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Abstrakt 
P r á c e se zaměřu je na n á v r h o b v o d ů na ú rovn i t r a n z i s t o r ů , p ř e d e v š í m za použ i t í evoluční 
metody n á v r h u . Z a t í m t o úče lem je n u t n é volit rozumnou m í r u abstrakce a tak d o s á h n o u t 
vyšší rychlosti o h o d n o c o v á n í k a n d i d á t n í c h řešení p o m o c í fitness funkce. P r á c e p r o b í r á 
j iž vyzkoušené postupy n á v r h u o b v o d ů na t r anz i s to rové ú rovn i a z nich v y b í r á už i tečné 
prvky pro vy tvo řen í výkonějš ího s y s t é m u , k t e r ý by by l schopen navrhovat komplexn í logické 
obvody. Dá le se p r á c e z a b ý v á i m p l e m e n t a c í tohoto s y s t é m u a p r o b í r á p o u ž i t ý p ř í s t u p k 
řešení p r o b l é m ů n á v r h u a optimilizace t r a n z i s t o r o v ý c h o b v o d ů p o u ž i t í m evoluce. 

Abstract 
This work aims to design process of integrated circuits on the transistor level, specially 
using evolutionary algori thm. For this purpose it is necessary to choose reasonable level of 
abstraction during simulation, which is used for evaluation candidate solutions by fitness 
function. Th is s imulat ion has to be fast enough to evaluate thousands of candidate solutions 
wi th in seconds. This work discusses already used techniques for transistor level circuit 
design and it chooses useful parts for new design of faster and more reliable automated 
design process, which would be able to design complex logic circuits. The thesis also 
discusses implementat ion of this system and used approach wi th regard to encountered 
problems in transistor-level circuit design and opt imizat ion by evolution. 
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Chapter 1 

Introduction 

The a im of this thesis is to describe transistor-level technology and its usage i n the integrated 
circuits design using evolutionary algori thm. 

Some effort i n area of usage evolutionary algorithms for transistor-level circuit design 
has been already done and also some level of success has been achieved. Usua l ly quite 
small and relatively simple circuits were designed using artificial evolution. There were 
different aims i n those attempts, some were experimental and t ry to prove, that i n some 
way better innovative designs can be produced. Others selected the a im for transistor 
var iabi l i ty tolerance, lower power consumption, or just m in ima l transistor count. 

This work is oriented to provide efficient evolutionary designing system which w i l l pro
duce transistor-level circuits defined by their input and output specification. B u t to achieve 
that, we need to design that system first. 

Let 's start w i th simplified description of what can be found in this document: i n this 
technical report w i l l be discussed problems and methods used in at least par t ia l ly automated 
design of digi ta l circuits at transistor level. In the first following chapter (2) transistor 
technology w i l l be described and discussed. There w i l l be mentioned not only the current 
state but also something relevant to development of this technology. 

Next chapter (3) is dedicated to review what was already done i n the area of conventional 
and unconventional transistor-level design of digi ta l V L S I ( V e r y Large Scale Integration) 
circuits. 

In the chapter after that one, w i l l be described evolutionary algorithms and their possible 
usage i n this d ig i ta l circuit design area. W h e n this was mentioned, the important part of 
evolutionary algori thm w i l l arise to our attention, the fitness evaluation of circuits during 
evolutionary process, w i t h regard to computat ional t ime. 

Implementation, chapter (6), is also included, just after previously mentioned one. 
There is described how the programming of the designing system went through time and 
what l imitat ions have been encountered and how they have been overcome. In next chapter 
there are also provided information about computat ional t ime and efficiency of the imple
mentation. To evaluate efficiency of implemented simulator and evolutionary designing 
system, there is chapter describing benchmarks and experiments. 

Ci rcu i t which was created by unconventional automated design mechanism need to go 
through some more advanced testing and simulat ion before they can be used i n real circuit 
chip. Some of transistor circuit designs, which were produced be earlier mentioned process 
are i l lustrated, verified and discussed at the end of benchmarking chapter. 

The conclusion, chapter (9) at the end of this document, summarizes what have been 
done in this project and it also points out some ideas for possible future work. 
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Chapter 2 

Transistor 

Here we w i l l discuss transistor technology itself, starting wi th description what exactly is 
the transistor, followed by different implementat ion technologies. 

2.1 What is the transistor 

Said in simplified manner, transistor is a semiconductor device. A c t u a l l y there exist more 
than few variants of transistor and more about this w i l l be described i n the following section 
2.3. B u t a l l transistors have things i n common. Probab ly the most important such thing 
would be their abi l i ty to control electrical signals. B y the control we can image for example 
amplification, switching „on/off", or even generating electrical signals. 

Deeply embedded i n almost everything electronic, transistors have become the nerve 
cells of the Information Age [3]. 

2.2 History 

The transistor was invented in 1947-48 by three Amer i can physicists, John Bardeen, Walter 
H . B ra t t a in and W i l l i a m B . Shockley, at the Amer ican Telephone and Telegraph Company 's 
B e l l Laboratories. 

The discovery was made during experimentation wi th current flowing 
This discovery made electron tubes, which needed hundreds of volts and energetically 

expensive heating, obsolete. B u t it took some time, almost 20 years. A n d that made 
possible to design and produce integrated circuits. W h i c h are the hearts (and brains) of 
modern electronics and computers. 

2.3 Variants of transistor 

2.3.1 B i p o l a r trans is tor 

Bipola r transistors are one of the most important semiconductor devices. The bi-polar in 
the name means that both types of electrical conductive elements are used for function of 
this transistor. These elements are electrons and holes. The structure of the transistor is 
based on sil icon substrate, where the base substrate is made of one type of conduct ivi ty 
and others two electrodes are made of complementary type. Possible combinations are P N P 
and N P N , where base substrate is usually connected to collector electrode. 
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The Bipo la r Junct ion Transistor ( B J T ) is a three layer device constructed form two 
semiconductor diode junctions. These junctions are joined together i n the one of following 
ways, 

• N P N - base to emitter is forward oriented junct ion and base to collector reverse 
oriented 

• P N P - base to emitter is reverse oriented junct ion and base to collector forward 
oriented 

Let 's take a look at structure of the bipolar transistor: 

Figure 2.1: B ipo la r Junct ion Transistors function structure [6] 

To have a better idea of bipolar transistor usage it would be useful to have diagram 
which shows some relevant electro-physic values. 

PNP Transistor NPN Transistor 

Base 

Emitter 

" I ; 

Collector 

Base 

Vee 

Collector 
•v Q 

V I E 

Emitter 

Figure 2.2: B ipo la r Junct ion Transistors schematic voltages [6] 

Bipola r transistors are current controlled devices, where relatively smal l base current 
IB controls possibly bigger current flow through C E electrodes, this current is called IE-
The rat ion between these to is called current amplification coefficient and it is one of 
the most important characteristics of bipolar transistor 

H-21 Ie 
IB 
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Disadvantages of the bi-polar transistors 

These l imitat ions are quite important w i th regard to construction of very high scale inte
gration integrated circuits, where heat dissipation can be quite problematic and where at 
least efficiently cooling-able not even low power consumption is needed. 

Al though bipolar junct ion transistor technology have certain l imitat ions, they were the 
first transistor technology, and they are s t i l l widely used for their qualities, such as more 
intuit ive usage, current control, much higher immuni ty to high voltage static charges and 
etc. 

Also i n digi ta l integrated circuits were commonly used in the past, T T L logic is actually 
based on them [7]. 
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2.3.2 U n i p o l a r trans is tor 

Unipola r transistor, also commonly referred as field-effect t r ans i s to r (FET) is a transistor, 
that uses an electric field to control the conduct ivi ty of channel w i th one type of charge 
carrier (therefrom unipolar). 

Unipolar transistor technology is pract ical ly state of the art. W h i c h is quite interesting, 
because the concept of the F E T actually predates bipolar junct ion transistors [8]. 

These types of transistors are used widely i n integrated circuits, but also i n many other 
applications, where power efficiency and low heat product ion is required. 

Unipolar transistor can be implemented i n several ways, where each of them can be 
quite differ from others. B y international standardization these symbols are commonly 
used to describe field effect transistors in schematics: 

P-channel 

N-channel 

J FET MOSFET enh MOSFET enh (no bulk) MOSFET dep 

Figure 2.3: F i e l d Effect Transistor schematic symbols [8] 

J F E T - junct ion field effect transistor 

The J F E T transistors are not so relevant to digi ta l integrated circuits. Therefore we w i l l 
not discuss them i n more detail here. 

2.4 MOSFET - metal oxide semiconductor field effect tran
sistor 

The M O S F E T , which largely superseded the J F E T and had a more profound effect on 
electronic development, was invented by Dawon K a h n g and M a r t i n A t a l l a in 1960 [5]. 

The growth of d igi ta l technologies like the microprocessor has provided the mot ivat ion 
to advance M O S F E T technology faster than any other type of silicon-based transistor. A 
big advantage of M O S F E T s for digi ta l switching is that the oxide layer between the gate 
and the channel prevents D C current from flowing through the gate, further reducing power 
consumption and giving a very large input impedance. The insulat ing oxide between the 
gate and channel effectively isolates a M O S F E T i n one logic stage from earlier and later 
stages, which allows a single M O S F E T output to drive a considerable number of M O S F E T 
inputs. 

Bipola r transistor-based logic (such as T T L ) does not have such a high fanout capacity. 
This isolation also makes it easier for the designers to ignore to some extent loading effects 
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between logic stages independently. That extent is defined by the operating frequency in 
the way wi tch increasing frequency, the input impedance of the M O S F E T s decreases. 

B u t lets now take a look at M O S F E T transistor and how it actually works. 

Figure 2.4: M O S F E T structure S(source) G(gate) D(drain) B(body) [8] 

The M O S F E T is actually 4 electrode device, but quite often the B o d y electrode is con
nected together w i th the Source electrode(short-circuited internally) and only 3 electrodes 
or te rminal are there to be connected wi th in circuit , the gate, the source and the drain. 

It is pract ical ly voltage controlled device, where the wid th of a conducting channel is 
reduced or enlarged by voltage applied on gate against the source electrode it is abbreviated 
as VQS- The effect is different i n P-channel and N-channel transistor but we w i l l discuss 
that later. 

The wid th of the channel is direct ly affecting conduct ivi ty between drain(D) and source(S) 
electrodes. Conduc t iv i ty is an inverted value of the resistance and for this drain-source re
sistance we w i l l use abbreviation RDS- So w i th some simplification we can say, that rising 
VQS is reducing RDS- If VGS is higher than Vp the threshold voltage transistor channel is 
conducting, when it is bellow the threshold voltage the transistor channel is mostly insu
lat ing drain and source electrodes wi th some minor problems, which we w i l l discuss later. 
Th is is the pr imary function of M O S F E T transistor as switch inside digi ta l circuits. 

The M O S F E T can be used for amplifying or switching electrical signals. The usage as 
an analog amplifier require more linear input output characteristics and they usually differs 
from switching oriented M O S F E T transistors. In this work we a im at M O S F E T usage in 
the digi ta l c i rcui t ry design, so we w i l l concentrate on switching function of the M O S F E T . 

Figure 2.5: F i e l d Effect Transistor structure [8] 
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2.4.1 M O S characterist ics 

In the area of electronic engineering there are lot parameters and characteristics which 
describe construction and behavior of a M O S transistor. 

Those mentioned here are those of designer's interest. 

Electrical Specifications 
Parameter Cond i t ions Symbol Min Typ Max Unit 

Static 
Drain-Source Breakdown Voltage V G S = OV, l D = 250uA BVDSS 20 — V 
Gate Threshold Voltage V D S = V G S L l D = 250uA VGS(TH> 0.65 0,95 1.2 V 
Gate Body Leakage V G S = ±av, V D S = OV less - - ±100 MA 

Zero Gate Voltage Drain Current V D S = 16V, V G S = 0V tass - 1,0 pA 
On State Drain Current VDSD5V.VSS = <1.5V 6 — A 

Drain-Source On-State Resistance 
V a s = 4 . 5 V , l D = 2.8A - 40 65 

mQ Drain-Source On-State Resistance 
V G S = 2.5V, D = 2.0A - 50 95 

mQ 

Forward Transconductance V D S = 5V, l D = 2,8A 3fs - 6.5 - S 
Diode Forward Voltage ls= 1.6A, V G S = 0V V 3 U - 0,76 1,2 V 
Dynamic11 

Total Gate Charge 
V D S = 6V, l D = 2.8A, 
V G S = 4 , 5 V 

Q, - 3,69 --

Gate-Source Charge 
V D S = 6V, l D = 2.8A, 
V G S = 4 , 5 V 

Q g s - 0.7 -- nC 

Gate-Drain Charge 

V D S = 6V, l D = 2.8A, 
V G S = 4 , 5 V 

- 1,06 --
Input Capacitance 

V D S - 6V, V G S - OV, 
f = 1.0MHz 

c i 5 5 
- 427.12 -

Output Capacitance 
V D S - 6V, V G S - OV, 
f = 1.0MHz 

0055 - 80.56 -- PF 
Reverse Transfer Capacitance 

V D S - 6V, V G S - OV, 
f = 1.0MHz 

Oris - 57 --

Switching 7 

Turn On Delay Time 
V D D = 6 V , R l = 10Q, 
l D = 1A, V G E N = 4.5V, 
R G = 6C1 

td(on) - 6,16 -
Turn-On Rise Time 

V D D = 6 V , R l = 10Q, 
l D = 1A, V G E N = 4.5V, 
R G = 6C1 

- 7,56 - nS 
Turn-Off Delay Time 

V D D = 6 V , R l = 10Q, 
l D = 1A, V G E N = 4.5V, 
R G = 6C1 td(off) - 16.61 --

nS 

Turn-Off Fall Time 

V D D = 6 V , R l = 10Q, 
l D = 1A, V G E N = 4.5V, 
R G = 6C1 

tf - 4,07 --

Figure 2.6: N - M O S F E T T S M 2 3 0 2 characteristics (from datasheet) 

ton totf 

H PULSE WIDTH " 

Swi t ch ing Tes t Ci rcu i t Sw i t ch in Wave fo rms 

Figure 2.7: N - M O S F E T T S M 2 3 0 2 switching characteristics (from datasheet) 
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E l e c t r i c a l C h a r a c t e r i s t i c s C u r v e (Ta = 25"C 7 unless otherwise noted) 

Output Character ist ics Tran sfe r C ha ra c t eris tic s 

10 

0 

V(3S = SV tau 2.5V 

Z 5 V 

1 5V 

: 2 3 - '. 
VDS - Drain-to-Source Voltage (V) 

On-Resistance vs. Drain Current 

0 . 1 5 

S - 0 . 1 2 
• 

B 
E 0 0 9 n 3G 
a: 0 . 0 6 

I 0 0 3 

o 

••"T.= = 25v 

2 4 s a 

Id - D r a i n C u r r e n t ( A ) 

1Q 

4 a 

u 

—55*C 

0 0 . 6 1.0 I B 2 . 0 2 .8 

V g s - Gate-to-Souree Voltage (V) 

Gate Charge 

> 5 

f 4 

8 > 

ID • 
= 10V 

/ 
1 2 3 4 5 6 7 

Qg - Total Gate Charge (nC) 

On-Resistance vs. Junct ion Temperature 

1,9 

£ ,.6 

c _ 

• s i 

J 0.8 

0.6 

1 1 
VGS B 4.5V 

-SO -2G 0 25 50 7S 100 125 150 
Tj - Junction Temperature ("CI 

Source-Drain Diode Forward Voltage 

i o 

o 
s 

/ J 

/ / Tj ' / 
/ / / / / I 

j ' / 
1. 2SK 

0 0 .2 0.4 0 .6 OS 1.0 1.2 1.4 1.6 

Van - Source-to-Drain Voltage {V] 

Figure 2.8: N - M O S F E T T S M 2 3 0 2 graph characteristics (from datasheet) 
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Figure 2.9: N - M O S F E T T S M 2 3 0 2 graph characteristics (from datasheet) 

B u t as long as the goal of this work is not i n the selection of the best transistors for the 
integrated circuits, we w i l l use abstract model of M O S F E T transistor, which w i l l be more 
than sufficient for the automated design process. 

Quite complex model taking into consideration more specific characteristics is used by 
electronic circuit simulator mentioned i n the s imulat ion chapter. 

2 . 4 . 2 C M O S 

C M O S is abbreviation which stands for complementary metal-oxide-semiconductor which 
is state of the art at the digi ta l integrated circuitry. C M O S logic use p -channe l (PMOS) 
and n-channe l (NMOS) M O S F E T s as bui ld ing blocks. 

Overheating is a major concern i n integrated circuits since ever more transistors are 
packed into ever smaller chips. C M O S logic reduces power consumption because no cur
rent flows (ideally), and thus no power is consumed, except when the inputs to logic gates 
are being switched. C M O S accomplishes this current reduction by complementing every 
N M O S F E T wi th a P M O S F E T and connecting both gates and both drains together. A 
high volt age (logical one) on the gates w i l l cause the N M O S to conduct and the P M O S not 
to conduct and a low voltage(logical zero) on their gates causes the reverse. Dur ing the 
switching t ime as the voltage goes from one state to another, both M O S F E T s w i l l conduct 
briefly. This arrangement greatly reduces power consumption and heat generation. B u t 
as we w i l l mention i n following chapters, there can be made in some way better arrange-
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merits than complementary M O S switch, such as pass-trough transistor used instead, saving 
transistor count, and even decreasing shortcut leakage during switching. [17] 

Figure 2.10: P M O S and N M O S transistors in C M O S gate [9] 

Dual-type ( C M O S ) M O S F E T switch 

This „ c o m p l e m e n t a r y " or C M O S type of switch uses one P - M O S and one N - M O S F E T 
to counteract the l imitat ions of the single-type switch. The F E T s have their drains and 
sources connected i n parallel , the body of the P - M O S is connected to the high potential 
(VDD) and the body of the N - M O S is connected to the low potential (GND). To turn the 
switch on, the gate of the P - M O S is driven to the low potential and the gate of the N - M O S 
is driven to the high potential . For voltages between VoD-Vtn and GND-Vtp, bo th F E T s 
conduct the signal. For voltages smaller than GND-Vtp, the N - M O S conducts alone, and 
for voltages greater than VoD-Vtn, the P - M O S conducts alone. 

The voltage l imits for this switch are the gate-source, gate-drain and source-drain 
voltage l imits for both F E T s . Also , the P - M O S is typical ly two to three times wider than 
the N - M O S , so the switch w i l l be balanced for speed in the two directions. 

Tri-state c i rcui t ry sometimes incorporates a C M O S M O S F E T switch on its output to 
provide for a low-ohmic, full-range output when on, and a high-ohmic, mid-level signal 
when off. [8] 
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Figure 2.11: Convet ional C M O S N A N D gate, C M O S switch i l lustrated 

2.5 Abstraction of transistor 

There a lot of attributes which can define specific transistor, but in the design on upper 
level, for example gate level we do not care about that. It is because otherwise it would be 
overcomplicated to design anything. Here we w i l l also need certain level of abstraction to 
work wi th , i f we want to design something more complex than logical gates. 

We could look on transistor as if it would be a switch. It is actually the role of transistor 
inside digi ta l circuits. The voltage controlled switch, where dra in and source electrodes are 
connected or disconnected based on voltage applied on the gate electrode. 

Considering this, we could look at the P M O S and N M O S transistors as if their actually 
the same and only difference is the inverted function of their gate. Where N M O S transistor 
is opened by logical level H I G H (sufficient voltage applied on the gate) and P M O S transistor 
is closed at the same condit ion. P M O S transistor is opened at the logical level L O W (zero 
or low enough voltage on the gate) where N M O S is closed by that. 

Using such high level of abstraction could possible work for smal l and simple enough 
circuits as the two input N A N D gate (which can be created from 4 transistors). 

B u t it would certainly encountered failure, when we would attempt to evolve more 
complex circuits. In this model they would work fine, but i n real or realistic enough 
simulation they would fail at least because VT loss problem. 

VT voltage loss problem 

The voltage loss problem is characteristic thing of a l l electronic devices, nothing is ideal. 
Metal-Oxide-Semiconductor shows much higher efficiency here than older bipolar-junction 
transistor technology, but s t i l l certain voltage loss remains. 

VT - The threshold voltage of a field-effect transistor is the value of the gate - source 
voltage when the conducting channel just begins to connect the source and dra in contacts 
of the transistor, allowing significant current. 
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Prac t ica l ly speaking the threshold voltage is the voltage at which there are sufficient 
electrons i n the inversion layer to make a low resistance conducting path between the 
M O S F E T source and drain. 

If the gate voltage is below the threshold voltage, the transistor is turned off and ideally 
there would be no current from the dra in to the source of the transistor. 

In the real world, there is a current even for gate biases below the threshold called 
subthreshold leakage current, it is smal l and varies exponentially w i th gate bias, but it is 
there. 

If the VQS is higher than Vp we can say that transistor is conducting. How well depends 
in reality if it is P M O S or N M O S transistor and also it also depends i f it should conduct 
the logical z e r o ( L O W level) or logical o n e ( H I G H level). 

Abou t P-channel M O S transistor, which is opened by logical zero at the gate, we can 
say, that it degrades logical zero value when it passes through drain-source. 

O n the other hand about N-channel M O S transistor, which is opened by logical one we 
can say, that it degrades logical one value when it passes through drain-source. 

This behavior is quite the same as would happen on poorly opened transistors. Those 
which does not get the exact logical one or logical zero on the gate, but some voltage level 
between. 

Figure 2.12: logical circuit i l lustrat ing problem [17] 

This would not be so much of issue in the past, when relatively high voltage levels were 
used, such as 5 V in T T L ( T r a n s i s t o r - Transistor Logic) . 

B u t i n these days, voltage levels used i n complex integrated circuits such as C P U s 
are much smaller. For example ultra-low-volt age C P U Intel Core i 7 - 6 2 0 U M operates on 
0.725 - 1.4 V at frequency 1.07 G H z , while it is manufactured by 32 n m technology. 
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P M O S abstraction 

• opened by logical zero at the gate 

• closed by logical one at the gate 

• i n fully opened state degrades logical zero ( L O W ) 

• if logical level on gate is degenerated above selected threshold transistor is switched 
into par t ia l ly opened state 

• if the gate is disconnected (high impedance state = Z) transistor is set into X state, 
which is unknown but may behave in similar way as par t ia l ly opened 

• in the par t ia l ly opened state degrades both logical one and logical zero 

Figure 2.13: P M O S schematic symbol 

N M O S abstraction 

• opened by logical one at the gate 

• closed by logical zero at the gate 

• i n fully opened state degrades logical one ( H I G H ) 

• if logical level on gate is degenerated above selected threshold transistor is switched 
into par t ia l ly opened state 

• if the gate is disconnected (high impedance state = Z) transistor is set into X state, 
which is unknown but may behave in similar way as par t ia l ly opened 

• in the par t ia l ly opened state degrades both logical one and logical zero 

Figure 2.14: N M O S schematic symbol 
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Historical progress, integration scale rising 

A s the progress i n the manufacturing of integrated circuits continue, the devices(transistors) 
are becoming smaller and smaller. W h e n we are reaching the molecular level, the problems 
such as variat ion i n transistor attributes can become more important . Us ing conventional 
methods it would be quite hard to design circuits, which can be more tolerant to these 
arising problems. B u t using automated design, s imulat ion and evaluation of the circuits for 
example by evolutionary algorithms can br ing new circuit designs more tolerant to intrinsic 
variat ion of devices [18]. 

• 1959 - single transistor : 1 

• 1960 - logic gate : cca 4-10 transistors 

• 1964 - SSI - smal l scale integration : up to 10 gates 

• 1967 - M S I - medium scale integration : 10 - 100 gates 

• 1972 - L S I - large scale integration : 100 - 1000 gates 

• 1978 - V L S I - very large scale integration : 1000 - 100 000 gates 

• 1989 - U L S I - u l t ra large scale integration : 100 000 and more gates 

• late 1990s - S L I / S O C - more than 10 mi l l ion gates 

1950 1960 1970 1980 1990 2000 2010 
Year 

2020 

Figure 2.15: Integration scale progress [5] 
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Chapter 3 

Review of previous work 

Here we w i l l review what was already done in the area of conventional and unconventional 
transistor-level design of V L S I d ig i ta l circuits before this work. A lbe i t it is unusable to 
include everything what was done i n this area, significant techniques and approaches are 
reviewed here, concentrating on C M O S technology. A s far as is known to this day, conven
t ional or even unconventional transistor-level design was used only to create or optimize 
relatively smal l d ig i ta l circuits. Let ' s mention some of these circuit types: 

• invertor ( N O T ) 

• A N D , N A N D 

• O R , N O R 

• X O R , X N O R 

• H A - half adder 

• F A - full adder 

• R C A - ripple carry adder 

• C S A - carry save adder 

• combinational multipliers 

• and many others 

W h e n a design or opt imizat ion of certain circuit on transistor level is started, there are 
usually some constraints, which are to be met. Let ' s cal l them cri teria of opt imizat ion. 
These cri teria can be quite simple, such as min ima l transistor count, or high reliability, 
var iabi l i ty tolerance and etc. [18]. 

O n the other hand they can be also multi-objective, where fitness of proposed transistor 
circuit should met several requirements at the same time [14]. 
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Let 's list the important ones: 

• m in ima l transistor count 

• m in ima l area usage 

• full output voltage swing 

• var iabi l i ty tolerance 

• low dynamic power consumption 

• low static power consumption 

• high max ima l operation frequency 

• m in ima l delay i n cr i t ica l path 

• rel iabil i ty 

• hazard free solution 

• and some others 

minimal transistor count 

This is quite simple criteria, usually it has direct influence on some other characteristics, 
conventional designs have usually certain almost min ima l number of transistors, but they 
have few more than is achievable min imum, for several reasons such as design method 
technique or s tabi l izing circuit behavior and etc.. 

minimal are usage 

A r e a or even volume covered by specific circuit , we can say that this metric direct ly corre
lates wi th transistor count, but it is definitely not the same one. For example due pathways 
interconnecting transistors. 

full output voltage swing 

P T L - Pass Through Logic - this is technique or let's say design approach where is signal 
passed through transistor, instead of applying signal on the gate of transistors controll ing 
interconnection from VM or GND to an output ( typical C M O S switch). Th is creates 
circuits which does not provide full output voltage swing, but can achieve for example lower 
power consumption and even eliminate shortcuts which can be experienced i n conventional 
inverter design, when both transistors are switching at the same time, they can for very 
short amount of t ime interconnect Vdd directly to GND. 

variability tolerance 

W h e n the manufacturing of transistor devices is reaching molecular level, differences be
tween transistors i n circuit are becoming more and more important . Here we can mention 
for example random dopant fluctuations, oxide layer thickness, line edge roughness and 
etc.. Var iab i l i ty tolerance means, that circuits designed wi th var iabi l i ty tolerance in mind , 
w i l l work correctly even at the circumstances where transistor var iabi l i ty is higher. 
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low dynamic power consumption 

Dynamic power consumption is experienced, when transistors are switching, usually it 
is result of input value change, clock line change and etc. The quite important here is 
el iminat ion of brief shortcut leakage typica l for C M O S switches. 

low static power consumption 

Static power consumption is experienced, when transistors are i n a stable state, opened or 
closed. Higher power consumption at this state can be caused by control voltages too close 
to voltage threshold causing transistors to be poorly closed or poorly opened creating a 
leakage. 

high maximal operation frequency 

It is quite typica l requirement. There are many things which have influence on max ima l 
operating frequency of a circuit . Including power dissipation, capacitance, physical layout, 
signal delays and etc. 

minimal delay in critical path 

M i n i m a l delay i n cr i t ica l pa th enables circuit to achieve lower latency and i n some cases 
higher achievable operating frequency. 

reliability 

Rel iabi l i ty is quite wide requirement, it should be further specified to concentrate on de
scribed special cases. We can mention rel iabil i ty handling thermal differences, input voltage 
variat ion, input signal variat ion, E M interference and etc. 

hazard free solution 

Logic hazards are manifestations of a problem in which changes in the input variables do not 
change the output correctly due delay caused by logic elements or at lower level, transistors. 
Th is results i n the logic circuit not performing its function properly. The most common 
kinds of hazards are usually referred to as static, dynamic and function hazards. 

others 

After these opt imizat ion parameters of course there can be special requirements, such as 

• fault tolerance 

• l imi ted radiat ion immuni ty 

• wider range of operation temperature 

• etc. 

but this is an area exceeding this work, and this w i l l not be discussed here i n detail . 
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3.1 Conventional design of digital VLSI circuits 

To meet some of earlier mentioned requirements by conventional way of designing integrated 
circuits it was great challenge for circuit designers, especially at the transistor level of design. 

Conventional designs are usually opt imized only for one or very few cri teria at the same 
time. For example the work oriented on design of low power adder, which were meant to 
be used i n combinat ional multipliers [17] mentions designs which size is varying from 10 
to 12 transistors. Opt imiza t ion cri teria were aimed on low power consumption, min ima l 
transistor count. After designs were finished the comparison between designed circuits also 
included delay and output voltage swing addit ional ly to original 2. 

It presented interesting approach called P T L ( P a s s Transistor Logic) where pass tran
sistor is used instead of C M O S switch. 

Also identification of Vr loss problem was helpful for realization what causes failures of 
evolutionary designed transistor level circuits using naive switch level fitness evaluation. 

Al though it achieved some level of success, it illustrates the need of hierarchical approach 
in the conventional design. The mentioned work aimed higher i n complexity than typical 
conventional design on transistor level, which usually end at gate circuit design. B u t it 
reaches its l imits at the complexity designing 1-bit full adders. 

3.2 Transistor-Level Evolution of Digital Circuits Using a 
Special Circuit Simulator 

A n evolutionary algori thm was used to design digi ta l circuits at the transistor level. V a r i 
ous static C M O S circuits which used up to 4 inputs were evolved. The usage of specialized 
circuit simulator, which worked wi th quite abstract representation of a transistor allowed to 
search through space of solutions faster than it would be achieved by conventional S P I C E 
simulator [19]. 

In order to quickly evaluate candidate circuits, new simulat ion tool was developed, 
allowing speed up at two orders of magnitude compared to conventional S P I C E simulator. 
B u t at the end, where the best candidate solutions were chosen, S P I C E was needed to 
evaluate circuit behavior i n more realistic manner. D u r i n g this it was found that some of 
designs were not functioning properly. 

Due this problem, some special expert knowledge was used to restrict search space for 
candidate solutions also by special representation of candidate solutions. Restrictions which 
should provide more reliable solutions were following: 

• gates of transistors are connected only to circuit input 

• at least 1 connection to Vcc 

• at least 1 connection to G N D 

• source terminals can be connected to other sources, drains, Vcc or G N D 

• drain terminals can be connected to other sources, drains, Vcc or G N D 

• it is not possible to connect P M O S to G N D 
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• it is not possible to connect N M O S to Vcc 

B u t it is questionable, i f these restrictions are not too l imi t ing i n the a im for more 
complex circui t ry designs. 

It also was found, that it can be useful to provide inputs i n direct way accompanied by 
their complements (double size of input vector). 

The scalabili ty of representation and scalabili ty of fitness calculat ion were identified as 
major problems of evolutionary approach. 

Proposed simulation method 

The specialized proposed simulator uses quite abstract representation of M O S transistors, 
where N M O S 

• has 3 electrodes 

• has infinite impedance between drain and source when logical zero at the gate 

• has zero impedance between drain and source when logical one at the gate 

and for the P M O S last two are inverted in the manner: 

• has infinite impedance between drain and source when logical one at the gate 

• has zero impedance between drain and source when logical zero at the gate 

Due further investigation we find this model too much abstract and we decide to apply 
some more details into design of our own transistor representation. 

Proposed circuit representation 

The representation was inspired by Cartesian Genetic Programming. Candidate is repre
sented as a string of integers w i th direct genotype-phenotype mapping [13] [11]. 

Using following encoding: 

• G N D 0 

• Vcc 1 

• F i rs t C i rcu i t Input 2 

• Second Ci rcu i t Input 3 

• n-th Ci rcu i t Input n+1 

• k- th transistor terminal G (electrode) n+1 + k*3 

• k- th transistor terminal D (electrode) n+1 + k*3 + 1 

• k- th transistor terminal S (electrode) n+1 + k*3 + 2 

This representation does not show any major flaw, so it could be adapted by this work 
as potential candidate solution representation. 
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Figure 3.1: Ci rcu i t C G P representation a) T y p i c a l 2-input N A N D gate, b) Chromosome 
representation of 2-input N A N D where the quadruples i n the middle represent ind iv idua l 
transistors - grey circles connect selected genes and their corresponding transistor terminals 
while arrows indicate the connection of the terminals according to genes values [19]. 

Fitness function 

Candidate circuit is evaluated for a l l possible binary combinations of pr imary inputs. The 
results are compared to the reference output defined by a designer [10]. 

If generated output matcher the reference output, the fitness value is increased by 1. 
If the value matches only par t ia l ly for example weak 1 instead of strong 1 only 0.75 is 

added to fitness value. 
H igh impedance (Z) at the output adds only 0.5 to fitness value. 
A n d undefined (X) value subtracts 0.5 value from fitness. 

Rare output combinations 

In some special cases it is hard to reach solution using only this standard fitness evaluation. 
For example we w i l l take a look at 4-input N O R gate. Th is circuit is special i n the way 

that only for one input combinat ion output is different then for rest 15 input combinations. 
Evolu t ion usually finds the par t ia l solution in case of example 4-input N O R gate. There

fore we need to encourage the evolutionary algori thm into finding the last part, for example 
by specially adjusted fitness function which put more weight into this rare si tuation (0000 
resulting into 1). 

In original paper there was also mentioned usage of some vir tual / fake constant input 
supporting the search for full solution of the rare combination problem. 
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Chapter 4 

Simulation of circuits 

Precision of physical s imulat ion versus computat ional time, that is one of the trade-offs 
which we w i l l discuss here. In the past due memory and computat ional power l imitat ions 
gate-level simulations have been usually performed for larger circuits. A l though some other 
methods have been developed. We do not live i n times when computat ional power was a big 
issue anymore, but s t i l l we look for efficient way to simulate d igi ta l transistor circuits. W h e n 
we would need to simulate only few (dozens) d igi ta l circuit at a transistor level we could 
use very precise simulations such as are those provided by S P I C E software. So why we care 
here so much about efficiency and computat ional t ime ? O f course everybody likes fast and 
efficient programs but the point here is, that if we want to use automated design process, 
the algori thm needs to evaluate circuit pract ical ly after each change i n design. A n d now 
imagine, that we use evolutionary algori thm, more precisely genetic a lgori thm or Cartesian 
genetic programming. It means, that computer performing the algori thm is not very far 
from b l ind search inside possible solutions space. There is very l i t t le of expert knowledge 
put inside design algori thm and it produces even hundreds of candidate solutions each 
generation(iteration). Where generations needed to achieve proper and opt imal i ty close 
solution can go to thousands and even tens of thousands. 

Simulat ion at a gate-level for M O S ( m e t a l oxide semiconductor) technology is not very 
appropriate level of abstraction. M O S technology circuits may contain ratio-ed logic and 
pass transistor experience bidirect ional signal flow, transistors may also exhibit charge shar
ing effect and etc.. Gate-level s imulat ion w i l l show completely unacceptable at modeling 
M O S technology failures adequately. 

Therefore switch level s imulation presented by Bryant was created and used, but in 
1993 was encountering computing effeciency problems due high memory requirements. 

4.1 Idealistic simulation 

In the case of gate-level simulation, we would be able to perform great part of evaluation 
just using binary s ta tes(0/ l ) . A n d when we would like to go l i t t le further, we could use 
(X) as representation of unini t ia l ized, unknown or unconnected value. 
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4.2 Simulation used by Žaloudek 

In order to quickly evaluate a candidate circuit , a circuit simulator was developed which 
works at the level of simplified models of P M O S and N M O S transistors [19]. 
The simulator operates wi th six logic levels (ordered by voltage to G N D ) : 

• strong 1 

• weak 1 

• Z 

• weak 0 

• strong 0 

• X 

The simulator works directly wi th the proposed circuit representation which was men
tioned earlier i n the chapter (3). 

Propagation of the signal 

A t the beginning of simulation, a l l values of source/drain/output terminals are set to high 
impedance and the pr imary inputs are set according to a given training vector. F i r s t , the 
path of the strong 1 signal is followed from Vcc node through al l the connections. 

The values on the terminals on the way are updated to strong 1. Drains and sources 
are considered to be identical from the function point of view. B o t h sides (drain, source) 
work identically from the viewpoint of microelectronics. 

W h e n the signal reaches a transistor source or dra in the algori thm checks the transistor 
state (logic signal on the gate) and updates its state according to the rule table developed 
for the simulator. The rules reflect the fact, that strong 1 degrades on N M O S or poorly open 
transistors. O n the other hand, strong 0 degrades on P M O S or poorly open transistors. 

If the algori thm recognizes that the transistor is open i n some way, it propagates the 
signal to the other side if it is possible. Note that there is no need to propagate it when the 
signal on the other side is stronger or identical . If the algori thm finds the opposite value or 
undefined valued on the other side, a short circuit is encountered. 

That means, that the output is set to undefined value and the process proceeds wi th 
another t ra ining vector. Otherwise, the signal is followed un t i l it propagates. Then, other 
signals are processed i n the same way (of course, logic 0 propagates from G N D ) i n the 
following order: weak ones, strong zeros and weak zeros. A t the end, the values on the 
output terminals are updated. 

Problem of this method 

The proposed method of s imulat ion is pract ical ly event based one. Event base simulat ion 
cannot handle cycles i n the circuit by itself. It cannot even identify them. Because of this 
the method can effectively works only using restrictions mentioned earlier, such as that 
gates of transistors can be connected only to pr imary inputs and etc. 
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4.3 Multi-level simulation - hierarchical switch level 

Due high memory requirements of switch-level simulation, creating a slowdown in 1993. 
Authors mentioned that circuit regularity and hierarchy must be exploited [15] 

In a bottom-up design system, identification of regularity and its exploitat ion is a diffi
cult problem. 

In a top-down design, regularity and connectivity of circuit are given. Exp lo i t i ng those 
is similar or even equivalent to exploi t ing the design inherent hierarchy. This can be useful 
when large and designs too complex to be handled i n one level. Just t ry to imagine simu
lat ing the whole processor at a transistor-level. Qui te a nightmare, isn't it ? 

Therefor transistor-level blocks are simulated at the switch-level. Us ing the notat ion of 
Bryant , set of discrete values ST = {sfc, Sfc+i, • • • , Sk+i-i} is used to describe transistor 
strength levels. 

Two types of nodes: input nodes - VDD, Gnd, p r imary circuit inputs - assumed to have 
infinite drive capacity sj 

storage nodes - a l l other nodes, which get strengths assigned from SN = { so, s i , . . . , Sk-i} 
reflecting their capacitance to ground values. 

Each node gets assigned state. State consists of two values 

• logic value - element from set {0, 1, X } 

• signal strength - value from ordered set S = {so, s\} 

Also two operators are defined 

• - strength of node 

• - strength of transistor 

A switch level circuit can be described as the directed graph, where: vertices - corre
sponds to nodes i n a circuit edges - corresponds to transistor channels 

Each component of a graph can be solved independently of other components N-type 
transistor is understood to be conducting when its gate has logical 1 state. P- type transis
tor is understood to be conducting when its gate has logical 0 state. D-type transistor is 
understood to be conducting always. N / P - t y p e w i t h X state at its gate is understood to 
be potential ly conducting. 

Some ideas from this simplified s imulat ion method description are used in following meth
ods. 

4.4 Event based simulation 

Intuit ively we could come up wi th idea to use event-based simulat ion. Idea is relatively 
simple. We can represent circuit as a set of nodes. Nodes are interconnected wi th each 
other through transistors. Input nodes comes wi th specified va lues(0/ l ) or for fault testing 
they can be tested w i t h unspecified va lue(X) . 
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W h e n input nodes are ini t ia l ized, a lgori thm creates a list of transistors connected to 
the first node by its gate. We can spread the value of the node to everything connected to 
it. A n d after that we spread the value again and again, updat ing a l l nodes wi th in reach of 
signal. 

A n d if simulated circuit uses unlucky interconnections algorithms w i l l end up in loop. 
Tha t is very unfortunate, because detection of such si tuat ion is quite complicated. We 
would be capable of detecting relatively simple loops, by retracing steps of the algori thm, 
searching for repeated steps. B u t it is not very systematic and also not very computat ional ly 
effective. Not speaking about encountering and dealing wi th more complicated loops which 
would slow down algori thm to unusable levels. 

This type of s imulat ion can be successfully used for many areas, but keeping in mind , 
that we want to simulate and evaluate circuits pract ical ly generated by random(evolution), 
where loops can occur quite often it would be actually very unfortunate to use i t . It could 
be usable for very smal l circuits less than 10 transistors but even there, it would be reaching 
its l imits . 

4.5 Switch-level simulation 

T y p i c a l switch level simulation, where M O S transistor is replaced by the voltage level 
controlled switch between drain and source electrodes, can be used as acceptable simple 
simulation method for certain cases. B u t for evaluation of something more complex, and 
possibly problematic such as automatical ly generated unconventional circuits it would need 
some enhancements. 
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4.6 Circuit signal path-finding simulation 

We propose relatively simple s imulat ion method based on graph circuit representation. 

We can use abstraction look at the transistor and see it as interconnection of two seg
ments, where one segment of circuit (graph) is connected to the drain and other is connected 
to the source electrode. Segments are connected when the transistor is open and discon
nected when transistor is closed. 

If everything goes fine and circuit is electronically correct, pract ical ly a l l conventional 
designs of logical circuits, we start wi tch identifying possible paths from output into any 
signal source. 

Signal source can be: 

• V C C 

• G N D 

• pr imary (circuit) input 

W h e n we search for the paths at first, we see a l l transistors as opened, interconnecting 
their source and dra in segments. 

4.6.1 E l e c t r o n i c va l id i ty 

We should t ry to evaluate i f circuit is va l id from electronic point of view, for this moment 
ignoring input vectors and reference output. We need to find out if there is possible shortcut 
inside the circuit . To do that, we w i l l search for: 

• path from V C C to G N D 

• path from any pr imary input to V C C 

• path from any pr imary input to G N D 

W h e n such path is found al l transistors which are on this way should be putted into 
list coupled wi th this path. For each transistor we need to evaluate his condit ion, if it is 
opened or not. Tha t can be done only by tracing connection from the transistor gate to 
any signal source. W h e n the source. 

A t the end when al l transistor gate paths are found, and there is no cycle. For example 
al l transistor gates are connected directly to the pr imary inputs of the circuit (as is shown 
on following scheme). 

We need to check if there is combination of variable states(inputs) which would lead to 
shortcut. To do that, equations need to be formulated from the circuit path. The serial 
connection of transistors put their gate variables into logical A N D relation and the parallel 
one into logical O R relation. 

Equat ion formulated for showed circuit possible shortcut would be following: 

shortcut = A.B.C (4.1) 

If a l l combinations of input variables are possible or at least if combinat ion A = l , B = l , 
C = l is possible than this circuit should be disqualified completely or there should by strong 
penalty for this candidate solution when evolution design process is used. 
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Figure 4.1: pr imit ive shortcut able circuit 

4.6.2 S igna l p a t h eva luat ion 

If everything went fine and circuit does not contain shortcut from V C C to G N D and is 
otherwise electronically correct, we start wi tch identifying possible paths from output into 
any signal source. 

For the signal path finding for example B F S (Breadth Fi rs t Search) algori thm can be 
used. 

Where there is no path to any signal source from the circuit output, there output w i l l 
be evaluated as high impedance (Z) for a l l input combinations. 

For example lets say, that input B = notA, it means, that circuit cannot experience 
shortcut now. So to evaluate signal path we now bu i ld equations for each path to signal 
source. 

• shortcut = A . not A . C = > impossible 

• out = 1 if D . A = 1 

• out = 0 if B . not A = 1 

• out = Z if not D + not A . not C = 1 

W h e n the first path is found, we could t ry to go deeper and check if there is another 
path connecting output into different signal source. 

W h e n the cycle / loop is identified during signal path search the signal has to be set as 
undefined (X) for the resulting output. 

W h e n this paths are found and circuit is evaluated using ideally conducting transistors 
and for each input vector is computed the result of the circuit output. The output of 
circuit is compared wi tch requested referential one. For each match fitness value of the 
circuit candidate is increased. 
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4.6.3 Imper fec t ion cons iderat ion 

W h e n we have equations and paths found i n the circuit , and we also have idealistic fitness 
value of the circuit . It is t ime to start take imperfect conduct ivi ty of each type of transistor 
into consideration. 

For each N M O S leading to V C C or logical one from pr imary input there should be 
penalty applied and the same should happen for each P M O S leading to G N D or logical 
zero from pr imary input there should be penalty applied too. 

This method allows us also quickly evaluate circuit for shortcuts and even power leakage 
by finding the way from Vcc to G N D , or from Vcc , G N D to pr imary input. 

4.7 Specialized SPICE simulator 

For high precision simulat ion quite complex simulator should be used. H i g h precision but 
usually brings also relatively long computat ional t ime. Because of this, a complex electronic 
circuit simulator such as S P I C E is, should be used only there, where it is computat ional ly 
affordable. Us ing S P I C E for the fitness evaluation of each generated circuit by evolution 
algori thm is actually possible but it is far from computat ional ly efficient solution. 

Therefor S P I C E (i.e. n g S P I C E ) should be used only for subset of generated circuits. 
Th is subset should be determined by faster s imulat ion method proposed earlier i n this 
document. O n l y circuit solutions which were successfully evaluated by faster more abstract 
simulation should be placed into this subset. 
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Chapter 5 

Evolution 

5.1 Evolutionary computation 
Evolut ionary computat ion can be described as usage of evolution principle for solving com
putat ional problem. Solving computat ional problems which are not characterized as easily 
solvable just by applying deterministic algori thm may be solved by artificial intelligence. 
Ar t i f i c i a l intelligence is something what can be t r icky to define. O f course we have Tur ing 
test definition and many other definitions, which usually correlate w i th each other, but they 
also differ one from another. For the s implic i ty sake, we w i l l describe artificial intelligence 
trough its observable behavior. We may consider to look at certain act ivi ty which is usually 
described by sequence of actions, as manifestation of artificial intelligence. If such act ivi ty 
would be performed by human and we would in that case consider it as expression of in 
telligence. This leas us to question, i f we should consider evolution to be part of artificial 
intelligence. It is usually categorized as such and there are some reasonable arguments for 
this choice [16]. 

Now we w i l l take short look at natural inspirat ion for evolutionary computing. 

Natura l evolution 

Evolu t ion as itself in natural conditions may have some goal or it may not. It depends on 
point of view. B u t this is something we w i l l not discuss further and we w i l l concentrate on 
evolution as inspirat ional process for solving tasks, which were usually solved by engineers 
or by other approaches from artificial intelligence area. 

Accord ing to evolutinary theories based on neo-darwinism, natural evolution chooses such 
individuals . W h i c h are offspring of parents which have successfully accomplished two tasks, 
to survive long enough to reach reproduction age, and then reproduce itself [12]. How well 
they accomplish this task is something we mark as their fitness. 

The offspring are almost exact copies of their parent i n case of asexual reproduction, e.g. 
bacterial reproduction. Or they share part of each of both parents. Introducing crossover 
as useful genetic operation. Even so i n both cases, process of copying is never perfect 
and some errors are always present. We cal l them mutations. If such mutations do too 
much damage to organism, it w i l l usually die before it reaches its reproduction age. If 
it brings some beneficial feature, for example organism w i l l grow for example about 10% 
faster, it w i l l reach reproduction age earlier, and may have more offspring it increases the 
organism's fitness. Usual ly many mutations are mostly neutral . It means, they do not 
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affect the organism's fitness in any way. B u t together w i t h some other mutations maybe 
few generations later it might. 

This is very simplified description but as a principle introduct ion of evolution it should 
be sufficient. So now we know something about natural evolution. Lets take a look how it 
can be used for solving engineering tasks. 

5.2 Evolution as a design process 

Evolut ionary computat ion can be used in several areas where usually engineer do the work 
but using very conventional design methodologies, which can produce designed systems far 
from the op t imal solution. 

That is the goal of this work, to provide system, which would be able to optimize and 
design digi ta l circuits on lower level, the transistor level, where engineers encounter their 
l imits and usually return back to design on the gate-level. W h e n finished, gates are just 
replaced wi th their conventional transistor designs each alone, missing the possibil i ty to 
optimize circuit in whole picture as a transistor circuit . 

A l g o r i t h m 

Evolut ionary algori thm is term, which covers set of stochastic search algorithms. This set 
of algorithms has following features i n common: 

• they use populat ion of candidate solutions 

• they use approach for creating candidate solutions which is inspired by biology 

A t the beginning of of evolutionary algori thm in i t i a l populat ion is created. Th is popu
lat ion contains preset number of candidate solutions. 

The in i t i a l populat ion can be created by random process or it can be created by proper 
heuristics. For example it can contain already known solutions or par t ia l ly correct ones. 

In each step (generation) of evolutionary algori thm are a l l candidate solutions evaluated 
by fitness function. 

Fitness value represents how good candidate solution is. In evolutionary biology it 
represents its abi l i ty to survive and reproduce itself. 

Each new populat ion is created by following approach. A t first proper candidates are 
selected from current populat ion. Then those candidates w i l l form set of parents for new 
populat ion. New candidates are created from parents by applying genetic operators such as 
crossover and mutat ion. Then new populations is selected from parents and new offspring. 
How it w i l l be done depends on used selection algori thm. If this algori thm is designed 
properly, then average fitness of populat ion w i l l be increasing. 

Due usage of fitness function selection pressure occurs in the process. Th is leads search 
into more convenient areas of search space. 

The applicat ion of selection algorithms and genetic operators are not deterministic. 
They works w i th embedded randomness, which can be set or controlled by user. 

A l g o r i t h m is terminated if solution wi th sufficient fitness was found or i f max ima l num
ber of generations were exceeded. 
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Generic evolutionary algorithm 

t = 0; 

P ( t ) = create_ in i t ia l_populat ion; 
evaluate P ( t ) 

while(not f inished){ 

Q(t) = select_parrent( P ( t ) ); 
Q_new(t) = procreate_new_offpring( Q(t) ); 
evaluate_population( Q(t) ); 
P ( t + 1) = select_individuals_for_new_population( P ( t ) , Q_new(t) ); 

} 

Fitness value can be expressed i n different ways. The most generic is raw fitness, which 
is expressed in numbers natural for specific problem domain [13]. 

Fitness value can be also standardized, i n a way that smaller number means better 
solution. It can be also normalized into interval < 0,1 > W h e n normalized fitness is used, 
than fitness value of better candidate is always higher than worse one. A n d summary over 
al l candidates is equivalent to 1. 

The quali ty of evolutionary algori thm is strongly influenced by problem encoding, design 
of fitness function and by used genetic operators. 

In the typica l opt imizat ion problem parameters of opt imized function represent directly 
candidate solution. Because we w i l l not use evolutionary algorithms only for opt imizat ion 
but also i n design process. We should take a look at possible problem representations. 
Encoded candidate solution in area of evolutionary computing is usually called genotype or 
chromosome. Chromosome is composed from sequences of genes. If we use binary encoding, 
then chromosome is pract ical ly sequence of bits. Where each bit has a function of gene. 
The most common is usage of binary, integer or floating point representation or even its 
combination. In genetic programming are usually used more complex structures such as 
graphs for example. 

For evolutionary design it is appropriate to dist inguish between genotype space and 
phenotype space. Phenotype is directly equivalent w i th the object of evolution design. 
Where genotype may represent it in indirect way, for example in sequence of instructions 
how to construct such object. B u t it is also possible to use direct representation where 
genotype and phenotype are equivalent. 

5.2.1 V a r i a n t s of evo lu t ionary a lgor i thms 

Here we w i l l mention some of commonly used variants of evolutionary computation: 

• evolutionary algorithms 

• evolutionary strategies 

• evolutionary programming 

• genetic programming 
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A s long as we need only introduct ion to evolutionary computat ion here, the following 
text w i l l concentrate mainly on methods useful for d ig i ta l circuit design. 

For more information about evolutionary computat ion in general, for example this pub
licat ion can be consulted [10]. 

Genetic algorithm 

Genetic algori thm was designed by John Hol l and during process of artificial system adapta
t ion research. Its basic variant have the same structure as generic evolutionary algori thm, 
which was mentioned earlier. Candidate solution is represented by chromosome of constant 
length. The in i t i a l populat ion is generated randomly. Candidates selected by selection 
algori thm are then based on certain probabil i ty modified wi th genetic operators: crossover 
and mutat ion. It can work i n generation oriented variant, where only new candidates are se
lected to new populat ion. O r it can also work i n generation overlapping mode, if candidates 
from previous and current populat ion are both present i n the new populat ion. 

Evolut ionary strategies 

Evolut ionary strategy is method which was first used for opt imizat ion of complicated engi
neering tasks i n area of aerodynamics. For this method is typical , that it optimizes vector 
of floating point parameters. The basic variant of evolutionary strategy uses only mutat ion 
operator. M u t a t i o n here uses Gaussian layout of probabil i ty and values generated accord
ing to this layout are added to parameter values of selected parent. Crossover is rarely used 
in this method. 

Evolut ionary programming 

Evolut ionary programming have many features i n common wi th evolutionary strategies, 
although it was designed independently by Lawrence Fogel which used mutat ion based 
approach for evolution of predictors, which were implemented as finite state machines. 
Evolut ionary programming typical ly uses application specific representation of problem, 
auto-adaptation and tournament selection. Crossover is usually not implemented. 

Genetic programming 

Genetic programming was invented as one of evolutionary algorithms and it was further 
developed mainly by John K o z a . The purpose of this method is not only to find opt imal 
parametric values, which are encoded i n a chromosome, but automatical ly generate whole 
programs. 

The original work was done on programs implemented in functional programming lan
guage L I S P , which is very suitable for work wi tch tree-like structures. 

A l g o r i t h m of genetic programming is in principle the same as one mentioned as generic 
evolutionary algori thm. B u t the representation is something very different. Genetic pro
gramming works wi th executable structures, most commonly programs represented like tree 
graphs. 

Genetic operators, mutat ion and crossover are both used here. A l so some new problem 
specific operators can be used, for example subroutine construction. 

For the fitness evaluation candidate program is executed for defined set of inputs. The 
program outputs are compared to referential output definitions and fitness is computed. 
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5.2.2 C a r t e s i a n genetic p r o g r a m m i n g 

Cartesian genetic programming was first t ime mentioned by M i l l e r and Thomson i n 1999. 
It is variant of genetic programming, where candidate solutions are represented as generic 
or oriented graphs. 

It uses usually direct genotype-phenotype representation of the circuit elements and 
their connections. Th is is in contrast to bui ld ing a tree based on indirect genotype repre
sentation of the result, which is common for genetic programming. 

Accord ing to [11] C G P can be used for many tasks, such as: Machine Learning, Neura l 
Networks, Ar t i f i c i a l Intelligence, D a t a M i n i n g , F inanc ia l prediction, Funct ion opt imizat ion, 
Classification, Electronic circuit design, medical diagnostics, evolutionary art and music, 
etc., the list is endless. 
B u t it was invented by Ju l i an M i l l e r and was developed from a representation of electronic 
circuits devised by Ju l i an M i l l e r and Peter Thomson developed a few years earlier [4]. 
W h i c h makes it perfectly tailored for our transistor-level designing system. 

To encode transistor level circuit we could use several possible representations for evo
lut ionary algori thm. Encod ing could be using: 

• direct representation 

• constructive representation - instruct ion how to bu i ld a circuit 

• hybr id representation - combinations of direct and constructive representation 

Real ly used representation of circuit is i n detail described in following chapter about im
plementation. 

It should be mentioned that also evolutionary process can be done by very different 
ways wi th regard to, what type of s imulat ion is done. Evo lu t ion can be as: 

• extrinsic - circuits are be simulated by software 

• intrinsic - circuits are represented and simulated in F P G A or F P T A 

• mixtr ins ic - combination of both 

We w i l l focus on evolution i n software, which have certain benefits, such as scalability, 
selectable level of precision but it also have certain drawbacks such as possibly longer 
simulation t ime or too high abstraction, and it can invent solutions, which may not work 
in real world. 
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Chapter 6 

Implementation 

The main features of implementat ion w i l l be described here. We w i l l not discuss every detail 
but we w i l l focus on important parts. The goal of this project was to design and implement 
evolutionary based designing system for transistor c i rcui t ry design. The implementat ion 
consists of several important parts. 

• path search algori thm 

• circuit s imulat ion 

• shortcut detection 

• fitness evaluation 

• evolutionary algori thm 

Because of computat ional efficiency was one of the pr imary requirements on the system 
C + + programing language was chosen for the implementation. The C language was also 
considered, but due high complexity of the system it would not be proper choice for code 
maint ainability. 

It is maybe not so obvious, but circuit s imulation is probably the most complex and the 
biggest part of implementation. Ci rcu i t simulator implementat ion can be quite challenging 
task just by itself and when we need to make it efficiently cooperating wi th evolution it is 
even more challenging. C i rcu i t simulator which does not need to cooperate w i th evolution 
can be slow and precise. B u t both of these, slowness and precision, work against efficient 
evolution process. 

The reason against slowness is quite obvious, we need to simulate and evaluate hundreds 
of thousands candidate circuits, so the t ime consumption is cr i t ical . 

The reason against precision is l i t t le more intr iguing, precision usually goes hand-by-
hand wi th slowness, this is true, but it is not what we have i n mind . W h e n high precise 
s imulat ion is used the area of possible solutions is highly l imi ted . O f course it is l imi ted 
to circuits w i th the highest probabil i ty for correct behavior i n reality. It is something 
we need, but we need it usually near the end of evolutionary process. W h e n we use this 
precise approach lot of possible candidates are discarded. Lo t of those, which could lead by 
mutations to efficient and i n reality correct solution. Where higher precision have tendency 
to push evolution algori thm to local m i n i m u m and sometimes even br ing evolutionary 
process closer to random search like behavior. 
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Also high precise s imulat ion can br ing us solutions, which w i l l work correctly i n sim
ulat ion and even i n reality w i th technology used i n simulation, but it may not work wi th 
different physical size of transistors, different physical layout, capacitance or frequency. 

So now we should have some idea why we w i l l work more wi th heuristics and abstrac
t ion than real world simulation. The proper level of abstraction is the cr i t ical part which 
determines i f the evolution w i l l find solutions in acceptable t ime but also i f found solutions 
w i l l work i n chosen M O S technology. 

6.1 Circuit representation 

Circu i t representation could have been done by many ways, we could choose to use direct 
simple encoding, where circuit representation would be exactly equivalent to its chromosome 
representation. 

Let 's say it would be possible to encode each transistor as four integers or even bytes, 
where numbers would be equivalent to: 

transistor[4] = {t_type, t_dra in , t_source, t_gate }; 
c ircui t [ trans is tor_count * 4] = {tO_type, tO_drain, tO_source, tO_gate, 

t l_ type , t l _ d r a i n , t l_source , t l_gate , . . . 

This simple encoding can be quite efficient for simple numeric operations, random ac
cess, and pract ical ly a l l parts of evolutionary algori thm, except for the candidate fitness 
evaluation. 

T y p i c a l operations done wi th chromosome, such as copy, mutat ion, or i n some cases 
crossover are usually quite cheap when we count computat ional t ime. The fitness evaluation 
is the t ime consuming part of the process. Th is mean, that we should use representation 
more suitable for fitness evaluation in other words, for circuit s imulation. 

We have decided that it would be wise to implement circuit as object instead of using 
1:1 chromosome - circuit mapping. There are several arguments to support this approach. 

If we would not chose this object oriented approach there would have to be many 
structures mapped to each other s imply by indexes. Th is does not sound too bad, but w i th 
rising complexity of evaluator it would make upgrades or different regimes quite difficult to 
implement and maintain. 

W h e n we have circuit represented as object, we can also efficiently store everything 
what was already computed: referential function table, input output table, shortcut paths, 
output signal paths, inside nodes signal paths, fitness, used transistor count, number of 
output bit degenerations, etc. 

W i t h those informations already computed and stored we can save some computat ional 
t ime when we w i l l need them i n future. We can even take this approach further, we 
can concentrate on creation of next generation but more impor tant ly evaluation of that 
generation and maybe we can save some computat ional t ime there. Let ' s see why this 
may be possible. Based on earlier mentioned evolutionary algori thm - Cartesian genetic 
programing, system creates next generation as mutated offspring of the fittest from the last 
generation. Prac t ica l ly each candidate i n new populat ion is copy of the fittest candidate. 
After copy is done, then mutat ion is done. The impact/ influence of mutat ion is based on 
currently chosen m a x i m u m number of mutations. B u t basically only minor part of circuit 
is changed by mutat ion, it is the idea of evolution. This characteristic feature can be 
exploited. Let ' s take a look on how is each new offspring created and evaluated: 
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new_offspring = this->copy (); 

new_offspring->mutate( mutations ); 

new_offspring->compute_paths(); 

new_offspring->compute_fitness(); 

W h e n circuit object is being copied, already computed signal and shortcut paths are 
copied also, or not, based on internal setting variable/compiler directive. Copy ing the paths 
is quite computat ional ly cheap, but without cooperation wi th mutate method it would be 
pure wasting of computat ional time, because after that computed paths would be dropped 
after mutat ion and computed again, even i f almost a l l of them would be the same. This 
leads to opt ional upgrade of mutat ion method, which would mark transistors which have 
been mutated, store their previous connections and efficiently alter only paths which are 
affected by mutat ion. The implementat ion of this upgrade is more challenging than it 
may look like, it is because of plenty evolution modes implemented i n system. Sometimes 
compute.paths () from scratch can be faster than copying them and t ry ing to handle differ
ences, this may occur quite rarely but i n such situations or in si tuat ion which could result in 
looping dependencies differential approach may be replaced by standard compute_paths () 
from scratch. More details about mutations and path computing is mentioned i n following 
sections. Now we w i l l take a look at transistor, the only bui lding block of d igi ta l circuits, 
and its representation in designing system. 

6.1.1 T r a n s i s t o r representat ion 

Transistor by itself is not par t icular ly interesting anymore, but it is more interesting as 
part of circuit . Th is is the point of view which is taken i n this designing system. Each 
transistor is represented by object transistor and it is associated wi th circuit trough 
pointers. Transistor object has several methods but the important core of the representation 
is: 

transistor number 
transistor type {N, P, DISABLED, WIRE > 
drain node 
source node 
gate node 

This is the necessary part for circuit construction. Internally is stored l i t t le more informa
tion, mainly to achieve more efficient simulation, for example these informations: 

transistor state {OPEN, CLOSED, X_STATE, ...} 
last gate state { 0 , 1, Z, X, ...} 

Now would be probably the right t ime to explain, how are transistors connected and how 
they form circuit . 
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6.1.2 N o d e s 

In many implementations of C G P in digi ta l circuit design area, gates or transistor are 
connected to each other directly. It means that each electrode of each transistor or gate 
is direct ly connected to special 'nodes' such as Vcc , G n d , In, Out or directly to electrode 
of another transistor/gate. This results into situation, where complexity of search space is 
directly derived from number of transistors. A l though it may be modified by use of C G P 
grid and l imi ted connection possibilities. 

We have come wi th different approach. The circuit is also represented by interconnected 
transistors, but not directly wi th each other. Transistors are connected to circuit nodes. 
The Vcc , G n d , In and Out are also nodes but there are also regular circuit nodes without 
specialized predefined function. The regular nodes can be useful for several reasons. The 
amount of regular nodes can be exactly specified independently of number of transistors. 
Th is brings possibil i ty to help evolution by specifying for how complex solution we are 
looking for. The number of nodes can be even increased during evolution, which can be 
useful to l imi t search space from start and expand it later. Th is can be efficient t ime saver. 

Another benefit of this representation is that we can easily store node status (present 
logical level). We can also easily mark which node is being evaluated right now. This can be 
useful when circuit contains gate connection loops or node evaluation dependencies which 
could br ing down simulator into program loop. This looping dependency is i n our simulator 
detected and evaluation is done in way which w i l l avoid repeated recursive evaluation of 
such node in other words looping followed by stack grow and segmentation fault. In our 
approach C G P grid may not be necessary, but it may be beneficial and it is optional 
upgrade. C G P grid option means, that we does not have only these 3 layers: 

input layer { VCC, GND, IN_0, IN_1, ...} 
c i r c u i t layer { N0DE_0, N0DE_1, ... } 
output layer { 0UT_0, 0UT_1, ... } 

B u t c i r c u i t layer is d ivided into more sub-layers for example: 

c i r c u i t layer { 
LO { N0DE_0, N0DE_1, ... } 
LI { N0DE_3, N0DE_4, ... } 
L2 { N0DE_6, N0DE_7, ... } 

} 

It is then necessary to associate each transistor w i th some layer. W h e n C G P grid is 
used, then we need to specify interconnection rules to get some benefit of i t . The rules can 
be for example following: 

• transistor's gate - can be connected only to lower level or input layer 

• transistor's dra in - can be connected only to the equal/lower level or input layer 

• transistor's source - can be connected only to the equal/upper level or output layer 

These rules construct circuit as forward signal propagating one, it can be beneficial, 
because we have more exact idea about solutions which can be produced by evolution. B u t 
it can also prevent occurence of new innovative circuit solutions. It is always trade-off which 
needs to be considered. 

W h e n C G P grid is not used, then rules for possible interconnections are quite simple: 
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• transistor's dra in - can be connected to any node 

• transistor's source - can be connected to any node 

If g_evolution_any_gate_input = 1 then: 

• transistor's gate - can be connected to any node 

Otherwise (g_evolution_any_gate_input = 0): 

• transistor's gate - can be connected only to input layer 

This is extremely benevolent set of rules for circuit construction. It brings to us very 
wide search area, where new solutions can be found, but also lot of circuit mutants w i l l 
possibly contain looping dependencies, which simulator have to identify and discard such 
paths wi th X_CONNECTED state of path. This can possibly discard candidate solutions which 
does not necessarily have to be wrong, some of them may even work i n S P I C E simulator, 
but this is the price we pay for speed. B u t it does not have to be bad thing. It can slightly 
reduce group of possible solutions, but it can increase the probabi l i ty that evolved circuits 
w i l l work i n real world. W h i c h was and s t i l l is one of the cr i t ica l problems of transistor-level 
evolution [19] [11]. 

6.2 Path searching algorithm 

This embedded evolutionary circuit simulator is based on innovative signal paths identifica
t ion and evaluation method. It makes path-searching algori thm one of the most important 
parts of this system. 

The purpose of this simulator in the most simplified manner is to compute output vector 
for each input vector. The way how to do it in path-oriented simulat ion is to find a l l paths 
from output to a l l reachable signal sources. A s was earlier mentioned, signal sources are 
V C C , G N D and pr imary inputs. Important thing is, that simulator needs to find all such 
signal paths. 
Searched paths for shortcut detection: 

• V C C G N D 

• IN_0 V C C 

• IN_0 G N D 

• IN_0 IN_1 
• ... 

Searched paths for signal propagation: 

• OUT_0 V C C 

• OUT_0 G N D 

• OUT_0 IN_0 
• OUT_0 IN_1 
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The good question is, how it should be done. W h e n we need al l existing paths. After few 
experiments and analysis, only possible solution we found is Breadth First Search algori thm. 
It is probably only way, how to cover a l l existing paths between two different nodes. 

B F S is well known algori thm, but we w i l l mention the principle behind. B F S starts in 
selected node and it asks for a l l transistors connected directly to this part icular node. For 
each transistor found is started/created new separate path which is stored on stack. Then 
path from top of stack is pulled out. Then B F S asks again for connected transistors to 
last reached node, which are not already present i n the path. For each of these transistors 
current path is copied and transistor is added at the end of path. Then each of these paths 
are pushed into stack. Paths which reaches dead end are pulled from stack and because 
there are no other transistors which could connect them further, they are not returned to 
stack. The paths which reaches target node are copied into vector of complete paths and 
after a l l paths are searched and finished, they are returned. It should be noticed that paths, 
which are exactly the same except for even 1 transistor, are stored fully separately. 

P a t h is basically vector of transistors, more part icular ly transistor object pointers. It 
can be easily transformed into vector of nodes. In this implementat ion path is actually rep
resented not just by vector of transistor, but as an object. It allows to ca l l useful methods, 
such as path->pass( logic_value ), which returns properly decreased/degenerated logic 
value according to type and states of path transistors. 

NAND c i r c u i t example 

TO pMOS 
Tl pMOS 
T2 nMOS 
T3 nMOS 

VCC, 
VCC, 
out_0, 
node_0, 

out_0, 
out_0, 
node_0, 
GND, 

in_0 
i n _ l 
in_0 
i n _ l 

shortcut paths 
VCC GND {TO, T3, T4} {Tl, T3, T4} 
in_0 VCC {} 
in_0 GND {> 
i n _ l VCC {} 
i n _ l GND {} 
in_0 i n _ l {> 

signal paths 
out_0 VCC {TO} {Tl} 
out_0 GND {T3, T4} 
out_0 in_0 {} 
out_0 i n _ l {} 

It may seem that B F S is far from efficient algori thm because of its computat ional 
complexity. B u t as was mentioned, it is only way how to find a l l possible interconnections 
from start node to target node. 

The breadth first search In evolution can be useful to l imi t depth of search for this 
purpose it is possible to set 

BFS_round_limit = 30 .. 1000 
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and a l l circuits which does not match each of its B F S calls under this l imi t is automatical ly 
discarded, and paths which have been looked for are returned as none was found. 

B F S implementat ion in this simulator have to respect certain special situations, for 
example V C C and G N D are from program point of view equivalent w i th nodes, they have 
even node numbers G N D = 0 and V C C = 1. B u t when B F S is searching for path, and 
even if V C C or G N D is not target_node the search should not proceed through them, 
because they are sources of hard signal. It can be just smal l detail but when we search for 
signal paths to output, we start search always from output node to signal source. In typical 
transistor circuits it may save some time. 

BFS(start_node, target_node, c i r c u i t ) 

The paths are stable, they do not change dur ing simulat ion. The conduct ivi ty of those 
paths is the thing, that is different for different input vectors. This means, that paths 
should be precomputed first and stored, because they are the same for a l l possible input 
combinations. 

The conduct ivi ty of these paths, is something that should be evaluated separately for each 
input vector. In other words it leads us towards circuit s imulation. 

6.3 Simulation : signal paths evaluation 

Simulator can work in two main modes/regimes. In idealistic mode, where transistor is 
considered to be perfectly conductive voltage controlled switch. O r i n more realistic mode, 
where transistor V% loss technological flaw is taken into consideration. 

g_degenerative_logic = .. // 0 = i d e a l i s t i c // 1 = r e a l i s t i c 

6.3.1 L o g i c a l value degenerat ion 

Logic/vol tage state/value is represented i n simulator by integer variable, which is computa
t ional ly much more efficient on t radi t ional C P U s than floating point representation, which 
could on other hand represent almost exactly voltages i n fractions of volts. 

To respect Vt loss technological feature of M O S transistors the simulator can represent 
logical value between full voltage(logical one) and zero voltage(logical zero) into range of 
right now 20 values: 

STR0NG_0NE 30 
(ONE with 1 degeneration) 29 
(ONE with 2 degeneration) 28 

STR0NG_X 20 

(ZERO with 1 degeneration) 12 
(ZERO with 2 degeneration) 11 
STR0NG_ZER0 10 

This range have been proven to be more than sufficient, i n s imulat ion of circuits, which 
should work i n real world i n voltage range from 5.0 V down to 1.3 V . 
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In si tuation where none of above mentioned node logic states are suitable to represent 
node situation, there are also special node states for this purpose: 

X (undefined value) 
Z (high impedance) 
S (shortcut) 

The logic state degeneration can be caused by several situations. A t first we w i l l consider 
M O S technology feature and degeneration w i t h va l id logic state on transistor gate: 

pMOS leading ZERO with v a l i d ZERO on gate -> ZERO +1 
pMOS leading ONE with v a l i d ZERO on gate -> ONE 

nMOS leading ZERO with v a l i d ONE on gate -> ZERO 
nMOS leading ONE with v a l i d ONE on gate -> ONE -1 

W h e n already degenerated logic value is conducted trough drain-source channel it may 
of course degenerate further. 

B u t it is not only possible situation, which w i l l result into logic value degeneration. The 
situation where degenerated logic value occurs on transistor gate electrode is another case. 

pMOS leading ZERO with degenerated ZERO on gate -> ZERO -1 -DEG 
pMOS leading ONE with degenerated ZERO on gate -> ONE +DEG 
pMOS leading ZERO with degenerated ONE on gate -> pa r t i a l y closed 
pMOS leading ONE with degenerated ONE on gate -> pa r t i a l y closed 

nMOS leading ZERO with degenerated ZERO on gate -> pa r t i a l y closed 
nMOS leading ONE with degenerated ZERO on gate -> pa r t i a l y closed 
nMOS leading ZERO with degenerated ONE on gate -> ZERO +DEG 
nMOS leading ONE with degenerated ONE on gate -> ONE -1 -DEG 

(for each logic gate value degeneration l e v e l DEG coeficient i s increased) 

W h e n transistor encounters highly degenerated logic level it is switched into X_STATE 
which represents par t ia l ly possibly opened state somewhere between OPEN and CLOSED. Th is 
behavior can differ widely based on used transistor technology and applied Vcc voltage, so 
this is something that should be checked and correlated wi th chosen Vcc and technological 
parameters. 

Current settings looks val id for Vcc = 1.8 V according to precise analog-like simulation. 
Special situations which more than classical degeneration cause hardly predictable or 

unpredictable logic value propagation trough transistor are following: 

pMOS leading ANYTHING with X on gate -> X 
nMOS leading ANYTHING with X on gate -> X 

pMOS leading ANYTHING with Z on gate -> X 
nMOS leading ANYTHING with Z on gate -> X 

( a l l these situations switch transistor into X_STATE} 
(anything != Z) 
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From theoretical point of view, high impedance on gate can cause, that transistor may 
stay i n last state, which was present on gate before, thanks to its capacitance. B u t it would 
not be wise to rely on it i n design process, so it is treated equivalently wi th si tuation, where 
logic state of gate is unknown —>• propagating X. 

6.3.2 P a t h eva luat ion 

We have seen that signal degeneration can be quite complex problem and it is necessary to 
take it into consideration, when paths conduct ivi ty is evaluated. 

W h e n we want to obtain output logic states the simulator has to evaluate paths from 
each output to a l l possible signal sources. Those paths, starting from circuit output and 
ending i n signal source, are precomputed according to previously mentioned algori thm. 

This simulator w i l l evaluate one output after another i n r ising order. For each combi
nation of output and signal source are paths stored separately. 

output_paths[out][signal_source] 

Signal sources are selected one after another, first V C C , G N D and then inputs. For 
output —> signal_source combinat ion the paths are checked for conductivity. Simula
tor asks i f the path is_conduction() . If it does, then simulator w i l l pass( logic_signal 
) t rough that path, and w i l l receive signal, which may be degenerated according to path 
properties, i f degenerativeJogic mode is set. If a l l transistors in the path are i n OPEN state 
then it can be s imply done by counting n M O S or p M O S types of transistors, based on 
passed logic value. 

It is possible to speed up simulation wi th sacrificing some level of precision by taking 
the first conductive path, passing logic level available from signal source and taking it as 
final result and state of output bit for selected input combination. 

g_simulator_take_first_path = 0 / 1 

B u t i f path is degenerative for passed logic value then result of s imulat ion w i l l choose 
the first one found instead of the best one found. More paths leading and conducting at the 
same t ime to one point are correctly simulated i f the result is the least degenerated value. 

Situation, where output would be conductive to the ZERO signal source and at the same 
time to the ONE signal source, is the shortcut si tuation. B u t this something what simulator 
detects and solves by separate paths and functions. In path computing: 

compute_shortcut_paths() 

In simulation: 

evaluate_shortcuts() 
evaluate_current_shortcuts() 

This may not seem so important , but this separation allows to discard circuits w i t h shortcuts 
even without computing and simulat ing signal paths which i n evolutionary process can be 
quite beneficial. 
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6.4 Evolution 

Let 's take a look on the implementat ion of evolution. 
Evolu t ion is process which can be done in many ways we w i l l concentrate on genetic 

programming variant of evolution where the fittest candidate (circuit) . In this variant and 
our implementation, the fittest candidate is chosen from populat ion, and is stored i n special, 
slot which is not encountered i n populat ion size. 

This fittest candidate is chosen purely based on fitness value un t i l first correct solution 
is found. After that there are two conditions for the fittest candidate selection. The 
candidate has to have higher or equal fitness and have to be also correct solution. Even i f 
circuit candidate has higher fitness than fittest in this phase it w i l l not be chosen if it is 
not fully correct solution. Determinat ion i f the solution is correct is done by method 

circuit->is_correct_solution() 

W h i c h takes into consideration how strong degenerations we allow and also how many 
of them i n sum. 

If the current fittest has equal fitness value as the new candidate from younger pop
ulation, implemented system always prefer the younger candidate. It is quite important 
because of accumulating neutral mutations which can lead later to better solution leaving 
the local min imum. 

After first full solution of circuit defined function, the bonus for each DISABLED transistor 
is allowed, leading the evolution process from solution search to opt imizat ion. 

How is fitness computing and rewarding done, is described i n one of the following 
subsections. 

Now we w i l l move to description of basic parameters of evolutionary process. 

6.4.1 E v o l u t i o n parameters 
Evolu t ion process can be parametrized wi th several basic attributes, such as: 

population_size 
generations_count 
max _mut at i on s 

B u t this evolutionary system can be parametrized also wi th more specialized attributes 
relevant for transistor circuit evolution. These following parameters defines borders of the 
search space. 

transistors = 1 .. UNLIMITED 
inputs = 1 .. MAX_INPUTS 
outputs = 1 .. MAX_OUTPUT 
nodes = 0 .. MAX_N0DES 

How many transistor w i l l be interconnected wi th in each circuit is quite important pa
rameter. It has probably the highest influence on t ime needed for circuit evaluation. 

Inputs and outputs are quite obviously specific for each circuit definition, which we 
would like to evolve, but sometimes may be useful to add some extra inputs, which w i l l 
represent inverted values of the circuit real inputs. A n d after evolution is finished, this 
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secondary inputs can be created by manual or automatic addi t ion of C M O S inverters (2 
transistors each). Th is may help to solve certain problematic si tuation which can arise w i th 
complex circuits [18]. We have used this approach also i n gate-level circuit evolution i n our 
previous work. 

The amount of internal circuit nodes is something which is useful for extending or on 
the contrary l imi t ing complexity of search space. 

Circui t function specification 

The function which we want to solve by evolved circuit have to be somehow specified. This 
can be done s imply by using digi ta l function table, where for each input combinat ion is 
specified referential output combination, which should be set on output pins. 

Some evolutionary systems generate a l l possible input combinations leading to 2 m p u t s 

input vectors. Our system uses only input combinations which were specified and requested 
for circuit compliance. 

# function table i n .tct f i l e format (l e f t ) 
# and i n the source code format (right) 
FUNCTION TABLE 

It may happen that i n certain specific functions evolved circuits fails to solve one or 
very few input-output vector specifications. It happens for example in case of 3-input A N D , 
4-input A N D and similar circuit 's evolution. Evo lu t ion usually easily finds solution for first 
15 vectors, but fails to find the last 1. 

AND 4 function table 
0000 -> 0 
0001 -> 0 
0010 -> 0 

1110 -> 0 
1111 -> 1 

To help evolution wi th solving this problem it has proven to be useful encourage system 
to solve problematic input-output earlier or even at cost of disrupting some of already 
solved input-output combinations [19]. It can be done by specifying fitness bonus for such 
problematic vectors. In this system, it can be easily done by dupl icat ing input-output 
combination (line i n function table). 

The attributes, which we have specified un t i l now, are absolutely necessary i n evolu
t ionary search for solution. N o w we can take a look at evolut ion/simulator options which 
can tel l evolution something more about circuit characteristics which we would like, beyond 
the function table. 

00 -> 1 
01 -> 1 
10 -> 1 
11 -> 0 

# IVC-C0, 0 » 
# IVC-C0, 1 » 
# IV ( { 1 , 0 » 
# IVC-Cl , 1}) 

0V({1» 
0V({1» 
0V({1» 
OV({0» 

END 
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6.4.2 E v o l u t i o n opt ions 

Circu i t designer may want to find solution for some specified function, but it may be 
necessary not only to find any correct solution, but also to find solution wi th full voltage 
swing. In other words solution without any degenerated output bits. O r i n other si tuation 
it may be allowed to find circuit w i th some level of degeneration on outputs so it can be 
ut i l ized to find solution wi th lower amount of transistors. 

Lis t of evolution options/modes: 

g_evolution_any_gate_input = 0 / 1 
g_evolution_allow_degenerative_inside = 0 / 1 
g_evolution_allowed_inside_degeneration_per_bit = 0 . . 10 
g_evolution_allowed_inside_degenerations = 0 .. UNLIMITED 
g_evolution_allow_degenerative_output = 0 / 1 
g_evolution_allowed_output_degeneration_per_bit = 0 . . 10 
g_evolution_allowed_output_degenerations = 0 .. UNLIMITED 

any gate input 

If we want very fast and efficient search it is wise to disable any gate input . T h e n a l l 
transistor gates can be connected only to input layer. It may seem very restrictive but 
it actually is sufficient for lot of circuit functions. In some cases for cost of 1 level signal 
degeneration. 

It can be also effective in combination wi th this type of solution stored, and then loaded, 
w i th decreased amount of transistors, nodes, etc. and allowed any gate input option. 

allow degenerative output 

This option affects the evolutionary process only i n si tuation when a l l outputs are correct 
by defined function table, but some may be degenerated. W h e n degenerative output is 
allowed then according to following two options is determined, when the opt imizat ion for 
transistor count w i l l start. 

Al lowed output degenerations l imi t sets how many degenerations can occur on output 
in summary, it does not count only degenerated bits but also level of their degeneration. 

Al lowed output degeneration per bit l imits max ima l level of degeneration on output. 
None of output bit in any si tuation may pass it , i f the circuit should be considered to be 
correct solution. 

allow degenerative inside 

If this option is set, internal node states connected to gates of transistors w i l l switch tran
sistor into X_STATE (part ial ly opened) if their state logic level degeneration is higher than 
allowed degeneration per bit. 

If number and levels of nodes degenerations i n summary w i l l be higher than allowed 
inside degenerations circuit w i l l not be considered to be correct solution. O r it may be even 
discarded directly. 
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6.4.3 S i m u l a t o r opt ions 

The following options are also important for evolution but i n l i t t le indirect way. They are 
closer to be circuit s imulat ion or circuit evaluation options. 

g_degenerative_logic = 0 / 1 
g_any_gate_input = 0 / 1 
g_X_shortcut_check = 0 / 1 
g_take_first_conducting_path = 0 / 1 

The degenerative logic switch is the main mode selector which determines i f the s imulat ion 
is going to be idealistic or more realistic(voltage level degenerations). 

A n y gate input has pract ical ly s imilar function as mentioned above, but i f circuit simu
lator knows, that there is not allowed connection from non-input layer to gate, it can save 
some computat ional t ime, because it does not have to check this option for each transistor, 
mark it and t ry to search paths for it. 

X shortcut check tells simulator, how should be possibly par t ia l ly conductive shortcut 
paths perceived. If set they w i l l be perceived as regular shortcuts. Otherwise they w i l l be 
ignored. 

Another attr ibute which can l imi t simulator from spending too much time on one circuit , 
when there may be many others, is the B F S search l imi t . 

g_BFS_round_limit = BFS_ROUND_LIMIT 

Circui ts which cannot find a l l signal paths i n l imi ted number of rounds are directly 
discarded i n this phase. 

The question how evolution can create non-identical offspring is answered in following 
text here. 

6.4.4 M u t a t i o n 

The offspring in evolution process can never a l l be identical w i th parent. They may have 
the same fitness and exactly the same qualities and problems but at least neutral mutations 
have to be always present. Neut ra l mutations are those, which does not affect the fitness 
value or correctness of candidate circuit . 

M u t a t i o n is done by random selection of transistors, which should be mutated. Then 
selected transistors generate random chance which decides what should be changed from 
following list: 

transistor type = {N, P, DISABLED} 
drain node = { VCC, GND, IN, .. , OUT .. , NODE, .. } 
source node = { VCC, GND, IN, .. , OUT .. , NODE, .. } 
gate node = { VCC, GND, IN .. (OUT, .. , NODE, ..)> 

Transistor type is selected from P-channel, N-channel , disabled and also pure drain-
source inter-connector (wire) was considered. 

The rest of attributes have different sets to pick from, which depends on selected evo
lut ion options. 

Dra in and source electrode are considered to be equal i n used transistor model. 
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Probably only problematic th ing in implementat ion of muta t ion can be mutat ion of gate 
node. Because if there are no l imits , to where it can be connected it w i l l create a l l types 
of problematic and looping situations in the circuit . The proposed solution such as C G P 
grid may improve chances, that this w i l l not happen so often. Another proposed approach 
is to connect gate pr imar i ly to input layer but w i th smaller chance allow l imi ted amount of 
transistor gates, to be connected to some other node. The perfect solution for this problem 
is hard to find, also thanks to allowed pass-trough logic ( P T L ) . It is quite reasonable for 
more complex circuits and wider search space, where is much more internal nodes than 
inputs. 

6.4.5 L o g i c a l value d is tance /di f ference 

W h e n circuit is simulated and output vector is computed, it is t ime to compare it w i th 
referential output vector stored i n function table. The first implementat ion used to compare 
vector to vector for full w id th of output and then compute vector distance. 

The better approach implemented after this one compares vectors bit after bit and 
computes distance between bits instead of distance between vectors. 

Let 's take a look at simplified bit distance table: 

output b i t ref d i s t | 
ANY ONE 0 10 I 
STR0NG_ZER0 0 0 I 
STR0NG_ZER0 + 1 0 1 | 
STR0NG_ZER0 +2 0 2 I 
STR0NG_ZER0 +3 0 3 I 
STR0NG_ZER0 +4 0 4 I 
X 0 4 I 
Z 0 5 I 
STR0NG_0NE 1 0 I 
STR0NG_0NE -1 1 1 | 
STR0NG_0NE -2 1 2 I 
STR0NG_0NE -3 1 3 I 
STR0NG_0NE -4 1 4 I 
X 1 4 I 
Z 1 5 I 
ANY ZERO 1 10 I 
ANYTHING X 0 I 
Z z 0 I 
ELSE 99 I 

It appears to be beneficial for evolution treat Z or X logic value as closer ones, than the 
opposite strong logic bit . 

Al ternat ive to computing bit distance would be direct ly computing fitness addit ion. B u t 
we consider this bit-bit distance to be more generic. 

After bit-bit distance is computed then according to distance result fitness value addi t ion 
is selected and added to circuit fitness. 
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Fitness value 

Bi t -b i t distance is something that can be pract ical ly constant a l l the t ime. This separation 
of distance and fitness allows to change rules of fitness addi t ion based on bit-bi t distance 
when it is needed. 

Fitness can be also increased for different reasons such as input-output vector w i t h 
increased importance is correct or evolution found correct candidate w i th lower number of 
transistors. 

B u t fitness can be also decreased for each shortcut causing input combination, or even 
each conducting shortcut path, by strong penalty. 

Fitness bonus can be added when bit of duplicated input-output vector is correct. 
Another fitness bonus is added for each disabled transistor, decreasing number of tran

sistors needed for proper circuit function. 

6.4.6 S t o p p e d , modi f i ed a n d cont inued evo lu t ion 

Evolu t ion is quite complex process. It can be very innovative i n one area and very conser
vative in another. 

It was empirical ly observed that evolution wi th certain parameter settings can be quite 
successful in developing almost correct circuit solution w i t h one or two bits wrong or de
generated. Drop a l l the work which it has done would be wasting of development t ime. 

Because it may easily finish the job just w i th sl ightly modified settings. 
For example a designer may set wide search space wi th many transistors and internal 

nodes but disable any gate input . R u n the evolution for some time. Evo lu t ion then can 
bring solution which is almost correct. Then a designer can edit function table of stored 
'solution' i n progress to make evolution think, that it found correct solution. It w i l l switch 
evolution into opt imizat ion mode and as many redundant transistors as was found w i l l be 
disabled. Designer have now almost min ima l size and almost correct evolution. T h e n some 
disabled transistors may be erased from stored candidate file reducing search space. A n y 
gate input mode can be set and evolution started again from this point on tinier search 
space. It can speed up design process by few orders of magnitude. 

For this purpose, our own circuit representation file format was designed. We cal l it T C T -
Transistor Ci rcu i t formaT. Fol lowing functions for this format were implemented: 

l o a c L c i r c u i t ( filename ) 
sto r e _ c i r c u i t ( filename ) 

It was designed to be able to do something more than just stop evolution, save result, 
shutdown computer, boot up computer, load and continue but even this can be quite useful. 

F i le format was designed to be human readable and should be able to provide also 
something like a log of evolutionary parameters. It can also be easily wri t ten by circuit 
designer or automatical ly generated from another electronics designing tool . 
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6.4.7 C i r c u i t representat ion file format 

To illustrate s implic i ty and usefulness of internal circuit format we included this automat

ically generated T C T file. This file contains 2bit A N D transistor circuit and it have been 

generated automatical ly after this solution was found. 

Illustrated circuit is fully operational even in S P I C E simulation. 

CIRCUIT AND 
inputs 2 
outputs 1 
nodes 5 
# 

# used_transistors 5 
# degenerated_output_bits 0 
# output_degenerations 0 
# fi t n e s s 65 
# 
EV0LUTI0N_0PTI0NS # (OPTIONAL) 
g_population_size = 30 
g_generations = 100000 
g_transistor_space = 30 
g_max_mutations = 20 
g_evolution_any_gate_input = 1 
g_degenerative_logic = 1 
g_evolution_allow_degenerative_inside = 0 
g_evolution_allowed_inside_degeneration_per_bit = 0 
g_evolution_allowed_inside_degenerations 0 
g_evolution_allow_degenerative_output = 0 
g_evolution_allowed_output_degeneration_per_bit = 0 
g_evolution_allowed_output_degenerations 0 
g_X_shortcut_check = 1 
g_BFS_round_limit = 50 

END 
# 
# first_solution_found_after 33.9163 s 
# this_solution_found_after 43.1254 s 
# 
FUNCTION,TABLE 
00 -> 0 
01 -> 0 
10 -> 0 
11 -> 1 
END 
# 
INPUT_0UTPUT_TABLE # (OPTIONAL) 
# input output degeneration distance 
00 -> 0 # 0 : 0 
01 -> 0 # 0 : 0 
10 -> 0 # 0 : 0 
11 -> 1 # 0 : 0 
END 
# 
TRANSIST0R_TABLE 
T l P 7 1 2 
T7 N 3 4 2 
T13 N 4 0 7 
T14 N 0 7 2 
T18 P 4 3 7 
END 
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6.4.8 Ver i f i ca t ion of evo lved so lut ion 

W h e n evolution founds a solution for requested function, it should be checked wi th more 
precise analog-like simulator, which is usually much slower but should be precise enough to 
find out if the circuit is capable of correct function i n real world. 

For this purpose we use n g S P I C E simulator. If we want to use it for simulation, it is 
necessary to represent circuit in n g S P I C E compatible format. It may be possible to do it 
manually but it could be source of mistakes and also it can be unpleasant routine work, 
which nobody would want to do. To avoid this, automated creation of n g S P I C E ' s netlist 
was implemented. 

Automated S P I C E netlist generation 

It can requested by circuit method 

s t o r e _ n e t l i s t ( filename ) 

Shortened version without transistor parameters definition is here for i l lustrative purpose. 

CIRCUIT '' 
.global vdd vss 
.param supply=1.8 
VO vss 0 OV 
VI vdd 0 'supply' 
* 
V2 in.O vss pulse(0 'supply' 5n lOp lOp 5n lOn) 
V3 i n . l vss pulse(0 'supply' lOn lOp lOp lOn 20n) 
* c i r c u i t 
XI net.2 in.O vdd pMOS 
X7 i n . l in.O out.O nMOS 
X13 out.O net.2 vss nMOS 
X14 vss in.O net.2 nMOS 
X18 out.O net.2 i n . l pMOS 
Cload9a out.O vss 20f 
* models 
.subckt pMOS in.s in.g out 

.global vdd vss 
Mpl in.s in.g out vdd CMOSP 1=0.25u w=1.00u ad=0.5p pd=3u as=0.5p ps=3u 

. ends 

.subckt nMOS in.s in.g out 
.global vdd vss 
Mnl in.s in.g out vss CMOSN 1=0.25u w=0.50u ad=0.25p pd=2u as=0.25p ps=2u 

. ends 

.subckt JUNC in.s in.g out 
.global vdd vss 
Rl in.s out OR 
R2 in.g out OR 

. ends 
here i s included t r a n s i s t o r model ... 

* analysis 
.TRAN O.ln 20n 
.save v(in.O) v ( i n . l ) v(out.O) 
. end 
* 
* p l o t : vdd v(in.O) v ( i n . l ) 
* p l o t : vdd v(out.O) 

The netlist parameters such as voltage, transistor parameters and technological model 
mentined here are also used i n same form in experiments chapter. 
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We w i l l not describe S P I C E netlist format i n detai l here, its description can be found 
i n for example n g S P I C E documentation [2]. 

B u t it should be mentioned, that for proper and adequate simulation we need appro
priate transistor model for selected layout implementat ion technology. We use transistor 
parameters stored i n specific file transistor .model which is then included into a l l gen
erated netlists. 

Another important th ing is definition of input signal sequence. Where a l l possible input 
combinations have to occur in order. 

Here we can take a look on graphical output of S P I C E simulat ion. Simulated circuit 
was A N D gate w i t h 2 inputs, implemented on 5 transistors. Th is circuit was found by 
evolution and also its T C T file was shown earlier. 

10.0 12.0 '4(i 16.0 13 3 2Q.C 

Figure 6.1: input signals 

V VfrUt.Q) 

1 1 

1 \ 
V 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 1B.0 20.0 

rime ns 

Figure 6.2: output signal 

Simulat ion can be also s imply run remotely using n g S P I C E web interface [1]. 
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Automated schematics generation 

W h e n circuit was successfully simulated in S P I C E - l i k e simulator designer w i l l want to see 
how this circuit really looks like. 

It may be possible to read T C T file and manual ly create scheme. It w i l l highly likely 
happen anyway due need for different symbols or scheme format. B u t i n case, when designer 
would like to have an idea how circuit really looks like, system have implementat ion of 
method 

store_scheme( filename ) 

It w i l l automatical ly generate scheme in gschem format which can be then manual ly reposi
tioned. For i l lustrat ion how it could look like we include following scheme opened i n gschem 
tool: 

mini 
• • • • • • • • • • • • ••air i n m i i i i • • • • :: 

• M M i n 

• ••••••••••••••a. •••••••••••••••••».='••• •••••EUHiuiiwimmuiiiH 

m i n i i i i 
• • • • • • • • • • • ^ • • • • • • • • • ^ • • • • • • • • • • i l i l L i r 'l>a'_-Bat 

•inn mriiiiiH 
I H I I U H I H a ^ B • • • • • • •••."•••iiqapwm • • • • • 

• • • • • • nmminiiiiii • • • • • 

Figure 6.3: Automat ica l ly generated scheme i n gschem format ( A N D 5T circuit) 
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Chapter 7 

Experiments and benchmarks 

In this chapter we w i l l go trough experimenting wi th implemented designing system. We 
have seen in previous chapters that evolutionary process can be quite complex and can be 
controlled by many parameters. Each of these parameters have very strong influence on 
efficiency of evolutionary process, but also on results which w i l l arise from the process. This 
leads us to si tuation, where we have to set the same conditions for evolution of each circuit , 
if we want to be able to compare efficiency results. 

The first benchmark is done on defined search space wi th 20 transistors and 10 internal 
circuit nodes wi th disabled possibil i ty for transistor gate connection to any internal node. 
The deg b i t s parameter specifies how many degenerated output logic levels were accept
able i n found solution. 

The simulator benchmark illustrates the simulation efficiency/speed on conventional 
circuit designs, from the smallest circuits towards very complex circuit structures reaching 
almost two hundred transistors. It also compares s imulat ion speed wi th S P I C E . 

Another benchmark shows the efficiency of candidate solutions evaluation, based on 
evolution parameters. 

A l l benchmarks and t ime measurements were done on computer w i th parameters: 

CPU: Intel(R) Core(TM)2 Duo T8300 2.40 GHz 
RAM: 2 GB DDR2 667 MHz 

OS: Linux FL90 3.10-3-amd64 SMP Debian x86_64 
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7.1 Evolution Benchmark 

Time measurements presented i n this table are medians from repeated measurements. It 
seems more appropriate to use medians instead of ar i thmetical averages. Because they are 
not affected by distant values which represent more than anything lucky hit or unlucky 
local min imum. 

population_size = 50 
max mutations = 20 

transistors = 20; 
internal nodes = 10 

g_evolution_any_gate = 0 
g_degenerative_logic = 1; 
g_simulator_take_first_conducting_path = 0; 
g_any_gate_input = g_evolution_any_gate_input; 
g_BFS_round_limit = 1000; 
g_X_shortcut_check = 1; 

measured lOx for each circuit 

circuit inputs outputs vectors deg bits transistors first found best found 
N O T 1 1 2 0 2 0.038 s 1.793 s 
N A N D 2 1 4 0 4 1.145 s 1.285 s 
N O R 2 1 4 0 4 0.415 s 1.777 s 
A N D 2 1 4 3 2 1.447 s 4.994 s 
A N D 2 1 4 2 3 2.052 s 2.384 s 
X O R 2 1 4 1 4 0.623 s 3.889 s 
A D D 2 2 4 4 6 3.035 s 6.851 s 
A D D 2 2 4 3 7 11.516 s 11.868 s 
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Figure 7.1: Evo lu t ion benchmark - first and best solution t ime [s] 
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7.2 Simulator Benchmark 

Now let's take a look on simulator performance. 

7.2.1 S i m u l a t i o n of convent ional c ircui ts - t i m e requirements 

circuit i n out tr. sum t[us] s im. t[us] paths t[us] S P I C E t[s] speed-up 
N O T 1 1 2 15 3 13 0.024 s 1600x 
N O T A 2 1 2 19 4 15 0.024 s 1263x 
N A N D 2 1 4 33 5 27 0.029 s 878x 
N O R 2 1 4 34 9 25 0.032 s 94 l x 
A N D 2 1 6 58 12 46 0.034 s 586x 
O R 2 1 6 42 7 35 0.030 s 714x 
X N O R 2 1 8 113 11 102 0.032 s 283x 
X O R 2 1 8 112 11 101 0.036 s 32 l x 
A N D N O R 4 4 1 16 175 63 112 0.111 s 634x 
B l 3 2 30 309 53 256 0.123 s 398x 
C17 5 2 28 393 182 211 0.356 s 905x 
F A l b 3 2 48 1306 206 1100 0.173 s 132x 
F A 2b 5 3 94 1598 636 962 1.243 s 777x 
F A 3b 7 4 174 10982 6927 4055 9.794 s 891x 

S i m u l a t i o n p e r f o r m a n c e 

Q path computation [us] 
| complete simulation time[us] 

• - • • I 
NOT NOT A NAND NOR A N D OR XNOR XOR A N D N O R 4 B l C 1 7 FA l b FA 2b 

Figure 7.2: Simulat ion benchmark - t ime [us] 
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The simulator was tested on several conventional circuit designs. Its performance was 
measured and also compared w i t h S P I C E simulat ion. Our implementat ion is on average 
737.76x faster than S P I C E . In other words, our simulation method can on average evaluate 
fitness of about 700 circuits where S P I C E simulator would evaluate just one. 

It can also be seen that major t ime consumption of our simulator is caused by paths 
computat ion. B u t paths are computed just once and stay stored i n memory. Then simu
lat ion of each input vector is much faster. Th is is the major source of varying speed-up in 
comparison wi th S P I C E . 

7.2.2 P a t h c o m p u t a t i o n t i m e requirements 

circuit i n out tr. a l l [/JS] shortcut [/JS] output [/JS] node [/is] 
N O T 1 1 2 13 5 7 1 
N O T A 2 1 2 15 6 8 1 
N A N D 2 1 4 27 11 15 1 
N O R 2 1 4 25 9 15 1 
A N D 2 1 6 46 18 10 18 
O R 2 1 6 35 11 8 15 
X N O R 2 1 8 102 49 7 46 
X O R 2 1 8 101 49 7 45 
A N D N O R 4 4 1 16 112 30 20 61 
B l 3 2 30 256 98 25 133 
C17 5 2 28 211 54 33 124 
F A l b 3 2 48 1100 329 33 737 
F A 2b 5 3 94 962 278 70 614 
F A 3b 7 4 174 4055 1171 134 2750 

Evolut ionary candidates simulation 

This table represents t ime of candidate evaluations computed by average from 10000 gener
ations w i t h populat ion size = 100. It illustrates how evolution parameters affects s imulat ion 
speed. 

si tuation transistors nodes any_gate avg. candidate t[/js] candidates/s 
F U L L A D D E R 20 20 0% 338.6 2953 
F U L L A D D E R 20 20 30% 437.8 2288 
F U L L A D D E R 50 50 30% 1088.2 919 
F U L L A D D E R 100 100 30% 4785.8 209 
F U L L A D D E R 100 100 100% 7283.2 135 

Fitness value modification according simulation time 

Circu i t object method compute_paths() and also compute_f itness have t ime measure
ment implemented inside. It may also be beneficial to t ry embedding computat ional time 
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Path computat ion wi th regard to number of transistors 

Figure 7.3: P a t h computat ion benchmark - conventional designs - t ime [us] 

needed for circuit s imulat ion into fitness rewarding system. It may be tricky, but it may 
help to navigate evolution to developing circuits which can be simulated faster. Tha t would 
mean more circuits evaluated per second and that would worth to try. We w i l l leave this 
idea for the future work. 
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Chapter 8 

Solutions 

Here we w i l l review some of circuit solutions which have been evolved during experiments 
w i th implemented designing system. For each circuit we w i l l provide also voltage charac
teristics from n g S P I C E simulation. 

It should be mentioned, that evolutionary design here uses PTL(pass - t rough logic) very 
often. It brings more interesting solutions, which are rarely created by design engineers. 

O n the other hand, typ ica l conventional designs use lot of inverters and cascade of 
control nodes, where transistor i n the next cascade level is controlled by an output of 
transistor i n the previous level. 

Our system can use this also, but when there are many transistor gate inputs from 
internal circuit nodes very noticeable slowdown occurs. It is due pa th computat ion. For 
each such node, there have to be exactly the same type of path-search and also logical level 
evaluation as is done for each pr imary output. It can also very rapidly increase memory 
requirements. 

Those are the pr imary reasons for which is usage of path nodes l imi ted by probabili ty. 
B u t evolution even without that prefers P T L approach because it is not so fragile, such as 
the gate control from not always stable signal source. 

Schematics have been manually recreated for easier function understanding from those 
automatical ly generated by designing system. We used also transistor rotat ion for dist in
guishing conventional connection and P T L connection. Transistors w i th their channel in 
horizontal posit ion represents P T L and those wi th channel i n vert ical posi t ion represents 
connection to V C C or G N D signal source. 

Simulat ion in S P I C E was done wi th frequency of input signal equal to 100 M H z for a l l 
possible input combinations to verify circuit 's proper functionality. 

We present here only few of evolved circuits w i th short comment. B u t also many other 
circuit were evolved, for example 2-bit binary coder for 8 transistors. O r even 3-bit binary 
coder for 21 transistors. B o t h without output voltage degenerations. We can also mention 
2-bit binary decoder for 11 transistors w i th few bits degenerated also full adder w i th some 
degenerated outputs on 11 transistors. We w i l l present some of them later in our future 
work. 
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8.1 AND 2 transistor solution 

This circuit was evolved wi th 3 allowed output bit voltage degenerations. Accord ing to 
implemented simulator there should be a l l 3 degenerations present, but according to more 
precise simulation, 2 of these degeneration are very short and cases only smal l spikes. This 
solution may not be universally usable i n a l l situations. B u t it may be very useful in 
situations, where very l imi ted chip area is available and used technology can handle l imi ted 
output voltage swing. This solution uses only 33% of transistors of conventional A N D gate 
design which is bu i ld on 6 transistors. 

IN a 

IN l 

OUT 

Figure 8.1: A N D schematic 2 transistor solution 

INPUT OUTPUT DEG 
00 -> 0 # 1 
01 -> 0 # 0 
10 -> 0 # 1 
11 -> 1 # 1 

0.0 2.0 4.0 8.0 10.0 1Z.Q 14.0 &.0 S.O 10.0 12.0 14.0 

Figure 8.2: input and output voltage diagram 
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8.2 AND 5 transistor solution 

This solution also uses P T L , but it provides full output voltage swing when there is full 
voltage swing on pr imary input . Conventional solution uses 6 transistors. It is pract ical ly 
constructed as N A N D + N O T i n cascade. The interesting th ing is, that evolution cannot 
find solution w i t h full output swing without transistor gate controlled from the inside of 
circuit (internal node). W h e n allowed evolution used it to bu i ld up input signal inverter. 

i n a 

IN i 

OUT 

Figure 8.3: A N D schematic 5 transistor solution 

V V(ln-l) 

1 1 
V 

00 2.0 4.0 6.0 10.0 12.0 14.0 15.0 Ifl.O 20.0 00 2.0 5.0 S.0 10 0 12 0 14 0 16 0 18.0 20.0 

Figure 8.4: input and output voltage diagram 

61 



8.3 XOR 4 transistor solution 

X O R solution found by evolution uses only 4 transistors. It has degenerated output for only 
1 input combination. So it can be used as part of complex circuits only there, where other 
circuits w i l l work correctly w i th one Vt loss on input . Conventional solution of X O R circuit 
is implemented on 8 transistors. So this solutions provides 50% transistor/space reduction 
for smal l price. 

IN a 

IN i 

O U T 

1 
Figure 8.5: X O R schematic 4 transistor solution 

INPUT OUTPUT DEG 
00 -> 0 # 1 
01 -> 1 # 0 
10 -> 1 # 0 
11 -> 0 # 0 

0 0 2.0 4.0 6.0 SC 10.0 12.Ö 14.0 1S.0 1B.0 20.0 00 2.0 5.0 S.0 10 0 12 0 14 0 16 0 1BÖ 20.0 

Figure 8.6: input and output voltage diagram 
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8.4 Half Adder 6 transistor solution 

From more complex circuits exceeding size of one gate, half-adder circuit have been evolved. 
It has smal l output voltage swing l imitat ions for some input combinations, but it is designed 
by using only 6 transistors, where conventional gate-level design uses X O R ( 8 transistors) 
w i th A N D ( 6 transistors) gates together. Th is solution is then more than twice smaller. 
Exac t ly it uses only 42% transistors of original solution. 

A t — - A 
i i 

I k k 

Figure 8.7: H a l f Adder schematic 6 transistor solution 

INPUT OUTPUT DEG 
00 -> 00 # 11 
01 -> 10 # 01 
10 -> 10 # 00 
11 -> 01 # 01 

— — 

II 

1 1 
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 ISO 1S.Ö 20.0 0.O 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 1B.0 20.0 

Figure 8.8: input and output voltage diagram 
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8.5 AND OR NOT - 8 transistor solution 

Funct ion N0T(A.B + C D ) nicely illustrates, that direct transistor-level solutions can bring 
great savings when it comes to transistor count. It is because conventional design on gate 
level requires 16 transistors for its implementat ion. Th is solution, also found by evolution, 
uses only 8 transistors, exactly 50% of conventional one. Th is solution also have full voltage 
swing on its output. 

Figure 8.9: A N D O R N O T schematic 8 transistor solution 

• , . „ , i 
..,r,:i, 

- lin.O) 

BOX) 700 

Figure 8.10: input and output voltage diagram 
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Chapter 9 

Conclusion 

In this work have been discussed several approaches, that can be used for each phase 
during transistor-level circuit design process. It was shown that, important th ing is to 
find the ideal trade-off between precision of s imulat ion and evaluation t ime of candidate 
solution during the evolution process. We saw the problems which were ignored by too 
much idealistic approaches. We also understood that s imulat ion by complex reality close 
simulator such as S P I C E cannot s imply be used for efficient candidate evaluation because 
of its high computat ional t ime requirements. 

We also saw restrictions which allowed evolution algori thm to find some working cir
cuit solutions using even very simplified simulat ion. B u t those restriction are pract ical ly 
unusable, when complex circuits need to be evolved or opt imized. 

K n o w i n g this we proposed and implemented reasonable s imulat ion method based on 
graph circuit representation, where the path is to be searched start ing from the output 
node and ending in signal sou rce (VCC, G N D , pr imary input) . Th is method allowed us not 
only efficiently compute output logic levels for each input vector but also evaluate circuit for 
shortcuts and it can even identify possible power leakage by finding paths possible par t ia l ly 
opened shortcut paths. 

Based on this circuit evaluation method fast and efficient evaluation simulator have been 
implemented, which is the cr i t ica l part of whole transistor level circuit designing system. 
In comparison wi th S P I C E simulat ion it is on average 700 times faster. 

Future work 

There is always potential for upgrades based on knowledge and experience gained from 
experiments and research. Some ideas were mentioned in the implementat ion chapter, but 
for recapitulation we can mention them also here: 

M u t a t i o n can be more restrictive to speedup circuit s imulat ion. It could prohibit mu
tations which would certainly cause shortcut. Th is may brings some speed up for cost of 
clean separation source code functions. 

A n y gate input can be l imi ted in l i t t le more intelligent way. How to do it efficiently 
without s tr ict ly l imi t ing possible search space but avoiding unsolvable signal loops is inter
esting area of future research. 
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This work also created an idea of separating complex evolution goals into several cir
cuit modules where first module would be connected to pr imary inputs and last module to 
pr imary circuit outputs. The modules between would be perceived as independent circuits 
but their input-output function tables would be dynamical ly chosen according to fitness of 
complete solution. It may remind gate-level evolution process but this approach could be 
more flexible. 

Another idea which could also extend the possibilities of this system is to integrate 
it together w i t h gate-level evolutionary design system, but not just replace a l l gates wi th 
their transistor representation, but also take into consideration possibly allowed gate output 
signal degeneration based on gate level interconnections. 

Fina l words 

This work brought new circuit s imulat ion approach for design process into practise. It 
was shown that it is very efficient for circuit s imulat ion by itself for conventional circuits 
but also for innovative solutions and even more as a cr i t ica l part of evolutionary designing 
system in a role of the fitness evaluator. 
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