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ABSTRACT 

This doctoral thesis is focused on further development of the Laser-Induced Breakdown Spectroscopy 
(LIBS) device for in-situ and in real-time classification and quantification of samples. The major part 
of work, namely the whole experimental part for this thesis, was conducted at the Federal Institute for 
Material Research and Testing (BAM) in Berlin, Germany where a simple LIBS system was 
constructed. In parallel to experimental work, the literature was surveyed with the aim to give a 
thorough view on the usage of chemometrics in the LIBS community. The application of chemometric 
algorithms on LIBS data is generally recommended when more complex data sets are obtained. 

The research was primarily aimed on the LIBS capability of quantitative analysis and classifying the 
igneous rocks. Variety of samples was measured employing a simple LIBS system. The sample set 
was compiled from certified reference materials as well as from real samples collected directly at 
copper mines in Iran. The samples from Iran were classified in-situ by an experienced geologist and 
the copper content was estimated at the University of Clausthal, Germany. Even though the certified 
reference materials were analysed, the resulting calibration curve was highly nonlinear. For each 
individual rock type the relevant part of the calibration curve was observed under different trend. This 
separation of the calibration curve was assigned to the so-called matrix effect, which strongly affects 
the LIBS measurement. In other words, when different matrices with complex composition are 
analysed at once, the quantitative analysis employing the univariate calibration curves may not be 
reliable. Moreover, the normalization of such calibration curves using the intensity of selected matrix 
element lines did not let to a significant improvement in their linearity. It is generally not possible to 
pick up one line, which could perform the linearization independently on the complex data matrices. 
Chemometric algorithms, such as principal component regression (PCR) and partial least squares 
regression (PLSR), were used for multivariate calibration. PCR and PLSR may compensate for the 
matrix effect only to a certain extent. Furthermore, samples were successfully classified based on their 
spectral fingerprint (i.e. composition of matrix elements) employing principal component analysis 
(PCA) and Kohonen’s selfs-organizing maps. 

On the basis of theory and results, a solution for the reliable classification and quantification of 
unknown samples is proposed. The whole study should contribute to the processing of the analytical 
data measured by the in-situ stand-off LIBS device which is currently being constructed at Brno 
University of Technology in Brno, Czech Republic. However, LIBS can fulfil its potential as the 
versatile and irreplaceable technique for in-situ classification and quantitative analysis only when 
utilized with chemometric algorithms and data libraries. For those purposes, a fragment of the data 
library has already been established and tested for the application of LIBS to the mining industry. 
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ABSTRAKT 

Tato doktorská práce je zam��ena na vývoj algoritmu ke zpracování dat nam��ených za�ízením pro 
spektrometrii laserem indukovaného plazmatu (angl. LIBS). Za�ízení LIBS s tímto algoritmem by 
m�lo být následn� schopno provést t�íd�ní vzork� a kvantitativní analýzu analytu in-situ a v reálném 
�ase. Celá experimentální �ást této práce byla provedena ve Spolkovém institutu pro materiálový 
výzku a testování (n�m. BAM) v Berlín�, SRN, kde byl sestaven elementární LIBS systém. Soub�žn� 
s experimentílní prací byl vytvo�en p�ehled literárních zdroj� s cílem podat ucelený pohled na 
problematiku chemometrických metod používaných k analýze LIBS m��ení. Použití chemometrických 
metod pro analýzu dat získaných pomocí LIBS m��ení je obecn� doporu�ováno p�edevším tehdy, 
jsou-li analyzovány vzorky s komplexní matricí. 

Vývoj algoritmu byl zam��en na kvantitativní analýzu a t�íd�ní vyv�elých hornin na základ� m��ení 
pomocí LIBS aparatury. Sada vzork� nam��ených použitím metody LIBS sestávala z certifikovaných 
referen�ních materiál� a vzork� hornin shromážd�ných p�ímo na nalezištích m�di v Íránu. Vzorky 
z Íránu byly následn� na míst� rozt�íd�ny zkušeným geologem a množství m�di v daných vzorcích 
bylo zm��eno na Univerzit� v Clausthalu, SRN. Výsledné kalibra�ní k�ivky byly siln� nelineární, 
p�estože byly sestaveny i z m��ení referen�ních vzork�. Kalibra�ní k�ivku bylo možné rozložit na 
n�kolik díl�ích tak, že závislost intenzity m�d�né �áry na množství m�di se nacházela v jiném trendu 
pro jednotlivé druhy hornin. Rozd�lení kalibra�ní k�ivky je zpravidla p�isuzováno tzv. matri�nímu 
jevu, který siln� ovliv�uje m��ení metodou LIBS. Jinými slovy, pokud ur�ujeme množství analytu ve 
vzorcích s r�znou matricí, je výsledná kalibra�ní k�ivka sestavená pouze z jedné prom�nné (intenzity 
zvolené spektrální �áry analytu) nep�esná. Navíc, normalizace takto vytvo�ených kalibra�ních k�ivek 
k intenzit� spektrální �áry matr�ního prvku nevedla k výraznému zlepšení linearity. Je obecn� 
nemožné vybrat spektrální �áru jednoho matri�ního prvku pokud jsou analyzovány prvky 
s komplexním složením matric. Chemometrické metody, jmenovit� regrese hlavních komponent (angl. 
PCR) a regrese metodou nejmenších �tverc� (angl. PLSR), byly použity v multivaria�ní kvantitatvní 
analýze, tj. za použití více prom�nných/spektrálních �ar analytu a matri�ních prvk�. Je pot�eba brát 
v potaz, že PCR a PLSR mohou vyvážit matri�ní jev pouze do ur�ité míry. Dále byly vzorky úsp�šn� 
rozt�íd�ny pomocí analýzy hlavních komponent (angl. PCA) a Kohonenových map na základ� složení 
matri�ních prvk� (v anglické literatu�e se objevuje termín ‚spectral fingerprint‘) 

Na základ� teorie a experimentálních m��ení byl navržen algoritmus pro spolehlivé t�íd�ní a 
kvantifikaci neznámých vzork�. Tato studie by m�la p�isp�t ke zpracování dat nam��ených in-situ 
p�ístrojem pro dálkovou LIBS analýzu. Tento p�ístroj je v sou�asnosti vyvíjen v Brn� na Vysokém 
u�ení technickém. Toto za�ízení bude nenahraditelné p�i kvantifikaci a klasifikaci vzork� pouze tehdy, 
pokud bude použito zárove� s chemometrickými metodami a knihovnami dat. Pro tyto ú�ely byla již 
nam��ena a testována �ást knihoven dat v zam��ení na aplikaci metody LIBS do t�žebního pr�myslu. 



ABSTRAKT 

Diese Doktorarbeit beschreibt Entwicklungen in der Laser-Induced Breakdown Spectroscopy (LIBS) 
für in-situ und real-time Klassifizierungen und Quantifizierungen von Gesteinsproben. Der gesamte 
experimentelle Teil dieser Arbeit ist an einem selbst gebauten LIBS System an der Bundesanstalt für 
Materialforschung und –prüfung (BAM) in Berlin, Bundesrepublik Deutschland, entstanden. Parallel 
zu den Experimenten ist eine Literaturrecherche gemacht worden, um einen Überblick und eine 
Bewertung der chemometrischen Analyseverfahren in der LIBS-Community zu erhalten. Generell 
werden chemometrische Algorithmen für komplexe und schwierig-auszuwertende Datensätze 
verwendet, daher ist deren Anwendung ratsam und ein Grundbaustein für die folgenden Arbeiten.  

Mein Forschungsthema befasst sich mit dem Potential der LIBS zur quantitativen Analyse und 
Klassifizierung von vulkanischen Gesteinsproben; hierzu wird eine Probenvielzahl mit Hilfe eines 
einfachen LIBS Aufbaus untersucht. Es sind zertifizierte Referenzmaterialien als auch Proben aus 
Kupferminen im Iran, welche quasi in-situ von einem erfahrenen Geologen klassifiziert sowie der 
Kupferanteil an der Universität Clausthal, Bundesrepublik Deutschland, bestimmt worden sind. 
Obwohl zertifizierte Referenzmaterialien analysiert worden sind, kann keine einheitlich-lineare 
Kalibriergerade erhalten werden. Für jeden Gesteinstypen ist daher eine eigene Kalibriergerade 
aufgenommen worden. Abweichungen, welche zu den Problemen bei der Erstellung einer 
Kalibriergeraden führen, liegt der so genannte Matrix-Effekt zugrunde. Dieser beeinflusst die 
erhaltenen Daten so stark, dass keine univariate Kalibriergerade erstellt werden kann, da diese keine 
verlässlichen Ergebnisse liefern würde. Eine Normalisierung der Kalibriergeraden bezogen auf 
bestimmte Matrix Signale führt ebenfalls zu keiner Verbesserung der Linearität. Somit ist es generell 
nicht möglich nur ein Signal zu wählen, welches unabhängig von Matrixeinflüssen eine lineare 
Kalibriergerade erzeugt. Chemometrische Algorithmen, wie die principal component regression (PCR) 
und die partial least squares regression (PLSR), werden für die insofern notwendige multivariate 
Kalibrierung genutzt. PCR und PLSR können den Matrixeffekt jedoch nur bis zu einem gewissen 
Ausmaß kompensieren. Um bessere Ergebnisse zu erhalten werden Proben deshalb basierend auf 
charakteristischen Spektralbereichen mit Hilfe der Hauptkomponentenanalyse (engl. PCA) und 
Kohonenkarte klassifiziert.  

Ausgehend von Theorie und experimentell erhaltenen Ergebnissen ist eine Herangehensweise zur 
verlässlichen Klassifizierung und Quantifizierung unbekannter Gesteinsproben entwickelt worden. Die 
gesamte Arbeit soll zur Handhabung von den in in-situ stand-off LIBS Experimenten erhaltenen Daten 
beitragen, welche derzeit an der Technischen Universität Brünn, Tschechische Republik, durchgeführt 
werden. Jedoch kann LIBS nur den Anforderungen einer robusten, unersetzlichen Technik für in-situ 
Klassifizierungen und quantitativen Analyse entsprechen, wenn eine anschließende Aus- und 
Bewertung mittels chemometrischer Analyse und dem Abgleich mit Datenbanken durchgeführt wird. 
Zu diesem Zweck ist bereits eine LIBS-Spektren Datenbank im Rahmen meiner Forschung zur 
Anwendungen in der Bergbauindustrie eingeführt worden. 
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INTRODUCTION 
 

“The success of LIBS as a field-portable point detector of chemical and biological 

warfare agents requires the development and optimization of statistical methods for 

rapidly analysing complex spectra obtained in the field,” 
Munson et al. from the U.S. Army Research Laboratory, USA [1]. 

 

Recently, the needs for direct in-situ and in real-time elemental analysis have been rapidly increasing 
in every field of interest (e.g. mining, archaeology, industry, biology, etc.). Laser-Induced Breakdown 
Spectroscopy (LIBS; in the literature the term Laser-Induced Plasma Spectroscopy (LIPS) can be also 
found) can meet the challenge as an analytical technique for fast, real-time, in-situ, and preparation-
less measurement. LIBS devices may be capable to stand the harsh environments and difficult to 
reach sites due to their robust and relatively simple instrumentation [2, 3, 4]. LIBS has already found 
its place among the other well established techniques for elemental analysis (namely Laser Ablation 
Inductively Coupled Plasma (LA-ICP) coupled with Mass-Spectrometry (MS) or Optical Emission 
Spectrometry (OES) techniques). 

LIBS is becoming a popular method for elemental analysis due to its advantages (simplicity, cost, 
size, robustness, fast and non-demanding measurements), however, despite that LIBS still has some 
disadvantages (detection limits, repeatability) compared to other techniques (namely LA-ICP 
techniques). In spite of these negatives, LIBS might compete and overcome the other techniques in 
near future due to the improvements in instrumentation, application of data mining algorithms, and 
understanding of plasma evolution and its diagnostics. The usage of LIBS in various fields is 
summarized in many review articles [5, 6, 7, 8, 9]. In 2004, LIBS was considered to be the future 
super star among other spectroscopic techniques [10]. 

The biggest achievement in the field of LIBS is a state-of-the-art LIBS device developed by NASA, 
the so-called ChemCam LIBS device, which is attached to the Curiosity rover, the Mars Science 
Laboratory. ChemCam LIBS device is remotely controlled from the Earth and provides the analysis 
of the planet Mars surface, resp. Gale crater. Mars rover is a unique device and its construction was 
very challenging. The approaches used to build the device and mainly to create the data libraries 
could be an inspiration how to overcome the problems arising in this kind of research and 
development [11]. 

LIBS can probe samples in any state of matter (solid, liquid, and gaseous) and obtained spectra give 
complex information about the elemental composition of the sample under study, the so-called 
chemical fingerprint. The sampling rate is limited only by the frequency of the laser or the readout 
of the detector. This can lead to large data sets that may contain so-called latent variables, i.e. hidden 
relationship between samples. A deeper insight into the laser-induced breakdown, plasma formation, 
matrix effect, relevant analysis of the spectrum, etc. is given in section 1. However, bulky data sets 
are difficult to work with. When standard univariate approaches, in which the intensity is simply 
assumed to scale linearly with the concentration of the element of interest within the solid sample 
material, are utilized then the data may give misleading results. Therefore, more advanced algorithms 
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ought to be used. There is a need of algorithms and data mining processes to handle large amount of 
data due to the ability of LIBS of fast and preparation-less measurements. Chemometric algorithms 
are standardly used in the LIBS community for data set analysis and processing. Chemometrics can 
be seen as useful and dilative tool for LIBS analysis that have already proved their usefulness in many 
various applications of LIBS, see section 2.4. Individual samples can be classified into groups, 
clustered together or be discriminated based on the LIBS spectra. Chemometric approaches are used 
for the discrimination of unknown samples in recently the most enormous successful application of 
LIBS device, the Mars Rover [11]. 

The team of the Laboratory of Laser Spectroscopy at Brno University of Technology is currently 
developing a stand-off LIBS device, figure 1. The typical LIBS spectrum and ablation crater are 
shown in figure 2. Creation of the necessary libraries for the remote LIBS device and the testing of 
the chemometric algorithms for sample classification are discussed further in this thesis. The data 
libraries are valuable and indispensable for the proposed analysis. The creation of the libraries is 
essential due to their uniqueness and their non-existence on the market. 

 

Figure 1, schematic diagram of the stand-off LIBS device. 
This picture was created by Ing. Jan Novotný, Ph.D and Ing. Michal Brada, both from Brno University of Technology. 
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Figure 2, a) typical LIBS spectrum of Oreas soil standard, O165, b) typical crater created during the ablation of material� 
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1. LASER-INDUCED BREAKDOWN SPECTROSCOPY 
 

“There wouldn´t be any LIBS device on Mars Rover developed by NASA 

if LIBS was not a very robust and feasible technique,” 
Richard E. Russo1, EMSLIBS 2013 conference, Bari, Italy 

 

The LIBS measurement is based on the laser-induced plasma (LIP) formation and (in most cases) 
time-resolved detection of its radiation. Despite the relative simplicity of the LIBS system the 
phenomenon of plasma formation is very complex. In following chapters, a basic LIBS instrument is 
described as well as the necessary theoretical background on laser-induced plasma. More detailed 
information on the fundamentals of LIP properties and consecutive spectral analysis (LIBS in 
general) can be found in the books [2, 3, 4] or in the recent comprehensive review articles [12, 13, 
14]. 

 

1.1.  HISTORY OF LIBS 
The fifty years long history of LIBS is essentially connected with the invention and development of 
lasers [15]. The milestones in the LIBS research are briefly reviewed in this chapter. 

In 1962, two studies were published about the work with non-Q-switched lasers. Dacey [16] informed 
about the formation of non-vigorous luminous plasmas on the iron and carbon targets. Brech and 
Cross [17] vaporized metallic and non-metallic materials using a ruby laser, then the vapours were 
analysed with an electrical spark. This study is considered to be the beginning of the LIBS itself [10]; 
though the laser-induced plasma is not produced directly. In 1963, the Q-switched ruby laser was 
introduced for the matter vaporization, though the plasma was still formed employing an electrical 
spark. Figures of merit of the system were evaluated on geological samples [18] and biological tissues 
[19]. Interest in the LIBS started to grow when the lasers with improved Q-switches were brought to 
the market [20]. The plasma was then induced directly by the laser beam without the assistant 
electrode excitation. In the meantime, Runge et al. [21] published the first calibration plots, in the 
scientific community of LIBS, for Cr and Ni in the steel standards. Debras-Guédon and Liodec [22, 
23] made series of measurements with optimized LIBS setup. In their study, 25 elements and CN and 
AlO molecular bands were observed, however, CN bands were not present in all plasmas but of 
carbonate samples. That is the first note on the detection of molecular bands employing LIBS. 
Authors as well suggested the formation of CN in ambient atmosphere only, where carbon atoms in 
the plasma plume interacted with the nitrogen coming from the ambient air. Moreover, in this 
extended study, Debras-Guédon and Liodec could not detect several elements due to the lower 
sensitivity in the UV region and as well due to the intense continuum emission. 

���������������������������������������� �������������������
1 Richard E. Russo is one of the leading scientists at Lawrence Berkeley National Laboratory, USA. He is a long-term expert in the field of Laser-Induced 
Breakdown Spectroscopy with more than 200 scientific publications on his account. 
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More pioneering works were done on the plasma diagnostics [24], laser-matter interaction [25] and 
temporally gated detection [26]. Nevertheless, the first wave of extent interest in the LIBS technique 
faded in the late 1960s away despite the first commercial LIBS systems by Carl Zeiss and LMA [10, 
27]. In 1981, Loree and Radziemski [28] came up with the acronym LIBS, which refers to the 
breakdown of ambient atmosphere during the formation of a laser-induced plasma. In the mid of 
1980s, the invention of intensified charge-coupled device (ICCD) renewed the interest in LIBS. These 
detectors enabled a temporal detection of the plasma radiation. Moreover, the evasion of the 
continuum emission of the LIP leads to the improvement in the signal-to-noise ratio and subsequently 
to the improvement of the limits of detection (LOD). 

LIBS is becoming popular technique among other atomic emission spectroscopy (AES) techniques 
[10]. LIBS excels due to its simple, versatile and relatively low-cost instrumentation on one hand and 
analytical flexibility on the other. Nevertheless, the intense study of LIBS took place practically only 
in the last two decades, when the more advanced instruments (e.g. more compact and robust lasers, 
spectrometers with improved spectral resolution and more sensitive detectors) were introduced. There 
is continuous increase in the number of articles published in the field of LIBS in the last 20 years, 
figure 3, [4, 29]. Since 1990s, the application of LIBS scattered among various applications (e.g. on-
line analysis, heterogeneity and quality control in steel industry, mineralogy, mining, space objects 
investigation, archaeology, cultural heritage, medical applications, biological samples, environmental 
analysis, bioremediation). 

 

Figure 3, number of LIBS publication in the last 20 years [30], ‘laser-induced breakdown spectroscopy’ used as a keyword. 

Moreover, the development and optimization of LIBS systems for various applications and the 
theoretical understanding of the spatial and temporal evolution of a plasma plume are of great interest 
in many scientific groups. In past ten years, many review articles reflected the vast diversity of the 
LIBS applications. In two follow-up comprehensive studies, Hahn and Omenetto [12, 13] 
exhaustively reviewed fundamentals and diagnostics of LIP and applications in which the LIBS 
community scattered to. Other reviews covering the history of LIBS, plasma evolution, fundamental 
instrumentation and advanced applications can be found [5, 31, 32, 14, 33]. The review on modelling 
of the LIP was brought by Gornushkin and Panne [34]. In this review, calibration-free (CF) models 
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were considered as a possible candidate for standardless spectroscopic analysis. It is noteworthy, CF-
LIBS is based on the assumption that an optically thin LIP has to be in the state of local 
thermodynamic equilibrium (LTE) [2]. Then the spectral line of an analyte is parameterised in order 
to compensate the matrix effect. As a result, there is no need for the calibration of the LIBS system, 
i.e. constructing the calibrations curves for the element of interest from the measurement of reference 
samples. Another review on modelling of LIP was brought by Dijk et al. [35], 20 contributors were 
invited to give an in-depth discussion. 

The quantitative analysis employing LIBS has been limited due to the inadequate level of the 
analytical figures of merit (accuracy, precision, detection limits) [2]. LIBS systems are vastly used in 
industry for their fast, non-demanding and robust analysis [4, 36, 37]. Tognoni et al. [38] focused 
their article on the LIBS for quantitative micro-analysis (to map the surface and check for the local 
inhomogeneity) in industry and discussed the instrumental part and the optimization in detail. A 
summary on the analysis of minerals, rocks, and soils is given in [7, 39, 40, 41], on explosives [42], 
space and cultural heritage [41]. LIBS proved to be competitive in challenging analysis of 
molecularly complex biomedical materials or clinical specimens [6] and biological samples in general 
[9, 43]. LIBS is capable of fast analysis resulting in bulky data sets. Each single sample is represented 
by a unique set of variables forming complex matrix. Univariate analysis (classification or 
quantification) may be therefore misleading and result in false positives, i.e. an unknown sample is 
wrongly classified or the content of the analyte in an unknown sample is incorrectly estimated. Data 
mining is provided utilizing advanced statistical algorithms of chemometrics [44]. The applications of 
LIBS using chemometric algorithms are detailed in [7, 39, 42]. 

Hahn and Omenetto [13] discussed possible ways how to improve the sensitivity and detection power 
(reciprocal to the limits of detection) of the LIBS technique. The task is to increase the signal-to-noise 
ratio which results in better detection limits. More laser pulses can be used to ablate the material and 
produce the plasma or to pump the energy into the existing plasma plume. Double (or multiple) pulse 
experiments lead to the increase of the LIBS signal. The investigation of double pulse LIBS is mostly 
focused on collinear (where both laser pulses are introduced on the sample surface from the same 
direction) or orthogonal (laser beams are parallel to each other) arrangements. Unfortunately, those 
arrangements bring more variables into the optimization of the whole system (interpulse delay, laser 
wavelengths, and irradiances of the laser pulses). Naturally, the properties of DP LIP are completely 
different to those of single pulse (SP) LIP. The selection of the beam path geometry is crucial as well. 
The orthogonal beam geometry can be beneficially used in mapping applications and the collinear 
geometry offers larger mass removal. Review articles describing above mentioned difficulties of DP 
LIBS are given in [45, 46]. 

It was already mentioned that LIBS, as a technique for direct elemental analysis, can be employed as 
well for the detection of molecular bands [13]. In later stages of a plasma evolution molecules are 
formed from the ablated atoms only, or by chemical reactions of the LIP with ambient air. The 
detection of CN, OH, C2 can give the direct information on the chemical compounds in the analysed 
sample. Moreover, LIBS can be employed in connection with other techniques, such as Raman 
spectroscopy, to extend its analytical performance [13]. Raman spectroscopy may be utilized to detect 
molecular complexity of the sample under study. Both techniques can be coupled together also in the 
stand-off analysis of remote objects. 
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The potential of the LIBS system is also in the remote and in-situ detection of difficult-to-reach or 
hazardous objects. Fortes and Laserna [29] brought an extensive study on the field-portable LIBS 
instruments, distinguishing among portable, remote and stand-off detection. Sallé et al. [47] studied 
only the stand-off LIBS for open-path applications and explained the fundamentals of a stand-off 
system. Harmon et al. [40] investigated the performance of portable LIBS system in the analysis of 
minerals and geomaterials. Nevertheless, the need for more compact and reliable instruments resulted 
in a relatively late introduction of portable LIBS systems. The first portable devices were developed 
in the late 1990s by the groups of Cremers [48] and Winefordner [49]. In remote LIBS the laser pulse 
is led to the sample and focused on its surface by an optical fibre while the plasma radiation is 
collected by the same or another optical fibre. In 1995, remote LIBS system utilizing fibre optics was 
introduced for the analysis of ferrous materials [50] and soils [51] for the distances up to 100m. 
Stand-off LIBS, capable of an open path detection up to 2.4 m, was firstly demonstrated in 1987 by 
Cremers [52]. For more detailed information on the development of the field-portable LIBS please be 
referred to the review articles [29, 47]. To conclude, field-portable LIBS systems increase in general 
the flexibility and applicability of the LIBS in respect to the other AES techniques. 

The prototype of Martian rover was designed and tested more than ten years prior the landing on 
Mars. The ChemCam instrument package, the LIBS system, on the Mars Science Laboratory rover, 
Curiosity, is one of the biggest achievements of the LIBS technique so far. The LIBS system is 
utilized to obtain the elemental composition of the surface of the planet Mars. Data library was 
established in advance to calibrate the system and to offer the possibility to classify unknown samples 
on-site based on their chemical fingerprint [11]. Moreover, LIBS is employed as well for the 
identification of organic materials via detection of CN bands and water via OH emission bands [53]. 
In European project, combined Raman/LIBS spectrometer will be used in the next Mars mission [54]. 

LIBS becomes one of the effective analytical techniques in the industry for real-time and in-situ 
analysis. Moreover, the detection limits and repeatability of the LIBS system is competitive to the 
other AES techniques [10]. The recent trend in the field of LIBS is to press down the costs of 
instrumentation and to make the system more compact and robust, figure 4. 

 

Figure 4, advanced LIBS devices (from left to right): stand-off LIBS system during the measurement of the facade 
of the historical building in Malaga, Spain (the group of Javier Lasserna); handheld LIBS (Lasersec Systems) for direct 
analysis; LIBS device attached directly to the mining machine (the group of Reinhard Noll); ChamCam LIBS system 

attached to the Mars Rover, Curiosity. 
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1.2.  SETUP FOR LIBS 
Nowadays, LIBS is mainly studied on the academic ground. The stock with commercial LIBS 
instruments covers several industrial applications, however, their performance is limited [4]. 
Therefore, almost every LIBS device is custom built and optimized for case studies even though basic 
principles of instruments stay unchanged. The scheme of a basic LIBS setup with interaction (or 
vacuum) chamber is depicted on figure 5. For detailed information on the properties of individual 
instruments utilized in LIBS experiment refer to [2, 4]. 

Usually, the laser pulse impacts the sample surface perpendicularly from above. The most common 
LIBS device employs a Q-switched high energy solid-state Nd:YAG laser, lasing at its fundamental 
wavelength (1064 nm) or equipped with non-linear crystals to produce other harmonics (532, 366 and 
266 nm). The lasers are usually operated at the frequency of 10 or 20 Hz with the pulse width of units 
of ns (typically 6 – 10 ns). Laser pulses of energies of hundreds mJ are delivered with Gaussian or 
flat-top beam profile. Lasers (continuously pumped solid state lasers with acousto-optical Q-
switching and diode-pumped solid state lasers with electro-optic Q-switching) with higher frequency 
rates (up to tens of kHz) can be used depending on the application. However, the latter lasers produce 
pulses of lower energies (typically below 1 mJ/pulse). In general, any change in the repetition of the 
laser changes the parameters of produced laser beam (pulse energy, pulse width, and beam profile). In 
general, the irradiance decreases with the increasing repetition rate. 

 

Figure 5, the scheme of a basic LIBS setup; M – mirror, L – focusing lens, PM – pierced mirror for the collection of plasma 
radiation from above, W1 – transparent window, W2 – transparent windows for side view/collection, G – gas inlet, S – 

sample, V – vacuum pump, TS – translation stage, FO – fibre optics 

The pulse width is crucial parameter in the LIBS experiment [4]. For nanosecond laser pulses, a LIP 
is generated and spatially evolves while the laser radiation still persists and consequently, a LIP is 
affected by the impacting laser pulse. For femtosecond pulses, laser beam transmits the energy to the 
material before the ablation process starts. However, lasers generating pulses of shorter widths (ps or 
even fs) are rarely used in the LIBS experiment. Furthermore, the utilization of fs-lasers leads to the 
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reduction of the matrix effect [55] which is balanced by higher price of the instrument. Moreover, a 
fast transition of the energy results in shorter persistence of a LIP with weaker emission because 
particles forming the LIP plume are not heated up by the laser pulse. 

Laser pulse is focused into a tight spot (typically several hundreds of µm) in order to obtain an 
increase in the irradiance on this interaction spot. Laser beam can be considered as a parabolic 
approximation of a spherical wave [55] because its properties change very slowly along the path of 
the beam. In the case of Gaussian beam profile, where the transverse energy is distributed according 

to the Gaussian function, the smallest spot is called a waist ��. The size of the waist can be varied 
(focused or diverged) with a lens as follows: 

 �� � ����
�	� , (1.1) 

where A is the wavelength of the laser radiation, BC is the focal length of the lens, and DC is the 
diameter of the laser spot on the lens. It is obvious from this equation that focused spot is linearly 
dependent on the wavelength of the laser beam. Furthermore, the absorption of a laser pulse depends 
on the laser wavelength as well as on the properties of the surface (roughness) in the region of 
interaction [4]. Smaller craters can be therefore produced utilizing lower pulse energies, sub-
nanosecond laser pulses, the use of optimized focusing optics, lower laser wavelengths or any 
combination of aforementioned. The size of the crater is important in the LIBS analysis, e.g. in the 
mapping of the sample surface where the lateral resolution increases with a lower laser spot. 
However, the reduction of the ablation spot increases the probability of the prespark occurrence. The 
irradiance of the laser pulse focused into a tight spot may reach the threshold of the ambient gas. 
Therefore the size of the laser spot as well as the parameters of the incident laser should be optimized. 
Furthermore, during the extensive LIBS measurement particles are released into the ambient 
atmosphere surrounding the sample. Then incident laser pulse may ablate those particles hovering 
above the sample and create an unwanted spark/discharge. The creation of such presparks may be 
avoided when the sample is analysed within an interaction chamber with continuous flow of inert gas 
(or simply drift of air) above the sample [4]. Nevertheless, LIBS measurements are usually run in 
ambient atmospheric conditions which are of academic and industrial interest due to the in-situ 
applications. For more special requirements such as measurement of various gases, well-defined 
atmospheric conditions, detection of elements with emission lines in UV region the interaction or 
vacuum chamber should be employed. Though, the interaction chamber is not indispensable for LIBS 
measurement. Moreover, in the case of solid samples, prepulses are recommended to clean the surface 
from the unwanted contaminations which are not representative for the bulk of the sample. Those 
prepulses are not used for further spectrochemical analysis. 

The radiation of the plasma is usually collected utilizing simple optical system (consisting of one or 
several lenses, ellipsoidal/spherical mirror or lens/mirror collector) from above or perpendicularly 
from the side of the plasma plume. Collected radiation is then introduced via optical cables and on the 
entrance slit of the spectrometer. Spectrometers in the echelle, Czerny-Turner and Paschen-Runge 
configuration are widely-spread. Each spectrometer offers different positives and negatives compared 
to the other, such as spectral range, spectral resolution, and optical throughput. The most suitable 
spectrometer should be chosen based on the application, e.g. the spectrum of a steel sample is very 
dense which requires a good spectral resolution for reliable analysis. 
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The spectrometer spectrally disperses the collected LIP radiation to obtain spectrally resolved lines. 

The main parameters of a spectrometer are the focal length BE and the resolution FE: 

 FE � �
��, (1.2) 

where �A is the least distance between two resolvable wavelengths in the neighborhood of the 
wavelength A, and the angular dispersion DE: 

 DE � ��
��, (1.3) 

where �� is the angle separating two light beams with the wavelength difference of �A. 

Dispersed LIP radiation is then detected by a detector, such as photomultiplier tube (PMT), CCD, 
ICCD (i.e. CCD combined with microchannel plate (MCP)), EMCCD, etc. The detectors differ in 
their properties and parameters and should be selected according to the application and selected 
spectrometer. Among the main parameters belong number of sensitive elements, quantum efficiency, 
spectral range, and possibility of temporal gating. The detectors and spectrometers are commonly 
used in following configurations [4]: (a) Czerny–Turner spectrometer equipped with an intensified 
PMT or CCD-line detector, (b) echelle spectrometer and mostly the ICCD detector, and (c) Paschen–
Runge spectrometer and PMT or CCD line detectors. 

It should be noted that, despite the simplicity and obvious advantages of LIBS the analysis is strongly 
dependent on the homogeneity of the sample when smaller laser spots are utilized without averaging. 
No need for sample preparation results in probable partial contamination of the measured surface, 
when solids are considered. Though, any side effects can be avoided with proper design of the 
experiment. The reproducibility, repeatability, and reliability of the LIBS measurement are the key 
parameters of further classification and quantitative analysis.  

The laser and its properties such as collection optics and utilized spectrometer with detector play their 
role in further spectral analysis. This makes every LIBS device unique and results have to be 
compared with attention to those variables. Plasma dynamics, plasma properties and analysis of LIP is 
described in detail in following chapters. 
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1.3.  LASER-INDUCED PLASMA 
A typical LIP is formed utilizing short high energy laser beam where the target is exposed to the 
irradiance of up to 109 W.cm-2. This irradiance is common in LIBS experiments (utilizing ns lasers) 
and it has been found that consequent laser ablation is stoichiometric [2, 33]. However, Miziolek et 

al. [2] further suggest checking the occurrence of stoichiometric ablation a posteriori because a LIP 
formation differs with employed LIBS system and samples under study. 

In general, the plasma produced by a short Q-switched laser pulse is different from the LIP produced 
by a continuous source. The main difference is in the short persistence (usually units of µs) and rapid 
evolution of the LIP induced by Q-switched lasers. The spatial and temporal evolution of the LIP 
formation is depicted in figure 6. The luminous micro-plasma is produced when the high-energy laser 
pulse is focused on the sample surface (1). The nanosecond laser pulse2 transmits high power on the 
small area of the sample (in the range of GW/cm2) during the impact, i.e. laser/matter interaction. 
Sample begins to heat, melt and evaporate even during the laser pulse duration (2). Small amount of 
the sample with the ambient gas is ablated and a LIP is formed accompanied with characteristic sound 
of the ultrasonic shockwave (3). The shockwave is produced by an ultrasonic expansion of the plasma 
plume. Consequently, expansion causes changes in the pressure of the ambient gas surrounding the 
expanding plasma plume. A pressure shockwave and a plasma plume spread into the space in all 
directions resulting in a negative pressure gradient in the centre of the plume, the expansion is 
inverted and the whole process collapses back to the initial state. 

Plasma starts to spread outward into the space (4) (against the direction of the laser pulse when the 
surface is considered) with ultrasonic velocity (~105 cm/s) even during the laser beam impact on the 
surface of the sample (4). Based on this expansion the plume appears pear- or cigar-shaped. Due to 
inverse Bremsstrahlung, the plasma is opaque concerning the NIR laser radiation. Thus the laser is 
absorbed by the plasma which shields the sample surface from the laser. However, the cascade 
absorption of multiples subsequent photons by the plasma leads to a local heating to several tens of 
kK. Plasma plume shields the surface of the sample against the laser radiation and therefore no more 
mass of the sample can be ablated and the laser pulse transmits the rest of its energy only into the 
plasma, this phenomenon is called plasma shielding. 

  

Figure 6, scheme of the temporal and spatial LIP evolution [4]. 

�����������������������������������������������������������
2
�Q-switched lasers producing nanosecond pulses are the most commonly used by the LIBS scientific community due to the market availability and the micro-

plasma formed employing those laser sources is well investigated [31]. 
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In early stages of its temporal evolution the LIP is highly ionized and detected radiation of the plasma 
suffers from the Bremsstrahlung and electron-ion recombination. This radiation carries no meaningful 
spectral information and is usually gated-out during the detection. As plasma plume (highly ionized) 
expands into the space then loses its energy and starts to atomize. Particles forming the plasma are 
excited to higher quantum states because of the high temperature and particle interactions. While 
relaxing the ions and atoms emit the radiation (in the sense of characteristic wavelengths) which is 
detected and can serve to the purpose of spectroscopic analysis (4-8). The plasma temperature 
dynamically changes in the course of persistence of a LIP, when in the beginning of the plasma 
formation the temperature reaches tens of kK. The energy of the plasma is dissipated due to the 
emission of the characteristic radiation, recombination of the species within the plasma and the 
expansion of the plasma plume. Consequently, the plasma temperature rapidly decreases [57]. 

There are no restrictions for the state of matter (solid, liquid or gaseous), from which LIP could be 
formed. Therefore, laser pulse can be focused onto the surface of solids/liquids or into the bulk of 
liquids/gases to form a LIP. The limit irradiance of the laser pulse, which is needed to generate a LIP, 
is defined as the breakdown threshold. This limit differs with a substance to be analysed as well as 
with parameters of employed laser pulse [2, 56]. The creation of the plasma and its properties has 
convoluted dependency on the following variables: laser irradiance, laser wavelength, duration of the 
laser pulse, laser-matter interaction (different threshold energy for breakdown and a plasma formation 
is needed depending on the state of the matter), ambient gas (air, He, Ar …) and its pressure, vacuum 
conditions, etc. 

 

Figure 7, spatial and temporal evolution of single pulse (SP) and double pulse (DP) LIP formed on a vertical steady thin 
flow of liquid, measured with high speed camera Phantom v12.1 at Brno University of Technology. Experimental settings: 
energy of the first laser pulse was 40 mJ and 120 mJ of the second one, interpulse delay was set to 1 µs. The exposition of 

the high speed camera was 1 µs. 
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The spatial and temporal evolution of the single pulse and double pulse LIP formed on a thin laminar 
flow of liquid is depicted in the figure 7, where laser beams were introduced from the right hand side 
and liquid jet was flowing from the top to the bottom. A LIP was in both cases propagating in the 
direction against the incoming laser light. It is obvious, that in a DP LIBS experiment the plasma is 
more intense and the persistence of a DP LIP is longer compared to an SP LIP. 

The emission of a LIP evolves rapidly in time, as is depicted in figure 8. Each spectrum in this 
diagram was obtained with a constant exposition time (gate width ��) of 5 µs. The measurement was 
temporally resolved, i.e. a time gap (gate delay ��) between the ignition of a LIP and the beginning of 
the exposition was varied with a step of 100 ns. In early stages of the LIP emission, strong continuum 
emission is observed. This emission is caused by free-free transitions, Bremsstrahlung (a deceleration 
radiation caused by the interactions among free electrons and larger particles) and recombination 
radiation (coming from the recombination of ions and free electrons in LIP plume). The continuum 
emission carries no valuable information and is disturbing in further spectrochemical analysis. 
Therefore, it is beneficial to temporally gate the detection of plasma radiation in LIBS applications. 

With increasing gate delay the electrons and ions recombine while a LIP cools down. As a 
consequence, the continuum radiation is less intense. The bold line in figure 8 denotes the gate delay 
for which the best signal-to-noise ratio (SNR) is observed. The gate delay and gate width have to be 
optimized for each LIBS experiment while the properties of a LIP differ, as was already mentioned. It 
is apparent that with an increasing gate delay intensities of atomic and ionic lines are gradually 
dropping. 

 

Figure 8, temporally resolved LIP measured of the mixture of soil standard Oreas 504 with distilled water (in a ratio of 2:1). 
Bold line marks the gate delay used in LIBS experiments optimized to the best signal-to-noise ratio. 
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While observing spectral lines and analysing their intensities qualitative and quantitative information 
is obtained. Nevertheless, quantitative analysis is not a trivial task. The intensity of the line depends 
on the amount of the element within the plasma as well as on the properties of a LIP. Considering a 
solid sample, the dependence of the detected LIP signal ��� (counts) of one selected line was derived 
in [2] as follows: 

 ��� � ���B���B� !B���, (1.4) 

where ��� is spontaneous transition probability of the quantum transition representing the chosen 

spectral line (so called Einstein coefficient). The function B��� is related to the ablation/vaporization 
of solid material, B� !  refers to the excitation/ionization mechanism leading to atomic (ionic) 
emission, B��� is the function characterizing the radiation environment. It is noteworthy that the three 
functions describing the initial laser/sample interaction are interrelated. 

The shape of a spectral line can be approximated with a Voigt profile function, which is a convolution 
of Gaussian and Lorentzian profile functions. The Voigt profile of a spectral line (equations 1.5) is the 
consequence of two main broadening mechanisms (Doppler Effect and Stark effect) in the LIP plume. 
The estimation of the Voigt profile, i.e. the convolution of the Gaussian and Lorentzian profiles, is 
severe therefore a simplified pseudo-Voigt profile of the spectral line is usually considered. The 
Doppler broadening is caused by the expansion of the plasma plume and disorderly movement of the 
light emitting particles with respect to the detection direction. The Stark effect is a consequence of 
local electric fields formed by charged particles in the neighbourhood of emitting particles. 

The shape of a spectral line "#$A�% is described by the Voigt profile as follows [4]: 

 "#$A�% � �&'(�)�
��* +$,- .%, (1.5a) 

 +$,- .% � /
� 0

�123
$45�%36/3 �7

8
58 , (1.5a) 

 , � �9'(�
��* $A� : A�%, (1.5a) 

 . � 9;<= ��>6���
��* , (1.5a) 

where +$,- .% is the Voigt profile function, u and a are variables, A� is the wavelength of the emitted 
characteristic radiation and A� is the central wavelength of the spectral line. �A? is the natural line 
width, �AC is the Lorentz line width, and �A	 is the Doppler line width. 

The generation of a LIP becomes very complex and its properties (discussed in chapter 1.4) strongly 
depend on the employed instrumentation and the matrix of the sample (chapter 1.6). Moreover, there 
exist theoretical models capable to simulate the postbreakdown dynamic evolution of plasma and its 
properties. The theoretically imitated spectrum is in a good agreement with the experimentally 
measured one [57]. This model can help to understand the dynamics of plasma evolution and lead to 
the improvement in the spectral analysis. 
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1.4.  LASER-INDUCED PLASMA PROPERTIES 
Small amount of the sample is ablated after the interaction of short high energy laser beam with the 
surface of the sample (in the case of solid and liquid phase) and luminous plasma plume is formed. 
The properties of a LIP are dependent on the matrix of the sample, laser beam properties (its duration, 
energy, and wavelength) and ambient gas surrounding the sample. Produced by a high energy pulsed 
laser beam, LIP undergoes rapid changes in chemical composition, its temperature and density. The 
persistence of a LIP can be in the range of units of microseconds. Typical LIP is spatially 
inhomogeneous and its characteristic parameters evolve with time [14]. Temporal and spatial 
evolution of a LIP can be described e.g. by electron number density and electron temperature. The 
electron number density can be directly evaluated from the broadening of a spectral line (for instance 
@A or Fe (I) 538.34 nm). The plasma temperature is usually estimated from the Boltzmann plot whose 
construction requires particles of the plasma to obey Maxwell-Boltzmann distribution. For those 
purposes, optically thin plasma and local thermodynamic equilibrium (LTE) have to be considered for 
further evaluation of physical parameters [2, 4, 12, 14, 58]. 

The concept of optically thin plasma assumes that all the emitted photons escape the plasma plume 
[58]. When this condition is not fulfilled, then a LIP is optically thick and self-absorption takes place. 
Self-absorption describes the phenomenon when emitted photons are absorbed within the plasma. In 
this case, detected spectral lines do not have Voigt profile and further analysis based on those lines 
could be misleading and the results inaccurate. The non-resonant lines should be used to avoid 
possible self-absorption, i.e. lines, which do not originate from the quantum transition containing 
quantum ground state. In general, resonant lines should not be utilized in the computation of the 
plasma temperature and in quantitative analysis should be considered with care (see further in the 
text). Moreover, the self-absorption occurs mainly in the earlier stages of a LIP evolution when the 
density of LIP is higher. 

The electrons, atoms, ions and molecules forming up a plasma plume are described by various forms 
of energies (e.g. kinetic, excitation and ionization). Furthermore, all processes within the plasma have 
to be balanced and characterized by a single temperature. Then we can assume that the plasma is 
found in the state of a complete thermodynamic equilibrium. However, this state does not occur in 
laser-induced plasmas due to its rapid temporal evolution. As Hahn and Omenetto [12] stated, the 
process of excitation of atoms by collisions with electrons is equal to the reverse deactivation process 
(collisions of the second kind), collisional ionization is equal to three-body collisional recombination, 
and radiation emitted is equal to the radiation absorbed. Complete local thermodynamic equilibrium 
occurs when collisions are dominant and the laws describing the full thermodynamic equilibrium are 
valid except for the existence of radiation disequilibrium. Resonant transitions, characterized by 
higher values of the Einstein coefficient of spontaneous emission, are depopulated much faster in 
contrast to the other transitions, which results in radiative disequilibrium. When we consider only 
quantum transitions above certain level for describing the achievement of the equilibrium then plasma 
is in the state of partial local thermodynamic equilibrium. 

In the LIBS literature it is a standard to use the so-called McWhirter criterion that is necessary but 
however not sufficient to ensure complete and partial LTE within the LIP [12]. The McWhirter 
criterion is as follows [2]: 
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 B� C DEF G DHI�J�I)�$�K%L, (1.6) 

where B�M$NO5L% is electron density, J�M$+% is electron temperature, and �KM$PQ% is the highest 
energy of the quantum transition for which the condition is valid. This criterion implies that atomic 
and ionic quantum states are populated and depopulated mainly by collisions. When this equation 
holds, the non-equlibrium of radiative energy can be neglected [2] and for each part of the plasma 
plume it is possible to find a temperature that satisfies the Boltzmann, Saha and Maxwell 
distributions. It is noteworthy that McWhirter criterion is valid only in rudimentary stages of the LIP 
formation when the electrons and ions form the major part of the plasma plume composition. 

When the condition for LTE is fulfilled the population of species in excited quantum states B�R obeys 
the Boltzmann distribution [2]: 

 B�R � ST
UV$WX%B

RP5YT)ZWX. (1.7) 

Where [ is the Boltzmann constant, \� and ]� are the statistical weight and the excitation energy of 
the excited quantum state i. BR is the total number density of the species s in the plasma and ^R$J�% is 
the internal partition function of the species at the temperature J�. 

The equation (1.6) requires the knowledge of the plasma parameters, electron temperature and 
electron density. Those parameters can be calculated from the spectral information observed by 
collecting the plasma radiation. There exist many kinds of temperatures and many ways how to obtain 
their values. A LIP is considered to be in LTE and to be optically thin. The computation of the 
electron temperature J�Mis based on the Boltzmann plot method for selected elemental lines [2]. Those 
lines are of the same element found in the same ionization stage but originating from different upper 
energy levels. As can be derived from the Boltzmann distribution, the integrated line intensity _�� 
(number of transitions per unit volume per unit time) is as follows [2]: 

 _�� � B�R��� � `TaST
UV$WX%B

RP5YT)ZWX . (1.8) 

The Boltzmann plot method requires the information about the intensity of more elemental lines of 
the same element. Then we can obtain a temperature, which is responsible for the distribution of the 
species population among those quantum states. Applying the natural logarithm the equation (1.8) can 
be transformed into a well-known formula [2]: 

 ;< b cTa
`TaSTd � ;< e �V

UV$WX%f :
YT
ZWX. (1.9) 

Further, the Boltzmann plot, see figure 9, can be depicted based on the information about the intensity 
of several spectral lines of the same element originating from different quantum transitions. The 
Boltzmann plot has a slope of :D)[J�, therefore the plasma temperature can be evaluated utilizing 
linear regression, without the knowledge of BR or ^R$J�%. 
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Figure 9, temperature estimated based on atomic iron lines, in the sample Oreas 111, via Boltzmann plot. 

Nevertheless, the precision of the Boltzmann plot method can be in some cases very poor. To improve 
the reliability of the plasma temperature estimation the species of the same element in different 
ionization states are utilized together. This increases the range of upper energy states utilized for the 
computation. The Saha-Boltzmann distribution of the atomic and ionic species in excited state is 
described by an equation [2]: 

 
cghii
cTai

� b`ghii Sgii
`Tai STi

d e�$��jXZWX%k)3
�Xlk f P5

emTnh1omTnhpmgii 1mTif
qrX , (1.10) 

Where s is the Planck constant, the superscripts I and II refer to the parameters of atomic and singly 
ionized species, respectively. ]�t� is the first ionization potential and �]�t� is the lowering correction 
parameter. Applying natural logarithm to the equation (1.10) as in the case of Boltzmann plot method, 
we can derive [2]: 

 ;< b cghii `Tai STi
cTai `ghii Sgiid � ;< e�$��jXZWX%k)3

�Xlk f : uYTnh5�YTnh6Ygii5YTiv
ZWX . (1.11) 

As in the previous case, the logarithmic ratio of several atomic and ionic lines as the function of their 
energy differences results in a plot whose line slope depends on the electron temperature. The benefit 
of this method compared to the foregoing one is in the higher difference of upper energy states. 
Therefore, the slope is less sensitive to the measurement noise and inaccuracies coming from the 
computation. Moreover, the intercept refers to the electron density [2]: 

 B� � e�$��jXZWX%k)3
lk f bcTa

i `ghii Sgii
cghii `Tai STi

d P5
emTnh1omTnhpmgii 1mTif

qrX . (1.12) 

The estimation of the temperature based on the Saha-Boltzmann equation is more complicated, but 
also more precise. Tognoni et al. [59] introduced upgraded so-called Calibration-Free LIBS approach, 
where the temperature is calculated from the Saha-Boltzmann equation as follows: 
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 ;< e cghii
`ghSgf � ;< ewxyV�z{iUV$WX% f | ;< e�$��jX%k)3$Z}W%k)3

�Xlk f : uYTnh6Ygiiv
Z}W , (1.13) 

where ~/�R is the wavelength-independent factor, B� is the total particle density in plasma, �c is the 
relative concentration of emitting species in the plasma, and the other symbols were already defined. 
However, this equation demands the knowledge of electron number density and plasma temperature 
prior to the calculation. In this case, the electron density is estimated independently and the value of 
temperature is guessed and then refined by iteration. 

As it was already mentioned, the composition of the LIP is rapidly changing with time. The higher 
concentration of electrons and ionized species in the early stages of the plasma causes local electric 
fields. Consequently, the presence of the electric field affects the quantum transition of the particle 
from the excited state resulting in the shifted wavelength of the emitted photon. This phenomenon is 
called the Stark effect [2], its presence is observable by broadened spectral lines in the obtained 
spectrum. The full width at half maximum (FWHM) refers to the Stark broadening of the line 
�AE�/�Z (nm) [2]: 

 �AE�/�Z � =� e �X
I���f | �E�� e �X

I���f
I)� �D : ��	5I)L�� e �X

I���f, (1.14) 

where � is a coefficient equal to 1.2 or 0.75 for ionic or neutral lines, respectively, � is the electron 
impact parameter (or electron impact half-width), and � is the ion broadening parameter and values of 
� can be found in literature [60]. The first term on the right side of the equation represents the 
electron interactions and the second one comes from the ion interactions, this term may be neglected 
in typical LIBS experiment and the equation (1.14) is then transformed to the following form [2]: 

 �A�7.�[ � =� e �X
I���f. (1.15) 

The broadening by other sources (natural, Doppler, instrumental, etc.) are usually omitted. The Stark 
width of the line is then directly estimated as the width of selected spectral line. Therefore the 
electron density can be directly evaluated from the Stark broadening. For instance, the electron 
number density was calculated from the broadening of atomic iron line Fe (I) 538.34 nm by 
Bengoechea et al. [61]. 

To conclude this part, LIP properties are strongly dependent on the energy of laser beam, its duration 
and wavelength, laser matter interaction, state of the matter and its composition, and ambient 
conditions. During the temporal evolution of the plasma the temperature can reach, in maximum, 
6000 – 20000 K and the electron density 1017 – 1019 cm-3 [58]. The composition of the plasma is very 
inhomogeneous due to its rapid spatial expansion and the properties of the plasma (such as 
temperature and electron density) vary with the position along the plasma plume. The electron 
temperature J�M$+% and the electron density B�M$NO5L% can be obtained from the plasma emission 
data. For the computation of the electron temperature the so called Boltzmann plot method is 
preferred in the field of LIBS. Assuming on those parameters, laser-induced plasma can be found in 
the state of local thermodynamic equilibrium for reliable quantitative analysis. [2, 4, 12, 14, 58, 62] 
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1.5.  QUANTITATIVE ANALYSIS 
A LIP consists of the elements forming the sample under study and ambient gas. The emission of a 
LIP is represented by a spectral line of characteristic wavelengths. Therefore, detected radiation of a 
LIP gives overall information about the elemental composition of a sample (so-called chemical 
fingerprint). Every sample is represented by the unique collection of spectrally resolved lines. The 
quantitative analysis can be done when inspecting the intensities of the lines in LIP spectra. However, 
theoretical assumptions have to be made to ensure the reliability of the analysis. 

Quantitative analysis is one of the limitations of the LIBS technique [13]. The main limitation is the 
matrix effect, discussed in chapter 1.6. Further, LIBS lacks the repeatability of the measurement 
which is usually utilized in repetitive single spark mode. Moreover, the diversity of LIBS 
instrumentation makes the quantitative intra-comparison and reproducibility of the measurements 
among different LIBS groups complicated. Regardless of the limitations, the LIBS sensitivity is well 
under the ppm level for trace elements in solids or liquids. In general, small shot-to-shot fluctuations 
are obtained when ablating small amount of material, even from the surface of the homogenized 
standard sample. This uncertainty is described by a relative standard deviation (RSD) and usually 
yields in few percent. Signal fluctuations arise from the non-uniform conditions for LIP formation 
(such as the instability of the laser energy, sample roughness, and inhomogeneity of the sample 
composition). The latter is the main issue reducing the repeatability of the LIBS measurement. 

In atomic absorption spectroscopy, the intensity of absorbed light can be related to the properties of 
the matter, where the light was absorbed (Beer-Lambert law) [63]. Analogically, the intensity of the 
detected spectral line can be related to the amount of corresponding element in the plasma plume. 
However, it is necessary to assume that the plasma is in LTE and detected lines are optically thin and 
that the laser ablation is stoichiometric, i.e. the composition of the plasma plume reflects the 
composition of the spot from which it was induced [2]. The detected intensity can be related to the 
amount of emitting particles in the plasma plume and consequently to the amount of particles ablated 
from the sample surface, i.e. representing the sample composition [12]. Therefore, the calibration 
curve, curve of growth, can be constructed via regression analysis where the intensity of the elemental 
line is plotted as a function of the concentration of a corresponding analyte. A set of standardized 
samples, with known concentrations of the element of interest, have to be measured to calibrate the 
system for further analysis of unknown samples as well as to establish the limits of detections of the 
LIBS system. 

The parameters of the calibration curve are used for the computation of the limits of detection in parts 
per million (ppm). LOD signifies the lowest concentration at which we can decide whether the 
element is present or not [64]: 

 ��D � � �
E, (1.16) 

where � (counts or a.u.) is the standard deviation of the background in the blank sample, the sample 
where the analyte is not present, or near the position of the peak selected for analysis when no blank 
sample is at hand. � is the slope of the linear part of the calibration curve. The above presented 
method the M��-IUPAC definition is the most spread in the LIBS field [2]. Furthermore, other 
concepts to calculate LOD are recommended to use in LIBS application [13]: 
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 ��D � [{F�D��]�, (1.17a) 

where [{ � � corresponds to 33.33% uncertainty, F�D� is the relative standard deviation of the 
background. �]� is the background equivalent concentration. Equation (1.17a) can be further altered 
and then the equivalence with equation (1.16) is apparent [13]: 

 ��D � [{ e �
��}f e

��}
E f, (1.17b) 

where ��� is the intensity of the background. LOD is the point, where we can distinguish signal of an 
analyte from the background not the point referring to the smallest concentration that can be 
measured. The limit of quantification (LOQ), or the limit of determination, is agreed to be: 

 ��� � �E���D � DH �
E. (1.18) 

The slope of the calibration curve denotes the sensitivity of the measuring system. In general it is 
valid, the steeper the slope, the more sensitive the calibration curve. Linearity means that as the 
amount of an element increases, so does the related intensity, up to a point called limit of linearity 
(LOL). Then as the amount of the analyte is increased the intensity levels off and calibration curve 
loses its sensitivity. It is therefore crucial to work on the linear part of the curve to get reliable data for 
the unknown amount of the analyte present. 

The flattening of the calibration curve is caused by the saturation of a selected elemental line. The 
linearity of the calibration curve breaks when the elemental line becomes saturated, i.e. the intensity 
of the elemental line is not linearly dependent on the content of the element in the samples. For this 
reason, a spectral line of the analyte has to be picked carefully for the calibration process. In typical 
LIBS plasma more lines of the same element are detected. Lines originating from non-resonant 
quantum transitions are recommended for the calibration curve formation, while resonant lines get 
easily saturated for lower concentrations. Resonant lines should be used warily for trace analysis 
because of their higher sensitivity. Beneficially, for sample sets with broader range of analyte 
concentrations several parts of calibration curve may be used to satisfy linearity. 

It has to be stressed that the plasma properties differ with the laser-matter interaction. This complex 
phenomenon is called the matrix effect. The intensity of spectral lines of the same element (of the 
same amount) can differ significantly when measured in two samples with different matrices. Matrix 
effect is identical within each individual class of matrices. Thus, for each matrix class a unique 
calibration curve can be determined. This is then valid for all samples within this class. 

So far only one spectral line was considered for construction of the calibration curve. Multivariate 
methods exist, in which more lines can be applied to improve the LOD, to partially compensate the 
matrix effect and/or to extend the dynamic range of the calibration curve, i.e. to linearize the 
calibration curve. Lines of the same element are usually applied to the advanced statistical algorithms, 
such as principal component regression (PCR) and partial least squares regression (PLSR), discussed 
further in chapter 2. 

The LIP spectrum can give, under supervised conditions, qualitative and quantitative information on 
the sample under study. However, for the quantification process the matrix effect has to be taken into 
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account. There are many ways how to compensate or to avoid the matrix effect. Another issue is the 
sensitivity of the LIBS technique, which can be improved, for instance by utilizing multiple pulses for 
plasma generation and/or by utilizing LIBS with laser-induced fluorescence spectroscopy (LIFS) [13]. 

Hahn and Omenetto [13] concluded the issue of quantitative analysis utilizing LIBS as follows: 

“The problem is not that LIBS cannot perform quantitative analysis, but rather 

how to make LIBS become as accurate and reliable as the other spectroscopic 

methods. If quantitation is indeed the only vulnerable aspect of LIBS, this is where 

research should then be focused and vigorously continued.” 

 



PAVEL PO�ÍZKA, BRNO UNIVERSITY OF TECHNOLOGY�
�

�

- 24 - 
�

�

1.6.  THE MATRIX EFFECT 
It is well known fact that LIBS is strongly affected by a matrix effect [2, 4, 13, 65, 66, 67]. The 
composition of the sample, mainly in the sense of matrix or macro elements, is crucial in the 
laser/matter interaction and consecutive LIP formation and emission. It is common for emission 
spectroscopy techniques, detecting the analyte of the same amount in two samples with different 
matrices results in significantly different signal intensities. Consequently, each matrix class has its 
own calibration curve. Then general calibration of the system for various matrices is therefore not 
possible when univariate approach is considered. Therefore, it should be discussed how to 
compensate the matrix effect or even how to avoid its occurrence. 

Matrix effect affects the properties of LIPs, whose spectrum may be further used in processing of 
obteained spectra. The goal of normalization is to unify the analyte signal from various samples for 
universal quantitative analysis. The most spread approach is to normalize the selected elemental line 
of an analyte to the intensity of the matrix element line or to the total plasma emission. Other 
parameters (such as J�, B�, acoustic signal from shockwave, the amount of ablated mass) can be 
advantageously utilized for normalization of analytical signal. Nevertheless, this thesis is focused on 
the in-situ and real-time measurements where the measurements of ablated mass and acoustic signal 
are whether complicated or even impossible. Moreover, the computation of plasma parameters (J�, 
B�) is tedious and with an uncertain output. Therefore, utilizing the plasma parameters for 
normalization purposes of LIP spectra is dropped from further consideration. 

As is discussed in the following chapters of this thesis for the case of soil samples, each sample is 
described by the unique collection of elemental lines, so called chemical fingerprint. Then, samples 
can be distinguished on the basis of their matrix elements and assigned to appropriate groups. 
Individual calibration curves are created for those groups to partially avoid the matrix effect. This 
approach needs data libraries of related sample matrices prior the analysis of unknown samples [7]. 

Laser/matter interaction is the main issue causing the matrix effect. Ablation source with constant 
excitation conditions can supress the matrix effect in quantitative analysis employing LIP. The goal is 
to achieve matrix independence in a stoichiometric ablation. For instance, femtosecond lasers are 
capable of producing the LIP with comparable conditions for various materials. Zhang et al. [68] 
brought an extensive study comparing ns- and fs-lasers. Resulted calibration curves showed 
minimized matrix effect in the measurement of various matrices (soil, ore, metallic alloys) utilizing 
fs-LIBS. fs-lasers can be seen as ideal plasma sources, however, they are not as affordable as ns-
lasers, which are predominantly spread within the LIBS community. 

Laser ablation (LA) LIBS [13] can be used to decrease the matrix effect. The ablation step is 
separated from the analytical step by employing two different laser sources. The small amount of 
sample is ablated and in the form of aerosol carried to the interaction region, where it is reablated by 
another laser pulse. No matrix effect is then expected when the coupling of second laser remains 
consistent. 

The calibration-free LIBS [3] is a method, which does not require measurement of the standardized 
samples prior to the quantitative analysis. The idea is to make each measurement self-consistent by 
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applying LIP parameters to the spectral data and, in consequence, to compensate for the matrix effect. 
However, this promising technique is beyond the scope of this doctoral thesis. 

The LIP spectrum containing atomic and ionic emission may provide qualitative and quantitative 
information about the elemental composition of the sample in real-time and in-situ. However, the 
occurrence of a matrix effect has to be considered. Therefore, LIBS device should be calibrated prior 
to the analysis according to the matrix of the interest when supervised standards are measured. (steel 
and other metallic alloys, soils, ceramic, etc.). Moreover, further analysis employing advanced 
statistical algorithms can improve the sensitivity and reduce the dependency of the signal on the 
matrices of various samples. The multivariate calibration and classification of the samples based on 
their characteristic spectral appearances prior the quantification is further discussed in chapter 4. 
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1.7.  SIGNAL PREPROCESSING 
In advance to the quantification analysis or classification, detected spectra should be pre-treated with 
a unified standardized algorithm. This chapter summarizes the basic and recommended steps in the 
data pre-treatment process prior a statistical analysis [69, 70, 71]. It is recommended to consider 
mean-centering and scaling of the data that can strongly affect the resulting model. 

LIBS may be utilized in shot-to-shot regime when each consecutive laser pulse is utilized separately 
in the analysis, e.g. mapping [43]. However, in order to obtain robust statistical data set, each sample 
should be measured with considerably high number of repetitions. Conventionally, higher number of 
laser pulses per sample is employed to compensate for the fluctuations in LIBS measurement. In the 
first step, measured spectra are normalized (to a selected spectral line, to unity, or to the sum of 
overall intensity of a spectrum) in order to reduce the fluctuation in the intensities of spectral lines. 
Moreover, internal standardization of trace element lines to a matrix line leads to more a reliable 
comparison of samples with a similar composition. When choosing a matrix line, a transition with its 
upper quantum level energetically close to the upper level of the transition to normalize should be 
used in order to minimize uncertainties caused by temporal fluctuations within the plasmas.� The 
smoothing is not necessary step in the pre-treatment. The background is subtracted for each line 
individually. Every element is represented by several lines originating from different quantum 
transitions. Selection of more elemental lines of the same element is profitable for classification and 
quantification analysis while the larger range of quantum transitions is more likely to describe plasma 
properties and a LIP temporal evolution. The shape of the spectral line can be fitted with pseudo-
Voigt profile and the intensity is then calculated as the area under the peak. Spectra for each sample 
can be averaged, depending on the further data analysis. 

 

Figure 10, scaling and mean centering of the data matrix X [69]. 

Individual samples are described by a set of variables, such as matrix elements or elements selected 
for a trace analysis. Variables are represented by elemental lines and are organized in the columns of 
the data matrix �M$_ � �%, where the rows are assigned to samples. In the case of regression analysis, 
matrix �M$_ � +% is constructed. Usually in the calibration process, there is only one variable 
representing the amount of the element selected for trace analysis. This matrix is then transformed to 
a vector �M$_ � D%. Those data matrices are then further processed by chemometric algorithms 
described in following chapter. 



USING LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) FOR MATERIAL ANALYSIS�

�

- 27 - 
�

�

Variables are often measured with different numerical ranges and it can happen that one variable 
over-shadows the others. In general, variables are scaled to a unit variance and their dependence of 
the model is equalized. This step should be done with care when scaling of the variable with a very 
low variance can introduce a high error into the computation. In the second step, data matrix is mean-
centered (i.e. the vectors of interest are set around the origin of the coordinate system) for the 
improved interpretability of the model. Note, scaling and mean-centering of the data matrix, depicted 
in figure 10, are recommended in any case at least for the first step of the analysis, however, their 
contribution to the modelling of the data matrix does not have to be necessarily beneficial [69]. 
Advanced data pre-treament, such as transformation and data correction and compression, is not 
employed in the experimental part and therefore not discussed. 
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2. CHEMOMETRICS 
In 1994, Svante Wold [72] tried to define the chemometric algorithms in general:  

“A reasonable definition of chemometrics remains as: ‘How to get chemically 

relevant information out of measured chemical data, how to represent and  

display this information.’ ” 

In other words, chemometrics are of great help when multivariate and complex data are acquired, as 
befits measurements employing spectroscopic techniques. Over past decades, chemometric 
algorithms have already proved their importance in the data mining and data analysis in various fields 
(analytical chemistry, economics, and biology). Chemometrics can serve for pattern recognition 
(classification) and quantification. 

In general, the LIBS measurement results in bulky data sets, where each sample is represented by 
series of spectra (each spectrum possible to provide information on up to 60000 spectral features). 
Chemometric algorithms are established methods for classification and multivariate calibration of 
such complex and large datasets. It is expectable that the discrimination of the sample set represented 
by their LIBS spectra can emulate the distribution of the samples based on their physical and 
chemical properties. Utilizing chemometrics, unpredicted latent variables among apparently diverse 
samples could be as well found. Detail to data pretreatment and processing by the means of 
chemometric algorithms can be found in the chapter 1.7. 

LIBS has already been used for quantitative analysis of mineral samples including the field-portable 
device [73, 74, 75, 76]. Multivariate statistical approaches for identification of different kinds of rocks 
and minerals were employed using both laboratory bench-top and stand-off LIBS systems [77]. 
Harmon et al. [77] proved the possibility of ascertaining the provenance of conflict minerals 
employing partial least square discriminant analysis of LIBS spectra. Bousquet et al. [78] tested the 
hypothesis that the most significant differences between soils come from the varying amounts of 
matrix elements. 

In this chapter the main emphasis is given to the most spread chemometric algorithms, principal 
component analysis (PCA), partial least squares (PLS) regression and their variations, such as 
principal component regression (PCR), soft independent modelling of class analogies (SIMCA), and 
partial least squares discriminant analysis (PLS-DA). The discussion about one of the artificial neural 
network (ANN) algorithms is as well given, Kohonen’s maps or self-organizing maps (SOM), which 
is seen as an alternative to PCA, however, its use can be beneficial due to a more advanced 
visualization. The main literature sources in following chapters are those books [70, 79, 69]. 

 



USING LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) FOR MATERIAL ANALYSIS�

�

- 29 - 
�

�

2.1.  PRINCIPAL COMPONENT ANALYSIS AND RELATED 
ALGORITHMS 

In 1901, Karl Pearson published the algorithm for transforming the data matrix with the aim to 
uncover the hidden correlated variables among the samples [80]. Early history of exploratory data 
analysis can be dated even to Cauchy and his studies in 1820s. Though this algorithm was then 
reinvented by Harold Hotelling [81] who called it the Principal Component Analysis, for the essential 
purpose of the algorithm to find the so-called principal components. PCA algorithm can be found 
under different names (factor analysis, eigenanalysis, eigendecomposition, and singular value 
decomposition (SVD)) hence the primary goal remains the same, to find latent variables in the data 
matrix. PCA discovers latent relationships between phenomenological results (in our case spectra) 
and intrinsic properties of the studied sample (here chemical composition). PCA is a projection 
method that creates new coordinate system formed by latent variables, i.e. the principal components, 
which describe major trends in data set in the least square sense.  

TRANSFORMATION OF THE DATA MATRIX 

The data matrix X consists of the experimental data, where each measurement is assigned a row and 
the relevant information, in our case wavelength, is organized into corresponding columns. In the 
PCA algorithm, the data matrix is decomposed and substituted by the product of two new matrices, 
the scores matrix �M$_ � �% and loadings matrix �M$� � �%, where A is the total number of estimated 
principal components. The projection of the points (samples, observations) in the X-space onto the 
principal component gives the related value, called a score. The scores represent the distribution of 
the points (samples) in the principal component space according to their variance and the loadings 
show the most important spectral variables, wavelengths, responsible for this variation. In this 
approach, the first created principal component describes the most of the variances in the data set. 
PCA reduces redundancy in the data set and creates a dataset, which can be visualized more easily. It 
is expected that samples from the same class will form one cluster, based on similarity in their 
spectra. [79, 82] Instead of the original multitude of variables that include this likeliness, however, the 
PCA transformed result confines all relevant dimensions that include spectral re-assemblance 
belonging to one class onto one single principle component. Thus, a multidimensional problem can 
get reduced to a single dimension, simply by neglecting irrelevant information and transforming the 
relevant information onto one dimension. 

PCA involves an abstract mathematical transformation of the original data matrix and can be 
represented by the equation [79, 82]: 

 � � ��| �, (2.1a) 

 ��� �   7�//̀¡I ¢/� | P��, (2.1b) 

where �M$_ � �% is the error matrix compensating the deviation of the model data to the original data 
set. The product of TP can be regarded as a model of the data that is an approximation to the original 
data set, when the error is represented by this error matrix �. The index i describes the individual 
samples (observations), index j stands for the individual variables (wavelengths) and index a refers to 
the number of principal components. It is possible to calculate any number of PCs as desired (until the 
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observed data matrix X is fully modelled within a given uncertainty) while the optimal number of PCs 
can be determined by various methods [82]. The maximal number of PCs is equal to the maximal 
number of input variables. 

It is noteworthy that the equation (2.1a) is comparable with the equation used in SVD algorithm, 
which is used in a majority of available software for PCA [79, 82, 83]: 

 � � £¤¥| �, (2.2) 

where U is identical with T and V is the same as P, though the difference is in the scaling of the data 
for the individual matrices. D is a diagonal matrix which diagonal elements consist of the square roots 
of the eigenvalues of X´X. 

The algorithm sets the new basis represented by equation (2.1) and schematically depicted in figure 
11. The loadings matrix is a projection of the original data set onto a new basis. The scores give the 
new representation of the objects in the rotated coordinate space, figure 12. As can be seen, both 
created principal components are going through the origin of X-space, which is a consequence of the 
mean-centering of the data matrix. By projecting the points (samples, observations) onto a newly 
created basis (2 PCs space - a plane in the depicted case, or hyper plane for more PCs) it is possible to 
visualize the distribution of the points in data matrix. The PCA algorithm withdraws the highest 
variation among the data iteratively when creating the individual principal components. Always, the 
first principal component stands for the most variation among the data [83]. In mathematical terms, 
first principal component is the linear combination that best estimates the original variable in the 
sense of smallest least squares [84]. 

  

Figure 11, schematic of transformation of the data matrix by the means of PCA [71]. 

To determine the importance of the PC, i.e. how much variance is described by the PC, is given by 
the number called eigenvalue. Principal components are organized in a descending manner according 
to their eigenvalues. The value A/ of the ath eigenvalues are defined as the sum of squares [79, 82]: 

 A/ �   7�/�c�¡I . (2.3) 

It is usual to estimate the eigenvalues in percentages: 
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where an element in the denominator of the fraction refers to the sum of squares of the entire data 
matrix. 

 

Figure 12, data matrix, represented by a three variables, projected into a new space by PCA [82]. 

The number of used principal components is crucial for the resulted modelling of the data matrix. 
When not enough principal components are used, the data matrix is not well modelled. On the other 
hand, using too many principal components leads to an overfitting and to introduction of unwanted 
noise into the model. Therefore, the optimal number can be established via the cross validation (CV) 
algorithm [82]. Part of the data, individual observation, is kept out of the computation, model is 
created and the kept-out data are validated. Then, the predicted data are compared with the observed 
ones. The prediction sum of squares (PRESS), the sum of squared difference of predicted data �̈�� and 

observed data ���, is obtained for every part of the data matrix, which is kept out of computation. The 

value of PRESS using a PC model is given by following equation [79]: 

 ©ªK««/ �     u�̈�� : ���v�¬
�¡Ic�¡I . (2.5) 

The error obtained from PRESS can be then compared to the residual sum of squares (RSS) error 
[79]: 

 ª««/ �     ���� :  A//̀¡I
¬
�¡Ic�¡I . (2.6) 

The building of the model, i.e. computing new PCs, can be stopped when PRESS is not significantly 
smaller than RSS [82]. 

VISUALISATION 

Individual variables can be cross-plotted in respect to each other in order to reveal possible latent 
variables and groups within the data set. However, this approach is not suitable when more variables 
are used for describing the data. PCA is then applied and individual principal components are used for 
visualization of the spectrochemical patterns within the data matrix [82]. 
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Scores of the principal components are then cross-plotted while preserving the dominant patterns 
among the original data. PCA, as a least squares algorithm, is severely affected by the outliers, data 
strongly deviating from the rest of the data set. Therefore, it is beneficial to apply the PCA without 
any further analysis but the search for outliers. Due to the reduced dimensionality, those can be 
unambiguously identified simply by inspecting plots based on the first few PCs. Then, after removing 
the disturbing outlying data points, the PCA analysis can be repeated with an improved accuracy. 
Loading vectors can be inspected for giving the information about the importance of the individual 
variable. Less significant variables can be discarded from the computation without changing the 
resulting model. Nevertheless, this step has to be done carefully with respect to the case of the study. 

 

REGRESSION 

Principal components can be further used for quantification analysis, in the so-called principal 
component regression (PCR) algorithm [84]. In the first step PCA algorithm is used on the obtained 
data matrix to reduce the dimensionality and to take into account the structure of the data matrix, in 
other words to create the principal components. The vector y, representing observed outcomes, is 
regressed onto the score matrix T [71]: 

 ­ � ��, (2.7) 

where s is the vector of regression coefficients, whose dimensions are equal to the number of selected 
principal components. PCR model is then expressed by the regression coefficients vector s and 
loadings matrix P, acquired in the first step. After transforming the vector s back using PCA loadings, 
the estimation of regression coefficients is possible with characterization of the original model. 

CLUSTERING AND CLASSIFICATION 

In the ideal case, the samples in one class have the same properties, their variables have similar values 
and there is no error coming from the measurement; moreover the classes are distinct. However, an 
ideal case will never occur and values in the variables describing individual samples are changing 
continuously; classes can overlap. Moreover, the distribution of the samples and individual 
observations is set to follow Gaussian distribution [79]. However, this is only an assumption based on 
no physical reasoning while in a real data space the data points do not necessarily obey the Gaussian 
distribution. 

Based on the differences described by selected variables the samples can be discriminated into 
individual classes (groups, clusters). The classes can be known in advance or the samples can be 
assigned to groups based on PCA. The patterns among the data can be revealed by inspecting the 
score plots designed by a PCA algorithm. PC model can recognize any pattern which is present within 
a data set [85]. The possible problems which can occur during the classification process and the ways 
how to avoid those problems are further discussed on a real data, chapter 4. 

For the purposes of supervised classification the algorithm based on disjoint PCA models was 
introduced [85]. The algorithm introduced by Svante Wold and co-workers is called Soft Independent 
Modelling of Class Analogies (SIMCA). In this algorithm, the model is designed by the means of 
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PCA for each class individually (referred to as ‘independent modelling’). The usefulness of this 
method is seen in the data reduction by PCA [86]. Essentially, the samples in each class should be 
very similar in a composition and hence different from the other groups. The total model of a 
‘training’ data set consists of a collection of several disjoint class models. Then, ‘test’ samples are 
separately fitted to all of the class models and assigned to the model they fit best. It has to be kept in 
mind that the unknown sample, which fits into no known class might therefore create a new class. It 
can happen that one sample will be assigned to two classes (this feature is reflected in the name of the 
SIMCA algorithm by the term ‘soft’). 

When the software is trained based on the training data, the classification power of the SIMCA 
algorithm can be estimated by assigning the unknown (validation) data. Leave-one-sample-out 
(LOSO) cross-validation can be applied when the validation data set does not exist [86]. Unknown 
samples are then classified by the means of their deviation to the individual PCA models. This 
deviation is given by the Euclidean distance of the unknown sample to the centre of the class in PC 
space. The Euclidean distance (orthogonal distance (OD)) is given by [86]: 

 Æ¯! � °�± : �±!°, (2.8) 

where �± is the unknown sample and �±! is the projection of this sample by the PCA model of class c. 
This procedure is repeated for all models of classes and the unknown sample is classified by 
comparing the square of the deviations $Æ¯!%�. 
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2.2.  PARTIAL LEAST SQUARES ALGORITHMS 
Multivariate analysis and calibration was strongly influenced by a contribution of Herman Wold, the 
Norwegian mathematician concerned about econometrics. H. Wold and co-workers introduced in the 
early 1970s the method called the partial least squares (PLS) model in latent variables (and/or 
projections to latent structures by means of partial least squares) [69, 87, 88]. H. Wold then developed 
the NIPALS (nonlinear iterative partial least squares) algorithm for estimating the values of 
parameters in PLS models. PLS algorithms have a long tradition in chemometrics, when some 
chemometricians apply PLS algorithms to nearly every kind of problem [79]. 

 

Figure 13, schematic of PLS [69]. 

In other words, when PCA is extended to a data set divided into two or more matrices (containing 
dependent and independent variables) the algorithm is transformed to a so-called PLS analysis [82]. 
The main difference is that the PLS algorithm models as well the contribution in the variables in Y 
matrix, equations (2.9). This matrix can contain only one variable and then becomes a vector, 
equations (26). PLS then relates two matrices, the X matrix (containing the measured spectroscopic 
data, observations, and factors) and the Y matrix (consisting of classifiers, response, calibration data, 
and/or observed outcomes) [79, 89]: 

 � � ��| �,M
 � � £² | ³, (2.9a) 

 ��� �   7�/¢/�/̀¡I | P��,M
 ´�Z �   ,�/N/Z/̀¡I | B�Z. (2.9b) 

where the matrices X, T, P and E have the same meaning as in the equation (17a). The matrix 
£M$_ � �% is a score matrix in Y-space, and can be considered equal to the matrix T [69, 71]. The 
matrix ²M$� � +% is a weight matrix and the matrix ³M$_ � +% is analogical to an error matrix in PCA. 
However, the matrices T, P are different from those obtained via PCA. Moreover, the loadings 
obtained via PLS algorithm are not orthogonal as in the case of PCA [79]. PLS is schematically 
depicted in the figure 13. 
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To conclude the terminology [79], when there are multiple variables in the Y matrix, then the 
algorithm is in the literature called PLS2. If there is only one variable in the matrix Y, then the 
equations (2.9) can be simplified to the form: 

 � � ��| �,M
  � � £µ | ¶, (2.10a) 

 ��� �   7�/¢/�/̀¡I | P��,M
     ´� �   ,�/N//̀¡I | B�. (2.10b) 

where y, c, and f are vectors. This algorithm is named PLS1 or PLS regression (PLSR). PLS-DA 
(partial least squares discriminant analysis) is used for data classification where the values in the 
vector y refer to classifiers or the numbers of a class membership of samples under investigation. 
PLS-DA is algorithm used for pattern recognition and classification. Then, the model prediction of y 
is a product of multiplication: �±I � ·IµI. The additional principal component is computed from the 
residual vector: ¶I � � : ´̈I. In the case of PLSR, the first PLS component is calculated similarly as 
in the PCA. However, the PLS component provides both, the approximation of points in X-space and 
correlation with the y-vector. The orientation of the first component is depicted in figure 14.  

 

Figure 14, the first PLS component [69]. 

Additionally the weight matrix ¸¹M$� � �% is created as a consequence of PLS algorithm. The weight 
vectors for each component, latent variable, describe the way in which the variables in data matrix X 
are organized to form the score vectors [79, 90]: 

 � � �¸¹. (2.11a) 

 7�/ �   �����/¹¬
�¡I . (2.11b) 

Note, that the weight matrix ¸¹ relates directly to the data matrix X and the weight matrix W relates 
to the residual matrix E, computed for the previous dimension A [69]. 

The equation for a general solution of regression employing PLS algorithm is as follows [69, 70]: 

 � � �º | ¶, (2.12a) 

 �́ �   ���»�¬
�¡I | B�, (2.12b) 
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where the PLS regression coefficient vector º gives the relation between the PLS weights [69, 70]: 

 º � ¸¹µ, (2.13a) 

 »� �   ��/N//̀¡I . (2.13b) 

It is valid for all of the PLS algorithms, once the PLS model is established with training data, 
unknown samples can be classified or quantified using the computed PLS weight matrices. The 
unknown concentration can be predicted by a dot product of the measured spectra of the unknown 
sample and the PLS regression coefficient vector. 

The number of PLS components in the model as well as the prediction error of the model are 
estimated with the same algorithms as in the case of PCA. The size of each PLS component can be 
calculated, analogically as eigenvalues in PCA [79]: 

 ¼/ � u  7�/�c�¡I vu  ¢/��¬
�¡I v. (2.14) 

However, the size of ¼/ of successive components does not have to be in decreasing manner, as in the 
PCA case. This is an essential feature of the PLS algorithm in which both X and c blocks are 
modelled. The prediction power of PLSR and PCR is compared in the result section of this thesis. 

Erikson et al. [69] concluded the difference between PCA and PLS as follows: 

 “PCA is a maximum variance least squares projection of X, whereas the 

PLS is a maximum covariance model of the relationship between X and Y.” 
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2.3.  KOHONEN’S SELF-ORGANIZING MAPS 
The self-organization is in the sense of neural origin, which invention was inspired by the processes 
in the brains of animals and their consequent behaviour excited by external stimuli. This algorithm 
was adapted by a Finnish researcher Teuvo Kohonen [91, 92] to formerly existing artificial neural 
network algorithms to be capable of learning and pattern recognition. It is noteworthy, that there exist 
two similar approaches how to construct self-organizing maps, however, in this chapter only the 
Kohonen’s model will be discussed while the Wilshaw-van der Malsburg model will not be 
considered. 

Kohonen’s maps or Self-Organizing Maps (SOM) are an alternative approach (nonlinear 
generalization) to PCA, where the benefit is in advanced visualization of characteristic variables, 
specific samples and/or groups of samples. SOM can be effectively applied when large data sets or a 
vast number of variables are applied to the analysis. Such as PCA, SOM offers low-dimensional 
visualization of high-dimensional data. The algorithm is based on the unsupervised learning while 
following the initial topological distribution of the data in the input patterns. Processing of the data set 
and the application of the SOM is schematically depicted in figure 15. 

INITIALIZATION AND TRAINING 

In the data mining process, chapter 4, the software designed by Juha Vesanto [93] is applied to the 
data modelling by the means of SOM and PCA. For the purposes of the numerical computation and 
for the theoretical explanation, the data matrix X has to be organized in the manner that each of I rows 

is a j-dimensional data vector �� � ½�I- ¾ - ��¿ corresponding to one sample. The intensities of 

individual spectral lines obtained from the measurement of the samples are organized in the number 
of j columns of the data matrix. Data in each column are normalized to unity in order to unify the 
measured data for more precise analysis. 

 

Figure 15, the application of the SOM in data mining. After data collection, the data is preprocessed, normalized, and a 
SOM is trained. This thesis is aimed on the SOM: visualization, clustering [93]. 

SOM consists of L units, neurons, organized in low dimensional grid (usually 1D or 2D, but higher 
dimensions are as well possible, however, not used due to a problematic visualization). Every neuron 
is fully interconnected with the input. This connection is represented by a weight (prototype) vector 

�� � ½��I- ¾ - ���¿ for each neuron À � D-=- ¾�. The number of weights corresponds to the number of 
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variables describing the sample. The unit positions r� locates the position of the neuron l from the 
beginning of the grid. 

 

Figure 16, SOMs with the size of 5x5 neurons. The numbers indicates the area of the neighborhood of each neuron [93]. 

The neurons are organized in the maps with hexagonal pattern, which is the most common, or with 
rectangular pattern, figure 16. The number of neurons is selected prior to the analysis, their weight 
vectors are randomly generated but values are in the range of those in the data matrix. Because the 
initial weight vectors and positions of the neurons in the map are random such as the choice of the 
samples given to the system to be trained, therefore, the whole process is irreproducible. 
Nevertheless, the training process follows still the same algorithm and the results are highly 
correlated. Moreover, values of the neighbourhood function s�T�$7% and the learning rate Á$7% have to 

be selected. Both properties are time dependent and get smaller with increasing number of iterations t.  

When the training of the map is started, the essential processes in the formation of SOM are 
competition and cooperation. Random sample x� of a data matrix X is given to the system and the 
values of x� are compared to the weight vectors w� of each neuron. The neuron with the weight vector 
most similar to the randomly selected sample vector is then considered as a winner or best matching 
unit (BMU). In other words, the winner has the smallest Euclidean distance to the selected sample. 
The BMU »� is a function of input vector x� and its value is equal: 

 »�$x�% � ÂÃÄÅÆ<�°x� : w�°. (2.15) 

The winning neuron then learns from the sample, i.e. adapts its weight vector. The degree of 
adaptation is determined by the learning rate. The winning neuron affects as well the neurons in its 
surrounding, which area is determined by the neighbourhood function. When the weight vectors are 
adapted, the algorithm is repeated by applying another randomly selected sample x� and so on for 
7 � D-=- ¾ - J iterations. The measure of adaptation is given by following equation: 

 w�$7 | D% � w�$7% | Á$7%s�T�$7%Çx� : w�$7%È, (2.16) 

The neighbourhood function has its maximum in the position of the winning neuron »�, it is 
monotonically decreasing and symmetric. The neighbourhood function is therefore considered to be 
the Gaussian function, but not necessarily: 

 s�T�$7% � P5
ÉryT1rÊÉ
3Ë3$2% , (2.17) 
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where r�T and r� is the position of the winning neuron and its neighbour, respectively. Note that the 

neighbourhood function is translation invariant, does not depend on the position of the winner. The 
size of the neighbourhood is then given as follows:  

 Ì�T � ÍÀÎÏr�T : r�Ï Ð �$7%Ñ. (2.18) 

The neighbourhood radius �$7% shrinks gradually with the number of iterations, while in the begging 
covers larger amount of the neurons surrounding the winner and in the end encircles only the winner. 
As the system is more organized, the property of cooperation among the neurons disappears. The 
SOM forms a flexible net which folds and stretches during the training. In each iteration the winner 
and its neighbourhood is pulled to the same direction in order to mimic the topological distribution of 
the initial data matrix, figure 17. 

 

Figure 17, updating the best matching unit (BMU) and its neighbors toward the input sample marked with x. 

VISUALIZATION 

The unified distance matrix (U-matrix) shows the similarity of a neuron l to its neighbours. This 
approach of visualization leads to the revealing of potential clusters present in the map. The unified 
distance of each neuron is computed as the Euclidean distance among the weight vector of a neuron 
and weight vectors of neurons in the neighbourhood Ì�: 

 ,� �   °w� : w�°ÒÊl¡I MMMMMMÓ Ô Ì�Õ Ó Ö À, (2.19) 

where ×� is the number of neurons surrounding the neuron l in the given neighbourhood. Then 
neurons with similar weight vectors have lower value of the Euclidean distance. It is generally valid, 
the bigger the Euclidean distance, the more different the neurons. The U-matrix has similar properties 
to PC scores, where the clustering/grouping of the samples in the data set can be observed. 

Another feature of SOM are so called component planes, they show how each variable affects the 
map and which variable is most associated with individual samples. Analogically to the U-matrix, a 
component plane is computed for each variable separately. The weights are converted according to 
the importance of the selected variable for describing the regions of the map. Component planes show 
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whether and how the variable describes the class. The component planes can be used as well for 
clustering, however, the result has to be considered with care. 

Concluding SOM, a high dimensional input space, data matrix, of activation patterns is mapped onto 
a discrete output space of neurons by the process of competitive learning. The resulted map is 
topologically similar to the distribution within the data matrix. Moreover, the unified distance matrix 
shows possible clustering among the data. 
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2.4.  CHEMOMETRICS IN SPECTROCHEMICAL ANALYSIS 
First of all, this discourse is concentrated on the application of LIBS to mining industry. For this 
reason, more detailed literature survey about the use of chemometrics for pattern recognition among 
the LIP spectra was done. 

The group of A. W. Miziolek from the U.S. Army Research Laboratory has long-term experience in 
combining the outcomes of LIBS with the analysing power of chemometrics. One of the aims of this 
group is the detection of chemical and biological warfare agent stimulants (bacteria, explosives) and 
their further discrimination based on their spectral features [1, 94, 95, 96]. The stand-off detection of 
biological samples and their discrimination was as well tested [97]. The LIBS analysis on the 
biological samples can be found elsewhere [98, 99]. 

Group of M. Z. Martin coupled multivariate statistical analysis techniques with laser-induced 
breakdown spectroscopy to identify and classify various samples, such as preservative-treated wood 
[100], nuclear materials [101]. In several other groups were chemometrics used to distinguishing 
among the samples based on their spectral features; identification of biominerals among different 
kinds of samples [102], wheat grains [103]. Chemometrics were used with LIBS as well for 
improvement of the quantitative analysis [104]. 

The group of D. Cremers introduced as well the new algorithm for discrimination of biological 
samples into more groups by step-by-step approach [105]. Usually, the PCA algorithm struggle when 
the data set consist of more different groups. Then, the individual samples are not well resolved into 
the distinct groups and these groups tend to overlap when plotted into the PCA score plot. In this step-
by-step approach, any cluster is removed from the computation when it is successfully assigned by 
the clustering algorithm. Then the PCA algorithm is applied again on the reduced dataset. This leads 
to simplification of the dataset and the PCA is not affected by too much variation. This process is 
repeated until all of the samples are successfully classified. This approach was employed for the 
analysis in other work [106]. 

Since PCA is unsupervised, it seeks to describe the overall variation in the data. This may not be 
useful for differentiating between different classes of samples. Therefore classification techniques 
such as SIMCA are more useful for describing data sets that consists of many measurements of 
several samples or classes. A SIMCA [86] model consists of a collection of PCA models. Each PCA 
model within the SIMCA model describes a particular sample type or class from the data set. SIMCA 
incorporates the properties of PCA models with information about the types of classes incorporated in 
the sample data set. The SIMCA model is then used to determine the nearest class for unknown test 
samples [39]. SIMCA algorithm was used to determine the class membership of unknown samples 
[1]. 
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3. EXPERIMENTAL 
LIBS SETUP 

The experimental LIBS setup constructed in the laboratory at BAM in Berlin, Germany is depicted on 
the figure 18. The setup was utilized for measurements of all soil samples (certified reference 
materials and real samples collected directly at copper mines in north-west region of Iran, near 
Sungun village). 

 

Figure 18, experimental LIBS setup constructed at BAM in Berlin, Germany. 

In the first case study, high energy Nd:YAG laser Continuum (Surelite SLI-10, operated at 10 Hz, 
1064 nm, 6 ns) was utilized for material ablation and plasma formation. However the laser was 
changed during the measurement process for the second and third case study, the rest of the setup was 
kept unchanged. The LIBS setup consisted of a diode pumped solid state (DPSS) Nd:YAG laser 
(Titan AC 50 MM, Atum lasers, Germany; operated at 10 Hz, 1064 nm, 10 ns). Laser pulse was 
focused from above onto the sample using a planoconvex lens (BC= 100 mm) into a tight spot ~0.2 
mm in diameter (0.25 mm when laser Continuum was utilized). After the impact of short laser pulse 
to the surface of a sample a luminous LIP was created. The radiation from a LIP was collected with a 
large aperture collector-collimator (Andor CC52, f/2) placed 250 mm form the interaction region at a 
30° angle with respect to the incident laser-beam-path. The collector was coupled to a 400 µm optical 
fibre which delivered light at the entrance slit of an echelle spectrometer. Two wings echelle 
spectrometer Aryelle Butterfly (LTB, Germany; resolving power of 25000 in the first wing and 15000 
in the second one) dispersed the plasma light in the range from 190 to 420 nm in the first wing and 
from 300 to 950 nm in the other wing.  

The spectral information was recorded by an ICCD (Andor iStar 734, 1024x1024 pixels with the 
effective pixel size 13x13 µm). The ICCD was operated at 120x gain and 1x1 pixel binning. Due to a 
lower light sensitivity of the camera above the 600 nm the range of a complete detected spectrum was 
190 – 600 nm. The timing of the experiment was optimized for each case study individually. The 
optimization process was aimed to obtain the best value of SNR. Representative number of laser 
pulses per sample was chosen for statistical lowering of possible differences among the spectra 
caused by the sample inhomogeneity. The values of laser pulse irradiance, temporal gating, the length 
of exposition, and number of spectra per sample (such as number of accumulations per spectrum) are 
listed in table 1. The whole LIBS setup was triggered by a delay generator (DG535, Stanford 
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Research Systems). Samples were placed on a motorized translational stage to provide a fresh spot for 
every laser pulse.  

Table 1, experimental setting of the LIBS system for individual case studies. 

Case 
study 

Sample 
pretreatment 

Pulse energy 
(mJ) 

Irradiance 
(GW.cm-2) 

Gate delay 
(µs) 

Gate width 
(µs) 

no. of 
accum. 

no. of 
spectra 

analysis 

I 
DST 100 33 0.5 10 10 20 univariate 

calibration, 
normalization 

pellet 150 51 1.5 10 20 10 
slurry 150 51 1 10 20 10 

II DST 35 11 0.4 5 10 20 
univar. calib. 
PCA, SOM, 
PCR, PLSR 

III DST 35 11 0.4 5 10 20 
univar. calib. 

SIMCA 
 

The echelle spectrometer utilized for spectral analysis consisted of two wings with partly overlapping 
spectral regions. Obviously, it is advantageous to observe the spectra with broader spectral range. For 
this reason, continuous light emission from reference sources (tungsten and deuterium lamps) was 
observed and the correction function was estimated, figure 19. The correction factor provides the 
possibility to analyse any sample using both wings of the spectrometer. Spectra observed by both 
wings of the spectrometer can be combined when the spectra multiplied by the corresponding 
correction function. 

 

Figure 19, correction function estimated from the detected spectra of reference light sources. 

SPECTRAL LINES SELECTION AND DATA PREPROCESSING 

As it is explained further in the text, the igneous rocks can be completely discriminated by observing 
the differences in the composition of matrix elements (Al, Ca, Na, K, and Si) [107]. This means that 
the contribution of matrix elements is supposed to be the most influential in the classification process. 
To test this hypothesis, the PCA algorithm was applied on the data set of Oreas samples measured in 
the case study II and complete spectra were analysed, i.e. without any inclination to the matrix 
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elements. Loadings of the first principal component which describes the most amount of variation 
among data are depicted in figure 20. This figure shows only a part of the whole observable spectral 
range, though the most eventful one. In general it is valid, the higher the loading value of a spectral 
line the more influential the spectral line for rock type discrimination. In the figure the highest peaks 
which belong to the matrix elements Al, Ca, and Si are highlighted. Mg lines were omitted while they 
are not considered to be a mean for general classification of rocks (QAPF diagram) [107]. Though, 
the contribution of Mg seems to be the most influential in this particular case. 

Spectral lines of matrix elements (Al, Ca, Na, and Si), listed in table 2, were selected for further 
analysis. However, no potassium, as one of the proposed matrix elements, was observed in the LIP 
spectra due to the poor sensitivity of the ICCD camera over 600 nm. During the preprocessing, the 
spectra of individual samples were firstly treated with the Z-test to discard any possible outliers 
resulting from the sample inhomogeneity. Afterwards, spectra were normalized to the sum of overall 
intensities and then averaged. Selected spectral lines were fitted with pseudo-Voigt profile and their 
intensities were calculated as the area under the peak with background subtraction using custom 
Matlab (version R2012a) software. 

 

Figure 20, loadings of the first PC of Oreas without the selection of any regions of interest. 

Obtained data were organized to a data matrix in the way that rows refer to the samples/measurements 
and selected spectral lines/variables refer to columns. The variation of the data in each column was 
normalized to unity and then mean-centered. The whole data matrix was analysed with chemometric 
algorithms to reveal possible latent variables among the data set and to provide the classification of 
the samples. The statistical toolbox in Matlab (PCA, SIMCA, PCR, and PLSR) was applied on the 
data matrix. Kohonen maps were created utilizing Somtoolbox in Matlab (Helsinki University of 
Technology, Finland) [108], free software for non-commercial use accessible online. The data 
analysis was partly focused on the uni- and multivariate calibration of the LIBS system. LIBS as an 
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in-situ detector capable of fast and reliable quantitative analysis is of increasing interest as well in 
mining industry. In our case the main emphasis is given to the quantitative analysis of copper in the 
soil samples. Copper lines selected for uni- and multivariate analysis are listed in table 3. 

Table 2, list of elemental lines selected for analysis. 

Elemental 
line 

� 
nm 

Ei 
eV 

Ej 
eV 

Einstein coeff. 
108 s-1 

Al (I) 308.22 0 4.02 0.63 
Al (I) 309.27 0.014 4.02 0.75 
Al (I) 394.4 0 3.14 0.51 
Al (I) 396.12 0.014 3.14 1.01 

Ca (II) 393.37 0 3.15 1.47 
Ca (II) 396.85 0 3.12 1.44 
Ca (I) 422.7 0 2.93 2.18 
Ca (I) 428.3 1.89 4.78 0.43 
Ca (I) 558.87 2.53 4.74 0.49 
Na (I) 589 0 2.104 0.62 
Na (I) 589.59 0 2.102 0.61 
Si (I) 251.43 0 4.93 0.74 
Si (I) 251.61 0.03 4.95 1.68 
Si (I) 251.92 0.01 4.93 0.55 
Si (I) 288.16 0.78 5.08 2.17 
Si (I) 390.55 1.91 5.08 0.13 

 

Table 3, elemental lines of copper used for the formation of calibration curves. 

Elemental 
line 

� 
nm 

Ei 
cm-1 

Ej 
cm-1 

Einstein coeff. 
108 s-1 

Cu (I) 324.75 0 3.82 1.37 
Cu (I) 327.39 0 3.79 1.36 
Cu (I) 515.32 3.79 6.19 0.6 
Cu (I) 521.82 3.82 6.19 1.22 

 

SAMPLE SETS 

One of the main goals of this thesis is to validate the performance of chemometric algorithms for 
advanced classification and quantitative analysis of soil samples measured by a LIBS device. 
Chemometric algorithms were applied in various case studies and the results were compared and 
thoroughly explained. 

Case study I: Cu assays of the monzonite rock type (obtained from University of Clausthal) 
were analysed in the form of pressed pellets, as slurries (mixture of fine dust with 
water) and as fine dust pressed to the surface of double sided adhesive tape (DST). 
The approaches were compared to each other in order to select the most 
convenient and non-demanding way of the sample pretreatment. The univariate 
calibration curves were depicted and further normalized utilizing the intensity of 
matrix elements lines to suppress the matrix effect, i.e. to improve their linearity. 
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Case study II:  Certified reference samples Oreas (ORE3, Australia) were analysed with an X-ray 
Fluorescence (XRF) device and LIBS. Then basic chemometric algorithms were 
applied, for classification and the detection of outliers (PCA) and for quantitative 
multivariate analysis (PCR, PLSR). Moreover, the PCA analysis was then 
emulated with Kohonen maps. The performance of selected chemometric 
algorithms was compared to each other while the positives and negatives of each 
algorithm were discussed in detail. Algorithms for sufficient and successful 
analysis of soil samples were proposed. 

This research was extended by the analysis of 27 igneous rocks. Those results 
were submitted to the special issue of Spectrochimica Acta B and the article is 
attached to this thesis, see appendix. 

Case study III: Robust data set consisting of 52 andesite and 28 diorite samples collected at a 
copper mine in north-west region in Iran (provided by University of Clausthal) 
were measured and classified using SIMCA. No ‘test’ data set was at hand and 
therefore the leave-one-sample-out (LOSO) approach was adapted to the analysis. 

 Those results were presented at the thematic conference EMSLIBS 2013 in Bari, 
Italy. 

 

ROCK TYPE CLASSIFICATION 

The observed LIBS spectrum reflects the chemical composition (i.e. the chemical fingerprint) of the 
sample. The composition of mineral ores differs with their locations and as well with the way of their 
alterations [107, 109, 110]. Different mineral ores and their alterations can be discriminated by 
examining their chemical fingerprints and the proportions of matrix elements (Al, Ca, Na, K, and Si). 
Mineral ores can be classified according to their content into several groups, forming a QAPF (quartz, 
alkali feldspar, plagioclase, feldspathoid) diagram (figure 21). The borders between these groups 
reflect natural relationships; each rock type displays a certain continuous variation of a mineral 
content and therefore the borders cannot be considered strictly as a line dividing individual rock 
types. The exact classification can thus not be done by knowledge of the concentration of only one or 
two characteristic elements but has to be derived from the complete elemental fingerprint. An 
established method for classification of such complex and large datasets is the principal components 
analysis (PCA). It is expectable that the PCA discrimination of the sample set represented by their 
LIBS spectra can in some way emulate the distribution of the rock types in QAPF diagram. 

An alternative visualization of rocks classification to QAPF diagram is the Total Alkali Silica (TAS) 
diagram, figure 22; while QAPF classification of volcanic rocks remains the primary possibility 
[111]. The classification of rocks employing TAS diagram is purely descriptive and should be used 
for volcanic rocks only; furthermore TAS is independent of field location. In TAS diagram the 

���������������������������������������� �������������������
3 ORE; Ore Research and Exploration Pty Ltd, Melbourne, Australia is a leading producer of certified reference 
materials for the mining, exploration and analytical industries [116]. 
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concentrations of SiO2 versus Na2O and K2O are plotted to discriminate the rocks of interest. As in 
the case of QAPF diagram, only the matrix elements are used for the necessary rock type 
classification. Despite of the strict rule for utilizing of the TAS diagram to classify the volcanic rocks, 
TAS was utilized for the schematic classification of sedimentary rocks, the certified reference 
materials used in this preliminary study. 

The composition of mineral ore differs with the location of its occurrence/provenance as well as with 
the way of its alteration. Alteration is the property of a rock which explains its chemical and 
mineralogical changes in the course of time. In geology, the alteration is important because it may 
have an effect on grades of elements (e.g. copper), therefore the rocks are studied in individual 
alteration types. However, more detailed description of the rock type classification is beyond the 
scope of this thesis. Moreover, proposed discrimination tools are strictly restricted to igneous rocks 
(QAPF diagram), or to igneous volcanic rocks respectively (TAS diagram). 

 

Figure 21, QAPF diagram [107]. 
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Figure 22, TAS diagram [111]. 
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4. RESULTS 

4.1. CASE STUDY I 
In this case study the main emphasis is given to the sample preparation prior to a LIBS measurement 
and consequent univariate quantitative analysis. For those purposes 10 samples of the same igneous 
rock type, monzonite, in the same state of alteration, potassic, were selected. Any monzonite rock is 
composed from similar amount of alkali-feldspar and plagioclase, figure 21. Its composition consists 
mainly from Al, Ca and alkali elements and contains less than 5% of Si. Therefore, Al and Ca are 
considered to be the main matrix elements. The samples for this case study were collected in the 
north-west region of Iran, near Sungun village, where are several copper mines. Samples were 
delivered in the form of homogenized fine dust. The Cu content, table 4, was estimated by ICP-MS 
after four-acid digestion. This analysis was done at the University in Clausthal, Germany. The rock 
type and alteration of each sample were confirmed by an experienced geologist in the same place. 

Table 4, copper content in selected monzonite samples. 

Sample Cu (wt. %) Sample Cu (wt. %) 
Cu1 0.2 Cu6 0.66 
Cu2 0.26 Cu7 0.74 
Cu3 0.39 Cu8 0.86 
Cu4 0.44 Cu9 0.96 
Cu5 0.53 Cu10 1.38 

 

It is noteworthy that flashlamp pumped laser Continuum SLI-10 was employed to create a LIP. In the 
other two case studies more compact (in the sense of maximum generated pulse energy) DPSS laser 
was used. Thermodynamic properties of laser-induced plasmas such as temporal and spatial evolution 
are significantly different when generated by laser pulses of various energies. Though analysis 
applied on such diverse LIP spectra is comparable to some extent. Nevertheless, the reproducibility of 
LIBS measurements is proved in the article submitted to Spectrochimica Acta Part B, see appendix, 
where the laser Continuum SLI-10 and DPSS laser (Quantel Ultra 100) were utilized to produce a 
LIP. 

Samples in the form of homogenized fine dust were prepared in three different ways: 1) in the form of 
fine dust mixed with water (henceforth referred to as slurry), 2) pressed to the surface of the double 
sided adhesive tape (DST), and 3) pressed to pellets. The approach of mixing sample with water was 
chosen to emulate the real shape of the sample which is measured on-site. The problem with mixing 
any sample (in the form of homogenized fine dust) with water results in the partial heterogeneity of a 
sample. Moreover, the ratio of water to soil dust affects the matrix of the sample and consequently the 
plasma properties [112]. Samples were prepared with the ratio of one part of water to two parts of soil 
dust. In another approach, samples were as soil dust pressed to the surface of the DST [113]. The 
sample was evenly deposited on the surface of a DST. Loose and redundant sample was then blown 
away from the surface of DST. The DST was measured alone to ensure that no disturptive spectral 
lines interfering with lines of interest can be detected. Finally in the case of pressed pellets, 
homogenized fine dust was mixed with micropowder Hoechst wax C (ØLÙ@ÚÛÜ�Æ�) in the ratio 2:1. 
The micropowder is conventionally used as tabletting aid for XRF analysis. The mixture was then 
pressed in hydraulic press with 20 tons for 30 seconds. 
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The calibration curves were constructed for each way of sample preparation, figure 23. The copper 
content in the samples varies from 0.2 to 1.38 wt. %. In this range of concentrations, selected copper 
lines are not suspected from self-absorption. Therefore, resonant atomic lines of copper observed at 
324.75 and 327.39 nm may be used along with Cu (I) at 515.32 and 521.82 nm for the quantitative 
analysis. Measured spectra were averaged and lines fitted with pseudo-Voigt profile. Depicted 
calibration curves for both selected copper lines (figure 23a) 324.75 and b) 521.82 nm) have very 
poor coefficients of determination, ª�. Such calibration curves are naturally not satisfactory for any 
further use. This poor fit of the linear regression may be caused by a matrix effect. Though, the 
samples were selected from only one group in order to avoid the matrix effect affecting the intensity 
of the measurement. The trends of individual calibration curves (for DST, pellet and slurry approach) 
are similar and suggest similar dependency of the copper lines intensities on the matrix of relevant 
sample. 

 

Figure 23, calibration curve for Cu (I) line at a) 324.75 nm and b) 521.82 nm. 

The intensities of matrix lines Ca (I) at 422.7 nm and Al (I) at 309.27 nm were cross-plotted to reveal 
possible outliers in the data set, figure 24. It can be observed that two samples (Cu4 and Cu7) strongly 
deviate from the rest of the data set. Those samples were assigned as outliers and were discarded from 
further analysis. The simple cross-plot was chosen because only two matrix elements (Al and Ca) 
were assigned as dominant. It has to be kept on mind that the discrimination was based on the QAPF 
diagram, i.e. other spectral lines of other elements (Na, K, and Si) should be utilized in the 
normalization process. 

The discrimination based on QAPF diagram allows assigning two samples with diverse content of 
matrix elements into one group. This diversity may vastly affect the LIBS measurement, i.e. the 
bigger the diversity in a sense of the matrix elements content the more influential the matrix effect. 
This hypothesis fits to our experimental results where the samples, Cu4 and Cu7, are strong outliers in 
respect to the main cluster of samples, figure 25. Consequently, the matrices of those outlying 
samples appear to influence the intensity of the copper line in different manner, i.e. the intensity of 
copper line is significantly higher than it should be expected in the context of other samples, figure 
24. The intensity of Al line is at least two times higher and the intensity of Ca line is two times lower 
for samples Cu4 and Cu7 in respect to the rest of the group. The degree to which the matrix effect 
affects the intensity of trace elements line may be an objective for further study. 
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Figure 24, cross-plot of matrix elements Ca and Al to reveal possible outliers. 

The calibration curves were normalized in order to supress the matrix effect. Figure 25, for those 
purposes spectral lines of Al and Ca were selected, a) Al (I) at 396.12 nm and b) Ca (I) at 422.7 nm. 
The calibration curves for Cu (I) lines at 324.75 nm and at 521.82 nm (results considering this line are 
not shown) were normalized. Moreover, normalization of the calibration curve did not lead to any 
significant improvement in the sense of linearity (R2) when elemental lines of Na and Si were utilized, 
results not shown. The normalization utilizing the aluminium line improved the figures of merit (R2 is 
above 0.84) more significantly than the calcium line (moderate value of R2 up to 0.62). This is proved 
by the comparison of coefficients of determination in both plots. However, the normalization of the 
whole data set to aluminium line, figure 26 (plotted only for the DST measurement), is not sufficient 
while the two outliers still devaluate the linearity of resulted calibration curve (R2 = 0.71) compared 
to the one without outliers (R2 = 0.96). The regression line of the calibration curve containing the 
outliers is depicted as dotted line. Therefore, normalization of the calibration curve by the spectral 
line of a matrix element should be done with care. This normalization, based on presented results, is 
not able to improve the figures of merit when samples with more diverse composition are analysed. 
Discrimination of the data set to smaller parts with similar composition of matrix elements may be 
beneficial. It is advisable to believe that multivariate analysis may be of help when samples with more 
complex matrices are analysed at once. In follow up case studies the multivariate algorithms are used 
for classification, outlier detection and quantification. 

In this case study, different approaches of sample preparations were examined. The calibration curve 
obtained from the measurement with samples spread on the surface of DST showed the steepest trend, 
figure 25a, and therefore may be considered as the most sensitive one. Though, the measurements for 
individual approaches were utilized under various conditions, table 1. The approach with the 
deposition of the sample on the surface of DST was selected for further analysis for its fast and non-
demanding preparation. The preparation of pellets was abandoned for its difficult applicability to in-

situ analysis. Both approaches showed good repeatability in the sense of low RSD. In a real 
application of mining the sample is obtained from the drill in the form of mixture with water. The 
amount of water is not stable which leads to a non-repetitive measurement. As it was already 
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mentioned [112], the amount of water affects the matrix of the sample and consequently the intensity 
of measured spectral lines. Therefore, the amount of water has to be monitored properly to avoid 
unwanted matrix effects resulting from the water to sample ratio. Nevertheless, there is no limitation 
in drying the sample and depositing the sample on the surface of a DST. 

 

 

Figure 25, calibration curves for copper normalized to a) Al (I) at 369.12 nm and b) Ca (I) at 422.7 nm. 

 

Figure 26, calibration curve containing outliers Cu4 and Cu7 (dotted line) normalized to Al line. 
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4.2. CASE STUDY II 
Certified reference materials were chosen to test the constructed LIBS setup, its performance, and 
especially the proposed algorithms for multivariate data analysis. 18 certified samples (ORE, 
Australia) were selected for their wide range of copper amount, while the quantitative analysis of 
copper was one of the main concerns in the mining project, and the diversity in the composition of 
matrix elements. Samples are divided into three groups according to their matrices which vary not 
only in the composition of formerly proposed matrix elements (Ca, Al, Si, K, and Na). Consequently, 
the LIBS measurement is affected by the matrix effect as it was proved in the foregoing case study. 
The datasheet of ore standards provided by producer, table 5, is not satisfactory to construct the TAS 
diagram. For this reason, whole sample set was measured with handheld XRF device (NITON XL3t 
series manufactured by Thermo Fisher Scientific, USA) in the lab at BAM, table 6. The comparison 
of both tables, the first provided by a producer and the second measured with XRF device, showed 
their relatively good compliance. In the case of LIBS measurement, the system (laser energy, 
temporal gating) was set according to the data listed in table 1. Samples were measured in the form of 
fine dust spread into a thin film on the surface of DST. 

Table 5, list of certified reference materials, OREAS ore standards. 

Item no. matrix Cu / ppm Fe / ppm Al2O3 / ppm CaO / ppm SiO2 / ppm 
O91 siltstone 265 43400 147000 7800 675000 
O92 siltstone 2294 46450 - - - 
O95 mineralised siltstone 25900 8960 133000 4000 587000 
O96 mineralised siltstone 39300 10010 127000 4600 558000 
O97 mineralised siltstone 63100 121800 115000 3600 508000 
O98 mineralised siltstone 148000 196000 75300 2600 334000 

O110 massive sulphide 1620 251000 - - - 
O111 massive sulphide 23700 352000 - - - 

O111b massive sulphide 24700 361000 - - - 
O112 massive sulphide 51000 341000 - - - 
O113 massive sulphide 135000 282000 - - - 
O160 shale/siliceous dolomite 13 11500 50400 1460 887000 
O161 shale/siliceous dolomite 4090 42600 24900 1580 842000 
O162 siliceous dolomite 7720 85700 17000 132000 404000 
O163 siliceous dolomite 17600 110700 32400 8600 634000 
O164 siliceous dolomite 22500 68000 20700 3930 779000 
O165 siliceous dolomite 32000 88600 25900 810 720000 
O166 siliceous dolomite 88200 113800 13800 9800 614000 

 

The data set under investigation is described by variables which may be correlated in some way. 
While comparing the variables in respect to each other the possible latent correlations are revealed. 
Data set can be divided into various parts, i.e. data points are clustered together. Most straight forward 
way how to examine the data set is to select several most representative variables and cross-plot them 
against each other. This is done for instance in figure 27 where a TAS diagram for selected certified 
ores is depicted by plotting the contributions of sodium oxide and potassium oxide against silicon 
dioxide. This approach is well evaluated in geochemistry for the classification of igneous rocks. It is 
noteworthy, that in this case study the TAS diagram is plotted from only silicon dioxide and 
potassium oxide obtained utilizing a handheld XRF device. Moreover, this TAS diagram serves only 
for demonstrative purposes and should be accepted with care. Based on the TAS diagram, depicted in 
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figure 27, the data matrix is disintegrated into several distinct fragments. Group outliers are visible, 
namely samples Oreas110 and Oreas160, and should be discarded from the analysis. Moreover, 
sample Oreas110 can be considered as the member of the dolomite group. The elemental composition 
of the members of the siltstone and dolomite groups varies strongly especially in the amount of 
silicon.  

Table 6, list of OREAS certified reference materials measured with hand-held XRF device. 

Item no. Cu / ppm Fe / ppm Al / ppm Ca / ppm K / ppm Si / ppm 
O91 280 42810 74810 5320 26410 292720 
O92 2620 45820 78420 4810 27420 289860 
O95 26830 87170 70580 2670 19530 237630 
O96 40960 99480 77740 3290 18780 227930 
O97 66610 121300 72310 2580 16910 193750 
O98 150710 185870 55990 1890 10750 112810 

O110 1740 250480 7970 19030 1000 258330 
O111 24490 324490 - 1200 1140 72190 

O111b 23050 317270 11370 1950 900 75170 
O112 50580 305630 14100 1990 1100 75660 
O113 132380 253770 24830 4000 1160 92690 
O160 - 11370 26160 1040 15350 437570 
O161 4550 42260 13270 1080 280 397600 
O162 7950 82890 7630 101730 1810 196100 
O163 18130 105300 20120 6230 690 291650 
O164 24010 66220 11080 2850 320 362580 
O165 33820 85090 16640 560 1520 326750 
O166 90660 109580 9530 6910 2240 279550 

 

  

Figure 27, TAS diagram of OREAS standards. 
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CLASSIFICATION 

The cross-plot approach is more difficult to be interpreted when more uncorrelated variables are used 
to describe the system. For those purposes the PCA algorithm is employed in the data analysis. PCA 
emulates the topographical distribution of the samples in the data set while only important and most 
distinctive information is used and the redundant information is truncated. PCA rotates the coordinate 
system and projects the data points in the least square sense. Firstly, PCA was applied on the data set 
obtained from the XRF measurement. This data set consists only from the Al, Ca, and Si 
contributions, while XRF device is not capable of detecting light elements such as Na. The intention 
was to compare the performance of LIBS and XRF by PCA. Therefore, potassium was omitted from 
the analysis while no spectral lines of potassium were detected utilizing LIBS.  

PCA was applied on the data matrix, which was composed from the XRF, respectively LIBS, 
measurements. Spectra obtained from LIBS measurement were averaged and organized into the data 
matrix as rows. Selected variables/lines of matrix elements were fitted with pseudo-Voigt profile and 
assigned to columns, which were then normalized to unity and mean-centered. PCA scores of XRF 
data, depicted on the figure 28a, show three distinct groups and one strong outlier, Oreas 160. The 
score plots are depicted as 2D projections of a multidimensional space, where first two principal 
components cover the most of the variation among the data, 97.8% (65.2% and 32.6%). This result is 
similar to the topological distribution of the data points in the TAS diagram. However, contributions 
from different elements were utilized instead of the contribution of potassium. It may be suggested 
that silicon is the most influential element in the classification process. Furthermore, the dependency 
of the discrimination on the individual elements is described by a loadings plot constructed by 
plotting the loadings of related PC against each other. Investigating the loadings depicted on figure 
28b the contributions of Si and Ca are dominant in the first principal component. While in the second 
principal component the most significant element is Al. This implies that the variation along the first 
PC in the scores plot, figure 28a, is closely related to the composition of the sample in the sense of Ca 
and Si content. Similarly this is valid for the second PC in the scores plot and the amount of Al in the 
sample. However, it should be repeated that individual principal components have in general no direct 
physical meaning, i.e. one PC cannot be connected to only one variable in multivariate case. Each 
principal component describes variation among the samples where the most variation within the data 
set is assigned to the first principal component, in this case 65.2%. It is obvious from the scores plot 
that the data tend to cluster according to rock types, i.e. according to the composition of matrix 
elements. Classification is possible based on the results of PCA applied to the spectra. In praxis, the 
samples are usually classified on-site by a geologist based on their physical properties which may not 
be reliable and correct for all of the samples. As an initial guess, one would not have expected such 
clearly separated groups because there are no sharp natural boundaries between classes of rock types, 
i.e. the amounts of matrix elements vary continuously. 
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Figure 28, PCA of XRF data, a) scores, b) loadings. 

PCA was then applied to the data matrix of LIBS measurement of Oreas samples, where spectra of 
each sample were averaged and then organized to rows of this data matrix. The data matrix consisted 
of 14 variables listed in table 2. The variables were represented by integral of the area under the peak 
of selected spectral lines (Al, Ca, and Si). Only those elements were picked up for the analysis in 
order to compare the results with the PCA analysis of XRF data. First three principal components 
covering 96.5% of total variation (60.5%, 30%, and 6%) were cross-plotted to investigate the 
classification of the samples, figure 29. Expected grouping is over-shadowed by extremely outlying 
data points, Oreas160 and Oreas162). PCA algorithm is essentially sensitive to outliers due to its least 
squares property. For this reason, it is beneficial to perform the PCA in the first step of the analysis 
only to detect outliers. Moreover, it may be concluded that LIBS measurement is significantly 
affected by the matrix effect. 

 

Figure 29, PCA scores of LIBS data, a) 1st and 2nd principal component, b) 1st and 3rd principal component. 

The influence of individual matrix lines to the discrimination of standardized samples is 
schematically depicted in loadings plots of the first three PCs, figure 30. The main discrimination 
power may be assigned to Al and Si and secondary to Ca, which is supreme in the second PC. It was 



USING LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) FOR MATERIAL ANALYSIS�

�

- 57 - 
�

�

mentioned in the section 1.7, that the scaling of a variable with a lower concentration range results in 
higher computational error. This may be the case of Ca, however further study should be done. The 
loadings plots constructed from PCA of LIBS and XRF do not correspond. This may be a 
consequence of outliers disturbing the estimation of PC in the case of LIBS data.  

  

Figure 30, PCA loadings of LIBS data, a) 1st and 2nd principal component, b) 1st and 3rd principal component. 

It is worth of a repetition that the outliers severely affect the estimation of PCA model. Therefore they 
should be discarded from the further analysis (classification and quantification). The results of 
classification and quantification of a data set without any outliers are shown at the end of this case 
study where classification is beneficially connected with quantitative analysis, figure 39. 

It has been already mentioned that Kohonen maps are considered to be an alternative to PCA analysis, 
therefore, both algorithms were compared. Kohonen maps were trained utilizing unsupervised 
learning to create a two-dimensional representation of the input data set. During the training the 
neurons adapt their properties and preserve the topological distribution of the information in the data 
set. The training is based on the competitive and cooperative learning when the winner (the closest 
matching neuron to the selected data point) changes its properties according to the selected data point. 
Moreover, neurons surrounding the winner are as well affected by the change up to an extent given by 
neighbourhood function. Neurons are connected with their closest neighbours and form a net which is 
stretching and shrinking over the data space during the computation. 

In the first step of the analysis the number of neurons and the total number of iterations should be 
determined. In our case, total of 100 neurons and 1500 iterations were selected. The number of 
neurons and iterations were selected in order to minimize the quantization error [93]. The size of 
neighbourhood function and the measure of adaptation can be as well defined. Both magnitudes 
decrease their values with every step of iteration while in the end the algorithm has only competitive 
character and winning neurons do not affect their neighbours. When the Kohonen map is trained two 
basic means of its visualization are usually utilized, the unified distance matrix and the component 
planes. 

For I number of samples and L number of neurons there will be I winning neurons directly 
representing samples in the constructed Kohonen map. Samples are scattered according to the 
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information provided by the variables, the data matrix was constructed in the same way as in the case 
of PCA. The winner changes its properties after each iteration, so as the properties of the closest 
neighbours and shifts its position to preserve the topological distribution of the samples in the original 
data matrix. When the training is finished the winners adapted their position and the property of each 
neuron is then visualised in a series of 2D component planes, figure 31. Trends in the data set can be 
observed while examining three component planes of Al, Ca, and Si (XRF data). Neurons organize 
their positions to create clusters of similar samples, when the similarity is based on the elemental 
composition. The component planes are alternative of PCA loadings and show how individual 
variables affect the distribution of the samples. Investigating figure 28b and figure 31, the 
contribution of individual elements is comparable. 

 

Figure 31, XRF measurement of Oreas samples: component planes 

 

Figure 32, XRF measurement of Oreas samples: a) the unified distance matrix, b) samples assigned to neurons. 

The visual comparison of the component planes gets more difficult when a higher number of 
variables is introduced into the computation. For this reason, the unified distance matrix is evaluated. 
The U-matrix is a representation of the component planes where the Euclidean distance between 
neighbouring vectors is visualized. When such distances are depicted in colour scale, the more white 
the segment of U-matrix the more distant the neighbouring neurons. As it is depicted in figure 32a, 
the newly constructed data space is divided into several segments where the colour of the segment 
stands for the distance of two consequent neurons. The whole map can be simplified into 
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imaginations of valleys and mountains. It is therefore valid that the higher the mountains the more 
different the data points, neurons. The U-matrix can be seen as an alternative to PCA scores in a 2D 
projection. The exact positions of winning neurons representing the samples are visualized on figure 
32b. The colour in this case signifies the similarity of the neighbouring samples and the size of each 
unit represents how frequently the corresponding neuron was assigned as a BMU during the training. 
Component planes and U-matrix should be, as well as PCA scores and loadings, examined in parallel 
to fully understand the newly constructed data space. 

 

Figure 33, LIBS measurement of Oreas samples: component planes. 

 

Figure 34, LIBS measurement of Oreas samples: a) unified distance matrix, b) samples assigned to neurons. 

It was already stated that more spectral lines per elements were chosen in order to supervise spectral 
lines with each other. This is done to prevent the misuse of variable, while resonant lines may get 
saturated and the information they carry is therefore limited. On the other hand, less intense lines of 
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an element may not be appropriate in the description of samples in which this element occurs in trace 
amount. Nevertheless, it is reasonable to expect the similar dependency of the model on various lines 
of the same element.  

Kohonen maps were trained for LIBS data in another step of the analysis, where the data matrix was 
organized as in the previous case. Component planes of 14 variables, spectral lines of matrix elements 
(Al, Ca, and Si), are depicted on figure 33. The contributions of spectral lines of one element behave 
in similar manner as it was expected, i.e. individual component planes of one element follow similar 
trend in which the samples were organized in the map. The intensity of a spectral line is strongly 
dependent on the amount of the element in the sample. However, the total intensities of spectral lines 
of one element in a LIP differ according to their quantum properties. This is reflected in their 
contribution to the model. For instance the Al line at 309.27 nm is conventionally observed with 
significantly lower intensity compared to the Al line at 396.12 nm. This is evident from the 
component planes for both lines where the numerical range of the Al line at 309.27 nm is significantly 
lower than the one of the line at 396.12 nm. The component plane of the Al line at 309.27 nm appears 
to be shallower. This means that the Al line at 396.12 nm is more apt to reflect the variation among 
the samples. 

Contributions from all of the component planes were then collected to form the U-matrix, figure 34a. 
This result is in a good agreement with the one from PCA algorithm. The outliers are evident from 
both parts of the figure, by a bigger distance discriminating the samples in the bottom right corner of 
the figure. The colouring assigns the majority of the samples into one cluster (green colour). This 
cluster is surrounded by strongly deviating outliers, namely O91, O92, O110, O160, and O162.  

To conclude this section, the performances of PCA and Kohonen maps were compared. The main 
emphasis was given to the detection of outliers and sample clustering. In both cases, the outliers 
strongly influenced the resulted projection of the samples in the newly constructed coordination 
space. Clustering of the data set is possible based on similarities in spectral variables, i.e. matrix 
elements (Al, Ca, and Si). The data matrix can be in further steps disassembled to individual clusters, 
i.e. groups of samples with similar composition in matrix elements. For the very complex data with 
overlapping groups, this discrimination has to be done step by step, as suggested by Multari et al. 
[105]. In their study, the most distinct group in the PC space was taken out of the analysis and then 
PCA was applied again on the reduced data matrix. With this step, the variation within the data set is 
reduced and formerly overlapping groups may get separated. This is repeated until no more 
overlapping groups are present in the PC space. This approach was successfully utilized during the 
classification and quantitative analysis of 27 igneous rocks. This work was submitted to the thematic 
issue on EMSLIBS conference in Spectrochimica Acta B and the article is the part of this thesis, see 
appendix. 

QUANTIFICATION 

Special attention was paid to the amount of copper in the samples (ranging from 0.2 to 15 wt. %) for 
quantitative analysis. First step was the univariate quantitative analysis with emphasis to the 
concentration of copper via the formation of calibration curves. Samples of known composition were 
chosen and therefore the performance of the LIBS measurement can be foreseen. 
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Taking into account the linearity of the LIBS signal to trace element concentration (this assumption is 
valid and verified for lower concentrations), the calibration curve for copper was plotted, figure 35. 
The linearity can be observed for the intensity of the reference Cu (I) line at 521.82 nm obtained from 
LIBS measurement. When the copper reaches approximately 5 wt. % then the selected copper line is 
saturated and linearity in the calibration curve breaks. 

Three different trends can be observed investigating the calibration plot constructed for Cu (I) line at 
521.82 nm, figure 35. Note, that the outliers detected in the previous step were not omitted from the 
the qunatitative analysis. Different trends of the calibration curves reflect the strong dependency on 
the matrix effect and support the need for classification of the samples prior the quantitative analysis. 
Limits of detection for individual calibration curves were not computed due to the lack of more points 
forming those calibration curves. Nevertheless, constructing only one calibration curve for the whole 
data set may result in misleading further evaluation of the copper amount in unknown samples. 

 

Figure 35, calibration curve for copper in Oreas standards, Cu (I) at 521.82 nm. 

A further step for improving the calibration curve can be the introduction of a line of a matrix element 
for normalization of the calibration curve. The selection of a proper line of the matrix element can be 
difficult due to the varying composition of the samples. Lines of matrix elements were chosen to 
match energy of their higher excited state with the one of Cu line at 521.82 nm. The selection of an 
appropriate matrix line is challenging when complex matrices such as those of mineral ores are under 
investigation. Lines of matrix elements (Al, Ca, Na, and Si) were utilized for the calibration curve 
normalization but without any significant success, while the resulted linearity of the calibration curve 
was in the R2 ~ 0.6 level. Plots of likewise normalized calibration curves are not shown in this work. 

A typical LIBS spectrum carries abundant information content. This redundancy in spectral 
information may be conveniently used in multivariate analysis [2]. Consequently, the prediction 
power and precision of the LIBS measurement can be improved by applying more spectral lines at 
once. A data matrix was constructed from LIBS measurements with the emphasis on four copper 
lines, listed in table 3. Cu concentrations, from table 5, were organized in the calibration vector y. 
Multivariate regression algorithms (PCR and PLSR) were then used against formerly constructed 
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objects. Due to the linear property of multivariate algorithms for quantitative analysis, it has to be 
stressed that only linear data set can be introduced to PCR and PLCR for their linear property [114]. 
Therefore, the samples with copper content above 5.1 wt. % were omitted from the data matrix. The 
outliers detected with PCA and SOM in foregoing steps of the analysis were preserved. 

It is noteworthy that both algorithms model the data set in a least square sense while preserving only 
the most valuable information and truncating the redundancy. The main difference between the 
algorithms is that the PLSR algorithm creates models in X and y while PCR models only the data in 
X. Because of this feature the PLSR algorithm usually leads to a model that is able to fit response 
variable y with fewer components. The number of principal components used in modelling is essential 
and has to be chosen with care. Less PCs may not model the data matrix properly. On the other hand, 
too many PCs often result in overfitted models which are too optimistic and misleading. 

For this reason the performance of PCR and PLSR algorithms were compared. To achieve this, all 
four principal components were gradually added to the model and the mean square error of prediction 
(MSEP) was estimated, figure 36a. In the plot the data points are a function of principal components 
when the optimal number PCs can be selected as its global minimum. There is no reason why both 
algorithms should be restricted to the same number of PCs. Though, in this case two PCs for PCR 
(describing 98.9% of total variation) and for PLSR (99.2%) were selected. PCR and PLSR models 
were created and copper contents were predicted based on selected number of principal components, 
figure 36b. From the inspection of the plot, the PCR model is comparable to the PLSR one. The R2 
values and MSEP confirm that, ªÝÞß� � HEà�à and á«K©ÝÞß � HEHDF in respect to ªÝâãß� � HEà�ä and 
á«K©Ýâãß � HEHD�. Though, those results are poor in the sense of coefficient of determination. This 
may be a consequence of vast variation in the content of matrix elements. 

The prediction of PCR and PLSR can be further improved when matrix lines are added into the data 
matrix X. This approach was suggested by Death et al. [115] for the modelling of ore sample 
measurements. The analysis then reflects as well the variance in the matrix elements. Therefore it is 
more likely to obtain better prediction from this kind of a model. Their theoretical assumption was 
then proved by the PCR prediction of Si, Al, and Fe contents. Therefore, Al, Ca, and Si lines were 
added to the Cu lines in the data matrix prior further analysis in this case study. Thus altered data 
matrix was then analysed with PCR and PLSR algorithms in the same steps as in foregoing case. The 
number of components was for both algorithms chosen after inspection of figure 37a. From the plot is 
obvious that PCR with 6 components may do the same job as PLSR with 5 components in the means 
of MSEP. This result proves the already stated fact that PLSR needs fewer components to create a 
reasonable regression model. 

Copper amounts were predicted employing both algorithms with selected PCs, figure 37b. The PCR 
prediction is slightly better than the PLSR one. However more components were used to model the 
data matrix. Figures of merit confirm this statement, ªÝÞß� � HEå= and á«K©ÝÞß � HEHHäà in respect to 
ªÝâãß� � HEåDà and á«K©Ýâãß � HEHHF=. The approach stated by Death et al. results in better linearity of 
the calibration curve, i.e. in better coefficient of determination R2, than in the case of the model with 
Cu lines only. The PLSR regression model does not require so many components as PCR. For this 
reason the PLSR model may be considered more parsimonious to the data. On the other hand, PCR is 
more apt for the modelling of the data matrix X than PLSR algorithm. As can be seen in figure 38, 
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first few principal components of PCR describe more variance in the data matrix then those of PLSR. 
Therefore the selection of the more appropriate multivariate regression algorithm depends on the case 
of the study. 

 

Figure 36, a) mean square prediction error for individual PCs, b) predicted copper contents utilizing PCR and PLSR. 

 

Figure 37, a) mean square prediction error for individual PCs, b) predicted copper contents utilizing PCR and PLSR. 
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Figure 38, variance explained in the data matrix X by PCR and PLSR. 

It the last step of the analysis, the classification and quantitative analysis are beneficially employed 
together. When the samples are isolated in distinct groups based on their matrices, partial calibration 
curves can be plotted. For those purposes, the data matrix was treated of the outliers. Then PCA was 
once more applied, figure 39a, where the reduced data matrix is decomposed into three distinct 
groups. First two PCs depicted in the plot sum up 93.9% (84.7% and 9.2%) of overall variation within 
the reduced data matrix. Afterwards, corresponding calibration curves are plotted, figure 39b. The 
copper content in an unknown sample may be obtained directly from corresponding calibration curve 
without any need for utilization of multivariate regression. 

 

Figure 39, reduced data set, a) PCA analysis, b) calibration curve. 

Concluding the quantification part of this case study, the univariate calibration falls apart when 
samples with varying matrices are analysed at once. The prediction power of such constructed 
calibration curve is poor. Therefore samples should be clustered prior the quantitative analysis, in 
order to avoid the uncertainties caused by the matrix effect, and partial calibration curves should be 
plotted to improve the prediction power of quantitative analysis. 
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4.3. CASE STUDY III 
The sample set was compiled of 80 samples, 52 andesite and 28 diorite samples, collected in north-
west region in Iran. As in the first case study, the samples were analysed using ICP-MS after four acid 
digestions at the University of Clausthal. Those samples were assigned to groups at the same place.  

Investigating the QAPF diagram, the elemental composition of both igneous rocks is closely related 
[109, 110]. Diorite is one of the plutonic (intrusive) rocks which were formed from magma that 
cooled down under the surface of the Earth. Their composition was influenced by the pre-existing 
rocks into which they intruded. Andesite is a member of the volcanic (extrusive) rocks which were 
formed from the magma on the surface of the planet. The magma which formed plutonic rocks cooled 
down much faster than in the case of volcanic rocks. Therefore, volcanic and plutonic rocks may be 
distinguished by the size and the shape of their grains. The QAPF diagram is equivalent for both types 
of igneous rocks and therefore the chemical composition in the sense of Al, Ca, Na, and Si may not be 
the only decisive factors for the classification process. 

The samples were measured in the form of fine dust pressed onto the surface of DST. The LIBS 
system was set as listed in table 1. Representative 200 laser pulses per sample (corresponding to 200 
laser-induced plasmas) were observed. The exposed spectra were averaged and analysed utilizing the 
algorithm which was already described. The data matrix was composed as in foregoing cases, rows 
refer to averaged spectra of a sample and columns refer to variables. The typical spectra of both 
igneous rock types are depicted on figure 40. Despite the fact that both rock types are close 
neighbours in the QAPF diagram the differences are noticeable in all of marked matrix lines. 
Therefore, lines of Al, Ca, Na, and Si were utilized in the computation of principal components, lines 
listed in table 2. 

 

Figure 40, typical LIBS spectrum of andesite and diorite (bold line) rocks. 
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CLASSIFICATION 

PCA algorithm was applied to the data matrix in order to detect outliers and primarily to investigate 
possible clustering of measured samples to appropriate groups, figure 41. First three principal 
components covering 97.3% of overall variation (64.9%, 19.9% and 12.5%) are cross-plotted. 
Andesite and diorite clusters are amply separated along the first principal component. The 
discrimination of andesite and diorite is dependent mainly on the contribution of Al, Ca and Si as can 
be seen in the loadings plot, figure 42. Those matrix elements are scattered along the first principal 
component. However it cannot be stated that one of those elements is superior to the others. 
Therefore, the principal component should be associated to the contribution of all matrix elements at 
once in a way which is depicted on both parts of the loading plot. On the other hand, the contribution 
of Na to the discrimination is rather secondary and do not have direct impact on the sample 
classification. However, it can be stated that diorite rocks are composed from higher amount of Al 
and Si and lower amount of Ca compared to andesite rocks, as suggest intensities of relevant spectral 
lines in figure 40 and values of related loading factors depicted on figure 42. 

 

Figure 41, PCA scores, a) 1st and 2nd principal component, b) 1st and 3rd principal component. 

 

Figure 42, PCA loadings, a) 1st and 2nd principal component, b) 1st and 3rd principal component. 
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No misclassified samples were detected but several samples outlying from the appropriate clusters are 
present. Those samples (namely D13, A1, A3, A5, A11, A13, A14, A42, and A46) may be discarded 
from the further analysis, but this was not done in this case study. All of the samples were remained 
in the data set to test the robustness of the analysis. Furthermore, it could be expected that samples 
should be clustered more closely in the PC space. However, considering vast possible diversity in the 
composition of the samples collected in-field the resulted discrimination of the samples may be 
accepted as satisfactory. 

The Gaussian clustering algorithm, built-in to the MATLAB Statistics Toolbox, was used to 
discriminate individual groups of samples according to their distribution in the PC space. Sufficient 
number of PCs was selected to describe 95% of overall variation within the data, in this case three 
PCs. Figure 41 shows the fitting result projected onto first two PCs. The ellipsoids in the projection 
plot mark the area that covers 99% of the volume of the particular Gaussian sub-distribution. Some 
clusters can overlap when discriminating samples with similar composition. One should note that 
Gaussian clustering was used only for enclosing the points into separate groups. For this purpose 
spectra for one sample were not averaged but plotted individually, this leads to increase the number of 
points in the PC space. 

It was proved by the means of PCA that the samples are not misclassified. In the next step of the 
analysis SIMCA algorithm was utilized for classification of ‘unknown’ samples. No testing data set 
was present and therefore LOSO algorithm was utilized. In this case, spectra of each sample were not 
averaged to build up a data matrix with more data points/rows (1600 data points in total). Step-by-
step was each individual sample (represented by 20 spectra) taken out of the data matrix. For each 
rock type a model was established with SIMCA. Then the omitted sample was classified based on the 
similarities with SIMCA models. A total of 13 spectra were mismatched from total 1600 spectra 
applied to the SIMCA, table 7. After such analysis the resulted uncertainty of a sample being 
misclassified is below 1%. 

Table 7, the results of quantification utilizing SIMCA. 

Rock type Total no. of samples Total no. of spectra Mismatched spectra 
andesite 52 1040 7 
diorite 28 560 6 

 

QUANTIFICATION 

The reliable quantification of copper content is necessary for the purposes of the mining industry. 
Calibration curve was constructed utilizing copper line at 521.82 for all the samples, figure 43a. This 
calibration line gets saturated when the amount of copper in the sample reaches approximately 
1 wt. %. The linear part of this curve was approximated by a line with coefficient of determination 
R2 = 0.86. This may suggest that the matrix effect is not that significant as in foregoing case studies. 
Samples were divided into two groups according to their class membership and then an individual 
calibration curve was constructed for each class, figure 43b. However, this attempt improved the 
prediction power only moderately in the case of andesite samples, R2 = 0.88. But the prediction power 
of the calibration curve for diorite samples is lower than the one estimated for all samples, R2 = 0.81. 
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Spectral lines of Al, Ca, Na, and Si were utilized to normalize those calibration curves. However, 
normalization of the calibration curve to one of the matrix lines was not successful. Resulted 
coefficients of determination were significantly lower than those already presented. This may be a 
consequence of a complex dependence on multiple elements as proved by a PCA loadings plot, figure 
42. There the first principal component responsible for the main sample classification was related to 
the contribution of Al, Ca, and Si. Normalized calibration curves are not shown for this case study. 

The last step of this analysis was the prediction of a copper content by the means of PCR and PLSR, 
figure 44b. The range of copper content in the samples was reduced so that only the linear part of the 
calibration curve, figure 43a. The data matrix consisted of all matrix elements formerly selected for 
PCA analysis and copper lines, table 3. The algorithm was applied as in the foregoing case study, 
optimal number of principal components was estimated from the MSEP plot, figure 44a. There is a 
slight improvement in the prediction power when PCR and PLSR are utilized, R2 = 0.9 for both 
algorithms. PLSR with four components does a comparable job as PCR with five components. 

 

Figure 43, calibration curve for copper line Cu (I) at 521.82 nm utilizing a) all samples at once, b) samples discriminated 
with PCA analysis. 

 

Figure 44, a) mean square prediction error for individual PCs, b) predicted copper contents utilizing PCR and PLSR. 
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The data matrix was divided into two parts according to the class membership, figure 45a) andesite 
and b) diorite. For each class separate models based on PCR and PLSR were estimated. In both cases 
the separate modelling lead to a slight improvement in the means of coefficient of determination. 
Figures of merit listed for the andesite model, ªÝÞß� � HEåDæ and á«K©ÝÞß � HEHH�å for 7PCs in respect 
to ªÝâãß� � HEåDà and á«K©Ýâãß � HEHHF for 5PCs and for the diorite model ªÝÞß� � HEå� and á«K©ÝÞß �
HEHH�D with 6PCs in respect to ªÝâãß� � HEå� and á«K©Ýâãß � HEHH�ä for 5 PCs. This step in the 
analysis lowers the diversity in the data set and consequently eases the computational severity and 
inaccuracy of the model. However, this last step may be seen as redundant in the quantification 
analysis. While to the best of my knowledge based on the literature research multivariate algorithms 
for classification and quantitative analysis are not used together. 

 

Figure 45, PCR and PLSR prediction of copper content for a) andesite samples, b) diorite samples. 

PCA was successfully utilized to classify the samples of two different rock types. This classification 
was then emulated with the SIMCA algorithm. Moreover, it was proved that multivariate regression 
(PCR and PLSR) may compensate the matrix effect to a certain extent when data matrix is composed 
from spectral lines of an analyte as well as lines of matrix elements. It may be further stated based on 
the improved linearity of predicted analyte content from PCR and PLSR models and on the results 
given in the article, see appendix. The content of analyte predicted from PCR and PLSR models are 
observed with improved bias, i.e. predicted analyte content is closer to the certified value. 
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CONCLUSION 
The results shown in this thesis proved the pertinence of the LIBS in mining industry. The primary 
aim was the determination of copper content in various igneous rocks. It was observed that the matrix 
effect may be significant even for smaller data sets consisting of samples of the same igneous rock. 
Therefore, it is recommended to discriminate the sample set with the emphasis on the similarity in the 
composition of matrix elements. Consequently, more reliable quantitative analysis of trace elements 
may be achieved following this recommendation. 

In the frame of three case studies the various ways of sample pretreatment were tested. The univariate 
calibration curve was successfully utilized with the normalization to selected matrix element for 
limited number of samples. For this reason, the data sets, which are more complex, were treated with 
multivariate regression algorithms. The multivariate quantitative analysis was provided by the means 
of PCR and PLSR and the performance of both algorithms was compared in detail. PCR and PLSR 
may compensate the matrix effect to a certain extent. Though it was proved in general case (or for 
bigger sample set) is such analysis unsatisfactory. Therefore, PCA was employed on the data set to 
reveal possible outliers and clusters of data/samples when expecting the newly constructed PC space. 
Subsequently, the performance of PCA was then emulated by Kohonen Maps, which are considered 
analogical to PCA. Finally, a robust data set was classified by the means of SIMCA with the 
emphasis on matrix elements. 

As for the experimental part of this thesis, an algorithm for a reliable data analysis was proposed. It is 
recommended in the first step of the analysis to apply PCA algorithm to detect outliers in the data set 
with any further intention. Then PCA should be applied once more to reveal possible clusters based 
on the similarities of the samples in the composition of their matrix elements. Moreover, it is 
beneficial to create partial calibration curve for each data cluster individually. In that way the 
occurrence of the matrix effect can be avoided and reliable and satisfactorily accurate calibration 
curves may be plotted. Besides, the matrix effect may be suppressed to a certain extent when 
multivariate calibration is applied. It is noteworthy that the data matrix may be constructed from lines 
(variables) of matrix elements only to sufficiently more accurately reflect the variance among the 
sample matrices. 

Chemometric algorithms were successfully utilized for the multivariate classification and quantitative 
analysis of LIBS data. Further work using the stand-off LIBS device is therefore scheduled with the 
aim to create necessary data libraries which are irreplaceable part of successful in-situ multivariate 
analysis. 
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SHRNUTÍ 
Výsledky uvedené v této diserta�ní práci potvrzují vhodnost použití metody LIBS v t�žebním 
pr�myslu. Primárním cílem bylo stanovit množství m�di v r�zných druzích vyv�elých hornin. Bylo 
zjišt�no, že matri�ní jev m�že výrazn� ovlivnit m��ení metodou LIBS, p�estože byly nam��eny pouze 
malé soubory vzork� stejné horniny. Proto je doporu�eno rozt�ídit vzorky s ohledem na podobnosti ve 
složení matric, respektive pom�ry množství matri�ních prvk�. Následn� je možné ur�it množství 
analytu ve vzorku s v�tší p�esností. 

V rámci t�ech p�ípadových studií byly nam��eny vzorky r�zných magmatických hornin a zp�soby 
jejich p�ípravy p�ed vlastním me�ením metodou LIBS. Kalibra�ní k�ivky vytvo�ené pomocí jedné 
spektrální �áry analytu byly úsp�šn� použity (spolu s linearizací vzhledem ke spektrální �á�e 
matri�ního prvk�), ovšem pouze pro omezený rozsah vzork�. Z tohoto d�vodu byly komplexn�jší 
soubory dat analyzovány pomocí multivaria�ních regresních metod, PCR and PLSR, jejichž výsledky 
byly podrobn� srovnány. Multivaria�ní kvantitativní metody mohou vyvážit matri�ní jev, avšak pouze 
do ur�ité míry. Bylo potvrzeno, že v obecném p�ípad� jsou tyto metody nedosta�ující. Proto byla 
metoda PCA aplikována na soubor dat se zám�rem odhalit odlehlé body/vzorky (tj. vzorky výrazn� se 
lišící od zbytku dané skupiny nebo celého souboru dat) a skupiny (klastry/shluky) dat/vzork� 
prozkoumáním nov� vytvo�eného prostoru hlavních komponent. Výsledné zpracovaní dat pomocí 
metody PCA bylo napodobeno pomocí Kohonenových map, které jsou analogické k PCA. Na záv�r 
experimentální �ásti byl obsahlý soubor dat úsp�šn� rozt�íd�n metodou SIMCA s d�razem na 
matri�ní prvky. 

Na základ� experimentálních m��ení byl ustanoven algoritmus pro spolehlivou analýzu dat. V prvním 
kroku je tedy doporu�eno použít metodu PCA na soubor dat výhradn� k detekci odlehlých dat/vzork�. 
Poté je vhodné použít metodu PCA znovu se zám�rem rozt�ídit soubor dat na jednotlivé skupiny 
podle podobnosti ve složení jejich matric. Následn� je možné vytvo�it kalibra�ní k�ivky samostatn� 
pro jednotlivé skupiny vzork�. Takto vytvo�ené kalibra�ní k�ivky jsou dostate�n� p�esné pro použití 
v t�žebním pr�myslu. Tímto zp�sobem je možné dostate�n� p�edejít matri�nímu jevu a výrazn� tak 
omezit jeho negativní ú�inek na LIBS m��ení. Navíc, matri�ní efekt lze do ur�ité míry eliminovat i 
pomocí multivaria�ních metod PCR and PLSR. Je vhodné zmínit, že jednotlivé vzorky mohou být 
dostate�n� reprezentovány pouze použitím spektrálních �ar matri�ních prvku. 

Chemometrické algoritmy byly úsp�šn� použity p�i multivaria�ní kvantifikaci a klasifikaci 
magmatických hornin nam��ených metodou LIBS. Dalším cílem stav�jícím na základech položených 
touto diserta�ní prací je vytvo�ení knihoven dat, které následn� budou nenahraditelnou sou�ástí 
úsp�šné in-situ multivaria�ní analýzy. 
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ZUSAMMENFASSUNG 
Die Ergebnisse zeigen die Bedeutung von LIBS in der Bergbauindustrie, wobei ein Hauptaugenmerk 
auf der Bestimmung von Kupfer in vulkanischen Gesteinsproben lag. Es konnte beobachtet werden, 
dass der Matrixeffekt einen signifikanten Einfluss auf selbst kleine Datensätze bestehend aus Proben 
des gleichen Gesteins hat. Anhand dieser Erkenntnisse ist es empfehlenswert Proben 
schwerpunktmäßig nach der Zusammensetzung der Matrixelemente zu klassifizieren. Unter 
Berücksichtigung dieses Hinweises kann eine verlässliche Quantifizierung von Spurenelementen 
erhalten werden. 

Im Rahmen dreier Fallstudien wurden unterschiedliche Probenvorbereitungen getestet. Eine 
univariate Kalibriergerade konnte nur für eine begrenzte Anzahl an Proben unter Normalisierung, 
bezogen auf ausgewählte Matrixelemente, eingeführt werden. Aus diesem Grund wurden Komplexere 
Datensätzen mittels multivariater Regression ausgewertet. Die multivariate quantitative Analyse 
wurde mit Mittelwerten von PCR und PLSR ausgeführt und jeweilige Ergebnisse verglichen. PCR 
und PLSR können den Matrixeffekt nur bis zu einer bestimmten Größenordnung kompensieren und 
um dies zu bestätigen wurde eine umfangreiche Studie, mit den erwartet-unbefriedigenden, 
Ergebnissen erstellt. Um mögliche Ausreißer und somit Cluster besser zu erkennen wurde die PCA 
eingeführt. Die Leistung der PCA wurde im nächsten Schritt mittels Kohonenkarte überprüft, welche 
gleiche Annahmen macht wie die PCA. Schließlich konnte eine Klassifizierung der Proben, mit 
Mittelwerten der SIMCA-Analyse und der hohen Gewichtung von Matrixelementen, realisiert 
werden. 

Für eine zuverlässige Datenanalyse konnte ein Algorithmus entwickelt werden. Zunächst wird im 
ersten Schritt eine PCA durchgeführt werden um Ausreißer zu erkennen und zu entfernen. Im zweiten 
Schritt wird die PCA erneut durchgeführt um Cluster aufgrund der jeweiligen Ähnlichkeit der 
Matrices von Gesteinsproben zu erkennen. Darüber hinaus ist es von Vorteil für jeden Cluster eigene 
Kalibrierkurven zu erstellen um den Einfluss von Matrixeffekten zu minimieren und so verlässliche, 
zufriedenstellende Daten zu erzeugen. Zusätzlich wird die multivariate Datenanalyse angewendet um 
weitere Auswirkungen der Matrices auf Analysedaten zu unterdrücken. Schließlich soll noch erwähnt 
werden, dass die Analyse von Matrixelement Signalen (Variablen) sogar ausreichend ist um die 
Gesamtheit einer Gesteinsprobe zu beschreiben. 

Chemometrische Algorithmen wurden erfolgreich eingesetzt um multivariate Klassifizierungen und 
quantitative Analysen mittels LIBS durchzuführen. Weitere Arbeiten unter Einsatz des stand-off 
LIBS Systems sind, mit dem Ziel benötigte Datenbanken aufzubauen, geplant. Diese stellen einen 
unerlässlichen Teil von multivariaten in-situ Analysen dar. 
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LIST OF ABBREVIATIONS 
 
AES Atomic Emission Spectroscopy 
ANN Artificial Neural Network 
BMU Best Matching Unit 
CD Collisional-Dominated 
CF Calibration-Free 
CR Collisional-Radiative 
CV Cross Validation 
DP Double Pulse 
DPSS Diode Pumped Solid State 
DST Double Sided adhesive Tape 
FWHM Full Width at Half Maximum 
ICCD Intensified Charge-Coupled Device 
ICP Inductively Coupled Plasma 
LA Laser Ablation 
LIBS Laser-Induced Breakdown Spectroscopy 
LIFS Laser-Induced Fluorescence Spectroscopy 
LIP Laser-Induced Plasma 
LIPS Laser-Induced Plasma Spectroscopy 
LOD Limit Of Detection 
LOQ Limit Of Quantification 
LOL Limit Of Linearity 
LOSO Leave One Sample Out 
LTE Local Thermodynamic Equilibrium 
MS Mass Spectrometry 
Nd:YAG Neodymium-doped Yttrium Aluminium Garnet 
NIPALS Nonlinear Iterative PArtial Least Squares 
OD Orthogonal Distance 
OES Optical Emission Spectrometry 
PC Principal Component 
PCA Principal Component Analysis 
PCR Principal Component Regression 
PLS Partial Least Squares 
PLS-DA Partial Least Squares Discriminant Analysis 
PLSR Partial Least Squares Regression 
PMT PhotoMultiplier Tube 
PRESS PREdiction Sum of Squares 
QAPF Quartz Alkali feldspar Plagioclase Feldspathoid 
RSD Relative Standard Deviation 
RSS Residual Sum of Squares 
SIMCA Soft Independent Modelling of Class Analogies 
SNR Signal to Noise Ratio 
SOM Self-Organizing Map 
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SP Single Pulse 
SVD Singular Value Decomposition 
TAS Total Alkali Silica 
UV Ultra Violet 
XRF X-Ray Fluorescence 
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LIST OF SYMBOLS 
 
1. LASER-INDUCED BREAKDOWN SPECTROSCOPY 
. the variable of the Voigt profile function 
� the ion broadening parameter 
��� the spontaneous transition probability of the quantum transition (Einstein coefficient) 

� the coefficient equal to 1.2 or 0.75 for ionic or neutral lines respectively 
�]� the background equivalent concentration 
�c the relative concentration of emitting species in the plasma 
DC the diameter of the spot on the lens 
DE the angular dispersion of the spectrometer 
�� the angle separating two light beams 
�A the wavelength difference 
�] the highest energy of quantum transition for which the McWhirter criterion is valid 
�]�t� the lowering correction parameter 
�A the least distance between two resolvable wavelengths 
�AE�/�Z the Stark broadening of the line 
]� the excitation energy of the excited state i 
]�t� the first ionization potential energy 

B the frequency of the laser radiation 
B��� the function referring to the radiation environment 
B� !  the function referring to the excitation/ionization mechanisms  
  leading to the atomic/ionic emission 
B��� the function referring to the ablation/vaporization of solid material 
BC the focal length of the lens 
BE the focal length of the spectrometer 
~/�R the wavelength independent factor 
\� the statistical weight of the excited state i 
�� the gate delay 
�� the gate width 
"#$A�% the shape of a spectral line described by the pseudo-Voigt profile 
s the Planck constant 
I the superscript referring to atomic species 
II the superscript referring to ionic species 
i the index of upper quantum state of an atom 
_ the number of samples 
_�� the integrated intensity of the elemental line 

j the index of lower quantum state of an atom 
� the number of variables 
[ the Boltzmann constant 
[{ the constant of calibration curve 
+ the number of observed outcomes 
+$,- .% the Voigt profile function 
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A the wavelength of the laser radiation 
A� the wavelength of the emitted characteristic radiation 
A� the central wavelength of the spectral line 
O the electron mass 
m the index referring to the upper state of singly ionized atom 
n the index referring to the lower state of singly ionized atom 

B� the number density of electrons 
Bç the total particle density of the plasma 
BR the total number density of the species s in the plasma 
B�R the population of the species s in the excited quantum state 
F� the coefficient of determination 
FE the resolution of the spectrometer 
F�D� the relative standard deviation of the background 
� the slope of the linear part of the calibration curve 
��� the signal of the elemental line 
� the standard deviation of the background in the blank sample 
J� the electron temperature 
, the variable of the Voigt profile function 
^R$J�% the internal partition function of the species at the temperature J� 
� the electron impact parameter 
�� the waist of the laser beam 
� the data matrix 
��� the intensity of the background 
� the regression matrix 
 
2. CHEMOMETRICS 
a the index referring to the individual principal component 
A the total number of principal components 
Á$7% the learning rate 
»� the best matching unit 
B the PLSR coefficient 
c the index referring to the class in SIMCA model 
² the weight matrix of Y 

� the error (residual) matrix 
³ the error (residual) matrix of Y 

s�T�$7% the neighbourhood function 

×� the number of neurons surrounding the neuron l 
i the index referring to the individual sample/measurement 
I the total number of samples/measurements 
j the index referring to the individual variable 
J the total number of variables 
k the index referring to the individual observed outcome 
K the total number of observed outcomes 
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¼/ the size of the ath component in the PLS model 
l the index referring to the individual neuron 
L the total number of neurons 
A/ the value of the ath eigenvalue 
Ì�T the neighbourhood of the winning neuron 

Ì� the neighbourhood of the neuron l 
�D! the orthogonal distance to class c 

� the loadings matrix 
è�T  the position of the winning neuron in the map 

è� the position of the neuron l in the map 
é the vector of regression coefficients 
�$7% the neighbourhood radius 
t the index referring to the individual iteration 
T the total number of iterations 
� the scores matrix 
,� the Euclidean distance among the weight vector of a neuron l  
  and weight vectors of neurons in the neighbourhood Ì� 
£ the scores matrix of Y  
Q/ the value of the ath eigenvalue in percentage 
�� the weight (prototype) vector of neuron l 
¸¹ the weight matrix of Y 

��� the observed data 

�̈�� the predicted data 

� the data matrix 
´̈ the unknown sample 
´̈! the projection of the unknown sample by PCA model of class c 
� the regression matrix 
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APPENDIX 
Manuscript attached to this thesis reflects the recent work on the application of the LIBS method to 
the field of mining industry. This manuscript entitled: ‘Laser-induced breakdown spectroscopy for in-

situ qualitative and quantitative analysis of mineral ores’ was submitted to thematic issue of 
Spectrochimica Acta Part B dedicated to the EMSLIBS conference held in Bari, Italy in September 
2013 (ref. no. NO-EMSLIBS2013-25). 

This work brings a comprehensive study on the classification and quantitative analysis of igneous 
rocks. As in the aforementioned case studies, the LIBS measurement is strongly affected by a matrix 
effect. Normalization of the calibration curve and multivariate regression algorithms (PCR and PLSR) 
do not lead to the improvement in the linearity of the formerly constructed calibration curve. 
Therefore, it is proposed to classify the samples with respect to the composition in the matrix 
elements of relevant samples. PCA was successfully used for the purposes of sample classification. 
Then, partial calibration curves were constructed for each individual cluster of samples. Such data 
pretreatment improved the precision of quantitative analysis utilizing partial calibration curves in 
comparison to quantitative analysis based on calibration curves constructed without any sample/data 
classification. The precision of quantitative analysis was estimated by the means of bias, which is an 
analytical measure evaluating the closeness of measured/predicted result and related certified value. 
Measurement of the whole data set (and consecutive data analysis) was utilized on two LIBS systems 
in two different laboratories. Thus, the classification of the samples leads to the same class 
membership. Moreover, the precision of the quantitative analysis of both data sets (system 1 and 
system 2) are comparable in the sense of the bias. This strengthens the reproducibility of the LIBS 
measurement done on various LIBS systems. 
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Abstract 

In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for 
discrimination and analysis of geological materials was examined. The research was focused 
on preliminary classification of mineral ores using their LIBS spectra prior to quantitative 
determination of copper. 27 igneous rock samples were analyzed in the form of fine dust 
pressed onto the surface of a double-sided sticky tape. Two different LIBS setups in two 
laboratories were used to prove the reproducibility of classification and quantitative analysis. 
Quantitative analysis is not a trivial task in LIBS measurement because intensities of 
emission lines in laser-induced plasmas are strongly affected by the mineral matrix, i.e. the 
matrix effect. The principal component analysis (PCA) was applied on the measured data set 
to discriminate individual rocks according to their chemical composition. Partial calibration 
plots constructed from the clustered data displayed an improvement over the calibration plot 
constructed from all ore samples. The classification of mineral samples with complex 
matrices can thus be recommended prior to calibration analysis. 

Key words: Laser-induced breakdown spectroscopy; LIBS; Chemometrics; Principal 
Component Analysis; geochemical analysis 

Introduction 

With steadily increasing consumption of mineral resources, it is crucial to optimize the 
exploration of new ore deposits and the mining process itself with reliable and rapid 
analytical methods for identification of minerals. However, reliable in-situ identification of 
minerals can be very challenging. Frequently used in-field identification of minerals is based 
on visual examination of their physical properties by an experienced geologist, which, 
however, can result in false positives [1]. More advanced laboratory-based techniques, such 
as X-Ray fluorescence (XRF) and inductively coupled plasma atomic emission or mass 
spectrometry (ICP-AES/MS) after wet digestion of samples [2] are not always suitable due to 
their long turn-around time and analysis cost per sample. 

Laser-induced breakdown spectroscopy (LIBS) can meet the challenge as a field technique 
for identification and analysis of various minerals. LIBS became a popular technique due to 
its fast and non-demanding measurement routine, minor need for sample preparation, and 
low-cost instrumentation in comparison to other atomic emission spectroscopic techniques. 



- 90 - 

�

LIBS provides qualitative and quantitative information about samples under investigation in 
real-time and in-situ with an inherent multi-elemental capability [3, 4]. The observed LIBS 
spectrum reflects the chemical composition, i.e. chemical fingerprint, of the sample. 

The composition of mineral ores differs with their provenance as well as with the way of 
their alterations [5]. Alteration is the property of a rock which explains its chemical and 
mineralogical changes in the course of time. In geology, the alteration is important because it 
may have an effect on grades of elements (e.g. copper), therefore the rocks are studied in 
individual alteration types. Different mineral ores and their alterations can be discriminated 
by examining their chemical fingerprints, especially the composition of matrix elements (e.g. 
Al, Ca, K, Na, and Si) [6]. Mineral ores can be classified into groups by forming the QAPF 
(Quartz, Alkali feldspar, Plagioclase, Feldspathoid) diagram [5]. Different areas in this 
diagram reflect natural relationships between rock types; each rock type displays a certain 
continuous variation of a mineral content [5, 7]. The exact classification of mineral types 
does not rely on the knowledge of concentrations of only one or two characteristic elements 
but has to be derived using the complete elemental fingerprint. The established method for 
classification of such complex and large datasets is the principal components analysis (PCA). 
It is expected that the PCA discrimination of samples represented by their LIBS spectra can 
emulate the distribution of the rock types in the QAPF diagram. 

Earlier applications of LIBS in geology were comprehensively reviewed by Harmon et al. 
[8]. LIBS has already been used for quantitative analysis of mineral samples including field-
portable devices [1, 9, 10, 11]. Multivariate statistical approaches for identification of 
different kinds of rocks and minerals were employed using both laboratory bench-top and 
stand-off LIBS systems [12]. Harmon et al. [13] demonstrated the possibility of ascertaining 
the provenance of conflict minerals employing the partial least squares discriminant analysis 
(PLS-DA) of LIBS spectra. Bousquet et al. [14] tested the hypothesis that the most 
significant differences between soils come from the varying amounts of matrix elements. 
Application of PCA to LIBS spectra can be found in [15, 16, 17, 18]. 

In this work, the potential of LIBS for determination of copper in mineral ores is investigated 
based on preliminary identification of ores according to their chemical compositions. This 
pre-discrimination into individual classes of minerals allows the reduction of the strong 
influence of sample compositions on intensities of copper emission lines induced by the 
mineral matrix. The principal component analysis (PCA) is used for unsupervised 
classification of the mineral ores into different groups prior to the quantitative determination 
of the copper content. Partial calibration plots are constructed from these groups of samples 
and compared to the calibration plot constructed from all certified ore samples 
simultaneously. 

Experimental 

Samples were collected at copper mines located in the north-west region of Iran, near to 
Sungun area. The sample set consists of 27 samples of three igneous rock types (andesite – 
ANS, diorite – DIO, and monzonite to quartz monzonite – KP) and alterations (table 1). The 
samples were received from the Clausthal University of Technology, Clausthal, Germany 
where they were analyzed by ICP-MS after four acid digestions. The amount of copper 
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ranged between 0.06 and 0.79 weight percent. Apart from the chemical analysis, the samples 
were classified into groups and arranged in the QAPF diagram by an experienced geologist 
who tested samples by the visual inspection. The samples were analyzed with two different 
LIBS systems to ensure the independence of the classification results upon the individual 
LIBS system and, thus, to prove the applicability of a selected multivariate technique for 
unambiguous sample classification. Samples were measured in the form of a fine dust 
pressed onto the surface of the double-sided sticky tape; this approach was earlier suggested 
by Gornushkin et al. [19, 20]. Samples are placed on a motorized translational stage to 
provide a fresh spot for every laser pulse. 

System 1 consists of a high energy Nd:YAG laser (Continuum Spitlight-10, 10 Hz, 1064 nm, 
10 ns) focused onto the sample with an irradiance of 30 GW.cm-2 (the spot diameter is 
� 250 µm) using a 100 mm focal length plano-convex lens. The radiation from the luminous 
plasma is collected using a large aperture collector-collimator (Andor CC52, f/2) placed 250 
mm the interaction region  at a 30° angle with respect to the laser axis. The collector is 
coupled to a 400 µm optical fiber which delivers light at the entrance slit of an echelle 
spectrometer (LTB Aryelle Butterfly). The resolving power and spectral range of the 
spectrometer are 15000 and 300 - 600 nm, respectively. The spectral information is recorded 
by an intensified CCD (Andor iStar 734, 1024 x1024 pixels with an effective pixel size of 13 
x13 µm). The ICCD operates at 120x gain and 2 x 2 pixel binnings. The timing of the 
experiment was previously optimized and set to the 2 µs gate delay and 10 µs gate width. The 
whole LIBS setup is triggered by a delay generator (DG535, Stanford Research Systems).  

The complementary LIBS system 2 consists of a diode pumped solid state (DPSS) laser 
(Quantel Ultra 100) operated at a fundamental wavelength 1064 nm and 5 Hz repetition rate. 
A short laser pulse (8 ns) is focused using a 450 mm focal length plano-convex lens creating 
a spot diameter ~ 200 µm on the target surface with the irradiance 20 GW cm-2. The plasma 
radiation is collected top-on (collinearly with the laser beam) by a toroidal mirror of the 300 
mm focal length and f/7. The radiation is detected by a CCD (Andor Newton, 1024 x 256 
pixels with the effective pixel size 26 x 26 µm) attached to an echelle spectrometer (LTB 
Arryele 400) with the working range of 200 - 600 nm, resolving power 15000, and f/10. The 
spectrometer is equipped with an optomechanical chopper to cut off the plasma continuum 
radiation during first 0.3 µs of the plasma evolution, the gate width is set to 400 µs. Timing 
of the LIBS system is mastered by the chopper and triggered by the delay generator 
(DG535). 

With system 1, one spectrum consists of 10 accumulations, 20 spectra per sample; giving 
overall 200 laser pulses per a sample. A similar measurement routine is employed with 
system 2, i.e. 20 accumulations and 10 spectra per a sample, giving also 200 pulses per a 
sample. 200 pulses per a sample are chosen for better statistics and smoothing effects of 
sample inhomogeneity.  

The first step in data analysis was a construction of the calibration curve for copper. The 
spectral lines listed in table 2 were background-subtracted and fitted by the pseudo-Voigt 
profile; an analytical signal was the line integral. The custom software was written in 
MATLAB (version R2012a). Lines of matrix elements, table 2, were alternatively employed 
to normalize the signal of analytical lines and to linearize calibration curves. 
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During the second step, the classification by PCA and multivariate regression by PLSR and 
PCR were performed on the preprocessed data using the customized LIBRA software (KU 
Leuven, Belgium) [21]. The Z-test was carried out for spectra of each sample to remove 
possible outliers after which the spectra were averaged. The Z-test was utilized to ensure that 
no outlier spectra affected by local sample inhomogeneity are used in further data analysis. 
The averaged spectra were normalized to their integral intensities and mean-centered. 

 

Figure 1, Experimental LIBS a) setup 1, b) setup 2. 

Multivariate analysis 

Principal component analysis (PCA) is commonly used for classification of LIBS data [12, 
14, 18, 22]. The PCA is the mathematical coordinate transformation method that emphasizes 
the variance in the data set and reduces redundancy [23, 24, 25]. A data matrix X consists of 
individual spectra arranged in rows with the columns denoting the wavelengths. The PCA 
decomposes the data matrix into matrices of scores and loadings. The scores are analogous to 
coordinates of the data points (sample spectra) in a newly constructed PC space and the 
loadings are the transformation coefficients that are indicative of variances at specific 
wavelengths. It is expected that samples of the same rock type will form one cluster, based 
on the similarity among their spectra. The distribution of points in the PC space should 
correlate with the distribution in the QAPF diagram. 

Principal components are conventionally used for multivariate quantification in a principal 
component regression (PCR) algorithm [25]. A PCA algorithm is applied to the data matrix X 
to truncate redundant information and to form a new data matrix. Then the regression vector 
y representing the content of an analyte in samples is regressed against the PC scores. 
Alternatively, PCA is used to model both the data and the regression vector (or matrix when 
more variables are considered) simultaneously; such an algorithm is called the partial least 
squares regression (PLSR) [25]. 

Results and discussion 

No reliable calibration curve could be constructed from the complete data set (consisting of 
27 igneous rocks) due to significant matrix effect and weak overall correlation between 
intensities and concentrations. Therefore we attempted the construction of partial calibration 
curves for each individual rock type. First, all samples were divided into three groups 
according to the class membership (ANS, DIO, and KP, see Table 1) determined by a 
geologist. Second, the system 1 and system 2 data set, respectively, was classified by the 
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means of PCA based on the similarities in the sample matrices, i.e. similarities in the 
composition of matrix elements. Then partial calibration curves for each individual cluster 
were constructed. The procedure was applied to the data obtained with both LIBS systems in 
order to assess the independence of measurements on a particular instrument. 

As stated above, the presence of lines of matrix elements Al, Ca, K, Na, and Si in LIBS 
spectra is important for reliable classification. Those matrix elements are conventionally used 
in geochemistry to fully discriminate igneous rocks [5]. 15 spectral lines of matrix elements 
were selected, table 2, for multivariate analysis. The experimental system 1 does not cover a 
spectral range of 200 - 300 nm, where several silicon lines are located; only Si 390.55 nm 
line was used to account for Si concentration. It was therefore expected that system 2 
covering both the UV and VIS spectral ranges would yield the more reliable classification. 

Table 1, list of samples. 

Sample No Rock Type Alteration Cu (%) 

ANS1 Andesite ANS Phyllic 0.64 

ANS2 Andesite ANS Phyllic 0.49 

ANS3 Andesite ANS Phyllic 0.60 

ANS4 Andesite ANS Phyllic 0.61 

ANS5 Andesite ANS Phyllic 0.79 

ANS6 Andesite ANS Phyllic 0.21 

ANS7 Andesite ANS Phyllic 0.52 

DIO1 Diorite DIO Potassic 0.40 

DIO2 Diorite DIO Potassic 0.71 

DIO3 Diorite DIO Potassic 0.73 

DIO4 Diorite DIO Potassic 0.78 

DIO5 Diorite DIO Potassic 0.32 

DIO6 Diorite DIO Potassic 0.31 

DIO7 Diorite DIO Potassic 0.30 

DIO8 Diorite DIO Potassic 0.37 

DIO9 Diorite DIO Potassic 0.73 

KP1 Monzonite-Quartz Monzonite KP Potassic 0.24 

KP2 Monzonite-Quartz Monzonite KP Potassic 0.18 

KP3 Monzonite-Quartz Monzonite KP Potassic 0.21 

KP4 Monzonite-Quartz Monzonite KP Phyllic 0.06 

KP5 Monzonite-Quartz Monzonite KP Phyllic 0.51 

KP6 Monzonite-Quartz Monzonite KP Phyllic 0.34 

KP7 Monzonite-Quartz Monzonite KP Phyllic 0.45 

KP8 Monzonite-Quartz Monzonite KP Potassic 0.48 

KP9 Monzonite-Quartz Monzonite KP Potassic 0.71 

KP10 Monzonite-Quartz Monzonite KP Potassic 0.56 

KP11 Monzonite-Quartz Monzonite KP Potassic 0.30 
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Table 2, list of elemental lines selected for analysis. 

Elemental 

line 

� 
nm 

Ei 
eV 

Ej 
eV 

Einstein coeff. 
108 s-1 

Al (I) 308.22 0 4.02 0.63 

Al (I) 309.27 0.014 4.02 0.75 

Al (I) 394.4 0 3.14 0.51 

Al (I) 396.12 0.014 3.14 1.01 

Ca (II) 393.37 0 3.15 1.47 

Ca (II) 396.85 0 3.12 1.44 

Ca (I) 422.7 0 2.93 2.18 

Ca (I) 558.87 2.53 4.74 0.49 

Na (I) 589 0 2.104 0.62 

Na (I) 589.59 0 2.102 0.61 

Si (I)* 251.43 0 4.93 0.74 

Si (I)* 251.61 0.03 4.95 1.68 

Si (I)* 251.92 0.01 4.93 0.55 

Si (I)* 288.16 0.78 5.08 2.17 

Si (I) 390.55 1.91 5.08 0.13 

Cu (I) 324.75 0 3.82 1.37 

Cu (I) 327.39 0 3.79 1.36 

Cu (I) 515.32 3.79 6.19 0.6 

Cu (I) 521.82 3.82 6.19 1.22 

*Elemental lines used only when data from system 2 were 
utilized for multivariate analysis and linearization. 

 

Calibration without PCA classification 

The calibration curves for copper are constructed using the Cu (I) line at 521.8 nm for both LIBS 
systems data. This line is unlikely to get self-absorbed because of the low concentration range of 
Cu (<1 %) in analyzed samples and because of its high upper level of 6.19 eV. Prior the analysis, 
spectra of each sample were firstly normalized to spectra total intensities and then averaged to 
obtain one spectrum per a sample. Spectral lines selected for uni- and multivariate analysis were 
fitted with pseudo-Voigt profile and the area under such fitted line was adopted as the line 
intensity. 

It is proposed to use individual calibration curves for analysis of individual rock types. Figure 2 
shows the combined (for all rock types) and partial (for each rock type) calibration plots The 
linear regression performed on the whole data set (the combined plot) yields the coefficient of 
determination R2 = 0.49 for measurements with system 1 and R2 = 0.23 for measurements with 
system 2. Such low R2’s indicate high uncertainty and low accuracy of the calibration. 

In contrary, the partial calibration plots (according to the rock type), although showing different 
slopes, reveal higher values for coefficients of determination, between 0.57 and 0.69 and between 
0.68 and 0.87 for systems 1 and 2, correspondingly. Partial calibration curves for DIO and KP 
rock types result only in a moderate improvement of the coefficient of determination, i.e. R2 ~ 
0.6, for both LIBS systems. The coefficient of determination for ANS rock type is higher with 
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system 2, R2 = 0.87, than with system 1, R2 = 0.57. Even though the partitioning of calibration 
curves in accordance with rock types led to an improved linear regression, the accuracy of 
analysis with such low R2 partial calibration curves is expected to be moderate. 

 

Figure 2, calibration curves for selected copper line 521.8 nm a) system 1 data set, b) system 2 data set. The dashed line refers to 
calibration plot for complete sample set (assigned as ‘all’ in the legend of the plot). 

Conventionally, a further step to improve the quality (i.e. linearity) of the calibration is to 
normalize the intensity of an analytical line to the intensity of a matrix element line. With our 
current samples, the selection of an appropriate line of the matrix element was not an easy task 
due to the varying concentrations of these elements in the samples. Using lines of matrix 
elements Al, Ca, Na, and Si (table 2) to normalize the Cu (I) 521.8 nm line was not successful. 
The coefficients of determination for such linearized calibration curves were maximum at a  R2 ~ 
0.5 level. In view of a moderate improvement of the calibration curve linearity, this approach of 
calibration curve linearization was abandoned in further analyses. Similar results were observed 
by Laville et al. [26] who analyzed mineral samples and tried to linearize calibration curves for 
Al, Ca, Mg, Fe and Ti by rationing the line intensities of these elements by the line intensity of 
Si. . The significant variation of Si02 (from 37.2 to 62.6 wt. %) in the samples was assumed to be 
the cause of the unsuccessful linearization. 

The preliminary results of the multivariate quantitative analysis of the whole data set using the 
partial least squares regression (PLSR) and the principal components regression (PCR) are shown 
in figure 3. The data matrix X was constructed from all copper lines listed in table 3 plus selected 
lines of matrix elements listed in table 2. Spectra of each sample were firstly normalized to the 
sum of their total intensity and then averaged to obtain one spectrum per sample. The spectra 
were organized as rows and individual variables, matrix element lines from table 2, were 
assigned to columns of the data matrix. Each column was then mean-centered and normalized to 
unity in order to equalize the contribution of all variables to the estimation of principal 
components (PCs). The vector y for regression consists of certified copper contents, table 1. The 
whole data set (all samples) was used simultaneously.  Copper lines were not expected to suffer 
from self-absorption in the limited range of Cu concentrations in the samples (from 0.06 wt. % to 
0.79 wt. %). Therefore, the variations of interest were assumed to be linear and were analyzed by 
the linear multivariate regressions, i.e. PCR and PLSR [26]. In every step of the multivariate 
regression all spectra of one sample were left out from the PCR and PLSR model estimation and 
then the content of the analyte (Cu) in the left-out sample was predicted using the model built 
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from the remaining samples , i.e. leave-one-sample-out (LOSO) prediction. It is noteworthy to 
mention the work of Death et al. [27]. In their study they proposed to introduce matrix lines into 
the computation of latent variables to enhance intergroup dissimilarities. 

PCR and PLSR regressions were then applied for data sets obtained with both LIBS systems. To 
avoid under- or overfitting the model, 10 PCs were gradually added to the model and related 
mean square errors of prediction (MSEP) were estimated. The optimal number of PCs used for 
each particular model is given in the box in figure 3. In general, a lower number of PCs is needed 
in PLSR for its essential property to simultaneously model both the data matrix X and the 
regression vector y. However, it is rather ambiguous to decide which multivariate regression 
algorithm is more parsimonious to the data. Moreover less PCs was used in the regression models 
of system 2 data. This may be a consequence of more variables reflecting the Si content in the 
samples. In both cases, PLSR provided higher values for R2, namely R2 = 0.76 for system 1 and 
R2 = 0.79 for system 2 respectively, compared to R2 = 0.66 and R2 = 0.7 obtained with PCR. 
Nevertheless, such low coefficients of determination could not guarantee a reliable quantitative 
analysis. Thus, the multivariate calibration using the whole dataset must be recognized 
unsuccessful owing to the significant variation in the composition of sample matrices as well as 
the narrow range of copper concentrations. 

 

Figure 3, quantification of Cu content using PCR and PLSR for a) system 1 data, b) system 2 data. 

Calibration with PCA classification 

To improve the linearity and related accuracy/bias of quantitative analysis we attempted the 
classification of the samples based on the similarities in their matrix compositions. The data 
matrix was constructed from the lines of matrix elements, listed in table 2, and pretreated in the 
same manner as in the foregoing regression case. Though, 20 spectra of each sample obtained 
from system 1 were averaged to give 5 averaged spectra/data points per sample. Respectively, 
spectra from system 2 were averaged to give the same number of 5 averaged data points per 
sample. As stated before, the samples were classified by a geologist who inspected their physical 
properties. This approach relies entirely on the experience and qualification of the geologist; in 
some difficult cases it might yield erroneous results. It is highly desirable to have a more robust 
and human-independent classification technique, for example, PCA. The technique can be 
utilized for the detection of outliers (in this case false positives estimated by a geologist) and data 
clustering. 
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The results of the PCA analysis are shown in figure 4 andfigure 5 as the 2D projections of the 
data scores on the planes of first three principal components taken pair-wisely. The first three 
PCs covered 97.1 % (69.5 % + 23.2 % + 4.4 %) of the total variance in the data obtained with 
system 1 and 97.5 % (60.1 % + 32.9 % + 4.5 %) in the data obtained with system 2. The 
Gaussian clustering algorithm, built in the MATLAB Statistics Toolbox, was used to discriminate 
individual groups of samples according to their distributions in the PC space. Three PCs were 
used to construct a space to which clustering algorithm was applied. First, a selected number of 
ellipsoids (e.g. equal to the number of groups given by a geologist) is randomly placed into the 
PC space. Then those ellipsoids adapt their position and size with each iteration (in this case total 
number of 1000 iterations was utilized) to fit the distribution of the data points in the PC space. 
The ellipses in the projection plot mark the areas that cover 99% of the volume of the particular 
Gaussian sub-distributions. Some clusters can overlap for samples with similar compositions and 
further analysis is needed. One should note that the Gaussian clustering was used only for 
enclosing the points into separate groups. It is worth mentioning that data points do not have to 
necessarily obey the Gauss distribution in the PC space. 

When PCA is applied to the system 1 data set, three distinct outliers are observed, see figure 4. 
Those outliers (ANS1, ANS7, and DIO1) are enclosed within one cluster and may be discarded 
from further classification while the composition of their matrices does not correspond to any 
other cluster in the data set. We may assume that such samples were wrongly assigned by the 
geologist. Then the rest of the data set is clustered into two distinct groups. The higher content of 
Si and Al in the KP rock type is responsible for its separation form the cluster of ANS and DIO 
rock types, as indicate the loadings plot in figure 6a. In this figure, loadings of particular PCs are 
crossplotted against each other to reveal the dependency of the PCA model on matrix elements. 
In parallel analysis, PCA was applied to the system 2 data set and resulted in similar distribution 
of the data in newly constructed PC space, figure 5, as in the foregoing case. However, in the 
system 2 case the outliers (ANS1, ANS7, and DIO1) are more distant from the rest of the data 
set. Except for several significantly outlying samples, rock types ANS, DIO and KP are distinctly 
separated. This is most probably the consequence of more variables (Si lines from the 200 to 300 
nm spectral region) introduced to the computation of PCs. Furthermore, the KP rock type is 
separated into two clusters according to the alteration of the soil samples. Therefore it can be 
concluded that one Si line (390.55 nm) may not be sufficient for the direct classification of 
samples in the system 1 dataset. Nevertheless, the loadings plot in figure 6a reveals similar 
grouping of matrix lines of Al, Ca and Si that  are distributed along the first principal component 
as in the system 2 case depicted in figure 6b.  

It is seen from the given results that the data tend to cluster according to spectral lines of matrix 
elements and a consequent classification may be possible. In other words, spectral lines of matrix 
elements determine clustering patterns in subspaces of principal components. The main reason to 
use only the lines of matrix elements for classification is the reduction of datasets. The reduction 
of data matrices additionally accelerates PCA calculations that can be helpful for on-line analysis 
of data during the mining process. As suggested by Death et al. [27], data points of individual 
samples are distributed in more distinct groups in the PC space while only the important 
information is used, i.e. lines of matrix elements. Moreover, the PCA results for data sets from 
systems 1 and 2 are comparable. Those results support the reliability and reproducibility of 
measurements with different LIBS setups.  
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Figure 4, PCA applied on the system 1 data, a) first and second PC scores, b) first and third PC scores. 

 

Figure 5, PCA applied on the system 2 data, a) first and second PC scores, b) first and third PC scores. 
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Figure 6, first two PC loadings a) system 1 data, b) system 2 data. 

Though, the data set of system 1 was not completely separated as the one of system 2, comparing 
the discrimination of the data points in figure 4andFigure 5. Therefore we used the approach for 
data classification suggested by Multari et al. [28]. They suggested discarding well discriminated 
(tightly clustered) data points, i.e. samples/measurements, from the data matrix and then applying 
the PCA and consequent clustering algorithms again on the reduced data matrix. This step in the 
data analysis should emphasize the differences between groups which were formerly interfered. 
This procedure could be repeated until only well discriminated groups remain in the PC space. 
Based on the algorithm suggested by Multari et al. [28], figure 7a shows the clustering of the KP 
rock type which was well discriminated from the rest of the data in previous classification. 
Therefore we applied PCA to this rock type solely. Data points were then clustered according to 
the relevant rock alteration. Similarly, the PCA was applied to the reduced data matrices of ANS 
and DIO rock types (when the outliers were discarded). Figure 7b depicts two clusters which are 
distinguished from each other, i.e. enveloped with their own ellipses. The clusters are projected 
onto the first two PCs and are oriented in direction in PC space. Furthermore, DIO rock type was 
treated with the PCA once more to reveal two more outliers (DIO8 and DIO9), which not shown 
in figure 7. 

Thus, the PCA helps in identification of outliers among the whole dataset. The outliers (ANS1, ANS7, 
DIO1, DIO8, and DIO9) were discarded from further quantitative analysis. After this, the partial 
calibration curves were re-plotted and are shown in figure 8. According to the classification of rocks in 
geochemistry, the rock type and alteration should correspond to each other. Therefore, a calibration curve 
was constructed only for the potassic alteration of the KP rock type while the phyllic alteration was 
excluded from the calibration. The difference in the composition was as well revealed in the PC space of 
both data set (system 1 and system2), figure 5 and figure 7a. 

Significant improvements in the linearity of the partial calibration curves are obtained for all the rock 
types (ANS, DIO, and KP) as can be found in the comparison of figure 2 and figure 8. As a consequence 
of such data pretreatment the matrix effect may be avoided to such extent that it does not significantly 
affect the accuracy/bias of quantification using partial calibration curves. 
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Figure 7, further classification of the system 1 data set a) classification of KP alterations, b) discrimination of ANS and DIO. 

The improvement in prediction of copper concentrations using partial calibration curves was additionally 
proved by the leave-one-sample-out (LOSO) method described above. Table 3 provides the comparative 
results of LOSO using combined and partial calibration curves. The reference (certified) values of Cu 
concentrations were obtained from the ICP-MS measurements. The precision of the prediction can be 
estimated from bias expressed by following equation [29]: 

�������� 	
ABCDEFA

EF
� ���, 

where �C is the predicted copper concentration and �� is the reference value. Bias is a quantitative term 
describing the difference between the average of measurements made on the same object and its true value 
[29, 30]. The bias was calculated for two methods (using combined and partial calibrations) and for two 
LIBS systems. As one sees from table 3, the lower bias values, i.e. more accurate estimation of the copper 
content, are observed when partial calibration curves are used for the quantification. We used the median 
of the bias values to quantify the difference between the two methods. The median bias is 27.3% for the 
combined calibration and 7.7% for the partial calibration curves of system 1 data and 89% and 11% 
respectively for the system 2 data.  

Figure 9 shows the correlation plots of the predicted versus certified concentrations for the combined (a) 
and partial (b) calibration curve methods. This visualization of the predicted copper contents strengthens 
the recommendation to use the partial calibration curves to obtain more reliable quantitative analysis, 
when the coefficient of determination of the measurement is R2 = 0.955for system 1 and R2 = 0.949 for 
system 2 respectively. Moreover, As seen from the table, the results for systems 1 and 2 are similar. 
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Figure 8, separate calibration curves formed after PCA analysis a) for system 1 data set, b) for system 2 data set. 

Table 3, copper content calculated utilizing individual and combined calibration curves. 

sample 

Cu content / wt. % 

certified 

System 1 System 2 

combined 
calibration 

bias 
partial 

calibration 
bias 

combined 
calibration 

bias 
partial 

calibration 
bias 

ANS2 0,49 0,38 ± 0,09 21,9% 0,45 ± 0,08 8,1% 0,96 ± 0,11 96,1% 0,43 ± 0,04 11,9% 

ANS3 0,6 0,6 ± 0,08 0,3% 0,63 ± 0,07 5,7% 0,06 ± 0,06 90,0% 0,71 ± 0,08 19,0% 

ANS4 0,61 0,52 ± 0,06 14,3% 0,55 ± 0,05 9,2% 0,01 ± 0,05 98,1% 0,62 ± 0,06 2,4% 

ANS5 0,79 0,84 ± 0,09 6,0% 0,84 ± 0,08 6,4% 0,15 ± 0,05 81,0% 0,7 ± 0,06 10,8% 

ANS6 0,21 0,14 ± 0,03 32,7% 0,23 ± 0,02 10,2% 0,5 ± 0,01 136,8% 0,19 ± 0,03 9,9% 

DIO2 0,71 1,13 ± 0,07 59,5% 0,86 ± 0,05 21,0% 0,9 ± 0,12 26,1% 0,92 ± 0,08 29,2% 

DIO3 0,73 0,64 ± 0,06 12,4% 0,68 ± 0,05 7,2% 0,58 ± 0,11 20,1% 0,65 ± 0,07 11,2% 

DIO4 0,78 0,82 ± 0,06 5,4% 0,73 ± 0,04 6,3% 0,67 ± 0,05 13,9% 0,69 ± 0,03 11,1% 

DIO5 0,32 0,33 ± 0,03 2,9% 0,34 ± 0,02 6,6% 0,65 ± 0,02 104,2% 0,31 ± 0,03 2,0% 

DIO6 0,31 0,29 ± 0,07 7,0% 0,33 ± 0,05 6,6% 0,18 ± 0,12 40,6% 0,37 ± 0,05 19,4% 

DIO7 0,3 0,16 ± 0,05 45,3% 0,26 ± 0,05 14,5% 0,77 ± 0,06 157,9% 0,26 ± 0,04 13,9% 

KP1 0,24 0,32 ± 0,04 34,1% 0,23 ± 0,03 4,4% 0,51 ± 0,05 110,5% 0,26 ± 0,01 6,4% 

KP2 0,18 0,16 ± 0,04 12,8% 0,17 ± 0,04 7,4% 0,38 ± 0,08 112,8% 0,16 ± 0,02 11,8% 

KP3 0,21 0,31 ± 0,06 47,2% 0,23 ± 0,04 8,2% 0,31 ± 0,03 49,1% 0,23 ± 0,01 11,7% 

KP8 0,48 0,71 ± 0,08 48,7% 0,47 ± 0,05 1,8% 0,91 ± 0,11 89,3% 0,44 ± 0,04 9,2% 

KP9 0,71 1,07 ± 0,15 51,3% 0,77 ± 0,09 8,5% 1,15 ± 0,13 62,0% 0,77 ± 0,07 7,9% 

KP10 0,56 0,96 ± 0,16 71,7% 0,61 ± 0,1 9,4% 1,14 ± 0,19 104,2% 0,53 ± 0,06 6,2% 

KP11 0,3 0,49 ± 0,07 63,8% 0,33 ± 0,04 9,8% 0,49 ± 0,07 64,1% 0,29 ± 0,02 3,8% 

  median 27.3% median 7.7% median 89.7% median 11% 
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Figure 9, predicted Cu content for data of both LIBS systems from a) combined calibration curves, b) partial calibration curves. 

Conlusion 
Based on the presented study, LIBS can satisfy the needs of the mining industry when LIBS 
measurements are processed with PCA. In our study, two different LIBS systems were utilized to compare 
the compatibility of results obtained from suggested process for data analysis. It was demonstrated that 
PCA can be employed for the classification of samples and the detection of outliers prior to construction 
of partial calibration curves. It is shown that discrimination of the samples into classes based on the 
differences in the content of their matrix elements (Al, Ca, Na, and Si) improves the quality of quantitative 
analysis. The bias in concentrations predicted from partial calibration curves (constructed for individual 
rock types) was lower than that obtained with the calibration curve constructed from the whole data set. 
However, further study should be conducted in order to create more robust data sets. We recommend 
constructing the calibration curve only for samples with similar composition of matrix elements in order to 
avoid the matrix effect. 
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