
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

GRAPHICS EDITOR FOR COMPUTATIONAL
WORKFLOWS IN TOSCA FORMAT
GRAFICKÝ EDITOR VÝPOČETNÍCH PROCESŮ VE FORMÁTU TOSCA

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAN SWIATKOWSKI
AUTOR PRÁCE

SUPERVISOR doc. Ing. JIŘÍ JAROŠ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Computer Systems (UPSY)

Student: Swiatkowski Jan

Programme: Information Technology

Specialization: Information Technology

Category: User Interfaces

Academic year: 2022/23

Assignment:

1. Familiarize yourself with tools and use cases of scientific computational workflows.
2. Review data types and algorithms for construction of scientific workflows.
3. Design a simple editor for construction of scientific workflows generating TOSCA prescriptions for

Alien4Cloud.
4. Implement the designed solution so that it allows to construct a simple workflow containing one

HPC or cloud job with inputs and outputs.
5. Evaluate implemented solution, write up a user manual and discuss possible future extensions.

Literature:
According to supervisor's advice.

Requirements for the semestral defence:
Items 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Jaroš Jiří, doc. Ing., Ph.D.

Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 4.5.2023

Bachelor's Thesis Assignment
147291

Graphics Editor for Computational Workflows in TOSCA FormatTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This thesis presents the design and implementation of a graphical workflow editor aimed
at non-computer scientists, which enables the creation of complex computational workflows
with minimal technical knowledge. The editor provides a graphical interface for composing
workflow from computational tasks with supports a variety of input and output types,
including value-based and dataset-based inputs and outputs. The resulting workflows can
be exported to the TOSCA workflow specification, making them compatible with the LEXIS
platform. The editor was developed in .NET Blazor Server framework in C# and JavaScript
and employs the JointJS library for creating the graphical representation of workflows. The
resulting tool provides an accessible means for researchers and other non-technical users to
compose and execute advanced computational workflows.

Abstrakt
Tato práce se zabývá návrhem a implementací grafického editoru pracovních toků za-
měřeného na vědce, kteří nejsou z oboru informačních technologií, a editor jim umožňuje
vytváření složitých výpočetních toků s minimální technickou znalostí. Editor poskytuje
grafické rozhraní pro sestavení toků z výpočetních úloh s podporou různých typů vstupů
a výstupů, včetně hodnotových a datových vstupů a výstupů. Výsledné toky lze expor-
tovat do specifikace TOSCA popisující pracovní tok, což umožňuje jejich použití na plat-
formě LEXIS. Editor byl vyvinut v rámci .NET Blazor Server frameworku v jazyce C# a
JavaScript a využívá knihovnu JointJS pro vytváření grafické reprezentace toků. Výsledný
nástroj poskytuje dostupný způsob, jak vytvářet a spouštět pokročilé výpočetní toky pro
výzkumníky a další uživatele.

Keywords
OASIS TOSCA, Computational Workflow, Scientific Workflow, Graphical Editor, HPC,
Cloud, C#, JavaScript, .NET Blazor Server

Klíčová slova
OASIS TOSCA, výpočetní pracovní tok, grafický editor, HPC, Cloud, C#, JavaScript,
.NET Blazor Server

Reference
SWIATKOWSKI, Jan. Graphics Editor for Computational
Workflows in TOSCA Format. Brno, 2023. Bachelor’s thesis. Brno University of Technol-
ogy, Faculty of Information Technology. Supervisor doc. Ing. Jiří Jaroš, Ph.D.

Graphics Editor for Computational
Workflows in TOSCA Format

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Ing. Jiří Jaroš, Ph.D.
The supplementary information was provided by Ing. Kateřina Slaninová, Ph.D.,
Ing. Jan Martinovič, Ph.D., Ing. Martin Golasowski, Ph.D.
and doc. Mgr. Jiří Dvorský, Ph.D.
I have listed all the literary sources, publications and other sources, which were used during
the preparation of this thesis.

. .
Jan Swiatkowski

May 10, 2023

Acknowledgements
I would like to express my heartfelt gratitude to the entire LEXIS platform team at
IT4Innovations for their invaluable guidance and support throughout the writing of this
thesis and the development of the workflow editor.
I am particularly grateful to Ing. Kateřina Slaninová, Ph.D., Ing. Jan Martinovič, Ph.D.,
Ing. Martin Golasowski, Ph.D. and my supervisor doc. Ing. Jiří Jaroš, Ph.D. for their valu-
able insights and encouragement.

Contents

1 Introduction 5
1.1 Thesis objectives . 6
1.2 Use case . 6

1.2.1 Use case: Avio Aero Turbomachinery 6
1.2.2 Use case: Loschmidt Laboratory Tools 6
1.2.3 End-Users . 6

2 Scientific Workflow Tools 8
2.1 Alien4cloud . 8
2.2 occiware – TOSCA-Studio . 10
2.3 OpenStack – Template Generator . 10
2.4 LifeWatch – Tesseract . 11

3 Analysis 13
3.1 Algorithms and Data Structures . 13
3.2 TOSCA - Topology and Orchestration Specification for Cloud Applications 13
3.3 LEXIS Platform . 14

3.3.1 LEXIS DDI . 14
3.3.2 LEXIS orchestration . 15
3.3.3 Apache Airflow . 15
3.3.4 HEAppE - High-End Application Execution Middleware 15
3.3.5 OpenStack . 16

4 Application Design 17
4.1 Internal Representation of Workflow Topology 21
4.2 Cloud Image Metadata Registry . 23
4.3 GUI/UX Graphical Design . 23
4.4 Advanced features . 26

5 Implementation 27
5.1 Used Technologies . 27
5.2 Computational Workflow Core . 28

5.2.1 Computational Workflow Template 29
5.2.2 Computational Workflow Input . 30
5.2.3 Computational Task . 31
5.2.4 Computational Task Input . 33
5.2.5 Computational Task Output . 33
5.2.6 Serialisation . 35

1

5.3 TOSCA Emitter . 37
5.3.1 TOSCA Emitter Implementation . 38
5.3.2 HPC Task . 39
5.3.3 Cloud Task . 41
5.3.4 Data Transfers . 41
5.3.5 LEXIS Operators Definition for OASIS TOSCA 42
5.3.6 OASIS TOSCA . 43
5.3.7 Auxiliary TOSCA Emitter Models 43

5.4 Graphical Editor Interface . 45
5.4.1 Task Diagram . 45
5.4.2 Computation Workflow Inputs Menu 48
5.4.3 Addition of the Computational Task 48
5.4.4 Task Menu . 49
5.4.5 Exporting the workflow to the TOSCA YAML file 49
5.4.6 User’s Feedback . 49

6 Conclusion 50

Bibliography 52

A LEXIS Operator’s Types in OASIS TOSCA 56

B Example of generated TOSCA 70

C User Guide 73
C.1 Build instruction . 73
C.2 Usage instruction . 73

D Application Demo 1 74

E Application Demo 2 87

2

List of Figures

2.1 Ystia Suite – Alien4Cloud . 9
2.3 Alien4Cloud – Dataset Mounting . 9
2.4 occiware – TOSCA Studio . 10
2.5 OpenStack - Template Generator . 11
2.6 LifeWatch – Tesseract . 11
2.2 Alien4Cloud – topology . 12

3.1 LEXIS Infrastructure . 14
3.2 LEXIS Orchestration . 15

4.1 Application Design – Internal Representation of Topology – Class Diagram
(part 1) . 18

4.2 Application Design – Internal Representation of Topology – Class Diagram
(part 2) . 19

4.3 Application Design – Internal Representation of Topology – Class Diagram
(part 3) . 20

4.4 Application Design – Internal Representation of Topology – Relation Diagram 21
4.5 GUI Design – Register New Docker Image 24
4.6 GUI Design – Workflow Inputs . 25
4.7 GUI Design – Modify Cloud Task Details 26

5.1 TOSCA Emitter Implementation – Example of generated TOSCA nodes for
LEXIS . 40

D.1 Application Demo 1 – Workflow editor interface 74
D.2 Application Demo 1 – Modal window for adding a computational task to the

diagram . 75
D.3 Application Demo 1 – New computational task added to diagram 76
D.4 Application Demo 1 – HPCTaskOne task’s data output connected to En-

zymeMiner task’s data input in the diagram 77
D.5 Application Demo 1 – Screenshot of the opened workflow’s input menu . . . 78
D.6 Application Demo 1 – Editor’s screenshot with removed myProteins workflow

data input from workflow’s input menu . 79
D.7 Application Demo 1 – Computational task’s context menu 80
D.8 Application Demo 1 – Modal window for editing computational task 81
D.9 Application Demo 1 – Modal window for editing computational task with

disabled export of data output . 82
D.10 Application Demo 1 – HPCTaskOne computational task has disabled export

of data output . 83

3

D.11 Application Demo 1 – Removing computational task hpcTaskThree 84
D.12 Application Demo 1 – The TOSCA workflow specification is downloaded via

browser after clicking on the download button next to the title 85
D.13 Application Demo 1 – Exported TOSCA specification 86

E.1 Application Demo 2 – Workflow editor interface 87
E.2 Application Demo 2 – New workflow’s dataset input added to the workflow 88
E.3 Application Demo 2 – New workflow’s dataset input connected to computa-

tional task’s input . 89

4

Chapter 1

Introduction

In today’s world, even the most qualified scientific experts may require additional knowl-
edge to effectively use traditional High-Performance Computing (HPC)[24] environments
for their research. Additionally, HPC environment users are rarely familiar with Linux op-
eration systems, shell terminal or orchestration tools. Hence, the users are not necessarily
experienced with managing their computational applications directly on high-performance
clusters.

The support of non-computer scientists’ need to compute non-trivial solutions on high-
performance computing clusters was the motivation behind the creation of a computational
workflow[46] editor. The computational workflows may be a constituent of the scientific
workflow. ”A scientific workflow is the description of a process for accomplishing a sci-
entific objective, usually expressed in terms of tasks and their dependencies. Typically,
scientific workflow tasks are computational steps for scientific simulations or data analysis
steps.“[41] The article ”Characterization of Scientific Workflows“[30] demonstrates some
basic workflow structures in Fig. 1. These abstract structures are similar to those used
in computational workflows, which consist of series of computational tasks. The goal is to
create a combination of high-performance computing (HPC) and cloud tasks that can be
run in parallel or as a pipeline, along with data preprocessing, postprocessing, aggregation,
and distribution. The goal of the editor is to empower non-computer scientists to create
computational workflows with the help of workflow architects. To achieve this goal, the
editor leverages the LEXIS[15] system, which provides HPC-as-a-Service and is intended to
complement or enhance LEXIS. Based on my experience, most scientist compute on their
small clusters or personal computers. The HPC cluster offers more computational power
and options for their computations, although the usage complexity proves to be an issue.
The editor aims to help users create and compose workflows from straightforward elements.
The basic expected operations are:

• Select computational applications

• Enter the computational parameters or data inputs

• Connect the data inputs and outputs between the computational applications in case
of application chaining

• Fetch the source data into the application and save the output data

More advanced requirements could be to run more than one instance of the application in
parallel to create a race. For example, the race case may be beneficial in urgent computing

5

like Fast Tsunami Simulations for a Real-Time Emergency Response Flow [37]. Further
possible scenario is running computational applications instances based on the list of input
datasets, i.e. one instance of a computational application will be orchestrated for each
dataset in the list.

1.1 Thesis objectives
The objective of this thesis is to analyze and evaluate alternative tools available on the
market for creating scientific and computational workflows. The work investigates abstract
structures and algorithms used within the given challenges, and describes in detail the design
and implementation of a minimal editor that enables users to compose basic computational
workflows. The end product of the thesis is a workflow editor that supports export to the
TOSCA workflow specification for the LEXIS platform, aimed at facilitating the creation
of scientific workflows by non-computer scientists.

1.2 Use case

1.2.1 Use case: Avio Aero Turbomachinery

A real-world example of a potential use case of the editor could be the turbomachinery
computational workflow described in LEXIS deliverable 5.5 [42]. HPC computational job
utilizes a CFD solver nanoFluidX for simulating behaviour of an air-oil frozen field mixture
in a gearbox. The computational workflow steps are preprocessing, simulation runtime,
and postprocessing.

1.2.2 Use case: Loschmidt Laboratory Tools

Loschmidt Laboratory1 offers plenty of tools for biochemical scientists, mainly protein-
focused. As the end-users of their tools are mostly scientists with basic knowledge of
computer science, the end-users are more friendly with the graphical interface of their
tools. However, some of the computational parts of the tools may require high-performance
machines and may be helpful to compute them on HPC clusters on demand. For example,
on the diagram of the Fireprot-ASR tool [4], we can see a more complicated computational
workflow than in Avio Aero turbomachinery.

The workflow is composed of steps. A step has inputs and outputs. Computational
workflow editor can benefit from separating these steps into HPC jobs with inputs and
outputs, since they can be reused in other workflows later. For example, EnzymeMiner
computational step in Fireprot-ASR workflow2.

1.2.3 End-Users

The beginning of the thesis introduction mentions that the editor aims to give scientists
the ability to compose their custom computational workflows from computational steps.
However, setting up the required parameters, such as memory or cores requirements and
other parameters described in the TOSCA section3.2, may require knowledge, which only
some possess. Therefore, the demand for people with advanced knowledge of the system

1Loschmidt Laboratories conduct interdisciplinary research in the field of protein engineering.[1]
2The EnzymeMiner is also another tool backed by the Loschmidt laboratories itself.

6

is increased. Therefore, the scientists were considered as end-users of the editor. They
may have a fundamental knowledge of computer science. The role of a workflow architect
involves creating tasks with appropriate parameters for software execution. This requires
a significant level of computer science knowledge as well as expertise in the target com-
putational systems. The workflow can be later reused by the users with less expertise to
compose similar computational workflows.

7

Chapter 2

Scientific Workflow Tools

Tools and editors for creating workflows already exist, but not all are suitable for the
mentioned set of issues. For example, The LifeWatch - Tesseract (section 2.4) belongs to
the tools created more often for software deployment rather than for managing scientific
workflows. However, not all of the tools described in this chapter can work with scientific
workflows. Even though OpenStack - Template Generator (section 2.3) is based on the
same problematic as the targeted scientific workflow editor, it cannot work with scientific
workflows.

2.1 Alien4cloud
Alien4Cloud is a designer for the Yorc [7] orchestrator by Atos. They are i the Ystia
Suite[27]. Multi-Tier infrastructure can be designed in Alien4Cloud, deployed and managed
on any cloud and even the HPC schedulers. The graphical interface itself is more suitable
for knowledgeable users. However, all requirements for LEXIS platform are covered there.

The Alien4Cloud is a significant source of inspiration for the targeted scientific workflow
editor. It is already a part of the LEXIS system and workflow designers use it. The LEXIS
project has already solved data transfers, authentication, authorisation and deployment
issues. Thanks to the modularity of the Yorc orchestrator, the plugins can extend the
functionality and bring new special types of nodes. For instance, datasets transfers into the
cloud virtual machines from DDI1 (section 3.3.1).

The Yorc DDI plugin[26] provides TOSCA components with jobs to handle transfer
between the cloud job and DDI, cloud job and HPC job, and HPC and DDI. The data are
mounted to the HPC with SSHFS2 protocol. The HPC tasks computes with data stored
in the scratch directory. 3. LEXIS uses HEAppE (see section 3.3.4), hence the HEAppE
Yorc plugin[5] was developed. In the case of a cloud task, Docker containers access fetched
datasets by mapping the directory with a dataset from the host virtual machine to the
Docker container.

1DDI – Distributed Data Infrastructure
2SSHFS, as the documentation in code repository mention [21], is network filesystem client based on

SFTP [35] protocol and FUSE library. FUSE (Filesystem in Userspace [17]) is an interface for userspace
programs to export a filesystem to the Linux kernel.

3The scratch directory is supposed to contain temporary files for compute jobs

8

Figure 2.1: Ystia Suite – Alien4Cloud
Source: Own screenshot of application

Figure 2.3: Alien4Cloud – Dataset Mounting
Source: Own screenshot of application

The OICD plugin[18] takes care of authorisation and authentication using the OAuth
2.04 protocol. Since security is an essential topic in terms of HPC computing, authentication
and authorisation should be ensured in all operations, such as scheduling the job on the
HPC scheduler or fetching data from DDI.

4OpenID protocol [19]

9

2.2 occiware – TOSCA-Studio
It is a part of DevOps5 for deploying Multi-Tier application infrastructure. It is well suited
for service-oriented architectures. Particular nodes, software, or networking is described
in TOSCA format (section 3.2). The graphical user interface part visualises dependencies
between the nodes (e.g. task, decision, virtual machine, network). The graphical editor
itself runs on the Eclipse development platform. The dependency graph is detailed in
the figure 2.4. The TOSCA-Studio [31] is an application based on the Java OCCIware
framework.

Figure 2.4: occiware – TOSCA Studio
Source: Own screenshot of application

2.3 OpenStack – Template Generator
Alongside the other features provided by OpenStack (section 3.3.5), it offers a stack orches-
tration feature. It enables users to specify the OpenStack sources in a format called HEAT.
HEAT templates are similar to the TOSCA templates. The HEAT template defines topol-
ogy, relations and specification of sources similar to the TOSCA template. The graphical
interface has a minimal visual representation of the dependency graph. The modal window
modifies the properties of the particular nodes.

5DevOps combines development (Dev) and operations (Ops) to unite people, process, and technology in
application planning, development, delivery, and operations. [23]

10

(a) Relation Diagram
Source: Own screenshot of application (b) Modal Window

Figure 2.5: OpenStack - Template Generator
Source: Own screenshot of application

2.4 LifeWatch – Tesseract
The LifeWatch - Tesseract is solely for the scientific workflow graphical editing. The com-
ponents of the dependency graphs are data collection, data processing tasks, and data
analysing tasks. Relations between components can be established by clicking on the ports
of the source and destination components. However, it is not particularly detailed, but
interaction with the graph has basic operations like creation and removal. Even more, the
interconnection of the outputs and inputs of the component is provided.

Figure 2.6: LifeWatch – Tesseract
Source: Own screenshot of application

11

Figure 2.2: Alien4Cloud – topology
Source: Own screenshot of application

12

Chapter 3

Analysis

3.1 Algorithms and Data Structures
The elementary unit of the targeted scientific workflow editor is a computational task. In-
teraction with the logic inside the task is ensured with input variables and output variables.
The variables can store plain data types like number or string. The task may require some
datasets at the input and can also produce a dataset as a result. Furthermore, dependency
at plain-data output of other tasks should be taken into account. The most suitable abstrac-
tion of all of the aforementioned issues is a non-cyclic directional graph. The abstraction
is well described in the article ”Characterisation of Scientific Workflows“ [30]. To ensure
not having any loops within a graph, the algorithm of loop detections in a graph can be
used. The cycles can be found by the depth search algorithm described in [38, Chapter 7
- Directional Graphs]. Considering some edge cases, standalone tasks may occur without
input and output connections. They are not a part of the graph, although there is no reason
not to include them in the final topology.

3.2 TOSCA - Topology and Orchestration Specification for
Cloud Applications

OASIS (Organization for the Advancement of Structured Information Standards) specified
a TOSCA standard to describe the topology of cloud-based web services, relationships
and their management processes. TOSCA language is based on the serialisation standard
YAML1.

A subset of sections in topology established by TOSCA:

• inputs – particular inputs can have a type, description and validation constraints

• node_templates – properties with node types like ”tosca.nodes.Compute“, cpu
count, disk or memory and etc.

• worflows – description of imperative or declarative workflows typically for deploying,
starting and undeploying topology

• outputs – defines output data e.g. server IP address
1YAML - Human readable data-serialisation language [25]

13

Nodes may need to share their properties and attributes like mentioned IP address
with syntax construction { get_attribute: [db_server, private_address] }. To
connect the input parameters to the appropriate node property, the following syntax can
be used { get_input: db_server_num_cpus }.

3.3 LEXIS Platform
As mentioned in the introduction, scientific workflow editor will be used within the LEXIS
platform. Therefore, this chapter describes some relevant parts of the LEXIS project[14].
The LEXIS project resulted in the construction of a distributed HPC infrastructure to
converge big data and HPC. The aim was to build an advanced architecture for big data
analysis and High-performance computing applications utilizing modern technologies from
HPC to Cloud computing. LEXIS provides ready-to-be-used HPC infrastructure that offers
HPC-as-a-Service capabilities without incurring performance/efficiency penalties. More
detailed description of the LEXIS platform can be found in the public documentation [16].

Figure 3.1: LEXIS Infrastructure
Source: Own diagram

3.3.1 LEXIS DDI

Data storage federation and data management were the main goals the LEXIS project faced.
The elementary unit stored on the DDI is a dataset. Datasets could be inputs or outputs
of computational workflows in the LEXIS. They created a system based on iRODS (The
Integrated Rule-Oriented Data System)[8] and the system integrates EUDAT’s European
research data services.

The iRODS solution guarantees that a unified logical file space is created and accessible
to all participants. The rule and event orientation of iRODS allows us to write routines
that react to events such as data ingest, enforcing policies relating to data distribution,
rights management, and reduplication.

14

3.3.2 LEXIS orchestration

During the LEXIS project, an orchestration system was developed with the capability to
execute complex workflows that involve a combination of HPC, Cloud computing and Big
Data tasks. To serve as the orchestrator, Yorc [7] was chosen - an open-source TOSCA
orchestrator that seamlessly integrates hybrid cloud and HPC capabilities. Yorc is also
workflow-driven and allows fully customisable applications behaviour. For interaction with
Yorc, there is a comprehensive REST API. The Yorc was originally developed by Bull
Atos Technologies. The alien4cloud TOSCA application designer manages the creation of
applications. The alien4cloud also manages the deployment of applications via Yorc to the
Cloud computational resources and HPC clusters. The workflow architects can arrange
topology consisting of nodes with software and types, which are deployed to the selected
infrastructure. The workflow architects have extensive knowledge of the system and the
infrastructure.

Figure 3.2: LEXIS Orchestration
Source: LEXIS D4.6 p.6 [36]

3.3.3 Apache Airflow

As stated on the web presentation [2], the Airflow is a platform created by the community
to programmatically author, schedule and monitor workflows. The Airflow platform is
scalable, dynamic and easily extensible. The workflows within the Airflow are defined in
Python language with the use of built-in operators or custom ones. Nowdays, the LEXIS
platform uses Apache Airflow aside the Yorc orchestrator and Alien4Cloud. The Airflow
is extended with custom plugin for authorization and with a set of custom operators for
communication with the rest of the LEXIS infrastracture services.

3.3.4 HEAppE - High-End Application Execution Middleware

HPC-as-a-Service is a middleware that facilitates the execution and management of jobs on
HPC clusters, as well as the collection of information related to those jobs. This middleware
provides a REST API that enables users to submit computations or simulations on HPC

15

infrastructure via HEAppE, which can also monitor the progress of the job and notify the
user if needed. Applications should be installed before using them on the cluster by an
authorised person, in the case of IT4Innovation’s clusters.

The jobs may require input datasets. The datasets can be provided to the jobs in scratch
directory. To transfer the files into the directory, the HEAppE provides a temporary SSH
key.

3.3.5 OpenStack

OpenStack is a comprehensive platform designed for managing a collection of interconnected
components, such as compute pools, networking, and storage resources. It provides a web
GUI and terminal utility to manage the sources and services. User can set up limits and
quotas for sources like IP addresses, CPUs, or number of compute instances. The platform
also offers various operations with storage, like taking snapshots.[44]

16

Chapter 4

Application Design

The application for designing computational workflows should provide a graphical interface
that accommodates two levels of detail for end-users with varying levels of expertise, includ-
ing non-computer scientists and workflow architects. The application should communicate
via a secure private network connection, taking into account the sensitive nature of the
information involved and the need for trustworthy communication with LEXIS services.
Therefore, only the graphical interface is exposed to the users. A part of the editor is the
registry with REST API for storing metadata about the cloud images (Docker images). The
graphical interface is aggregated in the .NET Blazor application together with the TOSCA
editor interface. The tight integration between the .NET MVC structure and the rendered
pages can help address the challenge of generating TOSCA templates.

17

Figure 4.1: Application Design – Internal Representation of Topology – Class Diagram
(part 1)
Source: Own diagram

18

Figure 4.2: Application Design – Internal Representation of Topology – Class Diagram
(part 2)
Source: Own diagram

19

Figure 4.3: Application Design – Internal Representation of Topology – Class Diagram
(part 3)
Source: Own diagram

20

Figure 4.4: Application Design – Internal Representation of Topology – Relation Diagram
Source: Own diagram

4.1 Internal Representation of Workflow Topology
To provide a comprehensive internal representation of the topology, we propose to utilize
classes and their relations. The classification is based on the workflow structures illustrated
in figure 5.1. in the article ”Characterisation of Scientific Workflows“ and other advanced
workflow topologies. The article describes basic workflow types: process, pipeline, data
distribution, data aggregation and redistribution. The workflow presented in section 1.2.1
for Avio Aero turbomachinery is a typical example of a basic computational workflow. The
classes in the following list are visualised in the figure 5.1.

• Input (of the computational workflow)

• Output (of the computational workflow)

• Task

– Cloud task

21

– HPC task

• Task requirement

• Task input

– Task data input

• Task output

– Task data output

Computational Workflow Input

The input for a computational workflow can be in the form of a string data type that is
acceptable by the corresponding task. It is possible for a certain input to carry a dataset
UUID [39] that is entered by the user. Such inputs can be attached to the task data input
for further use in the workflow.

Computational Workflow Output

The output of the computational workflow has the same types as the input, but datasets,
a particular kind of output, are treated differently. In this case, the creation of the dataset
in the DDI is expected after the computational workflow execution finishes.

Task

A task defines computational tasks executed on an HPC cluster or a Cloud. It depends
on the user’s choice. An HPC cluster task could be chosen from the list of available tasks
suggested by the HEAppE API. The HEAppE also defines task inputs. Cloud tasks are
similar, but the cloud task could be chosen from the list of registered cloud images in the
cloud images metadata registry. In case a task’s data input is related to another task’s
output, implicit data transfer should be generated.

Task requirement

Task requirements are internal abstractions that represent dependencies between task inputs
and outputs and other tasks. However, these dependencies cannot form a loop.

Task Input and Task Data Input

To ensure flexibility in task inputs, the editor should allow the user to specify a wide range
of input types, such as strings, integers, and UUIDs for dataset inputs. In addition, each
task should be able to receive data inputs from other tasks within the workflow. The user
should be able to specify the source of the data and the input name, which will then be
used to retrieve the data in the task implementation.

Task Output and Task Data Output

For task data outputs, the editor should also allow the user to specify a range of output
types. These can include strings, integers, and UUIDs for dataset outputs. Similar to task
inputs, task outputs can also be the data input of other tasks in the workflow. The user

22

should be able to specify the output name. The data from the task output data can be for
downstream tasks later.

4.2 Cloud Image Metadata Registry
The purpose of the registry is to hold information about Docker images, which do not
contain necessary information such a input environment variables and input and output
paths to the directories inside the instance container, where mapped data from the datasets
should be or where outputs of the tasks can be found. Thus, it is necessary to store the
metadata. Otherwise, correct functionality of the Docker containers cannot be guaranteed.
The metadata is planned to be stored in a database with operations accessible via REST
API.

4.3 GUI/UX Graphical Design
The graphical interactive prototype was inspired by Alien4Cloud and other editors men-
tioned in section 2. The application should provide GUI for managing cloud images in the
registry (section 4.2) and creating as well as editing workflow templates. In addition to pro-
viding dashboards for workflow templates and cloud images, the GUI’s editor with a flow
diagram is a critical component. The flow diagram should provide a representation of the
workflow, including nodes that represent both cloud and HPC resources as well as nodes for
the workflow’s data inputs. The diagram should be designed to allow users to easily visu-
alize and understand the flow of the workflow, and should provide intuitive mechanisms for
linking nodes to indicate data input and output dependencies of the computational tasks.
By interviewing possible users, the following changes were proposed and accepted:

• Separate the navigation menu (on the left) from the action menu (on the right).

• Outline the currently active page in the navigation menu.

• Choose more suitable icons for actions.

• Create buttons with help for the forms.

• Use the Docker naming terminology in the cloud image forms.

23

Figure 4.5: GUI Design – Register New Docker Image
Source: Screenshot from Figma design tool

24

Figure 4.6: GUI Design – Workflow Inputs
Source: Screenshot from Figma design tool

25

Figure 4.7: GUI Design – Modify Cloud Task Details
Source: Screenshot from Figma design tool

4.4 Advanced features
During the discussion, several advanced features were identified for the workflow editor.
One interesting feature is the ability to statically specify particular execution locations.
This feature can be particularly useful for users who require a specific HPC cluster for
orchestrating their application. However, in some cases, users may need to specify the
execution location before the workflow execution, or even the number of instances for a
computation. To address these situations, a templating engine can be integrated into the
workflow editor, allowing users to define their own templates and specify the required
parameters before execution.

26

Chapter 5

Implementation

The particular implementation of the graphical editor for composing computational work-
flow is explained in the following section. According to the design in section 4.1, detailed
implementation of entities like computational workflow or task’s data inputs is described
further. The implementation takes advantage of object-oriented programming and im-
parts the software generality and extensibility. The TOSCA workflow description is not
the only one on the market. Thus the editor may consider using different formats like
Heat Orchestration Template 1 used by OpenStack. Given the graphical editor’s emphasis
on user-friendliness, it is essential that the editor’s state is both persistent and portable.
However, any of the target specifications do not guarantee to have enough information for
backward conversion. Therefore, a custom format without any information biased by target
technology is introduced in section 5.2.6.

5.1 Used Technologies
The implementation of the graphical user interface is accomplished using the .NET frame-
work in C#, in conjunction with the JavaScript library JointJS for diagramming (see the
website [10]). I chose the .NET Blazor Server framework [40]. It directly competes against
the contemporary JavaScript frameworks like React [29]. The framework uses Model-View-
Controller architectural pattern. Razor syntax allows for the description of HTML compo-
nents and the associated code that pertains to each component. However, when compared
to Razor Pages2, the Blazor Server framework allows for interaction with the application
without the need to reload the web page, as is common in modern web applications. One
of the practical features offered by the framework, which greatly benefits the editor imple-
mentation, is the interaction between the browser and Blazor Server via a WebSocket. As
described in section 5.4.1 on task diagram implementation, the editor can invoke JavaScript
and C# functions bidirectionally. The function invocation requires data serialisation de-
scribed in section 5.2.6. REST API implementation is not necessary. Thus, the editor
implementation does not require the overhead of communicating with REST API.

Emitting the internal representation to the final TOSCA format requires a basic .Net
package YamlDotNet. However, TOSCA syntax contains some repetitive, more nested
structures. The ToscaDOM library by Ing. Jiří Dvorský, PhD, proposes a practical level of

1Detailed specification of the Heat Orchestration Template is described on website [6]
2.NET Razor Pages use a simplified web application programming model

27

abstraction into classes, which helps to implement the functionality much more efficiently.
The library is written in C#.

Referring to the dependency diagram mentioned in section 4.3, it constitutes the main
visualization component of the application. While there are several libraries available on
the internet, such as the Blazor.Diagram [3] library, the JointJS library [10] was chosen
to ensure the editor’s sustainability. This well-documented JavaScript library has both a
community and professional version available.

5.2 Computational Workflow Core
To ensure the clarity of the diagram in figure 5.1, more details about the entities are
provided in this section. The abstraction is described below using the top-bottom ap-
proach. The code with workflow core in C# is in file ComputationalWorkflow.cs covered in
namespace ComputationalWorkflow. On the other hand, the JavaScript class abstraction
is located together with the graphical part implementation in file WorkflowEditor.razor.cs
(the graphical part implementation is in section 5.4.1).

28

5.2.1 Computational Workflow Template

Blazor Server

The term computational workflow template comes from the Tosca specification, but in the
abstraction, it makes more sense to describe it as a computational workflow. The top-level
entity that contains all other workflow entities is named ComputationalWorkflowTemplate.
The entities are stored in SortedDictionary data type to keep them in order and quickly
accessible. It controls addition and deletion of computational workflow inputs, outputs
and computational tasks. It is necessary to assign unique identifiers to all entities, so the
responsibility for this operation is assigned to the class. Otherwise, it will not be possible
to refer to them. Due to serialisation restrictions, the identifiers are essential for operation
cross-invocated from both JavaScript and Blazor Server framework (see section 5.2.6).

The class ComputationalWorkflowTemplate exposes methods for linking sources of data
inputs. Valid sources for data input are computational workflow data input (see section
5.2.2) or task data output (see section 5.2.5). Arguments of the method are integers and
strings to simplify invocation from JavaScript.

JavaScript

A similar lightweight abstraction of computational workflow is demanded to keep a consis-
tent state between the diagram rendered by JavaScript and the state controlled by Compu-
tationalWorkflowTemplate class. The abstraction is covered in class WorkflowEditor, which
also manages the JointJS [10] diagram instance (see section 5.4.1). The class WorkflowEd-
itor exposes methods for:

• Adding and removing computational tasks

• Adding and removing computational workflow’s data inputs

• Linking and unlinking data inputs and outputs of tasks or computational workflow’s
data inputs

• Enabling and disabling export of computational task’s data outputs

• Name modification of computational task

• Name modification of computational workflow’s data input

All of the mentioned operations are invocated when a user interacts with menus con-
trolled by Blazor, and some diagram changes are requested.

29

5.2.2 Computational Workflow Input

Computational workflow’s input may be, for example, number, string, date or dataset from
LEXIS DDI 3.

Blazor Server

Both types of inputs have similar properties. They are name, description, value type (num-
ber, string, date, etc.), flag required, flag restricted and index for identification. Therefore,
an abstract base class CWTemplateInputBase implements it. However, considering the
base class’s generality, the base class does not have a property for holding a default value.
Instead, the class CWTemplateInput, which inherits the base class, has the DefaultValue
property. The default value is not mandatory. The value of template input is not consid-
ered because the user specifies it just before the computational workflow execution instead.
The default value has dynamic data type. The dynamic is a static type in C#, but an
object of type dynamic bypasses static type checking. The dynamic data type supports any
operation. Nevertheless, the consequence is that the compiler does not check, the method
call, but the error occurs in runtime to give you an example. Instead of dynamic data
type, a class templating could be used. However, it demands a supplementary base class
implemented because it is often required to distinguish input from data input. Currently,
the class CWTemplateInputBase has only CWTemplateDataInput and CWTemplateInput
derived classes. Thus, the class of the instance of input or data input is identified by check-
ing input is CWTemplateDataInput or dataInput is CWTemplateInput. By using class
templating, more comparisons will need to be considered.

The default value of template data input can be validated against LEXIS DDI, however,
this validation is not included in the current implementation. Nested input structures
need to be considered in further development because the implementation demands a more
complex graphical interface to be implemented, and ToscaDOM still needs to support it.
A form in the input’s menu restricts user inputs, thus, is not implemented in any of the
classes of the computational workflow abstraction. Menu and validation is described in
greater detail in the 5.4.2 section.

JavaScript

Keeping the class abstraction lightweight, the class TemplateDataInput contains only meth-
ods to get an identifier to manage the node in JointJS [10] diagram, set a name of the input
and some other graphical interface related methods (see section 5.4.1). The identifier is
generated from the index given to the CWTemplateDataInput when adding data input to
the computational workflow via AddInput method of the ComputationalWorkflowTemplate
class.

3DDI - Distributed Data Infrastructure with REST APIs for storing data and controlling their transfers
between distributed infrastructure

30

5.2.3 Computational Task

A computational task represents computation on an HPC cluster or cloud. A computation
may have input parameters such as precision. Typically, a computation may compute on
a data set, creating an output data set. The output data set may be used later in different
task computation in the computational workflow. A user can set a default value for the
data input or connect the input parameter to the overall computational workflow inputs.

Blazor Server

Implementation of the class CWTask not only contains the dictionaries with the task inputs
and outputs but also methods for addition and removal of them. The code outside the class
does not access the dictionaries directly when adding or removing the inputs and outputs.
Therefore, there are methods for it:

• AddInput Adds class CWTaskInputBase, the base class of task inputs, sets the re-
striction flag to false. Adds unique integer identifier to the added task input. (see
section 5.2.4)

• AddOutput Adds class CWTaskOutputBase, the base class of task outputs.

• AddRestrictedInput Adds class CWTaskInputBase, the base class of task input, sets
the restriction flag to true. The method is protected from external use.

• RemoveInput Removes task inputs from the dictionary by their name. It is only
possible to remove non-restricted inputs externally.

• RemoveOutput Removes task output from the dictionary by their name.

There is an additional class property Location. It represents a preferred computation loca-
tion, which a user can set in the editor. The integer Identifier property is present for more
effective management of computational tasks.

To simplify the synchronisation of the state between JavaScript and .NET, the methods
LinkDataInput, LinkTemplateDataInput and UnlinkDataInput are exposed. Especially, the
arguments contain only identifiers with atomic types. The methods return a string message
in case of an error to give feedback to the caller.

JavaScript

Implemented class Node holds task inputs and output similar to the implementation in
.NET. Additionally, it implements a method for changing the title, which is displayed in
the diagram for better user orientation. It also implements methods with atomic-typed
identifiers for cross-invocation simplification. The class also implements the identifier prop-
erty similarly to the class implementation the C#.

HPC and Cloud Computation Task

The initialisation is the only thing the HPC and cloud computational task differs from the
basic class. Its initialisation includes the creation of new instances of restricted (cannot
be removed by the user) inputs and outputs. The inputs having the default value or
not required inputs (has required flag set to false) do not need to be filled before the
computational workflow execution by the user. HPC task-specific inputs are:

31

• Name – The name of the computational task, which the user can specify and will be
displayed in the GUI diagram.

• heappe_uri – URL of HEAppE instance deployed for target computation location.
In further development, the URL input could be hidden, and the URL could be
filled automatically according to chosen computational location. LEXIS API needs
to expose relevant information for the functionality to be implemented.

• Project – LEXIS project short name identifier. It is mandatory for proper accounting
of computation in the LEXIS system. The LEXIS or user should provide it before
the execution of the computational workflow.

• ClusterId – Cluster identifier specific for the HEAppE implementation.

• CommandTemplateId – Command template is a script installed inside the HPC and
registered in the HEAppE instance for the particular computation project. It should
be hidden from the user in further development of the editor.

• MinCores – Minimum number of cores requested for the computation. The default
value is 1.

• MaxCores – Maximum number of cores requested for the computation. The default
value is 128.

• WalltimeLimit – HPC scheduler will stop the computation after the computation
reaches the specified limit. The default value is 120 minutes.

• Priority – Job priority for HPC scheduler. The default value is 4.

• ClusterNodeTypeId – Cluster node type identifier is specific for HEAppE. It helps to
differentiate the computation cluster with different modules like GPU.

• FileTransferMethodId – Specifies the type of protocol to use for data transferring
between the computational node and staging area of DDI.

Some of the mentioned shouldn’t necessarily be visible to the user, but hiding them
requires more extensive integration with LEXIS. Ideally, the identifiers should be mapped
with labels to give the user better awareness of the task configuration.

In comparison with a HPC computational task, the cloud computational task adds just
three following task inputs:

• Name – The name of the computational task, which the user can specify and will be
displayed in the GUI diagram.

• DockerImageURI – URL of docker image for cloud computation task. The URL is
planned to be hidden for the user in further development. The user can then choose
from the docker images registered to the docker metadata registry (see section 4.2).

• Labels – Optional labels for advanced handling of cloud computational jobs in Ku-
bernetes4, which LEXIS uses internally for Cloud computations.

More specifications like cloud instance flavour or module requirements can be introduced
later.

4Kubernetes is an open-source container orchestration system for automating software deployment, scal-
ing, and management. [12]

32

5.2.4 Computational Task Input

Computation usually computes on some data with specified precision. However, some inputs
may be used for the HPC job scheduler too. Therefore, all the mentioned inputs should
have the base class to work with. More about the class abstraction is in according sections
below.

Blazor Server

The base class for the computational task input is CWTaskInputBase, but because the
computational task input and output have similarities, the shared part is implemented in
class CWTaskIOBase. Both inputs and outputs have a name, description, type of default
value and internal identifier comparable to the workflow input class (see section 5.2.2).
What the workflow input does not have, and computational task input and output have,
is a reference to the parent computational task. The base class CWTaskInputBase for
computational task inputs also implements the possibility of connecting workflow input as
the source of the value. The workflow input can be restricted, and the user cannot remove
the task input from the computational task. Also, the input must be filled in before the
execution. Therefore, there is Required flag with a boolean value.

However, the task input does not have to be sourced only from workflow input. The
source could be some computational task, of course. Thus, the chaining of computational
tasks is achieved. Currently, only data chaining is allowed between the tasks. The basic task
input is implemented by CWTaskInput class, and CWTaskDataInput class implements data
input. When the data input is not sourced from workflow input or another computational
task, the DDI dataset identifier should be present. As mentioned, the input can hold the
value or reference to some task or workflow input. Thus, both the classes implement method
SetSource, which handles inner properties to be appropriately set. The SetSource method is
overloaded and can accept different types of inputs: a value, a workflow template reference,
or a task output reference. If a value is provided, it is simply set as the new source, and
any existing references are unlinked. If a workflow template reference is provided, then
the current source, value, and any other references are unset. Similarly, if a task output
reference is provided, the current source, value, and any other references are unset as
well. The method ClearSource clears references to any source and also unsets the value.
Compared with CWTaskInput, the MountPath holds information about the path, where
the dataset or data from the other task will be mounted.

JavaScript

The JavaScript part implements just the data inputs and outputs. Thus, the user can
manage data transfers in the graphical interface (see section 5.4.1). The class NodeIO
implements both input and output. The property Type, with possible string value input or
output, distinguishes the class type.

5.2.5 Computational Task Output

Currently, the application only supports dataset outputs, but it can also handle outputs
that hold basic values, similar to the CWTaskInput class. The user can perform various
actions with the dataset output such as exporting it to the LEXIS DDI, copying or mounting
it to another computational task, or sharing it between multiple other tasks. Subject to
the support of the LEXIS transfer API.

33

Blazor Server

The base class CWTaskOutputBase does not implement any logic now, but it is there to keep
the implementation general, similar to the computational task input class structure. The
base class inherits from the class CWTaskIOBase (see section 5.2.4). As mentioned before,
the implementation includes the support of value-based task outputs, but it is not currently
implemented. Therefore, the class CWTaskOutput exists. The class CWTaskDataOutput
for data outputs inherits from the base class. The property MountPath has the same
purpose as in the CWTaskDataInput class. It holds a relative path to the directory in a
computational task, which will be the output. When exported to LEXIS DDI, the property
carries the string with a path in the iRODS. The method GetStagingAreaPath generates
a static address for data transfer between the tasks. It is relevant to the way the LEXIS
staging area works. To grant safe data transfer, each data directory copied from the task
should have its unique path. It is not optimized yet in the current version of the workflow
editor, and the section 5.3.4 describes more about the data transfer.

JavaScript

The class NodeIO implements the computational task output in JavaScript. For more
information, see section 5.2.4.

34

5.2.6 Serialisation

Although serialisation was briefly mentioned in section 5.1, but a detailed explanation has
not yet been provided up to this point. The serialisation explanation is irrelevant with-
out an adequately described computational workflow core (see section 5.2). Serialisation is
mandatory to synchronise the state between the C# in .NET framework and JavaScript.
The computational workflow abstraction classes should have JSON 5 interpreter. The se-
rialisation to JSON gives the advantage of saving the editor’s state to the database. The
.NET framework has built-in package System.Text.Json.Serialization abstract templated
class JsonConverter. All the computational workflow classes have implemented their se-
rialisation classes in file ComputationalWorfkflowSerializer.cs. Nevertheless, the classes
currently implement just the Write method. The Read method is not implemented yet.
The implementation has simplicity and unambiguity as a goal. Some converters delegate
conversion to another converter class to maximise code sharing. The following sections
briefly describes the result JSON structures.

Computational Workflow

• name – Computational workflow name. It represents the value of the Name property

• version – Workflow template version. It represents the value of the Version property

• author – Computational workflow template author. It represents the value of the
Author property

• authorContaxt – A contact to the author. It represents the value of the AuthorContact
property

• description – Computational workflow name. It represents the value of the Description
property

• startDate – When the date is specified, the workflow will be started at the specified
date and time. It represents the value of the StartDate property

• templateInputs – List of templates inputs

Workflow Input

• identifier – An unique identifier of the workflow input. It represents the value of the
Identifier property.

• name – Name of the workflow input. If it is not restricted, then it can be modified
by user. It represents the value of the Name property.

• description – Optional description of the workflow input. It represents the value of
the Description property.

• valueType – The data type enumeration held by the property ValueType. The con-
verter converts the enumeration to a string value.

• required – The flag for the required input should be filled before the workflow execu-
tion. It represents the value of the Required property.

5JSON - JavaScript Object Notation [45]

35

• restricted – Flag for the input, which the system requires. The user cannot remove
it. It represents the value of the Restricted property.

• default – Default value. It represents the value of the DefaultValue property.

Workflow Data Input

The workflow data input differs from the workflow input just by the possible type of the
default value. In the case of the data input, it is a string type because it holds the path to
the dataset in LEXIS DDI (iRODS).

Computational Task

• type – Specify the type of the computational task. The possible values are hpc, cloud
or unknown.

• identifier – Unique identifier of a computational task in the computational workflow.
It represents the value of the Identifier property.

• location – Represents a preferred computation location, which the user can set in the
editor. The Location property in C#.

• taskInputs – List of computational task inputs.

• taskOutputs – List of computational task outputs.

Computational Task Input

• type – In the case of task value-based input, it holds string value taskInput.

• name – Is equivalent to Name property.

• description – Is equivalent to Description property.

• required – Is equivalent to Required property.

• restricted – Is equivalent to Restricted property.

• predecessorTask – The parent task identifier of the output, which is the source of the
input. It can be undefined.

• ref – The name of the output, if the predecessorTask is defined. When the predeces-
sorTask is undefined, it is the name of the computational workflow input. Otherwise
can be undefined, meaning that the input is value-based (the input is the source of
the value). Compose the properties TaskOutputRef and TemplateInput implement in
core abstraction.

• value – The value of the input. It is defined when the input has no other source. It
is equivalent to Value property.

36

Computational Task Data Input

It is equivalent to the computational task input. The list below mentions differences only.

• type – In the case of task data input, it holds string value taskDataInput.

• mountPath – Is equivalent to the MountPath property. The path where the input
data should be mounted.

Computational Task Output

• type – In the case of task data input, it holds string value taskOutput.

• name – Is equivalent to Name property.

• restricted – Is equivalent to Restricted property.

Computational Task Data Output

• type – In the case of task data input, it holds string value taskDataOutput.

• name – Is equivalent to Name property.

• restricted – Is equivalent to Restricted property.

• exportDatasetPath – Is equivalent to ExportDatasetPath property. It is undefined
when the data are not exported to the DDI.

• mountPath – Is equivalent to the MountPath property. The path of exported data
inside the computational task.

• dependentTasks – Tasks dependent on the output have their identifiers listed here.

5.3 TOSCA Emitter
This section describes in detail transformation from editor’s class abstraction (section 5.2) to
YAML [25] file following the TOSCA standard. While the TOSCA standard was originally
created for service deployment, it can also be used in conjunction with Apache Airflow with
the help of a custom TOSCA interpreter, as discussed in section 3.3.3.

However, The LEXIS computational workflow is not as abstract as the editor’s core.
Thus, the workflow cannot be transformed directly and some auxiliary models are required
5.3.7. The design of the structures used in the TOSCA standard emitter is inspired by the
LEXIS operators used in Apache Airflow DAG (Direct Acyclic Graph), which represents
the pipeline in Apache Airflow. To translate between the TOSCA template and operators,
a translator is needed, but its implementation is beyond the scope of this thesis. However,
to ensure better usability and validation, the chapter introduces extended TOSCA types
for the LEXIS operators in Apache Airflow, which are explained briefly in section 5.3.5.

The emitter from editor’s core abstraction to TOSCA is implemented by the visitor
design pattern 6. The visitor design pattern allows us to implement multiple emitters with-
out a need to change the implementation of the editor’s core abstraction. Thus, the editor

6Design pattern visitor is well described in the book [34]

37

can support generation of Common Workflow Language7 or other workflow specification
languages on demand. The emitters implements the IWFEmitter interface.

For the output of the emitter no tests for validation exists currently. However, the
output can be verified by external tool TOSCA Parser [22]. The tool was developed by
OpenStack community to transform TOSCA deployment specification to HEAT specifica-
tion (see section 3.3.5).

5.3.1 TOSCA Emitter Implementation

The TOSCA emitter is implemented in the TOSCAEmitter.cs file, located within the
WFTOSCAEmitter namespace. The worfkflow of type ComputationalWorkflowTemplate
(see section 5.2) is passed as a parameter to the method Emit. The instance of class Order-
PreservingDictionary supplied by the ToscaDOM is created to be the root for the emitted
workflow. Then, the ComposeVersion and ComposeMetadata are called and their output
of data type OrderPair is added to the root dictionary. This way, TOSCA specification
version and workflow metadata are added to the abstract tree composed of the compo-
nent of the ToscaDOM library. The following code implements addition of the workflow
description:

if(wfTemplate.Description != default(string))
{

TOSCATemplate.Add(
new OrderedPair(

new StringDataType("description"),
new StringDataType(wfTemplate.Description)

));
}

The default path to the LEXIS OASIS TOSCA custom types is added when importing,
as described in section 5.3.5. However, additional imports can be specified as well. The
OASIS TOSCA v1.2 standard [43] defines that imports can be a file, a repository name, a
URL to the file, or a namespace prefix. The node template part consists of the workflow
inputs and node templates, as mentioned above. The inputs are composed one by one. The
instance of class CWTTemplateInput is created from instance of class CWTemplateInput
or CWTemplateDataInput and emitted (the OrderPair class instance is created). At the
end, computational tasks are composed with overloaded emitter’s method composeTask, as
described in following sections. Nevertheless, the tasks should be ordered by dependencies
to ensure, that the dependencies of the properties can be referenced. Therefore, all the nodes
are sorted with topological sort algorithm implemented in static method TopologicalSort of
class ComputationalWorkflow. The used algorithm is explained in the book [33] also known
as the Kahn’s algorithm [28]. However, the AAI session should be kept alive, therefore
LexisAAIOperator comes before all the tasks and the LexisAAIStopKeeperOperator comes
after all of them. After the instances of the auxiliary node classes are created, the method
of each of the classes can be invoked to add them to the node template section.

7CWL is an workflow description language, which aims to enable scientists to share data analysis work-
flows. More detail about the language can be found in the article [32].

38

5.3.2 HPC Task

The number of node templates added to the template depends on the CWHPCTask input
types. When some CWTaskDataInput or CWTaskDataOutput are present, then the addi-
tional operators HEAppEEnableFileTransferOperator and HEAppEEndFileTransferOpera-
tor are generated and property FileTransferMethodId is set to 2 in HEAppEPrepareJob-
Operator. Overall, the editor generates the following operators (refer to section 5.3.5) for
each of the HPC tasks:

• HEAppESessionOperator

• HEAppEPrepareJobOperator

• HEAppESubmitJobOperator

• HEAppEEnableFileTransferOperator – if there is some data inputs or outputs

• HEAppEEndFileTransferOperator – if there is some data inputs or outputs

• HEAppEDeleteJobOperator

• HEAppEWaitSubmittedJobSensor

• HEAppESessionKeeperSensor

• HEAppESessionStopKeeperOperator

39

Figure 5.1: TOSCA Emitter Implementation – Example of generated TOSCA nodes for
LEXIS
Source: Own diagram

40

5.3.3 Cloud Task

Cloud task consists only from the one non-optional node, LexisCloudOperator.
However, when the data input or output for the task exists, then the data is transferred by
ddi.LexisStagingOperator to the staging area or from the staging area. The data from the
staging area is mounted to the Kubernetes Pod handled by the LexisCloudOperator.

5.3.4 Data Transfers

Overall, the data transfers generated by the editor may not be optimal. Nevertheless, the
optimization can be done in further development of the editor. Possible scenarios of data
transfers are describes in subsections.

Transfer from DDI to Cloud Task

When the cloud task requires some data input from the DDI storage, then the data is
fetched from the DDI by ddi.LexisStagingOperator and stored to the specific directory for
the cloud task. Each workflow has unique secured folder in the staging area. The staged
data is mounted to the Kubernetes Pod afterwards.

Transfer from DDI to HPC Task

In case the HPC task requires the data on input, the data is fetched from the DDI
by heappe.LexisStagingOperator and mounted by SSHFS8 protocol to the HEAppE’s job
context directory. The directory management on the staging area is handled automati-
cally by heappe.LexisStagingOperator. The transfer has to be enabled before the use of the
staging operator.

Transfer between the tasks

To prevent more cloud or HPC tasks from writing to the same source data from the source
task, the data is copied for each of the dependent data inputs to their own directory in the
staging area. It is not the optimal way, but optimisation of data transfer between tasks is
not a topic the thesis is concerned about.

Transfer from Cloud Task to DDI

When the output data from the task is exported to the DDI as a dataset, the directory is
created in the staging area and mounted to the cloud Kubernetes Pod. The workflow is
designed to transfer the data to the DDI storage after successful execution. However, the
current implementation does not account for situations where the input and output data
share the same mount point. The operation is handled by the ddi.LexisStagingOperator.

Transfer from HPC Task to DDI

The export of the data output to the DDI as a dataset is managed
by heappe.LexisStagingOperator. However, the tranfer has to be enabled with HEAppEEn-

8SSHFS, as the documentation in code repository mention [21], is network filesystem client based on
SFTP [35] protocol and FUSE library. FUSE (Filesystem in Userspace [17]) is an interface for userspace
programs to export a filesystem to the Linux kernel.

41

ableFileTransferOperator and proper FileTransferMethodId has to be setted in HEAppEPre-
pareJobOperator.

5.3.5 LEXIS Operators Definition for OASIS TOSCA

• LexisEmptyOperator – does not execute any action and is used to synchronize the
parallel branches of a workflow

• LexisAAIOperator – Exchanges the access token given in the workflow input param-
eter for offline token. The exchange is granted by the AAI authority Keycloak9.

• LexisAAITokenKeeperSensor – Keeps the offline session token active during the work-
flow execution

• LexisAAIStopKeeperOperator – Once the execution reaches the operator, it will stop
the LexisAAITokenKeeperSensor from keeping the AAI session alive

• heappe.LexisStagingOperator – Requests data transfers between staging area, DDI ser-
vice and HPC cluster. It depends on the HEAppESessionOperator and HEAppEPre-
pareJobOperator to have access to the HPC cluster. That is why the operator differs
from the ddi.LexisStagingOperator.

• heappe.LexisWaitStagingRequestSensor – Waits for the result of the data transfer
requested by heappe.LexisStagingOperator

• ddi.LexisStagingOperator – Requests data transfers between staging area and DDI
service.

• ddi.LexisWaitStagingRequestSensor – Waits for the result of the data transfer re-
quested by ddi.LexisStagingOperator

• HEAppESessionOperator – Keeps HEAppE session alive.

• HEAppEPrepareJobOperator – Prepares the context for the HPC job submission. Sets
the properties like target cluster identifier, walltime limit or enables data transfer from
staging area together with HEAppEEnableFileTransferOperator.

• HEAppESubmitJobOperator – Submits a prepared job to the HPC job scheduler queue
using the HEAppE middleware

• HEAppEEnableFileTransferOperator – Enables data transfer from staging area

• HEAppEEndFileTransferOperator – Closes the tunnel for data transfer between stag-
ing area and HPC cluster

• HEAppEDeleteJobOperator – Removes created context on HPC cluster

• HEAppEWaitSubmittedJobSensor – Waits until the job is done
9Keycloak is an open source software. It provides identity and access management. It supports proto-

col OpenID, SAML 2.0 or Kerberos for authentication and Active Directory, LDAP or regular relational
database. It is a part of the LEXIS platform as AAI service, as can be seen on figure 3.2. More about the
Keycloak can be found on the website [11]

42

• HEAppESessionKeeperSensor – Keeps HEAppE session alive during the computation
on HPC cluster

• HEAppESessionStopKeeperOperator – When the operator is executed, it stops the
HEAppESessionKeeperSensor from keeping the HEAppE session alive

• LexisCloudOperator – Creates Kubernetes pod10 on OpenStack, connects volumes
with data and observes the execution

5.3.6 OASIS TOSCA

The target TOSCA workflow specification contains the following parts:

• tosca_definitions_version – Used TOSCA definition version

• metadata – Custom specification metadata. For example, description or author

• imports – Import of other TOSCA definition files. The import path for LEXIS Op-
erators Definition for OASIS TOSCA (see section 5.3.5)

• topology_template

– inputs
– node_templates

5.3.7 Auxiliary TOSCA Emitter Models

The auxiliary models in the ComputationalWorkflowTOSCA.cs file partially abstract the
TOSCA structures and help to clarify the implementation. They are complementary to
models defined ToscaDOM library used for emitting. All of the models implement inter-
face IToscaEmitable. The interface grants implementation of method Emit with return
value of data type OrderedPair defined in ToscaDOM library. ToscaDOM library imple-
ments abstract structures representing the TOSCA entities further emitted to the YAML
by YamlDotNet built-in .NET package. The base class for all structures in the library is
AbstractComponent. The library is still in development and currently used structures are
mostly representation of ordered list with key-value members. Following auxiliary models
are defined:

• CWTRelation – Represents the relationship between CWTNode instances

• CWTTemplateInput – Inherits from CWTemplateInput core abstract class and imple-
ments interface IToscaEmitable. Represents the workflow input parameter. It can be
instantiated from both CWTemplateInput and CWTemplateDataInput

• CWTNodeAttribute – Represents an attribute of CWTNode. It has a name and refer-
enence to the parent CWTNode. As specified in the OASIS TOSCA v1.2 standard
[43], the attribute definition is:

10Pods are the smallest deployable units of computing that you can create and manage in Kubernetes.
[13]

43

An attribute definition defines a named, typed value that can be associated
with an entity defined in this specification (e.g., a Node, Relationship or
Capability Type). Specifically, it is used to expose the ”actual state“ of some
property of a TOSCA entity after it has been deployed and instantiated (as
set by the TOSCA orchestrator). Attribute values can be retrieved via the
get_attribute function from the instance model and used as values to
other entities within TOSCA Service Templates.

• CWTNodePropertyBase – It is an abstract base class for CWTNode property.
As stated in the OASIS TOSCA v1.2 standard [43] the property definition is:

A property definition defines a named, typed value and related data that
can be associated with an entity defined in this specification (e.g., Node
Types, Relationship Types, Capability Types, etc.). Properties are used by
template authors to provide input values to TOSCA entities which indicate
their ”desired state“ when they are instantiated. The value of a property
can be retrieved using the get_property function within TOSCA Service
Templates.

The class itself has properties Name, Required and reference to the parent CWTNode

• CWTNodePropertyRefAttr – Inherits from the CWTNodePropertyBase and has addi-
tional property AttributeRef to reference other node’s attribute. It also has method
GetAttributeFn for get_attribute construction generation, because the feature of
generating get_attribute is not yet implemented in ToscaDOM library.

• CWTNodePropertyRefProp – Inherits from the CWTNodePropertyBase and it has
property PropertyRef for referencing other node’s property. The method GetProp-
ertyFn generates get_property structure similarly to the method GetAttributeFn
implemented by CWTNodePropertyRefAttr

• CWTNodePropertyInputRef – Inherits from the CWTNodePropertyBase and it has
property InputRef for referencing other node’s property. The method GetPropertyFn
generates get_input structure similarly to the method GetInputFn implemented by
CWTNodePropertyRefProp and CWTNodeAttributreRefProp

• CWTNodePropertyValue – Inherits from the CWTNodePropertyBase and it directly
stores the value of the property and its type.

• CWTNode – It is specified in the OASIS TOSCA v1.2 standard [43] as follows:

A Node Template specifies the occurrence of a manageable software com-
ponent as part of an application’s topology model which is defined in a
TOSCA Service Template. A Node template is an instance of a specified
Node Type and can provide customized properties, constraints or operations
which override the defaults provided by its Node Type and its implemen-
tations.

The auxiliary class has name, type, reference to the CWNode class, list of requirements
(list of members with type CWTRelation), dictionary of properties CWTNodeProper-
tyBase, dictionary of attributes CWTNodeAttribute and method for adding previous
CWTNode to the requirements list

44

• CWTNodeAirflow – is the concrete type of a node defined in custom LEXIS TOSCA
types. It additionally has a compulsory attribute called task_id

• static class CWTAAI – some predefined task names and input names. For example,
required workflow input access_token

• static class CWTTypesInterpret – Interprets values with C#’s dynamic data type
to the AbstractComponent accepted by the ToscaDOM library. The value is distin-
guished by value type (CWInputTypes) passed as the argument

5.4 Graphical Editor Interface
Currently, the minimal valuable prototype of the designed graphical interface introduced
in section 4.3 is implemented. That is the workflow editor itself. The user can create a
new workflow, add a predefined available computational task, create input dataset, connect
data input and output within the workflow nodes and export the workflow to the TOSCA
YAML.

Everything except the diagram visualisation with data dependencies between the tasks
and workflow input is implemented in .NET Blazor Server framework [40]. The diagram is
managed in JavaScript using the JointJS library [10]. Because the changes of the compu-
tational workflow state should be handled, the cross invocation of functions and methods
is used between the JavaScript and the Blazor Server in C#. Data passed to the function
is serialised and deserialised using the converters described in section 5.2.6. The sections
below extend the description of JavaScript class abstraction introduced in section 5.2.

5.4.1 Task Diagram

The JavaScript code with implementation is located in file WorkflowEditor.razor.js. To
highlight that the JavaScript code is for the specific component, the name of the file equals
to the name of the file with Blazor web component (WorkflowEditor.razor). The Work-
flowEditor class holds the main context for the diagram and all the nodes and relationships.
When the class is initialised, the instances of the classes the diagram Graph and Paper are
created. The Paper class represents the view of the Graph model according to the JointJS
documentation. The Paper view can be customized upon initialisation. In our case, the
following actions are performed:

• The validation function for the links between the nodes is defined. The validation
function checks, if the link can be created between the input and output11 of the
nodes.

• The styling of the view is set

• The tools for link modification are added to the link’s view

• ContextMenu class is instantiated and added to the event callback. The class defines
the context menu design and items. The items included in the context menu depend
on the specific context in which it is invoked, which is determined by the type of node
in the diagram. Currently, the context menu provides two options: a remove button
and a modification button.

11In JointJS terminology, the input and output are called ports.

45

• Zooming behaviour is configured. The scale ratio is propagated to the .NET frame-
work and displayed to the HTML element with predefined identifier

• Drag and drop movement of the whole Paper view is initialised. The function re-
sponsible for setting the mouse position and a flag that represents a drag operation
to the WorkflowEditor property PaperCtx is registered to the blank:pointerdown event.
While the user moves with the cursor, function registered to the event blank:pointermove
moves with the paper with the calculated delta value and sets the cursor position to
the PaperCtx again. The blank:pointerup is considered as the drop action and it ends
the dragging setting, the dragging flag to the false and unsetting the cursor position
in PaperCtx

The workflow may have a default state, which can be passed as an argument to the
class constructor, that is why the workflow state initialisation happens there. After the
initialisation, the nodes are displaced across the Paper view with algorithm indicated in
the following pseudo code:

// the algorithm is in pseudo code

// The nodes are displaced to the grid with column and rows

// nodes without predecessor (also covers workflow's data input nodes)
List<Node> nodesIndegree0 = findIndegree0()

List<Node> visitedNodes = []

// element width constant in pixels,
// algorithm can be improved using the variable width of the nodes
int nodeWidth = 256

// x axis margin constant for the node in pixels
int xDisplacementMargin = 150

// y axis margin constant for the node in pixels
int yDisplacementMargin = 80

// context for counting the offset
// from the heighest row of the displaced nodes
List<List<int>> heightContext = []

// base top offset for the tree of the nodes
// from the nodesIndegree0 list
int treeRowBase = yDisplacementMargin

foreach _ in nodesIndegree0:
heightContext.push([])

46

function placeNode(nodeElement, distance, node0Index):
// node is not visited yet
if(nodeElement not in visitedNodes):

visitedNodes.push(nodeElement.identifier)

// if the column does not exists in the heightContext
// then initialise the column
if(heightContext[node0Index][distance] is undefined):

heightContext[node0Index][distance] = []

// sum the current tree root base
// and all the highest columns of the previous root's trees
int currentYPosition = treeRowBase
foreach upperNode of heightContext[node0Index][distance]:

currentYPostition += upperNode.Height+yDisplacementMargin

int currentXPosition = xDisplacementMargin
currentXPosition += distance * (xDisplacementMargin + nodeWidth)

nodeElement.setXcoordinate(currentXPosition)
nodeElement.setYcoordinate(currentYPosition)

heightContext[node0Index][distance].push(nodeElement.Height)

foreach node0 of nodesIndegree0:
// the node is not the first one
int node0Index = nodesIndegree0.findIndex(node0)
if(node0Index > 0):

// find the heighest column of the previous tree ,
// which was placed on the Paper
int maxHeight = findTheHeighestColumn()
treeRowBase+=maxHeight

// Perform BFS from the node0
// distance -- distance in tree from root node0
Graph.bfs(

node0,
(nodeElement, distance) =>

placeNode(nodeElement, distance, node0Index)
)

47

The WorkflowEditor also implements following methods:

• NewDataInput – Creates a new instance of the TemplateDataInput with given name
and identifier. Adds it to the workflow and diagram using the method AddTemplate-
DataInput of the WorkflowEditor class

• SetDataInputName – Sets name of the data input with specific identifier. It is trig-
gered, when the name changed in the workflow input’s menu (see section 5.4.2)

• RemoveTemplateDataInput – Removes the data input node with given identifier from
the diagram and workflow

• SetTaskName – Sets name of the task with specific identifier. The task name can be
changed from task menu (see section 5.4.4)

• EnableDatasetOutputExport and DisableDatasetOutputExport – Enables or disables
export of the computational task output. It changes the point’s colour of the target
output between the red and purple colour

• NewNode – Creates a new instance of the Node class from the serialised CWTask class
and adds it to the diagram

• RemoveNode – Removes a node with given identifier

The nodes of the diagram are styled in class Node. They are styled with attributes,
selectors and properties implemented by the JointJS library. The inputs and outputs are
placed on the sides of the node. The node’s height depends on their number. When the
output or input is added or removed, new height of the node is computed with method
ComputeNewSize.

5.4.2 Computation Workflow Inputs Menu

The workflow input menu is accessible from the right navigation bar (see figures D.1 and
D.5). The menu contains a list of workflow inputs. Some items are restricted, hence they
cannot be deleted or renamed, it is possible otherwise. The unrestricted inputs can be
marked as required and the name or default value can be modified. There are two buttons
for addition of the inputs on the bottom of the list. The first is for the data input addition,
which also triggers NewDataInput method of the class WorkflowEditor in JavaScript and
the second is for the basic value-based input.

5.4.3 Addition of the Computational Task

To add a computational task to the workflow, user can click on the button with the plus
icon in the right navigation menu. Then, the modal window offers a select box with a
list of available computational tasks. The HPCTaskService and CloudTaskService collect
the available computational tasks from the HEAppE and from the Cloud Image Metadata
Registry (see section 4.2). Currently, the available tasks are mocked statically.

48

5.4.4 Task Menu

The task menu appears, when user clicks on the edit item in context menu (see figure D.7).
The modal window lists the inputs and outputs of the computational task and user can
change their default values (see figure D.8). In case of the data output, the user can click to
the switch to export it. After that, the colour representation of the output in the diagram
is changed.

5.4.5 Exporting the workflow to the TOSCA YAML file

When the user wants to export the composed computational workflow, he clicks on the
button with download icon next to the title. The button triggers the workflow emitter
(described in section 5.3) for the TOSCA format. When the TOSCA workflow specification
is prepared, then the JavaScript function DownloadFile is invoked and the specification is
passed as the string data type in argument. The function creates the Blob12 object and it
downloads the file to the user’s computer via the browser (see figure D.12).

5.4.6 User’s Feedback

A prototype graphical editor was tested by 4 potential users who were given specific tasks
to complete. The feedback from these users will be used to improve the editor’s interface
and make it more user-friendly and achieve a better user experience. The feedback group
consisted of two types of users: those with in-depth knowledge of composing computational
workflows using the LEXIS system, and those who use LEXIS to execute pre-designed
workflows. Users were given the following tasks:

• Add a computational task to the workflow

• Add workflow’s data input and give it a name and connect it to a computational task

• Remove the created workflow’s data input

• Export the data output from the computational task

• Download the workflow’s specification to your computer

Based on user feedback, the data input in the workflow should be separated or distin-
guished more clearly from other inputs in the menu. In addition, the users advised folding
items in the menu to achieve a compact view. Then, the users can expand only relevant
items to them. Some users expressed confusion regarding the icons used in the naviga-
tion menu for accessing the input and output menus. Nevertheless, they appreciated the
visualisation and simplicity of the task on the diagram. They would appreciate further im-
provements, such as a description of the connections between the data outputs and inputs
of computational tasks, as well as quick access to the workflow input menu when a user
clicks on a workflow data input on the diagram. An additional improvement that would be
welcomed is to include a node representation on the diagram for the exported dataset.

12The Blob object represents a blob, which is a file-like object of immutable, raw data. Cited from the
specification [9]

49

Chapter 6

Conclusion

The thesis is closely related to the LEXIS platform, and many decisions and technologies
used depend on the platform’s other components. At the outset, I engaged in discussions
with members of the LEXIS team and HPC cluster users regarding the concept of a workflow
editor. The initial ideas were varied, but after several iterations, a consensus was reached
to develop an editor that was provided to both computational workflow designers and users
without extensive knowledge of computer science. The primary objective of the editor
was to facilitate a more user-friendly approach to composing workflows for multi-location
and multi-architecture computing. After creating the non-functional graphical prototype,
I presented it to the involved people, gathered their feedback, which I have then discussed
with them. Based on their input, I proceeded to design the non-interface components of
the editor, which relied on the Apache Airflow workflow management platform and TOSCA
specification. There was no existing way to translate TOSCA into Apache Airflow, and
we also considered the possibility of using a non-standardised specification instead of the
TOSCA standard for workflow specification. However, we found the TOSCA standard
more suitable for our use case. Therefore, I developed a translator prototype that converts
TOSCA into Python classes that are specific to the Apache Airflow platform. Once I became
familiar with the process of composing workflows, I began designing the abstractions for
the editor. Once the design was finished, I started the implementation of the editor’s core,
the workflow abstraction and TOSCA emitter. I tested the possibility of composing the
computational workflow before I started to develop the graphical user interface. In my
opinion, the most challenging part of the thesis was implementing the TOSCA emitter and
editor abstraction.

In conclusion, the graphical editor is a valuable tool for streamlining the research pro-
cess, not only for scientists. Its graphical interface and useful features make it an ideal
solution for researchers and others who work with advanced computational workflows and
who want to improve their efficiency and productivity. With the help of editor and the
LEXIS platform, the researchers can focus on what matters – their research.

The graphical editor is built on the .NET Blazor Server framework with a JointJS
library for diagram visualisation, it ensures the extensibility of the features, the other
emitters of the workflow specification can be implemented, and it suggests a graphical
interface. The graphical editor prototype is ready for further development and usage in
the European project EXA4MIND [20] and the LEXIS platform. The LEXIS platform is
still in active development and as a result, some of the action points mentioned earlier have
been postponed until completion at a later date.

50

The editor is expected to undergo further extensions beyond what is outlined in the
following points. In the nearest future, the development of the application will continue by
completing the following action points.

• Validation tests for the output of the emitter (see section 5.3)

• End-to-end editor testing

• Integration of the editor to the LEXIS platform

• Implementation of remaining parts of the GUI (see section 4.3)

51

Bibliography

[1] About the Loschmidt Laboratories [online]. Loschmidt Laboratories [cit. 2023-01-18].
Available at: https://loschmidt.chemi.muni.cz/.

[2] Apache Airflow [online]. [cit. 2023-04-27]. Available at: https://airflow.apache.org/.

[3] Blazor.Diagrams – Diagrams library for the Blazor framework [online]. [cit.
2023-04-30]. Available at: https://github.com/Blazor-Diagrams/Blazor.Diagrams.

[4] FireProt-ASR tool [online]. Loschmidt Laboratories [cit. 2023-01-18]. Available at:
https://loschmidt.chemi.muni.cz/fireprotasr/?action=help.

[5] HEAppE Yorc plugin [online]. LEXIS project [cit. 2023-01-18]. Available at:
https://github.com/lexis-project/orch-service-yorc-heappe-plugin.

[6] Heat Orchestration Template (HOT) specification [online]. OpenStack Foundation
[cit. 2023-04-17]. Available at:
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html.

[7] Hybrid cloud/HPC TOSCA orchestrator [online]. GitHub [cit. 2023-05-01]. Available
at: https://github.com/ystia/yorc.

[8] IRODS - The Integrated Rule-Oriented Data System [online]. iRODS Consortium [cit.
2023-01-18]. Available at: https://irods.org/.

[9] JavaScript – Web API Reference – Blob object [online]. [cit. 2023-04-30]. Available at:
https://developer.mozilla.org/en-US/docs/Web/API/Blob.

[10] JavaScript diagramming library for interactive UIs – JointJS [online]. [cit. 2023-04-30].
Available at: https://www.jointjs.com/.

[11] Keycloak - Open Source Identity and Access Management [online]. [cit. 2023-04-28].
Available at: https://www.keycloak.org/.

[12] Kubernetes [online]. [cit. 2023-04-28]. Available at: https://kubernetes.io.

[13] Kubernetes - Pod [online]. [cit. 2023-04-28]. Available at:
https://kubernetes.io/docs/concepts/workloads/pods/.

[14] LEXIS - Large-scale EXecution for Industry & Society [online]. LEXIS Project
Consortium [cit. 2023-01-18]. Available at: https://lexis-project.eu/web/.

[15] LEXIS objectives [online]. LEXIS project [cit. 2022-12-29]. Available at:
https://lexis-project.eu/web/high-performance-computing/objectives-2/.

52

https://loschmidt.chemi.muni.cz/
https://airflow.apache.org/
https://github.com/Blazor-Diagrams/Blazor.Diagrams
https://loschmidt.chemi.muni.cz/fireprotasr/?action=help
https://github.com/lexis-project/orch-service-yorc-heappe-plugin
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html
https://github.com/ystia/yorc
https://irods.org/
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://www.jointjs.com/
https://www.keycloak.org/
https://kubernetes.io
https://kubernetes.io/docs/concepts/workloads/pods/
https://lexis-project.eu/web/
https://lexis-project.eu/web/high-performance-computing/objectives-2/

[16] The LEXIS project public documentation [online]. The LEXIS Platform Team [cit.
2023-04-27]. Available at: https://docs.lexis.tech/.

[17] Linux FUSE Library [online]. [cit. 2023-04-29]. Available at:
https://github.com/libfuse/libfuse/.

[18] OICD Yorc plugin [online]. LEXIS project [cit. 2023-01-18]. Available at:
https://github.com/lexis-project/orch-service-yorc-oidc-client.

[19] OpenID - Specification [online]. OpenID Foundation [cit. 2023-01-18]. Available at:
https://openid.net/developers/specs/.

[20] The Platform for Extreme Data [online]. [cit. 2023-04-30]. Available at:
https://exa4mind.eu/.

[21] SSHFS – Network filesystem client [online]. [cit. 2023-04-29]. Available at:
https://github.com/libfuse/sshfs/.

[22] TOSCA Parser [online]. [cit. 2023-04-30]. Available at:
https://pypi.org/project/tosca-parser/.

[23] What is DevOps? [online]. Microsoft [cit. 2023-01-18]. Available at:
https://learn.microsoft.com/en-us/devops/what-is-devops.

[24] What is HPC? [online]. IBM [cit. 2022-12-29]. Available at:
https://www.ibm.com/topics/hpc.

[25] YAML - YAML Ain’t Markup Language™ [online]. [cit. 2023-01-18]. Available at:
https://yaml.org/.

[26] Yorc DDI plugin [online]. LEXIS project [cit. 2023-01-18]. Available at:
https://github.com/lexis-project/orch-service-yorc-ddi-plugin.

[27] Ystia Suite [online]. Atos SE [cit. 2023-01-18]. Available at: https://ystia.github.io/.

[28] Graph Topological Sort — Kahn’s Algorithm [online]. 2021 [cit. 2023-04-29]. Available
at: https:
//adelachao.medium.com/graph-topological-sort-kahns-algorithm-93380b00e7d7.

[29] Banks, A. and Porcello, E. Learning React: Modern Patterns for Developing
React Apps. O’Reilly Media, 2020. ISBN 9781492051695. Available at:
https://books.google.cz/books?id=tDjrDwAAQBAJ.

[30] Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H. et al.
Characterization of Scientific Workflows. [online]. DOI:
10.1109/WORKS.2008.4723958. ISSN 2151-1381. Available at:
https://doi.org/10.1109/WORKS.2008.4723958.

[31] Challita, S. TOSCA Studio [online]. [cit. 2023-01-18]. Available at:
https://github.com/occiware/TOSCA-Studio/.

[32] Crusoe, M. R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J. et al. Methods
Included: Standardizing Computational Reuse and Portability with the Common
Workflow Language. The CWL Community Communications of the ACM. 2022, Vol.
65 No. 6, p. 54–63. DOI: 10.1145/3486897.

53

https://docs.lexis.tech/
https://github.com/libfuse/libfuse/
https://github.com/lexis-project/orch-service-yorc-oidc-client
https://openid.net/developers/specs/
https://exa4mind.eu/
https://github.com/libfuse/sshfs/
https://pypi.org/project/tosca-parser/
https://learn.microsoft.com/en-us/devops/what-is-devops
https://www.ibm.com/topics/hpc
https://yaml.org/
https://github.com/lexis-project/orch-service-yorc-ddi-plugin
https://ystia.github.io/
https://adelachao.medium.com/graph-topological-sort-kahns-algorithm-93380b00e7d7
https://adelachao.medium.com/graph-topological-sort-kahns-algorithm-93380b00e7d7
https://books.google.cz/books?id=tDjrDwAAQBAJ
https://doi.org/10.1109/WORKS.2008.4723958
https://github.com/occiware/TOSCA-Studio/

[33] Demel, J. Grafy a jejich aplikace. In:. Academia, 2002, chap. 5.2.7. ISBN
8020009906.

[34] Freeman, E. and Robson, E. Head First Design Patterns. O’Reilly Media, 2020.
ISBN 9781492077978. Available at: https://books.google.cz/books?id=Lw8LEAAAQBAJ.

[35] Galbraith, J. and Saarenmaa, O. SSH File Transfer Protocol. Internet-Draft
draft-ietf-secsh-filexfer-13. Internet Engineering Task Force, july 2006. Work in
Progress. Available at:
https://datatracker.ietf.org/doc/draft-ietf-secsh-filexfer/13/.

[36] Ganne, L. Design and Implementation of the HPC-Federated Orchestration System
- Intermediate. Bull/Atos. 2020, [cit. 2023-01-20]. DOI: 10.3030/825532. v1.1.
Available at: https://ec.europa.eu/research/participants/documents/
downloadPublic?documentIds=080166e5cca47e99&appId=PPGMS.

[37] Goubier, T., Rakowsky, N. and Harig, S. Fast Tsunami Simulations for a
Real-Time Emergency Response Flow. In: 2020 IEEE/ACM HPC for Urgent
Decision Making (UrgentHPC). 2020, p. 21–26. DOI:
10.1109/UrgentHPC51945.2020.00008.

[38] Heineman, G. Learning Algorithms. O’Reilly Media, 2021. ISBN 9781492091011.
Available at:
https://learning.oreilly.com/library/view/learning-algorithms/9781492091059/.

[39] Leach, P., Mealling, M. and Salz, R. A Universally Unique Identifier (UUID)
Urn Namespace Specification. RFC 4122. Internet Engineering Task Force, July
2005. Available at: https://tools.ietf.org/html/rfc4122.

[40] Litvinavicius, T. Exploring Blazor: Creating Server-side and Client-side
Applications in .NET 7. Apress, 2022. ISBN 9781484287675. Available at:
https://books.google.cz/books?id=Bc5OzwEACAAJ.

[41] Ludäscher, B., Bowers, S. and McPhillips, T. Scientific Workflows. In: LIU, L.
and ÖZSU, M. T., ed. Encyclopedia of Database Systems. Boston, MA: Springer US,
2009, p. 2507–2511. DOI: 10.1007/978-0-387-39940-9_1471. ISBN 978-0-387-39940-9.
Available at: https://doi.org/10.1007/978-0-387-39940-9_1471.

[42] Magarielli, D. Avio Aero use cases: review of Aeronautics use cases’ KPIs and
expected impact on Aeronautical market. 2021, [cit. 2023-01-18]. DOI:
10.3030/825532. v1.1. Available at: https://ec.europa.eu/research/participants/
documents/downloadPublic?documentIds=080166e5e644b2ad&appId=PPGMS.

[43] OASIS. OASIS TOSCA standard v1.2 [online]. 2019 [cit. 2023-04-29]. Available at:
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-
Simple-Profile-YAML-v1.2-os.pdf.

[44] Swiatkowski, J. Slurm on OpenStack Computing Platform for Development.
[online]. p. 2, [cit. 2023-01-18]. Available at:
https://raw.githubusercontent.com/jsw0011/slurm-openstack-devel-plugin/main/
2022-PPFIT-SlurmOpenStackPluginDevel.pdf.

54

https://books.google.cz/books?id=Lw8LEAAAQBAJ
https://datatracker.ietf.org/doc/draft-ietf-secsh-filexfer/13/
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cca47e99&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cca47e99&appId=PPGMS
https://learning.oreilly.com/library/view/learning-algorithms/9781492091059/
https://tools.ietf.org/html/rfc4122
https://books.google.cz/books?id=Bc5OzwEACAAJ
https://doi.org/10.1007/978-0-387-39940-9_1471
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5e644b2ad&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5e644b2ad&appId=PPGMS
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.pdf
https://raw.githubusercontent.com/jsw0011/slurm-openstack-devel-plugin/main/2022-PPFIT-SlurmOpenStackPluginDevel.pdf
https://raw.githubusercontent.com/jsw0011/slurm-openstack-devel-plugin/main/2022-PPFIT-SlurmOpenStackPluginDevel.pdf

[45] T. Bray, E. The JavaScript Object Notation (JSON) Data Interchange Format
[online]. RFC 8259. 2017 [cit. 2023-04-25]. Available at:
https://www.rfc-editor.org/info/std90.

[46] Wilkinson, B. Grid Computing: Techniques and Applications. In:. Taylor &
Francis, 2009, chap. 8.2.1. Chapman & Hall/CRC Computational Science. ISBN
9781420069532. Available at:
https://learning.oreilly.com/library/view/grid-computing/9781420069549/.

55

https://www.rfc-editor.org/info/std90
https://learning.oreilly.com/library/view/grid-computing/9781420069549/

Appendix A

LEXIS Operator’s Types in OASIS
TOSCA

TOSCA specification for extended node types and groups that are specific to the LEXIS
platform.

tosca_definitions_version: tosca_simple_yaml_1_2

metadata:
author: IT4Innovations
version: 1.2.0
name: lexis.airflow.types

description: LEXIS Airflow TOSCA types for workflow execution

LEXIS DATA TYPES

data_types:
lexis.datatypes.ddi.Metadata:

derived_from: tosca.datatypes.Root
properties:

creator:
description: Dataset creators
type: list
entry_schema:

type: string
required: False

contributor:
description: Dataset contributors
type: list
entry_schema:

type: string
required: False

publisher:
description: Dataset publishers

56

type: list
entry_schema:

type: string
required: False

owner:
description: Dataset owners
type: list
entry_schema:

type: string
required: False

internalID:
description: Dataset identifier
type: string
required: False

publicationYear:
description: Dataset year of publication
type: string
required: False

resourceType:
description: Dataset resource type
type: string
required: False

title:
description: Dataset title
type: string
required: False

lexis.datatypes.ddi.templateinput:
derived_from: tosca.datatypes.Root
properties:

mount_point:
type: string
description: relative path to the root of the HPC job
required: True

ddi_path:
type: string
required: False

lexis.datatypes.cloud.mountpoint:
derived_from: tosca.datatypes.Root
properties:

mount_point:
type: string
required: True

staging_operator_task_id:
type: string
required: True

LEXIS Airflow nodes types

57

node_types:
BASE
lexis.nodes.operators.base.LexisOperatorBase:

derived_from: tosca.nodes.Root
attributes:

task_id:
type: string

capabilities:
basicTask:

type: lexis.capabilities.basicTask
Empty operator
lexis.nodes.operators.base.LexisEmptyOperator:

derived_from: tosca.nodes.Root
attributes:

task_id:
type: string

capabilities:
basicTask:

type: lexis.capabilities.basicTask
requirements:

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

AAI Operators
lexis.nodes.operators.aai.LexisAAIOperator:

derived_from: tosca.nodes.Root
description: Exchange of access token for the offline token
to access LEXIS services
properties:

access_token:
type: string

attributes:
task_id:

type: string
lexis.nodes.operators.aai.LexisAAITokenKeeperSensor:

derived_from: lexis.nodes.operators.base.LexisOperatorBase
description: Keep refreshing the token for accessing LEXIS services
attributes:

task_id:
type: string

requirements:
- aai_operator:

node: lexis.nodes.operators.aai.LexisAAIOperator
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

lexis.nodes.operators.aai.LexisAAIStopKeeperOperator:

58

derived_from: lexis.nodes.operators.base.LexisOperatorBase
description: Stop LexisAAITokenKeeperSensor when computation ends
attributes:

task_id:
type: string

requirements:
- previous_task:

node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

DDI Operators
lexis.nodes.operators.heappe.LexisStagingOperator:

derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

source_system:
type: string
required: True

source_path:
type: string
required: True

target_system:
type: string
required: True

target_path:
type: string
required: True

heappe_prepare_job_task_id:
type: string
required: True

heappe_enable_file_transfer_task_id:
type: string
required: True

encryption:
type: boolean
required: False
default: False

compression:
type: boolean
required: False
default: False

metadata:
type: lexis.datatypes.ddi.Metadata
required: False
default: null

attributes:
task_id:

type: string
requirements:

59

- heappe_prepare_job_task_id:
node: lexis.nodes.operators.heappe.HEAppEPrepareJobOperator
relationship: lexis.relationships.heappe.HEAppEPrepareJob
occurrences: [1, 1]

- heappe_enable_file_transfer_task_id:
node: lexis.nodes.operators.heappe.HEAppEEnableFileTransferOperator
relationship: lexis.relationships.heappe.HEAppEFileTransferEnableTask
occurrences: [1, 1]

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

lexis.nodes.operators.heappe.LexisWaitStagingRequestSensor:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
description: Waits for staging operation
properties:

staging_operator_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- staging_operator_task_id:
node: lexis.nodes.operators.heappe.LexisStagingOperator
relationship: lexis.relationships.ddi.DDITask
occurrences: [1, 1]

lexis.nodes.operators.ddi.LexisStagingOperator:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

source_system:
type: string
required: True

source_path:
type: string
required: True

target_system:
type: string
required: True

target_path:
type: string
required: True

encryption:
type: boolean
required: False
default: False

compression:
type: boolean

60

required: False
default: False

metadata:
type: lexis.datatypes.ddi.Metadata
required: False
default: null

attributes:
task_id:

type: string
requirements:

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

lexis.nodes.operators.ddi.LexisWaitStagingRequestSensor:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
description: Waits for staging operation
properties:

staging_operator_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- staging_operator_task_id:
node: lexis.nodes.operators.ddi.LexisStagingOperator
relationship: lexis.relationships.ddi.DDITask
occurrences: [1, 1]

HEAppE Operators
lexis.nodes.operators.heappe.HEAppESessionOperator:

derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

heappe_uri:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- aai_operator:
node: lexis.nodes.operators.aai.LexisAAIOperator

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

lexis.nodes.operators.heappe.HEAppEPrepareJobOperator:

61

derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

Name:
type: string
required: True

Project:
type: string
required: True

ClusterId:
type: number
required: True

CommandTemplateId:
type: number
required: True

FileTransferMethodId:
type: number
TODO: description about methods!!!
required: True

EnvironmentVariables:
type: map
required: True

MinCores:
type: number
required: True
default: 1

MaxCores:
type: number
required: True

WalltimeLimit:
type: number
required: True
default: 600

Priority:
type: number
required: True

ClusterNodeTypeId:
type: number
required: True

TemplateParameterValues:
type: map
required: True

heappe_session_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

62

- heappe_session_task_id:
node: lexis.nodes.operators.heappe.HEAppESessionOperator
relationship: lexis.relationships.heappe.HEAppESession
occurrences: [1, 1]

lexis.nodes.operators.heappe.HEAppESubmitJobOperator:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

heappe_session_task_id:
type: string
required: True

heappe_prepare_job_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- heappe_session_task_id:
node: lexis.nodes.operators.heappe.HEAppESessionOperator
relationship: lexis.relationships.heappe.HEAppESession
occurrences: [1, 1]

- heappe_prepare_job_task_id:
node: lexis.nodes.operators.heappe.HEAppEPrepareJobOperator
relationship: lexis.relationships.heappe.HEAppEPrepareJob
occurrences: [1, 1]

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

lexis.nodes.operators.heappe.HEAppEEnableFileTransferOperator:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

heappe_session_task_id:
type: string
required: True

heappe_prepare_job_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- heappe_session_task_id:
node: lexis.nodes.operators.heappe.HEAppESessionOperator
relationship: lexis.relationships.heappe.HEAppESession
occurrences: [1, 1]

- heappe_prepare_job_task_id:
node: lexis.nodes.operators.heappe.HEAppEPrepareJobOperator

63

relationship: lexis.relationships.heappe.HEAppEPrepareJob
occurrences: [1, 1]

lexis.nodes.operators.heappe.HEAppEEndFileTransferOperator:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

heappe_session_task_id:
type: string
required: True

heappe_prepare_job_task_id:
type: string
required: True

heappe_enable_file_transfer_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- heappe_session_task_id:
node: lexis.nodes.operators.heappe.HEAppESessionOperator
relationship: lexis.relationships.heappe.HEAppESession
occurrences: [1, 1]

- heappe_prepare_job_task_id:
node: lexis.nodes.operators.heappe.HEAppEPrepareJobOperator
relationship: lexis.relationships.heappe.HEAppEPrepareJob
occurrences: [1, 1]

- heappe_enable_file_transfer_task_id:
node: lexis.nodes.operators.heappe.HEAppEEnableFileTransferOperator
relationship: lexis.relationships.heappe.HEAppEFileTransferEnableTask
occurrences: [1, 1]

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

lexis.nodes.operators.heappe.HEAppEDeleteJobOperator:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

heappe_session_task_id:
type: string
required: True

heappe_prepare_job_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- heappe_session_task_id:

64

node: lexis.nodes.operators.heappe.HEAppESessionOperator
relationship: lexis.relationships.heappe.HEAppESession
occurrences: [1, 1]

- heappe_prepare_job_task_id:
node: lexis.nodes.operators.heappe.HEAppEPrepareJobOperator
relationship: lexis.relationships.heappe.HEAppEPrepareJob
occurrences: [1, 1]

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

lexis.nodes.operators.heappe.HEAppEWaitSubmittedJobSensor:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

heappe_session_task_id:
type: string
required: True

heappe_submitted_job_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- heappe_session_task_id:
node: lexis.nodes.operators.heappe.HEAppESessionOperator
relationship: lexis.relationships.heappe.HEAppESession
occurrences: [1, 1]

- heappe_submitted_job_task_id:
node: lexis.nodes.operators.heappe.HEAppESubmitJobOperator
relationship: lexis.relationships.heappe.HEAppESubmittedJob
occurrences: [1, 1]

lexis.nodes.operators.heappe.HEAppESessionKeeperSensor:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
properties:

heappe_session_task_id:
type: string
required: True

heappe_session_stop_task_id:
type: string
required: True

attributes:
task_id:

type: string
requirements:

- heappe_session_task_id:
node: lexis.nodes.operators.heappe.HEAppESessionOperator
relationship: lexis.relationships.heappe.HEAppESession

65

occurrences: [1, 1]

lexis.nodes.operators.heappe.HEAppESessionStopKeeperOperator:
derived_from: lexis.nodes.operators.base.LexisOperatorBase
description: Puts condition into Airflow's XCOM to stop HEAppESessionKeeperSensor from refreshing HEAppE session
attributes:

task_id:
type: string

requirements:
- previous_task:

node: lexis.nodes.operators.base.LexisOperatorBase
relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

Cloud Operators
lexis.nodes.operators.cloud.LexisCloudOperator:

derived_from: lexis.nodes.operators.base.LexisOperatorBase
description: Cloud job task
properties:

name:
type: string
required: True

image:
type: string
required: True

labels:
type: map
required: False

env_vars:
type: map
required: False

dataset_input:
type: list
description: Mount points for input datasets
entry_schema:

type: lexis.datatypes.cloud.mountpoint
required: False

dataset_output:
type: list
description: Mount points for output datasets
entry_schema:

type: lexis.datatypes.cloud.mountpoint
required: False

attributes:
task_id:

type: string
requirements:

- previous_task:
node: lexis.nodes.operators.base.LexisOperatorBase

66

relationship: tosca.relationships.DependsOn
occurrences: [1, UNBOUNDED]

Groups
group_types:

lexis.groups.heappe.HPCLocationGroup:
derived_from: tosca.groups.Root
description: Run HPC job on specific location
properties:

heappe_uri:
type: string

Policies

policy_types:
lexis.policies.HPCLocation:

derived_from: tosca.policies.Root
description: HPC location policy. When applied,
targets with HPC job will get specified location (HEAppE URI).
properties:

heappe_uri:
type: string

targets:
- lexis.groups.heappe.HPCLocationGroup

lexis.policies.workflowRepeat:
description: Repeat the part of the workflow X times.
properties:

number_of_repetition:
type: number
required: True

targets:
- tosca.groups.Root

Capabilities
capability_types:

lexis.capabilities.basicTask:
derived_from: tosca.capabilities.Root
description: >

Basic capability of each Airflow task
attributes:

task_id:
type: string
description: Airflow task ID

HEAppE
lexis.capabilities.heappe.HEAppESessionProp:

derived_from: lexis.capabilities.basicTask

67

description: >
Requires HEAppE session task ID

properties:
heappe_session_task_id:

type: string
required: True

lexis.capabilities.heappe.HEAppESessionKeeperStopProp:
derived_from: lexis.capabilities.basicTask
description: >

Requires HEAppE stop session task ID
properties:

heappe_session_stop_task_id:
type: string
required: True

lexis.capabilities.heappe.HEAppEFileTransferEnableProp:
derived_from: lexis.capabilities.basicTask
description: >

Requires HEAppE file tranfer enable task ID
properties:

heappe_enable_file_transfer_task_id:
type: string
required: True

lexis.capabilities.heappe.HEAppEPrepareJobProp:
derived_from: lexis.capabilities.basicTask
description: >

Requires HEAppE prepare job node task ID
properties:

heappe_prepare_job_task_id:
type: string
required: True

lexis.capabilities.heappe.HEAppESubmittedProp:
derived_from: lexis.capabilities.basicTask
description: >

Requires HEAppE submitted job node task ID
properties:

heappe_submitted_job_task_id:
type: string
required: True

DDI
lexis.capabilities.ddi.LEXISStagingOperator:

derived_from: lexis.capabilities.basicTask
description: >

Requires LEXIS DDI staging node task ID
properties:

staging_operator_task_id:
type: string
required: True

Relationships

68

relationship_types:
lexis.relationships.aai.AAIToken:

derived_from: tosca.relationships.DependsOn
description: Requires AAI token.

HEAppE related relationships
lexis.relationships.heappe.HEAppESession:

derived_from: tosca.relationships.DependsOn
description: Dependency on HEAppE session task

valid_target_types:
- lexis.capabilities.heappe.HEAppESessionProp

lexis.relationships.heappe.HEAppESessionKeeperStop:
derived_from: tosca.relationships.DependsOn
description: Dependency on HEAppE session stop task.

valid_target_types:
- lexis.capabilities.heappe.HEAppESessionKeeperStopProp

lexis.relationships.heappe.HEAppESubmittedJob:
derived_from: tosca.relationships.DependsOn
description: Dependency on HEAppE submitted job task

valid_target_types:
- lexis.capabilities.heappe.HEAppESubmittedProp

lexis.relationships.heappe.HEAppEPrepareJob:
derived_from: tosca.relationships.DependsOn
description: Dependency on HEAppE session task

valid_target_types:
- lexis.capabilities.heappe.HEAppEPrepareJobProp

lexis.relationships.heappe.HEAppEFileTransferEnableTask:
derived_from: tosca.relationships.DependsOn
description: Dependency on HEAppE file transfer context

valid_target_types:
- lexis.capabilities.heappe.HEAppEFileTransferEnableProp

DDI related relationships
lexis.relationships.ddi.DDITask:

derived_from: tosca.relationships.DependsOn
description: Dependency on dataset transfer task

valid_target_types:
- lexis.capabilities.basicTask
- lexis.capabilities.ddi.LEXISStagingOperator

69

Appendix B

Example of generated TOSCA

Example of simple HPC computational workflow exported from the editor to the TOSCA
specification.

tosca_definitions_version: tosca_simple_yaml_1_2
metadata:

template_name: MyFirstWorkflow
template_version: v1_0
template_author: Singularita

description: The internet is in your pocket
imports:
- file:../lexis-airflow-types.yml
topology_template:

inputs:
access_token:

required: true
type: string

precision:
required: false
type: integer
default: 6

computation_project:
required: false
type: string

max_cores:
required: false
type: integer

node_templates:
aai_token_init:

type: lexis.nodes.operators.aai.LexisAAIOperator
properties:

access_token: { get_input: access_token }
1_heappe_session:

type: lexis.nodes.operators.heappe.HEAppESessionOperator
properties:

heappe_uri: https://heappe.it4i.cz

70

requirements:
- aai_operator: aai_token_init
- previous_task: aai_token_init

1_heappe_prepare_job:
type: lexis.nodes.operators.heappe.HEAppEPrepareJobOperator
properties:

heappe_session_task_id: {
get_attribute: [1_heappe_session,task_id]

}
Name: HPCTaskOne
Project: { get_input: computation_project }
ClusterId: 0
CommandTemplateId: 3
MinCores: 1
MaxCores: { get_input: max_cores }
WalltimeLimit: 128
Priority: 4
ClusterNodeTypeId: 1
FileTransferMethodId: 0
TemplateParameterValues:

computationPrecision: { get_input: precision }
EnvironmentVariables: {}

requirements:
- heappe_session_task_id: 1_heappe_session

1_heappe_submit_job:
type: lexis.nodes.operators.heappe.HEAppESubmitJobOperator
properties:

heappe_session_task_id: {
get_attribute: [1_heappe_session,task_id]

}
heappe_prepare_job_task_id: {

get_attribute: [1_heappe_prepare_job,task_id]
}

requirements:
- heappe_session_task_id: 1_heappe_session
- heappe_prepare_job_task_id: 1_heappe_prepare_job
- previous_task: 1_heappe_prepare_job

1_heappe_job_wait:
type: lexis.nodes.operators.heappe.HEAppEWaitSubmittedJobSensor
properties:

heappe_session_task_id: {
get_attribute: [1_heappe_session,task_id]

}
heappe_submitted_job_task_id: {

get_attribute: [1_heappe_submit_job,task_id]
}

requirements:
- heappe_session_task_id: 1_heappe_session

71

- heappe_submitted_job_task_id: 1_heappe_submit_job
1_heappe_delete_job:

type: lexis.nodes.operators.heappe.HEAppEDeleteJobOperator
properties:

heappe_session_task_id: {
get_attribute: [1_heappe_session,task_id]

}
heappe_prepare_job_task_id: {

get_attribute: [1_heappe_prepare_job,task_id]
}

requirements:
- heappe_session_task_id: 1_heappe_session
- heappe_prepare_job_task_id: 1_heappe_prepare_job
- previous_task: 1_heappe_job_wait

1_heappe_session_keeper:
type: lexis.nodes.operators.heappe.HEAppESessionKeeperSensor
properties:

heappe_session_task_id: {
get_attribute: [1_heappe_session,task_id]

}
heappe_session_stop_task_id: {

get_attribute: [1_heappe_session_stop_keeper,task_id]
}

requirements:
- heappe_session_task_id: 1_heappe_session

1_heappe_session_stop_keeper:
type: lexis.nodes.operators.heappe.HEAppESessionStopKeeperOperator
requirements:
- previous_task: 1_heappe_delete_job

aai_token_keeper:
type: lexis.nodes.operators.aai.LexisAAITokenKeeperSensor
requirements:
- aai_operator: aai_token_init

aai_token_keeper_stop:
type: lexis.nodes.operators.aai.LexisAAIStopKeeperOperator
requirements:
- previous_task: 1_heappe_session_stop_keeper

72

Appendix C

User Guide

C.1 Build instruction
To run the application, you will need to install the .NET 7 framework Blazor server. You can
follow the .NET Blazor Tutorial https://dotnet.microsoft.com/en-us/learn/aspnet/
blazor-tutorial/intro for instructions on how to install the framework.

The build process for the application depends on the host operating system. For devel-
opment, I used Linux (OpenSUSE) and installed the dotnet package for .NET 7 from my
package provider. Once the framework was installed, I opened the terminal and navigated
to the Sources/builderApp directory. From there, I ran the command dotnet build and
the binary executable was created at
Sources/builderApp/bin/Debug/net7.0/scientific-workflow-gui.

C.2 Usage instruction
The .NET project options can be modified in the file
Sources/builderApp/scientific-workflow-gui.csproj. If the user builds the applica-
tion without modifying any options and executes the compiled binary, the web application
will be exposed on the URL http://localhost:5000/WorkflowEditor. The application
runs locally, and users can compose simple workflows from predefined computational tasks.

To execute and host the application locally, navigate to the Sources/builderApp di-
rectory in the terminal and run the command dotnet run. In this case, the application
will be listening on http://localhost:5039/WorkflowEditor.

The user can add predefined computational tasks to the workflow diagram by clicking
on the plus button located in the right navigation menu. To add dataset inputs, the user
can click on the button located at the bottom of the workflow input menu, which can be
accessed by clicking on the second button in the right navigation menu. To link a task’s
data input and output, the user can click on the left mouse button on the port of the
computational task and release it on the port where the connection is intended. In the
workflow input menu, the user can rename data inputs and set default values. To export
the computational task’s data output, the user can open the task’s editing menu by right-
clicking on the task in the diagram and selecting Edit Task. From there, the user can export
the data output.

73

https://dotnet.microsoft.com/en-us/learn/aspnet/blazor-tutorial/intro
https://dotnet.microsoft.com/en-us/learn/aspnet/blazor-tutorial/intro
http://localhost:5000/WorkflowEditor
http://localhost:5039/WorkflowEditor

Appendix D

Application Demo 1

Figure D.1: Application Demo 1 – Workflow editor interface

74

Figure D.2: Application Demo 1 – Modal window for adding a computational task to the
diagram

75

Figure D.3: Application Demo 1 – New computational task added to diagram

76

Figure D.4: Application Demo 1 – HPCTaskOne task’s data output connected to EnzymeM-
iner task’s data input in the diagram

77

Figure D.5: Application Demo 1 – Screenshot of the opened workflow’s input menu

78

Figure D.6: Application Demo 1 – Editor’s screenshot with removed myProteins workflow
data input from workflow’s input menu

79

Figure D.7: Application Demo 1 – Computational task’s context menu

80

Figure D.8: Application Demo 1 – Modal window for editing computational task

81

Figure D.9: Application Demo 1 – Modal window for editing computational task with
disabled export of data output

82

Figure D.10: Application Demo 1 – HPCTaskOne computational task has disabled export
of data output

83

Figure D.11: Application Demo 1 – Removing computational task hpcTaskThree

84

Figure D.12: Application Demo 1 – The TOSCA workflow specification is downloaded via
browser after clicking on the download button next to the title

85

Figure D.13: Application Demo 1 – Exported TOSCA specification

86

Appendix E

Application Demo 2

Figure E.1: Application Demo 2 – Workflow editor interface

87

Figure E.2: Application Demo 2 – New workflow’s dataset input added to the workflow

88

Figure E.3: Application Demo 2 – New workflow’s dataset input connected to computational
task’s input

89

	Introduction
	Thesis objectives
	Use case
	Use case: Avio Aero Turbomachinery
	Use case: Loschmidt Laboratory Tools
	End-Users

	Scientific Workflow Tools
	Alien4cloud
	occiware – TOSCA-Studio
	OpenStack – Template Generator
	LifeWatch – Tesseract

	Analysis
	Algorithms and Data Structures
	TOSCA - Topology and Orchestration Specification for Cloud Applications
	LEXIS Platform
	LEXIS DDI
	LEXIS orchestration
	Apache Airflow
	HEAppE - High-End Application Execution Middleware
	OpenStack

	Application Design
	Internal Representation of Workflow Topology
	Cloud Image Metadata Registry
	GUI/UX Graphical Design
	Advanced features

	Implementation
	Used Technologies
	Computational Workflow Core
	Computational Workflow Template
	Computational Workflow Input
	Computational Task
	Computational Task Input
	Computational Task Output
	Serialisation

	TOSCA Emitter
	TOSCA Emitter Implementation
	HPC Task
	Cloud Task
	Data Transfers
	LEXIS Operators Definition for OASIS TOSCA
	OASIS TOSCA
	Auxiliary TOSCA Emitter Models

	Graphical Editor Interface
	Task Diagram
	Computation Workflow Inputs Menu
	Addition of the Computational Task
	Task Menu
	Exporting the workflow to the TOSCA YAML file
	User's Feedback

	Conclusion
	Bibliography
	LEXIS Operator's Types in OASIS TOSCA
	Example of generated TOSCA
	User Guide
	Build instruction
	Usage instruction

	Application Demo 1
	Application Demo 2

