BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER SYSTEMS
USTAV POCITACOVYCH SYSTEMU

GRAPHICS EDITOR FOR COMPUTATIONAL
WORKFLOWS IN TOSCA FORMAT

GRAFICKY EDITOR VYPOCETNICH PROCESU VE FORMATU TOSCA

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR JAN SWIATKOWSKI
AUTOR PRACE

SUPERVISOR doc. Ing. JIRI JAROS, Ph.D.

VEDOUCI PRACE

BRNO 2023

BRNO FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

-r

Bachelor's Thesis Assignment |||||||||||||||||||

147291
Institut: Department of Computer Systems (UPSY)
Student: Swiatkowski Jan
Programme: Information Technology
Specialization: Information Technology
Title: Graphics Editor for Computational Workflows in TOSCA Format
Category: User Interfaces

Academic year: 2022/23

Assignment:

1. Familiarize yourself with tools and use cases of scientific computational workflows.

2. Review data types and algorithms for construction of scientific workflows.

3. Design a simple editor for construction of scientific workflows generating TOSCA prescriptions for
Alien4Cloud.

4. Implement the designed solution so that it allows to construct a simple workflow containing one
HPC or cloud job with inputs and outputs.

5. Evaluate implemented solution, write up a user manual and discuss possible future extensions.

Literature:
¢ According to supervisor's advice.

Requirements for the semestral defence:
* [tems 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Jaros Jiri, doc. Ing., Ph.D.
Head of Department: Sekanina Lukas, prof. Ing., Ph.D.
Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 4.5.2023

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract

This thesis presents the design and implementation of a graphical workflow editor aimed
at non-computer scientists, which enables the creation of complex computational workflows
with minimal technical knowledge. The editor provides a graphical interface for composing
workflow from computational tasks with supports a variety of input and output types,
including value-based and dataset-based inputs and outputs. The resulting workflows can
be exported to the TOSCA workflow specification, making them compatible with the LEXIS
platform. The editor was developed in .NET Blazor Server framework in C# and JavaScript
and employs the JointJS library for creating the graphical representation of workflows. The
resulting tool provides an accessible means for researchers and other non-technical users to
compose and execute advanced computational workflows.

Abstrakt

Tato prace se zabyva navrhem a implementaci grafického editoru pracovnich tokiu za-
meéfeného na védce, ktefi nejsou z oboru informac¢nich technologii, a editor jim umoznuje
vytvareni slozitych vypocetnich tokd s minimalni technickou znalosti. Editor poskytuje
grafické rozhrani pro sestaveni toku z vypocetnich tloh s podporou ruznych typu vstupu
a vystupt, véetné hodnotovych a datovych vstupu a vystupt. Vysledné toky lze expor-
tovat do specifikace TOSCA popisujici pracovni tok, coz umoznuje jejich pouziti na plat-
formé LEXIS. Editor byl vyvinut v rdmci .NET Blazor Server frameworku v jazyce C# a
JavaScript a vyuziva knihovnu JointJS pro vytvareni grafické reprezentace toku. Vysledny
nastroj poskytuje dostupny zpusob, jak vytvaret a spoustét pokrocilé vypocetni toky pro
vyzkumniky a dalsi uzivatele.

Keywords

OASIS TOSCA, Computational Workflow, Scientific Workflow, Graphical Editor, HPC,
Cloud, C#, JavaScript, .NET Blazor Server

Klicova slova

OASIS TOSCA, vypocetni pracovni tok, graficky editor, HPC, Cloud, C#, JavaScript,
.NET Blazor Server

Reference

SWIATKOWSKI, Jan. Graphics Editor for Computational
Workflows in TOSCA Format. Brno, 2023. Bachelor’s thesis. Brno University of Technol-
ogy, Faculty of Information Technology. Supervisor doc. Ing. Jifi Jaros, Ph.D.

Graphics Editor for Computational
Workflows in TOSCA Format

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. Ing. Jiri Jaros, Ph.D.

The supplementary information was provided by Ing. Katefina Slaninova, Ph.D.,

Ing. Jan Martinovi¢, Ph.D., Ing. Martin Golasowski, Ph.D.

and doc. Mgr. Jiti Dvorsky, Ph.D.

I have listed all the literary sources, publications and other sources, which were used during
the preparation of this thesis.

Jan Swiatkowski
May 10, 2023

Acknowledgements

I would like to express my heartfelt gratitude to the entire LEXIS platform team at
IT4Innovations for their invaluable guidance and support throughout the writing of this
thesis and the development of the workflow editor.

I am particularly grateful to Ing. Katefina Slaninova, Ph.D., Ing. Jan Martinovi¢, Ph.D.,
Ing. Martin Golasowski, Ph.D. and my supervisor doc. Ing. Jiri Jaros, Ph.D. for their valu-
able insights and encouragement.

Contents

1 Introduction

1.1 Thesis objectives
1.2 USeCase v v i e e e e e e e e e e e
1.2.1 Use case: Avio Aero Turbomachinery
1.2.2 Use case: Loschmidt Laboratory Tools
1.23 End-Users e

2 Scientific Workflow Tools

2.1 Aliendcloud e
2.2 occiware — TOSCA-Studio
2.3 OpenStack — Template Generator
2.4 LifeWatch — Tesseract o o i i i e

3 Analysis
3.1 Algorithms and Data Structures
3.2 TOSCA - Topology and Orchestration Specification for Cloud Applications
3.3 LEXIS Platform e

3.3.1 LEXISDDI e
3.3.2 LEXIS orchestration o
3.3.3 Apache Airflow
3.3.4 HEAppE - High-End Application Execution Middleware
3.3.5 OpenStack
4 Application Design
4.1 Internal Representation of Workflow Topology
4.2 Cloud Image Metadata Registry
4.3 GUI/UX Graphical Design
4.4 Advanced features e

5 Implementation

5.1 Used Technologies i
5.2 Computational Workflow Core
5.2.1 Computational Workflow Template
5.2.2 Computational Workflow Input
5.2.3 Computational Task
5.2.4 Computational Task Input,
5.2.5 Computational Task Output
5.2.6 Serialisation

SO W

Qo

13
13
13
14
14
15
15
15
16

17
21
23
23
26

6 Conclusion

Bibliography

A

B

5.3 TOSCA Emitter o e e e e e e e

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7

TOSCA Emitter Implementation
HPC Task o oo e
Cloud Task e
Data Transfers e
LEXIS Operators Definition for OASIS TOSCA
OASIS TOSCA s e
Auxiliary TOSCA Emitter Models

5.4 Graphical Editor Interface 0oL

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6

Task Diagram L
Computation Workflow Inputs Menu
Addition of the Computational Task
Task Menu e
Exporting the workflow to the TOSCA YAML file
User’s Feedback oo

LEXIS Operator’s Types in OASIS TOSCA

Example of generated TOSCA

User Guide
C.1 Build instruction e e e e e
C.2 Usage instruction L o

Application Demo 1

E Application Demo 2

50

52

56

70

73
73
73

74

87

List of Figures

2.1
2.3
24
2.5
2.6
2.2

3.1
3.2

4.1

4.2

4.3

4.4
4.5
4.6
4.7

5.1

D1
D.2

D.3
D4

D.5
D.6

D.7
D.§
D.9

Ystia Suite — Alien4Cloud 9
Alien4Cloud — Dataset Mounting 9
occiware — TOSCA Studio 10
OpenStack - Template Generator 11
LifeWatch — Tesseract 11
Alien4Cloud — topology 12
LEXIS Infrastructure e 14
LEXIS Orchestration 15
Application Design — Internal Representation of Topology — Class Diagram

(part 1) . . . o 18
Application Design — Internal Representation of Topology — Class Diagram

(Part 2) 19
Application Design — Internal Representation of Topology — Class Diagram

(part 3) 20
Application Design — Internal Representation of Topology — Relation Diagram 21
GUI Design — Register New Docker Image 24
GUI Design — Workflow Inputs L. 25
GUI Design — Modify Cloud Task Details 26
TOSCA Emitter Implementation — Example of generated TOSCA nodes for

LEXIS . . . o e 40
Application Demo 1 — Workflow editor interface 74
Application Demo 1 — Modal window for adding a computational task to the

diagram 75
Application Demo 1 — New computational task added to diagram 76
Application Demo 1 — HPCTaskOne task’s data output connected to En-

zymeMiner task’s data input in the diagram 77
Application Demo 1 — Screenshot of the opened workflow’s input menu . . . 78
Application Demo 1 — Editor’s screenshot with removed myProteins workflow

data input from workflow’s input menu Lo 79
Application Demo 1 — Computational task’s context menu 80
Application Demo 1 — Modal window for editing computational task 81
Application Demo 1 — Modal window for editing computational task with

disabled export of data output L L 82

D.10 Application Demo 1 — HPCTaskOne computational task has disabled export

of data output 83

D.11 Application Demo 1 — Removing computational task hpcTaskThree
D.12 Application Demo 1 — The TOSCA workflow specification is downloaded via

browser after clicking on the download button next to the title
D.13 Application Demo 1 — Exported TOSCA specification

E.1 Application Demo 2 — Workflow editor interface
E.2 Application Demo 2 — New workflow’s dataset input added to the workflow
E.3 Application Demo 2 — New workflow’s dataset input connected to computa-

tional task’s inputo Lo

Chapter 1

Introduction

In today’s world, even the most qualified scientific experts may require additional knowl-
edge to effectively use traditional High-Performance Computing (HPC)[24] environments
for their research. Additionally, HPC environment users are rarely familiar with Linux op-
eration systems, shell terminal or orchestration tools. Hence, the users are not necessarily
experienced with managing their computational applications directly on high-performance
clusters.

The support of non-computer scientists’ need to compute non-trivial solutions on high-
performance computing clusters was the motivation behind the creation of a computational
workflow[46] editor. The computational workflows may be a constituent of the scientific
workflow. A scientific workflow is the description of a process for accomplishing a sci-
entific objective, usually expressed in terms of tasks and their dependencies. Typically,
scientific workflow tasks are computational steps for scientific simulations or data analysis
steps.“[41] The article ,Characterization of Scientific Workflows“[30] demonstrates some
basic workflow structures in Fig. 1. These abstract structures are similar to those used
in computational workflows, which consist of series of computational tasks. The goal is to
create a combination of high-performance computing (HPC) and cloud tasks that can be
run in parallel or as a pipeline, along with data preprocessing, postprocessing, aggregation,
and distribution. The goal of the editor is to empower non-computer scientists to create
computational workflows with the help of workflow architects. To achieve this goal, the
editor leverages the LEXIS[15] system, which provides HPC-as-a-Service and is intended to
complement or enhance LEXIS. Based on my experience, most scientist compute on their
small clusters or personal computers. The HPC cluster offers more computational power
and options for their computations, although the usage complexity proves to be an issue.
The editor aims to help users create and compose workflows from straightforward elements.
The basic expected operations are:

e Select computational applications
e Enter the computational parameters or data inputs

o Connect the data inputs and outputs between the computational applications in case
of application chaining

e Fetch the source data into the application and save the output data

More advanced requirements could be to run more than one instance of the application in
parallel to create a race. For example, the race case may be beneficial in urgent computing

like Fast Tsunami Simulations for a Real-Time Emergency Response Flow [37]. Further
possible scenario is running computational applications instances based on the list of input
datasets, i.e. one instance of a computational application will be orchestrated for each
dataset in the list.

1.1 Thesis objectives

The objective of this thesis is to analyze and evaluate alternative tools available on the
market for creating scientific and computational workflows. The work investigates abstract
structures and algorithms used within the given challenges, and describes in detail the design
and implementation of a minimal editor that enables users to compose basic computational
workflows. The end product of the thesis is a workflow editor that supports export to the
TOSCA workflow specification for the LEXIS platform, aimed at facilitating the creation
of scientific workflows by non-computer scientists.

1.2 Use case

1.2.1 Use case: Avio Aero Turbomachinery

A real-world example of a potential use case of the editor could be the turbomachinery
computational workflow described in LEXIS deliverable 5.5 [42]. HPC computational job
utilizes a CFD solver nanoFluidX for simulating behaviour of an air-oil frozen field mixture
in a gearbox. The computational workflow steps are preprocessing, simulation runtime,
and postprocessing.

1.2.2 Use case: Loschmidt Laboratory Tools

Loschmidt Laboratory! offers plenty of tools for biochemical scientists, mainly protein-
focused. As the end-users of their tools are mostly scientists with basic knowledge of
computer science, the end-users are more friendly with the graphical interface of their
tools. However, some of the computational parts of the tools may require high-performance
machines and may be helpful to compute them on HPC clusters on demand. For example,
on the diagram of the Fireprot-ASR tool [4], we can see a more complicated computational
workflow than in Avio Aero turbomachinery.

The workflow is composed of steps. A step has inputs and outputs. Computational
workflow editor can benefit from separating these steps into HPC jobs with inputs and
outputs, since they can be reused in other workflows later. For example, EnzymeMiner
computational step in Fireprot-ASR workflow?.

1.2.3 End-Users

The beginning of the thesis introduction mentions that the editor aims to give scientists
the ability to compose their custom computational workflows from computational steps.
However, setting up the required parameters, such as memory or cores requirements and
other parameters described in the TOSCA section3.2, may require knowledge, which only
some possess. Therefore, the demand for people with advanced knowledge of the system

Toschmidt Laboratories conduct interdisciplinary research in the field of protein engineering.[1]
2The EnzymeMiner is also another tool backed by the Loschmidt laboratories itself.

is increased. Therefore, the scientists were considered as end-users of the editor. They
may have a fundamental knowledge of computer science. The role of a workflow architect
involves creating tasks with appropriate parameters for software execution. This requires
a significant level of computer science knowledge as well as expertise in the target com-
putational systems. The workflow can be later reused by the users with less expertise to
compose similar computational workflows.

Chapter 2

Scientific Workflow Tools

Tools and editors for creating workflows already exist, but not all are suitable for the
mentioned set of issues. For example, The LifeWatch - Tesseract (section 2.4) belongs to
the tools created more often for software deployment rather than for managing scientific
workflows. However, not all of the tools described in this chapter can work with scientific
workflows. Even though OpenStack - Template Generator (section 2.3) is based on the
same problematic as the targeted scientific workflow editor, it cannot work with scientific
workflows.

2.1 Alien4dcloud

Alien4Cloud is a designer for the Yorc [7] orchestrator by Atos. They are i the Ystia
Suite[27]. Multi-Tier infrastructure can be designed in Alien4Cloud, deployed and managed
on any cloud and even the HPC schedulers. The graphical interface itself is more suitable
for knowledgeable users. However, all requirements for LEXIS platform are covered there.

The Alien4Cloud is a significant source of inspiration for the targeted scientific workflow
editor. It is already a part of the LEXIS system and workflow designers use it. The LEXIS
project has already solved data transfers, authentication, authorisation and deployment
issues. Thanks to the modularity of the Yorc orchestrator, the plugins can extend the
functionality and bring new special types of nodes. For instance, datasets transfers into the
cloud virtual machines from DDI! (section 3.3.1).

The Yorc DDI plugin[26] provides TOSCA components with jobs to handle transfer
between the cloud job and DDI, cloud job and HPC job, and HPC and DDI. The data are
mounted to the HPC with SSHFS? protocol. The HPC tasks computes with data stored
in the scratch directory. 3. LEXIS uses HEAppE (see section 3.3.4), hence the HEAppE
Yorc plugin[5] was developed. In the case of a cloud task, Docker containers access fetched
datasets by mapping the directory with a dataset from the host virtual machine to the
Docker container.

'DDI - Distributed Data Infrastructure

2SSHFS, as the documentation in code repository mention [21], is network filesystem client based on
SFTP [35] protocol and FUSE library. FUSE (Filesystem in Userspace [17]) is an interface for userspace
programs to export a filesystem to the Linux kernel.

3The scratch directory is supposed to contain temporary files for compute jobs

CloudComputelnstance =
Fe

Type: Cempute @

~ Capabililies
~host Container
a/® ® numcpus EEr'S
ValidateCxchang. [5] couireduancy, @l
% ® disksize 0@ 58~
a| % ®| memsize @ (e~

/// _— OperatingSystem
o % @ architecrure @
a/m » type liux @y

n CloudComnutelns 8 a|% o distibution @
o o % @ version 2

E cComputatio. ~ scalable Sualable
a/#» ® min_nstances 1@~
E CreateStagingA a® » maxinstances 1Zm* %0
a /% | defaullinstanc 1 20
= ¢ putDatas
E MestattnputData » endpoint Adrmin (00 | @
» anach Atachment oo (o0l | @
»feature Node o (o0l | @
Docker - Attributes
S ip_address
[ComputationCont. 7 o private_adaress
- public ip adcress
o public_address
= |magsloader .
| = - tescaid
- tosca_name
= [indArchive
[= o siate
~ Prerequisites
= MountDockerlmzag
| = natwork Connactivity % | 2
dependency Noce %|0.00(cai | @
- ~ Kelationships
Create CreateComputati
s ' < retwordPublchetConnes.. L “8
Type Network
Target Network

Figure 2.1: Ystia Suite — Alien4Cloud

Source: Own screenshot of application

@ Selected node

MountIinputDataset (&

Type: 5SS agingAreaDatazet @

~ Properties

a | % @ token get_input: token Iy *
MeuntinputDatas. G, | % @ mount_point_dir... get_input.

preprocessing_mo... Iy *

Figure 2.3: Alien4Cloud — Dataset Mounting

Source: Own screenshot of application

The OICD plugin[18] takes care of authorisation and authentication using the OAuth
2.0% protocol. Since security is an essential topic in terms of HPC computing, authentication
and authorisation should be ensured in all operations, such as scheduling the job on the
HPC scheduler or fetching data from DDI.

“OpenID protocol [19]

2.2 occiware — TOSCA-Studio

It is a part of DevOps® for deploying Multi-Tier application infrastructure. It is well suited
for service-oriented architectures. Particular nodes, software, or networking is described
in TOSCA format (section 3.2). The graphical user interface part visualises dependencies
between the nodes (e.g. task, decision, virtual machine, network). The graphical editor
itself runs on the Eclipse development platform. The dependency graph is detailed in

the figure 2.4. The TOSCA-Studio [31] is an application based on the Java OCClware
framework.

&My B = B
spgvirlivM~ 2 @ W % B I Avg ¥ i & i ¥ Palette 3
-
& retwork1: Network @ compute2: Compule -
W it e oqtceggocciriatn s redcargie
P Migpachamen o orgeairah etk

[7= umuuid-ace29b72-1dch-4297-9804 TR2Dacabbel | / “Networkinterface
1

o Hitp fechamas agl orglaccinfracinucture fnstworkin arace Summay = il
7 1= umanid abad159 Sbec-4aaf b7 221376a87ed8
it
s
/' occiNetworkimerfacelmerface = null
/ occiNletworkintesfacelac = nul
/ occiNetworkinterfaceState = active
Z

[Mg echemas gl
= arglacaifinlranusueinemarkimetaenamarkinetae

it chernas ogt
I occilietworknierfacehddress = mall = arglaconiasiructrelredensstssn key
5 occilietwarkinterfaceGatevray = null == n

dynamic.

stomages Storage

g echemss ot srglocnmfrastruct refstarage

id = umid Bab8Te2c 614 ded7-9305-403208a2bTT1 -
title = storage3 /- Storagelink
o,]
summary = null
oeciStorageSize = nul
occiStorageState = anline

/" occiStoragelinkDeviceid = muil
/" acciS toragelinkMountpoint = null
/" occiStoragelinkState = scive

O Properties = [Problems

® v =8
& Network urn:uuid:ace29b72-1dcb-4297-98d4-7820faaa66cf
Main ~ Properties
Eepantc Id: @ urn:uuid:ace29b72-1dcb-4297-98d4-7820faaab6cf
St Title: @ networkl
Appearance
Kind: @ B Kind Network El x
Location: ®@
Summary: @
Rlinks: @

" Networkinterface urn:uuid:aba91596-9bec-4aaf-b1f7-22f376a87ed8

Figure 2.4: occiware — TOSCA Studio

Source: Own screenshot of application

2.3 OpenStack — Template Generator

Alongside the other features provided by OpenStack (section 3.3.5), it offers a stack orches-
tration feature. It enables users to specify the OpenStack sources in a format called HEAT.
HEAT templates are similar to the TOSCA templates. The HEAT template defines topol-
ogy, relations and specification of sources similar to the TOSCA template. The graphical
interface has a minimal visual representation of the dependency graph. The modal window
modifies the properties of the particular nodes.

*DevOps combines development (Dev) and operations (Ops) to unite people, process, and technology in
application planning, development, delivery, and operations. [23]

10

Template Generator

Please drag ard n nto center o tompiate.

OS:CINDER OS:DESIGNATE ~ OS:HEAT ~ OS:NEUTRON OS:NC

PrOe®’&®OO®

4 ADE EDGE

(a) Relation Diagram
Source: Own screenshot of application

Resource 0S::Cinder::Volume

DEPENDS CN

ume Iype

vty Zonss

W Show tars Fropertas

(b) Modal Window

Figure 2.5: OpenStack - Template Generator

Source: Own screenshot of application

2.4 LifeWatch — Tesseract

The LifeWatch - Tesseract is solely for the scientific workflow graphical editing. The com-
ponents of the dependency graphs are data collection, data processing tasks, and data
analysing tasks. Relations between components can be established by clicking on the ports
of the source and destination components. However, it is not particularly detailed, but
interaction with the graph has basic operations like creation and removal. Even more, the
interconnection of the outputs and inputs of the component is provided.

bg I
Component library

Available components:

~

Data analysing (12)
string
RvLab Runner
Metamds
PEMA Runner
ARMS WoRMS Taxonomic
Checker
ARMS WRIMS Invasive
Checker
Trophic Position Analyzer

ImportFile
SVM classifier
\IC_STEP2 TempFile ©
WC_STEP3
WC_STEP&
WC_STEPS

Data collection (8) >

Biotope GBIF extractor
Import file

PEMA Sequence Retriever
GRISS Extractor

Import CSV

Biotope GBIF extractor
FRIE Evtrartar

ARMSOTUUnifier

PEMAOtuSimpleTak 4

Biotope GBIF ext...

Compress 4

gbif _dow

SpatialViewer

TrophSiA CheckShp

ShpZipFils

Figure 2.6: LifeWatch — Tesseract

Source: Own screenshot of application

11

»se| qorwoi4Adon S

g
*"2001d1S0dayeaI)) e

-0
HselqorolAdon e

~egssaooidaidiay 5

a0

- BuIsss00.disod 4

)
N O
AOPOdH sdévan &

200

0pBusseooidald

sssooyIQIen

*"$890Id8ldeles.y) e
“sejegindupunopy w
~ayBuibelserealn m

+58001d1S04ebe1s ﬂ

dy =3 Q
S [e] O Jupesejeqanaul S
% soue)sueIndwoy)

~eigpnoodnueslo

“indujpnoigoriad

Bo0TIPNOIOpUl O

HomieN @ W

Source: Own screenshot of application
12

Figure 2.2: Alien4Cloud — topology

Chapter 3

Analysis

3.1 Algorithms and Data Structures

The elementary unit of the targeted scientific workflow editor is a computational task. In-
teraction with the logic inside the task is ensured with input variables and output variables.
The variables can store plain data types like number or string. The task may require some
datasets at the input and can also produce a dataset as a result. Furthermore, dependency
at plain-data output of other tasks should be taken into account. The most suitable abstrac-
tion of all of the aforementioned issues is a non-cyclic directional graph. The abstraction
is well described in the article ,Characterisation of Scientific Workflows“ [30]. To ensure
not having any loops within a graph, the algorithm of loop detections in a graph can be
used. The cycles can be found by the depth search algorithm described in [38, Chapter 7
- Directional Graphs]. Considering some edge cases, standalone tasks may occur without
input and output connections. They are not a part of the graph, although there is no reason
not to include them in the final topology.

3.2 TOSCA - Topology and Orchestration Specification for
Cloud Applications

OASIS (Organization for the Advancement of Structured Information Standards) specified

a TOSCA standard to describe the topology of cloud-based web services, relationships

and their management processes. TOSCA language is based on the serialisation standard

YAML!.
A subset of sections in topology established by TOSCA.:

e inputs — particular inputs can have a type, description and validation constraints

e node_ templates — properties with node types like ,tosca.nodes.Compute“, cpu
count, disk or memory and etc.

o worflows — description of imperative or declarative workflows typically for deploying,
starting and undeploying topology

e outputs — defines output data e.g. server IP address

YYAML - Human readable data-serialisation language [25]

13

Nodes may need to share their properties and attributes like mentioned IP address
with syntax construction { get_attribute: [db_server, private_address] }. To
connect the input parameters to the appropriate node property, the following syntax can
be used { get_input: db_server_num_cpus }.

3.3 LEXIS Platform

As mentioned in the introduction, scientific workflow editor will be used within the LEXIS
platform. Therefore, this chapter describes some relevant parts of the LEXIS project[14].
The LEXIS project resulted in the construction of a distributed HPC infrastructure to
converge big data and HPC. The aim was to build an advanced architecture for big data
analysis and High-performance computing applications utilizing modern technologies from
HPC to Cloud computing. LEXIS provides ready-to-be-used HPC infrastructure that offers
HPC-as-a-Service capabilities without incurring performance/efficiency penalties. More
detailed description of the LEXIS platform can be found in the public documentation [16].

LEXIS API

b v

v

LEXIS orchestration LEXIS DDI == LEXIS AAl

~

o P T R — 1 ,F—l -

IT4l Cloud IT4l HPC LRZ HPC

[5 | BN &8

Cloud (Openstack) HPC clusters

Figure 3.1: LEXIS Infrastructure

Source: Own diagram

3.3.1 LEXIS DDI

Data storage federation and data management were the main goals the LEXIS project faced.
The elementary unit stored on the DDI is a dataset. Datasets could be inputs or outputs
of computational workflows in the LEXIS. They created a system based on iRODS (The
Integrated Rule-Oriented Data System)[8] and the system integrates EUDAT’s European
research data services.

The iRODS solution guarantees that a unified logical file space is created and accessible
to all participants. The rule and event orientation of iRODS allows us to write routines
that react to events such as data ingest, enforcing policies relating to data distribution,
rights management, and reduplication.

14

3.3.2 LEXIS orchestration

During the LEXIS project, an orchestration system was developed with the capability to
execute complex workflows that involve a combination of HPC, Cloud computing and Big
Data tasks. To serve as the orchestrator, Yorc [7] was chosen - an open-source TOSCA
orchestrator that seamlessly integrates hybrid cloud and HPC capabilities. Yorc is also
workflow-driven and allows fully customisable applications behaviour. For interaction with
Yorc, there is a comprehensive REST API. The Yorc was originally developed by Bull
Atos Technologies. The aliendcloud TOSCA application designer manages the creation of
applications. The alien4cloud also manages the deployment of applications via Yorc to the
Cloud computational resources and HPC clusters. The workflow architects can arrange
topology consisting of nodes with software and types, which are deployed to the selected
infrastructure. The workflow architects have extensive knowledge of the system and the

infrastructure.
Service Proxy
Orchestration Service | %\
L
P . LEXIS Plugins: *
amic .
Monitoring <---—| Allocation API . ® 1. HEAppE _P"-lgln
Module (DAM) 2. DDI plugin
_: j\\ 7 ' 3. DAM plugin
T T T T b beoooeoo [YSTIA
! poooopTEEIo-o-ooooo Rkt ALELEEE R :

[P]
i J | Yorc g , TOSCA ! YSTIA

. AAl . : E LEXIS i OpenStack Alien4Cloud . Catalog E T Forge

onnector |l Plugins | T Yore ! K
.k | 1 | = 1
[= T . <1 Eh
T T " ' i
b---- +— " == — '(% '(% """""""" T L -| Application Templates
1 \ﬁ
HPC 'y :
i Cloud
AAl Service Infrastructure | HEAPPE |nfmsfmcmre Dol

Figure 3.2: LEXIS Orchestration
Source: LEXIS D4.6 p.6 [36]

3.3.3 Apache Airflow

As stated on the web presentation [2], the Airflow is a platform created by the community
to programmatically author, schedule and monitor workflows. The Airflow platform is
scalable, dynamic and easily extensible. The workflows within the Airflow are defined in
Python language with the use of built-in operators or custom ones. Nowdays, the LEXIS
platform uses Apache Airflow aside the Yorc orchestrator and Alien4Cloud. The Airflow
is extended with custom plugin for authorization and with a set of custom operators for
communication with the rest of the LEXIS infrastracture services.

3.3.4 HEApPpE - High-End Application Execution Middleware

HPC-as-a-Service is a middleware that facilitates the execution and management of jobs on
HPC clusters, as well as the collection of information related to those jobs. This middleware
provides a REST API that enables users to submit computations or simulations on HPC

15

infrastructure via HEAppE, which can also monitor the progress of the job and notify the
user if needed. Applications should be installed before using them on the cluster by an
authorised person, in the case of I'T4Innovation’s clusters.

The jobs may require input datasets. The datasets can be provided to the jobs in scratch
directory. To transfer the files into the directory, the HEAppE provides a temporary SSH
key.

3.3.5 OpenStack

OpenStack is a comprehensive platform designed for managing a collection of interconnected
components, such as compute pools, networking, and storage resources. It provides a web
GUI and terminal utility to manage the sources and services. User can set up limits and
quotas for sources like IP addresses, CPUs, or number of compute instances. The platform
also offers various operations with storage, like taking snapshots.[44]

16

Chapter 4

Application Design

The application for designing computational workflows should provide a graphical interface
that accommodates two levels of detail for end-users with varying levels of expertise, includ-
ing non-computer scientists and workflow architects. The application should communicate
via a secure private network connection, taking into account the sensitive nature of the
information involved and the need for trustworthy communication with LEXIS services.
Therefore, only the graphical interface is exposed to the users. A part of the editor is the
registry with REST API for storing metadata about the cloud images (Docker images). The
graphical interface is aggregated in the .NET Blazor application together with the TOSCA
editor interface. The tight integration between the .NET MVC structure and the rendered
pages can help address the challenge of generating TOSCA templates.

17

81

(T gred)

ure1Serp um(:92Inog
wrersel(] sse[) — ASojodoJ, jo uoryejueserdoy [eurdu] — usiso(] uorpesrddy :[§ oansrg

ComputationalWorkflowTemplate

+string? Name

+string Version

+string? Author

+string? AuthorContact

+string? Description

+DateTime? StartDate
+SortedDictionary<CWTemplatelnputBase> Templatelnputs
+SortedDictionary<CWTemplateOutputBase> TemplateOutputs
+Dictionary<CWTask> Tasks

+int AddInput(CWTemplatelnputBase input)

+AddOutput(CWTemplateQutputBase output)

+bhool Removelnput(int index)

+bool RemoveQutput(int index)

+AddTask(CWTask computationalTask)

+bool RemoveTask(CWTask computationalTask)

+bool RemoveTask(int identifier)

+string? LinkDatalnput(int sourceTaskld, string sourceOutputName, int targetTaskld, string targetinputName)
+string? LinkTemplateDatalnput(int sourceName, int targetTaskld, string targetinputName)
+string? UnlinkDatalnput(int targetTaskld, string targetinputName)

+List~CWTask~ TopologicalSort(IEnumerable<CWTask> Tasks)
+AddRestrictedinput(CWTemplatelnputBase input)

«abstract»

CWTemplatelnputBase

+string Name
+string Description
+int Index

+hool Required
+bool Restricted

CWTemplatelnput CWTemplateDatalnput

(Juodx=eserega|qesiq+
(yrediasereqipp Bus)uodxJieserega|qeud+

sysejuapuadaq <yseLMD >SN+
yrednop Buuis+
yrediaseiequodx3 ¢ Buuis+

IndingereaiseLMd

asegindino¥seLMO
«leljsqe»

indinoyseL Mo

(yredieserep buls)aaINos1as+
(indingiser INdinpeIea}SE MD)32IN0SI8S+
(indujareidwa) aseginduiaye|dwa| p\\D)a21N0S1as+

yrednop Bus+
joyIndinoyseL ¢INdiNQRIRANSELMO+

uonduasaq Buus+
auwrepn Bums+

JAselIuBIRd JSBI MO+

asegoPseLMD
«jgensqe»

()@2inosres| D+
(angea oiweuip)adinosias+

(indujeyeidwae) asegindujare|dwa] p\D)221N0SI8S+

jadindinoyse] ¢asegindinQysel MO+
indujerejdway ¢asegindujaedwal O+
anjeA Jlweufp+

ndurereq@iselmo
| indupisel Mo
\ I
N H
N (Omsuadeqs] jooq ajgnd+ |
()ysej10ssaapaid (YSel MO+
palousay |oog+ ndingeieq dndinperegysel MO
2.inbay |oog+
” bl ies indingeregarejdwal Mo
asegindupjsel Mo
«joelsge»
_
\ \
\l
Xapu| Ui+ v
adA]anep sadAInduipno+
Xapu| Ui+

awep Buns+

asegindingayejdwal pod
«joensqe»

Figure 4.2: Application Design — Internal Representation of Topology — Class Diagram

(part 2)

Source: Own diagram

19

CWTask
+Dictionary<CWTaskInputBase> Inputs

+Dictionary<CWTaskOutputBase> Qutputs

+ComputationalWorkflowTemplate CWTemplate

+AddInput(CWTasklInputBase taskinput)
+AddOutput(CWTaskOQutputBase taskQutput)
+hbool Removelnput(string inputName)

+bool RemoveOutput(string outputName)

+string? LinkDatalnput(int sourceTaskld, string sourceQutputName, string targetinputName)
+string? LinkTemplateDatalnput(int sourceName, string targetinputName)
+string? UnlinkDatalnput(string targetinputName)

-AddRestrictedInput(CWTaskInputBase taskinput)

|
CWHPCTask CWCloudTask
-InitTasklQ() -InitTaskIO()

Figure 4.3: Application Design — Internal Representation of Topology — Class Diagram
(part 3)

Source: Own diagram

20

ComputationalWorkflowTemplate

has

has %

CWTask

X\ has
has
CWTemplateOutputBase has CWTaskinputBase

o

ﬁ depends on depends on
= ;/m[/ s\k
CWTaskOutputBase CWTemplatelnputBase

Figure 4.4: Application Design — Internal Representation of Topology — Relation Diagram

Source: Own diagram

4.1 Internal Representation of Workflow Topology

To provide a comprehensive internal representation of the topology, we propose to utilize
classes and their relations. The classification is based on the workflow structures illustrated
in figure 5.1. in the article ,,Characterisation of Scientific Workflows* and other advanced
workflow topologies. The article describes basic workflow types: process, pipeline, data
distribution, data aggregation and redistribution. The workflow presented in section 1.2.1
for Avio Aero turbomachinery is a typical example of a basic computational workflow. The
classes in the following list are visualised in the figure 5.1.

o Input (of the computational workflow)
o Output (of the computational workflow)
o Task

— Cloud task

21

— HPC task
e Task requirement
e Task input

— Task data input
e Task output

— Task data output

Computational Workflow Input

The input for a computational workflow can be in the form of a string data type that is
acceptable by the corresponding task. It is possible for a certain input to carry a dataset
UUID [39] that is entered by the user. Such inputs can be attached to the task data input
for further use in the workflow.

Computational Workflow Output

The output of the computational workflow has the same types as the input, but datasets,
a particular kind of output, are treated differently. In this case, the creation of the dataset
in the DDI is expected after the computational workflow execution finishes.

Task

A task defines computational tasks executed on an HPC cluster or a Cloud. It depends
on the user’s choice. An HPC cluster task could be chosen from the list of available tasks
suggested by the HEAppE API. The HEAppE also defines task inputs. Cloud tasks are
similar, but the cloud task could be chosen from the list of registered cloud images in the
cloud images metadata registry. In case a task’s data input is related to another task’s
output, implicit data transfer should be generated.

Task requirement

Task requirements are internal abstractions that represent dependencies between task inputs
and outputs and other tasks. However, these dependencies cannot form a loop.

Task Input and Task Data Input

To ensure flexibility in task inputs, the editor should allow the user to specify a wide range
of input types, such as strings, integers, and UUIDs for dataset inputs. In addition, each
task should be able to receive data inputs from other tasks within the workflow. The user
should be able to specify the source of the data and the input name, which will then be
used to retrieve the data in the task implementation.

Task Output and Task Data Output

For task data outputs, the editor should also allow the user to specify a range of output
types. These can include strings, integers, and UUIDs for dataset outputs. Similar to task
inputs, task outputs can also be the data input of other tasks in the workflow. The user

22

should be able to specify the output name. The data from the task output data can be for
downstream tasks later.

4.2 Cloud Image Metadata Registry

The purpose of the registry is to hold information about Docker images, which do not
contain necessary information such a input environment variables and input and output
paths to the directories inside the instance container, where mapped data from the datasets
should be or where outputs of the tasks can be found. Thus, it is necessary to store the
metadata. Otherwise, correct functionality of the Docker containers cannot be guaranteed.
The metadata is planned to be stored in a database with operations accessible via REST
APL

4.3 GUI/UX Graphical Design

The graphical interactive prototype was inspired by Alien4Cloud and other editors men-
tioned in section 2. The application should provide GUI for managing cloud images in the
registry (section 4.2) and creating as well as editing workflow templates. In addition to pro-
viding dashboards for workflow templates and cloud images, the GUI’s editor with a flow
diagram is a critical component. The flow diagram should provide a representation of the
workflow, including nodes that represent both cloud and HPC resources as well as nodes for
the workflow’s data inputs. The diagram should be designed to allow users to easily visu-
alize and understand the flow of the workflow, and should provide intuitive mechanisms for
linking nodes to indicate data input and output dependencies of the computational tasks.
By interviewing possible users, the following changes were proposed and accepted:

o Separate the navigation menu (on the left) from the action menu (on the right).
e Outline the currently active page in the navigation menu.

e Choose more suitable icons for actions.

e Create buttons with help for the forms.

e Use the Docker naming terminology in the cloud image forms.

23

’E:l bloud Imo'gés

. Register New Docker Image

Docker Image Ur!

]

Input Variables

(=)
()

Preprocess Data Preprocess Data

()
)

Figure 4.5: GUI Design — Register New Docker Image

Source: Screenshot from Figma design tool

24

| Template inputs

T:_' Sciehtiﬁc Workﬂ.o.w Editof - “C.o.mpu;te Pi”

Input name

Computation precision

Node input selection B

HPC job I: computation_precision

Cloud job 1 iy

preprocess_output)

[}

Image: Preprocess Data HPC JOb 1

Jjob_output

Task: Compute pi

HPC job 2
@ job_input
Jjob_output

Task: Compute pi

Figure 4.6: GUI Design — Workflow Inputs

Source: Screenshot from Figma design tool

25

T;:' Scientific Workflow Editor - “C.o.mpu;te Pi”

. Cloud job 1

©)

cloud image @

Preprocess Data

@

Image: Preprocess Data

input Volume®

@ Cloud job 2

® postprocess_inputl
@ postprocess_input2

Output Volume

Figure 4.7: GUI Design — Modify Cloud Task Details

Source: Screenshot from Figma design tool

4.4 Advanced features

During the discussion, several advanced features were identified for the workflow editor.
One interesting feature is the ability to statically specify particular execution locations.
This feature can be particularly useful for users who require a specific HPC cluster for
orchestrating their application. However, in some cases, users may need to specify the
execution location before the workflow execution, or even the number of instances for a
computation. To address these situations, a templating engine can be integrated into the
workflow editor, allowing users to define their own templates and specify the required
parameters before execution.

26

Chapter 5

Implementation

The particular implementation of the graphical editor for composing computational work-
flow is explained in the following section. According to the design in section 4.1, detailed
implementation of entities like computational workflow or task’s data inputs is described
further. The implementation takes advantage of object-oriented programming and im-
parts the software generality and extensibility. The TOSCA workflow description is not
the only one on the market. Thus the editor may consider using different formats like
Heat Orchestration Template ! used by OpenStack. Given the graphical editor’s emphasis
on user-friendliness, it is essential that the editor’s state is both persistent and portable.
However, any of the target specifications do not guarantee to have enough information for
backward conversion. Therefore, a custom format without any information biased by target
technology is introduced in section 5.2.6.

5.1 Used Technologies

The implementation of the graphical user interface is accomplished using the .NET frame-
work in C#, in conjunction with the JavaScript library JointJS for diagramming (see the
website [10]). I chose the .NET Blazor Server framework [40]. It directly competes against
the contemporary JavaScript frameworks like React [29]. The framework uses Model-View-
Controller architectural pattern. Razor syntax allows for the description of HTML compo-
nents and the associated code that pertains to each component. However, when compared
to Razor Pages?, the Blazor Server framework allows for interaction with the application
without the need to reload the web page, as is common in modern web applications. One
of the practical features offered by the framework, which greatly benefits the editor imple-
mentation, is the interaction between the browser and Blazor Server via a WebSocket. As
described in section 5.4.1 on task diagram implementation, the editor can invoke JavaScript
and C# functions bidirectionally. The function invocation requires data serialisation de-
scribed in section 5.2.6. REST API implementation is not necessary. Thus, the editor
implementation does not require the overhead of communicating with REST APL.
Emitting the internal representation to the final TOSCA format requires a basic .Net
package YamlDotNet. However, TOSCA syntax contains some repetitive, more nested
structures. The ToscaDOM library by Ing. Jiti Dvorsky, PhD, proposes a practical level of

'Detailed specification of the Heat Orchestration Template is described on website [6]
2 NET Razor Pages use a simplified web application programming model

27

abstraction into classes, which helps to implement the functionality much more efficiently.
The library is written in C#.

Referring to the dependency diagram mentioned in section 4.3, it constitutes the main
visualization component of the application. While there are several libraries available on
the internet, such as the Blazor.Diagram [3] library, the JointJS library [10] was chosen
to ensure the editor’s sustainability. This well-documented JavaScript library has both a
community and professional version available.

5.2 Computational Workflow Core

To ensure the clarity of the diagram in figure 5.1, more details about the entities are
provided in this section. The abstraction is described below using the top-bottom ap-
proach. The code with workflow core in C# is in file Computational Workflow.cs covered in
namespace Computational Workflow. On the other hand, the JavaScript class abstraction
is located together with the graphical part implementation in file WorkflowEditor.razor.cs
(the graphical part implementation is in section 5.4.1).

28

http://ComputationalWorkflow.es
http://WorkflowEditor.razor.es

5.2.1 Computational Workflow Template
Blazor Server

The term computational workflow template comes from the Tosca specification, but in the
abstraction, it makes more sense to describe it as a computational workflow. The top-level
entity that contains all other workflow entities is named Computational WorkflowTemplate.
The entities are stored in SortedDictionary data type to keep them in order and quickly
accessible. It controls addition and deletion of computational workflow inputs, outputs
and computational tasks. It is necessary to assign unique identifiers to all entities, so the
responsibility for this operation is assigned to the class. Otherwise, it will not be possible
to refer to them. Due to serialisation restrictions, the identifiers are essential for operation
cross-invocated from both JavaScript and Blazor Server framework (see section 5.2.6).

The class Computational WorkflowTemplate exposes methods for linking sources of data
inputs. Valid sources for data input are computational workflow data input (see section
5.2.2) or task data output (see section 5.2.5). Arguments of the method are integers and
strings to simplify invocation from JavaScript.

JavaScript

A similar lightweight abstraction of computational workflow is demanded to keep a consis-
tent state between the diagram rendered by JavaScript and the state controlled by Compu-
tational WorkflowTemplate class. The abstraction is covered in class WorkflowEditor, which
also manages the JointJS [10] diagram instance (see section 5.4.1). The class WorkflowEd-
itor exposes methods for:

e Adding and removing computational tasks
¢ Adding and removing computational workflow’s data inputs

e Linking and unlinking data inputs and outputs of tasks or computational workflow’s
data inputs

¢ Enabling and disabling export of computational task’s data outputs
e Name modification of computational task
¢ Name modification of computational workflow’s data input

All of the mentioned operations are invocated when a user interacts with menus con-
trolled by Blazor, and some diagram changes are requested.

29

5.2.2 Computational Workflow Input

Computational workflow’s input may be, for example, number, string, date or dataset from
LEXIS DDI 3.

Blazor Server

Both types of inputs have similar properties. They are name, description, value type (num-
ber, string, date, etc.), flag required, flag restricted and index for identification. Therefore,
an abstract base class CWTemplatelnputBase implements it. However, considering the
base class’s generality, the base class does not have a property for holding a default value.
Instead, the class CWTemplateInput, which inherits the base class, has the DefaultValue
property. The default value is not mandatory. The value of template input is not consid-
ered because the user specifies it just before the computational workflow execution instead.
The default value has dynamic data type. The dynamic is a static type in C#, but an
object of type dynamic bypasses static type checking. The dynamic data type supports any
operation. Nevertheless, the consequence is that the compiler does not check, the method
call, but the error occurs in runtime to give you an example. Instead of dynamic data
type, a class templating could be used. However, it demands a supplementary base class
implemented because it is often required to distinguish input from data input. Currently,
the class CWTemplatelnputBase has only CWTemplateDatalnput and CW Templatelnput
derived classes. Thus, the class of the instance of input or data input is identified by check-
ing input is CWTemplateDatalnput or dataInput is CWTemplateInput. By using class
templating, more comparisons will need to be considered.

The default value of template data input can be validated against LEXIS DDI, however,
this validation is not included in the current implementation. Nested input structures
need to be considered in further development because the implementation demands a more
complex graphical interface to be implemented, and ToscaDOM still needs to support it.
A form in the input’s menu restricts user inputs, thus, is not implemented in any of the
classes of the computational workflow abstraction. Menu and validation is described in
greater detail in the 5.4.2 section.

JavaScript

Keeping the class abstraction lightweight, the class TemplateDatalnput contains only meth-
ods to get an identifier to manage the node in JointJS [10] diagram, set a name of the input
and some other graphical interface related methods (see section 5.4.1). The identifier is
generated from the index given to the CWTemplateDatalnput when adding data input to
the computational workflow via AddInput method of the Computational WorkflowTemplate
class.

3DDI - Distributed Data Infrastructure with REST APIs for storing data and controlling their transfers
between distributed infrastructure

30

5.2.3 Computational Task

A computational task represents computation on an HPC cluster or cloud. A computation
may have input parameters such as precision. Typically, a computation may compute on
a data set, creating an output data set. The output data set may be used later in different
task computation in the computational workflow. A user can set a default value for the
data input or connect the input parameter to the overall computational workflow inputs.

Blazor Server

Implementation of the class CWTask not only contains the dictionaries with the task inputs
and outputs but also methods for addition and removal of them. The code outside the class
does not access the dictionaries directly when adding or removing the inputs and outputs.
Therefore, there are methods for it:

o AddInput Adds class CWTaskInputBase, the base class of task inputs, sets the re-
striction flag to false. Adds unique integer identifier to the added task input. (see
section 5.2.4)

o AddOutput Adds class CWTaskOutputBase, the base class of task outputs.

o AddRestrictedInput Adds class CWTaskInputBase, the base class of task input, sets
the restriction flag to true. The method is protected from external use.

e Removelnput Removes task inputs from the dictionary by their name. It is only
possible to remove non-restricted inputs externally.

e RemoveQutput Removes task output from the dictionary by their name.

There is an additional class property Location. It represents a preferred computation loca-
tion, which a user can set in the editor. The integer Identifier property is present for more
effective management of computational tasks.

To simplify the synchronisation of the state between JavaScript and .NET, the methods
LinkDatalInput, LinkTemplateDatalnput and UnlinkDatalnput are exposed. Especially, the
arguments contain only identifiers with atomic types. The methods return a string message
in case of an error to give feedback to the caller.

JavaScript

Implemented class Node holds task inputs and output similar to the implementation in
.NET. Additionally, it implements a method for changing the title, which is displayed in
the diagram for better user orientation. It also implements methods with atomic-typed
identifiers for cross-invocation simplification. The class also implements the identifier prop-
erty similarly to the class implementation the C#.

HPC and Cloud Computation Task

The initialisation is the only thing the HPC and cloud computational task differs from the
basic class. Its initialisation includes the creation of new instances of restricted (cannot
be removed by the user) inputs and outputs. The inputs having the default value or
not required inputs (has required flag set to false) do not need to be filled before the
computational workflow execution by the user. HPC task-specific inputs are:

31

e Name — The name of the computational task, which the user can specify and will be
displayed in the GUI diagram.

e heappe_uri — URL of HEAppE instance deployed for target computation location.
In further development, the URL input could be hidden, and the URL could be
filled automatically according to chosen computational location. LEXIS API needs
to expose relevant information for the functionality to be implemented.

e Project — LEXIS project short name identifier. It is mandatory for proper accounting
of computation in the LEXIS system. The LEXIS or user should provide it before
the execution of the computational workflow.

e Clusterld — Cluster identifier specific for the HEAppE implementation.

¢ CommandTemplateld — Command template is a script installed inside the HPC and
registered in the HEAppE instance for the particular computation project. It should
be hidden from the user in further development of the editor.

e MinCores — Minimum number of cores requested for the computation. The default
value is 1.

e MaxCores — Maximum number of cores requested for the computation. The default
value is 128.

o WalltimeLimit — HPC scheduler will stop the computation after the computation
reaches the specified limit. The default value is 120 minutes.

e Priority — Job priority for HPC scheduler. The default value is 4.

e ClusterNodeTypeld — Cluster node type identifier is specific for HEAppE. It helps to
differentiate the computation cluster with different modules like GPU.

o FileTransferMethodld — Specifies the type of protocol to use for data transferring
between the computational node and staging area of DDI.

Some of the mentioned shouldn’t necessarily be visible to the user, but hiding them
requires more extensive integration with LEXIS. Ideally, the identifiers should be mapped
with labels to give the user better awareness of the task configuration.

In comparison with a HPC computational task, the cloud computational task adds just
three following task inputs:

e Name — The name of the computational task, which the user can specify and will be
displayed in the GUI diagram.

e DockerlmageURI — URL of docker image for cloud computation task. The URL is
planned to be hidden for the user in further development. The user can then choose
from the docker images registered to the docker metadata registry (see section 4.2).

e Labels — Optional labels for advanced handling of cloud computational jobs in Ku-
bernetes*, which LEXIS uses internally for Cloud computations.

More specifications like cloud instance flavour or module requirements can be introduced
later.

“Kubernetes is an open-source container orchestration system for automating software deployment, scal-
ing, and management. [12]

32

5.2.4 Computational Task Input

Computation usually computes on some data with specified precision. However, some inputs
may be used for the HPC job scheduler too. Therefore, all the mentioned inputs should
have the base class to work with. More about the class abstraction is in according sections
below.

Blazor Server

The base class for the computational task input is CWTaskInputBase, but because the
computational task input and output have similarities, the shared part is implemented in
class CWTaskIOBase. Both inputs and outputs have a name, description, type of default
value and internal identifier comparable to the workflow input class (see section 5.2.2).
What the workflow input does not have, and computational task input and output have,
is a reference to the parent computational task. The base class CWTaskInputBase for
computational task inputs also implements the possibility of connecting workflow input as
the source of the value. The workflow input can be restricted, and the user cannot remove
the task input from the computational task. Also, the input must be filled in before the
execution. Therefore, there is Required flag with a boolean value.

However, the task input does not have to be sourced only from workflow input. The
source could be some computational task, of course. Thus, the chaining of computational
tasks is achieved. Currently, only data chaining is allowed between the tasks. The basic task
input is implemented by CWTaskInput class, and CWTaskDatalnput class implements data
input. When the data input is not sourced from workflow input or another computational
task, the DDI dataset identifier should be present. As mentioned, the input can hold the
value or reference to some task or workflow input. Thus, both the classes implement method
SetSource, which handles inner properties to be appropriately set. The SetSource method is
overloaded and can accept different types of inputs: a value, a workflow template reference,
or a task output reference. If a value is provided, it is simply set as the new source, and
any existing references are unlinked. If a workflow template reference is provided, then
the current source, value, and any other references are unset. Similarly, if a task output
reference is provided, the current source, value, and any other references are unset as
well. The method ClearSource clears references to any source and also unsets the value.
Compared with CWTaskInput, the MountPath holds information about the path, where
the dataset or data from the other task will be mounted.

JavaScript

The JavaScript part implements just the data inputs and outputs. Thus, the user can
manage data transfers in the graphical interface (see section 5.4.1). The class NodelO
implements both input and output. The property Type, with possible string value input or
output, distinguishes the class type.

5.2.5 Computational Task Output

Currently, the application only supports dataset outputs, but it can also handle outputs
that hold basic values, similar to the CWTaskInput class. The user can perform various
actions with the dataset output such as exporting it to the LEXIS DDI, copying or mounting
it to another computational task, or sharing it between multiple other tasks. Subject to
the support of the LEXIS transfer API.

33

Blazor Server

The base class CWTaskOutputBase does not implement any logic now, but it is there to keep
the implementation general, similar to the computational task input class structure. The
base class inherits from the class CWTaskIOBase (see section 5.2.4). As mentioned before,
the implementation includes the support of value-based task outputs, but it is not currently
implemented. Therefore, the class CWTaskOutput exists. The class CWTaskDataOutput
for data outputs inherits from the base class. The property MountPath has the same
purpose as in the CWTaskDatalnput class. It holds a relative path to the directory in a
computational task, which will be the output. When exported to LEXIS DDI, the property
carries the string with a path in the iRODS. The method GetStagingAreaPath generates
a static address for data transfer between the tasks. It is relevant to the way the LEXIS
staging area works. To grant safe data transfer, each data directory copied from the task
should have its unique path. It is not optimized yet in the current version of the workflow
editor, and the section 5.3.4 describes more about the data transfer.

JavaScript

The class NodelO implements the computational task output in JavaScript. For more
information, see section 5.2.4.

34

5.2.6 Serialisation

Although serialisation was briefly mentioned in section 5.1, but a detailed explanation has
not yet been provided up to this point. The serialisation explanation is irrelevant with-
out an adequately described computational workflow core (see section 5.2). Serialisation is
mandatory to synchronise the state between the C# in .NET framework and JavaScript.
The computational workflow abstraction classes should have JSON 5 interpreter. The se-
rialisation to JSON gives the advantage of saving the editor’s state to the database. The
.NET framework has built-in package System.Text.Json.Serialization abstract templated
class JsonConwverter. All the computational workflow classes have implemented their se-
rialisation classes in file Computational WorfkflowSerializer.cs. Nevertheless, the classes
currently implement just the Write method. The Read method is not implemented yet.
The implementation has simplicity and unambiguity as a goal. Some converters delegate
conversion to another converter class to maximise code sharing. The following sections
briefly describes the result JSON structures.

Computational Workflow
o name — Computational workflow name. It represents the value of the Name property

o version — Workflow template version. It represents the value of the Version property

o author — Computational workflow template author. It represents the value of the
Author property

o authorContaxt — A contact to the author. It represents the value of the AuthorContact
property

¢ description — Computational workflow name. It represents the value of the Description
property

o startDate — When the date is specified, the workflow will be started at the specified
date and time. It represents the value of the StartDate property

o templatelnputs — List of templates inputs

Workflow Input

o identifier — An unique identifier of the workflow input. It represents the value of the
Identifier property.

e name — Name of the workflow input. If it is not restricted, then it can be modified
by user. It represents the value of the Name property.

¢ description — Optional description of the workflow input. It represents the value of
the Description property.

e valueType — The data type enumeration held by the property ValueType. The con-
verter converts the enumeration to a string value.

e required — The flag for the required input should be filled before the workflow execu-
tion. It represents the value of the Required property.

2JSON - JavaScript Object Notation [45]

35

http://ComputationalWorfkflowSerializer.es

restricted — Flag for the input, which the system requires. The user cannot remove
it. It represents the value of the Restricted property.

default — Default value. It represents the value of the DefaultValue property.

Workflow Data Input

The workflow data input differs from the workflow input just by the possible type of the
default value. In the case of the data input, it is a string type because it holds