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Abstrakt 
Diplomová práce je zaměřena na problematiku nelineárních diferenciálních rovnic. Ob
sahuje věty důležité k určení chování nelineárního systému pouze za pomoci zlinearizo-
vaného systému, což je následně ukázáno na rovnici matemat ického kyvadla. Dále se 
práce zabývá problematikou diferenciálních rovnic se zpoždéním. Pomocí těchto rovnic je 
možné přesněji popsat některé reálné systémy, především systémy, ve kterých se vysky
tují časové prodlevy. Zpoždění ale komplikuje řešitelnost těchto rovnic, což je ukázáno na 
zjednodušené rovnici portálového jeřábu. Následně je zkoumána oscilace lineární rovnice 
s nekonstantním zpožděním a nalezení podmínek pro koeficienty rovnice zaručující os-
cilačnost každého řešení. 

Summary 
The master's thesis is focused on the nonlinear differential equations. It contains the
orems important to determine the behaviour of the nonlinear system only by study of 
the linearized system, which is subsequently shown on the equation of the mathemati
cal pendulum. Furthermore, the thesis deals with differential equations with delay. The 
delay complicates finding the solution, which is shown on the simplified equation of a 
gantry crane. Subsequently is investigated the oscillation of the linear equation with non-
constant delay. Determining the conditions for the coefficients in the equation, such that 
every solution is oscillatory. 

K l í č o v á slova 
Nelineární diferenciální rovnice, kyvadlo, diferenciální rovnice se zpožděním, portálový 
jeřáb , oscilace lineární rovnice s nekonstantním zpožděním. 

Keywords 
Nonlinear differential equations, pendulum, delay differential equations, gantry crane, 
oscillation of the linear equation with non-constant delay. 

BEREŠ, L.Mathematical modelling with differential equations. Brno: Brno University of 
Technology, Faculty of Mechanical Engineering, 2017. 43 s. Supervisor doc. Mgr. Zdeněk 
Opluštil , P h . D . . 





/ hereby certify that this thesis is the result of my own work and I have properly cited 
all sources used in the thesis. 

Be. Lukáš Bereš 





I would like to sincerely thank my supervisor doc. Mgr. Zdenek Oplustil , Ph .D. for 
his helpful advices, leading in the topic, great patience and other discussions. 

Be. Lukáš Bereš 





Contents 
1 Introduction 12 

2 Nonlinear systems 13 
2.1 Nonlinear systems 13 

2.1.1 Equil ibrium points 15 
2.1.2 Stability 17 

2.2 Pendulum 18 

3 Delayed differential equations 24 
3.1 Differential equations with delay 24 

3.1.1 Solving D D E s 24 
3.2 Gantry crane 30 

3.2.1 Linearized system 33 
3.2.2 Real gantry crane 36 

4 Oscillation 37 

4.1 Oscillation of linear differential equation with non-constant delay 37 

5 Conclusion 41 

6 List of abbreviations and symbols 43 



1 Introduction 
Differential equations have numerous applications in engineering and science disci

plines. There exist methods to solve linear differential equations, and also special cases of 
nonlinear are solvable explicitly. But what to do when the explicit solution does not exist 
or can be found only numerically, using software? Theory of dynamical systems tells us, 
that in some cases it is possible to use just the linearized system near the equilibrium, 
even though the equations are not linear. The first chapter of the thesis gives rough view 
on these special cases. The survey related to the dynamical systems can be found in books 

[ ]• 

The thesis shows the application on the equation of pendulum, using not only the 
linearization (The Hartman - Grobman Theorem, see [9], [11]), but also approximation 
with higher orders around equilibrium. 

The second part of the thesis deals with differential equations with delay, they play 
an important role in various applied sciences such a control theory, population dynamics, 
biology, engineering, etc. Mathematical models with delayed differential equations turned 
out to be useful especially when the system depends not only on the position of the system 
in the current time, but also in the past. The delayed part may frequently influence the 
properties of solutions (stability, etc.). 

Differential equations with delay were already investigated by Euler in the 18th cen
tury, but the systematic study starts at the fifties of 20th century. Theory related to delay 
differential equation can be found in [1], [4], [5], [7], [8], [12]. The exact solution can be 
found only in some special cases. There are few methods of solving these special cases, 
the most known are Method of Characteristics and Method of Steps. 

The equation of gantry crane is used as an example of use of the delay differential 
equation. Specific type of controller is used to control the swinging of the cable using the 
past. Of course there exist a lot of controllers, in the thesis is used the Pyragas' controller 
see, [15]) k((f)(t — r ) — (f>(t)), r e R+, where <f>(t — r) is the known function of the past 
(on the interval (—r,0)). 

The last chapter consists of studying the oscillation of the linear differential equation 
with non-constant delay. There are lemmas and theorems which give conditions on the 
delay and also on the functions in the equation such that every solution is oscillatory. 
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2 Nonlinear systems 
Any autonomous linear system 

x = A x , (2.1) 

where x = (x\,x2, ...,xn)T, A is an n x n constant matrix of real numbers, has a unique 
solution through each point x 0 in the phase space M.n. The solution is given by 

x(t) = x 0 e A t 

and it is defined for all t 6 t . This chapter wil l deal with the autonomous systems of 
differential equations 

x = / ( x ) , (2.2) 

where / : E —> W1 is a vector function and E is an open subset of W1. Any nonau-
tonomous system x = / ( x , t), with x = (x\, x2, ...,xn)T can be rewritten as an autonomous 
system (2.2). 

Under certain conditions on the function / , the nonlinear system (2.2) has a unique 
solution through each point x 0 G E defined on a maximal interval of existence (a,/3) C R. 

2.1 Nonlinear systems 
In general it is not possible to solve the nonlinear system (2.2), however, we show quali
tative information about the local behaviour of the solution. In particular, the Hartman-
Grobman theorem which shows that with certain conditions on the function / , the local 
behaviour of the nonlinear system (2.2) near an equilibrium point Xo where /(xo) = 0 is 
topologically equivalent to the behaviour of the linear system (2.1), with A = Df(x0). 
the derivative of / at x 0 . The definitions and theorems in this chapter, and also more 
information with examples can be found in [11]. 

Definition 2.1. The function / : M.n —> MJ1 is differentiable at xo G MJ1 if exist a linear 
transformation D / ( x 0 ) (the derivative of / at x 0 ) that satisfies 

l i m | | /(xo + h ) - / ( x o ) - D / ( x o ) h | | _ Q 

where ||h|| is the norm of a vector h = (hi,hn), defined by ||h|| = \Jh\ + h\ + ... + h\. 

Theorem 2.2 ([ ]). If f :Rn —> Rn is differentiable at x 0 , then the partial derivatives 

O.r j •J^, i,j = l,...,n, all exist at x 0 and for all x G 

D / ( x 0 ) x = ^ — ( x q ) ^ 
j=i o 

If / is differentiable, then the derivative Df is given by the n x n Jacobian matrix 

Df 
df, 
dx. 

13 



Theorem 2.3 ([ ]). Suppose that f : E —> W1, where E is an open subset of Rn, 
and f is differentiable on E. Then f G C 1(-E') if the derivative Df is continuous on 
E. f G Cl{E) if and only if all the partial derivatives = l,...,n, exist and are 
continuous on E. 

The x(t) is a solution of (2.2) on an interval / , if it is differentiable, and x(t) = / (x( t ) ) , 
\/t G / . Given x 0 G E, x(t) is a solution of the initial value problem, if it is a solution of 
(2.2) and x( t 0 ) = x 0 . 

The function / : E —> Rn is said to be locally Lipschitz on E if for each point 
x 0 G E there is an e -neighborhood of x 0 (an open ball 5 e ( x 0 ) = {x G W1, |x — x 0 | < e}), 
£> e(x 0) c E and positive constant K such that Vx , y G Bt(x0) 

| / ( x ) - / ( y ) | < K | x - y | . (2.3) 

Function / is said to satisfy a Lipschitz condition on E if (2.3) holds for all X J G £ . It 
can be proved that if / G Cl{E), then / is locally Lipschitz on i?. 

Theorem 2.4 (The Fundamental Existence - Uniqueness Theorem, [ ], p. 74). Let E 
be an open subset ofRn containing x 0 and assume that f G Cl{E). TTien £/iere e » s i an 
a > 0 such that the initial value problem 

x = / ( x ) 

x(0) = x 0 

has a unique solution x(t) on the interval [—a, a]. 

Due to translation it also shows that the initial value problem 

x = / ( x ) 

x( t 0 ) = x 0 

has a unique solution on some interval [to — a, to + a]. 

Theorem 2.5 ([ ]). Let E c W1 be open and assume that f G Cl{E). Then for each 
x 0 G E, there exist a maximal interval J on which the initial value problem has a unique 
solution x(t). If the initial value problem has a solution y(t) on an interval I, the I C J 
and y(t) = x( t) ,Vt G / . 

Furthermore, the maximal interval of existence J is open. 

Definition 2.6. A point x 0 G M.n is called an equilibrium point (or critical point) of 

x = / ( x ) (2.4) 

if / (xo) = 0. A n equilibrium point is called a hyperbolic equilibrium point if none of the 
eigenvalues of the matrix A = Df(xo) have zero real part. The linear system x = T4X, 
with A = Df(x0), is called the linearization of (2.4). 

Definition 2.7. A n equilibrium point x 0 of (2.4) is called a sink if all the eigenvalues of 
D / ( x 0 ) have negative real part. If all the eigenvalues of Df(x0) have positive real part, 
then x 0 is a source. It is called saddle if it is a hyperbolic equilibrium point and Df(x0) 
has at least one eigenvalue with a positive real part and at least one with a negative real 
part. 

14 



Definition 2.8 (The Flow of a differential equation). Let E be an open subset of W1 and 
let / G Cl(E). For x 0 G E, let x 0 ) be the solution of the initial value problem 

x = / ( x ) (2.5) 

x(0) = x 0 

defined on its maximal interval of existence i ( x 0 ) . Then for t G / ( x 0 ) , the set of mappings 
4>t defined by 

0 t (x o ) = <f>{t,x0) 

is called the flow of the differential equation (2.5) or the flow defined by the differential 
equation (2.5). 

Definition 2.9. Two autonomous systems of differential equations are said to be topolog-
ically equivalent in a neighborhood of the origin if there is a homeomorphism H mapping 
an open set U containing the origin onto an open set V containing the origin which maps 
trajectories o the first system in U onto trajectories of the second system in V and pre
serves their orientation by time in the sense that if a trajectory is directed from x i to X2 
in U, then its image is directed from H(x.i) to i ? ( x 2 ) in V. 

Theorem 2.10 (The Hartman - Grobman Theorem, [ ]). Let E be an open subset ofMJ1 

containing the origin, f G Cl{E), and let 4>t be the flow of the nonlinear system y = / ( x ) . 
Suppose that /(0) = 0 and that the matrix A = Df(0) has no eigenvalue with zero real 
part. Then there exists a homeomorphism H of an open set U containing the origin onto 
an open set V containing the origin such that for each x 0 G U, there is an open interval 
/ o C R containing zero such that V x 0 G U and t G Iq 

tfo^(x0) = e A t t f ( x 0 ) ; 

i.e., H maps trajectories of y = / ( x ) onto trajectories ofy = A x , where A = Df(0), 
near the origin and preserves the parametrization by time. 

2 .1 .1 Equilibrium points 

There are several types of equilibrium points of the nonlinear system 

x = / ( x ) , (2.6) 

where / : E —> M2, E is open subset of M2. We now give the precise geometrical 
formulation of them. Assume that x 0 G M.2 is an isolated equilibrium point of (2.6) which 
has been translated to the origin. 

Definition 2.11 (Center). The origin 0 is a center for (2.6) if there exist a 5 > 0 such 
that every solution curve in deleted neighborhood Bg(0) \ {0} is a closed curve with 0 in 
its interior. 

Definition 2.12 (Center-focus). 0 is a center-focus if there exist a sequence of closed 
solution curves r n with r n + i in the interior of r n such that r n —> 0 as n —> oo and 
such that every trajectory between r n and r n + i spirals toward r n or r n + i as t —> ± o o 
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For planar systems 

x = P(x, y) 

y = Q(x,y) 

it is convenient to rewrite the system in polar coordinates (r,(p), which can reveal the 
behaviour of the system near origin. Letting r2 = x2 + y2 and (p = t an _ 1 ( ^ ) , we obtain 

rr = xx + yy 

r2tp = xy — yx 

Then the nonlinear system (2.7) may be rewritten as 

f = P(r cos tp, r simp) cos tp + Q(r cos tp, r sin ip) sin ip 

r<p = Q(r cos ip,r sin ip) coscp — P(r cos tp,r sin ip) s'mip 

The solution of the planar nonlinear system (2.7) with r(0) = r 0 and (p(0) = (p0 wil l be 
denoted r(t,ro,(po) and <p(t,ro,tpo). 

Definition 2.13 (Stable focus). 0 is called a stable focus for (2.7) if 35 > 0 such that 
for 0 < r 0 < 5 and <p0 G R, r(t,r0,(p0) —>• 0 and \<p(t,r0,(p0)\ —> oo as t —> oo. 

Definition 2.14 (Stable node). 0 is called a stable node if 36 > 0 such that for 
0 < r 0 < 5 and </?n G K , r(t, ro, </?o) —> 0 as t —> oo and l i m t >00 (p(t, rn, </?o) exists. 

Definition 2.15 (Topological saddle). 0 is a topological saddle for (2.7) if there exist 
two trajectories I \ and T 2 which approach 0 as t —> oo, and two trajectories T 3 and T 4 

which approach 0 as t —> — oo. A n d if 36 > 0 such that all other trajectories which start 
in the deleted neighborhood of the origin P>s(0) \ {0} leave B$(0) as t —> ± o o . 

The special trajectories r \ , T 4 are called separatrices. 

It was mentioned earlier that in some cases the behaviour of the planar nonlinear 
system x = / ( x ) near equilibrium point can be determined using the linearized system 
x = T4X, where A = Df(0). The following theorems give more precise view on such cases. 

Theorem 2.16 (Bendixson, [ ]). Let E C M2, E is open containing 0, and f G Cl{E). If 
the origin is an isolated equilibrium point, then every neighborhood of the origin contains 
closed solution curve or exists a trajectory approaching 0 as t —> ± o o . 

Theorem 2.17 ([11], p. 141). Let E C R2, E is open containing 0, and f G Cl{E). If 
0 is a hyperbolic equilibrium point, then the origin is a topological saddle for x = / ( x ) if 
and only if the origin is a saddle for x = D / ( 0 ) x . 

Theorem 2.18 ([ ], p. 143). Let E C M2, E is open containing 0, and f G C2(E). 
Suppose that 0 is a hyperbolic equilibrium point. Then 0 is a stable (unstable) node 
for the nonlinear system x = / ( x ) if and only if it is stable (unstable) node for the 
linear system x = D / (0 )x . 

And if f G C 1 ( £ ' ) the origin is stable (unstable) focus for the nonlinear system if 
and only if it is stable (unstable) focus for the linear system. 

If the function / is only C1(E) and 0 is a center for x = D / (0 )x , then the origin can 
be either a center, a center-focus or a focus for x = / ( x ) . But when the function / is 
analytic a center-focus cannot occur. 
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2.1.2 Stability 

The stability of any hyperbolic equilibrium point Xo of the nonlinear system 

x = / ( x ) , (2.8) 

where / : E —> Rn,E C Rn, E is open containing xo, is determined by the signs of 
the real parts of the eigenvalues Xj of the matrix D / ( x 0 ) . The stability of nonhyperbolic 
equilibrium points is more difficult to determine. 

Definition 2.19. Let 4>t denote the flow of the differential equation (2.8) defined Vt G R. 
A n equilibrium point x 0 of (2.8) is stable if Ve > 0 36 > 0 such that V x G S^(x 0 ) and 
t > 0 we have 

0 t (x) G Be(xo). 

x 0 is unstable if it is not stable. A n d it is asymptotically stable if it is stable and if 
36 > 0 such that for all x G ^ ( x 0 ) we have 

l im <j)t(x) = xo. 
t >oo 

The following Liapunov method is very useful to determine the stability of the non-
hyperbolic equilibrium point. 

Definition 2.20. If / e C\E), V G Cl{E) and <f>t is the flow of the differential equation 
(2.8), then for x G E the derivative of the function V ( x ) along the solution 4>t is 

K ( x ) = jV(Mx))\t=o = W ( x ) / ( x ) . 

Theorem 2.21 (Liapunov, [11], p. 131). Let E C W1, E open containing x 0 ; suppose 
f G C 1 ( £ ' ) and / ( x 0 ) = 0. Suppose further that there exists a Liapunov function V. 
V : E —> R satisfying Vfo) = 0 and V ( x ) > 0 , x / x 0 .T / i en 

a V"(x) < 0 for all x G E, then x 0 «5 stable, 

b if V(x) < 0 for all x. £ E \ { x 0 } , iften x 0 is asymptotically stable, 

c ifV(x) > 0 for all x G E\ { x 0 } , iften x 0 is unstable. 

17 



2.2 Pendulum 

mg 

Figure 2.1: Mathematical pendulum with the forces acting on the body [ ] 

In this section is shown the application of the previous theorems on the simplified 
differential equation of the pendulum (neglecting friction and air draft) (see [2]). 

The equation is obtained by using Newton's law F = ma, where F is sum of the forces 
acting on the body with weight m, and a is acceleration. 

As can be seen in the Figure 2.1, there are two forces acting on the body: 

1. force from the rope Fn, 

2. gravity Fg = m • g. 

The position of the pendulum is described with the angle (f, as a deflection from the 
vertical axis. Then the differential equation for the pendulum of the length I is: 

</3 + y s i n ^ = 0 (2.9) 

Methods of solving this nonlinear equation: 

1. The explicit solution of nonlinear of more complicated equation does not exist or it 
is hard to find analytically. Using numerical methods can help approximately find 
the solution. The equation (2.9) is such example. 

If we rewrite it as a system of differential equations, where (fi = (f is the position 
and (f2 = (f is speed, we obtain: 

ip± = ip2 

9 . (2-10) 
(fi2 = - j sm</?i 

This system has infinitely many equilibrium points, when cp2 = 0 and (fi is arbitrary 
integral multiple of IT, tpi = kir, k G Z . 

18 
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Figure 2.2: The phase portrait for the nonlinear equation of pendulum 

The phase portrait for the system of differential equation of the mathematical pen
dulum (2.10) in the Figure 2.2 shows the behaviour around the equilibrium points. 
A l l the equilibrium points are centers or saddles. A l l the centers are located in even 
multiples of 7r, i.e. when (p2 = 0, (pi = 2mr, n G Z then it is a center, and all the 
other equilibrium points are saddles. 

As can be seen in the phase portrait Figure 2.2 there are four possible cases of curves, 
let us compute all the solution levels of the equation <p + | sin (p = 0. Mult iplying 
the equation by <p we obtain 

(p • <p + ^-psinp = 0, 

which can be rewritten as follows 

1 d , ,9 a d , 

Integrating the previous equation we get 

^ ) 2 + y ( - c o s ^ + 1 ) = c> 

where c £ l . Using cp = tpi and (p = (p2, leads to 

^ + | ( l - c o s ^ ) = c. (2.11) 

The curves in the Figure 2.2 we obtain by changing the values of the constant c. 
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There are four cases of curves for different values of c: 

• for c = 0, from the equation (2.11) we get 

2 2g 
ip2 = — (cos^i - 1), 

the value cp2 = 0 leads to the equation c o s ^ i = 1, which is satisfied for 
ifi = 2kir, k G Z . These solutions of (fi and (f2 are the stationary solutions 
(equilibrium points which are centers). 

for c = from (2.11) we get 

ip2 = ± J y ( l + COS(/?i) 

which is defined for all (fi G R. For the simplest case when I = 2g we get 

which are the separatrices for the saddles in the Figure 2.2 (and the curves 
connecting the saddles). 

From the equation (2.11) we get 

2 2g 
tp2 = 2c —(1 — cos (fi). 

The left side is always non-negative, consequently 2c > y ( l — cos^ i ) > 0, 
which implies c > 0. 

for c > y we get that 2c > y ( l — cos^i ) which implies that the square root 
in the next equation is strictly positive 

if2 = ±\J2C- y ( l - C O S ^ i ) . 

The curves generated by the previous equation exist for all (fi G K , represent 
the outer curves in the Figure 2.2. 

for 0 < c < f 

(/?2 = ± \ / 2C - y (1 - COS Lpi) 

The term in the square root may be negative for some (fi, so to the existence 
of the square root we need condition c > f ( l — cos^ i ) . Hence, 

cl 
COS(^i > 1 , 

9 
which implies 

( cl\ ( cl\ 
— arccos 1 < ipi < arccos 1 

V gj \ g) 
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From the periodicity of the goniometric functions we get 

— arccos ( 1 — — ) < ipi + 2k7T < arccos ( 1 — — ) for fceZ. 
V 9/ \ g) 

The last type of the curves in the Figure 2.2 is defined by 

arccos 1 , arccos 1 for (fi + 2kir G 
gj v 0. 

These curves are the orbits around the equilibrium points which are centers. 

2. The most common method for small values of ip is the approximation of the sin ip 
by the Taylor polynomial at (p = 0: 

(a) The simplest case is approximation by the Taylor polynomial of the first order 
sirup ~ (p, then the equations becomes 

3̂ + y ^ = 0 (2.12) 

Which is simple ordinary differential equation, it can be solved by method of 
characteristics. The general solution is 

tp(t) = Ci cos (J^-tj + c 2 sin (^\J^t 

Solving with initial conditions (p(0) = (p and (p(0) = (p, we obtain the solution 

The equation (2.12) is the second order, it can be transformed into the system 
of ordinary differential equations (where </?i = (p is the angle and (p2 = <p is 
speed): 

ip\ = ip2 

g (2.13) 
^2 = - J<Pl 

It is clear that the only equilibrium point of the system is (0,0). The planar 
system (2.13) is linear, so the equilibrium point is a center. The phase portrait 
for the system (2.13) is in the Figure 2.3. 
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Figure 2.3: Phase portrait of the system (2.13) 

(b) To have more precise results it is possible to take the approximation of higher 
order. Due to he fact that sinus is odd, it is useless to take the polynomial of 
even order. So, use the approximation of third order sin i f 
(2.9) is transformed into the system 

{ i f - f r ) , then 

^2 

r2 

_g 
I <pi 3! 

(2.14) 

This case already gives more stationary solutions (equilibrium points) than 
(2.13), which are of different types. There are 3 equilibrium points: (0 ,0) T , 
which is again a center (see p. 16), and using Theorem 2.17 we get that the 
other two (V6, 0 ) T , (—v6, 0 ) T are saddles for the system (2.14). The phase 
portrait for the system (2.14) is in the Figure 2.4, it shows the behaviour around 
the equilibrium points. 

Figure 2.4: The phase portrait for the system (2.14) 

(c) It is possible to use higher approximations, but using the approximation of the 
fifth order gives even less precise results, and using the seventh order changes 



only the position of the two saddles. Usage of the approximation by ninth 
order sin ip « {<p ¥_ I <£ 

3! ^ 5! 
¥_ I <£ 
7! 9! 

(2.9) is transformed into 

f x = If 2 

-f2 
9 , 

3! 5! 7! 9! 

(2.15) 

The system has 5 stationary solutions: (0, 0 ) T , (4.9632, 0 ) T , (-4.9632, 0 ) T , 
which are centers (see p. 16), and again using Theorem 2.17 (3.1487, 0 ) T , 
(—3.1487, 0 ) T are saddles for the system. The phase portrait in Figure 2.5 
gives rough idea of the behaviour of the system near equilibrium points. 

Figure 2.5: The phase portrait for the system (2.15). 

From the previous calculations can be seen that the number of stationary 
solutions arise. The centers alternate with the saddles and they converge to 
the multiples of IT, as expected. 
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3 Delayed differential equations 
3.1 Differential equations with delay 
As it is known, an ordinary differential equation (ODE) , is an equation which connects 
the values of an unknown function and its derivatives for one and the same argument. 
For example, the equation F(t,x(t),x(t),x(t)) = 0, where the dots indicate derivatives 
™ dx 
x dt • 

A functional equation (FE) involves an unknown function for different arguments. The 
equation x(t) = 3x(t — 2)+ 4, is the example of F E . The differences between the arguments 
of an unknown function and t are called argument deviations. 

Differential equations with delay (DDEs) can be considered as combined functional 
and differential equations. 

x™(t) = f(t,x(t - h(t)), ...,x^~l\t - hk(t)j), 

where n G N , and hi(t) > 0 are continuous functions. We wil l focus on one type, 
hi = Ci, V i = 1, ...n, where q are some nonnegative constants. 

It is a large and important class of dynamical systems. They are very useful in de
scribing either natural or technological problems. Delay arises between the observation 
and the control action. 

3.1.1 Solving D D E s 

There are several methods of finding the unique solution y(t) (if exist) of the system 

y(t) = ai(t)y(t) + a2(t)y(t - d), t G [0, d], (3.1) 

y(t)=g(t), te[-d,0], (3.2) 

where ai(t),a,2(t) are class C 1 functions, d > 0, g(t) is class C 1 function. 
As it is customary, the continuous function y : [—d, d] —> R is called a solution 

of (3.1), if y G C 1 ( 0 , d) and satisfies the equation (3.1) on the interval [0, d]. If the function 
y is given on the interval [—d, 0], then the problem cannot have more than one solution. 
B y contradiction, if we assume there are two different solutions u(t),v(t), and let w(t) be 
their difference u(t) — v(t). Then also w(t) has to satisfy equation (3.1). Since u(t) and 
v(t) both satisfy the same equation, the (3.2) becomes w(t) = 0, on [—d, 0], which makes 
w(t — d) = 0, on [0,d]. The result is first order O D E w(t) = ai(t)w(t) on [0,d], with 
w(0) = 0. Which proves w(t) = 0 on [0,d], which gives u(t) = v(t) on [—d, d]. 

Of the several methods used for solving problem (3.1),(3.2), we state two: 

• The Method of Characteristics 

• The Method of Steps 

The Method of Characteristics is suitable for solving the simplest case, the equation 
with constant coefficients. It is necessary to know the Lambert w-function, W(z) , namely 
the inverse of the equation 

z(w) = wew. 
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The Method of Characteristics 

As was mentioned above, the method is suitable for solving the delayed differential equa
tion with constant coefficients. Consider equation (3.1) with ai(t) = a\,a2(t) = a2, where 
a i and a2 are real constants. Assume that the solution of (3.1) is of the form y(t) = Cemt. 
for some value m G C and with C / 0 arbitrary constant. Substituting the expected 
solution into the equation (3.1) we get 

Cme Tilt Cemt + a2Cem(t-d\ 

After division by Cemt we obtain the characteristic equation 

(m — a\)e Hid a2 = 0 (3.3) 

a i . On the other hand, if a\ = 0 If a 2 = 0 then the equation (3.1) is an O D E with m = 
and a2 7^ 0, then (3.1) is pure delay equation. 

Mult iplying the equation (3.3) by de~aid gives 

(dm - dai)e{dm-dai) = de 

Which is the inverse Lambert function, d(m — a\) = W(de~aida2). From where 

aid 
a2. 

d 
W(de -aid a 2) + a i . (3.4) 

Let us solve the simplest case, when a\ = 0. The same results can be obtained by 
changing the argument of the Lambert function and then using (3.4) to get wanted m. 

—1 1- 1 r~ 

0.8 

0.6 

0.4 

0.2 

-0.2 

-0.4 _i 1 1 1 1 1 1 1 i_ -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 

Figure 3.1: Graph of / (m) me 2)11 

So, the characteristic equation becomes memd 

Define a function 

a2 for a2 = {-\, 

a2 = 0. 

2 e ' 4 e ' 10 

f(m) memd - a2, 

25 



where a2 is a parameter. For some values of a2 it has real solutions, but it turns out, that 
in all cases for f(m) has infinitely many complex solutions. W i t h d > 0, Figure 3.1 shows 
that there are 4 cases for the number of roots of the function f(m) (for a2 ^ 0): 

When a 2 < — j- < 0, there are no real roots of [m 

• If a 2 = — -7 - , then there is exactly one real solution of f(m) = 0. 

• When — j- < a 2 < 0, then f(m) has two real roots, both negative. 

• If a 2 > 0, then it has one root, which is positive. 

Case 1 For a 2 < — j-e < 0 there are only complex solutions of f(m), so we seek for the 
complex numbers m = a + bi, a,b G l . The characteristic equation becomes 

(a + bi)e{a+bi)d = a 2 

(a + bi)ead(cos(bd) +ism(bd)) = a2 

After multiplying out we obtain the following equations for the real and complex 
parts 

a cos(M) - bsin(M) = a2ead (3.5) 

asm(bd) + bcos(bd) = 0, (3.6) 

from where 
a = _ 6 ^ o s ^ = _ f e 

sm(oa) 

Substituting a from (3.7) into (3.5) leads to 

r cos^M) i = a ^ b d c o t { b d ) 

L sm(od) J 

From where we get the equation for b 

b = -a2sm{bd)ebdcot{bd) (3.8) 

For a 2 < — 4- it is possible to find the solutions as the intersections of line y = x, 
with the one-parameter family of curves 

y = -a2sm(dx)edxcot{dx\ 

where d is fixed and a2 is the parameter. 
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dc 

Figure 3.2: Graphs of the functions y = x and y = —2sin(2x)e 2 x c o t^ 2 x- ) . 

Figure 3.2 shows that equation (3.8) has infinitely many solutions; denote them by 
bk,k = 1,2,.... From (3.7) we obtain a^. Since m = + ibk,k = 1,2,... (bk ^ 0) 
the formal solution to the D D E is 

00 
y(f) = J2 e a k t ( C u cos (M) + C2k s i n ( M ) ) , 

k=i 

where Cik and C2k are arbitrary constants. 

Case 2 a2 

The single root can be found using (3.7) 

l im —b cot (bd) = — \ 
b^o d 

which produces another characteristic solution e~s* and the solution becomes 

y(t) = C o e " ^ + ^ e a f e t ( C i f e c o s ( M ) + C2ksm(bkt)), 
k=i 

where Co, Cik and C2k are arbitrary constants. 

Case 3 When — ̂  < a2 < 0, then f(m) has two real roots, both negative. One of 
them is bigger than — i , the second one smaller. Both can be found using Newton's 
Method. Starting with pQ = — ̂  (respectively po = — | ) and for k e N define 

Pk+i = Pk~ ff^j- T n e n mo = limk^ooPk (resp. ml = limk^ooPk)- Which gives 
the solution 

00 
y(t) = C i e

m o t + C 2 e m i t + eakt(Clk cos (M) + C2k s i n ( M ) ) . 
k=i 
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Case 4 a 2 > 0 

The only root can be again found by Newton's Method with starting point 
Po = 1. The solution is 

00 
y(t) = C3em3t + J2 e° f c*(Ci* C 0 S ( M ) + C2k s i n ( M) ) . 

k=i 

The equation y = a2y(t — d) has a solution 

y(t) = C 0 e - ^ + C i e

m o t + C 2 e m i t + C 3 e m s t + e 0 f c*(Ci* cos (M) + C 2 f e s i n (M) ) 
fe=i 

where and bk satisfy equations (3.5) and (3.6). Provided that 

1. C 0 = C i = C 2 = C 3 = 0 when a2 < - ± . 

2. C\ = C 2 = C3 = 0 and Co is arbitrary when a 2 = —4-. 

3. CQ = C3 = 0, and C i and C 2 are arbitrary, UIQ and m i are real roots of m e m d — a 2 = 0 
when — < a 2 < 0. 

4. Co = C i = C 2 = 0 and C3 is arbitrary and is the real root of memd — a 2 = 0 
when a 2 > 0. 

The Method of Steps 

The Method of steps converts D D E into O D E over some specific interval, using the known 
history function for that interval. The resulting equation is solved and the process is 
repeated for next interval, using the newly found solution as a history function for next 
interval. We wil l apply this process to the problem (3.1), (3.2). 

Step 1 We know, that on the interval [—d,0], the solution is y(t) = g(t). When t e [0,d], 
t — d G [—d, 0], so y(t — d) becomes g(t — d). Using this fact, on [0,d] the equation 
(3.1) is not D D E but an O D E , with initial condition y(0) = g{0)- Thus after solving 
the O D E we obtain the solution yi(t), t G [0,d] (the existence of the solution is 
guaranteed, due to expecting class C 1 functions in the problem). 

Step 2 If t G [d, 2d], then y(t — d) is the solution from Step 1, namely yi(t — d). A n d for 
this interval the equation (3.1) is again an O D E with initial condition y(d) = yi(d). 
Solution on the interval [d, 2d] is y2{t). 

These steps may be continued for subsequent intervals. Continuing with the process we 
can obtain the solution for any interval [0, a], a > 0, a G K . 

The existence of the solution of D D E on the specific interval depends on the existence 
of the solution of O D E on the interval. 
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Example 3.1. 

y(t) = 4y(t - 2) 

y(t) = l, t<0. 

To application of the Method of Steps it is necessary to know the length of subintervals, 
in this case the delay is constant so the intervals are of the length d = 2. 

1. For t G [0,2]: y = A 
Integrating we obtain: yi(t) = At + c\ 
The initial value y(0) = 1 gives c i = 1 
So the solution is y(t) = At + 1, t G [0,2]. To continue we have to know the value 
in 2, which is the initial value for the next interval: yi(2) = 9. 

2. F o r t G [2,4]: y = 4(4t + 1) = lQt + 4 
The solution is: y 2 ( i ) = 8t 2 + 4t + c 2 

From the initial value yi(2) = y 2(2) which gives c 2 = —31. 
Then the solution is y2(t) = 8t2 + At - 31, 
and the initial value for the next interval is y(4) = 119 

3. For t G [4,6]: y = A(8t2 + At - 31) 
The solution is: y3(t) = ft3 + 8t2 - YlAt + c 3 

The initial value gives c3 = then the solution is y3(t) = f t 3 + 8t2 - YlAt - ^f-. 

This can be continued to obtain whole solution for t > 0. 

It is shown in the next example, where the derivative does not exist at 1. 

Example 3.2. 

y = r h ; ^ ) + r h ; < G [ 0 ' 2 ] ' 

y{t) = l, te[-2,0]. 

Generally the solution y(t) of 

y(t) = f(t, y(t),y(t - r ) ) , y(t) = g(t), t G [-r, 0] 

has a jump discontinuity of y(t) at 0 (that is limt^o+y(t) ^ limt^Q-y{t) ). This initial 
discontinuity propagates. The second derivative has a jump discontinuity at t = r, third 
derivative has a jump at t = 2r, etc. 

Discontinuities increase in order for retarded D D E s , but generally they do not, if the 
equation involves delayed terms with derivatives, neutral D D E s . 
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3.2 Gantry crane 

y 

u 
»j trolley 

M 

rail 

payload 

Figure 3.3: Simple pendulum model of a gantry crane (can be found in [6]). 

Gantry cranes are used for moving objects within shipyards, railyards, factories. The 
cranes can lift several hundred tons depending how big the crane is. It is important 
to move the payloads rapidly and smoothly. Here arises problem that if the payload 
moves too fast it may start to swing and the operator may loose control of it. Different 
strategies for controlling the swinging not including the operator were examined. Time-
delayed feedback controller was developed to add damping. The next section focuses 
on the mathematical formulation of the model and finding conditions for this type of 
controller. 

Let us consider the simpler pendulum model of container crane in the Figure 3.3. 
Suppose that the cable is inextensible or its length is slowly varying compared to the time 
of oscillations. 
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Figure 3.4: Forces acting on the trolley. 

The forces acting on the trolley can be seen in the Figure 3.4. Using second Newton's 
law on the trolley (neglecting the friction and air draft) we obtain the following equation 
for the forces: 

Mü + Fu -F, 911 F, 0 1 F = 0 

A l l the forces in equation are the components of the forces in the Figure 3.4 in u direction, 
because the trolley does not move in the other directions. This equation can be interpreted 
in terms with u and 6 as 

Mil + müsin2((f)) — mgsm(<f)) cos(</>) — ml((j))2 sin(</>) — F = 0 (3.9) 

Figure 3.5: Forces influencing the trolley with momentum 
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The second equation can be obtained using third Newton's law. The forces influencing 
the momentum of the trolley are in the Figure 3.5. 

ml2(f> = —l(Fg2 + F2) = — l(mgsm(<f)) + milcos(<f))) 

After division by the nonzero terms we obtain: 

l<f> + g sin(<f>) +ticos(<£) = 0. (3.10) 

Let us rewrite the equations (3.9) and (3.10) into the different form. Mult iplying 
(3.10) by mcos((f)) we obtain 

ml(f)cos(0) + mgsin((f>) cos((f>) = —mu(l — sin2((f>)). 

Hence, 

mil sin2((f)) = ml(f> cos((f>) + mgsin((f>) cos(<f>) + mil. (3-H) 

Substituting (3.11) into (3.9) leads to 

Mil + mlcj) cos((f>) + mg sin((^) cos((f>) + mil — mg sm((f>) cos((f>) — ml(<f))2 sm((f>) — F = 0 

Then the equations of the gantry crane are 

(M + m)il + ml4> coa(<f>) - ml((f))2 sin(^) - F = 0 (3.12) 

l<f> + g sm((f>) + il cos(4>) = 0. 

For moderate oscillations, when the angle <f> < | holds 

il = ^— - g tan(<f>) (3.13) 
cos(</>) 

Applying (3.13) into the equation (3.12) we get equation for (f> only 

l'<p 
cos(0) 

(M + m)l j-r - gtan((/)) ) + ml(f> cos((f)) - ml((f))2 sin(^) -F = 0 (3.14) 

Introduce the dimensionless time into the equation s = cot, where u = J M^T$ *s 

the frequency of the linearized trolley-payload system Ml<f> + (M + m)g4> = 0. Equation 
(3.14) becomes 

1 + psin ((f)) 
cos((f>) 

<f> + tan(^) + p((f))2 sin(^) + / i = 0 (3.15) 

Differentiation is now with respect to the nondimensional time s and p = ^ is the ratio of 
the weights of trolley and payload. The function h represents the nondimensional control 
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force. 

A simple delayed feedback 

h(s)=k(<f>(8-T)-<f>(s)) 

was used by Pyragas in [ ] to control the chaotic behaviour of the system. The only 
equilibrium point is <f> = 0. 

Using the controller developed by Pyragas, the equation (3.15) can be rewritten into 
the second order delay differential equation 

cP(s) + C ° s W g ) ) [ t a n ( ^ ) ) + p(0>)) 2 s i n ( 0 » ) + k{4>{s - r) - 0 » ) ] = 0 
1 + psm 0 (s)) 

3.2.1 Linearized system 

The linearized equation of gantry crane without friction, with the Pyragas' controller is 
then 

(s) + 0 » + k((j>(s - T) - 0 » ) = 0. (3.16) 

The values for k, when the equation is stable can be found by introducing <f>(s) = e%as 

into the equation. 

- a 2 + 1 + k(e-iaT - 1) = 0 

Using etz = cosz + isinz, z G R and the evenness of cosine, resp. oddness of sine, we get 
the following equations for real and imaginary parts: 

-a2 + 1 + /C(COS(<TT) - 1) = 0 

—ksm(ar) = 0 

From these equations we get three cases 

1. 

ko = 0 and <7o = 1, 

2. 

T\ = 2im and o~\ = 1, 

3. 

and (T3 
(2n + 1)TT 

where n G N 0 = N U {0}. 
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Software Matlab has a function dde23 for solving the delayed differential equations. 
The graphs were generated using these conditions: 

• the constant delay r = 0.3, 

• constant used in the Pyragas' controller in the interval of stability k = \, 

• the weight of the trolley M = 10, 

• the weight of the payload m = 100, 

• the rounded value of gravity g = 9.81, 

• the force provided by an ideal motor as a constant F(t) = (MJ_m)g, 

• the initial position y 0 = 0.08, 

• the initial speed y0 = 0. 

Figure 3.8 contains four curves, each one is the solution of the equation of gantry crane 
using different controller. 

1. The red curve represents the solution curve for the nonlinear equation of gantry 
crane with Pyragas' controller 3.6. 

Figure 3.6: Graph of the solution for the nonlinear equation with Pyragas' controller. 

2. The solution of the linearized equation with Pyragas' controller is represented by 
black curve. 

3. The blue curve is the solution of the nonlinear equation without the controller 3.7. 

1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 

Figure 3.7: Graph of the nonlinear system without controller. 
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4. The green one is the solution of linearized equation without Pyragas' controller. 

t 

Figure 3.8: Graphs of the gantry crane. 

The graphs in the Figure 3.8 show that the Pyragas' controller adds damping to the 
system with the used conditions. It also can be seen that the difference between the 
solution of linearized and the nonlinear system in small time interval is negligible, but it 
increases taking bigger time interval. 
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3.2.2 Real gantry crane 

If we do not neglect friction the equations slightly change and we obtain for angle <f> and 
position u: 

(m + M)(u + cu) + mlcf) cos(</>) — ml(<j))2 sin((/)) + cmlcf) cos(</>) = F(t) 

l(4> + ccj)) + gsm((j)) + cos(<f>)(u + cu) = 0 

where c is the friction coefficient, I is the length of the inextensible cable, M,m are the 
weights of trolley, respectively payload (model was introduced in [ ]). 

Using the dimensionless variables and Pyragas' controller, the final equation for <f> is 

<f>'(s) + 2»<f>(s) + - ^ ^ f l ] ^M<P(s)) + P{<t>{s))2 sin(<Ks)) + k(<f>(s - r) - <f,(s))] = 0. 
1 + psm.((p(s)) 

Linearizing leads to 

(f>'(s) + 2fjuf>(s) + <f>(s) + k(<f>(s - T) - <f>(s)) = 0. 

Again introducing solution (f> = e~%at into the previous equation we obtain the system 
of equations for real and imaginary parts: 

-a2 + 1 + /C(COS(<TT) - 1) = 0 

2/j.a — ksm(ar) = 0 

The cases from the previous section are bounds of the interval of stability. For specific 
value of the delay r , there is an interval for k when the solution is stable. 

M 
0 5 i 10 15 20 25 30 

T 

Figure 3.9: Dependence of k on the delay r , generated with yu = 0.025 (see [6]). 

The broken lines in the Figure 3.9 correspond to the case without friction. The 
crosshatched domain corresponds to a stable case. 
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4 Oscillation 
4.1 Oscillation of linear differential equation with non-

constant delay 
In this section we wil l deal with the oscilátory properties of the linear differential equation 
with non-constant delay on the interval (0, +oo) 

u(t) +pi(t)u(n(t)) + p2{t)u{r2{t)) = 0, (4.1) 

where pi>2 : K + —> K+ are continuous functions and T i j 2 : K + —> K + are also continuous 
functions satisfying 

n(t) < t, r2(t) <t for t > 0 

l im n(t) = l im r2(t) = +oo. (4.2) 
t »+oo t »+oo 

Let us note that the linearized equation of the gantry crane (3.16) is a special case of 
the equation (4.1) with pi(t) = (1 — k),Ti(t) = t,p2(t) = k, r2(t) =t — r. 
Let us denote the function T (ť) as 

r(t)=rnm{r1(t),r2(t)}. (4.3) 

Definition 4.1. Consider r o £ K and ao = min{ r ( í ) : t > to}. The continuous function 
u : (ao, +oo) —> R is said to be the solution of the equation (4.1) on the interval (to, +oo) 
if the function u is twice differentiable on the interval (to, +oo) and it satisfies the equation 
(4.1) on the interval (ro,+oo). 

Definition 4.2. The solution u of the equation (4.1) is said to be oscillatory if it has a 
sequence of zeros tending to infinity. 

Let us state sufficient conditions under which every solution of the equation (4.1) is 
oscillatory. The main theorem generalizes the theorem stated in [13]. 
Suppose that the functions pi(t) and p2(t) satisfy 

r+oo 

/ s(pi(s) +P2(s))ds = +oo. (4.4) 
J 0 

Before formulation of the main theorem, let us state and prove two auxiliary lemmas. 

Lemma 4.3. Let u be a solution to the equation (4.1) on the interval (tu,+oo) which 
satisfies 

u{t) > 0 fort> tu. (4.5) 

Then, there exist to G R, to > tu such that 

T i u(Ti) 
T2 u(T2) 

37 



Proof. Using pi,p2 > 0, (4.2) and (4.5) it can be proved that u(t) > 0 for t large enough. 
Moreover, the equation (4.1) is homogeneous, which implies that without loss of generality 
we can assume u(t) > 1 for large t. (4.2) implies that there exist t\ > tu such that 

u(t) > 0, u(r(t)) > 1 for t > h. (4.6) 

From the equation (4.1) we get 

j(tii -u) = - t (pi( t)M(n(t)) + p2(t)u(T2(t))) for t > tu. 

Integrating the last equation from t\ to t gives 

tu(t) - u(t) = 5(h) - / S(PI(S)M(TI(S)) + P2(s)u(T2(s))ds, 

where 6{ti) = tiu(ti) — u(ti) is a constant. Using the last equality, (4.2) and (4.4), it is 
possible to find number t2 > t\ such that 

tu(t) - u(t) < - f s (p i ( s )« ( r i ( s ) ) + p2(s)u(r2(s))ds < 0 for t > t2. 
Jt2 

Last inequalities give 

d fu(t)\ 1 
dt \ t J t2 

Hence, for T2 > T x > t2 we get 

ituit) - u(t)) < 0 for t > t2. (4.7) 

u(T2) ujT,) 
T2 ~ T i ' 

which is the desired inequality. • 

Remark 4.4. Notice that the Lemma 4.3 implies that there exists to > tu such that 

T(t)\ u(r(t)) „ , , 

where r(t) is defined in (4.3). 

Lemma 4 .5. Let u be a solution to the equation (4.1) satisfying the inequality (4.5) on 
the interval (tu,+oo). Then, there exists a finite limit 

Co = l im c(t,-u), 

where the function c(t,u) is defined as follows 

f l 1 
c(t,u):= - r r ( p i ( s ) « ( r i ( s ) ) + p 2 ( s ) M ( r 2 ( s ) ) d s . (4.9) 
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Proof. Let us use Riccati's transformation 

then 

u(t) 

uz(t) 

Substituting u from (4.1) into the previous equation leads to 

MA = - p , ( « ) 4 # _ » w * $ » _ A t ) for t > v 

Integrating from tu to t gives 

t y ft 

p(t) - p(tu) = - —-(pi(s)w(ri(s)) + P2(s)u(T2(s))ds - p (s)ds for t > tu. 
Jtu u{s) J t u 

(4.10) 

If J* t

+°° p2(s)ds = + 0 0 , then in view of (4.5), (4.6) and (4.10) we obtain a contradiction 

0 < l im p(t) < - 0 0 . 

t—»+00 
Consequently, 

r+00 

p2(s)ds < + 0 0 . (4.11) 

On the other hand from (4.1) and (4.7) for t large enough, we obtain 

u(t) fu(t) 1 \ < Q 

t \u(t) t 

Hence, 

o<Pit)<-t. 

which gives 

l im pit) = 0. (4.12) 
t ?-+oo 

Let us rewrite the equation (4.10) as follows 

p2(s)ds - c(t,u) + p2i-s)ds, 

Taking the limit t —> + 0 0 , and using (4.11) and (4.12) we obtain 

r+00 

l im c(t,u) = p(tu) — / p2is)ds = Co G K . 

• 
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Theorem 4.6. Let the following conditions hold 

>c 
s(pi(s) + p2(s))ds = + 0 0 , 

Jo 

and 
C+0° T(S) 
/ -^(Pl(s)+p2(s))ds =+00, (4.13) 

Jo s 

where the function r(s) is defined in (4.3). Then, every solution of the equation (4.1) is 
oscillatory. 

Proof. Assume by contradiction that the equation (4.1) has a solution which is not os
cillatory, but satisfies (4.5). Lemma 4.3 implies that there exist to > tu such that (4.8) 
holds. Clearly 

* r(s) f t 0 r(s) /•* r(s^ 
(pi(s) + p2(s))ds = I —(pi(s)+p2(s))ds+ I — ( p i ( s ) + p2(s))ds 

to 
tu S 

(pi(s) +p2(s))ds. 
tu S 

Hence, in view of (4.8), we get 

*— (Pi(s)+p2(s))ds< [t0^(Pl(s)+p2(s))ds+ f:^M(pi(a) +p2(s))ds-
u(s 

[ ^(Pl(s)+p2(s))ds fort>t0. 
J t u S 

Using the conditions (4.3) and (4.6), from the last inequality we obtain 

* T(S) f t o T(S) f l 1 
— (pi(s) +p2(s))ds < / —{pi{s) + p2{s))ds + / — (pi(s)n(s) + p2{s)r2{s))ds-

tu
 UVS) 

T 0 T(S) 

tu s 

(pi(s) +p2(s))ds, t > to-

One can see that the second term on the right side of the inequality is the function c(t, u) 
defined in (4.9). Consequently, according to Lemma 4.5 we have 

"°° T(S) 
(PI(S) +P2(s))ds < + 0 0 . 

The last relation is a contradiction with (4.13), which implies that the Theorem 4.6 
holds. • 
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5 Conclusion 
In the thesis there are presented three main chapters: Nonlinear systems, Delayed 

differential equations, Oscillation of the linear differential equation with non-constant 
delay. 

In the first we deal with the systems of O D E , which have numerous applications in 
many disciplines (engineering, physics, mechanics,...). If the equations are nonlinear it is 
difficult to find an exact solution, which is the reason to use the linearization and study 
the behaviour around the stationary solution of the linearized system. In the chapter 
there are stated cases when it is possible to use the linearization in small neighbourhood 
of the stationary solution, or use of the approximation with Taylor polynomial of higher 
order to simplify the system and get the idea of the behaviour of the system. 

We showed the application of the theorems on the equation of the pendulum. It can 
be seen that the behaviour in small neighbourhood of the stationary solution is almost 
the same as in the nonlinear equation. To get more precise results we used also the 
approximation with the Taylor polynomial of 3rd and 9th order. The figures show that 
the approximation holds only in small neighbourhood the stationary solutions of the 
simplified systems slightly differ from the nonlinear system, and the solutions around 
them is also almost the same. 

In the second chapter are investigated the delayed differential equations. D D E s 
also have numerous applications, they are mostly used in biological models, mechanics, 
medicine, engineering processes. There are cases when the usage of D D E is even better 
to describe the problem, then the usage of O D E . Finding the exact solution of D D E is 
possible only in special cases. We introduced two methods of solving D D E s . 

We investigated the stability of the simplified equation of the gantry crane with the 
delayed feedback controller (using Pyragas' controller). For linearized equation we derived 
the conditions for the controller such that the solution is stable. Using the software 
M A T L A B we showed that the behaviour of the linearized system in small time interval is 
almost the same as the nonlinear one. The figures show that the controller adds damping 
to the system. The Pyragas' controller is purely linear, which implies the question if it is 
possible to design a nonlinear controller for better stability. 

The last chapter is dedicated to study of the oscillation of the equation with non-
constant delay. The linearized equation of the gantry crane is the specific type of the of 
the linear differential equation with delay. We derived the conditions which guarantee 
us that every solution is oscillatory. Presented results generalize (in certain sense) some 
results stated in [13]. 

There are several directions of research, where the results of the thesis can be devel
oped. Designing the nonlinear controller for better stability of the gantry crane. It can be 
useful to find another conditions for the oscillation of the equation. From the application 
point of view, e.g. vibrations during machining, heredity in physics, it can be useful to 
study the equation with a term with the first derivative 

il(t) + q(t)u(t) +p(t)u(r(t)) = 0. 
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6 List of abbreviations and symbols 
N set of natural numbers 

K set of real numbers 

R+ set of positive real numbers 

M.n n-dimensional real coordinate space 

Z set of integers 

Ck continuous functions with continuous derivatives t i l l the order k G N U {0} 

[a, b] closed interval of real numbers 

x the n-dimensional vector ( 

x(t), first derivative of x(t) with respect to t 

x(t) second derivative of x(t) with respect to t 

D D E delay differential equations 

F E functional equations 

O D E ordinary differential equation 
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