.1 Topic relevance

Manual cargo transportation tasks, many of which require pushing, pulling and
rotating are common in almost all industrial and warehouse environments. Nearly
half of all manual materials handling consists of pushing and pulling activities [14].
This work focuses specifically on carrying activities while using industrial power
assisted carts. These tasks expose workers to musculoskeletal stresses as well as other
related injuries, slipping and tripping hazards. Many big companies (Wanzl, TGW,
Siemens etc.) offering solutions for industrial and warehouse logistic are interested
in the research conducted to improve the productivity, efficiency and work safety.

Material handling exposes the worker to known risk factors for low-back disor-
der, such as lifting, bending, twisting, pulling, pushing and maintenance of static
postures.

If we take a look at the fatal and non-fatal accidents statistics in Europe in 2013
according to the Eurostat information that shown in the figure 2.2, it becomes clear
that first three activities are the most dangerous.

People who work in construction, transportation and manufacturing suffer from
many injures. Nearly 40% of all non fatal injures come from this three activities.
54% all deaths during working hours also happen in construction, transportation
and manufacturing. Risk factors related to transportation and manual handling
tasks are placed second in the graph 2.3 of fatal and non-fatal accidents at work.

17



‘Wounds and superficial injuries

Dislocations, sprains and strains

Concussion and internal injuries.

Bone fractures

Shock

Burng, scalds and frosibite

Muttiple injuries

Traumatic amputations (loss of body parts)

Poisoning and infections

Effects of sound, vibration and pressure

Drowning and asphyxiation

Effects of extreme temperatures, light and radiation

Other and unspecified

Note. Provisional

Figure 2.2: Fatal and non-fatal accidents statistics in Europe in 2013 [13]
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If the job satisfaction level is analyzed, it is demonstrated in figure 2.4 that
people in the countries that pay a great attention to human-robot interaction and
the use of robotic systems are happier and more satisfied with their jobs and lives.

Existing statistics do not reflect the importance of maneuvering with industrial
cart as work factors causing injury in the full scope, because the injuries fall into
different categories making them difficult to analyze.

19



3 State of art

“A state-of-the-art calculation
requires 100 hours of CPU time on
the state-of-the-art computer,
independent of the decade.”

Edward Teller

The objective of this chapter is to review the existing information on human —
mobile robot physical interaction including hazards, problems and existing solutions
in the area of psychophysics, ergonomics, physics and automation control theory.

When analyzing the state of the art in the field of human — robot physical inter-
action, it is necessary to consider the problem from the point of physical interaction
between the human-operator and industrial cart, and the methods of emotional
feedback evaluation during his interaction with the cart. This chapter shows the
most promising power assisted techniques developed by previous researchers, as well
as the works related to the evaluation of operator’s characteristics.

The subject of chapter one is the demonstration of existing theories and ap-
proaches in the field of power-assisted vehicles. This topic is quite relevant nowa-
days, as in the last few decades there have been a large number of studies related
to the physical human-robot interaction (between a man and a machine).

Currently, there are several ways to control the power assisted vehicle:

1. Impedance/Admittance control

2. Compliance control
3. Model Reference Adaptive Impedance Control (MRAIC)

4. First order lag controller

Last but not least, laws and standards like the DIN EN ISO 10218-2 [15], enable
and promote a closer interaction between humans and robots.

A great deal of research has been done on physiological and psychophysical as-
pects of materials handling. Ciriello and Snook [16],[17] have published a large data
base for designing lifting, lowering, pushing, pulling and carrying tasks. [18] study
the maximum comfortable forces for pushing and pulling a cart. In addition, there
have been many contributions to the human-robot physical interaction area related
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to impedance and compliance control [19], [20], force/motion impedance control
[21], model reference adaptive impedance control [22]. In parallel, adaptive control
of robotic manipulators has advanced considerably in recent decades to reduce de-
pendency on a precise knowledge of the dynamics of the robot and the environment.
This has led to works on adaptive impedance control [23], [24].

The previous study focused on design factors of carriers and their effects through
kinematical and biomechanical models. Despite their effort on the carrier design
improvement in terms of human factors, there are still various injuries because users’
preferences and reactions were not considered in the studies.

This dissertation gives a systematic approach in development of a unified, flexi-
ble and inexpensive device developed for comfortable human-robot interaction that
responds to the human operator expectations. The use of hand carts to transport
loads instead of carrying them saves workers a lot of effort. It decreases the risk of
overexertion injury in jobs that include manual materials handling.

3.1 Impedance/Admittance control

Theoretical concept of Impedance control was firstly introduced in 1985 by Professor
Neville Hogan from Massachusetts Institute of Technology (MIT) [20]. The objective
of impedance control is not to directly control position or force, but the relationship
between them. This allows to reduce or increase apparent stiffness, damping, or
mass depending on the task. The overall purpose of the impedance control creation
was to develop an approach to control a manipulated object that would be suitable
for a broad range of applications. General impedance control scheme is shown in
the figure 3.1.
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Figure 3.1: Block diagram of an impedance controller form [21]

Manipulation with the object of interest requires a physical interaction. In order
to fulfill the task requirements, the user chooses a desired impedance that could be
expressed by the following equation 3.1:

Md(l‘ — ZEd) + Bd($ — Cl?d) + Kd(l' - ZCd) — —fe (31)

Where My, By and Dy are positive constants that represent the desired iner-
tia, damping and stiffness, respectively. From the equation 3.1 we could find the
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acceleration reference described by 3.2:

Gy = dig + My~ fo 4+ Ba(i — 24) + Kq(z — 24)] (3.2)

For admittance control, the control force is a position-controller designed to track
the trajectory x = z4. Trajectory tracking is implemented using a PD controller
with positive gains K, and K:

fr = Kp(xd - CE) + Kgt (33)

The simplified impedance controller could be written in the following form:

My(i — @q) + Ba(d — 24) = — fe (3.4)

It was proved by previous researchers [24] that the spring component of the
impedance controller does not have a significant impact on the process of interaction.

The impedance controller is a virtual dynamic system. Along with the com-
pliance controller it allows to set any desired system dynamics. By changing the
settings of the virtual mass (Mass), a virtual damper (Damp) and virtual spring
component we can obtain the desired system response to the control impact. In
our work we will use two controllers. One controller will be used for translation
motion in support of pushing and pulling tasks. The second controller will be used
for rotational motion in order to support the human operator in the task of rotation.

3.2 Compliance control

The example of power — assisted control based on compliance controller was proposed
by A. Nagami et al [19]. The author expresses his opinion regarding the conditions
that should be taken into account by the operator when moving loads. The main
idea of his work is the implementation of the operator’s desired movement without
the influence of external disturbances.

Compliance controller makes it possible to perform the assist motion for the cart
operator smoothly and improve the stability of the cart motion. The compliant
controller with variable gain is shown in figure 3.2.

Fﬁ > C“

Figure 3.2: Block diagram of the compliant controller based on the applied force by
A. Nagami et al [19]

The variable compliant gain, and is adjusted so that the cart operator can move
the platform smoothly independently of the loaded object. The variable compliant
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gain formula is expressed by the equation 3.5:

C" = tan(a" F") (3.5)

where I - human force, a” - adjustable coefficient.
Compliance controller speed reference is listed in 3.6:

) 1
Uhref = W(CZ}FIZ - Dﬁvh) (36)

v
The parameters of the compliance controller are chosen empirically, which does
not allow to apply the developed solution for mobile carts with modified parameters

without prior resetting.

3.3 Model Reference Adaptive Impedance Control
(MRAIC)

Model Reference Adaptive Impedance Control (MRAIC) allows not only to track
the response of the reference model but also to make the dynamics of the closed-loop
system similar to the reference impedance model.

Ref, Tmpedance Model Zen e T
fl{.l’f ;
i 3 Eq. ()
xm,u xc’o’ xrlf =t | ’?
Model Reference
fu, Adaptive Impedance Torar Robot Human

> Controller Dynamics | X, X | + :
X y @5 f‘u_w operator

Eq.u4)\yr(35) Eq.(2)

0; Adaptation Law

Eq. (21} or (57)

Figure 3.3: The structure of the Model Reference Adaptive Impedance Controllers
[22]

The desired reference impedance model for the robot end-effector in Cartesian

coordinates is generally defined by the equation 3.7. The reference model has two
poles in each Cartesian coordinate direction as:

T = —>\1 + Z>\3 (37)

To — —)\2 + i)\g (38)

where for the reference model stability, constants A; and Ay should be positive.
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The model reference adaptive impedance controller for motor torque could be
written in the following form:

Tmotor — Mq’Ul + éqvg -+ GAq + Fq — JTfext (39)

where v; and vy are known vectors that do not contain any estimated parameters
of the robot’s dynamics.

af . c . . k., . 1 L.
vy =J ! (:peq—a(a:—xeq)—E(x—aﬁeq)—kgfext-k)\gQ:c—JJ I:rr) (3.10)

v = J i, (3.11)

Linearly parameterized equation in joint space has the following formula:

Tmotor = Ylél - JTfext (312)

where 6; -estimation of actual parameters vector, Y] - regressors matrix in joint
space.

Y10, = My, + Cqvy + Gy + F, (3.13)
The adaptation law is expressed by the equation 3.14:

A

0, =-TY"J 's (3.14)

where I' is symmetric positive definite matrix. s; is error dynamics.

S =0 — Teg (3.15)

where w, is the reference velocity.

By = Ty — M T (3.16)

7 is the reference model position error. This method gives very promising results.
However, it requires reference impedance model that is not available in our case due
to the human factor.

3.4 First order lag controller

Power-assisted control based on the first order lag controller and fuzzy logic was
introduced in the work of K. Terashima et al [25] called “Auto-tuning Control of
Power Assist System Based on the Estimation of Operator’s Skill Level for Forward
and Backward Driving of Omni-directional Wheelchair”. Block diagram of skill assist
system is shown in the figure 3.4.

In this work the author demonstrates his own developed methods to assess the
level of operator’s competence and configuration of a power — assisted controller
using fuzzy logic. It is demonstrated in the figure 3.5.
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Figure 3.4: Block diagram of skill assist system by K. Terashima et al [25]
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Figure 3.5: Skill level estimation K. Terashima et al [25]

The author mentions that the developed system has a difficulty with adding
support in rotational motion. Operator feels uncomfortable during the manipulation
and fluctuations in the support system when vibration is caused by the operator
force. For this reason, this paper considers the support for the backward and forward
movement. First-order lag controller is used in order to convert the force applied by
the operator’s into the motor speed setpoint. The controller formula:

] w0 0 | [f

k’U’l
wl=1 0 7 0 |k (3.17)
w 0 0 _kuz m

Tyzs+1

Performance index evaluating operator’s skill degree:

o= | 2> (0ni = 3) (3.18)

Skill level index:

UU$S
Sua(t) = Sva(e-1) + 1 (3.19)

S

where T — forgettable time.

The author conducted a comparative experiment for two people and has pro-
posed a formula to evaluate the skill of the operator. Later he conducted another
experiment for four people and confirmed the correct operation methods for the op-
erator’s evaluation and the regulator setting when moving backward and forward.
The implementation of presented methods for lateral, rotational and slant movement
was suggested for further research.
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3.5 Aspects of human comfort and expectations

Aspects of human comfort and expectations during human — industrial cart in-
teraction are poorly studied. There are no studies related to the human comfort
estimation during goods transportation process with help of IPAC. However, L. A.
Silva presents a cart built to move 500 kg net loads with friendly human perception
[26]. The complete system is shown in the figure 3.6.

Figure 3.6: Mechanical traction system for electrical load cart developed by L. A.
Silva et al [27]

—Electrical drive disabled
— Electrical drive enabled
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Figure 3.7: Human force with 120kg total load over a non-inclined surface [27]

In his study, the mechanical structure and power elements were designed to aid in
translational displacements of 500kg net load. The human command were measured
by a 1300N side effort compensated load cell.

The control system developed by L. A. Silva is based on emulated mechanical
impedance that generates the speed setpoint. The block diagram of the control
system is shown in the figure 3.9.
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Figure 3.8: Load cell mounting scheme for human force measurement [27]
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Figure 3.9: Control system block diagram purposed by L. A. Silva et al [27]

In order to evaluate the force controller performance, author compared the hu-
man force necessary to move the vehicle when the human aid system was enabled
or disabled. As shown in figure 3.7 the average human force necessary to move the
cart without help from the cooperative system is about 3.5 times greater than that
observed when the system is enabled.
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4 Motivation

In our work we would like to evaluate a new power assistance system with human
comfort estimation, which sets up operator’s pushing, pulling and rotational force
to the comfortable level and decreases the risk of injury. One of the highlighted
specific challenges of the research was to develop a cart that responds more flexibly,
robustly and efficiently to the everyday needs of workers and citizens in professional
or domestic environments.

The motivation for this research is to reduce the number of injuries of people who
work in the area of material handling by solving the problem of faulty interaction
between human-operator and industrial cart. It is proposed to establish the system
that recognizes and adapts to the human-operator intentions based on rewards and
losses received for the quality of interaction process.

One significant part of the research is to specify the requirements for the indus-
trial cart, develop the proper mechanical design and equip the cart with required set
of sensors. Another important part is to design the architecture of the control sys-
tem and implement the elements of artificial intelligence that affect the interaction
process.

The plan is to have the state, where the industrial cart responds to the human-
operator intention with required dynamics. As a result, human oriented study has
to be performed. It is necessary to find the correlation between emotional feedback
of the human operator and physical measures that could be obtained using sensors
of industrial cart.

In order to have a good overview on independent variables that affect human-
operator comfort, interaction process parameters have to be collected and evaluated
using regression analysis. Using questionnaire based technique the emotional feed-
back of the human operator will be obtained. The effect of found variables will be
evaluated with the group of experienced and inexperienced human-operators.

Based on this dependency the reward system will be defined. Using the methods
of artificial intelligence support system will adapt to the human operator intention
by switching between different states and getting rewards for each single action. In
the end the set of impedance controller parameters will be selected based on the
highest value of the interaction process quality for particular operator. It leads
to adaptation of industrial cart dynamics according to the intention of the human
operator.
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5 Goal and Objectives

The key point of the comfortable human — industrial cart physical interaction is the
question how to include physiological and psychophysical aspects of the human
operator in to the control system. Furthermore, as far as the author is aware, no
estimation criteria for operator’s comfort level and subjective expectations from the
interaction process have been developed to this day.

The research goal is to find proper mechanical design and methods of intelligent
control in order to achieve a state where an operator can manipulate a heavy loaded
industrial cart with minimum physical effort and ultimate comfort. Processing of
measured forces at the human-cart interface with recognition of the desired behavior
and following calculation of the control impact for electric drives is assumed.

In order to achieve the goal, the following objectives are apparent:

1. Collect the state of art information in the area of physical human-robot in-
teraction and the most promising existing algorithm that can be adapted to
deliver a new human-powered cart interaction control technique through lit-
erature analysis and practical investigations.

2. Prepare a mathematical description for dynamics and kinematics of the human
— cart physical interaction model.

3. Develop and assemble an experimental model of an industrial cart.

4. Perform a set of experiments including real people and estimate the human
feedback during the interaction process.

5. Analyze dynamic characteristics in order to search for criteria that directly or
indirectly determine a physical feeling of human comfort and his expectations
during the interaction with TPAC.

6. Synthesize the human estimation criteria that characterize the satisfaction and
comfort from the human- powered cart interaction process.

7. Develop the human — powered cart interaction control algorithm based on the
synthesized criteria.

8. Verify the work of purposed solution for the developed industrial cart.
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6 Methods

In this chapter we describe the way we would like to reach the goal and meet ob-
jectives defined in the beginning of the research. Theoretical, empirical and math-
ematical research methods are combined in this work in order to reach the goal
formulated in chapter 5. The methods and objectives sorted by the research type
and addressed by the current study are listed below.

Theoretical methods:

o Analysis and synthesis of existing information was performed to determine the
state of the art and current research gaps.

o Modeling was used for industrial cart simulation and development of kinematic
and dynamic models.

Empirical methods:

e Observation was used to detect interaction states and conditions that could
have a positive or negative effect on the feelings of the cart operator.

e Survey was used to collect the feedback from human operators after the inter-
action process.

o Experiment was used to collect the data of the interaction process with chang-
ing conditions such as impedance controller settings, loads and operators.

Mathematical methods:

o Statistics method - regression analysis was performed to evaluate the experi-
mental data and determine the dependency between human operator feedback
and measured parameters of the interaction process.

e Programming was used to implement control algorithm.
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7 Test platform development

7.1 Main requirements

This section describes the main requirements for a mobile platform that was created
for testing and verification of operator’s comfort. This developed model consists of
aluminum profile, the basis of the platform is set on the four cluster wheels. In the
center of the platform there are two leading wheels that function according to the
principle of differentiated drive.

The vehicle has been constructed to suit the following parameters:

e to be easy-assembled, cheap, rapid prototyping oriented
e to allow measurement of human-vehicle interaction characteristics
e to hold the maximum load mass in the range of 500 kg

« to attain the speed of the walking human in a range of 5 km/h

7.2 Hardware design

The developed platform has the characteristics shown in the table 7.1.

N Parameter Value

1 Length 1.255 [m]
2 Width 0.8 [m]

3 Height 1.275 [m]
4 Mass 53.535 [kg
5 Max. Load 500 [kg]

4 Max. Speed 5 [km/h]

Table 7.1: Cart parameters

System actuators are presented by two 350W motors MY 10167 connected to the
wheels via chain belts. The drive is shown in the figure 7.3.

In the back of the trolley there is a handle for the operator. The handle is con-
nected to the body of the trolley through the tensiometers, which are located on the
right and left side of the trolley. For detailed information please see the visual 7.2.
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Figure 7.1: Test platform [28]

N Parameter Value

1 Power 350 [W]

1 Voltage 24 [V]

2 Current 18 [A]

3 Rotor Resistance 1.3 [Ohm]
4 Rotor Inductance 0.001 [H]
5 kV 500 [kg]
4 Max. Speed 5 [km/h]

Table 7.2: Motor parameters

Parameter Value
Excitation 10 [Vdc]

Load +100 [KgF]
In Resist  378.3 [Ohm]
Out Resist  351.9 [Ohm]
Sensitivity = 2.9994 [mV/V]

T W N =2

Table 7.3: Tensiometer parameters

The leading wheels are connected to the drives by a chain belt. The drives are
accommodated with encoders. In the chain of anchors of each drive there is a current
Sensor.

Selected motors are equipped with z,, = 9 teeth pitch 12.7 roller. The desired lin-
ear speed of the powered cart vy = 5[km/h] = 1.389]m/s]. Powered wheel diameter
D,, = 200[mm] = 0.2[m]. Desired wheel rotational speed [rpm)]:

60 Va
™ w

Ty

= (60 -1.389)/(3.14 - 0.2) = 132.696 (7.1)
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Figure 7.2: Tensiometer location

Gear ratio:
T,

G, = ™ = 353/132.696 = 2.66 (7.2)

w

Teeth number of the wheel gear:

2 = Gy - 2y = 2.66 - 9 ~ 24 (7.3)

Final overview of the developed drive system is shown in the figure 7.3.

Figure 7.3: Drive system

Motor control is carried out with the help of a driver. The driver is controlled
by a controller of a lower level. The controller of a lower level collects and partly
processes the signals from peripheral areas (encoders, current sensors, tensiometers).
The lower level controller is also connected to the extra controller that is responsible
for collecting and processing the data from IMU (magnetometer, accelerometer and
gyroscope).

Detailed description of the technical characteristics could be found in the tech-
nical specifications [29], [30], [31], [32].

The second revision of the hardware consisted of HX711. Tensiometers are pro-
cessed by a pair of 24bit analog-to-digital converters HX711.

Inertia measurement unit is presented by HMC5983 and MPU6050. HMC5983
is a temperature compensated three-axis integrated circuit magnetometer and
MPUG6050 is combining a MEMS 3-axis gyroscope and a 3-axis accelerometer.
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Figure 7.6: Inertial measurement unit (IMU)
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7.3 Software development

In order to extend the number of ready-made modules and to decrease the time spent
on programming and manuals, it was decided to merge libraries from ARDUINO
open-source community with Matlab Simulink. To use the original Wiring language
of ARDUINO with RPi, the Wiring Pi library was developed. To ensure that the
Matlab compiler could use the library functions we need to add the link to the
compiler settings that emerge via Xmakefilesetup.
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Figure 7.7: Developed Matlab blocks

7.4 Cart kinematics
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The vehicle used in this paper has two driving wheels and four passive casters. The
IPAC model used in this paper is shown in the figure 7.8. To simplify the kinematics

model of the vehicle, it is assumed that casters are not active.

YA

Xo

Figure 7.8: Cart kinematics
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Parameters shown in the figure 7.8 have the following description: Wy — distance
between two sensors; W, — distance between two wheels; Liv — distance between
sensors installation line and wheels installation line; ,, L, ,, R — wheels rotation angles;
— direction angle; xg , yo — position of the vehicle in the world coordinates; Cy —
the middle point between the two powered wheels. Mathematical description of the
control object is presented below.

Relation for linear and angular velocity:

v=wR (7.4)

Relation for linear and angular velocity:

Dy

UZ cart — T (wwheel_left + wwheel_right) (75)

Velocity at Co(xg, yo) point is described by the equations 39 and 40 (Conversion
from polar to Cartesian coordinate system).

Lo = VS cart COS(0)) (7.6)

Yo = VS cart Sln(¢) (77)

Dependency of powered cart angular velocity from angular velocity of the wheel:

Figure 7.9: Angular speed conversion

Wheel linear velocity:
U= wcartL = wwheelR (78)

Cart angular velocity generated by one wheel:

R
Weart = Wwheel Z (79)
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Cart angular velocity at the point Cl:

Dy,
WS cart = W

w

: (wwheel_left - wwheel_right) (710)

Matrix form of the equations 7.5 and 7.9 is shown in 7.10. Control vec-
tor is defined as X = [vcart_sum,wcm_sum]T, rotational speeds vector is defined
as 0 = [wwheel_left7 wwheel_m’ght]T-

Dy Dy
¥ — {Uanrt} _ [T N
= = | Dw _ Dy

Wy cart Wy 2Wa
By differentiating the equation 7.11 we obtain an equation for the total linear

and angular acceleration:

:| % |:wwheel_left:| = Joeo - 9 (711)

wwheel_right

X = Juco - 0+ Juo - 0 (7.12)

The second term on the right side has a insignificant impact on the acceleration
value compared to the first term and could be neglected.

X = Jyo- 0 (7.13)

In order to obtain equation for calculating the wheel angular accelerations, we

need to find the pseudo-inverse matrix J,_1*.

0=J. X (7.14)
5wheel_left _ & . 1 % Aeart__sum 715
|:€wheel_right:| 4 |:]- - WJQL Ecart__sum ( . )

Based on the kinematic model, we can determine the position and direction of
movement of the industrial trolley from the rotation speed of the left and right
wheels. This dependence is presented in the form of MATLAB diagrams in the
figure 7.10.
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ﬂ s :
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speedAngWright

Figure 7.10: Industrial cart kinematics

The angular velocity of the wheels could be derived based on the linear and
angular velocity of the cart according to the equations 7.16 and 7.17.
2/Ucart + Wwwcart

Dy,

(7.16)

Wapheel_left =
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o 2'Ucart - Wwwcart
Weheel_right = D (717)
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Figure 7.11: Matlab diagram for velocity conversion

7.5 Human operator interface

As it was mentioned in the chapter 7.2 the cart is equipped with two tensiometers.
They are shown in the figure 7.12. The handle is connected to the cart body through
them. These tensiometeres are used to measure interaction forces and torques for
transnational and rotational motions correspondingly. They can measure the force
along one axis (push and pull motions), but it allows operator to control all DOFs
because the cart has only 2DOF (one rotational and one translational degree). The
operator plans a handling task based on his own desires and expectations as well
as information from his sense organs (vestibular and vision systems), and provides
the information about the motion to the cart by acting on the handle. Forces de-
tected on the left and right sensors are resolved into translational force and rotational
torque in the cart coordinates.

Transnational force for the motion in linear direction could be written as a simple
sum of the measured force values as described by the equation 7.18.

Fyp = Fhr + Fiu (7.18)

Equation 7.19 presents a rotational torque for the motion around the axis that
goes vertically through the central point Cy. See figure 7.8 for more details.

Ts~p = (For + Fu) x /(W/2)2 + (L/2)? (7.19)

where W is the width of the cart and L is the cart length. Values for cart length
and width could be found in table 7.1.

38



Figure 7.12: Handlebar for pHRI

7.6 Cart dynamics

In order to build the dynamic model we will use the equations of Newton-Euler,
describing the system from the point of view of all forces and moments that influence
the system. This method is a direct interpretation of Newton’s Second law.

Let J be the moment of inertia towards the Central vertical axis and m is the
mass of the industrial trolley with the differential drives Using Lagrange’s equations
we obtain the following mathematical model:

m 0 0 T F, cost 0 P
0 m 0] x (g|=|F|=|sinf 0] x {Ml (7.20)
0 0 J 4 M, 0 1 o

Given the strength of the Coriolis and centripetal acceleration we can write this
model in the following form:

mi—m-vy - w=F, (7.21)

my —m- v, - w = F, (7.22)
dw

J— =M, 7.23

LIRS (7.23)

where F, = I - sinf, I, = I - cos0), v, = v - sinf), v, = v - cosh, v = /v + v2

Dynamic model of the industrial cart is shown in the figure 7.13. DC motors are
widely used in power assisted devices and are one of the major actuators used in
mobile robotics. We implement the model of the drive to create detailed dynamic
models of the system. A control system block diagram of the engine is shown in the
figure 7.14. After the macroblocks of the main elements of the model are created,

we obtain a complete Simulink model of an industrial cart. The model is shown in
the figure 7.15.
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Figure 7.13: Industrial cart kinematics

Figure 7.14: DC motor model in Matlab Simulink
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Figure 7.15: Industrial cart model developed in Matlab Simulink
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7.7 Impedance control

Immpedance control (or admittance control) was developed by N. Hogan [20]. It
uses two basic laws of physics such as Newton’s second law (see eq. 7.24) and
D’Alembert’s law (see eq. 7.25). It can be described as a second order dynamic
system. Figure 7.16 represents the impedance control scheme using a mass-damper-
spring system. In this relationship, impedance is the passive reaction that a robot
performs when it is disturbed by external forces. In contrast, admittance control
is the active reaction of the robot to such external forces. The "spring coefficient”
K defines the force output for a tension or compression of the spring produced by
a force F and the "damping coefficient” D is the force output for a velocity input of
the displacement x, "mass coeflicient” describing the inertia of the system.

> Fpt=ma (7.24)
Y F= (7.25)

Translational inertia-spring- Rotational inertia-spring-
damper system damper system

Figure 7.16: Impedance controller representation
Equation 7.26 represent impedance controller for translational motion.
Mi(t) + Di(t) + Kz(t) = —F(t) (7.26)
Equation 7.27 represent impedance controller for rotational motion.

Ja(t) + Da(t) + Ka(t) = —=T(t) (7.27)

7.8 Low-level control

In the subsection low-level control the control scheme the of developed powered
cart was described. It explains the process of motor setpoints generation based on
human-operator intention.

Interaction forces between human-operator and industrial cart are measured by
two load cells. Analog values of the forces are converted to the digital format using
HX711 24-bit ADCs and sent to the low-level controller (Arduino Mega board)
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over SPI. Using equations 7.18 and 7.19 translation force and rotational torque are
calculated based on the forces measured from the right and left side of the handle
bar. Calculated values are supplied to the corresponding input of transnational and
rotational impedance controller. The setpoints for linear and angular velocities of
the cart were obtained at the outputs of impedance controllers. Based on the linear
and angular velocities the values for angular velocities of the left and right wheels
were calculated using equations 7.16 and 7.17. At the last stage the setpoints were
processed by the PID controllers of the corresponding wheels. Motors are controlled
by the drive unit (MOD-035) using PWM and direction control. Information about
actual position and velocity of the wheels is received from the magnetic rotary
encoders (AS5040). The parameters of impedance controllers 7.26 and 7.27 could
be changed remotely over the serial port of Arduino Mega board.
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Figure 7.17: Low-level control scheme

Additionally, we had one more micro-controller (Arduino Pro Mini) that was con-
nected to IMU. Using the serial port the IMU controller passed the data through the
low-level controller to the high-level controller. Actual information about interaction
process was recorded to an SD cart with the time stamp.
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8 Human operator study

8.1 Research workflow development

“That’s one small step for man,
one giant leap for mankind”

Neil Armstrong

In order to find a better solution for human-robot interaction we should un-
derstand the nature of human motion, individual motivation and stimulus. This
chapter starts with the explanation of the human step nature.

There are two most famous theories about nature of human gait popular in our
time. The first theory proposed by Saunders et al. defines six major determinants
of gait [33]. It states that the six major determinants are pelvic rotation, pelvic tilt,
knee and hip flexion, knee and ankle interaction, and lateral pelvic displacement.
The serial observations of irregularities in these determinants provide insight into
the individual variation and a dynamic assessment of normal and pathological step.

The second theory of human walking describes the locomotion by using an in-
verted pendulum model. It states that the stance leg behaves like an inverted pendu-
lum, allowing for economical gait. The advantage of a pendulum is that it conserves
mechanical energy and thus requires no mechanical work to produce motion along
an arc. Observations of mechanical energy exchange and leg-length change during
a single-limb support provide a strong indication of pendulum-like behavior. In the
figure 8.1 the process of human walking is shown.

CoM
velocity

collision

Figure 8.1: Process of the dynamic walking [34]

Another important factor that plays a great role in human - cart interaction
is mechanical impedance of the human arm. It describes the motion ability of the
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upper limb. This interaction imposes forces on the hand and can also destabilize
motion. Alternatively, humans have excellent capabilities to manipulate objects.
This means that the central nervous system (CNS) is able to adapt to various task
dynamics. For instance, one may have difficulty opening a door for the first time
due to an unknown friction. However, after many trials the appropriate force to be
exerted will be learned, and one will open the same door without difficulty and even
without thinking about it. This situation may be regarded as impedance control [20]
which can been described as an effective strategy of the nervous system to deal with
kinematic variability due to neuromuscular noise and environmental perturbations.
Biologically, muscle comes with two sections which are thick (myosin) filaments
and thin (actin). This part is shown in figure 8.1. Myosin filaments slide against
actin which tend to shorten the activated muscle. Neural activation signals are
received when the muscle is activated. That signal consists of several spikes. The
amount of force it produces depends on the frequency and magnitude of spikes.

Myofibril

Sarcoplasmic reticulum
Nucleus

Bulging biceps
Myasin
Muscle

f
Actin thin filament Epimysium

Mitachondrion

Muscle fibers

Perimysium

Fascicle

Figure 8.2: Myosin and actin filaments in a muscle [35]

In addition, muscle tension is counted on both length and velocity. Experiment
was made by Burdet [36] to measure stiffness (K) and damping (B) for a cat’s
muscle. As a result, when the length is equal to half of the initial length, the muscle
cannot generate the force and the same is right for the velocity. However, the force
increases as length or velocity increases. Hence, the impedance of a single muscle
changes with the force it generates.

From the aspect of biomechanics systems, the previous study has introduced
two types of muscle models which are Maxwell model and Voight model. As it can
be seen from the figure 8.3, the Maxwell model consists of a spring in series with
a damper while the Voight model has the spring in parallel with a damper. From
a prospective of the input it shows that force step input and displacement step input
tests from Voight’s model is more realistic than Maxwell model [37]. Even though
the Voight’s model is more realistic, the limitation of both models is that none of
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them is capable of modeling the active contractile property of a muscle. After that
many researchers came up with a new modeling based on Voight model in order to
predict the mechanical impedance of a human’s upper limb.

A Maxwel

Figure 8.3: Maxwell (A) and Voight (B) muscle models

Mechanical impedance modeling is an important stage in order to determine the
quantitative assessment of the system. Each element represents the function of the
real human arm. In this section, different modalities will be elaborated. It can
be represented in two ways which are the structure model (See figure 8.4) and the
mathematical model.

I' A
l

Figure 8.4: Mechanical impedance of the human arm. Structural model [37]. Arm
illustration is adopted from [35]

Previous studies had used the MSD systems to a great extent in order to represent
a mechanical impedance of human arm [37]-[38]. The mass-spring-damper model
is shown in figure 8.4. This is the second order dynamic system where m(t), b.(t),
and k(t) are the impedance parameters which denote the mass, damping factor,
and stiffness of the arm, respectively; and f.(¢) representing the force exerted to
the arm. Researchers have done a number of experiments on mechanical impedance
of a human arm. Several independent mathematical models are proposed for the
representation of the human arm movement. Recently, the MSD model has been
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improved to investigate mechanical impedance during the movement of the arm [37].
They have included muscle activation as a dependent parameter [39]. However,
this model was developed assuming that the system has simple joints and does
not consider complex muscle mechanics and geometry because when dealing with
muscle it is not easy as the shape is very irregular. As reported by Speich et al.
[40] and Rahman et al. [41] a model with five parameters with additional spring
and damper to better approximate the dynamics systems was developed. Then,
Wang et al. [42] studied the mechanical impedance during maintained posture and
reaching movements in order to analyze human impedance changes depending on
the situation. Lagrangian approach is applied to develop the mathematical model of
human arm during movement. Tanaka et al.[43] proposed an active-steering control
method that uses human hand impedance properties.

8.2 Human Factors, Hazards and Limitations

The industrial cart manipulation is mainly performed by pulling backward and push-
ing forward with two-hands. Pushing is preferable to pulling for several reasons.
Firstly, operator’s feet are often “run over” by the cart when pulling. It becomes
even more dangerous in case of powered vehicles. If a person pulls while facing in
the direction of travel, the arm is stretched behind the body, placing the shoulder
and the back in a mechanically awkward position, increasing the risk of injury. Al-
ternatively, pulling while walking backwards is a recipe for an accident, because the
person is unable to view the path of travel. Possible poses of the human-operator
during manipulation with industrial cart are shown in the figure 8.5.

Figure 8.5: Possible poses of the human operator during manipulation with the cart

The research of Lee [44] demonstrates that people can usually exert higher push
forces than pull forces. In some situations, pulling may be the only viable means of
movement, but such situations should be avoided wherever possible, and minimized
when pulling is necessary.

Because of the complex nature of body motion during pushing and pulling, no
numerical standard has yet been developed that can be directly applied in the in-
dustry.

The amount of force that a worker can develop in case of transnational and
rotational motion depends on many factors. The list of factors could be found
below:
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e body weight and strength

o height of force application

 direction of force application

« distance of force application from the body

« different positions

 posture (bending forward or leaning backward)

o friction coefficient (amount of friction or grip between floors and shoes)
o duration and distance of push or pull

Table 8.1 contains the upper force limits for a variety of pushing and pulling
tasks. They indicate the amount of force that a worker should not overcome. It
is important to be aware that the forces in the tables are not the same as the weight
of objects being pushed and pulled. This difference means that we cannot use these
upper force limits as recommendations for weight limits that can be pushed or pulled
in the workplace.

The values in Table 8.1 show the upper limits of forces for horizontal pushing
and pulling. These limits should not be exceeded in work situations. In fact, it
is better and safer if pushing and pulling tasks require lower forces, particularly,
where the task requires:

e pushing or pulling an object when the hands must be above the shoulder or
below the waist level

« exerting a force for longer than 5 seconds

o exerting a force at an angle not directly in front of the body, e.g., not "straight

OH”

Higher forces (up to 675N or about 165 1bf or 75 Kgf) can be developed where
a worker can support his body (or feet) against a firm structure.

** Units of force are: Newton (N), kilogram-force (kgf), pound-force (Ibf); 10N
is about the same as 1 Kgf or 2 Ibf. The values in each unit system - Newtons,
kilogram force and pound force, respectively - are provided in the table because all
are used in the literature and on instruments, depending on the country of origin.
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Condition Force Examples of Activities
limit(Newtons,
Ibf, kgf)**
A. Standing
1.Whole  body 225 N (50 Ibf or Truck and cart handling. Moving
involved 23 kgf) equipment on wheels or casters.
2.Primary arm 110 N (24 Ibf or Leaning over an obstacle to move
and shoulder 11 kgf) an object. Pushing an object at
muscles,  arms or above shoulder height.

fully extended

B. Kneeling

188 N (42 Ibf or
21 kgf)

Removing or replacing a compo-
nent from equipment as in main-

tenance work. Handling in con-
fined work areas such as tunnels
or large conduits.

Operating a vertical lever, such
as a floor shift on heavy equip-
ment. Moving trays or a product
on and off conveyors.

C. Seated 130 N (29 Ibf or

13 kgf)

Table 8.1: Recommended Upper Force Limits for Horizontal Pushing and Pulling
[45]

8.3 Emotional feedback

The goal of this chapter is to describe the test methods to estimate operator’s
individual perception in response to the motion of the powered vehicle.

In our study emotional feedback of the human operator is very important and we
had to find the way of evaluating subjective human emotions. One way to estimate
the operator’s feedback is to use the adjective measures in the rating scale method.

This method has been used for measuring how people feel about various stimulus
such as sounds, colors or smells. Another application area of this method was
ergonomics. It allows to evaluate emotions about the task environment, machine
and robot motion.

The method is known as an evaluation tool based on several step-wise measures
in which adjective pairs are located at the opposite poles. In the experiment, the
person evaluates his emotion according to the adjective pairs. The goal of this
measure is to find suitable impedance controller parameters that allow to perform
comfort interaction based on subjective feeling.

Therefore, we selected six adjective pairs and rating scale in order to perform
human factor analysis. Used rating scale is shown in the figure 8.3. Selected adjective
pairs have the following statements:

1. ”comfortable — uncomfortable”: This adjective pair should express the
human operator feelings in terms of interaction comfort. It describes how
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precisely the dynamics of the powered cart follows the desired motion of the
human operator.

2. "reliable — unreliable”: The adjective pair characterizes trust of the human
operator in relation to the powered cart. It means that action of the powered
cart fits to the expectations of the human operator.

3. ”controllable — uncontrollable”: We work with the impedance controller
for two degrees of freedom. A change or adaptation of the impedance con-
troller parameters affects the ability of the human to control the system. This
adjective pair should give the feedback about the controller settings.

4. ”pleasant — unpleasant”: This adjective pair presents the motivation (will-
ingness) of the human operator to use the powered cart.

5. 7satisfactory — unsatisfying”: Human estimation of the interaction task
results are characterized by this adjective pair.

6. ’light — heavy”: This adjective pair characterizes physical abilities of the
human operator in the load handling.

ﬂ

3 2 1 0 -1 -2 -3
neutral
l I— a little —J ’
quite
very

Figure 8.6: Rating scale for the emotional feedback of the human

The evaluation procedure was executed as follows. The operator expressed his
feelings by choosing one of seven options in between the opposite poles in each
adjective pair according to his/her impression about the controller settings. Given
the example of the procedure outcome we could see the test sheet with the following
answers: "The controller’s setting is neither comfortable, a little reliable, neither
controllable, a little pleasant, very light”. "Positive” feedback is defined as the mean
value located in the left position and "Negative” feedback is defined as the mean
value located in the right.
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8.4 Physical feedback

“The thesis target is to reach the
state where the operator
manipulates the heavy loaded cart
with minimal physical effort
(pleasant and comfortable
interaction). Iterative adjustment
of controller parameters with
continuous force measurement on
the operator-cart interface and
following recognition of the
human-operator intention

is expected.”

doc. Ing. Petr Tima, CSc.

This chapter is devoted to the measurement methods of biological features and
markers that help to define the health conditions of a person depending on the
interaction between the human operator and the industrial cart.

Due to the fact that our goal was to find criteria for human interaction comfort
in real-time we used a Borg scale [46] shown in the table 8.2 as a tool for operator’s
comfort measurement.

Score  Description

6

7 Very, very light
8

9 Very light

10

11 Fairly light

12

13 Somewhat hard
14

15 Hard

16

17 Very hard

18

19 Very, very hard
20

Table 8.2: Borg scale (rate per exertion)

The Borg scale [46] was originally developed by the scientist Gunnar Borg who
rated the scale from 6 to 20, which was basically built around a heart rate range.
This scale correlates with a person’s heart rate or how hard they feel they are
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working. We use Borg scales in our experiments to evaluate biological markers of
the human - cart interaction. The scales are shown in tables 8.2. In addition to Borg
scale we used No.1 F4 TP68 Waterproof Smartband for the heart rate measurement.
The device is shown in the figure 8.7.

Figure 8.7: No.1 F4 IP68 Waterproof Smartband

Smart band in the figure 8.7 was used to carry out the measurement. The
band has the set of functions presented in the figure 8.8. We are interested in
such biomarkers as pulse, blood pressure, saturation and the number of steps made.
The standard use of the band involves the connection to the mobile phone to read
the statistical data through the bluetooth interface. The statistics it receives can
be visualized in a certain application. The idea was to replace the mobile phone
application backend with a custom program, so that it could receive the information
on the condition of biological markers and forward this information to the high-level
controller.

b & VW A D A G B

Blood pressure  Blood oxygen Heartrate  Calorie u Air-pressure  Altimeter hf’:}’:(’{‘:r’;t Auto-wake-up Touch screen
C G = - O
., ‘ Pl L
Incoming calls Message Sedentary Sleep
remin?ier notifications ~ SPortmode  eminder  monitor  Veather E:mg:: Stopwatch Alarm  IP68 waterproof

Figure 8.8: List of features

As a higher level controller a microcomputer Raspberry Pi, version 4 was used.
An application called "GATTacker” was used as a tool to perform the task in order to
intercept bluetooth packages and carry out the data analysis. As a result, package
structure was identified. This information allowed me to create a Python script
which could connect to the smart band from the high-level controller over bluetooth.
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The script was able to read the pulse, blood pressure and blood oxygen saturation
in real time. The tool chain described above allowed me to follow the biomarkers of
a human operator during the interaction process with a powered industrial cart. To
measure the pulse, blood pressure, and saturation the band used the sensor based
on the photoplethysmogram principle.

A photoplethysmogram (PPG) is an optically obtained plethysmogram that can
be used to detect blood volume changes in the microvascular bed of tissue. A PPG
is often obtained by using a pulse oximeter which illuminates the skin and measures
changes in light absorption.[47] A conventional pulse oximeter monitors the perfusion
of blood to the dermis and subcutaneous tissue of the skin.

With each cardiac cycle the heart pumps blood to the periphery. Even though
this pressure pulse is somewhat damped by the time it reaches the skin, it is enough
to distend the arteries and arterioles in the subcutaneous tissue. If the pulse oximeter
is attached without compressing the skin, a pressure pulse can also be seen from the
venous plexus, as a small secondary peak.

The change in volume caused by the pressure pulse is detected by illuminating
the skin with the light from a light-emitting diode (LED) and then measuring the
amount of light either transmitted or reflected to a photodiode. [48] Each cardiac
cycle appears as a peak, as seen in the figure. Because blood flow to the skin can
be modulated by multiple other physiological systems, the PPG can also be used to
monitor breathing, hypovolemia, and other circulatory conditions. [49] Additionally,
the shape of the PPG waveform differs from subject to subject, and varies with the
location and manner in which the pulse oximeter is attached.

Smart band uses an accelerometer MC3413 to detect the number of steps. The
parameters of the sensors are demonstrated in the data sheet [50].

In order to design the adaptive interaction controller we have to find a depen-
dency between the emotional feedback of the human operator and a measurable
physical equivalent. In our case we use the following physical measures per sample
time period Tygmpre = 60s:

1. Mean and standard deviation of absolute interaction force value -
mean(lﬂnteructionn and SD(lﬂnter(zctionl)

2. Mean and standard deviation of absolute interaction torque value -
mean(lTinteractionl) and SD(|Tinteraction|)

3. Mean and standard deviation of absolute linear speed of the cart - mean(|veet|)
and SD(|veare)

4. Mean and standard deviation of absolute angular speed of the cart -
mean(|weart|) and SD(|weart])

5. Heart rate
6. Blood pressure

7. Oxygen saturation
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9 Human-cart interaction

9.1 Procedure description

In this chapter the process of human — industrial power assisted cart interaction
is described. In the process of moving goods by a human operator with the help of
the powered cart on the surface, we have the interaction between cart, human and
the environment. Figure 9.1 depicts the diagram of interconnections in human —
industrial cart interaction.

"
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Force Kﬁuce Velacity Cant
converter ller converter dynamics
Cart

kinematics

HW_LF E_

Human

estimation

Figure 9.1: Interconnections in human — industrial cart interaction

The task of moving cargo can be divided into five stages. Task scheme is shown
in the figure 9.2. The first stage begins with the person’s intention to carry out the
act of moving goods using an industrial cart. The person has knowledge about the
start and end points of the trajectory, the state of the environment. The operator
can estimate the force needed to be applied in order to move the load and the
powered cart from the start to the end points of the trajectory. He also may or may
not have experience of interaction with a powered industrial cart.

The second stage is the initial impact. This stage starts the moment human
hands touch a mobile cart. The cart is at rest at the point F}, which is taken
as a point of origin. We take the time of the first touch as the task starting time in
the system of a mobile cart. From the point of view of the cart, the force applied
by the human is a stochastic variable, since the cart has no information about the
real world (knowledge about the weight of the load, the type of surface, the position
in space and the desires of a man). Operator’s force is divided into rotational
and translational components. Then, the desired dynamics of the interaction is set

93



by relevant impedance controllers. On the output of the impedance controller we
obtain the desired linear and angular velocity. Obtained values become a reference
setpoints for the differential drive system. The motors run in order to reach the
reference value and support the motion.

Py
0
“~~ - trajectory D - load
-f robot 3 - human
.Pk —  trajectory point

Figure 9.2: Moving cargo task

The third stage — motion task. During this phase the process is about the
accumulation of interaction experience. Human-operator and cart find out the in-
formation about the response of the system (the change in the interaction force,
acceleration, speed, distance, heart rate, oxygen saturation and blood pressure). In
case of a mismatch of the expected response of the system obtained by a person
during the first phase with the reaction of the real system, the operator estimates
the correction of the applied force according to the new data and adapts to them.

The fourth phase is a positioning task. The man performs the application of
forces to the cart in order to stop the motion and reach the desired position. The
fifth stage is the end of the interaction. This stage comes as soon as the person ceases
to interact with the industrial cart. The point Py is the end of the interaction and
the endpoint of the path. The operator achieved his goal. The cart can perform
analysis of the completed tasks.

In the phase of the positioning task the distances to the target and the actual
traversed path are not equal. Over-reaching the target is influenced by the support
of a power assistance system. In this case, the operator must perform additional
manipulations to return to the target point. If power assistance is insufficient and
cannot go beyond the total value of friction forces that resist to motion, then the
distance to the target and the actual traversed path will be equal, but the operator
spends additional effort to overcome the friction forces.
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9.2 Raw data analysis and feature detection

“Measurement is the first step that
leads to control and eventually to
improvement. If you can’t measure
something, you can’t understand it.
If you can’t understand it, you
can’t control it. If you can’t control
it, you can’t improve it.”

H. James Harrington

Figure 9.3 shows force sensors information when the human assistance ratio
is bigger than the desired value and the mobile cart moves faster than the human-
operator wants it to move. Periodic oscillations around -40/-50N in the middle of
the curve demonstrate the human steps during the motion. Using this information
we can estimate the motion rate, human step time, number of steps, step distance.
Oscillations around zero in the beginning and in the end of curve characterize the
noise caused by the powered cart motion.

Force [N]

1
20 a0 60 80 100 120 140

Time [s]

Figure 9.3: Raw data sample from pHRI handlebar

According to the measures defined in the chapter 8.4 we developed a few feature
detection techniques to estimate them. In our application we detect human gait by
processing of the filtered signal that comes form tensiometers located at the handle
bar.

At a later stage, the peak detection and error cancellation algorithm was applied
to the signal. At the pipe output we received the information about the amount of
steps per task, step time (mean+std), step length (mean+std). The example of the
processed data is shown in the figure 9.4.
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Figure 9.4: Human gait feature

9.3 Effect of the impedance control

We conducted several experiments with different settings of the controller. In each
experiment operator with powered cart cyclically performed a front and back motion.
A gradual increase of the virtual inertia (mass) is shown in figure 9.5. As we can
see, the operator force required for the cargo transportation is reducing (charts
from black to green). However, upon further reduction of the ratio (red graph),
there was a situation in which the momentum generated by the support system
created uncomfortable interaction conditions and operator had to make significant
efforts to implement the desired motion.

The graph shows the standard derivative of absolute value of interaction force
using various settings of the impedance controller. We change the values of the
impedance controller, i.e. its mass component (virtual mass). The time lapse of the
sample is 60 seconds, the number of measurements was 120, which means we can
generate 3 data samples.

In these cases when the mass component of the impedance control provides
minimum or maximal value, the operator has to put a lot of effort to move the
loaded trolley. If we consider both the standard derivative and the mean value it
is noticeable that it requires a lot of effort from an operator. The reason for that
was described in the figure 9.5 - the operator applies force which is transferred by
the impedance controller into setpoints for the differential drive system. In case of
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Figure 9.5: Change of interaction force with different settings of the impedance
controller [28]

small mass component, the task for the motor appears to be large. The engine works
with greater speed which means that the operator has to stop the trolley. On the
contrary, if the operator stops the trolley abruptly, the engine will get a large task
and start moving the trolley backwards, again, the operator has to stop it not to
be run over. In case of large mass component, vice versa, the initial force is great,
but the task for the engine is small, which means that the trolley does not help the
operator to an extent he desires. None of these modes of mass component works
well.

The comfort of the cart operator largely depends on the impedance controller
settings. The cart is usually pulled or pushed with two hands. However, if the
load is small (light), the cart could be handled with one hand or even with fingers.
Each human hand has its inertial, damping and stiffness component (property)
as described in the section 8.1.
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Figure 9.7: Change of interaction force with different settings of the impedance
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Figure 9.8: Change of interaction force with different settings of the impedance
controller [28§]
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Figure 9.9: Change of interaction force with different settings of the impedance
controller [28]
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Figure 9.10: Mean value of absolute interaction force for different settings of
impedance controller. Sample 1. T},,,, = 60s.
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Figure 9.11: Mean value of absolute interaction force for different settings of
impedance controller. Sample 2. T, = 60s.
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Figure 9.12: Mean value of absolute interaction force for different settings of
impedance controller. Sample 3. T, = 60s.
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9.4 Experiment design

This chapter highlights the experiments carried out using the mobile platform during
the research project. In this chapter we would like to describe the set of performed
experiments to measure the interaction parameters between the human operator and
industrial cart. The goal of the experiments is to find the relationship between the
subjective operator’s estimation of the interaction process and measured physical
quantities.

The experiments were executed in the laboratories of the Institute for Nanoma-
terials, Advanced Technologies and Innovation. The coefficients of static and kinetic
friction equal to 1 and 0.7 respectively, because of the fact that the floor material
is concrete. The laboratory area allowed to simulate material handling tasks related
to warehouses, production area, offices and supermarkets.

The subject pool consisted of 5 humans (three males and two females). Two
male operators out of the pool had experience in driving powered vehicles. The
other experiment members operated the vehicle for the first time. Experienced and
inexperienced operators were needed to cover the variance of operator expectations
from their interaction with the powered cart. Basic anthropometric data for the
operators is presented in the table 9.1.

Figure 9.13: Operator’s motion task

N Parameter Mean + Standard Deviation
1 Age 28 £ 5.2 [a]

2 Weight 80 + 20.8 [kg]

3 Height 180 + 10.5 [cm]

4 Legs Length 90 £+ 12.5 [cm]

Table 9.1: Operators parameters

The participants had to push and pull a six wheeled powered cart on given
trajectories. In the experiment five types of trajectories 9.14 were used such as linear
path with the length of 5 [m] in order to estimate the effect of the translational
impedance controller parameters on human feelings during the transnational motion,
circular path was used to verify the effect of the rotational impedance controller [51],
eight-like trajectory to test the joint work of the controllers and trajectory with the
complex shape similar to a real production scenario as shown in the figure 9.16. At
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the end human operators could evaluate their feelings of the collaboration on the
free-run trajectory.

Figure 9.14: Trajectory setups

In order to simulate the different load a set of barrels was used. The set consists
of five 30 [1], two 50 [1] barrels and two metal pipes that weighted of 50 [kg] each. All
the barrels were filled with water. Their weight was measured before the experiment.
As a result it was possible to change the cart load in a range mjuq € [0;340][kg].
The load set is shown in the figure 9.15.

/

Figure 9.15: Load variation

In our study we performed the measurement of emotional feedback. Methods
from the section 8.3 were used to estimate the individual feelings of a particular
operator. The subjective impressions were documented with questionnaires and pro-
cessed. In addition to emotional feedback, the physical measures were performed.
Readings of the interaction process values were recorded (respectively translational
and rotational components of position, speed, acceleration from wheel encoders; ori-
entation, angular velocities and linear accelerations form IMU unit, motors currents
form motors current sensors, interaction torque and force form tensiometers).

In order to implement power assistance for the industrial cart the low-level con-
trol system form section 7.8 was programmed into the micro-controller. Developed
system allows to study the effect of different impedance controller settings on the
interaction process. Parameter’s values for translational and rotational impedance
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controller settings were combined in a table 9.2. Based on the parameter’s values
the experimental test sets were generated. We evaluate the effects of the controller’
settings on the operator’s comfort. The results of the experiments were collected in
the chapter 10.

Translational Impedance Rotational Impedance
Controller Controller
o | om | oo o
2 20 20 1 10 10
50 60 4 20 40
10 100 80 8 50 80
18 160 18 160

Table 9.2: Tested impedance controller settings

Figure 9.16: Predefined track. Setup for mypaqscare = 103[kg]
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Figure 9.17: Setup f
: D I0r Micad+-car
163.4[kg] e

Figure 9.18: Setup for migedicart
218.3[kg] '

64



10 Regression analysis

Regression analysis is a reliable method of identifying which variables have impact
on a topic of interest. The process of performing a regression allows us to confidently
determine which factors matter the most, which factors can be ignored, and how
these factors influence each other.

In order to understand regression analysis fully, it is essential to comprehend the
following terms:

1. Dependent Variable: This is the main factor that we would like to under-
stand or predict

2. Independent Variables: These are the factors that we have an impact on
yvour dependent variable according to our hypotheses.

In this chapter we will perform the regression analysis of data sets that were ob-
tained in the experiments such as human-operator feedback and physical measures.
The data collected from the feedback surveys allows us to measure the human-
operator feeling, that our operators associate with different settings of impedance
control. We could also identify what variables influence those feelings.

In the first analysis we will study the effect of impedance controller parameters
on comfort. We select operator comfort as dependent variable and parameters of
impedance controller as independent variables. The analysis results are shown in
the table 10.1.

If we look at the R-Square value we could conclude that for 48 observations 36%
of change in the operator comfort was caused by impedance controller parameters.
Significance value F is smaller than 0.05, so regression is strong. When we check the
coefficients values we can see that we have a negative relationship between human
comfort and the values of mass and dumping coefficients. In simple words, the
increase of mass and dumping coefficient leads to the decrease of operator comfort
for the analyzed data set. If we look at the P-value for the coefficients we could say
that P-values for mass and damping coefficients are lower than 0.05 that means the
regression is strong, however the P-value of spring coefficient is much higher than
0.05 and as a result it does not affect operator’s comfort.

In the next step we will study the effect of independent variables such as the
mean value of absolute interaction force and its standard deviation as well as mean
value and standard deviation of absolute linear velocity of the cart. Results are
collected in the 10.2. When we analyze R-Square for 48 observations, 78% of change
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Regression Statistics

Multiple R 0.632
R Square 0.400
Adjusted R Square 0.359
Standard Error 1.734
Observations 48
ANOVA
df SS MS E Significance F
Regression 3 88.090 29.363 9.771 4.65E-05
Residual 44 132.222 3.005
Total 47 220.313

Coefficients Standard Error t Stat P-value Lower 95%  Upper 95%

Intercept 2.726 0.786 3.467 0.001 1.141 4.311
Mass -0.172 0.04 -4.332 8.42E-05 -0.252 -0.092
Damping -0.012 0.004 -3.248 0.002 -0.019 -0.004
Stiffness 4.17E-18 0.006 7E-16 1 -0.012 0.012

Table 10.1: Regression analysis for comfort of the operator 1 using impedance con-
troller coefficients

in the operator comfort caused by change in interaction force and linear velocity of
the cart. Significance value F is smaller than 0.05, so regression is strong.

Regression Statistics

Muiltiple R 0.882
R Square 0.778
Adjusted R Square 0.757
Standard Error 1.067
Observations 48
ANOVA
df S8 MS F Significance F
Regression 4 171.386 42.847 37.656 1.58E-13
Residual 43 48.926 1.138
Total 47 220.313

Coefficients Standard Error tStat P-value Lower 95%  Upper 95%

Intercept 4272 0.979 4.363 7.91E-05 2.297 6.247
Mean Abs F -0.031 0.011 -2.935 5.34E-05 -0.052 -0.01
Std Abs F -0.014 0.005 -2.73 9.13E-03 -0.025 -0.004
Mean abs V 5.666 1.9 2.982 0.005 1.834 9.499
Std abs V -5.419 1.497 -3.619 0.001 -8.438 -2.4

Table 10.2: Regression analysis for operator 1 comfort using mean value and stan-
dard deviation of interaction force and cart velocity

We can see that the mean and standard deviation of absolute interaction force

and cart velocity has a significant effect on human-operator comfort, because the
P-value of each parameter is higher than 0.05. We apply regression analysis to
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data sets of all the operators and as a result we could confirm that the interaction
force and cart velocity have a significant effect on human-operator comfort, however
for different operators comfort state is reached with different impedance controller
setting.

In the third step we study the relationship between operator comfort and bio-
logical markers such as pulse, blood pressure, oxygen saturation. The results were
combined in the table 10.3. After analysis of R-Square for 48 observations it could
be concluded that 81% of change in the operator’s comfort is caused by biological
markers. Regression is strong, because the significance value F is smaller than 0.05.
It could be observed that the heart rate and comfort of the human-operator have
a negative relationship. It means that the human-operator heart rate is getting lower
when the comfort zone is reached as well as the heart rate is increasing when a lot of
effort is needed to overcome the friction force or return the cart to a desired position
if the target was over-reached. Oxygen blood saturation and Borg scale estimations
have positive relation to the operator’s comfort. If we look at the P-value for the
coefficients we could say that only P-value of oxygen blood saturation is lower than
0.05 that means the regression is strong only for this parameter.

Regression Statistics

Multiple R 0.8
R Square 0.81
Adjusted R Square 0.797
Standard Error 0.976
Observations 48
ANOVA

df 58 MS F Significance F
Regression 3 178.378 59.46 62.39 6.87E-16
Residual 44 41.934 0.953
Total 47 220.313

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -123.766 48.772 -2.536 0.015 -222.061 -25.474
HR -0.072 0.048 -1.49 0.143 -017 0.025
SPO2 1.3 0.482 2,696 0.01 0.329 2.273
Borg Scale 0.25 0.387 0.647 0.521 -0.529 1.03

Table 10.3: Regression analysis for operator 1 comfort using biological markers

The results of the regression analysis of the data set that includes all the partic-
ipants are shown in the tables 10.4 - 10.6. The data set of all participants includes
240 observations. In the table 10.4 we analyze the effect of impedance controller
parameter’s change on comfort of different operators. The R-Square for 240 obser-
vations equals to 0.332. It means that only 33% of change in the operator comfort
caused by the change of controller parameters. The regression is strong, because
significance value F is smaller than 0.05. The relationship between human com-
fort and the values of mass and dumping coefficients is negative. The P-value for
the coefficients shows that the regression is strong, however the P-value of spring
coefficient is much higher than 0.05 and as a result it does not affect operator’s
comfort.
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Regression Statistics

Multiple R 0.576
R Square 0.332
Adjusted R Square 0.324
Standard Error 1.727
Observations 240
ANOVA

df S5 MS F Significance F
Regression 3 350433 116.811 39.146 1.43E-20
Residual 236 704.217 2.98
Total 239 1054.65

Coefficients  Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 2,386 0.35 6.808 8.12E-11 1.695 3.075
Mass -0.147 0.018 -8.258 1.06E-14 -0.181 -0.112
Damping -0.011 0.002 -7.017 2.39E-11 -0.014 -0.008
Stiffness -4.06E-18 0.003 -1.49E-15 1 -0.005 0.005

Table 10.4: Regression analysis for comfort of all the operators using impedance
controller coeflicients

The result of the regression analysis for comfort of all the operators using the
mean value and standard deviation of interaction force and cart velocity was col-
lected in the table 10.5. For complete data set of all participants the 79% of change
in the human comfort is caused by the mean value and standard deviation of mea-
sured interaction force and cart velocity. Significance of the F value is less that 0.05
demonstrates strong regression. The P-value of all the coefficients less than 0.05
shows that all the physical measures have an effect on the operator’s comfort.

Regression Statistics

Multiple R 0.87
R Square 0.757
Adjusted R Square 0.753
Standard Error 1.044
Observations 240
ANOVA

df 83 MS F Significance F
Regression B 798.702 199.675 183.333 4.98E-71
Residual 235 255.948 1.089
Total 239 1054.65

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 3.909 0422 9.257 1.36E-17 3.077 4.741
Mean Abs F -0.033 0.005 -6.945 3.67E-11 -0.042 -0.023
Std Abs F -0.011 0.002 -4.888 1.88E-06 -0.016 -0.007
Mean Abs V 6.555 0.874 7.502 1.28E-12 4.833 8.276
Std Abs V -5.79 0.696 -8.313 7.51E-15 -7.162 -4.418

Table 10.5: Regression analysis for comfort of all the operators using mean value
and standard deviation of interaction force and cart velocity

Table 10.6 shows the effect of biological markers on operator’s comfort. The
result of the regression analysis demonstrates that 81% of change in the human
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comfort is caused by biological markers. Significance of the F value is less than 0.05
demonstrates a strong regression. The P-values of the heart rate and oxygen blood
saturation coefficients are less than 0.05. It shows that biological markers indicates
the operator’s comfort.

Regression Statistics

Multiple R 0.902
R Square 0.814
Adjusted R Square 0.811
Standard Error 0.313
Observations 240
ANOVA

df 5SS MS F Significance F
Regression 3 858.052 286.017 343.341 9.14E-86
Residual 236 196.598 0.833
Total 239 1054.65

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -134.406 20.212 -6.65 2.02E-10 -174.225 -94.586
HR -0.067 0.02 -3.278 0.001 -0.107 -0.027
SPO2 1.405 0.2 7.029 2.22E-11 1.011 1.789
Borg Scale 0.235 0.163 1.446 0.149 -0.085 0.556

Table 10.6: Regression analysis for comfort of all the operators using biological
markers

When we evaluate participants separately the output of the regression analysis
was similar to the results demonstrated in tables 10.1 - 10.3. However, the analy-
sis of data for all operators shows a different result. As it could be observed form
the table 10.4 the R-Square value is significantly reduced in comparison to individ-
ual approach. It means the impedance controller settings that could be evaluated
as comfortable are different from one operator to another. In fact, dependency be-
tween the comfort, mean and standard values of interaction force and cart velocity
as well as biological markers remains the same. [t allows us to conclude that the
mean value and standard deviation of interaction force and cart velocity as well
as heart rate and oxygen blood saturation could be used as a sufficient reference for
generation of the rewards for the reinforcement learning algorithm.
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11 Q-Learning for human-cart interaction

"When you first start off trying to
solve a problem, the first solutions
you come up with are very
complex, and most people stop
there. But if you keep going, and
live with the problem and peel
more layers of the onion off, you
can often times arrive at some very
elegant and simple solutions.”

Steve Jobs

In this chapter the control algorithm that was developed for robust and safe
physical interaction between the human and industrial cart will be described. As it
was demonstrated in chapter 3 the impedance control is an essential component of
the solution. It could be used as a part of representation for the human-operator
dynamics as well as it helps us to control supporting effort of the mobile platform
side during collaboration. Possible scenario is shown in the figure 11.1.

Adjustment
Estimation of of interaction
human strategy
comfort

Figure 11.1: Physical collaboration scenario
While performing the task the human operator learns based on his estimations

and feelings. As a result, he adapts his impedance according to the required ef-
fort for the task. As it was shown in numerous force field tasks, humans combine
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two strategies to adapt their impedance to perturbations, thereby minimizing posi-
tion error and energy consumption: 1) if perturbations are unpredictable, subjects
increase their impedance through co-interaction; and 2) if perturbations are pre-
dictable, subjects learn a feed-forward command to offset the perturbation [52].

On the other hand, the mobile platform adjusts the interaction strategy by
changing the impedance parameters. The change occurs according to the correla-
tion between detected features and human feelings that was found in the chapter
10.

A Markov decision process or an MDP consists of

e S, a set of states of the world.
e A. a set of actions.

e P:SxSxA—[0,1], which specifies the dynamics. This is written as P(s|s, a),
where Vs € S: Va € A; Y, o P(5'|s,a) = 1. In particular, P(s'|s,a) specifies
the probability of transitioning to state s’ given that the agent is in a state
s and does action a.

e R:SXAXS—R, where R(s,a,s") gives the expected immediate reward from
doing action a and transitioning to a state s’ from the state s.

Both the dynamics and the rewards can be stochastic; there can be some ran-
domness in the resulting state and reward, which is modeled by having a distribution
over the resulting state and by R giving the expected reward. The outcomes are
stochastic when they depend on random variables that are not modeled in the MDP.

A finite part of a Markov decision process can be depicted using a decision

network as in Figure 11.2.

N
odiia

Figure 11.2: Decision network representing a finite part of an MDP [53]

In order to include human feelings in the control system we implemented a re-
inforcement learning algorithm. The book "Reinforcement Learning: An Introduc-
tion” [54] is giving the following definition to the reinforcement learning:

"Reinforcement Learning is an area of Machine Learning that can be considered
both a set of problems and solution methods to these problems. It is concerned
with finding the best possible behaviour strategy for an agent interacting with an
environment. The underlying idea is that similarly to how humans and other animals
learn by trial-and-error, so should also software agents be able to learn.”
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' s, | Environment I*'—

Figure 11.3: Reinforcement learning flow diagram [54]

Reinforcement Learning was originally inspired by behavioural psychology. Sim-

ilarly to how humans are taught that some actions are good and others are bad by
either reward or punishment, this class of algorithms reinforces good actions while
discouraging bad. For example, teaching a dog to catch the ball by rewarding it with
a bone if successful as shown in the figure 11.4. This trial-and-error approach to
learning is simulated by giving a numerical reward as a feedback on the performance
of an algorithm. Thus, based on the result signal, a learning algorithm can evaluate
and update its parameters based on how good or bad a set of actions were.

reward (r,)|

ShA

£y D
environment

Figure 11.4: Natural way of RL [55]

Reinforcement learning algorithms are built of the following main components

[56]:

State. Set S of states the agent and environment can be in.

Actions. Set A of actions the agent can invoke. This set can be restricted
depending on the current state.

Reward. R is a function that provides numerical rewards for state transitions.
It is used to estimate the quality of action a; in state s; based on the state

change it causes.

State Variables. The value map memorizes what outcomes an agent ex-
pects for given states

Policy. A policy is a structure that maps states to actions. Roughly speak-
ing, it defines what action to take in a specific state.
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e Model (Optional). A model of the environment and agent predicts the new
state s’ when action a is invoked in states. The model can be probabilistic or
unavailable.

The first task when designing Q-Learning system is to define the environment.
The environment consists of states, actions and rewards. The agent uses states and
rewards as inputs and generates actions as outputs.

11.1 States

The number of possible states is finite. The agent could be in one fixed number
of possible situations. In our case we can think about each possible setting of
impedance controllers as a state. The agent could be located at one state at a time.
It means only one set of impedance controller settings could be selected in one
step and evaluated in one step. Each component of the impedance controller could
switch in between four states. According to the selected parameters of the impedance
controllers shown in the table 9.2 with neglected parameters of K., and K,, the
set of 256 system states was generated.

States[256] = generate, & % 4 2
10 100 8 50

18 160 18 160

Figure 11.5: Set of states

11.2 Actions

The number of possible actions is finite. The agent will always need to choose
from among a fixed number of possible actions as it was proved by results of the
regression analysis in chapter 10. The change of parameters K;,., and K,, does not
have an effect on the emotional feedback of the human operator. Therefore, only four
parameters (My,, Dy, Mo, Dyot) wWere selected as adjustable variables. We define
a set of possible actions in the following way: the agent could apply two actions
(increase or decrease) per each parameter and additional action ”does nothing”
when no change is required. The change of inertial and dumping components of the
impedance controller leads to the change in the cart dynamics.
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Figure 11.6: Set of actions

11.3 Rewards

In order to help the agent in the learning process we created a condition based reward
structure. The most important part is the reward definition for the state. The agent
goal is always the same - to maximize its total rewards. In our case we mostly use
negative rewards (i.e. punishments) for the settings that could be recognized as bad.
The reason for the negative rewards is the following. Due to the fact that the agent
goal is to maximize cumulative rewards, if we used positive rewards the agent could
get stuck in switching between the first states and would accumulate a very large
cumulative reward even if the comfortable impedance controller settings were not
found. In case of negative rewards the agent tried to minimize the punishment by
searching the most convenient set of impedance controller settings. The result will
be the set of impedance controller settings convenient for the current operator.

The reward system works as follows. The agent checks if the interaction dynamics
is positive by comparing values of mean values and standard deviation for the current
step and the previous step. Additionally, the agent checks if there is no emergency
situation by analyzing the E-stop button state. Peaks of the interaction force have
to be avoided as well. If a human operator thinks that the current settings are
convenient for him he might give a positive feedback. In the end we sum up the
rewards for different criteria. If none of the criteria were met the reward is set to
the negative one.

If mean(Fh) > mean(Fh)'
or STD(Fh) > STD(Fh)'
If mean(Th) > mean(Th)’
or STD(Th) > STD(Th)'

-1

-1
10| If not_aus = false
Reward={ Z}+s| id_btn=true
-2 | If max(abs(Fh)) > 2.5¥*mean(Fh)
-5 | If max(abs(Fh)) > 2.5*mean(Fh)
-5 | If mean(Vsteps) != mean(Vcart)

-1 else

Figure 11.7: Rewards

11.4 High-level control

The learning algorithm that is used in the context of this thesis is called Q-Learning,
which is a model-free Temporal-Difference (TD) algorithm. TD learning methods
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combine the ideas behind Monte Carlo and dynamic programming methods. There-
fore, a Q-Learning algorithm does not need a model just like Monte Carlo methods.
Furthermore, TD methods update the state value directly after each step like dy-
namic programming methods.

T'D(s,a0)  =r(s,a) + 2 -omax Qs a1)  — Qs ar)] (11.1)
N—— N—— ~—~ a ——
temporal difference reward discount factor old value

~
estimate of optimal future value

The discount factor is settled between 0 and 1. The purpose of the v is to provide
the mechanism for discounting of the future rewards. In other words, it allows us to
choose a better option, because the value of receiving of a particular reward in the
future is generally less than receiving the same reward now.

Another important equation is the Bellman’s equation 11.2. The Bellman equa-
tion demonstrates what Q-value has to be used as the value for the action that was
taken in the previous step. The equation includes a learning rate parameter o that
defines how quickly Q-values are adjusted. Learning rate can take any value from 0
to 1.

Qnew(5t, ar) = Qora(se, ar) + o - TD(s4,az) (11.2)
~ ' - Vo . _#
new value old value learning rate temporal difference

Q-Learning does only work with MDP’s, because all values are calculated based
on the current state. Therefore, each state instance must represent the entire con-
figuration of the agent and environment. The basic Q-Learning update is defined
by:

Q(s1,a1) < Q(s,a0) +  _a [r(spa)+ 7 - maxQ(sey1, arp1)  — Q54 ay)]
—_—— N — ~~ —— ~— L@ 5 ——
new value old value learning rate reward discount factor ) ~~ old value

estimate of optimal future value
(11.3)

where Q)(sq, a;) represents the value for a cell in Q-matrix that demonstrates the
choice of action a, form a state s at current time ¢. 7(s;, a;) is the reward received
for the choice of action a, form state s.

The diagram shown in the figure 11.8 presents the process of Q-Learning. The
process begins by initializing the Q-Table. This table represents the agent’s policy
on how to behave in the environment. In the next step the action for the current
step has to be selected. There are two available options. One option is to choose
the action with the highest Q-Value. Another option is to take a random action
in order to explore the environment. The common strategy for resolution of the
trade-off between exploration and exploitation is Epsilon-Greedy algorithm.

For each step within an episode, we set our exploration rate threshold to a ran-
dom number between 0 and 1. This will be used to determine whether our agent
will explore or exploit the environment in this time-step.

If the threshold is greater than the exploration rate, which is initially set to
1, then the agent will exploit the environment and choose the action that has the
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highest Q-value in the Q-table for the current state. If, on the other hand, the
threshold is less than or equal to the exploration rate, then the agent will explore
the environment, and sample an action randomly.

As soon as the action is selected, the agent performs the action. When the
action is performed the agent receives a reward. Based on the received reward and
the information about the current state the TD is updated. Than the Q-Value for
the current state was updated using the information about the current state, TD
value and the Bellman’s equation 11.2 and the agent switches to the next step.

Initialize Q-Table

Select an Action from Q-Table for the
Current State

Perform the Action and switch to the
New State

Receive Reward and compute the TD

Update Q-Value for the Previous State

Figure 11.8: Q-learning process diagram

The diagram of the Q-Learning process could be presented in the shape of pseudo-
code shown in the table 11.1.

The Q-Learning algorithm was implemented inside the high-level controller
which is Raspberry Pi 4 in our case. Python language was used for implementation.
The information about process values (interaction forces, odometry) is supplied to
high-level controller from low-level controller using the serial port. Using the same
link information about the actual impedance controller parameters provided to low-
level controller. Protocol uses a CRC data check. The data of biological markers
is read from a smart band using a BLE protocol. Console output of the learning
process is shown in the figure 11.9. Information consists of the current episode num-
ber, the number of the step inside the episode, selected action, obtained reward and
the new set of impedance controller parameters to be tested.

In the figure 11.10 you could find the graphic visualization of the Q-table values
during the learning process. The yellow color represents the areas with the high
rating and the blue color represents the areas with low rating. When we start the
interaction process the values in Q-Table are equal to one another. However, as soon
as the algorithm takes action the system state will be changed and corresponding
value in Q-table will be updated according to the reward information. Quality and
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()-learning: Learn function @ : A =« A= R
Require:
Sates X = {1,...,1.}
Actions A = {1,...,n.}, A:X= A
Reward function £: A x A -+ R
Black-box (probabilistic) transition function T : &' x4 — X
Learning rate o € [0, 1], typically o = 0.1
Discounting factor + € [0, 1]
procedure QLEARNING(X, A, B. T, a, 7v)
Initialize ¢ : X = .A — R arbitrarily
while &) is not converged do
Start in state s £ X
while s is not terminal do
Calculate 7 according to Q@ and exploration strategy (e.g. w{x) +

argmax, Gz, a))

i +— ()

r+ Ris.a) > Receive the reward

g+~ T(s,a) t- Receive the new state

Qs a) + (1 —a)-Qls,a) +a- (r+ - -max, Qs a’))
returnscy :

Table 11.1: Learn function of the Q-Learning algorithm presented in pseudo-code

speed of reinforcement learning process partially depends on the teacher. If human
operator uses a user button to give a positive feedback or e-stop to give a negative
feedback, it could significantly speed up the learning process.

When we have a look at Q-Learning dynamics by observing Q-Table changes in
time the following information could be extracted. Q-Table is visualized by means of
color map (heat map). From the first figure it is shown that in the first moments of
the learning process the Q-Values are quite similar to each other. Significant area of
the color map is colored in yellow. However, with time the color map gets more dark
spots by receiving the negative feedback about the impedance controller settings. In
the long run it is depicted that the major area of the color map is covered by dark
blue and green colors that demonstrates negative effect of the impedance controller
setting on the interaction process. Only tiny yellow line is presented in the color
map. This line represents the impedance controller settings that fully respond to the
human-operator intention. It is possible to obtain the impedance controller settings
by selecting the state that corresponds to maximum value of the Q-Table.
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Episode 346

Step 189

Current action Mdown
State_num @

New state [2, 20, 1, 18]
Reward -1

Episode 34

Step 198

Current action Jup
State_num 4

New state [2, 28, 4, 18]
Reward -1

Episode 346

Step 191

Current action Drup
State_num 5

New state [2, 28, 4, 28]
Reward -1

Episode 36

Step 192

Current action Dtdown
State_num 8

New state [2, 28, 1, 18]
Reward -1

Episode 34

Figure 11.9: Console output of the learning process

3 1 2 34 s 5
actions actions actions

5 6 T 8 o 1 z 3 4 5 [ 7 [

3 4
actions actions

[ 1 2 7 3 o -4 E

I 5
actions

Figure 11.10: Dynamic change of the Q-value during the learning process
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12 Conclusion

“Perfection is achieved, not when
there is nothing more to add, but
when there is nothing left to take
away.”

Antoine de Saint Exupery

In the course of this work we have systematized the existing theory in the field
of pHRI related to human in-the-loop study while interacting with powered mobile
platform. A mathematical and experimental model of the industrial power assisted
cart was developed. A great amount of work was performed in powered mobile
platform programming and control system implementation.

The work brings significant contribution to the area of pHRI by developed
workflow that includes experimental platform development, experiment design and
evaluation of the results using regression analysis and development of adaptive
impedance controller that is suitable to perform collaborative tasks. Personality-
oriented scheme presented in this work results in efficient physical interaction that
responds to the intentions of the human-operator as well as it enhances the user
comfort during the process of a carrying task.

This work also brings contribution to the area of raw data analysis and feature
detection. We tested interaction with different loads and on different types of tra-
jectories such as 5 meters strait drive, round and 8-like shape trajectory, a complex
predefined path and a free ride. All the experiments were performed in the indoor
environment.

The control system with the impedance controllers of rotational and translational
motion was implemented in the experimental platform. It allows to support human
operator during linear dive and turns. It helped to obtain the dynamics relevant
to the material handling task. Analysis of interaction characteristics allowed us to
identify the physical measures, emotional feedback as well as biological markers
which were used as additional sources of information to improve interaction.

We evaluated the effects of the controller’ settings of the operator’s comfort and
developed a system of automatic tuning of parameters. One of Al methods was
applied to the developed powered industrial cart. The method called Q-learning
belongs to the area of reinforcement learning. It allows the powered cart to learn
the desired intention of the human-operator by means of rewards for different set-
tings of impedance controllers. In the end it was possible to find out the set of
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settings that refers to the highest comfort level and sufficient performance for a par-
ticular operator. The RL algorithm was implemented in the microcomputer Rasp-
berry Pi using Python language. This controller was called a high-level controller.
The low-level control was implemented in the microprocessor ATmega2560 (Arduino
board). It includes mathematical description of cart dynamics and kinematics as well
as impedance controllers for translational and rotational motion of the cart and PID
controller for the powered wheels.

In addition, the applications for BLDC drive control, load cell control and con-
figuration software, C-Sharp based hardware extension library for Rasberry Pi and
Matlab were developed. It allows to run real-time target based simulation using
math apparatus of Matlab in combination with low-cost embedded sensors and
drives. More information could be found in appendix to this work.

Accumulated results suggest promising ideas for the future work. In particu-
lar, the number of involved experienced and inexperienced human operators (males
and females) could be increased. It allows to contribute into discovered correla-
tion (dependency) between operator’s comfort and impedance controller’s settings.
Furthermore, a combination of the results with industrial pHRI scenarios, where
human comfort is set as a significant measure, allows to optimize operator’s tasks
and logistic processes in plant simulation. Optimized tasks and processes could be
applied at the real factory that brings significant value to the end customer in the
form of drastic reduction of sick leave requests caused by transportation hazards.

In the end of the work I would like to express my gratitude to the people who
supported me during the research and showed me the importance of my research.
I am glad that my research made a contribution to the future development of human-
robot co-existence and cooperation.
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13 Internship

I did my internship in Linz Center of Mechatronics GmbH at the Department of
Sensors & Communication. This company is located in the Since Park of Johannes-
Kepler University, Austria. The LCM team has comprehensive experience in ten-
dering for EU projects and other international project plans. Project proposals
for the following national programmes and structural funds were submitted: ETP:
European Technology Platforms: Initiative to support international networking.
Funding: Horizon 2020 — Rules for Participation (100/70%) | JTIs: JTI — Joint
Technology Initiatives: public-private partnership to support transnational research
collaboration in selected technological fields | ¢cPPPs: contractual Public Private
Partnerships | EIPs: European Innovation Partnerships | ERANET: European Re-
search Area | EIT (KICs): European Innovation and Technology Institute — Knowl-
edge and Innovation Communities | HORIZON2020: research programm from the
eu commission | FET: Future and Emerging Technologies | Art. 185-Initiativen.
Some of the results of these projects have since been successfully brought onto the
market.

Figure 13.1: Linz Center of Mechatronics GmbH

As an intern I participated in several research and commercial projects related to
the indoor navigation applications and human motion detection. Working with out-

standing professionals I developed a cross-platform application that allowed to add
a network interface to any USB (UART) device (USB - Universal Serial Bus). Writ-
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ing documentation including API (Application Programming Interface) description
and created an application sample was significant part of the work.

I was happy to help modify and optimize UART(Universal Asynchronous
Receiver-Transmitter) data transfer protocol in order to use DMA (Direct Mem-
ory Access).

In the framework of another project, I was designing and implementing the
software for MEMS (Microelectromechanical systems) sensors reading. In addition,
I was among the developers to create software for MEMS data visualization. At
a later stage of the project we improved and extended the MEMS sensor library.

Implementing the algorithm for human motion detection was a project that
helped me to learn a lot. I transmitted features activation information to a base
station. Last but not least, I was able to design and implement a wireless network
sniffer for debugging of indoor positioning systems (IPS) shown in the figure 13.

It was a priceless experience as it helped me to raise my knowledge and skills to
a new level. I acquired competences in the areas of indoor navigation and digital
signal processing in the field of human motion detection. The internship deepened
my knowledge of python multi tasking and C++ in the field of embedded systems.

Figure 13.2: Developed indoor positioning system
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15 Appendix
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Figure 15.1: Standard deviation of absolute interaction force for different settings
of impedance controller. Sample 1.
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Figure 15.3: Standard deviation of absolute interaction force for different settings
of impedance controller. Sample 3.
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Figure 15.4: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 1.
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Figure 15.5: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 2.
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Figure 15.6: Mean value of absolute cart velocity for different settings of impedance
controller. Sample 3.
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Figure 15.7: Mean value of absolute cart velocity for different settings of impedance
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