PALACKÝ UNIVERSITY OLOMOUC FACULTY OF SCIENCE

DISSERTATION THESIS

Mathematical and physical models of fluids - properties of solutions

BIBLIOGRAFICKÁ IDENTIFIKACE

Autor: RNDr. Richard Andrášik
Název práce: Matematicko-fyzikalní modely tekutin - vlastnosti řešení
Typ práce: Disertační práce
Pracoviště: Katedra matematické analýzy a aplikací matematiky
Vedoucí práce: RNDr. Rostislav Vodák, Ph.D.
Rok obhajoby práce: 2019
Abstrakt: Zakladní rovnice, které reprezentují matematický popis mechaniky kontinua, mají často tři prostorové dimenze a jednu časovou. Jejich nevýhodou je, že jejich analytické řešení je často nedosažitelné a jeho numerická aproximace výpočetně velmi náročná. Z těchto důvodů jsou takovéto modely často různými způsoby zjednodušovány. Jednou z možností, jak model zjednodušit, je snížení počtu prostorových dimenzí. Otázkou ovšem zůstává, jak dimenzionální redukci provést matematicky korektně. Zabývali jsme se nestacionárními NavierStokesovými rovnicemi pro stlačitelné nelineárně viskózní tekutiny v trojrozměrné oblasti. Nejprve jsme studovali dynamiku stlačitelných tekutin v oblastech, kde dominuje pouze jedna prostorová dimenze. Představili jsme odvození jednorozměrného modelu z trojrozměrných Navier-Stokesových rovnic. Následně jsme rozšířili současný rámec poznání tím, že jsme aplikovali dimenzionální redukci na nestacionární Navier-Stokesovy rovnice pro stlačitelné nelineárně viskózní tekutiny v deformované trojrozměrné oblasti se dvěma dominantními prostorovými dimenzemi. Zjistili jsme, že deformace oblasti netriviálne ovlivňuje výsledné limitní rovnice.

Klíčová slova: Navier-Stokesovy rovnice, Stlačitelné tekutiny, Nelineární viskozita, Asymptotická analýza, Redukce dimenze, Deformovaná oblast, Křivočaré souřadnice

Počet stran: 97

Počet příloh: 0
Jazyk: anglický

BIBLIOGRAPHICAL IDENTIFICATION

Author: RNDr. Richard Andrášik

Title: Mathematical and physical models of fluids - properties of solutions
Type of thesis: Dissertation thesis
Department: Department of Mathematical Analysis and Applications of Mathematics

Supervisor: RNDr. Rostislav Vodák, Ph.D.
The year of presentation: 2019
Abstract: Governing equations representing mathematical description of continuum mechanics have often three spatial dimensions and one temporal dimension. However, their analytical solution is usually unattainable, and numerical approximation of the solution unduly complicated and computationally demanding. Thus, these models are usually simplified in various ways. One option of a simplification is a reduction of the number of spatial dimensions. We focused on nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a three-dimensional domain. These equations need a simplification, when possible, to be effectively solved. Therefore, we performed a dimension reduction for this type of model. First, we studied the dynamics of a compressible fluid in thin domains where only one dimension is dominant. We presented a rigorous derivation of a one-dimensional model from the three-dimensional Navier-Stokes equations. Second, we extended the current framework by dealing with nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a deformed three-dimensional domain. We focused on a rigorous derivation of the two-dimensional model. The deformation of a domain introduced new difficulties in the asymptotic analysis, because it affects the limit equations in a non-trivial way.

Key words: Navier-Stokes equations, Compressible fluids, Nonlinear viscosity, Asymptotic analysis, Dimension reduction, Curved domain, Curvilinear coordinates

Number of pages: 97
Number of appendices: 0
Language: english

Statement of originality

I hereby declare that this dissertation thesis has been completed independently under the supervision of RNDr. Rostislav Vodák, Ph.D. All the materials and resources are cited with regard to the scientific ethics, copyrights and laws protecting intellectual property. This thesis or its parts were not submitted to obtain any other or the same academic title.

Olomouc,

Contents

1 Introduction 8
2 Preliminaries 12
2.1 Basic notation 12
2.2 Young functions and their properties 14
2.3 Orlicz spaces 16
2.4 Special Young functions 21
3 Derivation of a 1D model 24
3.1 Statement of the problem 24
3.2 Transformation and related results 26
3.2.1 Transformation of the governing equations 26
3.2.2 Energy equality and its transformation 27
3.2.3 Related results 28
3.3 Derivation of the limiting 1D equations 29
3.3.1 Korn's inequality 29
3.3.2 Boundedness and weak limits 31
3.3.3 Limit of the governing equations 42
3.3.4 Limit of the energy equality 46
3.4 Main theorem for the 1D model 48
4 Derivation of a 2D model in a curved domain 50
4.1 Statement of the problem 50
4.2 Curvilinear coordinates 52
4.2.1 Convergence of covariant and contravariant bases 54
4.3 Transformation 55
4.3.1 Transformation of partial derivatives 55
4.3.2 Transformation of the governing equations 57
4.3.3 Energy equality and its transformation 58
4.4 Derivation of the limiting 2D equations 59
4.4.1 Korn's inequality 59
4.4.2 Boundedness and weak limits 62
4.4.3 Limit of the governing equations 84
4.4.4 Limit of the energy equality 89
4.5 Main theorem for the 2D model 90
5 Conclusion 93
References 95

Acknowledgments

I would like to express my gratitude to my supervisor RNDr. Rostislav Vodák, Ph.D. for his helpfulness, guidance and patience during the preparation of scientific papers and this thesis. I am also very grateful to my parents who have been supporting me in my research work and during my studies.

Chapter 1

Introduction

Governing equations representing mathematical description of continuum mechanics have often three spatial dimensions and one temporal dimension. However, their analytical solution is usually unattainable, and numerical approximation of the solution unduly complicated and computationally demanding. Therefore, these models are frequently simplified in various ways. One option of a simplification is a reduction of the number of spatial dimensions. We focused on nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a three-dimensional domain. These equations need a simplification, when possible, to be effectively solved.

The existence of weak solutions for three-dimensional models of fluid dynamics has already been studied. For instance, Pierre-Louis Lions proved the global solvability of Navier-Stokes equations for compressible linearly viscous fluids [17]. Further, Eduard Feireisl extensively studied global existence theory for the full Navier-Stokes-Fourier system [11]. A comprehensive overview on results achieved in the case of Newtonian compressible fluids is given in [22]. Concerning non-Newtonian fluids, Mamontov [18, 19] proved the existence of a global weak solution for compressible Navier-Stokes equations. This knowledge allows us to step forward in finding the solution (or at least its approximation). One possibility to achieve that is by performing a dimension reduction of the equations. Without the proven existence of a weak solution, it would be pointless to study the asymptotic behavior of the equations.

An asymptotic analysis was performed in linear elasticity for rods and beams [13, 14, 24], and for plates and shells [4, 6, 7], at first. Subsequently, rigorous derivation of lower-dimensional models was done also for fluids. An asymptotic analysis of three-dimensional steady Navier-Stokes equations based on the asymptotic expansion was presented in [21]. For comparison, the same result was achieved directly in [28] without the need to apply any asymptotic expansion. Regarding nonsteady Navier-Stokes equations for incompressible fluids, they were simplified into a lower-dimensional model in [12]. Further, a threedimensional system for barotropic Navier-Stokes equations was asymptotically analyzed and the resulting one-dimensional and two-dimensional models were presented in [27] and [20], respectively. It was also shown that weak solutions of both three-dimensional Navier-Stokes equations for barotropic flows and threedimensional full Navier-Stokes-Fourier equations tend to strong solutions of the respective one-dimensional system as the three-dimensional model tends to the one-dimensional model [3, 5]. Recently, Ducomet et al. [8] presented a rigorous derivation of a two-dimensional model from the three-dimensional compressible barotropic Navier-Stokes-Poisson system with radiation.

New difficulties arise by considering non-Newtonian fluids (i. e. fluids having nonlinear viscous stress tensor). This problem was tackled for the first time in [26], where a two-dimensional model was derived by a suitable scaling from nonsteady Navier-Stokes equations for compressible fluids. Our aim is to extend the current framework by dealing with nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids.

We study the dynamics of a compressible fluid in a thin pipe $\Omega_{\varepsilon} \subset \mathbb{R}^{3}$ (see Chapter 3) and in a curved three-dimensional domain $\tilde{\Omega}_{\varepsilon}$ with two dominant dimensions (see Chapter 4). The motion of a compressible fluid is described by its velocity \mathbf{u} and density ρ. The time evolution of \mathbf{u} and ρ is governed by the continuity and momentum equations

$$
\begin{align*}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u}) & =0 \tag{1.1}\\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\nabla p & =\operatorname{div} \mathbb{S}+\rho \mathbf{f} \quad \text { in } \Omega \times(0, T), \tag{1.2}
\end{align*}
$$

where $T>0, p$ is the pressure, \mathbb{S} stands for the viscous stress tensor and \mathbf{f} represents the external forces [18].

Let us suppose that the fluid is isothermal and non-Newtonian. It means that (without the loss of generality)

$$
\mathbb{S}=P(|D \mathbf{u}|) D \mathbf{u}, \quad p=\rho
$$

Similarly as in [26], we assume that the function P satisfies, for any U, V belonging to Orlicz class $\left[\tilde{L}_{M}(\Omega)\right]^{9}$ (see Definition 2.9, in section 2.3), the following five conditions

$$
\begin{gather*}
\int_{\Omega} P(|U|)|U|^{2} \mathrm{~d} x \geq \int_{\Omega} M(|U|) \mathrm{d} x \tag{1.3}\\
\int_{\Omega}(P(|U|) U-P(|V|) V):(U-V) \mathrm{d} x \geq 0 \tag{1.4}\\
P(z)|z|^{2} \text { is a convex function for } z \geq 0 \tag{1.5}\\
\int_{\Omega} N(P(|U|)|U|) \mathrm{d} x \leq C\left(1+\int_{\Omega} M(|U|) \mathrm{d} x\right), \tag{1.6}\\
P(|U-\lambda V|)(U-\lambda V) \stackrel{M}{-} P(|U|) U, \text { for } \lambda \rightarrow 0 \tag{1.7}
\end{gather*}
$$

For example, function

$$
P(z)= \begin{cases}\frac{M(z)}{z}, & \text { for } z \neq 0 \\ 0, & \text { for } z=0\end{cases}
$$

satisfies all conditions (1.3)-(1.7).
First, we introduce Orlicz spaces and Young functions with a logarithmic and an exponential growth (see Chapter 2), because this knowledge is necessary to prove our main results. Additionally, Chapter 2 summarizes the basic notation used throughout the thesis. Afterwards, we study the dynamics of a compressible fluid in thin domains with only one dominant dimension. In Chapter 3, a rigorous derivation of a one-dimensional model from the three-dimensional Navier-Stokes equations is presented. Our first main result, concerning the onedimensional model, is summarized in Theorem 3.4 (section 3.4). Subsequently, we
deal with nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a deformed three-dimensional domain. Chapter 4 focuses on a rigorous derivation of a two-dimensional model. Our second main result, concerning the two-dimensional model in a curved domain, is stated in Theorem 4.3 (section 4.5).

Chapter 2

Preliminaries

The basic notation is summarized in this section. Afterwards, we pay our attention to Young functions and their properties. Subsequently, we give a brief introduction to Orlicz spaces. More information and details about the Orlicz spaces can be found in [16]. In addition, we focus on a special class of Young functions with an exponential growth and their complementary functions, because the theory concerning these Young functions and respective Orlicz spaces is needed in the subsequent sections.

2.1 Basic notation

We adopt the notation"." and ":" for the scalar product of vectors and tensors, respectively, and " \otimes " for the tensor product. The Cartesian product of two sets is denoted by " \times " as well as the cross product of two vectors without danger of confusion. Symbol $|\cdot|$ stands for either the Lebesgue measure of a measurable set or the Euclidean norm defined as $|Z|=\sqrt{Z_{i j} Z_{i j}}$, where $Z \in \mathbb{R}^{m, n}, m, n \in \mathbb{N}$. We use Einstein summation convention for notational brevity. Symbols C and $C_{n}, n \in \mathbb{N}$, stand for unspecified positive constants.

We emphasize the connection of a function to Ω_{ε} and $\tilde{\Omega}_{\varepsilon}$ by subscript ε, and symbols " $-"$ and " $\sim "$, respectively. On the other hand, objects without symbol " $"$ or " $\sim "$ are connected to the referential domain Ω (see sections 3.1 and 4.1). Since ε is always positive, we write only $\varepsilon \rightarrow 0$ instead of $\varepsilon \rightarrow 0^{+}$for
simplicity. Symbols \bar{D}, \tilde{D} and D represent a symmetric part of the gradient, i. e. $\bar{D}_{i j} \overline{\mathbf{u}}_{\varepsilon}=\frac{1}{2}\left(\bar{\partial}_{i} \bar{u}_{\varepsilon, j}+\bar{\partial}_{j} \bar{u}_{\varepsilon, i}\right), \tilde{D}_{i j} \overline{\mathbf{u}}_{\varepsilon}=\frac{1}{2}\left(\tilde{\partial}_{i} \tilde{u}_{\varepsilon, j}+\tilde{\partial}_{j} \tilde{u}_{\varepsilon, i}\right)$ and $D_{i j} \mathbf{u}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)$.

Let $Q \subset \mathbb{R}^{n}, n \in \mathbb{N}$, be a bounded domain. We denote by ∂Q the boundary of Q. Bounded domain Q is called a Lipschitz domain if its boundary can be expressed by Lipschitz continuous functions (see [16] for the precise definition). We write $\partial Q \in \mathcal{C}^{0,1}$. The following three options of writing a matrice are used:

$$
A=\left(\mathbf{a}^{1}, \mathbf{a}^{2}, \mathbf{a}^{3}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

where $\mathbf{a}^{j}=\left(a_{1 j}, a_{2 j}, a_{3 j}\right)^{\mathrm{T}}$. All vectors $\mathbf{x} \in \mathbb{R}^{3}$ in the text are column vectors.
We employ the standard notation of the following function spaces and their norms:

Spaces of continuously differentiable
functions up to order $m \quad-\mathcal{C}^{m}(\bar{Q}),\|\cdot\|_{\mathcal{C}^{m}(\bar{Q})}$
Lebesgue spaces $\quad-\quad L^{p}(Q),\|\cdot\|_{p}$
Sobolev spaces $\quad-W^{1, p}(Q),\|\cdot\|_{1, p}$
Duals of $W^{1, p}(Q) \quad-\left[W^{1, p}(Q)\right]^{*},\|\cdot\|_{\left[W^{1, p}(Q)\right]^{*}}$
Orlicz spaces $\quad-L_{\Phi}(Q),\|\cdot\|_{L_{\Phi}(Q)}$
Sobolev-Orlicz spaces

- $W^{1} L_{\Phi}(Q),\|\cdot\|_{W^{1} L_{\Phi}(Q)}$

Duals of $W^{1} L_{\Phi}(Q)$

- $\left[W^{1} L_{\Phi}(Q)\right]^{*},\|\cdot\|_{\left[W^{1} L_{\Phi}(Q)\right]^{*}}$

Bochner spaces
$-L^{p}(0, T ; X),\|\cdot\|_{L^{p}(0, T ; X)}$, $\mathcal{C}^{m}(\langle 0, T\rangle ; X),\|\cdot\|_{\mathcal{C}^{m}(\langle 0, T\rangle ; X)}$
where $Q \subset \mathbb{R}^{n}, n \in \mathbb{N}$, is a bounded domain, $p \in\langle 1,+\infty) \cup\{+\infty\}, m \in \mathbb{N} \cup\{0\}$ and X is a Banach space. In addition, $\mathcal{C}_{0}^{m}(\bar{Q})$ denotes spaces of continuously differentiable functions up to order $m, m \in \mathbb{N} \cup\{0\}$, with compact support. Naturally, $\mathcal{C}^{0}(\bar{Q})=\mathcal{C}(\bar{Q})$ is the space of continuous functions. Next, we denote the space of smooth and compactly supported functions endowed with the inductive limit topology by $\mathcal{D}(Q)$. Its dual space is denoted by $\mathcal{D}^{*}(Q)$.

2.2 Young functions and their properties

A generalization of Lebesgue spaces was the motivation for the concept of Young functions and Orlicz spaces. A function u defined on $Q \subset \mathbb{R}^{n}$ belongs to $L^{p}(Q)$ if

$$
\int_{Q} \Phi(|u(x)|) \mathrm{d} x=\int_{Q}|u(x)|^{p} \mathrm{~d} x<+\infty
$$

where $\Phi(z)=z^{p}$. It is possible to substitute the function Φ with a more general function called a Young function.

Definition 2.1. Φ is a Young function, if there exists a function φ such that

$$
\Phi(z)=\int_{0}^{z} \varphi(s) \mathrm{d} s, \quad z \geq 0
$$

and the following conditions hold:
(i) $\varphi(0)=0$,
(ii) $\varphi(s)>0$ for $s>0$,
(iii) φ is right continuous,
(iv) φ is non-decreasing,
(v) $\lim _{s \rightarrow+\infty} \varphi(s)=+\infty$.

Definition 2.2. Let φ be the first derivative of a Young function Φ, which means that

$$
\Phi(z)=\int_{0}^{z} \varphi(s) \mathrm{d} s
$$

The function Ψ is called the complementary function to the Young function Φ if

$$
\Psi(z)=\int_{0}^{z} \psi(s) \mathrm{d} s
$$

where $\psi(z)=\sup \{s, \varphi(s) \leq z\}, z \geq 0$. If there exists an inversion of φ, then $\psi=\varphi^{-1}$.

Remark 2.3. If function Ψ is a complementary function to Φ, then also Φ is complementary to Ψ. In addition, Ψ is a Young function. Therefore, we can call Φ, Ψ as a pair of complementary Young functions.

There is a special class of Young functions which plays an important role in the theory of Orlicz spaces.

Definition 2.4. A Young function Φ satisfies the $\boldsymbol{\Delta}_{\mathbf{2}}$-condition, if there exist $C>0$ and $z_{0} \geq 0$ such that

$$
\Phi(2 z) \leq C \Phi(z), \quad \forall z \geq z_{0} .
$$

If $z_{0}=0$, we say that Φ satisfies the global $\boldsymbol{\Delta}_{\mathbf{2}}$-condition (we write $\Phi \in \Delta_{2}$).
Sometimes, the explicit formula for a Young function is unknown and only its complementary function can be used to decide, whether a Young function belongs to Δ_{2}.

Theorem 2.5. A Young function Φ satisfies the Δ_{2}-condition if and only if there exist $C>0$ and $z_{0}>0$ such that

$$
\Psi(z) \leq \frac{1}{2 C} \Psi(C z), \quad \forall z \geq z_{0}
$$

where Ψ is the complementary function to Φ.
Proof: see [16], page 139.

Two special types of ordering can be introduced for Young functions. The first ordering concerns the equivalence property of Young functions.

Definition 2.6. Let Φ_{1} and Φ_{2} be two Young functions. If there exist $C>0$ and $z_{0}>0$ such that

$$
\Phi_{1}(z) \leq \Phi_{2}(C z), \quad \forall z \geq z_{0}
$$

then we write

$$
\Phi_{1} \prec \Phi_{2} .
$$

If $\Phi_{1} \prec \Phi_{2}$ and also $\Phi_{2} \prec \Phi_{1}$, we say that Φ_{1} and Φ_{2} are equivalent.

The second ordering of Young functions is useful for the embedding theorem of Orlicz spaces (see Theorem 2.20).

Definition 2.7. Let Φ_{1} and Φ_{2} be two Young functions. If

$$
\lim _{z \rightarrow+\infty} \frac{\Phi_{1}(z)}{\Phi_{2}(\lambda z)}=0
$$

for any $\lambda>0$, then we write

$$
\Phi_{1} \prec \prec \Phi_{2} .
$$

Lemma 2.8. Let Φ_{1} and Φ_{2} be two Young functions, Ψ_{1} and Ψ_{2} be the respective complementary functions. If $\Phi_{1} \prec \prec \Phi_{2}$, then $\Psi_{1} \succ \succ \Psi_{2}$.

Proof: see [15], page 114.

2.3 Orlicz spaces

Orlicz spaces generalize the concept of Lebesgue spaces. Prior to the definition of Orlicz spaces, we define Orlicz classes.

Definition 2.9. Let Φ be a Young function and $Q \subset \mathbb{R}^{n}, n \in \mathbb{N}$, is an open subset. We say that $u \in \tilde{L}_{\Phi}(Q)$, if

$$
\int_{Q} \Phi(|u(x)|) \mathrm{d} x<+\infty
$$

The set $\tilde{L}_{\Phi}(Q)$ is called an Orlicz class.
We remark that the equality of elements in $\tilde{L}_{\Phi}(Q)$ is the equality almost everywhere (similarly as in Lebesgue spaces) and the elements of $\tilde{L}_{\Phi}(Q)$ are still called "functions" without a confusion. The following two theorems are useful to obtain a better notion about Orlicz classes.

Theorem 2.10. Let $|Q|<+\infty$ and $u \in L^{1}(Q)$. Then there exists a Young function Φ such that $u \in \tilde{L}_{\Phi}(Q)$.

Proof: see [16], page 131.

It follows from Theorem 2.10 that $L^{1}(Q)$ can be viewed as the union of all Orlicz classes. The hierarchy of Orlicz classes is given by their respective Young functions.

Theorem 2.11. Let us assume that $|Q|<+\infty$ and Φ_{1}, Φ_{2} are two Young functions. It holds that

$$
\tilde{L}_{\Phi_{2}}(Q) \subset \tilde{L}_{\Phi_{1}}(Q)
$$

if and only if

$$
\Phi_{1}(z) \leq C \Phi_{2}(z), \quad \forall z \geq z_{0},
$$

for some $C>0$ and $z_{0}>0$.
Proof: see [16], page 140.

An Orlicz class is only a convex subset of $L^{1}(Q)$ (see [16], page 130), in general. Therefore, we define Orlicz spaces.

Definition 2.12. Let $u: Q \rightarrow \mathbb{R}, Q \subset \mathbb{R}^{n}, n \in \mathbb{N}$, be a measurable function and let Φ, Ψ be a pair of complementary Young functions. The set $L_{\Phi}(Q)$ of all u such that $\|u\|_{L_{\Phi}(Q)}<+\infty$ is called the Orlicz space. The positive number $\|u\|_{L_{\Phi}(Q)}$ is defined as

$$
\|u\|_{L_{\Phi}(Q)}=\sup _{v} \int_{Q}|u(x) v(x)| \mathrm{d} x
$$

where the supremum is taken over all functions $v \in \tilde{L}_{\Psi}(Q)$ satisfying condition $\int_{Q} \Psi(|v(x)|) \mathrm{d} x \leq 1$.

Theorem 2.13. The Orlicz space $L_{\Phi}(Q)$ is a Banach space and $\|\cdot\|_{L_{\Phi}(Q)}$ is the norm on $L_{\Phi}(Q)$.

Proof: see [16], pages 145 and 156.

Orlicz spaces can be alternatively defined as follows.

Definition 2.14. Let Φ be a Young function. The space $E_{\Phi}(Q)$ is defined as the closure of the set of all bounded measurable functions defined on Q with respect to the norm $\|\cdot\|_{L_{\Phi}(Q)}$.

In general, Definitions 2.12 and 2.14 are not equivalent. They coincide if and only if the Δ_{2}-condition holds (see Definition 2.4).

Theorem 2.15. Let Φ be a Young function. It holds that

$$
E_{\Phi}(Q) \subseteq \tilde{L}_{\Phi}(Q) \subseteq L_{\Phi}(Q)
$$

In addition, Φ satisfies the Δ_{2}-condition if and only if

$$
E_{\Phi}(Q)=\tilde{L}_{\Phi}(Q)=L_{\Phi}(Q)
$$

Proof: see [16], page 164.

Theorem 2.16. Let Φ and Ψ be a pair of Young functions. In general, it holds that $L_{\Psi}(Q)=\left[E_{\Phi}(Q)\right]^{*}$.

Proof: see [16], pages 169 and 171.

The hierarchy of Orlicz spaces is clarified in the following statements. It depends on the respective Young functions.

Theorem 2.17. Let us suppose that Φ_{1} and Φ_{2} are Young functions. Then $L_{\Phi_{1}}(Q) \hookrightarrow L_{\Phi_{2}}(Q)$ if and only if $\Phi_{1} \succ \Phi_{2}$.

Proof: see [16], pages 185 and 187.

Remark 2.18. We note that the inclusion $L_{\Phi_{1}}(Q) \subset L_{\Phi_{2}}(Q)$ is equivalent to the embedding $L_{\Phi_{1}}(Q) \hookrightarrow L_{\Phi_{2}}(Q)$ in case of Orlicz spaces (see [16], page 187).

Corollary 2.19. Young functions Φ_{1} and Φ_{2} are equivalent if and only if

$$
L_{\Phi_{1}}(Q)=L_{\Phi_{2}}(Q) .
$$

Proof: The assertion is a consequence of Definition 2.6, Theorem 2.17 and Remark 2.18.

Theorem 2.20. Let Φ_{1} and Φ_{2} be Young functions. If $\Phi_{1} \succ \succ \Phi_{2}$, then

$$
L_{\Phi_{1}}(Q) \hookrightarrow E_{\Phi_{2}}(Q) .
$$

Proof: see [16], page 189.

Besides the strong convergence in the Orlicz space $L_{\Phi}(Q)$ given in terms of the norm $\|\cdot\|_{L_{\Phi}(Q)}$, we can also define the E_{Ψ}-weak convergence.

Definition 2.21. A sequence $\left\{u_{n}\right\}_{n=1}^{+\infty} \subset L_{\Phi}(Q)$ converges $\mathbf{E}_{\boldsymbol{\Psi}}$-weakly to $u \in$ $L_{\Phi}(Q)$, if

$$
\lim _{n \rightarrow+\infty} \int_{Q}\left(u_{n}(x)-u(x)\right) v(x) \mathrm{d} x=0, \quad \forall v \in E_{\Psi}(Q)
$$

We write $u_{n} \xrightarrow{\Psi} u$.
Remark 2.22. It follows from Theorem 2.16 that the weak-* convergence in $L_{\Phi}(Q)$ is equivalent to the E_{Ψ}-weak convergence. Therefore, the boundedness of sequence $\left\{u_{n}\right\}_{n=1}^{+\infty}$ in $L_{\Phi}(Q)$ implies the existence of E_{Ψ}-weakly convergent subsequence of $\left\{u_{n}\right\}_{n=1}^{+\infty}$.

Frequently, we are not interested in functions only but we are concerned also with their derivatives. Therefore, we define Sobolev-Orlicz spaces. The definition of the Sobolev-Orlicz spaces is similar to the definition of Sobolev spaces, which were constructed from Lebesgue spaces.

Definition 2.23. The Sobolev-Orlicz space $W^{1} L_{\Phi}(Q)$ is the set of all functions u such that

$$
\|u\|_{W^{1} L_{\Phi}(Q)}=\sqrt{\sum_{\alpha,|\alpha| \leq 1}\left\|D^{\alpha} u\right\|_{L_{\Phi}(Q)}^{2}}<+\infty
$$

where D^{α} denotes distributional derivatives, and $\|\cdot\|_{W^{1} L_{\Phi}(Q)}$ is the norm of $W^{1} L_{\Phi}(Q)$. Further, $W^{1} E_{\Phi}(Q)$ and $W_{0}^{1} L_{\Phi}(Q)$ are the closures of $C^{\infty}(\bar{Q})$ and $C_{0}^{\infty}(\bar{Q})$, respectively, with respect to $\|\cdot\|_{W^{1} L_{\Phi}(Q)}$.

Finally, we present inequalities which are necessary for deriving estimates in the subsequent sections.

Theorem 2.24. (Hölder's inequality)
Let $u \in L_{\Phi}(Q)$ and $v \in L_{\Psi}(Q)$, where Φ, Ψ is a pair of complementary Young functions. Then $u v \in L^{1}(Q)$ and

$$
\begin{equation*}
\int_{Q}|u(x) v(x)| \mathrm{d} x \leq\|u\|_{L_{\Phi}(Q)}\|v\|_{L_{\Psi}(Q)} . \tag{2.1}
\end{equation*}
$$

Proof: see [16], page 152.

Theorem 2.25. (Young's inequality)
Let $a, b \in\langle 0,+\infty)$ and Φ, Ψ be a complementary Young functions. It holds that

$$
\begin{equation*}
a b \leq \Phi(a)+\Psi(b) \tag{2.2}
\end{equation*}
$$

Proof: see [16], page 65.

Corollary 2.26. Assume that Φ, Ψ is a pair of complemetary Young functions. Further, we suppose that $u \in \tilde{L}_{\Phi}(Q)$ and $v \in \tilde{L}_{\Psi}(Q)$. Then

$$
\begin{equation*}
\int_{Q}|u(x) v(x)| \mathrm{d} x \leq \int_{Q} \Phi(|u(x)|) \mathrm{d} x+\int_{Q} \Psi(|v(x)|) \mathrm{d} x \tag{2.3}
\end{equation*}
$$

and therefore $u v \in L^{1}(Q)$.
Proof: see [16], page 136.

Corollary 2.27. Let $u \in L_{\Phi}(Q)$. It holds that

$$
\begin{equation*}
\|u\|_{L_{\Phi}(Q)} \leq \int_{Q} \Phi(|u(x)|) \mathrm{d} x+1 . \tag{2.4}
\end{equation*}
$$

Hence, $\tilde{L}_{\Phi}(Q) \subset L_{\Phi}(Q)$.

Proof: see [16], page 145.

Theorem 2.28. (Jensen's inequality)
Let us assume that $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function and $\alpha(x)$ is positive almost everywhere in $Q \subset \mathbb{R}^{n}, n \in \mathbb{N}$. Then

$$
\begin{equation*}
\Phi\left(\frac{\int_{Q} \alpha(x) u(x) \mathrm{d} x}{\int_{Q} \alpha(x) \mathrm{d} x}\right) \leq \frac{\int_{Q} \alpha(x) \Phi(u(x)) \mathrm{d} x}{\int_{Q} \alpha(x) \mathrm{d} x} \tag{2.5}
\end{equation*}
$$

for any non-negative function $u: Q \rightarrow \mathbb{R}$ supposing that all the integrals in (2.5) are meaningful.

Proof: see [16], page 133.

2.4 Special Young functions

We focus on Young functions with a logarithmic or an exponential growth. These Young functions are used in the following sections to analyze the asymptotic behavior of solutions to the equations (1.1) and (1.2).

Definition 2.29. Let us define Young functions $\Phi_{\gamma}(z)=(1+z) \ln ^{\gamma}(1+z)$, $\gamma>1$, and $\Phi_{1}(z)=z \ln (z+1)$. Functions $\Psi_{\gamma}, \gamma \geq 1$, denote the complementary functions to $\Phi_{\gamma}, \gamma \geq 1$. Subsequently, we define $M(z)=\mathrm{e}^{z}-z-1$ and its complementary function $N(z)=(1+z) \ln (1+z)-z$. Further, we denote $\Phi_{1 / \alpha}(z)$, $\alpha \in(1,+\infty)$, the Young functions with growth $z \ln ^{1 / \alpha} z, z \geq z_{0}>0$, and their complementary functions $\Psi_{1 / \alpha}(z)$.

It is apparent that $\Phi_{\gamma}(z)=O\left(z \ln ^{\gamma} z\right), \gamma>0$, and $M(z)=O\left(\mathrm{e}^{z}\right)$. Furthermore, $\Psi_{\gamma}(z)=O\left(\mathrm{e}^{z^{1 / \gamma}}\right), \gamma>0$, and $N(z)=O(z \ln z)$. Hence, pairs $\Phi_{1}(z)$ and $N(z)$, and $\Psi_{1}(z)$ and $M(z)$ are equivalent.

Lemma 2.30. Functions $\Phi_{1}(z)$ and $N(z)$ are equivalent Young functions. Similarly, $\Psi_{1}(z)$ and $M(z)$ are also equivalent Young functions, because they are complementary functions to $\Phi_{1}(z)$ and $N(z)$, respectively. Therefore, $L_{\Phi_{1}}(Q)=$ $L_{N}(Q)$ and also $L_{\Psi_{1}}(Q)=L_{M}(Q)$.

Proof: It is sufficient to prove that $\Phi_{1}(z)$ and $N(z)$ are equivalent. The rest of the statement is a direct consequence of Lemma 2.8 and Corollary 2.19. Since $z \geq \ln (1+z)$, for all $z \geq 0$, we get

$$
N(z)=\Phi_{1}(z)+\ln (1+z)-z \leq \Phi_{1}(z), \quad \forall z \geq 0
$$

On the other hand,

$$
\begin{aligned}
\Phi_{1}(z) & \leq \Phi_{1}(z)+\ln (1+2 z)+z(\ln (1+2 z)-2) \leq \\
& \leq 2 z \ln (1+2 z)+\ln (1+2 z)-2 z=N(2 z), \quad \forall z \geq 0.5\left(\mathrm{e}^{2}-1\right)
\end{aligned}
$$

because $\ln (1+2 z) \geq 2$, for all $z \geq 0.5\left(\mathrm{e}^{2}-1\right)$.

Remark 2.31. Since $O(z)<O\left(z \ln ^{\gamma} z\right)<O\left(z^{p}\right)<O\left(\mathrm{e}^{z^{1 / \gamma}}\right)$, for any $\gamma>0$ and $p \geq 2$, it stems from Theorem 2.17 that

$$
L^{\infty}(Q) \hookrightarrow L_{\Psi_{\gamma}}(Q) \hookrightarrow L^{p}(Q) \hookrightarrow L_{\Phi_{\gamma}}(Q) \hookrightarrow L^{1}(Q)
$$

By applying a similar approach as in [25], we prove the following two properties of Young functions with a logarithmic growth.

Lemma 2.32. Young functions $\Phi_{\gamma}, \gamma \geq 1$, satisfy the global Δ_{2}-condition.
Proof: Directly, from the properties of logarithmic functions, we have

$$
\begin{aligned}
\Phi_{\gamma}(2 z) & =(1+2 z) \ln ^{\gamma}(1+2 z) \leq 2(1+z) \ln ^{\gamma}(1+z)^{2} \leq \\
& \leq 2^{\gamma+1}(1+z) \ln ^{\gamma}(1+z)=2^{\gamma+1} \Phi_{\gamma}(z), \quad \forall \gamma>1
\end{aligned}
$$

Similarly for Φ_{1}, we get

$$
\begin{aligned}
\Phi_{1}(2 z) & =2 z \ln (1+2 z) \leq 2 z \ln (1+z)^{2} \leq \\
& \leq 4 z \ln (1+z)=4 \Phi_{1}(z)
\end{aligned}
$$

Lemma 2.33. Let us suppose that $\gamma_{2}>\gamma_{1} \geq 1$, then $\Phi_{\gamma_{2}} \succ \succ \Phi_{\gamma_{1}}$ and hence also $\Psi_{\gamma_{2}} \prec \prec \Psi_{\gamma_{1}}$.

Proof: We define $C \in \mathbb{R}$ such that $C=0$, if $\gamma_{1}=1$, and $C=1$, if $\gamma_{1}>1$. Let us calculate the limit from Definition 2.7:

$$
\begin{aligned}
\lim _{z \rightarrow+\infty} \frac{\Phi_{\gamma_{1}}(z)}{\Phi_{\gamma_{2}}(\lambda z)} & =\lim _{z \rightarrow+\infty} \frac{(C+z) \ln ^{\gamma_{1}}(1+z)}{(1+\lambda z) \ln ^{\gamma_{2}}(1+\lambda z)} \\
& \leq \frac{1}{\lambda} \lim _{z \rightarrow+\infty} \frac{\ln ^{\gamma_{1}}(1+z)}{(\ln \lambda+\ln (1+z))^{\gamma_{2}}}=0
\end{aligned}
$$

for $\lambda \in(0,1)$ and

$$
\begin{aligned}
\lim _{z \rightarrow+\infty} \frac{\Phi_{\gamma_{1}}(z)}{\Phi_{\gamma_{2}}(\lambda z)} & =\lim _{z \rightarrow+\infty} \frac{(C+z) \ln ^{\gamma_{1}}(1+z)}{(1+\lambda z) \ln ^{\gamma_{2}}(1+\lambda z)} \\
& \leq \lim _{z \rightarrow+\infty} \frac{\ln ^{\gamma_{1}}(1+z)}{\ln ^{\gamma_{2}}(1+z)}=0
\end{aligned}
$$

for $\lambda \geq 1$.
Remark 2.34. It follows from Theorem 2.20 and Lemmas 2.32 and 2.33 that:

- If $u \in L_{\Phi_{\gamma}}(Q), \gamma \geq 1$, then $\int_{Q} \Phi_{\gamma}(|u(x)|) \mathrm{d} x<+\infty$, because the $\Delta_{2^{-}}$ condition holds and thus $L_{\Phi_{\gamma}}(Q)=\tilde{L}_{\Phi_{\gamma}}(Q)$.
- If $u \in L_{\Psi_{\gamma}}(Q), \gamma \geq 1$, then $\int_{Q} \Psi_{\gamma^{\prime}}(|u(x)|) \mathrm{d} x<+\infty$, for all $\gamma^{\prime}>\gamma$, because $\Psi_{\gamma} \succ \succ \Psi_{\gamma^{\prime}}$ and therefore $L_{\Psi_{\gamma}}(Q) \hookrightarrow E_{\Psi_{\gamma^{\prime}}}(Q) \subset \tilde{L}_{\Psi_{\gamma^{\prime}}}(Q)$.

Chapter 3

Derivation of a 1D model

We focus on derivation of a one-dimensional model from equations (1.1)-(1.2) under Navier boundary conditions [1]. The problem in question is described in detail in section 3.1. Subsequently, the transformation of governing equations and energy equality is performed in section 3.2. Finally, section 3.3 contains the proof of our main result, which is stated in section 3.4.

3.1 Statement of the problem

We study the motion of a compressible fluid in a thin pipe. The dynamics of a compressible fluid is governed by equations (1.1)-(1.2). We employ notation $\overline{\mathbf{u}}_{\varepsilon}$ and $\bar{\rho}_{\varepsilon}$ for the velocity and the density, respectively, in equations (1.1)-(1.2) to highlight the connection to Ω_{ε}. Similar notation is applied also for other functions connected to Ω_{ε}.

Domain $\Omega_{\varepsilon} \subset \mathbb{R}^{3}$ is defined by the use of a referential domain $\Omega=(0,1) \times S$ with $S \subset \mathbb{R}^{2},|S|=1$ and $\partial S \in C^{0,1}$, and mapping $\mathbf{R}_{\varepsilon}: \Omega \rightarrow \Omega_{\varepsilon}$ so that

$$
\mathbf{R}_{\varepsilon}:\left(x_{1}, x_{2}, x_{3}\right) \longmapsto\left(x_{1}, \varepsilon x_{2}, \varepsilon x_{3}\right) .
$$

It means that $\Omega_{\varepsilon}=(0,1) \times \varepsilon S$. As well as in [22], section 4.17.2.4, we suppose that Ω is not axially symmetric. Axial symmetry would mean that the appearance of Ω remains unchanged if rotated around an axis along the first spatial dimension.

Symbols \mathbf{n} and $\overline{\mathbf{n}}_{\varepsilon}$ stand for unit outward normals to Ω and Ω_{ε}, respectively. Similarly, \mathbf{t} and $\overline{\mathbf{t}}_{\varepsilon}$ are vectors from the corresponding tangent planes. We employ
the following notation for the borders of domains Ω and Ω_{ε} :

$$
\begin{gathered}
\Gamma_{1}=(0,1) \times \partial S, \Gamma_{2}=\{0,1\} \times S \\
\Gamma_{1, \varepsilon}=\mathbf{R}_{\varepsilon}\left(\Gamma_{1}\right), \Gamma_{2, \varepsilon}=\mathbf{R}_{\varepsilon}\left(\Gamma_{2}\right)
\end{gathered}
$$

To ensure the well-posedness of our problem [26], we prescribe Navier boundary conditions

$$
\begin{array}{rll}
\overline{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\bar{D} \overline{\mathbf{u}}_{\varepsilon}\right|\right) \bar{D} \overline{\mathbf{u}}_{\varepsilon} \overline{\mathbf{n}}_{\varepsilon}\right)+h(\varepsilon) \overline{\mathbf{u}}_{\varepsilon} \cdot \overline{\mathbf{t}}_{\varepsilon}=0 & \text { on } \Gamma_{1, \varepsilon} \times(0, T), \\
\overline{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\bar{D} \overline{\mathbf{u}}_{\varepsilon}\right|\right) \bar{D} \overline{\mathbf{u}}_{\varepsilon} \overline{\mathbf{n}}_{\varepsilon}\right)+q \overline{\mathbf{u}}_{\varepsilon} \cdot \overline{\mathbf{t}}_{\varepsilon}=0 & \text { on } \Gamma_{2, \varepsilon} \times(0, T), \\
\overline{\mathbf{u}}_{\varepsilon} \cdot \overline{\mathbf{n}}_{\varepsilon}=0 & \text { on } \partial \Omega_{\varepsilon} \times(0, T) . \tag{3.3}
\end{array}
$$

We suppose that $h(\varepsilon)>0$ behaves like $O(\varepsilon)$ and $q>0$. The asymptotic behavior of $h(\varepsilon)$ will be discussed during derivation of weak convergences of density and velocity field (section 3.3.3).

We consider the initial conditions for the density and the momentum

$$
\begin{aligned}
\bar{\rho}_{\varepsilon}(\bar{x}, 0) & =\bar{\rho}_{0, \varepsilon}(\bar{x}) \geq 0, \quad \forall \bar{x} \in \Omega_{\varepsilon} \\
\left(\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon}\right)(\bar{x}, 0) & =\left(\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon}\right)_{0}(\bar{x}, 0), \quad \forall \bar{x} \in \Omega_{\varepsilon} .
\end{aligned}
$$

The variational formulation of our problem is

$$
\begin{gather*}
\int_{0}^{T} \int_{\Omega_{\varepsilon}}\left(\bar{\rho}_{\varepsilon} \partial_{t} \bar{\varphi}+\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon} \cdot \bar{\nabla} \bar{\varphi}\right) \mathrm{d} \bar{x} \mathrm{~d} t=0 \tag{3.4}\\
\int_{0}^{T} \int_{\Omega_{\varepsilon}}\left(\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon} \cdot \partial_{t} \bar{\psi}+\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon} \otimes \overline{\mathbf{u}}_{\varepsilon}: \bar{D} \bar{\psi}+\bar{\rho}_{\varepsilon} \mathrm{d} \overline{\mathrm{i} v} \bar{\psi}\right) \mathrm{d} \bar{x} \mathrm{~d} t \\
=\int_{0}^{T} \int_{\Omega_{\varepsilon}}\left(P\left(\left|\bar{D} \overline{\mathbf{u}}_{\varepsilon}\right|\right) \bar{D} \overline{\mathbf{u}}_{\varepsilon}: \bar{D} \bar{\psi}-\bar{\rho}_{\varepsilon} \overline{\mathbf{f}}_{\varepsilon} \cdot \bar{\psi}\right) \mathrm{d} x \mathrm{~d} t \\
+h(\varepsilon) \int_{0}^{T} \int_{\Gamma_{1, \varepsilon}} \overline{\mathbf{u}}_{\varepsilon} \cdot \bar{\psi} \mathrm{d} \bar{\Gamma} \mathrm{~d} t+q \int_{0}^{T} \int_{\Gamma_{2, \varepsilon}} \overline{\mathbf{u}}_{\varepsilon} \cdot \bar{\psi} \mathrm{d} \bar{\Gamma} \mathrm{~d} t \tag{3.5}
\end{gather*}
$$

for any $\bar{\varphi} \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\bar{\psi} \in C_{0}^{\infty}\left(0, T ; C^{\infty}\left(\bar{\Omega}_{\varepsilon}\right)^{3}\right)$ satisfying condition $\left.\bar{\psi} \cdot \overline{\mathbf{n}}_{\varepsilon}\right|_{\partial \Omega_{\varepsilon} \times(0, T)}=0$.

3.2 Transformation and related results

We transform the governing equations and the energy equality to the referential domain. First, we denote

$$
\begin{aligned}
& \mathbf{u}_{\varepsilon}: \Omega \times\langle 0, T\rangle \rightarrow \mathbb{R}^{3}, \\
& \rho_{\varepsilon}: \Omega \times\langle 0, T\rangle \rightarrow \mathbb{R}
\end{aligned}
$$

where $\mathbf{u}_{\varepsilon}(x, t)=\overline{\mathbf{u}}_{\varepsilon}\left(\mathbf{R}_{\varepsilon}(x), t\right)$ and $\rho_{\varepsilon}(x, t)=\bar{\rho}_{\varepsilon}\left(\mathbf{R}_{\varepsilon}(x), t\right)$, for all $x \in \Omega$. Since $\bar{x}=\mathbf{R}_{\varepsilon}(x), \bar{x} \in \Omega_{\varepsilon}$, we can write $\mathbf{u}_{\varepsilon}(x, t)=\overline{\mathbf{u}}_{\varepsilon}(\bar{x}, t)$ and $\rho_{\varepsilon}(x, t)=\bar{\rho}_{\varepsilon}(\bar{x}, t)$.

We express the spatial gradient of a scalar function $\bar{\varphi}$ according to the chain rule as

$$
\bar{\nabla} \bar{\varphi}(\bar{x}, t)=\bar{\nabla} \bar{\varphi}\left(\mathbf{R}_{\varepsilon}^{-1}(x), t\right)=\nabla_{\varepsilon} \varphi
$$

where gradient $\nabla_{\varepsilon}=\left(\partial_{1}, \varepsilon^{-1} \partial_{2}, \varepsilon^{-1} \partial_{3}\right)$. Additionally, divergence $\operatorname{div}_{\varepsilon}$ is defined as $\operatorname{div}_{\varepsilon} \varphi=\partial_{1} \varphi+\varepsilon^{-1} \partial_{2} \varphi+\varepsilon^{-1} \partial_{3} \varphi$.

Similarly, we transform the symmetric part of the gradient of a vector function $\overline{\mathbf{u}}_{\varepsilon}$ and arrive at $\bar{D} \overline{\mathbf{u}}_{\varepsilon}(\bar{x}, t)=\bar{D} \overline{\mathbf{u}}_{\varepsilon}\left(\mathbf{R}_{\varepsilon}^{-1}(x), t\right)=\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}(x, t)\right)$, where

$$
\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)=\left(\begin{array}{ccc}
\partial_{1} u_{1, \varepsilon} & \frac{1}{2}\left(\partial_{1} u_{2, \varepsilon}+\varepsilon^{-1} \partial_{2} u_{1, \varepsilon}\right) & \frac{1}{2}\left(\partial_{1} u_{3, \varepsilon}+\varepsilon^{-1} \partial_{3} u_{1, \varepsilon}\right) \tag{3.6}\\
\cdot & \varepsilon^{-1} \partial_{2} u_{2, \varepsilon} & \frac{1}{2} \varepsilon^{-1}\left(\partial_{2} u_{3, \varepsilon}+\partial_{3} u_{2, \varepsilon}\right) \\
\operatorname{sym} & \cdot & \varepsilon^{-1} \partial_{3} u_{3, \varepsilon}
\end{array}\right) .
$$

3.2.1 Transformation of the governing equations

According to [7], we use the following equalities

$$
\begin{aligned}
& \mathrm{d} \bar{x}=\varepsilon^{2} \mathrm{~d} x \\
& \mathrm{~d} \bar{\Gamma}=\varepsilon \mathrm{d} \Gamma \quad \text { on } \Gamma_{1}, \\
& \mathrm{~d} \bar{\Gamma}=\varepsilon^{2} \mathrm{~d} \Gamma \quad \text { on } \Gamma_{2}
\end{aligned}
$$

to arrive at the transformed equations of the variational formulation (3.4)-(3.5).
Now, we can divide both equations by ε^{2} and arrive at transformed governing equations

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon} \partial_{t} \varphi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \nabla_{\varepsilon} \varphi\right) \mathrm{d} x \mathrm{~d} t=0 \tag{3.7}
\end{equation*}
$$

$$
\begin{array}{r}
\int_{0}^{T} \int_{\Omega}\left[\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi)+\rho_{\varepsilon} \operatorname{div}_{\varepsilon} \psi\right] \mathrm{d} x \mathrm{~d} t \\
=\int_{0}^{T} \int_{\Omega}\left[P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi)-\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi\right] \mathrm{d} x \mathrm{~d} t \\
\quad+\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{T} \int_{\Gamma_{1}} \mathbf{u}_{\varepsilon} \cdot \psi \mathrm{d} \Gamma \mathrm{~d} t+q \int_{0}^{T} \int_{\Gamma_{2}} \mathbf{u}_{\varepsilon} \cdot \psi \mathrm{d} \Gamma \mathrm{~d} t \tag{3.8}
\end{array}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\psi \in C_{0}^{\infty}\left(0, T ;\left[C^{\infty}(\bar{\Omega})\right]^{3}\right),\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$.
Imposing the same transformation also to the renormalized continuity equation (see [17] or [19] for its original form) leads to

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} b\left(\rho_{\varepsilon}\right) \partial_{t} \varphi+b\left(\rho_{\varepsilon}\right) \mathbf{u}_{\varepsilon} \cdot \nabla_{\varepsilon} \varphi+\left[\left(b\left(\rho_{\varepsilon}\right)-\rho_{\varepsilon} b^{\prime}\left(\rho_{\varepsilon}\right)\right) \operatorname{div}_{\varepsilon} \mathbf{u}_{\varepsilon}\right] \varphi \mathrm{d} x \mathrm{~d} t=0 \tag{3.9}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$.

3.2.2 Energy equality and its transformation

For any $t \in\langle 0, T\rangle$, we have the energy equality expressed by the following formula [19]

$$
\begin{align*}
& \int_{\Omega_{\varepsilon}}\left(\bar{\rho}_{\varepsilon}(t) \frac{\left|\overline{\mathbf{u}}_{\varepsilon}(t)\right|^{2}}{2}+\bar{\rho}_{\varepsilon}(t) \ln \left(\bar{\rho}_{\varepsilon}(t)\right)\right) \mathrm{d} \bar{x}+ \\
& +\int_{0}^{t} \int_{\Omega_{\varepsilon}} P\left(\left|\bar{D} \overline{\mathbf{u}}_{\varepsilon}\right|\right) \bar{D} \overline{\mathbf{u}}_{\varepsilon}: \bar{D} \overline{\mathbf{u}}_{\varepsilon} \mathrm{d} \bar{x} \mathrm{~d} s+h(\varepsilon) \int_{0}^{t} \int_{\Gamma_{1, \varepsilon}}\left|\overline{\mathbf{u}}_{\varepsilon}\right|^{2} \mathrm{~d} \bar{\Gamma} \mathrm{~d} s+ \\
& +q \int_{0}^{t} \int_{\Gamma_{2, \varepsilon}}\left|\overline{\mathbf{u}}_{\varepsilon}\right|^{2} \mathrm{~d} \bar{\Gamma} \mathrm{~d} s=\int_{0}^{t} \int_{\Omega_{\varepsilon}} \bar{\rho}_{\varepsilon} \overline{\mathbf{f}}_{\varepsilon} \cdot \overline{\mathbf{u}}_{\varepsilon} \mathrm{d} \bar{x} \mathrm{~d} s+ \\
& +\int_{\Omega_{\varepsilon}}\left(\frac{\left|\left(\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon}\right)_{0}\right|^{2}}{2 \bar{\rho}_{0, \varepsilon}}+\bar{\rho}_{0, \varepsilon} \ln \left(\bar{\rho}_{0, \varepsilon}\right)\right) \mathrm{d} \bar{x} . \tag{3.10}
\end{align*}
$$

By transforming (3.10), we obtain

$$
\begin{align*}
& \int_{\Omega}\left(\rho_{\varepsilon}(t) \frac{\left|\mathbf{u}_{\varepsilon}(t)\right|^{2}}{2}+\rho_{\varepsilon}(t) \ln \left(\rho_{\varepsilon}(t)\right)\right) \mathrm{d} x \\
& +\int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s+ \\
& +\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{t} \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} \Gamma \mathrm{~d} s+q \int_{0}^{t} \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} \Gamma \mathrm{~d} s= \\
& =\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \mathbf{g}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \mathrm{d} x \mathrm{~d} s+\int_{\Omega}\left(\frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}}+\rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right)\right) \mathrm{d} x \tag{3.11}
\end{align*}
$$

for any $t \in\langle 0, T\rangle$, where

$$
\begin{aligned}
& \mathbf{g}_{\varepsilon}=\left(f_{1, \varepsilon}, \varepsilon^{-1} f_{2, \varepsilon}, \varepsilon^{-1} f_{3, \varepsilon}\right), \\
& \mathbf{v}_{\varepsilon}=\left(u_{1, \varepsilon}, \varepsilon u_{2, \varepsilon}, \varepsilon u_{3, \varepsilon}\right),
\end{aligned}
$$

It is obvious that $\mathbf{g}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon}=\mathbf{f}_{\varepsilon} \cdot \mathbf{u}_{\varepsilon}$, but we need to use this notation for making a priori estimates (see inequality 3.17), because a variant of Korn's inequality holds for \mathbf{v}_{ε} (see Lemma 3.2).

3.2.3 Related results

It is necessary to mention that equations (3.7)-(3.8) with non-slip boundary conditions have a weak solution in a sufficiently regular domain for any $\varepsilon \in$ $(0,1)$. Moreover, any weak solution satisfies the energy equality (3.11) and it can be constructed as a limit of Rothe approximations (see [19], Theorem 3.5). The non-slip boundary conditions mean that surface integrals in (3.8) and (3.11) disappears. We remark that $\gamma>7 / 2$ in [19], while our result was achieved for a slightly more general $\gamma>3$.

According to [26], we can treat the case of slip boundary conditions similarly as the barotropic case [22]. In our case, we use the Navier boundary conditions (3.1)(3.3), because the slip boundary conditions are their special case $(h(\varepsilon)=q=0)$ and the generalization poses no additional technical problems to the existence
proof. The case of non-slip boundary conditions would lead to the zero velocity in the limit. Thus, it was not an interesting choice of boundary conditions for us.

Since we are dealing with a domain which has a shape similar to a cylinder, the assumption on the regularity of the boundary of Ω can be relaxed by simplifying and slightly modifying the approach presented in [10].

3.3 Derivation of the limiting 1D equations

The first step of the proof concerns a variant of the first Korn's inequality (see section 3.3.1). We need this inequality to perform a priori estimates in section 3.3.2 and afterwards show the boundedness of $\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ and $\left\{\mathbf{u}_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$, and perform weak limits. Subsequently, we pass to limits in equations (3.7)-(3.8) in section 3.3.3. Finally in section 3.3.4, the limit passage is performed also for the energy equality (3.11).

3.3.1 Korn's inequality

From [9], we know that for any $\mathbf{w} \in\left[W^{1, p}(\Omega)\right]^{3}, p \geq 2$, there exists constant $C>0$ such that the following estimate holds

$$
\begin{equation*}
\|\mathbf{w}\|_{1, p} \leq C\left(\|D \mathbf{w}\|_{p}+\|\mathbf{w}\|_{p}\right) \tag{3.12}
\end{equation*}
$$

Lemma 3.1. Let (3.12) hold for any $\mathbf{w} \in\left[W^{1, p}(\Omega)\right]^{3}, p \geq 2$. Then, there exists constant $\bar{C}(\Omega, p)>0$ such that

$$
\|\mathbf{w}\|_{1, p} \leq \bar{C}(\Omega, p)\left(\|D \mathbf{w}\|_{p}+\|\mathbf{w}\|_{2, \Gamma}\right) .
$$

Proof: Let us suppose the contrary: without loss of generality, there exist a sequence $\left\{\mathbf{w}_{n}\right\}_{n=1}^{+\infty} \subset\left[W^{1, p}(\Omega)\right]^{3}$ such that $\left\|\mathbf{w}_{n}\right\|_{1, p}=1$ and

$$
\frac{1}{n} \geq\left(\left\|D \mathbf{w}_{n}\right\|_{p}+\left\|\mathbf{w}_{n}\right\|_{2, \Gamma}\right)
$$

Then (passing to a subsequence if necessary), we get

$$
\begin{aligned}
\mathbf{w}_{n} & \rightarrow \mathbf{w} \quad \text { in }\left[L^{p}(\Omega)\right]^{3} \\
\nabla \mathbf{w}_{n} & \rightarrow \nabla \mathbf{w} \quad \text { in }\left[L^{p}(\Omega)\right]^{9}, \\
D \mathbf{w}_{n} & \rightarrow 0 \quad \text { in }\left[L^{p}(\Omega)\right]^{9} \\
\mathbf{w}_{n} & \rightarrow 0 \quad \text { in }\left[L^{2}(\Gamma)\right]^{3} .
\end{aligned}
$$

From (3.12), $\nabla \mathbf{w}_{n} \rightarrow \nabla \mathbf{w}$ in $\left[L^{p}(\Omega)\right]^{9}$ and thus $\|\mathbf{w}\|_{1, p}=1$. However, $D \mathbf{w}=0$ and $\left.\mathbf{w}\right|_{\Gamma}=0$. It means that $\mathbf{w}=0$ (see [7], Theorem 1.7-3) and we arrive at contradiction with $\|\mathbf{w}\|_{1, p}=1$.

Without the loss of generality, we denote $\mathbf{u}_{\varepsilon}=\mathbf{u}_{\varepsilon}(t)$ in the following theorem. Variable $t \in\langle 0, T\rangle$ is arbitrary but fixed.

Theorem 3.2. Let $\mathbf{u}_{\varepsilon} \in\left[W^{1, p}(\Omega)\right]^{3}, p>3$, be such that $\mathbf{u}_{\varepsilon} \cdot \mathbf{n}=0$ on $\Gamma=\{0\} \times S$. We define $\mathbf{v}_{\varepsilon}=\left(u_{1, \varepsilon}, \varepsilon u_{2, \varepsilon}, \varepsilon u_{3, \varepsilon}\right) \in\left[W^{1, p}(\Omega)\right]^{3}$. Then, there exists $C=C(\Omega, p)>$ 0 , such that

$$
\begin{equation*}
\left\|\mathbf{v}_{\varepsilon}\right\|_{1, p} \leq C\left(\left\|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right\|_{p}+\left\|\mathbf{u}_{\varepsilon}\right\|_{2, \Gamma}\right), \quad \forall \varepsilon>0 \tag{3.13}
\end{equation*}
$$

where $\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)$ is defined by (3.6).
Proof: Let us assume the contrary. Without the loss of generality, there exists a sequence $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ defined by $\left\{\mathbf{u}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$, where $\varepsilon_{n} \rightarrow 0$ as n tends to infinity, such that $\left\|\mathbf{v}_{\varepsilon_{n}}\right\|_{1, p}=1$ and

$$
\frac{1}{n} \geq\left\|\omega_{\varepsilon_{n}}\left(\mathbf{u}_{\varepsilon_{n}}\right)\right\|_{p}+\left\|\mathbf{u}_{\varepsilon_{n}}\right\|_{2, \Gamma} .
$$

Hence,

$$
\begin{equation*}
\mathbf{u}_{\varepsilon_{n}} \rightarrow 0 \text { in }\left[L^{2}(\Gamma)\right]^{3}, \quad \omega_{\varepsilon_{n}}\left(\mathbf{u}_{\varepsilon_{n}}\right) \rightarrow 0 \text { in }\left[L^{p}(\Omega)\right]^{9} . \tag{3.14}
\end{equation*}
$$

From boundedness of sequence $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ and embedding $W^{1, p}(\Omega) \hookrightarrow \hookrightarrow \mathcal{C}(\bar{\Omega})$, we deduce the following convergences (passing to a subsequence if necessary)

$$
\begin{array}{ll}
\mathbf{v}_{\varepsilon_{n}} \rightharpoonup \mathbf{v} & \text { in }\left[W^{1, p}(\Omega)\right]^{3} \\
\mathbf{v}_{\varepsilon_{n}} \rightarrow \mathbf{v} & \text { in }[\mathcal{C}(\bar{\Omega})]^{3} \tag{3.16}
\end{array}
$$

According to the definition of $\mathbf{v}_{\varepsilon_{n}}$, it holds that

$$
D \mathbf{v}_{\varepsilon_{n}}=\left(\begin{array}{ccc}
\partial_{1} u_{1, \varepsilon_{n}} & \frac{\varepsilon_{n}}{2}\left(\partial_{1} u_{2, \varepsilon_{n}}+\varepsilon_{n}^{-1} \partial_{2} u_{1, \varepsilon_{n}}\right) & \frac{\varepsilon_{n}}{2}\left(\partial_{1} u_{3, \varepsilon_{n}}+\varepsilon_{n}^{-1} \partial_{3} u_{1, \varepsilon_{n}}\right) \\
\cdot & \varepsilon_{n} \partial_{2} u_{2, \varepsilon_{n}} & \frac{\varepsilon_{n}}{2}\left(\partial_{2} u_{3, \varepsilon_{n}}+\partial_{3} u_{2, \varepsilon_{n}}\right) \\
\operatorname{sym} & \cdot & \varepsilon_{n} \partial_{3} u_{3, \varepsilon_{n}}
\end{array}\right)
$$

Due to the second convergence in (3.14) and definition of $\omega_{\varepsilon_{n}}\left(\mathbf{u}_{\varepsilon_{\mathbf{n}}}\right)$ given by relation (3.6), we arrive at $D \mathbf{v}_{\varepsilon_{n}} \rightarrow 0$ in $\left[L^{p}(\Omega)\right]^{9}$.

Finally, we prove that $\|\mathbf{v}\|_{1, p}=1$ and simultaneously $\mathbf{v}=0$ to arrive at a contradiction. We apply the Korn's inequality (see Lemma 3.1) as follows

$$
\left\|\mathbf{v}_{\varepsilon_{n}}\right\|_{1, p} \leq \bar{C}(\Omega, p)\left(\left\|D \mathbf{v}_{\varepsilon_{n}}\right\|_{p}+\left\|\mathbf{v}_{\varepsilon_{n}}\right\|_{2, \Gamma}\right)
$$

Since $\mathbf{u}_{\varepsilon_{n}} \rightarrow 0$ in $\left[L^{2}(\Gamma)\right]^{3}$, also $\mathbf{v}_{\varepsilon_{n}} \rightarrow 0$ in $\left[L^{2}(\Gamma)\right]^{3}$. Furthermore, $D \mathbf{v}_{\varepsilon_{n}} \rightarrow 0$ in $\left[L^{p}(\Omega)\right]^{9}$. Thus, it implies convergence $\mathbf{v}_{\varepsilon_{n}} \rightarrow 0$ in $\left[W^{1, p}(\Omega)\right]^{3}$, which together with (3.15) give us $\mathbf{v}_{\varepsilon_{n}} \rightarrow \mathbf{v}=0$ in $\left[W^{1, p}(\Omega)\right]^{3}$. This strong convergence and $\left\|\mathbf{v}_{\varepsilon_{n}}\right\|_{1, p}=1$ mean that also $\|\mathbf{v}\|_{1, p}=1$. To sum it up, $\mathbf{v}=0$ in Ω and $\|\mathbf{v}\|_{1, p}=1$, which is a contradiction.

3.3.2 Boundedness and weak limits

Now, we make a priori estimates. Equation (3.7) implies the conservation of mass which can be expressed as

$$
\int_{\Omega} \rho_{\varepsilon}(t) \mathrm{d} x=\int_{\Omega} \rho_{0, \varepsilon} \mathrm{~d} x, \quad \forall t \in(0, T) .
$$

Therefore, the first integral on the right-hand side of the energy equality (3.11) can be estimated as follows

$$
\begin{aligned}
\left|\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \mathbf{g}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \mathrm{d} x \mathrm{~d} s\right| & \leq \int_{0}^{t}\left\|\mathbf{v}_{\varepsilon}(s)\right\|_{\infty}\left\|\mathbf{g}_{\varepsilon}(s)\right\|_{\infty} \int_{\Omega} \rho_{\varepsilon}(s) \mathrm{d} x \mathrm{~d} s \\
& \leq C\left(\rho_{0, \varepsilon}, \mathbf{g}_{\varepsilon}\right) \int_{0}^{t}\left\|\mathbf{v}_{\varepsilon}(s)\right\|_{1, p} \mathrm{~d} s, \quad p>3
\end{aligned}
$$

In the view of inequalities (1.3) and (3.13), and the Young's inequality, we arrive at

$$
\begin{align*}
\left|\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \mathbf{g}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \mathrm{d} x \mathrm{~d} s\right| \leq & C\left(C_{1} \int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s\right. \\
& \left.+C_{1} \int_{0}^{t} \int_{\{0\} \times S}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} S \mathrm{~d} s+C_{2}\left(C_{1}\right)\right) \tag{3.17}
\end{align*}
$$

where $C_{1}>0$ can be made arbitrarily small.
Due to (1.3) and (3.17), we obtain from (3.11) boundedness

$$
\begin{align*}
\left\{\sqrt{\rho_{\varepsilon}}\left|\mathbf{u}_{\varepsilon}\right|\right\}_{\varepsilon \in(0,1)} & \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{3.18}\\
\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)} & \text { in } L^{\infty}\left(0, T ; L_{\Phi_{1}}(\Omega)\right), \tag{3.19}\\
\left\{\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right\}_{\varepsilon \in(0,1)} & \text { in }\left[\tilde{L}_{M}(\Omega \times(0, T))\right]^{9} \tag{3.20}\\
\left\{\mathbf{v}_{\varepsilon}\right\}_{\varepsilon \in(0,1)} & \text { in } L^{p}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{3}\right) \cap L^{2}\left(0, T ;\left[L^{2}(\partial \Omega)\right]^{3}\right) \tag{3.21}
\end{align*}
$$

for any $p>3$. From (3.21), we get immediately the boundedness

$$
\begin{equation*}
\left\{u_{1, \varepsilon}\right\}_{\varepsilon \in(0,1)} \text { in } L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right) \tag{3.22}
\end{equation*}
$$

Boundedness (3.20) gives us the following convergences

$$
\partial_{2} u_{3, \varepsilon}+\partial_{3} u_{2, \varepsilon} \rightarrow 0, \quad \partial_{\alpha} u_{\alpha, \varepsilon} \rightarrow 0, \quad \text { in } L_{M}(\Omega \times(0, T)), \alpha=2,3 .
$$

Now, we can prove even the boundedness of $\left\{\varepsilon^{-1} u_{\alpha, \varepsilon}\right\}_{\varepsilon \in(0,1)}, \alpha=2,3$, in $L_{M}(\Omega \times(0, T))$. Let us denote $\mathbf{w}_{\varepsilon}=\left(\varepsilon^{-1} u_{2, \varepsilon}, \varepsilon^{-1} u_{3, \varepsilon}\right)$. We begin with the Korn's inequality in a two-dimensional space [9]:

$$
\begin{equation*}
\left\|\mathbf{w}_{\varepsilon}\right\|_{W^{1, p}(S)} \leq C_{1}\left(\left\|D \mathbf{w}_{\varepsilon}\right\|_{L^{p}(S)}+\left\|\mathbf{w}_{\varepsilon}\right\|_{L^{p}(S)}\right), \quad p>2 \tag{3.23}
\end{equation*}
$$

where $x_{1} \in(0,1)$ and $t \in(0, T)$ are arbitrary but fixed. From (3.23) and axial non-symmetry of Ω, via the standard compactness argument (as in [22] for proving inequality (4.17.19)), we deduce

$$
\begin{equation*}
\left\|\mathbf{w}_{\varepsilon}\right\|_{L^{p}(S)} \leq C_{2}\left\|D \mathbf{w}_{\varepsilon}\right\|_{L^{p}(S)} \tag{3.24}
\end{equation*}
$$

Due to compact embedding of $W^{1, p}(S)$ in $L^{\infty}(S)$ and inequality (3.24), we can arrive from (3.23) to the following inequality

$$
\left\|C \mathbf{w}_{\varepsilon}\right\|_{L^{\infty}(S)}^{p} \leq\left\|D \mathbf{w}_{\varepsilon}\right\|_{L^{p}(S)}^{p}, \quad p>2
$$

where $C=C(S, p)>0$. Applying Young function Ψ_{p} and Jensen's inequality gives us

$$
\int_{S} \Psi_{p}\left(\left|C \mathbf{w}_{\varepsilon}\right|^{p}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} \leq C_{3} \int_{S} \Psi_{p}\left(\left|D \mathbf{w}_{\varepsilon}\right|^{p}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3}, \quad p>2 .
$$

Since $\Psi_{p}\left(z^{p}\right)$ behaves like $M(z)$, we arrive at

$$
\int_{S} M\left(\left|C \mathbf{w}_{\varepsilon}\right|\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} \leq C_{3}\left(\int_{S} M\left(\left|D \mathbf{w}_{\varepsilon}\right|\right) \mathrm{d} x_{2} \mathrm{~d} x_{3}+1\right) .
$$

After integrating over $x_{1} \in(0,1)$ and $t \in(0, T)$, we get

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} M\left(\left|C \mathbf{w}_{\varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t \leq C_{3}\left(\int_{0}^{T} \int_{\Omega} M\left(\left|D \mathbf{w}_{\varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t+T\right) . \tag{3.25}
\end{equation*}
$$

Let us remark that (see inequality (2.4))

$$
\begin{equation*}
C\left\|\mathbf{w}_{\varepsilon}\right\|_{L_{M}(\Omega \times(0, T)} \leq \int_{0}^{T} \int_{\Omega} M\left(\left|C \mathbf{w}_{\varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t+1 \tag{3.26}
\end{equation*}
$$

Inequalities (3.25) and (3.26) give us

$$
\begin{equation*}
C\left\|\mathbf{w}_{\varepsilon}\right\|_{L_{M}(\Omega \times(0, T)} \leq C_{3}\left(\int_{0}^{T} \int_{\Omega} M\left(\left|D \mathbf{w}_{\varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t+T\right)+1 . \tag{3.27}
\end{equation*}
$$

The right-hand side of inequality (3.27) is bounded for any $\varepsilon \in(0,1)$ due to (3.20). Thus, it ensures the boundedness

$$
\begin{equation*}
\left\{\varepsilon^{-1} u_{\alpha, \varepsilon}\right\}_{\varepsilon \in(0,1)} \text { in } L_{M}(\Omega \times(0, T)), \alpha=2,3 . \tag{3.28}
\end{equation*}
$$

Boundedness of $\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ in $L^{\infty}\left(0, T ; L_{\Phi_{1}}(\Omega)\right)$ can be extended to the space $L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right)$. We remind that $\gamma>3$ (see Theorem 3.4 in section 3.4).

We proceed in the following way. First, we test the equation (3.9) by function $\varphi=\varphi(t) \in \mathcal{C}_{0}^{\infty}(0, T)$ with $b(z)=\Phi_{\gamma}(z)$. We get

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \varphi^{\prime}(t)+\left[\left(\Phi_{\gamma}\left(\rho_{\varepsilon}\right)-\rho_{\varepsilon} \Phi_{\gamma}^{\prime}\left(\rho_{\varepsilon}\right)\right) \operatorname{div}_{\varepsilon} \mathbf{u}_{\varepsilon}\right] \varphi(t) \mathrm{d} x \mathrm{~d} t=0 \tag{3.29}
\end{equation*}
$$

Function $\Phi_{\gamma}(z)-z \Phi_{\gamma}^{\prime}(z)$ behaves asymptotically like $\Phi_{\gamma-1}(z)$. Furthermore, there exists $C_{1}>0$ such that $\Phi_{1}\left(\Phi_{\gamma-1}(z)\right) \leq C_{1}\left(\Phi_{\gamma}(z)+1\right)$ for $z \geq 0$ [26]. Due to equivalence of Young functions M and Ψ_{1}, relations (1.3), (3.20) and the Young's inequality, we deduce the estimate

$$
\begin{align*}
& \left|\int_{0}^{T} \int_{\Omega}\left(\Phi_{\gamma}\left(\rho_{\varepsilon}\right)-\rho_{\varepsilon} \Phi_{\gamma}^{\prime}\left(\rho_{\varepsilon}\right)\right) \operatorname{div}_{\varepsilon} \mathbf{u}_{\varepsilon} \mathrm{d} x \mathrm{~d} t\right| \tag{3.30}\\
& \leq C(T)\left(\int_{0}^{T} \int_{\Omega}\left(\Phi_{\gamma}\left(\rho_{\varepsilon}\right)+P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2}\right) \mathrm{d} x \mathrm{~d} t+1\right)
\end{align*}
$$

where $C(T)>0$. With respect to (3.29), (3.30), (3.66) and the Gronwall's lemma, we obtain the boundedness of

$$
\begin{equation*}
\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)} \text { in } L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right) \tag{3.31}
\end{equation*}
$$

In the following step, we focus on boundedness of $\left\{\partial_{t} \rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$. Let us test equation (3.7) by function $\varphi(x, t)=\varphi_{1}(t) \psi(x)$, where $\varphi_{1} \in L^{p^{\prime}}(0, T), 1 / p+1 / p^{\prime}=$ $1, p>3$, and $\psi \in\left[W^{1} L_{\Psi_{\gamma-1}}(\Omega)\right]^{3}, \gamma>3$. We can write

$$
\begin{align*}
& \left|\int_{0}^{T} \varphi_{1}^{\prime} \int_{\Omega} \rho_{\varepsilon} \psi \mathrm{d} x \mathrm{~d} t\right|=\left|\int_{0}^{T} \varphi_{1} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \nabla_{\varepsilon} \psi \mathrm{d} x \mathrm{~d} t\right|= \\
& =\left|\int_{0}^{T} \varphi_{1} \int_{\Omega} \rho_{\varepsilon}\left(u_{1, \varepsilon} \partial_{1} \psi+\varepsilon^{-1} u_{2, \varepsilon} \partial_{2} \psi+\varepsilon^{-1} u_{3, \varepsilon} \partial_{3} \psi\right) \mathrm{d} x \mathrm{~d} t\right| . \tag{3.32}
\end{align*}
$$

From (3.28) and (3.32), we get the boundedness of

$$
\begin{equation*}
\left\{\partial_{t} \rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)} \text { in } L^{p}\left(0, T ;\left[W^{1} L_{\Psi_{\gamma-1}}(\Omega)\right]^{*}\right) \tag{3.33}
\end{equation*}
$$

For instance, boundedness of the last term on the right-hand side of equation (3.32) can be demonstrated as follows

$$
\left|\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \varepsilon^{-1} u_{3, \varepsilon} \varphi_{1} \partial_{3} \psi \mathrm{~d} x \mathrm{~d} t\right| \leq\left\|\varepsilon^{-1} u_{3, \varepsilon}\right\|_{L_{M}(\Omega \times(0, T))}\left\|\rho_{\varepsilon} \varphi_{1} \partial_{3} \psi\right\|_{L_{N}(\Omega \times(0, T))},
$$

where the boundedness of the first norm on the right-hand has been already proved - see (3.28). The second norm is less or equal than (see inequality (2.4))

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} N\left(\rho_{\varepsilon}\left|\varphi_{1}\right|\left|\partial_{3} \psi\right|\right) \mathrm{d} x \mathrm{~d} t+1 \leq \\
& \leq \int_{0}^{T} \int_{\Omega}\left|\varphi_{1}\right|\left|\partial_{3} \psi\right| N\left(\rho_{\varepsilon}\right)+\rho_{\varepsilon}\left|\partial_{3} \psi\right| N\left(\left|\varphi_{1}\right|\right)+\rho_{\varepsilon}\left|\varphi_{1}\right| N\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x \mathrm{~d} t+C
\end{aligned}
$$

where "the worst term" can be finally estimated as

$$
\begin{aligned}
& \int_{0}^{T}\left|\varphi_{1}\right| \int_{\Omega}\left|\partial_{3} \psi\right| N\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t \leq \int_{0}^{T}\left|\varphi_{1}\right| \int_{\Omega} \Psi_{\gamma-1}\left(\left|\partial_{3} \psi\right|\right)+\Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq\left\|\varphi_{1}\right\|_{L^{1}(0, T)}\left(\int_{\Omega} \Psi_{\gamma-1}\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x+\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}\right)
\end{aligned}
$$

By the use of (3.19)-(3.21), (3.31), (3.33), compact embedding of $W^{1, p}(\Omega)$ in $E_{\Psi_{1}}(\Omega)$, isometric isomorphism of $\left[E_{\Psi_{1}}(0,1)\right]^{*}$ and $L_{\Phi_{1}}(0,1)$, continuous embedding of $\left[W^{1, p}(\Omega)\right]^{*}$ in $\left[W^{1} L_{\Psi_{\gamma}}(\Omega)\right]^{*}$ and theorem on compact embedding [23], we get (passing to subsequences if necessary)

$$
\begin{align*}
\rho_{\varepsilon} & \stackrel{*}{\rightharpoonup} \rho \text { in } L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right), \tag{3.34}\\
\rho_{\varepsilon} & \rightarrow \rho \text { in } \mathcal{C}\left(\langle 0, T\rangle ;\left[W^{1, p}(\Omega)\right]^{*}\right), \tag{3.35}\\
\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) & \stackrel{N}{\rightharpoonup} \zeta \tag{3.36}\\
u_{1, \varepsilon} & \rightharpoonup u_{1} \text { in } L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right) . \tag{3.37}
\end{align*}
$$

Let us remind that we already have (from (3.28))

$$
\begin{equation*}
u_{\alpha, \varepsilon} \rightarrow 0=u_{\alpha} \quad \text { in } L_{M}(\Omega \times(0, T)), \alpha=2,3 \tag{3.38}
\end{equation*}
$$

which means that $u_{2}=u_{3}=0$ almost everywhere in $\Omega \times(0, T)$.

We prove that the limiting function \mathbf{u} does not depend on the second and the third spatial variables. Boundedness (3.20) implies the following convergences

$$
\varepsilon \partial_{1} u_{\alpha, \varepsilon}+\partial_{\alpha} u_{1, \varepsilon} \rightarrow 0, \quad \text { in } L_{M}(\Omega \times(0, T)), \alpha=2,3 .
$$

With respect to (3.38), we arrive at $\partial_{\alpha} u_{1}=0$ almost everywhere in $\Omega \times(0, T)$, $\alpha=2,3$. Hence, we get $u_{1}=u_{1}\left(x_{1}, t\right) \in L^{p}\left(0, T ; W^{1, p}(0,1)\right)$ with $u_{1}(0, t)=$ $u_{1}(1, t)=0, t \in(0, T)$.

Let us pay our attention to convergences of nonlinear terms in equation (3.8). Convergences (passing to subsequences if necessary)

$$
\begin{align*}
& \rho_{\varepsilon} u_{1, \varepsilon} \rightharpoonup \rho u_{1} \quad \text { in } L^{p}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right) \tag{3.39}\\
& \rho_{\varepsilon} u_{\alpha, \varepsilon} \rightarrow 0 \quad \text { in } L_{\Phi_{\gamma-1}}(\Omega \times(0, T)), \alpha=2,3 \tag{3.40}
\end{align*}
$$

where $\gamma>3$ (see Theorem 3.4), are immediate consequences of (3.35), (3.37), (3.38) and theorem concerning compact embedding [23]. For instance, we prove convergences (3.40). According to the Hölder's inequality, it holds that

$$
\begin{aligned}
& \left\|\rho_{\varepsilon} u_{\alpha, \varepsilon}\right\|_{L_{\Phi_{\gamma-1}}(\Omega \times(0, T))}=\sup _{\varphi} \int_{0}^{T} \int_{\Omega}\left|\rho_{\varepsilon} u_{\alpha, \varepsilon} \varphi\right| \mathrm{d} x \mathrm{~d} t \leq \\
& \leq C\left\|u_{\alpha, \varepsilon}\right\|_{L_{M}(\Omega \times(0, T))} \sup _{\varphi}\left\|\rho_{\varepsilon} \varphi\right\|_{L_{N}(\Omega \times(0, T))}
\end{aligned}
$$

where the supremum is taken over all functions $\varphi \in \tilde{L}_{\Psi_{\gamma-1}}(\Omega \times(0, T))$ such that

$$
\int_{0}^{T} \int_{\Omega} \Psi_{\gamma-1}(|\varphi|) \mathrm{d} x \mathrm{~d} t \leq 1
$$

From (3.38), we already know that $\left\|u_{\alpha, \varepsilon}\right\|_{L_{M}(\Omega \times(0, T))} \rightarrow 0$. Therefore, it is sufficient to show the boundedness of $\left\|\rho_{\varepsilon} \varphi\right\|_{L_{N}(\Omega \times(0, T))}$ for proving (3.40). The equiv-
alence of Orlicz spaces L_{N} and $L_{\Phi_{1}}$, and the Young's inequality give us

$$
\begin{align*}
& \left\|\rho_{\varepsilon} \varphi\right\|_{L_{N}(\Omega \times(0, T))} \leq \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}|\varphi|\right) \mathrm{d} x \mathrm{~d} t+C \leq \\
& \leq \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \Phi_{1}(|\varphi|) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega}|\varphi| \Phi_{1}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+C . \tag{3.41}
\end{align*}
$$

The second integral on the right-hand side of (3.41) is "the worst" and it is less or equal than

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \Psi_{\gamma-1}(|\varphi|) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \Phi_{\gamma-1}\left(\Phi_{1}\left(\rho_{\varepsilon}\right)\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T} \int_{\Omega} \Psi_{\gamma-1}(|\varphi|) \mathrm{d} x \mathrm{~d} t+C \int_{0}^{T} \int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Hence, we conclude that convergences (3.40) hold true.

To overcome the second term on the left-hand side in equation (3.8), we consider "the worst integrals" in (3.8) and prove their boundedness. First, we show that (3.22), (3.31) and (3.38) lead to boundedness of

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi) \mathrm{d} x \mathrm{~d} t \tag{3.42}
\end{equation*}
$$

for any $\varepsilon \in(0,1)$ and test function ψ such that $\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$. There are three types of terms in (3.42), but we analyze in detail only "the worst one": $\rho_{\varepsilon} u_{\alpha, \varepsilon} u_{\beta, \varepsilon}\left[\omega_{\varepsilon}(\psi)\right]_{\alpha \beta}, \alpha, \beta=2,3$. Let us apply notation $\left[\omega_{\varepsilon}(\psi(x, t))\right]_{\alpha \beta}=$ $\varepsilon^{-1} \varphi(t) \bar{\psi}(x)$ with $\varphi \in L^{q}(0, T)$ and $\bar{\psi} \in E_{\Psi_{\gamma}}(\Omega), 2 / p+1 / q=1$ and $\gamma>3$ (see Theorem 3.4 in section 3.4).

By the use of Hölder's inequality, we get

$$
\begin{align*}
& \left|\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} u_{\alpha, \varepsilon} u_{\beta, \varepsilon} \varepsilon^{-1} \varphi \bar{\psi} \mathrm{~d} x \mathrm{~d} t\right| \leq \\
& \leq\left\|\varepsilon^{-1} u_{\alpha, \varepsilon} u_{\beta, \varepsilon}\right\|_{L_{\Psi_{2}}(\Omega \times(0, T))}\left\|\rho_{\varepsilon} \varphi \bar{\psi}\right\|_{L_{\Phi_{2}}(\Omega \times(0, T))} \tag{3.43}
\end{align*}
$$

Both norms on the right-hand side of inequality (3.43) are bounded. Regard-$\operatorname{ing}\left\|\varepsilon^{-1} u_{\alpha, \varepsilon} u_{\beta, \varepsilon}\right\|_{L_{\Psi_{2}}(\Omega \times(0, T))}$, it holds that

$$
\begin{aligned}
& \left\|\varepsilon^{-1} u_{\alpha, \varepsilon} u_{\beta, \varepsilon}\right\|_{L_{\Psi_{2}}(\Omega \times(0, T))}=\sup _{\varphi_{1}} \int_{0}^{T} \int_{\Omega}\left|\varepsilon^{-1} u_{\alpha, \varepsilon} u_{\beta, \varepsilon} \varphi_{1}\right| \mathrm{d} x \mathrm{~d} t \leq \\
& \leq\left\|u_{\alpha, \varepsilon}\right\|_{L_{M}(\Omega \times(0, T))} \sup _{\varphi_{1}}\left\|\varepsilon^{-1} u_{\beta, \varepsilon} \varphi_{1}\right\|_{L_{N}(\Omega \times(0, T))}
\end{aligned}
$$

where $\varphi_{1} \in \tilde{L}_{\Phi_{2}}(\Omega \times(0, T))$ such that $\int_{0}^{T} \int_{\Omega} \Phi_{2}\left(\left|\varphi_{1}\right|\right) \mathrm{d} x \mathrm{~d} t \leq 1$. From (3.38), we know that $\left\|u_{\alpha, \varepsilon}\right\|_{L_{M}(\Omega \times(0, T))} \rightarrow 0$. Further, we can write that

$$
\begin{aligned}
& \left\|\varepsilon^{-1} u_{\beta, \varepsilon} \varphi_{1}\right\|_{L_{N}(\Omega \times(0, T))}=\sup _{\varphi_{2}} \int_{0}^{T} \int_{\Omega}\left|\varepsilon^{-1} u_{\beta, \varepsilon} \varphi_{1} \varphi_{2}\right| \mathrm{d} x \mathrm{~d} t \leq \\
& \leq\left\|\varepsilon^{-1} u_{\beta, \varepsilon}\right\|_{L_{M}(\Omega \times(0, T))} \sup _{\varphi_{2}}\left\|\varphi_{1} \varphi_{2}\right\|_{L_{N}(\Omega \times(0, T))}
\end{aligned}
$$

where the first norm is bounded (see 3.28) and $\varphi_{2} \in \tilde{L}_{M}(\Omega \times(0, T))$ such that $\int_{0}^{T} \int_{\Omega} M\left(\left|\varphi_{2}\right|\right) \mathrm{d} x \mathrm{~d} t \leq 1$. Finally,

$$
\left\|\varphi_{1} \varphi_{2}\right\|_{L_{N}(\Omega \times(0, T))} \leq C_{1} \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(\left|\varphi_{1} \varphi_{2}\right|\right) \mathrm{d} x \mathrm{~d} t+1
$$

where the integral on the right-hand side is lower or equal than

$$
\begin{aligned}
& C_{2}\left(\int_{0}^{T} \int_{\Omega}\left|\varphi_{2}\right| \Phi_{1}\left(\left|\varphi_{1}\right|\right)+\left|\varphi_{1}\right| \Phi_{1}\left(\left|\varphi_{2}\right|\right) \mathrm{d} x \mathrm{~d} t\right) \leq \\
& \leq C_{3}\left(\int_{0}^{T} \int_{\Omega} M\left(\left|\varphi_{2}\right|\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \Phi_{2}\left(\left|\varphi_{1}\right|\right) \mathrm{d} x \mathrm{~d} t\right) \leq 2 C_{3}
\end{aligned}
$$

Hence, $\left\|\varepsilon^{-1} u_{\alpha, \varepsilon} u_{\beta, \varepsilon}\right\|_{L_{\Psi_{2}}(\Omega \times(0, T))} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Concerning the second norm on the right-hand side of inequality (3.43), we justify its boundedness in the following way

$$
\begin{aligned}
& \left\|\rho_{\varepsilon} \varphi \bar{\psi}\right\|_{{\Phi_{丨}}(\Omega \times(0, T))} \leq \int_{0}^{T} \int_{\Omega} \Phi_{2}\left(\rho_{\varepsilon}|\varphi||\bar{\psi}|\right) \mathrm{d} x \mathrm{~d} t+C_{1} \leq \\
& \leq \int_{0}^{T} \int_{\Omega}|\varphi \| \bar{\psi}| \Phi_{2}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \Phi_{2}(|\varphi||\bar{\psi}|) \mathrm{d} x \mathrm{~d} t+ \\
& +2 \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}\right) \Phi_{1}(|\varphi||\bar{\psi}|) \mathrm{d} x \mathrm{~d} t+C_{2}
\end{aligned}
$$

where "the worst term" can be estimated as

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}|\varphi||\bar{\psi}| \Phi_{2}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq C\|\varphi\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma-2}(|\bar{\psi}|) \mathrm{d} x\right)
\end{aligned}
$$

In summary, the first norm on the right hand side of inequality (3.43) converges to zero and the second norm is bounded. It implies that

$$
\left|\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} u_{\alpha, \varepsilon} u_{\beta, \varepsilon} \varepsilon^{-1} \varphi \bar{\psi} \mathrm{~d} x \mathrm{~d} t\right| \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0
$$

We conclude that integral (3.42) is bounded for any $\varepsilon \in(0,1)$ and test function ψ such that $\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0, \varphi \in L^{q}(0, T)$ and $\bar{\psi} \in\left[E_{\Psi_{\gamma}}(\Omega)\right]^{9}$. Subsequently, we show that also

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi) \mathrm{d} x \mathrm{~d} t \tag{3.44}
\end{equation*}
$$

is bounded for any $\varepsilon \in(0,1)$. For the sake of simplicity, we employ the same notation in the decomposition of ψ into its spatial and temporal part as in the analysis of integral (3.42), i. e. $\psi(x, t)=\varphi(t) \bar{\psi}(x)$, where $\varphi \in E_{\Psi_{1 / \alpha}}(0, T), \alpha>2$, and $\bar{\psi} \in\left[W^{1} E_{\Psi_{1 / 2}}(\Omega)\right]^{3}, \partial_{2} \bar{\psi}=\partial_{3} \bar{\psi}=0$.

We remark that

$$
\omega_{\varepsilon}(\bar{\psi})=\omega(\bar{\psi})=\left(\begin{array}{ccc}
\partial_{1} \bar{\psi}_{1} & \frac{1}{2} \partial_{1} \bar{\psi}_{2} & \frac{1}{2} \partial_{1} \bar{\psi}_{3} \\
\cdot & 0 & 0 \\
\operatorname{sym} & \cdot & 0
\end{array}\right)
$$

which is not longer dependent on ε. Due to Young's inequality, it holds that

$$
\begin{align*}
& \left|\int_{0}^{T} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega(\bar{\psi}) \varphi \mathrm{d} x \mathrm{~d} t\right| \leq\left(|\Omega| \int_{0}^{T} \Psi_{1 / \alpha}(|\varphi|) \mathrm{d} t+\right. \\
& \left.+\int_{0}^{T} \int_{\Omega} \Phi_{1 / \alpha}\left(P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right||\omega(\bar{\psi})|\right) \mathrm{d} x \mathrm{~d} t\right) \tag{3.45}
\end{align*}
$$

where $\alpha>2$. For brevity, let us denote $w_{\varepsilon}=P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|$. Since $w_{\varepsilon} \in$ $L_{\Phi_{1}}(\Omega \times(0, T))$ implies $w_{\varepsilon} \in L_{\Phi_{(\alpha-1) / \alpha}}\left(0, T ; L_{\Phi_{1 / \alpha}}(\Omega)\right)$, which follows from Jensen's
inequality and estimate

$$
\begin{equation*}
\Phi_{(\alpha-1) / \alpha}\left(\Phi_{1 / \alpha}(z)\right) \leq 2 \Phi_{1}(z)+C, \quad z \geq 0 \tag{3.46}
\end{equation*}
$$

the second term on the right-hand side of (3.45) is less or equal than

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}|\omega(\bar{\psi})| \Phi_{1 / \alpha}\left(w_{\varepsilon}\right)+w_{\varepsilon} \Phi_{1 / \alpha}(|\omega(\bar{\psi})|) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T} \int_{\Omega} \Phi_{(\alpha-1) / \alpha}\left(\Phi_{1 / \alpha}\left(w_{\varepsilon}\right)\right)+\Psi_{(\alpha-1) / \alpha}(|\omega(\bar{\psi})|) \mathrm{d} x \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{\Omega} \Phi_{1}\left(w_{\varepsilon}\right)+\Psi_{1}\left(\Phi_{1 / \alpha}(|\omega(\bar{\psi})|)\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq 3 \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \mathrm{d} x \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{\Omega} \Psi_{(\alpha-1) / \alpha}(|\omega(\bar{\psi})|) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \Psi_{1 / 2}(|\omega(\bar{\psi})|) \mathrm{d} x \mathrm{~d} t+C
\end{aligned}
$$

where $\alpha>2$. Due to property (1.6), we conclude that integral (3.44) is bounded.

Terms (3.42) and (3.44) represent "the worst integrals" in (3.8). Thus, we omit the estimates of the others and take $\psi(x, t)=\varphi(t) \bar{\psi}(x)$, where $\varphi \in E_{\Psi_{1 / \alpha}}(0, T)$ with $\alpha>2$, and $\bar{\psi} \in\left[W^{1} E_{\Psi_{1 / 2}}(\Omega)\right]^{3}$ such that $\bar{\psi}=\left(\bar{\psi}_{1}\left(x_{1}\right), 0,0\right)$ and complies with $\bar{\psi}_{1}(0)=\bar{\psi}_{1}(1)=0$, as a test function. By the use of estimates (3.42) and (3.44), we demonstrate how to perform a limit passage in the second term on the left-hand side of equation (3.8). Let us test the equation (3.8) by function $\psi(x, t)=\varphi(t) \bar{\psi}(x)$, where $\varphi \in \mathcal{C}_{0}^{\infty}(0, T)$ and $\bar{\psi} \in\left[W^{1} E_{\Psi_{1 / 2}}(\Omega)\right]^{3}, \bar{\psi}=$ $\left(\bar{\psi}_{1}\left(x_{1}\right), 0,0\right)$ and $\bar{\psi}_{1}(0)=\bar{\psi}_{1}(1)=0$. We get

$$
\begin{align*}
& \left|\int_{0}^{T} \varphi^{\prime} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \bar{\psi} \mathrm{d} x \mathrm{~d} t\right| \leq \int_{0}^{T}|\varphi| \int_{\Omega}\left(\left|\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega(\bar{\psi})\right|+\left|\rho_{\varepsilon} \partial_{1} \bar{\psi}\right|+\right. \\
& \left.+\left|P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega(\bar{\psi})\right|+\left|\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \bar{\psi}\right|\right) \mathrm{d} x \mathrm{~d} t+ \\
& +\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{T}|\varphi| \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon} \cdot \bar{\psi}\right| \mathrm{d} \Gamma \mathrm{~d} t \tag{3.47}
\end{align*}
$$

Let us remark that

$$
q \int_{0}^{T}|\varphi| \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon} \cdot \bar{\psi}\right| \mathrm{d} \Gamma \mathrm{~d} t=0
$$

due to the choice of test function $\left(\bar{\psi}=0\right.$ on $\left.\Gamma_{2}\right)$.
Considering the density of $\mathcal{C}_{0}^{\infty}(0, T)$ in $E_{\Psi_{1 / 2}}(0, T)$, embedding $L_{\Psi_{1 / \alpha}}(0, T)$ $\hookrightarrow E_{\Psi_{1 / 2}}(0, T) \subset \tilde{L}_{\Psi_{1 / 2}}(0, T), \alpha>2$, and boundedness of all terms on the righthand side of the inequality (3.47) - see (3.42) and (3.44), we deduce boundedness

$$
\begin{equation*}
\left\{\partial_{t} \int_{S} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \mathrm{d} x_{2} x_{3}\right\}_{\varepsilon \in(0,1)} \text { in } L_{\Phi_{1 / \alpha}}\left(0, T ;\left(\left[W^{1} L_{\Psi_{1 / 2}}(0,1)\right]^{*}\right)^{3}\right) . \tag{3.48}
\end{equation*}
$$

By the use of (3.39), (3.48), compact embedding of $W^{1, p}(0,1)$ in $E_{\Psi_{1}}(0,1)$, isometric isomorphism of $\left[E_{\Psi_{1}}(0,1)\right]^{*}$ and $L_{\Phi_{1}}(0,1)$, continuous embedding of $\left[W^{1, p}(0,1)\right]^{*}$ in $\left[W^{1} L_{\Psi_{1}}(0,1)\right]^{*}$ and theorem concerning compact embedding [23], we get (passing to subsequences if necessary)

$$
\begin{align*}
& \int_{S} \rho_{\varepsilon} u_{1, \varepsilon} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \rightarrow \int_{S} \rho u_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \\
& \text { in } \mathcal{C}\left(\langle 0, T\rangle ;\left[W^{1, p}(0,1)\right]^{*}\right) . \tag{3.49}
\end{align*}
$$

In order to perform a limit passage in the second term on the left-hand side of equation (3.8), we need the following lemma which can be proven in a similar way as Proposition 3.2 in [27] and Lemma 6.2 in [2].

Lemma 3.3. Assume that $\left\{\mathbf{u}_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ satisfies condition (3.20) and $\left\{\mathbf{v}_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$, where $\mathbf{v}_{\varepsilon}=\left(u_{1, \varepsilon}, \varepsilon u_{2, \varepsilon}, \varepsilon u_{3, \varepsilon}\right)$, satisfies condition (3.21). Then for any $p>3$ (passing to a subsequence if necessary), it holds that

$$
\begin{equation*}
\left\|u_{1, \varepsilon}-\frac{1}{|S|} \int_{S} u_{1, \varepsilon} \mathrm{~d} x_{2} \mathrm{~d} x_{3}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)} \rightarrow 0, \text { for } \varepsilon \rightarrow 0 \tag{3.50}
\end{equation*}
$$

Lemma 3.3 can be applied in the following way. It holds that

$$
\begin{aligned}
& \int_{0}^{T} \int_{0}^{1} \int_{S} \rho_{\varepsilon} u_{1, \varepsilon} u_{1, \varepsilon} \psi \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{1} \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{0}^{1} \int_{S} \rho_{\varepsilon} u_{1, \varepsilon}\left(u_{1, \varepsilon}-\frac{1}{|S|} \int_{S} u_{1, \varepsilon} \mathrm{~d} x_{2} \mathrm{~d} x_{3}\right) \psi \mathrm{d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{1} \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{0}^{1}\left(\int_{S} \rho_{\varepsilon} u_{1, \varepsilon} \mathrm{~d} x_{2} \mathrm{~d} x_{3}\right)\left(\frac{1}{|S|} \int_{S} u_{1, \varepsilon} \mathrm{~d} x_{2} \mathrm{~d} x_{3}\right) \psi \mathrm{d} x_{1} \mathrm{~d} t
\end{aligned}
$$

where $\psi \in \mathcal{C}_{0}^{\infty}\left(0, T ; \mathcal{C}^{\infty}(\bar{\Omega})\right), \partial_{2} \psi=\partial_{3} \psi=0$. The first integral on the righthand side tends to zero for $\varepsilon \rightarrow 0$ due to convergence (3.39) and Lemma 3.3. Concerning the second integral, we apply strong convergence (3.49) and weak convergence

$$
\int_{S} u_{1, \varepsilon} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \rightharpoonup \int_{S} u_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \text { in } L^{p}\left(0, T ; W^{1, p}(0,1)\right),
$$

which follows from (3.37). In addition, it holds that

$$
\begin{aligned}
\int_{S} \rho u_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} & =\hat{\rho} u_{1} \\
\int_{S} u_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} & =u_{1},
\end{aligned}
$$

where $\hat{\rho}=\int_{S} \rho \mathrm{~d} x_{2} \mathrm{~d} x_{3}$, because \mathbf{u} is independent of x_{2} and x_{3}. Hence, convergence

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} u_{1, \varepsilon} u_{1, \varepsilon} \psi \mathrm{~d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{1} \hat{\rho} u_{1} u_{1} \psi \mathrm{~d} x_{1} \mathrm{~d} t \tag{3.51}
\end{equation*}
$$

is an immediate consequence of (3.37), (3.49) and (3.50). Convergence (3.51) is applied in the next section to overcome the nonlinearity in the second term on the left-hand side of (3.8)

3.3.3 Limit of the governing equations

Now, we can perform limit passages in (3.7) and (3.8). Throughout this section, we denote an integral of a function in the second and third spatial variable
over set S by symbol " $\wedge "$ over the function. Obviously, these integrals depend only on x_{1}. For example, we write $\hat{\rho}=\int_{S} \rho \mathrm{~d} x_{2} \mathrm{~d} x_{3}$.

We remark that prescribed behavior (3.66) enables us to use the Gronwall's lemma in the proof of boundedness (3.31). Further, we assume that $h(\varepsilon)>0$ in (3.8) satisfies the condition $h(\varepsilon) \sim O(\varepsilon)$ to ensure the convergence of $\frac{h(\varepsilon)}{\varepsilon}$ to a real positive number.

First, we test the equation (3.7) by function $\varphi \in \mathcal{D}(\mathbb{R} \times\langle 0, T\rangle)$. We arrive at

$$
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \partial_{t} \varphi+\rho_{\varepsilon} u_{1, \varepsilon} \partial_{1} \varphi \mathrm{~d} x \mathrm{~d} t=0
$$

Subsequently, we perform the limit passage for $\varepsilon \rightarrow 0$, apply convergences (3.35) and (3.39), and get

$$
\begin{equation*}
\int_{0}^{T} \int_{0}^{1} \hat{\rho} \partial_{t} \varphi+\hat{\rho} u_{1} \partial_{1} \varphi \mathrm{~d} x_{1} \mathrm{~d} t=0 \tag{3.52}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}(\mathbb{R} \times\langle 0, T\rangle)$.
Second, we test the equation (3.8) by function $\psi=\left(\psi_{1}\left(x_{1}, t\right), 0,0\right)$, where $\psi_{1} \in \mathcal{C}_{0}^{\infty}\left(0, T ; \mathcal{C}^{\infty}(\langle 0,1\rangle)\right)$ complies with $\psi_{1}(0, t)=\psi_{1}(1, t)=0$, for all $t \in(0, T)$. We will show the limit passage for each term in (3.8) separately.
(a) $\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi$

Since convergence (3.39) holds, we get

$$
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi \mathrm{~d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{1} \hat{\rho} u_{1} \partial_{t} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$.
(b) $\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi)$

From the definition of the test function ψ, we know that

$$
\omega_{\varepsilon}(\psi)=\omega(\psi)=\left(\begin{array}{ccc}
\partial_{1} \psi_{1} & 0 & 0 \tag{3.53}\\
\cdot & 0 & 0 \\
\operatorname{sym} & \cdot & 0
\end{array}\right)
$$

After applying convergence (3.51), we conclude that

$$
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi) \mathrm{d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{1} \hat{\rho} u_{1}^{2} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$.
(c) $\rho_{\varepsilon} \operatorname{div}_{\varepsilon} \psi$

Since $\operatorname{div}_{\varepsilon} \psi=\partial_{1} \psi_{1}$, we have (see convergence (3.34))

$$
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \operatorname{div}_{\varepsilon} \psi \mathrm{d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{1} \hat{\rho} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$.
(d) $P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi)$

It holds that (see convergence (3.36))

$$
\int_{0}^{T} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi) \mathrm{d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \mathrm{d} x \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$, where $\omega(\psi)$ is defined by (3.53) and

$$
\zeta=\left(\begin{array}{ccc}
\partial_{1} u_{1} & \zeta_{12} & \zeta_{13} \tag{3.54}\\
\cdot & \zeta_{22} & \zeta_{23} \\
\operatorname{sym} & \cdot & \zeta_{33}
\end{array}\right)
$$

Later, we will show that

$$
\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \mathrm{d} x \mathrm{~d} s=|S| \int_{0}^{t} \int_{0}^{1} P\left(\left|\partial_{1} u_{1}\right|\right) \partial_{1} u_{1} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} s
$$

for any $t \in(0, T)$.
(e) $\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi$

Since $\mathbf{f}_{\varepsilon} \cdot \psi=f_{1, \varepsilon} \psi_{1}$, convergence (3.34) holds and $\mathbf{f}_{\varepsilon} \rightarrow \mathbf{f}$ in $\left[L^{\infty}(\Omega \times(0, T))\right]^{3}$ (see assumptions of Theorem 3.4 in section 3.4), we obtain

$$
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi \mathrm{d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{0}^{1} \widehat{\rho f_{1}} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$, where f_{1} denotes the limit of $f_{1, \varepsilon}$.
(f) $\frac{h(\varepsilon)}{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \psi$

According to the supposed behavior of $h(\varepsilon)$, i. e. $h(\varepsilon) \sim O(\varepsilon)$, we can use convergence (3.37) to derive

$$
\varepsilon^{-1} \int_{0}^{T} \int_{\Gamma_{1}} h(\varepsilon) \mathbf{u}_{\varepsilon} \cdot \psi \mathrm{d} \Gamma \mathrm{~d} t \rightarrow|\partial S| h \int_{0}^{T} \int_{0}^{1} u_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$, where h is a positive constant.
(g) $\mathbf{u}_{\varepsilon} \cdot \psi$

Due to the choice of test function ψ, we have

$$
\int_{0}^{T} \int_{\Gamma_{2}} \mathbf{u}_{\varepsilon} \cdot \psi \mathrm{d} \Gamma \mathrm{~d} t=\int_{0}^{T} \int_{\Gamma_{2}} u_{1, \varepsilon} \psi_{1} \mathrm{~d} \Gamma \mathrm{~d} t=0
$$

for all $\varepsilon \in(0,1)$. Thus, this integral vanishes in the limit of the governing equations.

Finally, we arrive at

$$
\begin{align*}
& \int_{0}^{T} \int_{0}^{1} \hat{\rho} u_{1} \partial_{t} \psi_{1}+\hat{\rho} u_{1}^{2} \partial_{1} \psi_{1}+\hat{\rho} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{0}^{1} \widehat{\rho f_{1}} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t+ \\
& +|\partial S| h \int_{0}^{T} \int_{0}^{1} u_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t \tag{3.55}
\end{align*}
$$

3.3.4 Limit of the energy equality

Applying similar approach as in section 3.3.3, convexity and Jensen's inequality, we perform the limit passage for $\varepsilon \rightarrow 0$ also in the energy equality (3.11). We arrive at the following inequality

$$
\begin{align*}
& \int_{0}^{1} \hat{\rho} \frac{\left|u_{1}\right|^{2}}{2}+\hat{\rho} \ln (\hat{\rho}) \mathrm{d} x_{1}+\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|)|\zeta|^{2}} \mathrm{~d} x \mathrm{~d} s+ \\
& +|\partial S| h \int_{0}^{t} \int_{0}^{1}\left|u_{1}\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} s \leq \int_{0}^{t} \int_{0}^{1} \widehat{\rho f_{1}} u_{1} \mathrm{~d} x_{1} \mathrm{~d} s+ \tag{3.56}\\
& +\int_{0}^{1} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \mathrm{~d} x_{1}+\int_{0}^{1} \rho_{0} \ln \left(\rho_{0}\right) \mathrm{d} x_{1} .
\end{align*}
$$

By the use of a similar procedure as in [19], Lemmas 3.2 and 3.3, based on the renormalized continuity equation and the Steklov function, we derive the energy equality

$$
\begin{align*}
& \int_{0}^{1} \hat{\rho} \frac{\left|u_{1}\right|^{2}}{2}+\hat{\rho} \ln (\hat{\rho}) \mathrm{d} x_{1}+\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\mathbf{u}) \mathrm{d} x_{1} \mathrm{~d} s+ \\
& +|\partial S| h \int_{0}^{t} \int_{0}^{1}\left|u_{1}\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} s=\int_{0}^{t} \int_{0}^{1} \widehat{\rho f_{1}} u_{1} \mathrm{~d} x_{1} \mathrm{~d} s+ \tag{3.57}\\
& +\int_{0}^{1} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \mathrm{~d} x_{1}+\int_{0}^{1} \rho_{0} \ln \left(\rho_{0}\right) \mathrm{d} x_{1}
\end{align*}
$$

from (3.52) and (3.55), where $\omega(\mathbf{u})$ is defined in the same way as $\omega(\psi)$ in relation (3.53). It means that its only nonzero term is $[\omega(\mathbf{u})]_{11}=\partial_{1} u_{1}$.

Since function $P(|z|) z$ is monotone, we get

$$
\begin{align*}
0 & \leq \lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\Omega}\left(P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)-P(|T|) T\right):\left(\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)-T\right) \mathrm{d} x \mathrm{~d} s= \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s- \\
& -\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: T+P(|T|) T: \zeta+P(|T|)|T|^{2} \mathrm{~d} x \mathrm{~d} s \tag{3.58}
\end{align*}
$$

for any symmetric $T \in\left[\tilde{L}_{M}(\Omega \times(0, T))\right]^{9}$. As a consequence of (3.11), (3.57), convexity and Jensen's inequality, we arrive at

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s= \\
& =\lim _{\varepsilon \rightarrow 0}\left(-\int_{\Omega} \rho_{\varepsilon} \frac{\left|\mathbf{u}_{\varepsilon}\right|^{2}}{2}+\rho_{\varepsilon} \ln \left(\rho_{\varepsilon}\right) \mathrm{d} x-\right. \\
& -\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{t} \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} \Gamma \mathrm{~d} s-q \int_{0}^{t} \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} \Gamma \mathrm{~d} s+ \\
& \left.+\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \mathbf{u}_{\varepsilon} \mathrm{d} x \mathrm{~d} s+\int_{\Omega} \frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \mathrm{~d} x+\int_{\Omega} \rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right) \mathrm{d} x\right) \leq \\
& \leq-\int_{0}^{1} \hat{\rho} \frac{\left|u_{1}\right|^{2}}{2}+\hat{\rho} \ln (\hat{\rho}) \mathrm{d} \hat{x}-|\partial S| h \int_{0}^{t} \int_{0}^{1}\left|u_{1}\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} s+ \\
& +\int_{0}^{t} \int_{0}^{1} \widehat{\rho f_{1}} u_{1} \mathrm{~d} x_{1} \mathrm{~d} s+\int_{0}^{1} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \mathrm{~d} x_{1}+\int_{0}^{1} \rho_{0} \ln \left(\rho_{0}\right) \mathrm{d} x_{1}= \\
& =\int_{0}^{t} \int_{\Omega} \frac{P(|\zeta|) \zeta}{P}: \omega(\mathbf{u}) \mathrm{d} x \mathrm{~d} s \tag{3.59}
\end{align*}
$$

Hence and from (3.58), we get

$$
0 \leq \int_{0}^{t} \int_{\Omega}(\overline{P(|\zeta|) \zeta}-P(|T|) T):(\omega(\mathbf{u})-T) \mathrm{d} x \mathrm{~d} s
$$

Taking $T=\omega(\mathbf{u})+\lambda \omega(\psi)$ and $T=\omega(\mathbf{u})-\lambda \omega(\psi)$, for $\lambda>0, \psi=\left(\psi_{1}, 0,0\right)$, where $\psi_{1} \in \mathcal{C}_{0}^{\infty}\left(0, T ; \mathcal{C}^{\infty}(\bar{\Omega})\right)$ is such that $\partial_{2} \psi_{1}=\partial_{3} \psi_{1}=0$ and $\psi_{1}(0, t)=\psi_{1}(1, t)=0$, for all $t \in(0, T)$, we conclude that

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \mathrm{d} x \mathrm{~d} s=|S| \int_{0}^{t} \int_{0}^{1} P(|\omega(\mathbf{u})|) \omega(\mathbf{u}): \omega(\psi) \mathrm{d} x_{1} \mathrm{~d} s= \\
& =|S| \int_{0}^{t} \int_{0}^{1} P\left(\left|\partial_{1} u_{1}\right|\right) \partial_{1} u_{1} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} s \tag{3.60}
\end{align*}
$$

3.4 Main theorem for the 1D model

To sum it up, the limit equations together with the energy equality are given by the following formulas

$$
\begin{equation*}
\int_{0}^{T} \int_{0}^{1} \hat{\rho} \partial_{t} \varphi+\hat{\rho} u_{1} \partial_{1} \varphi \mathrm{~d} x_{1} \mathrm{~d} t=0 \tag{3.61}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}(\mathbb{R} \times\langle 0, T\rangle)$,

$$
\begin{align*}
& \int_{0}^{T} \int_{0}^{1} \hat{\rho} u_{1} \partial_{t} \psi_{1}+\hat{\rho} u_{1}^{2} \partial_{1} \psi_{1}+\hat{\rho} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t= \\
& =|S| \int_{0}^{T} \int_{0}^{1} P\left(\left|\partial_{1} u_{1}\right|\right) \partial_{1} u_{1} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t-\int_{0}^{T} \int_{0}^{1} \widehat{\rho f_{1}} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t+ \\
& +|\partial S| h \int_{0}^{T} \int_{0}^{1} u_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t \tag{3.62}
\end{align*}
$$

for any $\psi=\left(\psi_{1}\left(x_{1}\right), 0,0\right)$, where $\psi_{1} \in \mathcal{C}_{0}^{\infty}\left(0, T ; \mathcal{C}^{\infty}(\langle 0,1\rangle)\right)$ complies with condition $\psi_{1}(0, t)=\psi_{1}(1, t)=0$, for all $t \in(0, T)$,

$$
\begin{align*}
& \int_{0}^{1} \hat{\rho} \frac{\left|u_{1}\right|^{2}}{2}+\hat{\rho} \ln (\hat{\rho}) \mathrm{d} x_{1}+|S| \int_{0}^{t} \int_{\Omega} P\left(\left|\partial_{1} u_{1}\right|\right)\left|\partial_{1} u_{1}\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} s+ \\
& +|\partial S| h \int_{0}^{t} \int_{0}^{1}\left|u_{1}\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} s=\int_{0}^{t} \int_{0}^{1} \widehat{\rho f_{1}} u_{1} \mathrm{~d} x_{1} \mathrm{~d} s+ \tag{3.63}\\
& +\int_{0}^{1} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \mathrm{~d} x_{1}+\int_{0}^{1} \rho_{0} \ln \left(\rho_{0}\right) \mathrm{d} x_{1} \tag{3.64}
\end{align*}
$$

Finally, we summarize our main result in the following theorem.
Theorem 3.4. Let us assume that couples $\left(\rho_{\varepsilon}, \mathbf{u}_{\varepsilon}\right), \varepsilon \in(0,1)$, satisfying

$$
\begin{aligned}
& \rho_{\varepsilon} \in L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right) \\
& \mathbf{v}_{\varepsilon} \in L^{p}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{3}\right) \cap L^{2}\left(0, T ;\left[L^{2}(\partial \Omega)\right]^{3}\right)
\end{aligned}
$$

with $\mathbf{v}_{\varepsilon}=\left(u_{1, \varepsilon}, \varepsilon u_{2, \varepsilon}, \varepsilon u_{3, \varepsilon}\right)$ and Ω being not axially symmetric, $\partial \Omega \in \mathcal{C}^{0,1}$, are weak solutions to the equations (3.7)-(3.8) and (3.11) with initial states $\rho_{0, \varepsilon} \in$
$L_{\Phi_{\gamma}}(\Omega)$ and $\frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \in L^{1}(\Omega)$ satisfying

$$
\begin{align*}
\int_{S} \rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} & \rightarrow \rho_{0} \ln \left(\rho_{0}\right) \quad \text { in } L^{1}(0,1) \tag{3.65}\\
\int_{S} \Phi_{\gamma}\left(\rho_{0, \varepsilon}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} & \rightarrow \Phi_{\gamma}\left(\rho_{0}\right) \quad \text { in } L^{1}(0,1) \tag{3.66}\\
\int_{S} \frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \mathrm{~d} x_{2} \mathrm{~d} x_{3} & \rightarrow \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \quad \text { in } L^{1}(0,1) \tag{3.67}
\end{align*}
$$

for arbitrary but fixed $\gamma>3$ and $p>3$. In addition, we assume that Navier boundary conditions (3.1)-(3.3) hold and $\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \in\left[\tilde{L}_{M}(\Omega \times(0, T))\right]^{9}$.

Further, we suppose that function P complies with conditions (1.3)-(1.7), $\mathbf{f}_{\varepsilon} \rightarrow$ \mathbf{f} in $\left[L^{\infty}(\Omega \times(0, T))\right]^{3}, h(\varepsilon)>0$ behaves like $O(\varepsilon)$, see (3.1), and $q>0$, see (3.2). Then (passing to subsequences if necessary)

$$
\begin{aligned}
& \rho_{\varepsilon} \stackrel{*}{\rightharpoonup} \rho \\
& \rho_{\varepsilon} \rightarrow \rho \text { in } L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right), \\
& \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \stackrel{N}{\rightharpoonup} \omega(\mathbf{u}) \\
& u_{1, \varepsilon} \rightharpoonup u_{1} \\
& u_{\alpha, \varepsilon} \rightarrow 0 \text { in } L^{p}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{*}\right), \\
& \text { in } L_{M}(\Omega \times(0, T)), \alpha=2,3 .
\end{aligned}
$$

In addition, couple $\left(\hat{\rho}, u_{1}\right)$, where $u_{1}=u_{1}\left(x_{1}\right)$ and $\hat{\rho}=\int_{S} \rho \mathrm{~d} x_{2} \mathrm{~d} x_{3}$, is a weak solution to the equations (3.61)-(3.62) and complies with the energy equality (3.63).

Chapter 4

Derivation of a 2D model in a curved domain

We focus on a rigorous derivation of a two-dimensional model from equations (1.1)-(1.2) over a curved domain under Navier boundary conditions [2]. First, we describe the problem in section 4.1. In section 4.2, the deformation of the domain in question is expressed in the curvilinear coordinates. The transformation of the both governing equations and energy equality is performed in section 4.3. Finally, section 4.4 contains the proof of our main result, which is formulated in section 4.5.

4.1 Statement of the problem

We are interested in the motion of a compressible fluid in a thin domain. The dynamics of a compressible fluid are described by the continuity and momentum equations (1.1)-(1.2). We denote the velocity and the density as $\tilde{\mathbf{u}}_{\varepsilon}$ and $\tilde{\rho}_{\varepsilon}$, respectively, in equations (1.1)-(1.2) to highlight the connection to $\tilde{\Omega}_{\varepsilon}$. We employ similar notation also for other functions connected to $\tilde{\Omega}_{\varepsilon}$.

The domain $\tilde{\Omega}_{\varepsilon} \subset \mathbb{R}^{3}$ is defined by the use of a reference domain $\Omega=S \times(0,1)$, $S \subset \mathbb{R}^{2}, \partial S \in C^{0,1}$, and the mapping $\Theta_{\varepsilon}: \Omega \rightarrow \tilde{\Omega}_{\varepsilon}$ so that

$$
\Theta_{\varepsilon}:\left(x_{1}, x_{2}, x_{3}\right) \longmapsto \theta\left(x_{1}, x_{2}\right)+\varepsilon x_{3} \mathbf{a}_{3}\left(x_{1}, x_{2}\right),
$$

where $\theta: S \rightarrow \mathbb{R}^{3}$ and

$$
\begin{aligned}
& \mathbf{a}_{1}=\left(\partial_{1} \theta_{1}, \partial_{1} \theta_{2}, \partial_{1} \theta_{3}\right)^{\mathrm{T}}, \\
& \mathbf{a}_{2}=\left(\partial_{2} \theta_{1}, \partial_{2} \theta_{2}, \partial_{2} \theta_{3}\right)^{\mathrm{T}}, \\
& \mathbf{a}_{3}=\frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\left\|\mathbf{a}_{1} \times \mathbf{a}_{2}\right\|} .
\end{aligned}
$$

We suppose that $\mathbf{a}_{j}, \partial_{\alpha} \mathbf{a}_{j}$ and $\partial_{\alpha \beta}^{2} \mathbf{a}_{3} \in\left[L^{\infty}(\Omega)\right]^{3}$, where $\alpha, \beta=1,2$ and $j=1,2,3$.
Symbols \mathbf{n} and $\tilde{\mathbf{n}}_{\varepsilon}$ stand for unit outward normals to Ω and $\tilde{\Omega}_{\varepsilon}$, respectively. Similarly, \mathbf{t} (resp. $\tilde{\mathbf{t}}_{\varepsilon}$) is any vector from the corresponding tangent plane. We denote the boundaries of domains Ω and $\tilde{\Omega}_{\varepsilon}$ as follows:

$$
\begin{gathered}
\Gamma_{1}=\partial S \times(0,1), \quad \Gamma_{2}=S \times\{0,1\} \\
\tilde{\Gamma}_{1, \varepsilon}=\Theta_{\varepsilon}\left(\Gamma_{1}\right), \tilde{\Gamma}_{2, \varepsilon}=\Theta_{\varepsilon}\left(\Gamma_{2}\right)
\end{gathered}
$$

To ensure the well-posedness of our problem [26], we prescribed the set of Navier boundary conditions

$$
\begin{array}{r}
\tilde{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\tilde{D} \tilde{\mathbf{u}}_{\varepsilon}\right|\right) \tilde{D}_{\mathbf{u}_{\varepsilon}} \tilde{\mathbf{n}}_{\varepsilon}\right)+q \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\mathbf{t}}_{\varepsilon}=0, \text { on } \tilde{\Gamma}_{1, \varepsilon} \times(0, T), \\
\tilde{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\tilde{D} \tilde{\mathbf{u}}_{\varepsilon}\right|\right) \tilde{D} \tilde{\mathbf{u}}_{\varepsilon} \tilde{\mathbf{n}}_{\varepsilon}\right)+h(\varepsilon) \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\mathbf{t}}_{\varepsilon}=0, \text { on } \tilde{\Gamma}_{2, \varepsilon} \times(0, T), \\
\tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\mathbf{n}}_{\varepsilon}=0, \text { on } \partial \tilde{\Omega}_{\varepsilon} \times(0, T) . \tag{4.3}
\end{array}
$$

We suppose that $h(\varepsilon)>0$ behaves like $O(\varepsilon)$ and $q>0$. The asymptotic behavior of $h(\varepsilon)$ will be discussed during derivation of weak convergences of density and velocity field (section 4.4.3).

We consider the initial conditions for the density and the momentum

$$
\begin{aligned}
\tilde{\rho}_{\varepsilon}(x, 0) & =\tilde{\rho}_{0, \varepsilon}(x) \geq 0, \\
\left(\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon}\right)(x, 0) & =\left(\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon}\right)_{0}(x, 0), \text { in } \tilde{\Omega}_{\varepsilon}
\end{aligned}
$$

Hence, the variational formulation of our problem is

$$
\begin{equation*}
\int_{0}^{T} \int_{\tilde{\Omega}_{\varepsilon}}\left(\tilde{\rho}_{\varepsilon} \partial_{t} \tilde{\varphi}+\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\nabla} \tilde{\varphi}\right) \mathrm{d} \tilde{x} \mathrm{~d} t=0 \tag{4.4}
\end{equation*}
$$

$$
\begin{array}{r}
\int_{0}^{T} \int_{\tilde{\Omega}_{\varepsilon}}\left(\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon} \cdot \partial_{t} \tilde{\psi}+\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon} \otimes \tilde{\mathbf{u}}_{\varepsilon}: \tilde{D} \tilde{\psi}+\tilde{\rho}_{\varepsilon} \mathrm{div} \tilde{\psi}\right) \mathrm{d} \tilde{x} \mathrm{~d} t \\
=\int_{0}^{T} \int_{\tilde{\Omega}_{\varepsilon}}\left(P\left(\left|\tilde{D} \tilde{\mathbf{u}}_{\varepsilon}\right|\right) \tilde{D} \tilde{\mathbf{u}}_{\varepsilon}: \tilde{D} \tilde{\psi}-\tilde{\rho}_{\varepsilon} \tilde{\mathbf{f}}_{\varepsilon} \cdot \tilde{\psi}\right) \mathrm{d} x \mathrm{~d} t \\
+q \int_{0}^{T} \int_{\tilde{\Gamma}_{1, \varepsilon}} \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\psi} \mathrm{d} \tilde{\Gamma} \mathrm{~d} t+h(\varepsilon) \int_{0}^{T} \int_{\tilde{\Gamma}_{2, \varepsilon}} \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\psi} \mathrm{d} \tilde{\Gamma} \mathrm{~d} t \tag{4.5}
\end{array}
$$

for any $\tilde{\varphi} \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\tilde{\psi} \in C_{0}^{\infty}\left(0, T ; C^{\infty}\left(\left\{\tilde{\Omega}_{\varepsilon}\right\}^{-}\right)^{3}\right)$, where $\left\{\tilde{\Omega}_{\varepsilon}\right\}^{-}$stands for the closure of $\tilde{\Omega}_{\varepsilon}$, satisfying the condition $\left.\tilde{\psi} \cdot \tilde{\mathbf{n}}_{\varepsilon}\right|_{\partial \tilde{\Omega}_{\varepsilon} \times(0, T)}=0$.

4.2 Curvilinear coordinates

We transform the equations (4.4) and (4.5) to the reference domain Ω by the use of mapping Θ_{ε}. First, we define the covariant basis (see [7], section 1.2)

$$
\begin{align*}
& \mathbf{g}_{1, \varepsilon}=\partial_{1} \Theta_{\varepsilon}=\mathbf{a}_{1}+\varepsilon x_{3} \partial_{1} \mathbf{a}_{3}, \tag{4.6}\\
& \mathbf{g}_{2, \varepsilon}=\partial_{2} \Theta_{\varepsilon}=\mathbf{a}_{2}+\varepsilon x_{3} \partial_{2} \mathbf{a}_{3}, \tag{4.7}\\
& \mathbf{g}_{3, \varepsilon}=\partial_{3} \Theta_{\varepsilon}=\varepsilon \mathbf{a}_{3}, \tag{4.8}
\end{align*}
$$

the covariant metric tensor G_{ε}

$$
\begin{equation*}
\left[G_{\varepsilon}\right]_{i j}=g_{i j, \varepsilon}=\mathbf{g}_{i, \varepsilon} \cdot \mathbf{g}_{j, \varepsilon} \tag{4.9}
\end{equation*}
$$

and its determinant $g_{\varepsilon}=\operatorname{det}\left(G_{\varepsilon}\right)$. Further, we also define the contravariant basis by the relations

$$
\begin{equation*}
\mathbf{g}^{i, \varepsilon} \cdot \mathbf{g}_{j, \varepsilon}=\delta_{j}^{i} \tag{4.10}
\end{equation*}
$$

It is known from [7], Theorem 1.2-1, that

$$
\left[G_{\varepsilon}^{-1}\right]^{i j}=g^{i j, \varepsilon}=\mathbf{g}^{i, \varepsilon} \cdot \mathbf{g}^{j, \varepsilon}
$$

and also (see [7], proof of Theorem 1.3), that

$$
\left[\mathbf{g}^{i, \varepsilon}(x)\right]_{k}=\tilde{\partial}_{k} \Theta_{i, \varepsilon}^{-1}(\tilde{x})
$$

where $\tilde{x}=\Theta_{\varepsilon}(x)$.

For convenience, we denote the determinant of submatrix $\left(\left[G_{\varepsilon}\right]_{i j}\right)_{i, j=1}^{2}$ as d_{ε}. Relations (4.6)-(4.8) and (4.10) enable us to express the contravariant basis:

$$
\begin{align*}
& \mathbf{g}^{1, \varepsilon}=d_{\varepsilon}^{-1}\left(\left|\mathbf{g}_{2, \varepsilon}\right|^{2} \mathbf{g}_{1, \varepsilon}-\left(\mathbf{g}_{1, \varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}_{2, \varepsilon}\right), \\
& \mathbf{g}^{2, \varepsilon}=d_{\varepsilon}^{-1}\left(\left|\mathbf{g}_{1, \varepsilon}\right|^{2} \mathbf{g}_{2, \varepsilon}-\left(\mathbf{g}_{1, \varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}_{1, \varepsilon}\right), \\
& \mathbf{g}^{3, \varepsilon}=\varepsilon^{-1} \mathbf{a}_{3} . \tag{4.11}
\end{align*}
$$

We emphasize that subscripts are used for the covariant basis $\left\{\mathbf{g}_{i, \varepsilon}\right\}_{i=1}^{3}$ and superscripts for the contravariant basis $\left\{\mathbf{g}^{i, \varepsilon}\right\}_{i=1}^{3}$ (the same notation as in [7]).

The contravariant basis is well-defined, because $d_{\varepsilon}>0$ (see section 4.2.1 for details). For further calculations, we determine explicitly also the matrix G_{ε} and its inverse:

$$
G_{\varepsilon}=\left(\begin{array}{ccc}
g_{11, \varepsilon} & g_{12, \varepsilon} & 0 \\
\cdot & g_{22, \varepsilon} & 0 \\
\operatorname{sym} & \cdot & \varepsilon^{2}
\end{array}\right), \quad G_{\varepsilon}^{-1}=\left(\begin{array}{ccc}
g^{11, \varepsilon} & g^{12, \varepsilon} & 0 \\
\cdot & g^{22, \varepsilon} & 0 \\
\operatorname{sym} & \cdot & \varepsilon^{-2}
\end{array}\right),
$$

where

$$
\begin{aligned}
g_{11, \varepsilon} & =\left|\mathbf{a}_{1}\right|^{2}+2 \varepsilon x_{3} \mathbf{a}_{1} \cdot \partial_{1} \mathbf{a}_{3}+\varepsilon^{2} x_{3}^{2}\left|\partial_{1} \mathbf{a}_{3}\right|^{2}, \\
g_{12, \varepsilon} & =\mathbf{a}_{1} \cdot \mathbf{a}_{2}+\varepsilon x_{3}\left(\mathbf{a}_{1} \cdot \partial_{2} \mathbf{a}_{3}+\mathbf{a}_{2} \cdot \partial_{1} \mathbf{a}_{3}\right)+\varepsilon^{2} x_{3}^{2} \partial_{1} \mathbf{a}_{3} \cdot \partial_{2} \mathbf{a}_{3}, \\
g_{22, \varepsilon} & =\left|\mathbf{a}_{2}\right|^{2}+2 \varepsilon x_{3} \mathbf{a}_{2} \cdot \partial_{2} \mathbf{a}_{3}+\varepsilon^{2} x_{3}^{2}\left|\partial_{2} \mathbf{a}_{3}\right|^{2}, \\
g^{11, \varepsilon} & =g_{22, \varepsilon} d_{\varepsilon}^{-1} \\
g^{12, \varepsilon} & =-g_{12, \varepsilon} d_{\varepsilon}^{-1} \\
g^{22, \varepsilon} & =g_{11, \varepsilon} d_{\varepsilon}^{-1}
\end{aligned}
$$

Terms $g_{13, \varepsilon}$ and $g_{23, \varepsilon}$ are equal to zero, because

$$
\mathbf{g}_{1, \varepsilon} \cdot \mathbf{g}_{3, \varepsilon}=\varepsilon \mathbf{a}_{1} \cdot \mathbf{a}_{3}+\varepsilon^{2} x_{3} \mathbf{a}_{3} \cdot \partial_{2} \mathbf{a}_{3}=0
$$

The last equality is due to orthogonality of \mathbf{a}_{1} and \mathbf{a}_{3}, and equality $\mathbf{a}_{3} \cdot \partial_{2} \mathbf{a}_{3}=$ $\frac{1}{2} \partial_{2}\left|\mathbf{a}_{3}\right|^{2}=\frac{1}{2} \partial_{2} 1=0$. Similarly, $g_{23, \varepsilon}=0$ and thus also $g^{13, \varepsilon}=g^{23, \varepsilon}=0$.

Mapping Θ_{ε} can be decomposed into two parts: deformation and contraction. Therefore, matrix G_{ε}, as well as the inverse matrix G_{ε}^{-1}, can be decomposed into
two parts. In the following sections, we need the decomposition of G_{ε}^{-1}. Thus, we denote

$$
\begin{gather*}
E_{\varepsilon}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\cdot & 1 & 0 \\
\operatorname{sym} & \cdot & \varepsilon^{-1}
\end{array}\right), \\
R_{\varepsilon}=\left(\mathbf{r}^{1, \varepsilon}, \mathbf{r}^{2, \varepsilon}, \mathbf{r}^{3, \varepsilon}\right)=\left(\begin{array}{lll}
{\left[\mathbf{g}^{1, \varepsilon}\right]_{1}} & {\left[\mathbf{g}^{2, \varepsilon}\right]_{1}} & {\left[\mathbf{a}_{3}\right]_{1}} \\
{\left[\mathbf{g}^{1, \varepsilon}\right]_{2}} & {\left[\mathbf{g}^{2, \varepsilon}\right]_{2}} & {\left[\mathbf{a}_{3}\right]_{2}} \\
{\left[\mathbf{g}^{1, \varepsilon}\right]_{3}} & {\left[\mathbf{g}^{2, \varepsilon}\right]_{3}} & {\left[\mathbf{a}_{3}\right]_{3}}
\end{array}\right) . \tag{4.12}
\end{gather*}
$$

It holds that $G_{\varepsilon}^{-1}=E_{\varepsilon} R_{\varepsilon}^{\mathrm{T}} R_{\varepsilon} E_{\varepsilon}$. It is an easy matter to demonstrate that $\operatorname{det}\left(R_{\varepsilon}^{\mathrm{T}} R_{\varepsilon}\right)=d_{\varepsilon}^{-1}, g_{\varepsilon}=d_{\varepsilon} \varepsilon^{2}$ and

$$
R_{\varepsilon}^{\mathrm{T}} R_{\varepsilon}=\left(\begin{array}{ccc}
g^{11, \varepsilon} & g^{12, \varepsilon} & 0 \tag{4.13}\\
\cdot & g^{22, \varepsilon} & 0 \\
\operatorname{sym} & \cdot & 1
\end{array}\right) .
$$

From the relations (4.6)-(4.11), it is simple to prove that $R_{\varepsilon}^{\mathrm{T}} R_{\varepsilon}$ is a symmetric positive definite matrix. Hence, $d_{\varepsilon}^{-1}>0$ and therefore $\sqrt{d_{\varepsilon}}>0$ is well-defined. Furthermore, it stems from Cauchy's inequality that d_{ε} would equal zero if and only if $\mathbf{g}_{1, \varepsilon}=\mathbf{g}_{2, \varepsilon}$. However, this situation cannot occur because $\mathbf{g}_{1, \varepsilon}$ and $\mathbf{g}_{2, \varepsilon}$ are linearly independent.

4.2.1 Convergence of covariant and contravariant bases

Before we pass to the limit in the variational formulation (4.4)-(4.5), we mention necessary convergences concerning the covariant and contravariant bases. For $\varepsilon \rightarrow 0$, we have

$$
\begin{align*}
& \mathbf{g}_{1, \varepsilon} \rightarrow \mathbf{a}_{1}, \quad \mathbf{g}_{2, \varepsilon} \rightarrow \mathbf{a}_{2}, \mathbf{g}_{3, \varepsilon} \rightarrow \mathbf{o} \quad \text { in }\left[W^{1, \infty}(\Omega)\right]^{3}, \tag{4.14}\\
& G_{\varepsilon} \rightarrow G=\left(\begin{array}{ccc}
\left|\mathbf{a}_{1}\right|^{2} & \mathbf{a}_{1} \cdot \mathbf{a}_{2} & 0 \\
\cdot & \left|\mathbf{a}_{2}\right|^{2} & 0 \\
\operatorname{sym} & \cdot & 0
\end{array}\right) \quad \text { in }\left[L^{\infty}(\Omega)\right]^{9}, \tag{4.15}\\
& R_{\varepsilon}^{\mathrm{T}} R_{\varepsilon} \rightarrow R^{\mathrm{T}} R=\left(\begin{array}{ccc}
d^{-1}\left|\mathbf{a}_{2}\right|^{2} & -d^{-1} \mathbf{a}_{1} \cdot \mathbf{a}_{2} & 0 \\
\cdot & d^{-1}\left|\mathbf{a}_{1}\right|^{2} & 0 \\
\operatorname{sym} & \cdot & 1
\end{array}\right) \quad \text { in }\left[L^{\infty}(\Omega)\right]^{9}, \tag{4.16}
\end{align*}
$$

$$
\begin{equation*}
g_{\varepsilon} \rightarrow 0, \quad d_{\varepsilon} \rightarrow d=\left(\left|\mathbf{a}_{1}\right|\left|\mathbf{a}_{2}\right|\right)^{2}-\left(\mathbf{a}_{1} \cdot \mathbf{a}_{2}\right)^{2} \quad \text { in } L^{\infty}(\Omega) \tag{4.17}
\end{equation*}
$$

Therefore, $d_{\varepsilon} \geq \delta>0$ and the contravariant basis is well-defined by relations (4.11). It immediately follows from the above convergences that

$$
\begin{array}{ll}
\mathbf{g}^{1, \varepsilon} \rightarrow \mathbf{a}^{1}=d^{-1}\left(\left|\mathbf{a}_{2}\right|^{2} \mathbf{a}_{1}-\left(\mathbf{a}_{1} \cdot \mathbf{a}_{2}\right) \mathbf{a}_{2}\right) & \text { in }\left[W^{1, \infty}(\Omega)\right]^{3}, \\
\mathbf{g}^{2, \varepsilon} \rightarrow \mathbf{a}^{2}=d^{-1}\left(\left|\mathbf{a}_{1}\right|^{2} \mathbf{a}_{2}-\left(\mathbf{a}_{1} \cdot \mathbf{a}_{2}\right) \mathbf{a}_{1}\right) & \text { in }\left[W^{1, \infty}(\Omega)\right]^{3} \tag{4.19}
\end{array}
$$

Hence,

$$
R=\left(\begin{array}{lll}
{\left[\mathbf{a}^{1}\right]_{1}} & {\left[\mathbf{a}^{2}\right]_{1}} & {\left[\mathbf{a}_{3}\right]_{1}} \tag{4.20}\\
{\left[\mathbf{a}^{1}\right]_{2}} & {\left[\mathbf{a}^{2}\right]_{2}} & {\left[\mathbf{a}_{3}\right]_{2}} \\
{\left[\mathbf{a}^{1}\right]_{3}} & {\left[\mathbf{a}^{2}\right]_{3}} & {\left[\mathbf{a}_{3}\right]_{3}}
\end{array}\right)
$$

Let us remark that all these limit functions depend only on x_{1} and x_{2}, because $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ as well as $\mathbf{a}^{1}, \mathbf{a}^{2}$ are independent of x_{3}.

4.3 Transformation

4.3.1 Transformation of partial derivatives

For transformed velocity and density, we employ the notation

$$
\begin{aligned}
& \mathbf{u}_{\varepsilon}: \Omega \times\langle 0, T\rangle \rightarrow \mathbb{R}^{3}, \\
& \rho_{\varepsilon}: \Omega \times\langle 0, T\rangle \rightarrow \mathbb{R}
\end{aligned}
$$

where $\mathbf{u}_{\varepsilon}(x, t)=\tilde{\mathbf{u}}_{\varepsilon}\left(\Theta_{\varepsilon}(x), t\right)$ and $\rho_{\varepsilon}(x, t)=\tilde{\rho}_{\varepsilon}\left(\Theta_{\varepsilon}(x), t\right)$, for all $x \in \Omega$. We denote $\tilde{x}=\Theta_{\varepsilon}(x)$ and also $x=\Theta_{\varepsilon}^{-1}(\tilde{x})$. Thus, we can write $\mathbf{u}_{\varepsilon}(x, t)=\tilde{\mathbf{u}}_{\varepsilon}(\tilde{x}, t)$ and $\rho_{\varepsilon}(x, t)=\tilde{\rho}_{\varepsilon}(\tilde{x}, t)$.

We express the first spatial partial derivative of a scalar function $\tilde{\varphi}$ according to the chain rule in the following way

$$
\tilde{\partial}_{j} \tilde{\varphi}(\tilde{x}, t)=\tilde{\partial}_{j} \varphi\left(\Theta_{\varepsilon}^{-1}(\tilde{x}), t\right)=\partial_{l} \varphi(x, t)\left[\mathbf{g}^{l, \varepsilon}\right]_{j} .
$$

Similarly, we derive the first spatial partial derivative of a vector function $\tilde{\mathbf{u}}_{\varepsilon}$ as follows

$$
\tilde{\partial}_{j} \tilde{u}_{i, \varepsilon}(\tilde{x}, t)=\tilde{\partial}_{j} u_{i, \varepsilon}\left(\Theta_{\varepsilon}^{-1}(\tilde{x}), t\right)=\partial_{l} u_{i, \varepsilon}(x, t)\left[\mathbf{g}^{l, \varepsilon}\right]_{j}=\partial_{l} \mathbf{u}_{\varepsilon}(x, t) \cdot \mathbf{g}_{k, \varepsilon}\left[\mathbf{g}^{k, \varepsilon}\right]_{i}\left[\mathbf{g}^{l, \varepsilon}\right]_{j},
$$

where the last equality follows from

$$
\partial_{l} u_{i, \varepsilon}=\left[\partial_{l} \mathbf{u}_{\varepsilon}\right]_{i}=\partial_{l} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{k, \varepsilon}\left[\mathbf{g}^{k, \varepsilon}\right]_{i} .
$$

The transformation of the symmetric part of the gradient can be performed in the following way

$$
\begin{equation*}
\left[\tilde{D} \tilde{\mathbf{u}}_{\varepsilon}\right]_{i j}=\left[\bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right]_{l k}\left[\mathbf{r}^{k, \varepsilon}\right]_{i}\left[\mathbf{r}^{l, \varepsilon}\right]_{j}=\left[R_{\varepsilon}^{\mathrm{T}} \bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) R_{\varepsilon}\right]_{i j} \stackrel{\text { def }}{=}\left[\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right]_{i j}, \tag{4.21}
\end{equation*}
$$

where

$$
\bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)=\left(\begin{array}{ccc}
\partial_{1} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon} & \frac{1}{2}\left(\partial_{1} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}+\partial_{2} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) & \frac{1}{2}\left(\frac{\partial_{1} \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}}{\varepsilon}\right) \tag{4.22}\\
\cdot & \partial_{2} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon} & \frac{1}{2}\left(\frac{\partial_{2} \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}}{\varepsilon}\right) \\
\text { sym } & \cdot & \frac{\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}}{\varepsilon^{2}}
\end{array}\right),
$$

In the following sections, we need the equivalence of $\bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)$ and $\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)$ in the L^{p}-norm, $p \geq 3$, and also in the L_{M}-norm. Since this equivalence can be proven simultaneously, let us denote any of these norms as $\|\cdot\|_{X}$. There exist $r_{1}(X)$, $r_{2}(X)>0$ such that for all $\varepsilon \in(0,1)$ the following relation holds

$$
\begin{equation*}
r_{1}(X)\left\|\bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right\|_{X} \leq\left\|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right\|_{X} \leq r_{2}(X)\left\|\bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right\|_{X} \tag{4.23}
\end{equation*}
$$

because R_{ε} is convergent for $\varepsilon \rightarrow 0$ in $W^{1, \infty}(\Omega)$ due to (4.18) and (4.19). Furthermore, R_{ε} does not tend to zero for $\varepsilon \rightarrow 0$ as formula (4.20) holds.

The transformation of $\tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\nabla} \tilde{\varphi}$ leads to

$$
\tilde{u}_{i, \varepsilon} \tilde{\partial}_{i} \tilde{\varphi}=u_{i, \varepsilon} \partial_{l} \varphi\left[\mathbf{g}^{l, \varepsilon}\right]_{i}=\mathbf{u}_{\varepsilon}^{\mathrm{T}} R_{\varepsilon} E_{\varepsilon} \nabla \varphi .
$$

The transformation of div $\tilde{\psi}$ is done similarly

$$
\begin{equation*}
\operatorname{div} \tilde{\psi}=\tilde{\partial}_{i} \tilde{\psi}_{i}=\partial_{l} \psi_{i}\left[\mathbf{g}^{l, \varepsilon}\right]_{i}=\nabla \psi: R_{\varepsilon} E_{\varepsilon} . \tag{4.24}
\end{equation*}
$$

We remark that term $\nabla \psi: R_{\varepsilon} E_{\varepsilon}$ is the trace of $\omega_{\varepsilon}(\psi)$, because $\operatorname{div} \tilde{\psi}$ is the trace of $\tilde{D} \tilde{\psi}$.

4.3.2 Transformation of the governing equations

According to [7], we use the following equalities

$$
\begin{aligned}
& \mathrm{d} \tilde{x}=\sqrt{g_{\varepsilon}} \mathrm{d} x=\varepsilon \sqrt{d_{\varepsilon}} \mathrm{d} x \\
& \mathrm{~d} \tilde{\Gamma}=\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{g_{\varepsilon}} \mathrm{d} \Gamma=\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \varepsilon \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma
\end{aligned}
$$

to arrive at the transformed equations of the variational formulation (4.4)-(4.5). It holds that $\mathbf{n}=\left(n_{1}, n_{2}, 0\right)$ on $\Gamma_{1}, \mathbf{n}=(0,0, \pm 1)$ on Γ_{2}. Therefore,

$$
\begin{aligned}
& \left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right|=\sqrt{\sum_{i, j=1}^{2} n_{i} g^{i j, \varepsilon} n_{j}}, \text { on } \Gamma_{1}, \\
& \left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right|=\varepsilon^{-1}, \text { on } \Gamma_{2}
\end{aligned}
$$

Now, we can divide both equations by ε and arrive at the transformed variational formulation

$$
\begin{gather*}
\int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon} \partial_{t} \varphi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon}^{\mathrm{T}} R_{\varepsilon} E_{\varepsilon} \nabla \varphi\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=0 \tag{4.25}\\
\int_{0}^{T} \int_{\Omega}\left[\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi)+\rho_{\varepsilon} \nabla \psi: R_{\varepsilon} E_{\varepsilon}\right] \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t \\
=\int_{0}^{T} \int_{\Omega}\left[P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi)-\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi\right] \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t+ \\
+q \int_{0}^{T} \int_{\Gamma_{1}} \mathbf{u}_{\varepsilon} \cdot \psi\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t+\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{T} \int_{\Gamma_{2}} \mathbf{u}_{\varepsilon} \cdot \psi \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t \tag{4.26}
\end{gather*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\psi \in C_{0}^{\infty}\left(0, T ;\left[C^{\infty}(\bar{\Omega})\right]^{3}\right),\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$. Similarly as in section 3.2.3, we remark that for any $\varepsilon \in(0,1)$, there exists at least one weak solution of equations (4.25)-(4.26).

After imposing the same transformation as for the variational formulation to renormalized continuity equation (see [17] or [19] for its original form), we get

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left[b\left(\rho_{\varepsilon}\right) \partial_{t} \varphi+b\left(\rho_{\varepsilon}\right) \mathbf{u}_{\varepsilon}^{\mathrm{T}} R_{\varepsilon} E_{\varepsilon} \nabla \varphi\left(b\left(\rho_{\varepsilon}\right)-\rho_{\varepsilon} b^{\prime}\left(\rho_{\varepsilon}\right)\right) \nabla \mathbf{u}_{\varepsilon}: R_{\varepsilon} E_{\varepsilon}\right] \varphi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=0 \tag{4.27}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$.

4.3.3 Energy equality and its transformation

For any $t \in(0, T)$, we have the energy equality expressed by the following formula [19]

$$
\begin{align*}
& \int_{\tilde{\Omega}_{\varepsilon}}\left(\tilde{\rho}_{\varepsilon}(t) \frac{\left|\tilde{\mathbf{u}}_{\varepsilon}(t)\right|^{2}}{2}+\tilde{\rho}_{\varepsilon}(t) \ln \left(\tilde{\rho}_{\varepsilon}(t)\right)\right) \mathrm{d} \tilde{x}+ \\
& +\int_{0}^{t} \int_{\tilde{\Omega}_{\varepsilon}} P\left(\left|\tilde{D}_{\tilde{\mathbf{u}}_{\varepsilon}}\right|\right) \tilde{D} \tilde{\mathbf{u}}_{\varepsilon}: \tilde{D} \tilde{\mathbf{u}}_{\varepsilon} \mathrm{d} \tilde{x} \mathrm{~d} s+q \int_{0}^{t} \int_{\tilde{\Gamma}_{1, \varepsilon}}\left|\tilde{\mathbf{u}}_{\varepsilon}\right|^{2} \mathrm{~d} \tilde{\Gamma} \mathrm{~d} s+ \\
& +h(\varepsilon) \int_{0}^{t} \int_{\tilde{\Gamma}_{2, \varepsilon}}\left|\tilde{\mathbf{u}}_{\varepsilon}\right|^{2} \mathrm{~d} \tilde{\Gamma} \mathrm{~d} s=\int_{0}^{t} \int_{\tilde{\Omega}_{\varepsilon}} \tilde{\rho}_{\varepsilon} \tilde{f}_{\varepsilon} \cdot \tilde{\mathbf{u}}_{\varepsilon} \mathrm{d} \tilde{x} \mathrm{~d} s+ \\
& +\int_{\tilde{\Omega}_{\varepsilon}}\left(\frac{\left|\left(\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon}\right)_{0}\right|^{2}}{2 \tilde{\rho}_{0, \varepsilon}}+\tilde{\rho}_{0, \varepsilon} \ln \left(\tilde{\rho}_{0, \varepsilon}\right)\right) \mathrm{d} \tilde{x} \tag{4.28}
\end{align*}
$$

By transforming (4.28), we obtain

$$
\begin{align*}
& \int_{\Omega}\left(\rho_{\varepsilon}(t) \frac{\left|\mathbf{u}_{\varepsilon}(t)\right|^{2}}{2}+\rho_{\varepsilon}(t) \ln \left(\rho_{\varepsilon}(t)\right)\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \\
& +\int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} s+ \\
& +q \int_{0}^{t} \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon}\right|^{2}\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} s+\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{t} \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} s= \\
& =\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \overline{\mathbf{f}}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} s+ \\
& +\int_{\Omega}\left(\frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}}+\rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right)\right) \sqrt{d_{\varepsilon}} \mathrm{d} x . \tag{4.29}
\end{align*}
$$

for any $t \in\langle 0, T\rangle$, where

$$
\begin{aligned}
\overline{\mathbf{f}}_{\varepsilon} & =\left(\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{1, \varepsilon}, \mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{2, \varepsilon}, \mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{3, \varepsilon}\right), \\
\mathbf{v}_{\varepsilon} & =\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{3, \varepsilon}\right),
\end{aligned}
$$

It is obvious that

$$
\begin{aligned}
\overline{\mathbf{f}}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} & =\bar{f}_{i, \varepsilon} v_{i, \varepsilon}=\left(\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{i, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{i, \varepsilon}\right) \\
& =\left(\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{i, \varepsilon}\right) \mathbf{g}_{i, \varepsilon} \cdot\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{j, \varepsilon}\right) \mathbf{g}^{j, \varepsilon}=\mathbf{f}_{\varepsilon} \cdot \mathbf{u}_{\varepsilon}
\end{aligned}
$$

We need to use $\overline{\mathbf{f}}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon}$ instead of $\mathbf{f}_{\varepsilon} \cdot \mathbf{u}_{\varepsilon}$ for making a priori estimates (see inequality 4.34), because a variant of Korn's inequality holds for \mathbf{v}_{ε} (see Theorem 4.1).

It has to be remarked that concerning the existence of a weak solution to equations (4.25)-(4.26) satisfying the energy equality (4.29), we are in a similar situation as in the Chapter 3. Thus, we refer to section 3.2.3 for details connected to this issue.

4.4 Derivation of the limiting 2D equations

The first step of the proof concerns a variant of the first Korn's inequality which is proven in section 4.4.1. This inequality is necessary to perform a prior estimates in section 4.4.2 and subsequently show the boundedness of $\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ and $\left\{\mathbf{v}_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$, and perform weak limits. In section 4.4.3, we pass to the limits in the governing equations (4.25)-(4.26). As the last step, we perform the limit passage also for the energy equality (4.29) in section 4.4.4.

4.4.1 Korn's inequality

In this section, we prove a variant of the first Korn's inequality for functions from $\left[W^{1, p}(\Omega)\right]^{3}, p>3$. This inequality is subsequently used to derive prior estimates for ρ_{ε} and \mathbf{u}_{ε} in section 4.4.2.

From [9], we know that there exists $C>0$ such that

$$
\begin{equation*}
\|\mathbf{w}\|_{1, p} \leq C\left(\|D \mathbf{w}\|_{p}+\|\mathbf{w}\|_{p}\right) \tag{4.30}
\end{equation*}
$$

holds for any $\mathbf{w} \in\left[W^{1, p}(\Omega)\right]^{3}, p \geq 2$.
As a consequence (see Lemma 3.1 and its proof), there exists $\bar{C}(\Omega, p)>0$ such that

$$
\begin{equation*}
\|\mathbf{w}\|_{1, p} \leq \bar{C}(\Omega, p)\left(\|D \mathbf{w}\|_{p}+\|\mathbf{w}\|_{2, \Gamma}\right) . \tag{4.31}
\end{equation*}
$$

From inequality (4.31), we can deduce the following theorem. Although its proof employes similar ideas as the proof of Theorem 3.2, we do not omit it, because it requires also other considerations due to more complex situation induced by the curvilinear coordinates. Without the loss of generality, we denote $\mathbf{u}_{\varepsilon}=\mathbf{u}_{\varepsilon}(t)$. Variable $t \in(0, T)$ is arbitrary but fixed.

Theorem 4.1. Let $\mathbf{u}_{\varepsilon} \in\left[W^{1, p}(\Omega)\right]^{3}, p>3$, be such that $\mathbf{u}_{\varepsilon} \cdot \mathbf{n}=\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}=0$ on $\Gamma=S \times\{0\}$. We define $\mathbf{v}_{\varepsilon}=\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}\right)$. Then there exists $C=C(\Omega, p)>0$, such that

$$
\begin{equation*}
\left\|\mathbf{v}_{\varepsilon}\right\|_{1, p} \leq C\left(\left\|\bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right\|_{p}+\left\|\mathbf{u}_{\varepsilon}\right\|_{2, \Gamma}\right), \quad \forall \varepsilon>0 \tag{4.32}
\end{equation*}
$$

where $\bar{\omega}_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)$ is defined by (4.22).

Proof: Assume the contrary: without loss of generality, there exists a sequence $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ generated by $\left\{\mathbf{u}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$, where $\varepsilon_{n} \rightarrow 0$ as n approaches infinity, such that $\left\|\mathbf{v}_{\varepsilon_{n}}\right\|_{1, p}=1$ and

$$
\frac{1}{n} \geq\left\|\bar{\omega}_{\varepsilon_{n}}\left(\mathbf{u}_{\varepsilon_{n}}\right)\right\|_{p}+\left\|\mathbf{u}_{\varepsilon_{n}}\right\|_{2, \Gamma} .
$$

Hence,

$$
\begin{equation*}
\mathbf{u}_{\varepsilon_{n}} \rightarrow 0, \text { in }\left[L^{2}(\Gamma)\right]^{3}, \quad \bar{\omega}_{\varepsilon_{n}}\left(\mathbf{u}_{\varepsilon_{n}}\right) \rightarrow 0, \text { in }\left[L^{p}(\Omega)\right]^{9} . \tag{4.33}
\end{equation*}
$$

In addition, from definition of $\mathbf{v}_{\varepsilon_{n}}$, it follows that $v_{3, \varepsilon_{n}}=0$ on Γ. From boundedness of sequence $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ and embedding $W^{1, p}(\Omega) \hookrightarrow \hookrightarrow \mathcal{C}(\bar{\Omega})$, we get the convergences (passing to a subsequence if necessary)

$$
\begin{array}{ll}
\mathbf{v}_{\varepsilon_{n}} \rightharpoonup \mathbf{v} & \text { in }\left[W^{1, p}(\Omega)\right]^{3}, \\
\mathbf{v}_{\varepsilon_{n}} \rightarrow \mathbf{v} & \text { in }[\mathcal{C}(\bar{\Omega})]^{3} .
\end{array}
$$

We will arrive at a contradiction in three steps:

1. We prove that $\left\{D \mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ is convergent in $\left[L^{p}(\Omega)\right]^{9}$.

Let us analyze the terms of $\bar{\omega}_{\varepsilon_{n}}\left(\mathbf{u}_{\varepsilon_{n}}\right)$ one by one. We know that

$$
\left\|\partial_{3} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{a}_{3}\right\|_{p} \leq \frac{\varepsilon_{n}}{n}
$$

Hence, $\partial_{3} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{a}_{3}=\partial_{3}\left(\mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{a}_{3}\right) \rightarrow \partial_{3}\left(\mathbf{u} \cdot \mathbf{a}_{3}\right)=0$ in $L^{p}(\Omega)$. However, $(\mathbf{u}$. $\left.\mathbf{a}_{3}\right)\left(x_{1}, x_{2}, 0\right)=0$ for all $\left(x_{1}, x_{2}\right) \in S$ (in other words $\mathbf{u} \cdot \mathbf{a}_{3}=0$ on Γ). Thus, $v_{3}=\mathbf{u} \cdot \mathbf{a}_{3}=0$ in Ω.

Next, $\left[\bar{\omega}_{\varepsilon_{n}}\left(\mathbf{u}_{\varepsilon_{n}}\right)\right]_{11}$ can be written as

$$
\partial_{1} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{1, \varepsilon_{n}}=\partial_{1}\left(\mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{1, \varepsilon_{n}}\right)-\mathbf{u}_{\varepsilon_{n}} \cdot \partial_{1} \mathbf{g}_{1, \varepsilon_{n}}
$$

From the definition of $\mathbf{g}_{1, \varepsilon_{n}}$, it follows that $\partial_{1} \mathbf{g}_{1, \varepsilon_{n}}=\partial_{1} \mathbf{a}_{1}+\varepsilon_{n} x_{3} \partial_{11}^{2} \mathbf{a}_{\mathbf{3}}$. Therefore, $\partial_{1} \mathbf{g}_{1, \varepsilon_{n}} \in\left[L^{\infty}(\Omega)\right]^{3}$ can be written as

$$
\partial_{1} \mathbf{g}_{1, \varepsilon_{n}}=c_{1, \varepsilon_{n}} \mathbf{g}_{1, \varepsilon_{n}}+c_{2, \varepsilon_{n}} \mathbf{g}_{2, \varepsilon_{n}}+c_{3, \varepsilon_{n}} \mathbf{a}_{3},
$$

where $c_{\alpha, \varepsilon_{n}}=\partial_{1} \mathbf{g}_{1, \varepsilon_{n}} \cdot \mathbf{g}^{\alpha, \varepsilon_{n}} \rightarrow c_{\alpha}$ in $L^{\infty}(\Omega), \alpha=1,2$, and $c_{3, \varepsilon_{n}}=\partial_{1} \mathbf{g}_{1, \varepsilon_{n}} \cdot \mathbf{a}_{3} \rightarrow c_{3}$ in $L^{\infty}(\Omega)$ due to convergences (4.14), (4.18) and (4.19). Hence, $\mathbf{u}_{\varepsilon_{n}} \cdot \partial_{1} \mathbf{g}_{1, \varepsilon_{n}} \rightarrow$ $c_{1} v_{1}+c_{2} v_{2}$ in $L^{\infty}(\Omega)$. Together with the convergence $\partial_{1} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{1, \varepsilon_{n}} \rightarrow 0$ in $L^{p}(\Omega)$, we get

$$
\partial_{1}\left(\mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{1, \varepsilon_{n}}\right)=\partial_{1} v_{1, \varepsilon_{n}} \rightarrow c_{1} v_{1}+c_{2} v_{2} \quad \text { in } L^{p}(\Omega) .
$$

Similarly, we show that also the remaining terms of $D \mathbf{v}_{\varepsilon_{n}}$ converge in $L^{p}(\Omega)$.
2. We show that $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ is convergent in $\left[W^{1, p}(\Omega)\right]^{3}$.

The Korn's inequality (see Lemma 3.1) can be used in order to prove the statement of this step. We already know that $\mathbf{u}_{\varepsilon_{n}} \rightarrow 0$ in $\left[L^{2}(\Gamma)\right]^{3}$. Hence, also $\mathbf{v}_{\varepsilon_{n}} \rightarrow 0$ in $\left[L^{2}(\Gamma)\right]^{3}$. Together with the convergence of $D \mathbf{v}_{\varepsilon_{n}}$ we get

$$
\left\|\mathbf{v}_{\varepsilon_{n}}-\mathbf{v}_{\varepsilon_{m}}\right\|_{1, p} \leq \bar{C}(\Omega, p)\left(\left\|D \mathbf{v}_{\varepsilon_{n}}-D \mathbf{v}_{\varepsilon_{m}}\right\|_{p}+\left\|\mathbf{v}_{\varepsilon_{n}}-\mathbf{v}_{\varepsilon_{m}}\right\|_{2, \Gamma}\right)
$$

which implies the convergence of $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ in $\left[W^{1, p}(\Omega)\right]^{3}$.
3. To arrive at a contradiction, we prove that $\|\mathbf{v}\|_{1, p}=1$ and simultaneously $\mathbf{v}=0$.

From $\mathbf{v}_{\varepsilon_{n}} \rightarrow \mathbf{v}$ in $\left[W^{1, p}(\Omega)\right]^{3}$ and $\left\|\mathbf{v}_{\varepsilon_{n}}\right\|_{1, p}=1$, it stems that $\|\mathbf{v}\|_{1, p}=1$. According to the definition of $\mathbf{g}_{\alpha, \varepsilon_{n}}, \alpha=1,2$, we know that $\partial_{3} \mathbf{g}_{\alpha, \varepsilon_{n}}=\varepsilon_{n} \partial_{\alpha} \mathbf{a}_{3}$. We can write

$$
\partial_{1} \mathbf{u}_{\varepsilon_{n}} \cdot \varepsilon_{n} \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{1, \varepsilon_{n}}=\partial_{1} v_{3, \varepsilon_{n}}+\partial_{3} v_{1, \varepsilon_{n}}-2 \varepsilon_{n} \mathbf{u}_{\varepsilon_{n}} \cdot \partial_{1} \mathbf{a}_{3}
$$

It holds that $\varepsilon_{n} \mathbf{u}_{\varepsilon_{n}} \cdot \partial_{1} \mathbf{a}_{3}=\varepsilon_{n}\left(d_{1, \varepsilon_{n}} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{1, \varepsilon_{n}}+d_{2, \varepsilon_{n}} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{2, \varepsilon_{n}}\right) \rightarrow 0$ in $L^{\infty}(\Omega)$, where $d_{\alpha, \varepsilon_{n}}=\partial_{1} \mathbf{a}_{3} \cdot \mathbf{g}^{\alpha, \varepsilon_{n}} \rightarrow d_{\alpha}$ in $L^{\infty}(\Omega), \alpha=1,2$, due to convergences (4.18), (4.19) and the second step of this proof.

Due to $\partial_{1} \mathbf{u}_{\varepsilon_{n}} \cdot \varepsilon_{n} \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{g}_{1, \varepsilon_{n}} \rightarrow 0$ and $\varepsilon_{n} \mathbf{u}_{\varepsilon_{n}} \cdot \partial_{1} \mathbf{a}_{3} \rightarrow 0$ in $L^{p}(\Omega)$, also $\partial_{1} v_{3, \varepsilon_{n}}+\partial_{3} v_{1, \varepsilon_{n}} \rightarrow 0$ in $L^{p}(\Omega)$. In addition,

$$
\int_{\Omega} \partial_{1} v_{3, \varepsilon_{n}} \varphi \mathrm{~d} x=-\int_{\Omega} \varepsilon_{n}\left(\mathbf{u}_{\varepsilon_{n}} \cdot \mathbf{a}_{3}\right) \partial_{1} \varphi \mathrm{~d} x \rightarrow 0
$$

where $\varphi \in \mathcal{D}(\Omega)$. Hence, both $\partial_{1} v_{3, \varepsilon_{n}} \rightarrow 0$ and $\partial_{3} v_{1, \varepsilon_{n}} \rightarrow 0$ in $\mathcal{D}^{*}(\Omega)$. In addition with respect to the results of the second step of this proof, we have $\partial_{1} v_{3, \varepsilon_{n}} \rightarrow 0$ and $\partial_{3} v_{1, \varepsilon_{n}} \rightarrow 0$ in $L^{p}(\Omega)$. Therefore, $\partial_{3} v_{1}=0$ almost everywhere. Similarly, we can show that $\partial_{3} v_{2}=0$ almost everywhere. However, relation (4.33) gives us $v_{i}\left(x_{1}, x_{2}, 0\right)=0, i=1,2$, for all $\left(x_{1}, x_{2}\right) \in S$, which together with $\partial_{3} v_{i}=0$ gives us $v_{i}=0$ in Ω.

Let us remind that in the first part of this proof, we already showed that $v_{3}=0$. To sum it up, $\mathbf{v}=0$ in Ω and we arrive at a contradiction.

4.4.2 Boundedness and weak limits

First, we make prior estimates. Equation (4.25) implies the conservation of mass, i.e.

$$
\int_{\Omega} \rho_{\varepsilon}(t) \sqrt{d_{\varepsilon}} \mathrm{d} x=\int_{\Omega} \rho_{0, \varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x, \quad \forall t \in(0, T) .
$$

Therefore due to assumptions of Theorem 4.3 (see section 4.5) on $\overline{\mathbf{f}}_{\varepsilon}$, the first integral on the right-hand side of the energy equality (4.29) can be estimated as
follows

$$
\begin{aligned}
\left|\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \overline{\mathbf{f}}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} s\right| & \leq \int_{0}^{t}\left\|\mathbf{v}_{\varepsilon}(s)\right\|_{\infty}\left\|\overline{\mathbf{f}}_{\varepsilon}(s)\right\|_{\infty} \int_{\Omega} \rho_{\varepsilon}(s) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} s \\
& \leq C\left(\rho_{0, \varepsilon}, \overline{\mathbf{f}}_{\varepsilon}\right) \int_{0}^{t}\left\|\mathbf{v}_{\varepsilon}(s)\right\|_{1, p} \mathrm{~d} s
\end{aligned}
$$

In view of the Young's inequality, property (1.3), inequality (4.32) and estimate (4.23), we arrive at

$$
\begin{align*}
\left|\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \overline{\mathbf{f}}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \mathrm{d} x \mathrm{~d} s\right| \leq & C\left(C_{1} \int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s\right. \\
& \left.+C_{1} \int_{0}^{t} \int_{S \times\{0\}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} S \mathrm{~d} s+C_{2}\left(C_{1}\right)\right) \tag{4.34}
\end{align*}
$$

where $C_{1}>0$ can be made arbitrarily small.
Due to (1.3) and (4.34), we obtain from (4.29) the boundedness

$$
\begin{align*}
\left\{\sqrt{\rho_{\varepsilon}}\left|\mathbf{u}_{\varepsilon}\right|\right\}_{\varepsilon \in(0,1)} & \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{4.35}\\
\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)} & \text { in } L^{\infty}\left(0, T ; L_{\Phi_{1}}(\Omega)\right), \tag{4.36}\\
\left\{\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right\}_{\varepsilon \in(0,1)} & \text { in }\left[\tilde{L}_{M}(\Omega \times(0, T))\right]^{9} \tag{4.37}\\
\left\{\mathbf{v}_{\varepsilon}\right\}_{\varepsilon \in(0,1)} & \text { in } L^{p}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{3}\right) \cap L^{2}\left(0, T ;\left[L^{2}(\partial \Omega)\right]^{3}\right) \tag{4.38}
\end{align*}
$$

for any $p>3$. From (4.38), we get the boundedness

$$
\begin{equation*}
\left\{\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right\}_{\varepsilon \in(0,1)} \text { in } L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right), \alpha=1,2 . \tag{4.39}
\end{equation*}
$$

However, we do not have any information on the boundedness of $\left\{\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right\}_{\varepsilon \in(0,1)}$ yet. Therefore, we prove that

$$
\begin{equation*}
\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3} \rightarrow 0, \quad \text { in } L_{M}(\Omega \times(0, T)) . \tag{4.40}
\end{equation*}
$$

Due to (4.37), we have the boundedness of $\varepsilon^{-1} \partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}$ in $\tilde{L}_{M}(\Omega \times(0, T))$. It means that $\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}=\partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \rightarrow 0$. In addition, it holds that

$$
\left|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\left(x_{1}, x_{2}, x_{3}\right)-\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\left(x_{1}, x_{2}, 0\right)\right|=\left|\int_{0}^{x_{3}} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\left(x_{1}, x_{2}, y\right) \mathrm{d} y\right| .
$$

According to the boundary conditions, we have

$$
\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\left(x_{1}, x_{2}, 0\right)=\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{n}\right)\left(x_{1}, x_{2}, 0\right)=0
$$

Thus,

$$
\left|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right| \leq \int_{0}^{1}\left|\partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right| \mathrm{d} x_{3}
$$

Multiplying this inequality by ε^{-1} and applying norm $\|\cdot\|_{L_{M}(\Omega \times(0, T))}$ lead to

$$
\begin{align*}
& \left\|\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))} \leq\left\|\int_{0}^{1} \varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \mathrm{d} x_{3}\right\|_{L_{M}(\Omega \times(0, T))}= \\
& =\sup _{\psi_{1}} \int_{0}^{T} \int_{\Omega}\left|\int_{0}^{1} \varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \mathrm{d} x_{3}\right|\left|\psi_{1}\right| \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} y_{3} \mathrm{~d} t \leq \\
& \leq \sup _{\psi_{1}} \int_{0}^{T} \int_{\Omega} \int_{0}^{1}\left|\varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right| \mathrm{d} x_{3}\left|\psi_{1}\right| \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} y_{3} \mathrm{~d} t= \\
& =\sup _{\psi_{1}} \int_{0}^{1} \int_{0}^{T} \int_{\Omega}\left|\varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \| \psi_{1}\right| \mathrm{d} x \mathrm{~d} t \mathrm{~d} y_{3} \tag{4.41}
\end{align*}
$$

where $\psi_{1}=\psi_{1}\left(x_{1}, x_{2}, y_{3}\right) \in \tilde{L}_{N}(\Omega \times(0, T))$ satisfies

$$
\int_{0}^{T} \int_{\Omega} N\left(\left|\psi_{1}\right|\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} y_{3} \mathrm{~d} t \leq 1
$$

Next, we apply Hölder's inequality to the last term in (4.41). It turns out that

$$
\begin{aligned}
& \left\|\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))} \leq \\
& \leq\left\|\varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))} \sup _{\psi_{1}} \int_{0}^{1}\left\|\psi_{1}\right\|_{L_{N}(\Omega \times(0, T))} \mathrm{d} y_{3} \leq \\
& \leq\left\|\varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))} \sup _{\psi_{1}} \int_{0}^{1}\left(\int_{0}^{T} \int_{\Omega} N\left(\left|\psi_{1}\right|\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} y_{3} \mathrm{~d} t+1\right) \mathrm{d} x_{3} \leq \\
& \leq 2\left\|\varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))} \leq C_{1}\left\|\left[\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right]_{33}\right\|_{L_{M}(\Omega \times(0, T))} \leq \\
& \leq C_{1} \int_{0}^{T} \int_{\Omega} M\left(\left|\left[\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right]_{33}\right|\right) \mathrm{d} x \mathrm{~d} t+C_{1} .
\end{aligned}
$$

Hence, we arrive at the boundedness of sequence

$$
\begin{equation*}
\left\{\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\}_{\varepsilon \in(0,1)} \text { in } L_{M}(\Omega \times(0, T)) \tag{4.42}
\end{equation*}
$$

Therefore, the convergence (4.40) holds true.
The boundedness of $\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ in $L^{\infty}\left(0, T ; L_{\Phi_{1}}(\Omega)\right)$ can be extended to the space $L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right)$. We remind that $\gamma>3$ (see Theorem 4.3). We proceed in the following way. First, we test the equation (4.27) by function $\varphi=\varphi(t) \in$ $\mathcal{C}_{0}^{\infty}(0, T)$ with $b(z)=\Phi_{\gamma}(z)$. We arrive at

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \varphi^{\prime}(t)+\left[\left(\Phi_{\gamma}\left(\rho_{\varepsilon}\right)-\rho_{\varepsilon} \Phi_{\gamma}^{\prime}\left(\rho_{\varepsilon}\right)\right) \nabla \mathbf{u}_{\varepsilon}: R_{\varepsilon} E_{\varepsilon}\right] \varphi(t) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=0 \tag{4.43}
\end{equation*}
$$

Function $\Phi_{\gamma}(z)-z \Phi_{\gamma}^{\prime}(z)$ behaves assymptotically as $\Phi_{\gamma-1}(z)$. Furthermore, there exists a positive constant C such that $\Phi_{1}\left(\Phi_{\gamma-1}(z)\right) \leq C\left(\Phi_{\gamma}(z)+1\right)$ for $z \geq 0$ [26]. Due to equivalence of Young functions M and Ψ_{1}, relations (1.3), (4.37) and the Young's inequality, we deduce the estimate

$$
\begin{align*}
& \left|\int_{0}^{T} \int_{\Omega}\left[\left(\Phi_{\gamma}\left(\rho_{\varepsilon}\right)-\rho_{\varepsilon} \Phi_{\gamma}^{\prime}\left(\rho_{\varepsilon}\right)\right) \nabla \mathbf{u}_{\varepsilon}: R_{\varepsilon} E_{\varepsilon}\right] \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right| \tag{4.44}\\
& \leq C(T)\left(\int_{0}^{T} \int_{\Omega}\left(\Phi_{\gamma}\left(\rho_{\varepsilon}\right)+P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t+1\right)
\end{align*}
$$

where $C(T)>0$. With respect to (4.43), (4.44), (4.80) and the Gronwall's lemma, we obtain the boundedness of

$$
\begin{equation*}
\left\{\rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)} \text { in } L^{\infty}\left(0, T ; \tilde{L}_{\Phi_{\gamma}}(\Omega)\right) \tag{4.45}
\end{equation*}
$$

We focus on the boundedness of $\left\{\partial_{t} \rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ in the next step. Let us test the equation (4.25) by function $\varphi(x, t)=\varphi_{1}(t) \psi(x)$, where $\varphi_{1} \in L^{p^{\prime}}(0, T), 1 / p+$
$1 / p^{\prime}=1, p>3$, and $\psi \in\left[W^{1} L_{\Psi_{\gamma-1}}(\Omega)\right]^{3}, \gamma>3$. We can write

$$
\begin{align*}
& \left|\int_{0}^{T} \varphi_{1}^{\prime} \int_{\Omega} \rho_{\varepsilon} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right|=\left|\int_{0}^{T} \varphi_{1} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon}^{\mathrm{T}} R_{\varepsilon} E_{\varepsilon} \nabla \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right|= \\
& =\mid \int_{0}^{T} \varphi_{1} \int_{\Omega} \rho_{\varepsilon}\left(\left[\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}+\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}^{2, \varepsilon}\right] \cdot\left(\mathbf{g}^{1, \varepsilon}, \mathbf{g}^{2, \varepsilon}\right) \hat{\nabla} \psi+\right. \\
& \left.+\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \partial_{3} \psi\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t \mid \tag{4.46}
\end{align*}
$$

where $\hat{\nabla} \psi=\left(\partial_{1} \psi, \partial_{2} \psi\right)^{\mathrm{T}}$. It is sufficient to estimate only the last term on the right-hand side of (4.46), because it is "the worst term". It holds that

$$
\begin{aligned}
& \left|\int_{0}^{T} \int_{\Omega} \varphi_{1} \rho_{\varepsilon} \varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \partial_{3} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right| \leq \\
& \leq\left\|\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))}\left\|\rho_{\varepsilon} \varphi_{1} \partial_{3} \psi\right\|_{L_{N}(\Omega \times(0, T))}\left\|\sqrt{d_{\varepsilon}}\right\|_{\infty}
\end{aligned}
$$

where the first norm is bounded - see (4.42), and the second norm is less or equal than

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega} N\left(\rho_{\varepsilon}\left|\varphi_{1}\right|\left|\partial_{3} \psi\right|\right) \mathrm{d} x \mathrm{~d} t+1 \leq \int_{0}^{T} \int_{\Omega}\left|\varphi_{1}\right|\left|\partial_{3} \psi\right| N\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left|\partial_{3} \psi\right| N\left(\left|\varphi_{1}\right|\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left|\varphi_{1}\right| N\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x \mathrm{~d} t+C \tag{4.47}
\end{align*}
$$

Subsequently, the three integrals on the right-hand side of (4.47) can be estimated as follows:

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left|\varphi_{1}\right|\left|\partial_{3} \psi\right| N\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t \leq C_{1} \int_{0}^{T}\left|\varphi_{1}\right|\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma-1}\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq C_{1}\left\|\varphi_{1}\right\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma-1}\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x\right) \\
& \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left|\partial_{3} \psi\right| N\left(\left|\varphi_{1}\right|\right) \mathrm{d} x \mathrm{~d} t \leq C_{2} \int_{0}^{T} N\left(\left|\varphi_{1}\right|\right)\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma}\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq C_{3}\left\|N\left(\left|\varphi_{1}\right|\right)\right\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma}\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left|\varphi_{1}\right| N\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x \mathrm{~d} t \leq C_{3} \int_{0}^{T}\left|\varphi_{1}\right|\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma^{\prime}}\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq C_{3}\left\|\varphi_{1}\right\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma^{\prime}}\left(\left|\partial_{3} \psi\right|\right) \mathrm{d} x\right)
\end{aligned}
$$

where $\gamma>\gamma^{\prime} \geq \gamma-1$.
Finally, we conclude that (4.37), (4.39), (4.42) and (4.45) lead to the boundedness of

$$
\begin{equation*}
\left\{\partial_{t} \rho_{\varepsilon}\right\}_{\varepsilon \in(0,1)} \text { in } L^{p^{\prime}}\left(0, T ;\left[W^{1} L_{\Phi_{\gamma-1}}(\Omega)\right]^{*}\right) \tag{4.48}
\end{equation*}
$$

By the use of (4.14), (4.36)-(4.38), (4.45), (4.48) and theorem on compact embedding [23], we get (passing to subsequences if necessary)

$$
\begin{gather*}
\rho_{\varepsilon} \stackrel{*}{\rightharpoonup} \rho \text { in } L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right), \tag{4.49}\\
\rho_{\varepsilon} \rightarrow \rho \text { in } \mathcal{C}\left(\langle 0, T\rangle ;\left[W^{1} L_{\Phi_{\gamma}}(\Omega)\right]^{*}\right), \tag{4.50}\\
\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \stackrel{N}{\rightharpoonup} \zeta \tag{4.51}\\
\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon} \rightharpoonup \mathbf{u} \cdot \mathbf{a}_{\alpha} \text { in } L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right), \\
\alpha=1,2 . \tag{4.52}
\end{gather*}
$$

Concerning the third projection of \mathbf{u}_{ε} into the covariant basis, convergence

$$
\begin{equation*}
\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3} \rightarrow \mathbf{u} \cdot \mathbf{a}_{3}=0 \text { in } L_{M}(\Omega \times(0, T)) \tag{4.53}
\end{equation*}
$$

holds true due to (4.42).
From the definition of $\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)$, we can see that

$$
\zeta=R^{\mathrm{T}}\left(\begin{array}{ccc}
\partial_{1} \mathbf{u} \cdot \mathbf{a}_{1} & \frac{1}{2}\left(\partial_{1} \mathbf{u} \cdot \mathbf{a}_{2}+\partial_{2} \mathbf{u} \cdot \mathbf{a}_{1}\right) & \zeta_{13} \tag{4.54}\\
\cdot & \partial_{2} \mathbf{u} \cdot \mathbf{a}_{2} & \zeta_{23} \\
\operatorname{sym} & \cdot & \zeta_{33}
\end{array}\right) R
$$

We prove that the limiting function \mathbf{u} does not depend on the third spatial variable. From (4.37), we know that $\left\{\varepsilon^{-1}\left(\partial_{1} \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right)\right\}_{\varepsilon \in(0,1)}$ is bounded in $\tilde{L}_{M}(\Omega \times(0, T))$. It holds that

$$
\varepsilon^{-1}\left(\partial_{1} \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right)=\partial_{1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)+\varepsilon^{-1} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right)-2 \mathbf{u}_{\varepsilon} \cdot \partial_{1} \mathbf{a}_{3} .
$$

After multiplying this equation by ε and by a test function $\varphi \in \mathcal{D}(\Omega)$, and integrating over Ω, we get

$$
\begin{aligned}
& \int_{\Omega} \partial_{3}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \varphi \mathrm{d} x=\varepsilon \int_{\Omega} \varepsilon^{-1}\left(\partial_{1} \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \varphi \mathrm{d} x \\
& +\varepsilon \int_{\Omega}\left(2 \mathbf{u}_{\varepsilon} \cdot \partial_{1} \mathbf{a}_{3}-\partial_{1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right) \varphi \mathrm{d} x
\end{aligned}
$$

Therefore, the following estimate holds true

$$
\begin{align*}
& \left|\int_{\Omega}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \partial_{3} \varphi \mathrm{~d} x\right| \leq \varepsilon\left|\int_{\Omega} \varepsilon^{-1}\left(\partial_{1} \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}+\partial_{3} \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \varphi \mathrm{d} x\right| \\
& +\varepsilon\left|\int_{\Omega}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \partial_{1} \varphi \mathrm{~d} x\right|+2 \varepsilon\left|\int_{\Omega}\left(\mathbf{u}_{\varepsilon} \cdot \partial_{1} \mathbf{a}_{3}\right) \varphi \mathrm{d} x\right| \tag{4.55}
\end{align*}
$$

With respect to (4.37), (4.39) and (4.40), the right-hand side of inequality (4.55) tends to zero for $\varepsilon \rightarrow 0$. Finally, we have

$$
\left|\int_{\Omega}\left(\mathbf{u} \cdot \mathbf{a}_{1}\right) \partial_{3} \varphi \mathrm{~d} x\right|=0
$$

and thus $\partial_{3}\left(\mathbf{u} \cdot \mathbf{a}_{1}\right)=0$ almost everywhere.
Similarly, we can conclude that $\partial_{3}\left(\mathbf{u} \cdot \mathbf{a}_{2}\right)=0$ almost everywhere. In summary and together with (4.40), we arrive at

$$
\begin{equation*}
\partial_{3} \mathbf{u}=0, \tag{4.56}
\end{equation*}
$$

almost everywhere, which means that \mathbf{u} is independent of x_{3}.
As the next step, we pay our attention to convergences of nonlinear terms in equation (4.26). Convergences (passing to subsequences if necessary)

$$
\begin{align*}
\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right) & \stackrel{\Psi_{\gamma}}{\sim} \rho\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right), \alpha=1,2 \tag{4.57}\\
\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) & \rightarrow \rho\left(\mathbf{u} \cdot \mathbf{a}_{3}\right)=0, \text { in } L_{\Phi_{\gamma-1}}(\Omega \times(0, T)), \tag{4.58}
\end{align*}
$$

where $\gamma>3$ (see Theorem 4.3 in section 4.5), are immediate consequences of (4.40), (4.50), (4.52) and theorem concerning compact embedding [23].

We prove convergences (4.57) in two steps. The first step concerns the boundedness of $\left\{\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right)\right\}_{\varepsilon \in(0,1)}$ in $L_{\Phi_{\gamma}}(\Omega \times(0, T))$. Since it holds that

$$
\begin{aligned}
& \left\|\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right)\right\|_{L_{\Phi_{\gamma}}(\Omega \times(0, T))} \leq \int_{0}^{T} \int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t+C_{1} \leq \\
& \leq C_{2} \int_{0}^{T} \int_{\Omega}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right| \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+C_{2} \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \Phi_{\gamma}\left(\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t+C_{3} \leq \\
& \leq C_{2}\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)}\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+ \\
& +C_{4} \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right|^{2} \mathrm{~d} x \mathrm{~d} t+C_{5}
\end{aligned}
$$

where the second term on the right-hand side is less or equal than

$$
C_{6}\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right.}\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right.}^{2}
$$

we arrive at (passing to subsequences if necessary) $\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right) \xrightarrow{\Psi_{\imath}} \overline{\rho\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right)}$, $\alpha=1,2$.

In the second step, we show that $\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right)$ converges to $\rho\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right)$, for $\varepsilon \rightarrow 0$, in the sense of distributions. We begin with

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right)-\rho\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right)\right) \varphi \mathrm{d} x \mathrm{~d} t=\int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon}-\rho\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right) \varphi \mathrm{d} x \mathrm{~d} t- \\
& -\int_{0}^{T} \int_{\Omega} \rho\left(\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right)-\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right)\right) \varphi \mathrm{d} x \mathrm{~d} t \tag{4.59}
\end{align*}
$$

where $\varphi \in \mathcal{D}(\Omega \times(0, T))$. Since strong convergence (4.50) implies convergence $\rho_{\varepsilon} \rightarrow \rho$ in $C\left(\langle 0, T\rangle ;\left[W^{1, p}(\Omega)\right]^{*}\right)$ and convergences (4.52) hold, the right-hand side of (4.59) tends to zero for $\varepsilon \rightarrow 0$. This concludes the proof of convergences (4.57).

In the following, we demonstrate that also convergence (4.58) holds true. According to the Hölder's inequality, we can start with

$$
\begin{aligned}
& \left\|\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{\Phi_{\gamma-1}}(\Omega \times(0, T))}=\sup _{\varphi} \int_{0}^{T} \int_{\Omega}\left|\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \varphi\right| \mathrm{d} x \mathrm{~d} t \leq \\
& \leq\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right\|_{L_{M}(\Omega \times(0, T))} \sup _{\varphi}\left\|\rho_{\varepsilon} \varphi\right\|_{L_{N}(\Omega \times(0, T))}
\end{aligned}
$$

where the supremum is taken over all functions $\varphi \in \tilde{L}_{\Psi_{\gamma-1}}(\Omega \times(0, T))$ such that

$$
\int_{0}^{T} \int_{\Omega} \Psi_{\gamma-1}(|\varphi|) \mathrm{d} x \mathrm{~d} t \leq 1
$$

From (4.40), we know that $\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right\|_{L_{M}(\Omega \times(0, T))} \rightarrow 0$. Therefore, it is sufficient to show the boundedness of $\left\|\rho_{\varepsilon} \varphi\right\|_{L_{N}(\Omega \times(0, T))}$ for proving (4.58). The equivalence of Orlicz spaces L_{N} and $L_{\Phi_{1}}$ (see Lemma 2.30), and the Young's inequality gives us

$$
\begin{align*}
& \left\|\rho_{\varepsilon} \varphi\right\|_{L_{N}(\Omega \times(0, T))} \leq \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}|\varphi|\right) \mathrm{d} x \mathrm{~d} t+C \leq \\
& \leq \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \Phi_{1}(|\varphi|) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega}|\varphi| \Phi_{1}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+C . \tag{4.60}
\end{align*}
$$

Subsequently due to the Young's inequality, the first integral on the right-hand side of (4.60) is less or equal than

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \Psi_{\gamma}\left(\Phi_{1}(|\varphi|)\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T} \int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+C_{1} \int_{0}^{T} \int_{\Omega} \Psi_{\gamma^{\prime}}(|\varphi|) \mathrm{d} x \mathrm{~d} t+C_{2}
\end{aligned}
$$

where $\gamma>\gamma^{\prime} \geq \gamma-1$. The second integral on the right-hand side of (4.60) is less or equal than

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \Psi_{\gamma-1}(|\varphi|) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \Phi_{\gamma-1}\left(\Phi_{1}\left(\rho_{\varepsilon}\right)\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T} \int_{\Omega} \Psi_{\gamma-1}(|\varphi|) \mathrm{d} x \mathrm{~d} t+C \int_{0}^{T} \int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Hence, we conclude that convergence (4.58) holds true.

To overcome the second term on the left-hand side in equation (4.26), some sort of strong convergence of $\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right)$ is needed. We consider "the worst integrals" in (4.26) and prove their boundedness. First, we show that from (4.39),
(4.40) and (4.45) follow the boundedness of

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t \tag{4.61}
\end{equation*}
$$

for any $\varepsilon \in(0,1)$ and test function ψ such that $\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$. Let us use formulas (4.21) and (4.22), and perform the following reasoning:

$$
\begin{align*}
& \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi)=u_{i, \varepsilon} u_{j, \varepsilon}\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{l k}\left[\mathbf{r}^{k, \varepsilon}\right]_{i}\left[\mathbf{r}^{l, \varepsilon}\right]_{j}= \\
& =\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{r}^{k, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{r}^{l, \varepsilon}\right)\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{l k} \tag{4.62}
\end{align*}
$$

We remark that $\mathbf{g}_{1, \varepsilon}$ and $\mathbf{g}_{2, \varepsilon}$ determines the same plane as $\mathbf{g}^{1, \varepsilon}$ and $\mathbf{g}^{2, \varepsilon}$ (the normal vector of this plane is \mathbf{a}_{3}). Therefore, the boundedness of sequences $\left\{\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right\}_{\varepsilon \in(0,1)}$ in $L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right)$ implies the boundedness of $\left\{\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\}_{\varepsilon \in(0,1)}$ in the same space, for $\alpha=1,2$.

There are three types of terms in (4.62) and we analyze them one by one. Since $\mathbf{r}^{\alpha, \varepsilon}=\mathbf{g}^{\alpha, \varepsilon}$, for $\alpha=1,2$, and $\mathbf{r}^{3, \varepsilon}=\mathbf{a}_{3}$, we can write:
(a) $\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\beta, \varepsilon}\right)\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{\alpha \beta}, \alpha, \beta=1,2$

Let us assume that $\psi \in L^{q}\left(0, T ;\left[W^{1} L_{\Psi_{\gamma}}(\Omega)\right]^{3}\right)$, where $2 / p+1 / q=1, \gamma>3$. The estimate is performed directly as follows:

$$
\begin{aligned}
& \left|\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\beta, \varepsilon}\right)\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{\alpha \beta} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right| \leq \\
& \leq\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right)}\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)}\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\beta, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)} \\
& \|\psi\|_{L^{q}\left(0, T ;\left[W^{1} L_{\Psi_{\gamma}}(\Omega)\right]^{3}\right)}\left\|\sqrt{d_{\varepsilon}}\right\|_{\infty} .
\end{aligned}
$$

(b) $\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{\alpha 3}, \alpha=1,2$

We denote $\varepsilon^{-1} \varphi(t) \bar{\psi}(x)=\left[\bar{\omega}_{\varepsilon}(\psi(x, t))\right]_{\alpha 3}$ for convenience, where $\varphi \in L^{q}(0, T)$, $2 / p+1 / q=1$, and $\bar{\psi} \in\left[E_{\Psi_{\gamma-1}}(\Omega)\right]^{9}$. From Hölder's inequality, we get

$$
\begin{aligned}
& \left|\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right) \varepsilon^{-1} \varphi \bar{\psi} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right| \leq \\
& \leq\left\|\sqrt{d_{\varepsilon}}\right\|_{\infty}\left\|\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))}\left\|\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right) \varphi \bar{\psi}\right\|_{L_{N}(\Omega \times(0, T))}
\end{aligned}
$$

where (4.42) gives us the boundedness of $\left\|\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)\right\|_{L_{M}(\Omega \times(0, T))}$ and

$$
\begin{align*}
& \left\|\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right) \varphi \bar{\psi}\right\|_{L_{N}(\Omega \times(0, T))} \leq \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\|\varphi\| \bar{\psi}\right|\right) \mathrm{d} x \mathrm{~d} t+C_{1} \leq \\
& \leq \int_{0}^{T} \int_{\Omega}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\|\varphi\| \bar{\psi}\right| \Phi_{1}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}|\varphi \| \bar{\psi}| \Phi_{1}\left(\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right| \Phi_{1}(|\varphi||\bar{\psi}|) \mathrm{d} x \mathrm{~d} t+C_{2} \tag{4.63}
\end{align*}
$$

Further, we estimate the three integrals on the right-hand side of relation (4.63) as follows:

$$
\begin{aligned}
& \int_{0}^{T}|\varphi| \int_{\Omega}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon} \| \bar{\psi}\right| \Phi_{1}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T}|\varphi|\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega}|\bar{\psi}| \Phi_{1}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq C_{3} \int_{0}^{T}|\varphi|\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x+\int_{\Omega} \Psi_{\gamma-1}(|\bar{\psi}|) \mathrm{d} x+C_{4}\right) \mathrm{d} t \leq \\
& \leq C_{3}\left(\|\varphi\|_{L^{p^{\prime}}(0, T)}+\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)}\right)\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\right. \\
& \left.+\int_{\Omega} \Psi_{\gamma-1}(|\bar{\psi}|) \mathrm{d} x+C_{4}\right)
\end{aligned}
$$

where $1 / p+1 / p^{\prime}=1$ (and thus $\left.p^{\prime}<q\right)$,

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}|\varphi||\bar{\psi}| \Phi_{1}\left(\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right|\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T}|\varphi| \Phi_{1}\left(\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{\infty}\right)\left(\int_{\Omega} \rho_{\varepsilon}|\bar{\psi}| \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq \int_{0}^{T}|\varphi| \Phi_{1}\left(\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{\infty}\right)\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq \int_{0}^{T}|\varphi|\left(\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{\infty}^{2}+C\right)\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq\|\varphi\|_{L^{q}(0, T)}\left(\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)}^{2}+C\right)\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\right. \\
& \left.+\int_{\Omega} \Psi_{\gamma}(|\bar{\psi}|) \mathrm{d} x\right), \\
& \int_{0}^{T} \int_{\Omega}\left|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right| \rho_{\varepsilon} \Phi_{1}(|\varphi||\bar{\psi}|) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T}\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega} \rho_{\varepsilon} \Phi_{1}(|\varphi||\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq \int_{0}^{T}\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega} \rho_{\varepsilon}|\varphi| \Phi_{1}(|\bar{\psi}|)+\rho_{\varepsilon}|\bar{\psi}| \Phi_{1}(|\varphi|) \mathrm{d} x\right) \mathrm{d} t+C
\end{aligned}
$$

We conclude this part by estimating

$$
\begin{aligned}
& \int_{0}^{T}|\varphi|\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega} \rho_{\varepsilon} \Phi_{1}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq C_{1} \int_{0}^{T}|\varphi|\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x+C_{2}\right) \mathrm{d} t \leq \\
& \leq C_{1}\|\varphi\|_{L^{p^{\prime}}(0, T)}\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\right. \\
& \left.+\int_{\Omega} \Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x+C_{2}\right)
\end{aligned}
$$

with $\gamma>\gamma^{\prime} \geq \gamma-1$ and $1 / p+1 / p^{\prime}=1$, and

$$
\begin{aligned}
& \int_{0}^{T} \Phi_{1}(|\varphi|)\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega} \rho_{\varepsilon}|\bar{\psi}| \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq \int_{0}^{T}\left(|\varphi|^{2}+C\right)\left\|\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right)\right\|_{\infty}\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq\left(\|\varphi\|_{L^{q}(0, T)}^{2}\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)}+C\left\|\mathbf{u}_{\varepsilon} \cdot \mathbf{g}^{\alpha, \varepsilon}\right\|_{L^{1}\left(0, T ; L^{\infty}(\Omega)\right)}\right) \\
& \left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma}(|\bar{\psi}|) \mathrm{d} x\right),
\end{aligned}
$$

(c) $\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)^{2}\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{33}$

For convenience, let us denote $\varepsilon^{-1} \varphi(t) \bar{\psi}(x)=\left[\bar{\omega}_{\varepsilon}(\psi(x, t))\right]_{33}$, where $\varphi \in L^{q}(0, T)$, $2 / p+1 / q=1$, and $\bar{\psi} \in\left[E_{\Psi_{\gamma-2}}(\Omega)\right]^{9}$. By the use of Hölder's inequality, we get

$$
\begin{aligned}
& \left|\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)^{2} \varepsilon^{-1} \varphi \bar{\psi} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right| \leq \\
& \leq\left\|\sqrt{d_{\varepsilon}}\right\|_{\infty}\left\|\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)^{2}\right\|_{L_{\Psi_{2}}(\Omega \times(0, T))}\left\|\rho_{\varepsilon} \varphi \bar{\psi}\right\|_{L_{\Phi_{2}}(\Omega \times(0, T))}
\end{aligned}
$$

Let us remark that M and Ψ_{1} are equivalent Young functions (see Lemma 2.30), and $\Psi_{2}\left(z^{2}\right) \sim \Psi_{1}(z)$. Thus, the norm $\left\|\varepsilon^{-1}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3}\right)^{2}\right\|_{L_{\Psi_{2}}(\Omega \times(0, T))}$ tends to zero, for $\varepsilon \rightarrow 0$, due to convergence (4.40) and boundedness (4.42). We estimate the remaining norm $\left\|\rho_{\varepsilon} \varphi \bar{\psi}\right\|_{L_{\Phi_{2}}(\Omega \times(0, T))}$ in the following way:

$$
\begin{aligned}
& \left\|\rho_{\varepsilon} \varphi \bar{\psi}\right\|_{L_{\Phi_{2}}(\Omega \times(0, T))} \leq \int_{0}^{T} \int_{\Omega} \Phi_{2}\left(\rho_{\varepsilon}|\varphi \| \bar{\psi}|\right) \mathrm{d} x \mathrm{~d} t+C_{1} \leq \\
& \leq \int_{0}^{T} \int_{\Omega}|\varphi||\bar{\psi}| \Phi_{2}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \Phi_{2}(|\varphi||\bar{\psi}|) \mathrm{d} x \mathrm{~d} t+ \\
& +2 \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}\right) \Phi_{1}(|\varphi \| \bar{\psi}|) \mathrm{d} x \mathrm{~d} t+C_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}|\varphi||\bar{\psi}| \Phi_{2}\left(\rho_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq C \int_{0}^{T}|\varphi|\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma-2}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t \leq \\
& \leq C\|\varphi\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma-2}(|\bar{\psi}|) \mathrm{d} x\right), \\
& \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \Phi_{2}(|\varphi||\bar{\psi}|) \mathrm{d} x \mathrm{~d} t \leq \int_{0}^{T}|\varphi|\left(\int_{\Omega} \rho_{\varepsilon} \Phi_{2}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+ \\
& +\int_{0}^{T} \Phi_{2}(|\varphi|)\left(\int_{\Omega} \rho_{\varepsilon}|\bar{\psi}| \mathrm{d} x\right) \mathrm{d} t+2 \int_{0}^{T} \Phi_{1}(|\varphi|)\left(\int_{\Omega} \rho_{\varepsilon} \Phi_{1}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+C \leq \\
& \leq C_{1} \int_{0}^{T}|\varphi|\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+ \\
& +\int_{0}^{T} \Phi_{2}(|\varphi|)\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+ \\
& +C_{2} \int_{0}^{T} \Phi_{1}(|\varphi|)\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+C \leq \\
& \leq C_{1}\|\varphi\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x\right)+ \\
& +\left\|\Phi_{2}(|\varphi|)\right\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma}(|\bar{\psi}|) \mathrm{d} x\right)+ \\
& +C_{2}\left\|\Phi_{1}(|\varphi|)\right\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x\right)+C,
\end{aligned}
$$

with $\gamma>\gamma^{\prime} \geq \gamma-2$, and

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}\right) \Phi_{1}(|\varphi||\bar{\psi}|) \mathrm{d} x \mathrm{~d} t \leq \\
& \leq \int_{0}^{T}|\varphi|\left(\int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}\right) \Phi_{1}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+ \\
& +\int_{0}^{T} \Phi_{1}(|\varphi|)\left(\int_{\Omega} \Phi_{1}\left(\rho_{\varepsilon}\right)|\bar{\psi}| \mathrm{d} x\right) \mathrm{d} t+C \leq \\
& \leq C_{1} \int_{0}^{T}|\varphi|\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+ \\
& +C_{2} \int_{0}^{T} \Phi_{1}(|\varphi|)\left(\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right)+\Psi_{\gamma-1}(|\bar{\psi}|) \mathrm{d} x\right) \mathrm{d} t+C \leq \\
& \leq C_{1}\|\varphi\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma^{\prime}}(|\bar{\psi}|) \mathrm{d} x\right)+ \\
& +C_{2}\left\|\Phi_{1}(|\varphi|)\right\|_{L^{1}(0, T)}\left(\left\|\int_{\Omega} \Phi_{\gamma}\left(\rho_{\varepsilon}\right) \mathrm{d} x\right\|_{L^{\infty}(0, T)}+\int_{\Omega} \Psi_{\gamma-1}(|\bar{\psi}|) \mathrm{d} x\right)+C
\end{aligned}
$$

where $\gamma-1>\gamma^{\prime} \geq \gamma-2$.

We conclude that the integral (4.61) is bounded for any $\varepsilon \in(0,1)$ and ψ such that $\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0, \varphi \in L^{q}(0, T)$ and $\bar{\psi} \in\left[E_{\Psi_{\gamma-2}}(\Omega)\right]^{9}$. Subsequently, we show that also

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t \tag{4.64}
\end{equation*}
$$

is bounded for any $\varepsilon \in(0,1)$ and $\psi(x, t)=\varphi(t) \bar{\psi}(x),\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$, where $\varphi \in E_{\Psi_{1 / \alpha}}(0, T), \alpha>2$, and $\bar{\psi} \in\left[W^{1} E_{\Psi_{1 / 2}}(\Omega)\right]^{3}, \partial_{3} \bar{\psi}=0$. We remark that

$$
\omega_{\varepsilon}(\bar{\psi})=R_{\varepsilon}^{\mathrm{T}}\left(\begin{array}{ccc}
\partial_{1} \bar{\psi} \cdot \mathbf{g}_{1, \varepsilon} & \frac{1}{2}\left(\partial_{1} \bar{\psi} \cdot \mathbf{g}_{2, \varepsilon}+\partial_{2} \bar{\psi} \cdot \mathbf{g}_{1, \varepsilon}\right) & \frac{1}{2}\left(\partial_{1} \bar{\psi} \cdot \mathbf{a}_{3}\right) \\
\cdot & \partial_{2} \bar{\psi} \cdot \mathbf{g}_{2, \varepsilon} & \frac{1}{2}\left(\partial_{2} \bar{\psi} \cdot \mathbf{a}_{3}\right) \\
\operatorname{sym} & \cdot & 0
\end{array}\right) R_{\varepsilon}
$$

which is bounded for $\varepsilon \rightarrow 0$ in $\left[E_{\Psi_{1 / 2}}(\Omega)\right]^{9}$. Due to Young's inequality, it holds
that

$$
\begin{align*}
& \left|\int_{0}^{T} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\bar{\psi}) \varphi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right| \leq \\
& \leq\left\|\sqrt{d_{\varepsilon}}\right\|_{\infty}\left(|\Omega| \int_{0}^{T} \Psi_{1 / \alpha}(|\varphi|) \mathrm{d} t+\right. \\
& \left.\int_{0}^{T} \int_{\Omega} \Phi_{1 / \alpha}\left(P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\left|\omega_{\varepsilon}(\bar{\psi})\right|\right) \mathrm{d} x \mathrm{~d} t\right) \tag{4.65}
\end{align*}
$$

where $\alpha>2$. For simplicity, we denote $w_{\varepsilon}=P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|$. It follows from Jensen's inequality and estimate (3.46) that $w_{\varepsilon} \in L_{\Phi_{1}}(\Omega \times(0, T))$ implies $w_{\varepsilon} \in L_{\Phi_{(\alpha-1) / \alpha}}\left(0, T ; L_{\Phi_{1 / \alpha}}(\Omega)\right)$. Therefore, the second term on the right-hand side of (4.65) is less or equal than

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left|\omega_{\varepsilon}(\bar{\psi})\right| \Phi_{1 / \alpha}\left(w_{\varepsilon}\right)+w_{\varepsilon} \Phi_{1 / \alpha}\left(\left|\omega_{\varepsilon}(\bar{\psi})\right|\right) \mathrm{d} x \mathrm{~d} t+C_{1} \leq \\
& \leq \int_{0}^{T} \int_{\Omega} \Phi_{(\alpha-1) / \alpha}\left(\Phi_{1 / \alpha}\left(w_{\varepsilon}\right)\right)+\Psi_{(\alpha-1) / \alpha}\left(\left|\omega_{\varepsilon}(\bar{\psi})\right|\right)+ \\
& +\Phi_{1}\left(w_{\varepsilon}\right)+\Psi_{1}\left(\Phi_{1 / \alpha}\left(\left|\omega_{\varepsilon}(\bar{\psi})\right|\right)\right) \mathrm{d} x \mathrm{~d} t+C_{1} \leq \\
& \leq 3 \int_{0}^{T} \int_{\Omega} \Phi_{1}\left(P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \mathrm{d} x \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{\Omega} \Psi_{(\alpha-1) / \alpha}\left(\left|\omega_{\varepsilon}(\bar{\psi})\right|\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{T} \int_{\Omega} \Psi_{1 / 2}\left(\left|\omega_{\varepsilon}(\bar{\psi})\right|\right) \mathrm{d} x \mathrm{~d} t+C_{2}
\end{aligned}
$$

where $\alpha>2$. Due to property (1.6), we conclude that integral (4.64) is bounded.
Terms (4.61) and (4.64) represent "the worst integrals" in (4.26). Thus, we omit the estimates of the others and take $\psi(x, t)=\varphi(t) \bar{\psi}(x)$ satisfying $\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$, where $\varphi \in E_{\Psi_{1 / \alpha}}(0, T), \alpha>2$, and $\bar{\psi} \in\left[W^{1} E_{\Psi_{1 / 2}}(\Omega)\right]^{3}$, $\partial_{3} \bar{\psi}=0$, as a test function.

By the use of estimates (4.61) and (4.64), we demonstrate how to perform a limit passage in the second term on the left-hand side of equation (4.26). Let us test the equation (4.26) by function $\psi(x, t)=\bar{\psi}(x) \varphi(t)$, where $\varphi \in \mathcal{C}_{0}^{\infty}(0, T)$ and
$\bar{\psi} \in\left[W^{1} E_{\Psi_{1 / 2}}(\Omega)\right]^{3}, \partial_{3} \bar{\psi}=0, \bar{\psi} \cdot \mathbf{a}^{2}=0, \bar{\psi} \cdot \mathbf{a}_{3}=0\left(\right.$ to control term $\left.\nabla \bar{\psi}: R_{\varepsilon} E_{\varepsilon}\right)$ and $\left.\bar{\psi} \cdot \mathbf{n}\right|_{\partial \Omega}=0$. Since

$$
\bar{\psi}=\left(\bar{\psi} \cdot \mathbf{a}^{1}\right) \mathbf{a}_{1}+\left(\bar{\psi} \cdot \mathbf{a}^{2}\right) \mathbf{a}_{2}+\left(\bar{\psi} \cdot \mathbf{a}_{3}\right) \mathbf{a}_{3}=\left(\bar{\psi} \cdot \mathbf{a}^{1}\right) \mathbf{a}_{1},
$$

we get

$$
\begin{align*}
& \left|\int_{0}^{T} \varphi^{\prime} \int_{\Omega} \rho_{\varepsilon}\left(\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}+\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}^{2, \varepsilon}\right) \cdot \bar{\psi} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t\right| \leq \\
& \leq \int_{0}^{T}|\varphi| \int_{\Omega}\left(\left|\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\bar{\psi})\right|+\left|\rho_{\varepsilon} \nabla \bar{\psi}: R_{\varepsilon} E_{\varepsilon}\right|+\right. \\
& \left.+\left|P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\bar{\psi})\right|+\left|\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \bar{\psi}\right|\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t+ \\
& +q \int_{0}^{T}|\varphi| \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon} \cdot \bar{\psi}\right|\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t+ \\
& \frac{h(\varepsilon)}{\varepsilon} \int_{0}^{T}|\varphi| \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon} \cdot \bar{\psi}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t \tag{4.66}
\end{align*}
$$

where

$$
\begin{aligned}
& \rho_{\varepsilon}\left(\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}+\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}^{2, \varepsilon}\right) \cdot \bar{\psi}= \\
& \rho_{\varepsilon}\left(\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}+\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}^{2, \varepsilon}\right) \cdot\left(\left(\bar{\psi} \cdot \mathbf{a}^{1}\right) \mathbf{g}_{1, \varepsilon}-\left(\bar{\psi} \cdot \mathbf{a}^{1}\right) \varepsilon x_{3} \partial_{1} \mathbf{a}_{3}\right)= \\
& =\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon} \cdot \bar{\psi}-\varepsilon \rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right)\left(x_{3} \mathbf{g}^{2, \varepsilon} \cdot \partial_{1} \mathbf{a}_{3}\right) \mathbf{a}^{1} \cdot \bar{\psi}= \\
& =\left(\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}-\varepsilon \mathbf{z}_{1, \varepsilon}\right) \cdot \bar{\psi},
\end{aligned}
$$

with $\mathbf{z}_{1, \varepsilon}=\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right)\left(x_{3} \mathbf{g}^{2, \varepsilon} \cdot \partial_{1} \mathbf{a}_{3}\right) \mathbf{a}^{1}$. The boundedness of $\left\{\mathbf{z}_{1, \varepsilon}\right\}_{\varepsilon \in(0,1)}$ in $L^{p}\left(0, T ;\left[L_{\Phi_{\gamma}}(\Omega)\right]^{3}\right)$ follows from convergences (4.14), (4.18) and (4.19), and from boundedness (4.38) and (4.45). Therefore,

$$
\begin{equation*}
\varepsilon \mathbf{z}_{1, \varepsilon} \rightarrow 0 \text { in } L^{p}\left(0, T ;\left[L_{\Phi_{\gamma}}(\Omega)\right]^{3}\right) \tag{4.67}
\end{equation*}
$$

and thus also in $\left[L_{\Phi_{\gamma}}(\Omega \times(0, T))\right]^{3}$.
Considering the density of $\mathcal{C}_{0}^{\infty}(0, T)$ in $E_{\Psi_{1 / 2}}(0, T)$, embedding $L_{\Psi_{1 / \alpha}}(0, T)$ $\hookrightarrow E_{\Psi_{1 / 2}}(0, T) \subset \tilde{L}_{\Psi_{1 / 2}}(0, T), \alpha>2$, and the boundedness of all terms on the
right-hand side of the inequality (4.66) - see (4.61) and (4.64), we deduce the boundedness of

$$
\begin{align*}
& \left\{\partial_{t} \int_{0}^{1}\left(\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}-\varepsilon \mathbf{z}_{1, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3}\right\}_{\varepsilon \in(0,1)} \\
& \text { in } L_{\Phi_{1 / \alpha}}\left(0, T ;\left(\left[W^{1} L_{\Psi_{1 / 2}}(S)\right]^{*}\right)^{3}\right), \alpha>2 \tag{4.68}
\end{align*}
$$

Similarly, testing the equation (4.26) by function $\psi(x, t)=\bar{\psi}(x) \varphi(t)$, where $\varphi \in \mathcal{C}_{0}^{\infty}(0, T)$ and $\bar{\psi} \in\left[W^{1} E_{\Psi_{1 / 2}}(\Omega)\right]^{3}, \partial_{3} \bar{\psi}=0, \bar{\psi} \cdot \mathbf{a}^{1}=0, \bar{\psi} \cdot \mathbf{a}_{3}=0$ and $\left.\bar{\psi} \cdot \mathbf{n}\right|_{\partial \Omega}=0$, leads to the boundedness of

$$
\begin{align*}
& \left\{\partial_{t} \int_{0}^{1}\left(\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}^{2, \varepsilon}-\varepsilon \mathbf{z}_{2, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3}\right\}_{\varepsilon \in(0,1)} \\
& \text { in } L_{\Phi_{1 / \alpha}}\left(0, T ;\left(\left[W^{1} L_{\Psi_{1 / 2}}(S)\right]^{*}\right)^{3}\right), \alpha>2 \tag{4.69}
\end{align*}
$$

where $\mathbf{z}_{2, \varepsilon}=\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right)\left(x_{3} \mathbf{g}^{1, \varepsilon} \cdot \partial_{2} \mathbf{a}_{3}\right) \mathbf{a}^{2}$.
Similarly as convergence (4.50), we get (passing to subsequences if necessary)

$$
\begin{align*}
& \int_{0}^{1}\left(\rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right) \mathbf{g}^{\alpha, \varepsilon}-\varepsilon \mathbf{z}_{\alpha, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \int_{0}^{1} \rho\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right) \mathbf{a}^{\alpha} \sqrt{d} \mathrm{~d} x_{3} \\
& \text { in } \mathcal{C}\left(\langle 0, T\rangle ;\left(\left[W^{1} L_{\Psi_{1}}(S)\right]^{*}\right)^{3}\right), \quad \alpha=1,2 \tag{4.70}
\end{align*}
$$

by the use of (4.14), (4.18), (4.19), (4.57), (4.68), (4.69) and theorem concerning compact embedding [23].

In order to perform a limit passage in the second term on the left-hand side of equation (4.26), we prove the following lemma.

Lemma 4.2. Let us denote $\mathbf{v}_{\varepsilon}=\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}\right)$. Assume that $\left\{\mathbf{u}_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ satisfies condition (4.37) and $\left\{\mathbf{v}_{\varepsilon}\right\}_{\varepsilon \in(0,1)}$ satisfies condition (4.38). Then for any $p>3$ (passing to a subsequence if necessary), it holds that

$$
\begin{equation*}
\left\|v_{\alpha, \varepsilon}-\int_{0}^{1} v_{\alpha, \varepsilon} \mathrm{d} x_{3}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)} \rightarrow 0, \text { for } \varepsilon \rightarrow 0 \text { and } \alpha=1,2 \tag{4.71}
\end{equation*}
$$

Proof: We prove the assertion by a contradiction. Let us suppose the existence of fixed $p>3$ with a positive constant c_{1} and $\left\{\varepsilon_{n}\right\}_{n=1}^{+\infty}$ tending to zero such that

$$
\begin{equation*}
\left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)} \geq c_{1}>0, \forall n \in \mathbb{N} . \tag{4.72}
\end{equation*}
$$

Obviously, there exist a nonempty set $I_{\varepsilon_{n}, c_{1}} \subset(0, T)$ and fixed $\delta>0$ sufficiently small such that

$$
\begin{equation*}
\left\|v_{\alpha, \varepsilon_{n}}(t)-\int_{0}^{1} v_{\alpha, \varepsilon_{n}}(t) \mathrm{d} x_{3}\right\|_{\infty} \geq \frac{c_{1}}{(1+\delta) T^{1 / p}}, \text { for almost all } t \in I_{\varepsilon_{n}, c_{1}} . \tag{4.73}
\end{equation*}
$$

We will arrive at a contradiction in several steps. At the beginning of each step, we emphasize a statement which is proven within a particular step. Finally, the statements are used to demonstrate that there is a contradiction.
(i) There exists a positive constant $c_{2}=c_{2}\left(c_{1}\right)$ such that $\left|I_{\varepsilon_{n}, c_{1}}\right| \geq c_{2}>0$, for all $n \in \mathbb{N}$.

If not, then (passing to a subsequence if necessary) $\left|I_{\varepsilon_{n}, c_{1}}\right| \rightarrow 0$ for ε_{n} tending to zero. Let us consider $q \in \mathbb{R}$ such that $q>p$. Due to the boundedness of $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ in $L^{q}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{3}\right)$, for any $q>p$, the following inequality contradicts the relation (4.72):

$$
\begin{aligned}
& \left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{L^{p}\left(0, T ; L^{\infty}(\Omega)\right)}= \\
& =\sqrt[p]{\int_{(0, T) \backslash I_{\varepsilon_{n}, c_{1}}}\left\|v_{\alpha, \varepsilon_{n}}(t)-\int_{0}^{1} v_{\alpha, \varepsilon_{n}}(t) \mathrm{d} x_{3}\right\|_{\infty}^{p} \mathrm{~d} t+\int_{I_{\varepsilon_{n}, c_{1}}}\|\cdot\|_{\infty}^{p} \mathrm{~d} t}< \\
& <\frac{c_{1}}{1+\delta}+\left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{L^{q}\left(0, T ; L^{\infty}(\Omega)\right)}^{p}\left|I_{\varepsilon_{n}, c_{1}}\right|^{\frac{q-p}{q}} \xrightarrow{n \rightarrow+\infty} \frac{c_{1}}{1+\delta}<c_{1} .
\end{aligned}
$$

(ii) We show that there exist a nonempty set $J_{\varepsilon_{n}, c_{3}} \subset(0, T)$, for $c_{3}>0$ large enough, such that the following inequality holds

$$
\begin{equation*}
\left\|v_{\alpha, \varepsilon_{n}}(t)\right\|_{2, \partial \Omega}+\left\|\mathrm{D}_{12} \mathbf{v}_{\varepsilon_{n}}(t)\right\|_{p} \leq c_{3}, \text { for almost all } t \in J_{\varepsilon_{n}, c_{3}}, \tag{4.74}
\end{equation*}
$$

where $\mathrm{D}_{12} \mathbf{v}_{\varepsilon_{n}}$ is 2×2 submatrix of $\mathrm{D} \mathbf{v}_{\varepsilon_{n}}$ constituted of the first two rows and columns.

If not, then without the loss of generality there exists a sequence $\left\{c_{3}(n, t)\right\}_{n=1}^{+\infty}$, $c_{3}(n, t) \rightarrow+\infty$, for almost all $t \in(0, T)$, such that

$$
\left\|v_{\alpha, \varepsilon_{n}}(t)\right\|_{2, \partial \Omega}+\left\|\mathrm{D}_{12} \mathbf{v}_{\varepsilon_{n}}(t)\right\|_{p}>c_{3}(n, t)
$$

which would be a contradiction with the boundedness of $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ - see condition (4.38).
(iii) It holds that $\sup _{n \in \mathbb{N}}\left|(0, T) \backslash J_{\varepsilon_{n}, c_{3}}\right| \rightarrow 0$ for $c_{3} \rightarrow+\infty$.

If not, then there exist a sequence $\left\{c_{3}(m)\right\}_{m=1}^{+\infty}, c_{3}(m) \rightarrow+\infty$, and a positive constant K_{1} such that $\sup _{n \in \mathbb{N}}\left|(0, T) \backslash J_{\varepsilon_{n}, c_{3}(m)}\right| \geq K_{1}>0, \forall c_{3}(m) \geq c_{3}\left(m_{0}\right)$, $m_{0} \in \mathbb{N}$. It implies (passing to a subsequence of $\left\{\varepsilon_{n}\right\}_{n=1}^{+\infty}$ if necessary)

$$
\left\|v_{\alpha, \varepsilon_{n}}(t)\right\|_{2, \partial \Omega}+\left\|\mathrm{D}_{12} \mathbf{v}_{\varepsilon_{n}}(t)\right\|_{p}>c_{3}(m), \text { for almost all } t \in(0, T) \backslash J_{\varepsilon_{n}, c_{3}(m)},
$$

where $n=n(m)$, and we would get a contradiction with the boundedness of sequence $\left\{\mathbf{v}_{\varepsilon_{n}}\right\}_{n=1}^{+\infty}$ - see condition (4.38).
(iv) For convenience, we simplify the notation $v_{\alpha, \varepsilon_{n}}=v_{\alpha, \varepsilon_{n}}(t) \in W^{1, p}(\Omega)$. We justify that

$$
\begin{equation*}
\left\|\mathrm{D}_{3} \mathbf{v}_{\varepsilon_{n}}\right\|_{p}+\left\|v_{3, \varepsilon_{n}}\right\|_{2, \partial \Omega} \rightarrow 0, \text { for almost all } t \in(0, T) \tag{4.75}
\end{equation*}
$$

where

$$
\mathrm{D}_{3} \mathbf{v}_{\varepsilon_{n}}=\left(\begin{array}{ccc}
0 & 0 & \frac{1}{2}\left(\partial_{1} v_{3, \varepsilon_{n}}+\partial_{3} v_{1, \varepsilon_{n}}\right) \\
\cdot & 0 & \frac{1}{2}\left(\partial_{2} v_{3, \varepsilon_{n}}+\partial_{3} v_{2, \varepsilon_{n}}\right) \\
\text { sym } & \cdot & \partial_{3} v_{3, \varepsilon_{n}}
\end{array}\right)
$$

Comparing $\mathrm{D}_{3} \mathbf{v}_{\varepsilon_{n}}$ and term (4.22), the statement of this step follows from definitions of $\mathbf{v}_{\varepsilon_{n}}$ and $\mathrm{D}_{3} \mathbf{v}_{\varepsilon_{n}}$, and boundedness (4.37), (4.38) and (4.42).
(v) According to part (iii), $\sup _{n \in \mathbb{N}}\left|I_{\varepsilon_{n}, c_{1}} \backslash J_{\varepsilon_{n}, c_{3}}\right|$ tends to zero for any c_{1} and c_{3} approaching $+\infty$ as $I_{\varepsilon_{n}, c_{1}} \subset(0, T)$. Therefore, we get $I_{\varepsilon_{n}, c_{1}} \cap J_{\varepsilon_{n}, c_{3}} \rightarrow I_{\varepsilon_{n}, c_{1}}$ for $c_{3} \rightarrow+\infty$. Hence, we can assume that both conditions (4.73) and (4.74) hold for almost all $t \in I_{\varepsilon_{n}, c_{1}}$. We prove that

$$
\begin{equation*}
\left\|v_{\alpha, \varepsilon_{n}}(t)-\int_{0}^{1} v_{\alpha, \varepsilon_{n}}(t) \mathrm{d} x_{3}\right\|_{\infty} \leq c\left(\left\|\mathrm{D}_{3} \mathbf{v}_{\varepsilon_{n}}(t)\right\|_{p}+\left\|v_{3, \varepsilon_{n}}(t)\right\|_{2, \partial \Omega}\right) \tag{4.76}
\end{equation*}
$$

for almost all $t \in I_{\varepsilon_{n}, c_{1}}$, where $c=c\left(c_{1}, c_{3}\right)>0$. For simplicity, we denote $v_{\alpha, \varepsilon_{n}}=v_{\alpha, \varepsilon_{n}}(t) \in W^{1, p}(\Omega)$ again.

There are two options for the behavior of $\left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{\infty}$. First, let us assume that

$$
\left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{\infty} \rightarrow+\infty, \text { for } n \rightarrow+\infty
$$

For contradiction with (4.76), we further suppose that

$$
c_{\varepsilon_{n}}=\left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{\infty}>n\left(\left\|\mathrm{D}_{3} \mathbf{v}_{\varepsilon_{n}}\right\|_{p,}+\left\|v_{3, \varepsilon_{n}}\right\|_{2, \partial \Omega}\right) .
$$

Dividing this inequality by $c_{\varepsilon_{n}}$ leads to

$$
1=\left\|w_{\alpha, \varepsilon_{n}}-\int_{0}^{1} w_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{\infty}>n\left(\left\|\mathrm{D}_{3} \mathbf{w}_{\varepsilon_{n}}\right\|_{p}+\left\|w_{3, \varepsilon_{n}}\right\|_{2, \partial \Omega}\right)
$$

where $\mathbf{w}_{\varepsilon_{\mathbf{n}}}=c_{\varepsilon_{n}}^{-1} \mathbf{v}_{\varepsilon_{\mathbf{n}}}$. We divide also (4.74) by $c_{\varepsilon_{n}}$ and get the convergences $\mathrm{Dw}_{\varepsilon_{n}} \rightarrow 0$ in $L^{p}(\Omega)$ and $w_{\alpha, \varepsilon_{n}} \rightarrow 0$ in $L^{2}(\partial \Omega)$. From the Korn's inequality (see Lemma 4.30), we conclude that $w_{\alpha, \varepsilon_{n}} \rightarrow 0$ in $W^{1, p}(\Omega)$ (and also in $L^{\infty}(\Omega)$ from the compact embedding), which is a contradiction with the unit norm of $w_{\alpha, \varepsilon_{n}}-\int_{0}^{1} w_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}$.

Second, let us suppose that

$$
\left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{\infty} \leq K<+\infty, \forall n \in \mathbb{N}
$$

For contradiction with (4.76), we further assume that

$$
\begin{equation*}
K \geq\left\|v_{\alpha, \varepsilon_{n}}-\int_{0}^{1} v_{\alpha, \varepsilon_{n}} \mathrm{~d} x_{3}\right\|_{\infty}>n\left(\left\|\mathrm{D}_{3} \mathbf{v}_{\varepsilon_{n}}\right\|_{p}+\left\|v_{3, \varepsilon_{n}}\right\|_{2, \partial \Omega}\right) \tag{4.77}
\end{equation*}
$$

Considering inequalities (4.74), (4.77) and classical Korn's inequality, we arrive at the boundedness of $\left\{\left\|v_{\alpha, \varepsilon_{n}}\right\|_{1, p}\right\}_{n=1}^{+\infty}$. Therefore (passing to a subsequence if necessary), it follows from the compact embedding that $v_{\alpha, \varepsilon_{n}} \rightarrow v_{\alpha}$ in $L^{\infty}(\Omega)$.

Due to (4.75), $\partial_{3} v_{3, \varepsilon_{n}} \rightarrow 0$ in $L^{p}(\Omega)$ which together with the convergence $v_{3, \varepsilon_{n}} \rightarrow 0$ in $L^{2}(\partial \Omega)$, gives us $v_{3, \varepsilon_{n}} \rightarrow 0$ in $L^{p}(\Omega)$ (we remind that $\Omega=S \times$ $(0,1))$. Hence, $\partial_{\alpha} v_{3, \varepsilon_{n}} \rightarrow 0$ in $\mathcal{D}^{*}(\Omega)$ and also $\partial_{3} v_{\alpha, \varepsilon_{n}} \rightarrow 0$ in $\mathcal{D}^{*}(\Omega)$ due to the convergence (4.75). To conclude, $\partial_{3} v_{\alpha, \varepsilon_{n}} \rightarrow 0$ in $\mathcal{D}^{*}(\Omega)$ implies $v_{\alpha}=\int_{0}^{1} v_{\alpha} \mathrm{d} x_{3}$ which contradicts the inequality (4.73).
(vi) There is a contradiction.

Since convergence (4.75) and inequality (4.76) holds (see steps (iv) and (v)), we arrive at a contradiction with inequality (4.73). It means that the statement of this lemma holds true.

Let us remind that $\mathbf{v}_{\varepsilon}=\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \varepsilon \mathbf{a}_{3}\right)$. We apply Lemma 4.2 in the following way. First, it holds that

$$
\begin{aligned}
& \int_{0}^{T} \int_{S} \int_{0}^{1} \rho_{\varepsilon} v_{\alpha, \varepsilon} v_{\beta, \varepsilon} g^{\alpha \beta, \varepsilon} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \mathrm{~d} \hat{x} \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{S} \int_{0}^{1} \rho_{\varepsilon} v_{\alpha, \varepsilon}\left(v_{\beta, \varepsilon}-\int_{0}^{1} v_{\beta, \varepsilon} \mathrm{d} x_{3}\right) g^{\alpha \beta, \varepsilon} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \mathrm{~d} \hat{x} \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{S} \int_{0}^{1} \rho_{\varepsilon} v_{\alpha, \varepsilon}\left(\int_{0}^{1} v_{\beta, \varepsilon} \mathrm{d} x_{3}\right) g^{\alpha \beta, \varepsilon} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \mathrm{~d} \hat{x} \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{S} \int_{0}^{1} \rho_{\varepsilon} v_{\alpha, \varepsilon}\left(v_{\beta, \varepsilon}-\int_{0}^{1} v_{\beta, \varepsilon} \mathrm{d} x_{3}\right) g^{\alpha \beta, \varepsilon} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \mathrm{~d} \hat{x} \mathrm{~d} t+ \\
& +\int_{0}^{T} \int_{S}\left(\int_{0}^{1} \rho_{\varepsilon} v_{\alpha, \varepsilon} g^{\alpha \beta, \varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x_{3}\right)\left(\int_{0}^{1} v_{\beta, \varepsilon} \mathrm{d} x_{3}\right) \psi \mathrm{d} \hat{x} \mathrm{~d} t
\end{aligned}
$$

where $\psi \in \mathcal{C}_{0}^{\infty}\left(0, T ; \mathcal{C}^{\infty}(\bar{\Omega})\right), \mathrm{d} \hat{x}=\mathrm{d} x_{1} \mathrm{~d} x_{2}$ and $\alpha, \beta=1,2$. The first integral on the right-hand side tends to zero for $\varepsilon \rightarrow 0$ due to Lemma 4.2. Concerning the second integral on the right-hand side, it holds that (due to convergences (4.67) and (4.70))

$$
\begin{aligned}
& \int_{0}^{1} \rho_{\varepsilon} v_{\alpha, \varepsilon} g^{\alpha \beta, \varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x_{3}=\int_{0}^{1}\left(\rho_{\varepsilon} v_{\alpha, \varepsilon} g^{\alpha \beta, \varepsilon}-\varepsilon \mathbf{z}_{\alpha, \varepsilon} \cdot \mathbf{g}^{\beta, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3}+ \\
& +\varepsilon \int_{0}^{1} \mathbf{z}_{\alpha, \varepsilon} \cdot \mathbf{g}^{\beta, \varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \int_{0}^{1} \rho_{\varepsilon} v_{\alpha} g^{\alpha \beta} \sqrt{d} \mathrm{~d} x_{3},
\end{aligned}
$$

where the first integral converges in $\mathcal{C}\left(\langle 0, T\rangle ;\left[W^{1} L_{\Psi_{1}}(S)\right]^{*}\right)$ and the second integral converges in $L^{p}\left(0, T ; L_{\Phi_{\gamma}}(S)\right)$, and also

$$
\int_{0}^{1} v_{\beta, \varepsilon} \mathrm{d} x_{3} \rightharpoonup \int_{0}^{1} v_{\beta} \mathrm{d} x_{3} \quad \text { in } L^{p}\left(0, T ; W^{1, p}(S)\right)
$$

which follows from (4.52). In addition, it holds that

$$
\begin{gathered}
\int_{0}^{1} \rho_{\varepsilon} v_{\alpha} g^{\alpha \beta} \sqrt{d} \mathrm{~d} x_{3}=\hat{\rho} v_{\alpha} g^{\alpha \beta} \sqrt{d} \\
\int_{0}^{1} v_{\beta} \mathrm{d} x_{3}=v_{\beta}
\end{gathered}
$$

where $\hat{\rho}=\int_{0}^{1} \rho \mathrm{~d} x_{3}$, because \mathbf{v} (as well as \mathbf{u}, see (4.56)) is independent of x_{3}. Hence, convergences

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\beta, \varepsilon}\right) g^{\alpha \beta, \varepsilon} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t \rightarrow \\
& \rightarrow \int_{0}^{T} \int_{S} \hat{\rho}\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right)\left(\mathbf{u} \cdot \mathbf{a}_{\beta}\right) g^{\alpha \beta} \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t, \alpha, \beta=1,2, \tag{4.78}
\end{align*}
$$

are immediate consequences of (4.52), (4.70) and (4.71). Convergences (4.78) are applied in the next section to overcome the nonlinearity in the second term on the left-hand side of (4.26)

4.4.3 Limit of the governing equations

We prescribe the behavior of initial states for $\varepsilon \rightarrow 0$ by formulas

$$
\begin{align*}
& \int_{0}^{1} \rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \rho_{0} \ln \left(\rho_{0}\right) \sqrt{d} \quad \text { in } L^{1}(S), \tag{4.79}\\
& \int_{0}^{1} \Phi_{\gamma}\left(\rho_{0, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \Phi_{\gamma}\left(\rho_{0}\right) \sqrt{d} \quad \text { in } L^{1}(S), \gamma>3, \tag{4.80}\\
& \int_{0}^{1} \frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \sqrt{d} \quad \text { in } L^{1}(S), \tag{4.81}
\end{align*}
$$

where all limits on the right-hand sides do not depend on x_{3}. We remark that the prescribed behavior (4.80) enables us to use the Gronwall's lemma in the proof
of boundedness (4.45). Further, we assume that $h(\varepsilon)>0$ in (4.26) satisfies the condition $h(\varepsilon) \sim O(\varepsilon)$ to assure the convergence of $\frac{h(\varepsilon)}{\varepsilon}$ to a real positive number.

In this section, we denote an integral of a function in the third spatial variable over interval $(0,1)$ by symbol " ^" over the function. Obviously, these mean values depend only on x_{1} and x_{2}. For example, we write $\hat{\rho}=\int_{0}^{1} \rho \mathrm{~d} x_{3}$. Since $\mathbf{u} \cdot \mathbf{a}_{3}=0$ - see (4.53), and \mathbf{u} is independent of x_{3} - see (4.56), it holds that

$$
\hat{\mathbf{u}}=\int_{0}^{1} \mathbf{u} \mathrm{~d} x_{3}=\mathbf{u}=\left(\mathbf{u} \cdot \mathbf{a}_{1}\right) \mathbf{a}^{1}+\left(\mathbf{u} \cdot \mathbf{a}_{2}\right) \mathbf{a}^{2}
$$

Now, we can perform the limit in (4.25) and (4.26). We use convergences mentioned in section 4.2.1. First, we test the equation (4.25) by function $\varphi \in$ $\mathcal{D}\left(\mathbb{R}^{2} \times(0, T)\right)$. We arrive at

$$
\int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon} \partial_{t} \varphi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon}^{\mathrm{T}}\left(\mathbf{g}^{1, \varepsilon}, \mathbf{g}^{2, \varepsilon}, \mathbf{g}^{3, \varepsilon}\right)\left(\partial_{1} \varphi, \partial_{2} \varphi, 0\right)^{\mathrm{T}}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=0
$$

Subsequently, we expand \mathbf{u}_{ε} into the covariant basis. Since $\mathbf{g}^{\alpha, \varepsilon} \cdot \mathbf{a}_{\mathbf{3}}=0$, for $\alpha=1,2$, we obtain

$$
\int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon} \partial_{t} \varphi+\rho_{\varepsilon}\left[\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}+\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}^{2, \varepsilon}\right]^{\mathrm{T}}\left(\mathbf{g}^{1, \varepsilon}, \mathbf{g}^{2, \varepsilon}\right) \hat{\nabla} \varphi\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=0
$$

where $\hat{\nabla} \varphi=\left(\partial_{1} \varphi, \partial_{2} \varphi\right)$. Afterwards, we perform the limit for $\varepsilon \rightarrow 0$, apply convergence (4.57) and get

$$
\begin{equation*}
\int_{0}^{T} \int_{S}\left[\hat{\rho} \partial_{t} \varphi+\hat{\rho} \hat{\mathbf{u}}^{\mathrm{T}} R^{12} \hat{\nabla} \varphi\right] \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t=0 \tag{4.82}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{2} \times\langle 0, T\rangle\right)$, where $R^{12}=\left(\mathbf{a}^{1}, \mathbf{a}^{2}\right)$ is a submatrix of R and $\mathrm{d} \hat{x}=\mathrm{d} x_{1} \mathrm{~d} x_{2}$.

Second, we test the equation (4.26) by function $\psi \in \mathcal{C}_{0}^{\infty}\left(0, T ;\left[\mathcal{C}^{\infty}(\bar{\Omega})\right]^{3}\right)$ such that $\psi \cdot \mathbf{a}_{3}=0, \partial_{3} \psi=0$ and $\left.\psi \cdot \mathbf{n}\right|_{\partial S \times(0, T)}=0$. We will show the limit passage for each term in (4.26) independently.
(a) $\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi$

We expand \mathbf{u}_{ε} into the covariant basis. Since $\psi \cdot \mathbf{a}_{3}=0$ and convergences (4.57) hold, we get

$$
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left[\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}\right) \mathbf{g}^{1, \varepsilon}+\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}\right) \mathbf{g}^{2, \varepsilon}\right] \cdot \partial_{t} \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t
$$

which converges to

$$
\int_{0}^{T} \int_{S} \hat{\rho} \hat{\mathbf{u}} \cdot \partial_{t} \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$, due to (4.57).
(b) $\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi)$

As $\partial_{3} \psi=0$ and $\psi \cdot \mathbf{a}_{3}=0$, we know that $\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{33}=0$ and also that $\left[\bar{\omega}_{\varepsilon}(\psi)\right]_{\alpha 3}=$ $\left(\partial_{\alpha} \psi \cdot \mathbf{a}_{3}\right) / 2, \alpha=1,2$. After expanding \mathbf{u}_{ε} into the covariant basis and applying convergences (4.58) and (4.78), we conclude that

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{i, \varepsilon}\right)\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{j, \varepsilon}\right) g^{i j, \varepsilon}\left[\omega_{\varepsilon}(\psi)\right]_{i j} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

where the sum is taken over $i, j=1,2,3$, converges to

$$
\begin{aligned}
& \int_{0}^{T} \int_{S} \hat{\rho}\left(\mathbf{u} \cdot \mathbf{a}_{\alpha}\right)\left(\mathbf{u} \cdot \mathbf{a}_{\beta}\right) g^{\alpha \beta}[\omega(\psi)]_{\alpha \beta} \sqrt{d} \mathrm{~d} x \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{S} \hat{\rho} \hat{\mathbf{u}} \otimes \hat{\mathbf{u}}: \omega(\psi) \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t
\end{aligned}
$$

for $\varepsilon \rightarrow 0$ (the sum is taken over $\alpha, \beta=1,2$), where

$$
\omega(\psi)=R^{\mathrm{T}}\left(\begin{array}{ccc}
\partial_{1} \psi \cdot \mathbf{a}_{1} & \frac{1}{2}\left(\partial_{1} \psi \cdot \mathbf{a}_{2}+\partial_{2} \psi \cdot \mathbf{a}_{1}\right) & \frac{1}{2} \partial_{1} \psi \cdot \mathbf{a}_{3} \\
\cdot & \partial_{2} \psi \cdot \mathbf{a}_{2} & \frac{1}{2} \partial_{2} \psi \cdot \mathbf{a}_{3} \\
\operatorname{sym} & \cdot & 0
\end{array}\right) R .
$$

(c) $\rho_{\varepsilon} \nabla \psi: R_{\varepsilon} E_{\varepsilon}$

Since $R_{\varepsilon} E_{\varepsilon}=\left(\mathbf{g}^{1, \varepsilon}, \mathbf{g}^{1, \varepsilon}, \varepsilon^{-1} \mathbf{a}_{3}\right)$, we have

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left(\partial_{1} \psi, \partial_{2} \psi, \partial_{3} \psi\right):\left(\mathbf{g}^{1, \varepsilon}, \mathbf{g}^{1, \varepsilon}, \varepsilon^{-1} \mathbf{a}_{3}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left(\partial_{1} \psi, \partial_{2} \psi\right):\left(\mathbf{g}^{1, \varepsilon}, \mathbf{g}^{1, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

which tends to (see convergence (4.49))

$$
\int_{0}^{T} \int_{S} \hat{\rho} \hat{\nabla} \psi: R^{12} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$.

$$
\text { (d) } P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi)
$$

It holds that (see convergence (4.51))

$$
\int_{0}^{T} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \sqrt{d} \mathrm{~d} x \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$, where ζ is defined by (4.54). Later, we will show that

$$
\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \sqrt{d} \mathrm{~d} x \mathrm{~d} s=\int_{0}^{t} \int_{S} P(|\omega(\hat{\mathbf{u}})|) \omega(\hat{\mathbf{u}}): \omega(\psi) \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s
$$

for any $t \in(0, T)$.
(e) $\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi$

After expanding \mathbf{f}_{ε} into the contravariant basis and applying the relation $\psi \cdot \mathbf{a}_{3}=0$, we arrive at (see also convergence (4.49) and assumptions of Theorem 4.3 in section 4.5)

$$
\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=\int_{0}^{T} \int_{\Omega} \rho_{\varepsilon}\left[\left(\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{1, \varepsilon}\right) \mathbf{g}_{1, \varepsilon}+\left(\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{2, \varepsilon}\right) \mathbf{g}_{2, \varepsilon}\right] \cdot \psi \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t
$$

which tends to

$$
\int_{0}^{T} \int_{S} \widehat{\rho \mathbf{F}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$, where $\mathbf{F}=\left(\mathbf{f} \cdot \mathbf{a}^{1}\right) \mathbf{a}_{1}+\left(\mathbf{f} \cdot \mathbf{a}^{2}\right) \mathbf{a}_{2}$ and \mathbf{f} denotes the limit of \mathbf{f}_{ε}.
(f) $\mathbf{u}_{\varepsilon} \cdot \psi\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right|$

Since $\mathbf{n}=\left(n_{1}, n_{2}, 0\right)^{\mathrm{T}}$ on Γ_{1}, we have

$$
\mathbf{u}_{\varepsilon} \cdot \psi\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right|=\mathbf{u}_{\varepsilon} \cdot \psi\left|\left(\mathbf{g}^{1, \varepsilon}, \mathbf{g}^{2, \varepsilon}\right) \hat{\mathbf{n}}\right|
$$

where $\hat{\mathbf{n}}=\left(n_{1}, n_{2}\right)$. Due to (4.40) and (4.52), we arrive at

$$
\int_{0}^{T} \int_{\Gamma_{1}} \mathbf{u}_{\varepsilon} \cdot \psi\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t \rightarrow \int_{0}^{T} \int_{\partial S} \hat{\mathbf{u}} \cdot \psi\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} t
$$

as ε tends to zero.
(g) $\frac{h(\varepsilon)}{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \psi$

According to the supposed behavior of $h(\varepsilon)$, i. e. $h(\varepsilon) \sim O(\varepsilon)$, we can use convergences (4.40) and (4.52) and get

$$
\varepsilon^{-1} \int_{0}^{T} \int_{\Gamma_{2}} h(\varepsilon) \mathbf{u}_{\varepsilon} \cdot \psi \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t \rightarrow 2 h \int_{0}^{T} \int_{S} \hat{\mathbf{u}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t
$$

for $\varepsilon \rightarrow 0$, where h is a positive constant.

Finally, we arrive at

$$
\begin{align*}
& \int_{0}^{T} \int_{S}\left[\hat{\rho} \hat{\mathbf{u}} \cdot \partial_{t} \psi+\hat{\rho} \hat{\mathbf{u}} \otimes \hat{\mathbf{u}}: \omega(\psi)+\hat{\rho} \hat{\nabla} \psi: R^{12}\right] \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \sqrt{d} \mathrm{~d} x \mathrm{~d} t-\int_{0}^{T} \int_{S} \widehat{\rho \mathbf{F}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t+ \\
& +q \int_{0}^{T} \int_{\partial S} \hat{\mathbf{u}} \cdot \psi\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} t+2 h \int_{0}^{T} \int_{S} \hat{\mathbf{u}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t \tag{4.83}
\end{align*}
$$

for $\psi \in \mathcal{C}_{0}^{\infty}\left(0, T ;\left[\mathcal{C}^{\infty}(\bar{\Omega})\right]^{3}\right)$ such that $\psi \cdot \mathbf{a}_{3}=0, \partial_{3} \psi=0$ and $\left.\psi \cdot \mathbf{n}\right|_{\partial S \times(0, T)}=0$.

4.4.4 Limit of the energy equality

Applying similar approach as in section 4.4.3, convexity and Jensen's inequality, we perform the limit for $\varepsilon \rightarrow 0$ also in the energy equality (4.29). We arrive at the following inequality:

$$
\begin{align*}
& \int_{S}\left(\hat{\rho} \frac{|\hat{\mathbf{u}}|^{2}}{2}+\hat{\rho} \ln (\hat{\rho})\right) \sqrt{d} \mathrm{~d} \hat{x}+\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|)|\zeta|^{2}} \sqrt{d} \mathrm{~d} x \mathrm{~d} s+ \\
& +q \int_{0}^{t} \int_{\partial S}|\hat{\mathbf{u}}|^{2}\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} s+2 h \int_{0}^{t} \int_{S}|\hat{\mathbf{u}}|^{2} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s \leq \tag{4.84}\\
& \leq \int_{0}^{t} \int_{S} \widehat{\rho \mathbf{F}} \cdot \hat{\mathbf{u}} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+\int_{S} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \sqrt{d} \mathrm{~d} x+\int_{S} \rho_{0} \ln \left(\rho_{0}\right) \sqrt{d} \mathrm{~d} x .
\end{align*}
$$

By the use of the same procedure as in [19], Lemmas 3.2 and 3.3, based on the renormalized continuity equation and the Steklov function, we can derive from (4.82) and (4.83) the energy equality

$$
\begin{align*}
& \int_{S}\left(\hat{\rho} \frac{|\hat{\mathbf{u}}|^{2}}{2}+\hat{\rho} \ln (\hat{\rho})\right) \sqrt{d} \mathrm{~d} \hat{x}+\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\hat{\mathbf{u}}) \sqrt{d} \mathrm{~d} x \mathrm{~d} s+ \\
& +q \int_{0}^{t} \int_{\partial S}|\hat{\mathbf{u}}|^{2}\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} s+2 h \int_{0}^{t} \int_{S}|\hat{\mathbf{u}}|^{2} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s= \tag{4.85}\\
& =\int_{0}^{t} \int_{S} \widehat{\rho \mathbf{F}} \cdot \hat{\mathbf{u}} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+\int_{S} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \sqrt{d} \mathrm{~d} x+\int_{S} \rho_{0} \ln \left(\rho_{0}\right) \sqrt{d} \mathrm{~d} x .
\end{align*}
$$

Since the function $P(|z|) z$ is monotone, we get

$$
\begin{align*}
0 & \leq \lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\Omega}\left(P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)-P(|T|) T\right):\left(\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)-T\right) \mathrm{d} x \mathrm{~d} s= \\
& =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s- \\
& -\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: T+P(|T|) T: \zeta+P(|T|)|T|^{2} \mathrm{~d} x \mathrm{~d} s \tag{4.86}
\end{align*}
$$

for any symmetric $T \in\left[\tilde{L}_{M}(\Omega \times(0, T))\right]^{9}$. As a consequence of (4.29), (4.85),
convexity and Jensen's inequality, we arrive at

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s= \\
& =\lim _{\varepsilon \rightarrow 0}\left(-\int_{\Omega}\left(\rho_{\varepsilon} \frac{\left|\mathbf{u}_{\varepsilon}\right|^{2}}{2}+\rho_{\varepsilon} \ln \left(\rho_{\varepsilon}\right)\right) \sqrt{d_{\varepsilon}} \mathrm{d} x-\right. \\
& -q \int_{0}^{t} \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon}\right|^{2}\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} s-\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{t} \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} s+ \\
& +\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \mathbf{u}_{\varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} s+\int_{\Omega} \frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \sqrt{d_{\varepsilon}} \mathrm{d} x+ \\
& \left.+\int_{\Omega} \rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x\right) \leq-\int_{S}\left(\hat{\rho} \frac{|\hat{\mathbf{u}}|^{2}}{2}+\hat{\rho} \ln (\hat{\rho})\right) \sqrt{d} \mathrm{~d} \hat{x}- \\
& -q \int_{0}^{t} \int_{\partial S}|\hat{\mathbf{u}}|^{2}\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} s-2 h \int_{0}^{t} \int_{S}|\hat{\mathbf{u}}|^{2} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+ \\
& +\int_{0}^{t} \int_{S} \widehat{\rho \mathbf{F}} \cdot \hat{\mathbf{u}} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+\int_{S} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \sqrt{d} \mathrm{~d} x+ \\
& +\int_{S} \rho_{0} \ln \left(\rho_{0}\right) \sqrt{d} \mathrm{~d} x=\int_{0}^{t} \int_{\Omega} \frac{}{P(|\zeta|) \zeta}: \omega(\hat{\mathbf{u}}) \sqrt{d} \mathrm{~d} x \mathrm{~d} s . \tag{4.87}
\end{align*}
$$

Consequently from (4.86), we get

$$
0 \leq \int_{0}^{t} \int_{\Omega}(\overline{P(|\zeta|) \zeta}-P(|T|) T):(\omega(\hat{\mathbf{u}})-T) \mathrm{d} x \mathrm{~d} s .
$$

Taking $T=\omega(\hat{\mathbf{u}}) \pm \lambda \omega(\psi)$, for $\lambda>0, \psi \in \mathcal{C}_{0}^{\infty}\left(0, T ;\left[\mathcal{C}^{\infty}(\bar{\Omega})\right]^{3}\right)$ such that $\psi \cdot \mathbf{a}_{3}=0$, $\partial_{3} \psi=0$ and $\left.\psi \cdot \mathbf{n}\right|_{\partial S \times(0, T)}=0$, we conclude that

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega} \overline{P(|\zeta|) \zeta}: \omega(\psi) \mathrm{d} x \mathrm{~d} s=\int_{0}^{t} \int_{S} P(|\omega(\hat{\mathbf{u}})|) \omega(\hat{\mathbf{u}}): \omega(\psi) \mathrm{d} \hat{x} \mathrm{~d} s \tag{4.88}
\end{equation*}
$$

4.5 Main theorem for the 2D model

To sum it up, the limit equations together with the energy equality are given by the following formulas

$$
\begin{equation*}
\int_{0}^{T} \int_{S}\left[\hat{\rho} \partial_{t} \varphi+\hat{\rho} \hat{\mathbf{u}}^{\mathrm{T}} R^{12} \hat{\nabla} \varphi\right] \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t=0 \tag{4.89}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{2} \times\langle 0, T\rangle\right)$,

$$
\begin{align*}
& \int_{0}^{T} \int_{S}\left[\hat{\rho} \hat{\mathbf{u}} \cdot \partial_{t} \psi+\hat{\rho} \hat{\mathbf{u}} \otimes \hat{\mathbf{u}}: \omega(\psi)+\hat{\rho} \hat{\nabla} \psi: R^{12}\right] \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{S} P(|\omega(\hat{\mathbf{u}})|) \omega(\hat{\mathbf{u}}): \omega(\psi) \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t-\int_{0}^{T} \int_{S} \widehat{\rho \mathbf{F}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t+ \\
& +q \int_{0}^{T} \int_{\partial S} \hat{\mathbf{u}} \cdot \psi\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} t+2 h \int_{0}^{T} \int_{S} \hat{\mathbf{u}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t, \tag{4.90}
\end{align*}
$$

for any $\psi \in \mathcal{C}_{0}^{\infty}\left(0, T ;\left[\mathcal{C}^{\infty}(\Omega)\right]^{3}\right)$ such that $\partial_{3} \psi=0, \psi \cdot \mathbf{a}_{3}=0$ in $\Omega \times(0, T)$ and $\left.\psi \cdot \mathbf{n}\right|_{\partial S \times(0, T)}=0$,

$$
\begin{align*}
& \int_{S}\left(\hat{\rho} \frac{|\hat{\mathbf{u}}|^{2}}{2}+\hat{\rho} \ln (\hat{\rho})\right) \sqrt{d} \mathrm{~d} \hat{x}+\int_{0}^{t} \int_{S} P(|\omega(\hat{\mathbf{u}})|)|\omega(\hat{\mathbf{u}})|^{2} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+ \\
& +q \int_{0}^{t} \int_{\partial S}|\hat{\mathbf{u}}|^{2}\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} s+2 h \int_{0}^{t} \int_{S}|\hat{\mathbf{u}}|^{2} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s= \tag{4.91}\\
& =\int_{0}^{t} \int_{S} \widehat{\rho \mathbf{F}} \cdot \hat{\mathbf{u}} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+\int_{S} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \sqrt{d} \mathrm{~d} \tilde{x}+\int_{S} \rho_{0} \ln \left(\rho_{0}\right) \sqrt{d} \mathrm{~d} \tilde{x} .
\end{align*}
$$

Finally, the main result of this chapter is summarized in the following theorem.

Theorem 4.3. Let us assume that couples $\left(\rho_{\varepsilon}, \mathbf{u}_{\varepsilon}\right), \varepsilon \in(0,1)$, satisfying

$$
\begin{aligned}
& \rho_{\varepsilon} \in L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right) \\
& \mathbf{v}_{\varepsilon} \in L^{p}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{3}\right) \cap L^{2}\left(0, T ;\left[L^{2}(\partial \Omega)\right]^{3}\right)
\end{aligned}
$$

with $\mathbf{v}_{\varepsilon}=\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{3, \varepsilon}\right)$ for arbitrary but fixed $\gamma>3$ and $p>3$, are weak solutions to the transformed equations (4.25)-(4.26) with initial states $\rho_{0, \varepsilon} \in L_{\Phi_{\gamma}}(\Omega)$ and $\frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)\right|^{2}}{2 \rho_{0, \varepsilon}} \sqrt{d_{\varepsilon}} \in L^{1}(\Omega)$ satisfying (4.79)-(4.81). In addition, we assume that Navier boundary conditions (4.1)-(4.3) hold and $\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \in\left[\tilde{L}_{M}(\Omega \times\right.$ $(0, T))]^{9}$.

Further, we suppose that function P complies with conditions (1.3)-(1.7), $\mathbf{f}_{\varepsilon} \rightarrow$ \mathbf{f} in $\left[L^{\infty}(\Omega \times(0, T))\right]^{3}$ and $\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{j, \varepsilon} \in\left[L^{\infty}(\Omega \times(0, T))\right]^{3}, j=1,2,3, h(\varepsilon)>0$ behaves like $O(\varepsilon), q>0$ and covariant basis $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\} \subset\left[L^{\infty}(\Omega)\right]^{3}$ satisfies conditions
$\partial_{\alpha} \mathbf{a}_{j}$ and $\partial_{\alpha \beta}^{2} \mathbf{a}_{3} \in\left[L^{\infty}(\Omega)\right]^{3}$, where $\alpha, \beta=1,2$ and $j=1,2,3$. Then (passing to subsequences if necessary)

$$
\begin{gathered}
\rho_{\varepsilon} \stackrel{*}{\rightharpoonup} \rho \text { in } L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right), \\
\rho_{\varepsilon} \rightarrow \rho \text { in } \mathcal{C}\left(\langle 0, T\rangle ;\left[W^{1} L_{\Phi_{\gamma}}(\Omega)\right]^{*}\right), \\
\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \stackrel{N}{\rightharpoonup} \omega(\mathbf{u}) \\
\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon} \rightharpoonup \mathbf{u} \cdot \mathbf{a}_{\alpha} \text { in } L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right), \\
\alpha=1,2, \\
\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3} \rightarrow 0 \quad \text { in } L_{M}(\Omega \times(0, T)) .
\end{gathered}
$$

In addition, couple $(\hat{\rho}, \hat{\mathbf{u}})$, where $\hat{\rho}=\int_{0}^{1} \rho \mathrm{~d} x_{3}$ and $\hat{\mathbf{u}}=\left(\mathbf{u} \cdot \mathbf{a}_{1}\right) \mathbf{a}^{1}+\left(\mathbf{u} \cdot \mathbf{a}_{2}\right) \mathbf{a}^{2}$, $\left.\hat{\mathbf{u}} \cdot \hat{\mathbf{n}}\right|_{\partial S \times(0, T)}=0$, is a weak solution to the equations (4.89)-(4.90) and complies with the energy equality (4.91).

Chapter 5

Conclusion

Three dimensional model describing fluid motion was considered. In particular, we studied the dynamics of compressible non-Newtonian fluids in thin domains. Thus, we dealt with nonsteady Navier-Stokes equations

$$
\begin{aligned}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u}) & =0 \\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\nabla \rho & =\operatorname{div}(P(|D \mathbf{u}|) D \mathbf{u})+\rho \mathbf{f} \quad \text { in } \Omega \times(0, T)
\end{aligned}
$$

where Ω was either a thin pipe (Chapter 3) or a curved three-dimensional domain with only two dominant dimensions (Chapter 4). Our aim was to perform a rigorous derivation of respective lower-dimensional models. New results in the theory of asymptotic analysis were presented in this thesis. Our both main contributions were published in peer-reviewed journals [1, 2].

Prior to the derivation of lower-dimensional models, an introduction to Young functions and Orlicz spaces was given in Chapter 2. Further, we studied Young functions with a logarithmic and an exponential growth. Orlicz spaces defined by the use of these specific Young functions were subsequently applied to prove our main results.

Chapter 3 focused on a rigorous derivation of a one-dimensional model from the three-dimensional Navier-Stokes equations. After proving a variant of the first Korn's inequality and making a priori estimates, we demonstrated boundedness of sequences of densities and rescaled velocity fields. The boundedness allowed us to perform weak limits and pass to the limit in both the governing equations
and energy equality. Theorem 3.4 (section 3.4) summarizes our first main result.
Chapter 4 was devoted to an asymptotic analysis of the three-dimensional Navier-Stokes equations acting over a curved domain. We applied a similar approach as in Chapter 4 to arrive at the limit of the governing equations and energy equality. However, the deformation of the domain introduced new difficulties which had to be addressed. Finally, we overcame all the difficulties and presented our second main contribution in Theorem 4.3 (section 4.5).

Bibliography

[1] Andrášik, R., VodÁk, R.: Rigorous derivation of a 1D model from the 3D non-steady Navier-Stokes equations for compressible nonlinearly viscous fluids, Electron. J. Differential Equations 114, 1 - 21 (2018).
[2] Andrášik, R., Vodák, R.: Compressible nonlinearly viscous fluids: Asymptotic analysis in a 3D curved domain, J. Math. Fluid Mech. 21: 13 (2019), https://doi.org/10.1007/s00021-019-0412-y.
[3] Bella, P., Feireisl, E., Novotný, A.: Dimension reduction for compressible viscous fluids, Acta Appl. Math. 134, 111 - 121 (2014).
[4] Blouza, A., Le Dret, H.: Existence and uniqueness for the linear Koiter model for shells with little regularity, Q. Appl. Math. 57(2), 317 - 337 (1999).
[5] Březina, J., Kreml, O., Mácha, V.: Dimension reduction for the full Navier-Stokes-Fourier system, J. Math. Fluid Mech. 19, 659 - 683 (2017).
[6] Ciarlet, P. G.: Mathematical Elasticity Volume II: Theory of plates, Studies in Mathematics and its Applications 29, North-Holland Publishing Co., Amsterdam (2000).
[7] Ciarlet, P. G.: Mathematical Elasticity Volume III: Theory of shells, Studies in Mathematics and its Applications 29, North-Holland Publishing Co., Amsterdam (2000).
[8] Ducomet, B., Nečasová, Š., Pokorný, M., Rodríguez-Bellido, M. A.: Derivation of the Navier-Stokes-Poisson System with Radiation for an Accretion Disk, Journal of Mathematical Fluid Mechanics 20(2), 667 719 (2018).
[9] Durán, R. G., Muschietti, M. A.: The Korn inequality for Jones domains, Electronic Journal of Differential Equations 127, 1 - 10 (2004).
[10] Feireisl, E., Novotný, A., Petzeltová, H.: On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid, Math. Methods in the Appl. Sci. 11(12), 1045 - 1073 (2002).
[11] Feireisl, E.: Dynamics of Viscous Compressible Fluids, Exford Lecture Series in Mathematics and its Applications 26, Oxford: Oxford University Press (2004).
[12] Iftimie, D., Raugel, G., Sell, G. R.: Navier-Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J. 56(3), 1083 - 1156 (2007).
[13] Jurak, M., Tambača, J.: Derivation and justification of a curved rod model, Math. Models and Methods Appl. Sci. 9(7), 991 - 1016 (1999).
[14] Jurak, M., Tambača, J.: Linear curved rod model. General curve, Math. Models and Methods Appl. Sci. 11(7), 1239 - 1252 (2001).
[15] Krasnosel'skiı, M. A., Rutickir, J. B.: Convex functions and Orlicz spaces, Noordhoff, Groningen (1961).
[16] Kufner, A., John, O., Fučík, S.: Function spaces, Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Leyden: Noordhoff International Publishing, Prague: Publishing House of the Czechoslovak Academy of Sciences, XV (1977).
[17] Lions, P.-L.: Mathematical topics in fluid mechanics. Volume 2: Compressible models, Oxford Lecture Series in Mathematics and its Applications 10, Oxford: Clarendon Press, XIV (1998).
[18] Mamontov, A. E.: Global solvability of the multidimensional NavierStokes equations of a compressible fluid with nonlinear viscosity I, Siberian Mathematical Journal 40(2), 351 - 362 (1999).
[19] Mamontov, A. E.: Global solvability of the multidimensional NavierStokes equations of a compressible fluid with nonlinearly viscous fluid II. I, Siberian Mathematical Journal 40(3), 541 - 555 (1999).
[20] Maltese, D., Novotný, A.: Compressible Navier-Stokes equations on thin domains, J. Math. Fluid Mech. 16, 571 - 594 (2014).
[21] Nazarov, S. A.: Asymptotic solution of the Navier-Stokes problem on the flow of a thin layer of fluid, Sib. Math. J. 31(2), 296 - 307 (1990).
[22] Novotnチ́, A., Straškraba, I.: Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications 27, Oxford: Oxford University Press, XX (2004).
[23] Simon, J.: Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pura Appl., IV. Ser. 146, 65 - 96 (1987).
[24] Tiba, D., Vodák, R.: A general asymptotic model for Lipschitzian curved rods, Adv. Math. Sci. Appl. 15(1), 137 - 198 (2005).
[25] VodÁk, R.: Existence řešení Navierových-Stokesových rovnic pro proudění izotermálních stlačitelných tekutin a jeho kvalitativní vlastnosti, Dissertation thesis, defended at Palacký University Olomouc (2003).
[26] Vodák, R.: Asymptotic analysis of three dimensional Navier-Stokes equations for compressible nonlinearly viscous fluids, Dynamics of PDE 5(4), 299 - 311 (2008).
[27] Vodák, R.: Asymptotic analysis of steady and nonsteady Navier-Stokes equations for barotropic compressible flow, Acta Appl. Math. 110, 991 1009 (2010).
[28] VodÁk, R.: Justification of asymptotic two-dimensional model for steady Navier-Stokes equations for incompressible flow, Acta Appl. Math. 112, 21 - 33 (2010).

PALACKÝ UNIVERSITY OLOMOUC FACULTY OF SCIENCE

DISSERTATION THESIS SUMMARY

Mathematical and physical models of fluids - properties of solutions

This dissertation thesis was carried out under the full-time postgradual programme P1102 Mathematics at the Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University Olomouc.

Applicant: RNDr. Richard Andrášik
Department of Mathematical Analysis
and Applications of Mathematics
Faculty of Science
Palacký University Olomouc
Supervisor: RNDr. Rostislav Vodák, Ph.D.
Department of Mathematical Analysis
and Applications of Mathematics
Faculty of Science
Palacký University Olomouc
Reviewers: prof. RNDr. Milada Kozubková, CSc.
Department of Hydrodynamics and Hydraulic Equipment
Faculty of Mechanical Engineering
VSB Technical University of Ostrava
doc. Mgr. Milan Pokorný, Ph.D.
Mathematical Institute of Charles University
Faculty of Mathematics and Physics
Charles University

Dissertation thesis summary was sent to distribution on
Oral defense of the dissertation thesis will be performed on at Department of Mathematical Analysis and Applications of Mathematics in front of the committee for Ph.D. study programme P1102 Mathematics, Faculty of Science, Palacký University Olomouc, room, 17. listopadu 12, Olomouc.

Full text of the dissertation thesis is available at Study Department of Faculty of Science, Palacký University Olomouc.

Contents

1 Abstract 4
2 Abstrakt v českém jazyce 5
3 Introduction 6
4 Recent state summary 7
5 Thesis objectives 8
6 Theoretical framework 9
6.1 Young functions and Orlicz spaces 9
6.2 Fluid flow in a thin pipe 10
6.3 Fluid flow in a thin deformed domain 12
7 Original results and summary 14
List of publications 19
List of conferences 20
References 21

1 Abstract

Governing equations representing mathematical description of continuum mechanics have often three spatial dimensions and one temporal dimension. However, their analytical solution is usually unattainable, and numerical approximation of the solution unduly complicated and computationally demanding. Thus, these models are frequently simplified in various ways. One option of a simplification is a reduction of the number of spatial dimensions. We focused on nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a threedimensional domain. These equations need a simplification, when possible, to be effectively solved. Therefore, we performed a dimension reduction for this type of model. First, we studied the dynamics of a compressible fluid in thin domains where only one dimension is dominant. We presented a rigorous derivation of a one-dimensional model from the three-dimensional Navier-Stokes equations. Second, we extended the current framework by dealing with nonsteady NavierStokes equations for compressible nonlinearly viscous fluids in a deformed threedimensional domain. We focused on a rigorous derivation of the two-dimensional model. The deformation of a domain introduced new difficulties in the asymptotic analysis, because it affects the limit equations in a non-trivial way.

Key words: Navier-Stokes equations, Compressible fluids, Nonlinear viscosity, Asymptotic analysis, Dimension reduction, Curved domain, Curvilinear coordinates

2 Abstrakt v českém jazyce

Zakladní rovnice, které reprezentují matematický popis mechaniky kontinua, mají často tři prostorové dimenze a jednu časovou. Jejich nevýhodou je, že jejich analytické řešení je často nedosažitelné a jeho numerická aproximace výpočetně velmi náročná. Z těchto důvodů jsou takovéto modely často různými způsoby zjednodušovány. Jednou z možností, jak model zjednodušit, je snížení počtu prostorových dimenzí. Otázkou ovšem zůstává, jak dimenzionální redukci provést matematicky korektně. Zabývali jsme se nestacionárními Navier-Stokesovými rovnicemi pro stlačitelné nelineárně viskózní tekutiny v trojrozměrné oblasti. Nejprve jsme studovali dynamiku stlačitelných tekutin v oblastech, kde dominuje pouze jedna prostorová dimenze. Představili jsme odvození jednorozměrného modelu z trojrozměrných Navier-Stokesových rovnic. Následně jsme rozšírili současný rámec poznání tím, že jsme aplikovali dimenzionální redukci na nestacionární Navier-Stokesovy rovnice pro stlačitelné nelineárně viskóz-ní tekutiny v deformované trojrozměrné oblasti se dvěma dominantními prostorovými dimenzemi. Zjistili jsme, že deformace oblasti netriviálne ovlivňuje výsledné limitní rovnice.

Klíčová slova: Navier-Stokesovy rovnice, Stlačitelné tekutiny, Nelineární viskozita, Asymptotická analýza, Redukce dimenze, Deformovaná oblast, Křivočaré souřadnice

3 Introduction

Governing equations representing mathematical description of continuum mechanics have often three spatial dimensions and one temporal dimension. However, their analytical solution is usually unattainable, and numerical approximation of the solution unduly complicated and computationally demanding. Therefore, these models are frequently simplified in various ways. One option of a simplification is a reduction of the number of spatial dimensions. The thesis is devoted to nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a three-dimensional domain. These equations need a simplification, when possible, to be effectively solved.

The thesis studies the dynamics of a compressible fluid in a thin pipe $\Omega_{\varepsilon} \subset \mathbb{R}^{3}$ and in a curved three-dimensional domain $\tilde{\Omega}_{\varepsilon}$ with two dominant dimensions. The motion of a compressible fluid is described by its velocity \mathbf{u} and density ρ. The time evolution of \mathbf{u} and ρ is governed by the continuity and momentum equations

$$
\begin{align*}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u}) & =0 \tag{1}\\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\nabla p & =\operatorname{div} \mathbb{S}+\rho \mathbf{f} \quad \text { in } \Omega \times(0, T), \tag{2}
\end{align*}
$$

where $T>0, p$ is the pressure, \mathbb{S} stands for the viscous stress tensor and \mathbf{f} represents the external forces [18].

It is supposed that the fluid is isothermal and non-Newtonian. It means that (without the loss of generality)

$$
\mathbb{S}=P(|D \mathbf{u}|) D \mathbf{u}, \quad p=\rho
$$

Similarly as in [26], it is assumed that the function P satisfies, for any U, V belonging to Orlicz class $\left[\tilde{L}_{M}(\Omega)\right]^{9}$, the following five conditions

$$
\begin{gather*}
\int_{\Omega} P(|U|)|U|^{2} \mathrm{~d} x \geq \int_{\Omega} M(|U|) \mathrm{d} x \tag{3}\\
\int_{\Omega}(P(|U|) U-P(|V|) V):(U-V) \mathrm{d} x \geq 0 \tag{4}
\end{gather*}
$$

$$
\begin{gather*}
P(z)|z|^{2} \text { is a convex function for } z \geq 0, \tag{5}\\
\int_{\Omega} N(P(|U|)|U|) \mathrm{d} x \leq C\left(1+\int_{\Omega} M(|U|) \mathrm{d} x\right), \tag{6}\\
P(|U-\lambda V|)(U-\lambda V) \stackrel{M}{=} P(|U|) U, \text { for } \lambda \rightarrow 0 \tag{7}
\end{gather*}
$$

4 Recent state summary

The existence of weak solutions for three-dimensional models of fluid dynamics has already been studied. For instance, Pierre-Louis Lions proved the global solvability of Navier-Stokes equations for compressible linearly viscous fluids [17]. Further, Eduard Feireisl extensively studied global existence theory for the full Navier-Stokes-Fourier system [11]. A comprehensive overview on results achieved in the case of Newtonian compressible fluids is given in [22]. Concerning non-Newtonian fluids, Mamontov [18, 19] proved the existence of a global weak solution for compressible Navier-Stokes equations. This knowledge allows us to step forward in finding the solution (or at least its approximation). One possibility to achieve that is by performing a dimension reduction of the equations. Without the proven existence of a weak solution, it would be pointless to study the asymptotic behavior of the equations.

An asymptotic analysis was performed in linear elasticity for rods and beams [13, 14, 24], and for plates and shells [4, 6, 7], at first. Subsequently, rigorous derivation of lower-dimensional models was done also for fluids. An asymptotic analysis of three-dimensional steady Navier-Stokes equations based on the asymptotic expansion was presented in [21]. For comparison, the same result was achieved directly in [28] without the need to apply any asymptotic expansion. Regarding nonsteady Navier-Stokes equations for incompressible fluids, they were simplified into a lower-dimensional model in [12]. Further, a threedimensional system for barotropic Navier-Stokes equations was asymptotically analyzed and the resulting one-dimensional and two-dimensional models were
presented in [27] and [20], respectively. It was also shown that weak solutions of both three-dimensional Navier-Stokes equations for barotropic flows and threedimensional full Navier-Stokes-Fourier equations tend to strong solutions of the respective one-dimensional system as the three-dimensional model tends to the one-dimensional model [3, 5]. Recently, Ducomet et al. [8] presented a rigorous derivation of a two-dimensional model from the three-dimensional compressible barotropic Navier-Stokes-Poisson system with radiation.

New difficulties arise by considering non-Newtonian fluids (i. e. fluids having nonlinear viscous stress tensor). This problem was tackled for the first time in [26], where a two-dimensional model was derived by a suitable scaling from nonsteady Navier-Stokes equations for compressible fluids.

5 Thesis objectives

The thesis is aimed on obtaining new contributions to the theory of rigorous asymptotic analysis of nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a three dimensional domain. There are two main objectives of the thesis. First, the motion of a compressible fluid in a thin pipe is studied. We present a derivation of a one-dimensional model from equations (1)(2) under Navier boundary conditions [1]. The second aim is to investigate the motion of a compressible fluid in a thin deformed domain. We focus on a derivation of a two-dimensional model from equations (1)-(2) under Navier boundary conditions [2].

Since nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids need a simplification, when possible, to be effectively solved, achieving the objectives of the thesis is particularly valuable. Obtained lower-dimensional models can be subsequently used in real-world applications by practitioners.

6 Theoretical framework

The theoretical framework can be summarized into three main parts. First, Young functions and Orlicz spaces along with their properties are studied in the thesis. Afterwards, both problems in question are separately described in detail and transformation of governing equations is performed.

6.1 Young functions and Orlicz spaces

A brief introduction to Young functions and Orlicz spaces is presented in the thesis. Let $u: Q \rightarrow \mathbb{R}, Q \subset \mathbb{R}^{n}, n \in \mathbb{N}$, be a measurable function and let Φ, Ψ be a pair of complementary Young functions. The set $L_{\Phi}(Q)$ of all u such that $\|u\|_{L_{\Phi}(Q)}<+\infty$ is called the Orlicz space. The positive number $\|u\|_{L_{\Phi}(Q)}$ is defined as

$$
\|u\|_{L_{\Phi}(Q)}=\sup _{v} \int_{Q}|u(x) v(x)| \mathrm{d} x
$$

where the supremum is taken over all functions $v \in \tilde{L}_{\Psi}(Q)$ satisfying condition $\int_{Q} \Psi(|v(x)|) \mathrm{d} x \leq 1$. The Orlicz space $L_{\Phi}(Q)$ is a Banach space and $\|\cdot\|_{L_{\Phi}(Q)}$ is the norm on $L_{\Phi}(Q)$.

Orlicz spaces and their properties are described in the thesis. In addition, the thesis is focused on a special class of Young functions with an exponential growth and their complementary functions, because the theory concerning these Young functions and respective Orlicz spaces is needed in the subsequent derivation of lower-dimensional models.

Let us define Young functions needed for reaching the objectives of the thesis as $\Phi_{\gamma}(z)=(1+z) \ln ^{\gamma}(1+z)$, with $\gamma>1$, and $\Phi_{1}(z)=z \ln (z+1)$. Functions Ψ_{γ}, $\gamma \geq 1$, denote the complementary functions to $\Phi_{\gamma}, \gamma \geq 1$. Subsequently, we define $M(z)=\mathrm{e}^{z}-z-1$ and its complementary function $N(z)=(1+z) \ln (1+z)-z$. Further, we denote $\Phi_{1 / \alpha}(z), \alpha \in(1,+\infty)$, the Young functions with growth $z \ln ^{1 / \alpha} z, z \geq z_{0}>0$, and their complementary functions $\Psi_{1 / \alpha}(z)$.

6.2 Fluid flow in a thin pipe

Let us employ notation $\overline{\mathbf{u}}_{\varepsilon}$ and $\bar{\rho}_{\varepsilon}$ for the velocity and the density, respectively, in equations (1)-(2) to highlight the connection to Ω_{ε}. Similar notation (subscript ε and accent " ${ }^{-")}$ is applied also for other functions connected to Ω_{ε}.

Domain $\Omega_{\varepsilon} \subset \mathbb{R}^{3}$ is defined by the use of a referential domain $\Omega=(0,1) \times S$ with $S \subset \mathbb{R}^{2},|S|=1$ and $\partial S \in C^{0,1}$, and mapping $\mathbf{R}_{\varepsilon}: \Omega \rightarrow \Omega_{\varepsilon}$ so that

$$
\mathbf{R}_{\varepsilon}:\left(x_{1}, x_{2}, x_{3}\right) \longmapsto\left(x_{1}, \varepsilon x_{2}, \varepsilon x_{3}\right) .
$$

It means that $\Omega_{\varepsilon}=(0,1) \times \varepsilon S$. As well as in [22], section 4.17.2.4, we suppose that Ω is not axially symmetric. Axial symmetry would mean that the appearance of Ω remains unchanged if rotated around an axis along the first spatial dimension.

Symbols \mathbf{n} and $\overline{\mathbf{n}}_{\varepsilon}$ stand for unit outward normals to Ω and Ω_{ε}, respectively. Similarly, \mathbf{t} and $\overline{\mathbf{t}}_{\varepsilon}$ are vectors from the corresponding tangent planes. We employ the following notation for the borders of domains Ω and Ω_{ε} :

$$
\begin{gathered}
\Gamma_{1}=(0,1) \times \partial S, \Gamma_{2}=\{0,1\} \times S \\
\Gamma_{1, \varepsilon}=\mathbf{R}_{\varepsilon}\left(\Gamma_{1}\right), \Gamma_{2, \varepsilon}=\mathbf{R}_{\varepsilon}\left(\Gamma_{2}\right)
\end{gathered}
$$

To ensure the well-posedness of our problem [26], we prescribe Navier boundary conditions

$$
\begin{array}{rll}
\overline{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\bar{D} \overline{\mathbf{u}}_{\varepsilon}\right|\right) \bar{D} \overline{\mathbf{u}}_{\varepsilon} \overline{\mathbf{n}}_{\varepsilon}\right)+h(\varepsilon) \overline{\mathbf{u}}_{\varepsilon} \cdot \overline{\mathbf{t}}_{\varepsilon}=0 & \text { on } \Gamma_{1, \varepsilon} \times(0, T), \\
\overline{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\bar{D} \overline{\mathbf{u}}_{\varepsilon}\right|\right) \bar{D} \overline{\mathbf{u}}_{\varepsilon} \overline{\mathbf{n}}_{\varepsilon}\right)+q \overline{\mathbf{u}}_{\varepsilon} \cdot \overline{\mathbf{t}}_{\varepsilon}=0 & \text { on } \Gamma_{2, \varepsilon} \times(0, T), \\
\overline{\mathbf{u}}_{\varepsilon} \cdot \overline{\mathbf{n}}_{\varepsilon}=0 & \text { on } \partial \Omega_{\varepsilon} \times(0, T) . \tag{10}
\end{array}
$$

It is supposed that $h(\varepsilon)>0$ behaves like $O(\varepsilon)$ and $q>0$.
We consider the initial conditions for the density and the momentum

$$
\begin{aligned}
\bar{\rho}_{\varepsilon}(\bar{x}, 0) & =\bar{\rho}_{0, \varepsilon}(\bar{x}) \geq 0, \quad \forall \bar{x} \in \Omega_{\varepsilon} \\
\left(\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon}\right)(\bar{x}, 0) & =\left(\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon}\right)_{0}(\bar{x}, 0), \quad \forall \bar{x} \in \Omega_{\varepsilon}
\end{aligned}
$$

The variational formulation of our problem is

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega_{\varepsilon}}\left(\bar{\rho}_{\varepsilon} \partial_{t} \bar{\varphi}+\bar{\rho}_{\varepsilon} \bar{u}_{\varepsilon} \cdot \bar{\nabla} \bar{\varphi}\right) \mathrm{d} \bar{x} \mathrm{~d} t=0 \tag{11}
\end{equation*}
$$

$$
\begin{array}{r}
\int_{0}^{T} \int_{\Omega_{\varepsilon}}\left(\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon} \cdot \partial_{t} \bar{\psi}+\bar{\rho}_{\varepsilon} \overline{\mathbf{u}}_{\varepsilon} \otimes \overline{\mathbf{u}}_{\varepsilon}: \bar{D} \bar{\psi}+\bar{\rho}_{\varepsilon} \mathrm{d} \overline{\mathrm{i} v} \bar{\psi}\right) \mathrm{d} \bar{x} \mathrm{~d} t \\
=\int_{0}^{T} \int_{\Omega_{\varepsilon}}\left(P\left(\left|\bar{D} \overline{\mathbf{u}}_{\varepsilon}\right|\right) \bar{D} \overline{\mathbf{u}}_{\varepsilon}: \bar{D} \bar{\psi}-\bar{\rho}_{\varepsilon} \overline{\mathbf{f}}_{\varepsilon} \cdot \bar{\psi}\right) \mathrm{d} x \mathrm{~d} t \\
+h(\varepsilon) \int_{0}^{T} \int_{\Gamma_{1, \varepsilon}} \overline{\mathbf{u}}_{\varepsilon} \cdot \bar{\psi} \mathrm{d} \bar{\Gamma} \mathrm{~d} t+q \int_{0}^{T} \int_{\Gamma_{2, \varepsilon}} \overline{\mathbf{u}}_{\varepsilon} \cdot \bar{\psi} \mathrm{d} \bar{\Gamma} \mathrm{~d} t \tag{12}
\end{array}
$$

for any $\bar{\varphi} \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\bar{\psi} \in C_{0}^{\infty}\left(0, T ; C^{\infty}\left(\bar{\Omega}_{\varepsilon}\right)^{3}\right)$ satisfying condition $\left.\bar{\psi} \cdot \overline{\mathbf{n}}_{\varepsilon}\right|_{\partial \Omega_{\varepsilon} \times(0, T)}=0$.

Variational formulation (11)-(12) can be transformed into

$$
\begin{gather*}
\int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon} \partial_{t} \varphi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \nabla_{\varepsilon} \varphi\right) \mathrm{d} x \mathrm{~d} t=0 \tag{13}\\
\int_{0}^{T} \int_{\Omega}\left[\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi)+\rho_{\varepsilon} \operatorname{div}_{\varepsilon} \psi\right] \mathrm{d} x \mathrm{~d} t \\
=\int_{0}^{T} \int_{\Omega}\left[P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi)-\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi\right] \mathrm{d} x \mathrm{~d} t \\
+\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{T} \int_{\Gamma_{1}} \mathbf{u}_{\varepsilon} \cdot \psi \mathrm{d} \Gamma \mathrm{~d} t+q \int_{0}^{T} \int_{\Gamma_{2}} \mathbf{u}_{\varepsilon} \cdot \psi \mathrm{d} \Gamma \mathrm{~d} t \tag{14}
\end{gather*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\psi \in C_{0}^{\infty}\left(0, T ;\left[C^{\infty}(\bar{\Omega})\right]^{3}\right),\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$.
By transforming the energy equality (see [19] for its original form), we obtain

$$
\begin{align*}
& \int_{\Omega}\left(\rho_{\varepsilon}(t) \frac{\left|\mathbf{u}_{\varepsilon}(t)\right|^{2}}{2}+\rho_{\varepsilon}(t) \ln \left(\rho_{\varepsilon}(t)\right)\right) \mathrm{d} x \\
& +\int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s+ \\
& +\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{t} \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} \Gamma \mathrm{~d} s+q \int_{0}^{t} \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \mathrm{~d} \Gamma \mathrm{~d} s= \\
& =\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \mathbf{g}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \mathrm{d} x \mathrm{~d} s+\int_{\Omega}\left(\frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}}+\rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right)\right) \mathrm{d} x \tag{15}
\end{align*}
$$

for any $t \in\langle 0, T\rangle$, where $\mathbf{g}_{\varepsilon}=\left(f_{1, \varepsilon}, \varepsilon^{-1} f_{2, \varepsilon}, \varepsilon^{-1} f_{3, \varepsilon}\right), \mathbf{v}_{\varepsilon}=\left(u_{1, \varepsilon}, \varepsilon u_{2, \varepsilon}, \varepsilon u_{3, \varepsilon}\right)$.

6.3 Fluid flow in a thin deformed domain

Let us employ notation $\tilde{\mathbf{u}}_{\varepsilon}$ and $\tilde{\rho}_{\varepsilon}$ for the velocity and the density, respectively, in equations (1)-(2) to highlight the connection to $\tilde{\Omega}_{\varepsilon}$. Similarly, we denote also other functions connected to $\tilde{\Omega}_{\varepsilon}$ with subscript ε and accent $" \sim$ ".

The domain $\tilde{\Omega}_{\varepsilon} \subset \mathbb{R}^{3}$ is defined by the use of a reference domain $\Omega=S \times(0,1)$, $S \subset \mathbb{R}^{2}, \partial S \in C^{0,1}$, and the mapping $\Theta_{\varepsilon}: \Omega \rightarrow \tilde{\Omega}_{\varepsilon}$ so that

$$
\Theta_{\varepsilon}:\left(x_{1}, x_{2}, x_{3}\right) \longmapsto \theta\left(x_{1}, x_{2}\right)+\varepsilon x_{3} \mathbf{a}_{3}\left(x_{1}, x_{2}\right),
$$

where $\theta: S \rightarrow \mathbb{R}^{3}$ and

$$
\begin{aligned}
& \mathbf{a}_{1}=\left(\partial_{1} \theta_{1}, \partial_{1} \theta_{2}, \partial_{1} \theta_{3}\right)^{\mathrm{T}} \\
& \mathbf{a}_{2}=\left(\partial_{2} \theta_{1}, \partial_{2} \theta_{2}, \partial_{2} \theta_{3}\right)^{\mathrm{T}}, \\
& \mathbf{a}_{3}=\frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\left\|\mathbf{a}_{1} \times \mathbf{a}_{2}\right\|}
\end{aligned}
$$

We suppose that $\mathbf{a}_{j}, \partial_{\alpha} \mathbf{a}_{j}$ and $\partial_{\alpha \beta}^{2} \mathbf{a}_{3} \in\left[L^{\infty}(\Omega)\right]^{3}$, where $\alpha, \beta=1,2$ and $j=1,2,3$.
Symbols \mathbf{n} and $\tilde{\mathbf{n}}_{\varepsilon}$ stand for unit outward normals to Ω and $\tilde{\Omega}_{\varepsilon}$, respectively. Similarly, \mathbf{t} (resp. $\tilde{\mathbf{t}}_{\varepsilon}$) is any vector from the corresponding tangent plane. We denote the boundaries of domains Ω and $\tilde{\Omega}_{\varepsilon}$ as follows:

$$
\begin{gathered}
\Gamma_{1}=\partial S \times(0,1), \quad \Gamma_{2}=S \times\{0,1\} \\
\tilde{\Gamma}_{1, \varepsilon}=\Theta_{\varepsilon}\left(\Gamma_{1}\right), \tilde{\Gamma}_{2, \varepsilon}=\Theta_{\varepsilon}\left(\Gamma_{2}\right)
\end{gathered}
$$

To ensure the well-posedness of our problem [26], we prescribed the set of Navier boundary conditions

$$
\begin{array}{r}
\tilde{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\tilde{D} \tilde{\mathbf{u}}_{\varepsilon}\right|\right) \tilde{D} \tilde{\mathbf{u}}_{\varepsilon} \tilde{\mathbf{n}}_{\varepsilon}\right)+q \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\mathbf{t}}_{\varepsilon}=0, \text { on } \tilde{\Gamma}_{1, \varepsilon} \times(0, T), \\
\tilde{\mathbf{t}}_{\varepsilon} \cdot\left(P\left(\left|\tilde{D} \tilde{\mathbf{u}}_{\varepsilon}\right|\right) \tilde{D} \tilde{\mathbf{u}}_{\varepsilon} \tilde{\mathbf{n}}_{\varepsilon}\right)+h(\varepsilon) \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\mathbf{t}}_{\varepsilon}=0, \text { on } \tilde{\Gamma}_{2, \varepsilon} \times(0, T), \\
\tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\mathbf{n}}_{\varepsilon}=0, \text { on } \partial \tilde{\Omega}_{\varepsilon} \times(0, T) . \tag{18}
\end{array}
$$

We suppose that $h(\varepsilon)>0$ behaves like $O(\varepsilon)$ and $q>0$. The asymptotic behavior of $h(\varepsilon)$ will be discussed during derivation of weak convergences of density and velocity field.

We consider the initial conditions for the density and the momentum

$$
\begin{aligned}
\tilde{\rho}_{\varepsilon}(x, 0) & =\tilde{\rho}_{0, \varepsilon}(x) \geq 0, \\
\left(\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon}\right)(x, 0) & =\left(\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon}\right)_{0}(x, 0), \text { in } \tilde{\Omega}_{\varepsilon} .
\end{aligned}
$$

Hence, the variational formulation of our problem is

$$
\begin{gather*}
\int_{0}^{T} \int_{\tilde{\Omega}_{\varepsilon}}\left(\tilde{\rho}_{\varepsilon} \partial_{t} \tilde{\varphi}+\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\nabla} \tilde{\varphi}\right) \mathrm{d} \tilde{x} \mathrm{~d} t=0 \tag{19}\\
\int_{0}^{T} \int_{\tilde{\Omega}_{\varepsilon}}\left(\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon} \cdot \partial_{t} \tilde{\psi}+\tilde{\rho}_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon} \otimes \tilde{\mathbf{u}}_{\varepsilon}: \tilde{D} \tilde{\psi}+\tilde{\rho}_{\varepsilon} \mathrm{d} \tilde{\mathrm{i}} v \tilde{\psi}\right) \mathrm{d} \tilde{x} \mathrm{~d} t \\
=\int_{0}^{T} \int_{\tilde{\Omega}_{\varepsilon}}\left(P\left(\left|\tilde{D} \tilde{\mathbf{u}}_{\varepsilon}\right|\right) \tilde{D} \tilde{\mathbf{u}}_{\varepsilon}: \tilde{D} \tilde{\psi}-\tilde{\rho}_{\varepsilon} \tilde{\mathbf{f}}_{\varepsilon} \cdot \tilde{\psi}\right) \mathrm{d} x \mathrm{~d} t \\
+q \int_{0}^{T} \int_{\tilde{\Gamma}_{1, \varepsilon}} \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\psi} \mathrm{d} \tilde{\Gamma} \mathrm{~d} t+h(\varepsilon) \int_{0}^{T} \int_{\tilde{\Gamma}_{2, \varepsilon}} \tilde{\mathbf{u}}_{\varepsilon} \cdot \tilde{\psi} \mathrm{d} \tilde{\Gamma} \mathrm{~d} t \tag{20}
\end{gather*}
$$

for any $\tilde{\varphi} \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\tilde{\psi} \in C_{0}^{\infty}\left(0, T ; C^{\infty}\left(\left\{\tilde{\Omega}_{\varepsilon}\right\}^{-}\right)^{3}\right)$, where $\left\{\tilde{\Omega}_{\varepsilon}\right\}^{-}$stands for the closure of $\tilde{\Omega}_{\varepsilon}$, satisfying the condition $\left.\tilde{\psi} \cdot \tilde{\mathbf{n}}_{\varepsilon}\right|_{\partial \tilde{\Omega}_{\varepsilon} \times(0, T)}=0$.

After transforming equations (19)-(20), we get

$$
\begin{gather*}
\int_{0}^{T} \int_{\Omega}\left(\rho_{\varepsilon} \partial_{t} \varphi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon}^{\mathrm{T}} R_{\varepsilon} E_{\varepsilon} \nabla \varphi\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t=0 \tag{21}\\
\int_{0}^{T} \int_{\Omega}\left[\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \psi+\rho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}: \omega_{\varepsilon}(\psi)+\rho_{\varepsilon} \nabla \psi: R_{\varepsilon} E_{\varepsilon}\right] \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t \\
=\int_{0}^{T} \int_{\Omega}\left[P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right) \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right): \omega_{\varepsilon}(\psi)-\rho_{\varepsilon} \mathbf{f}_{\varepsilon} \cdot \psi\right] \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} t+ \\
+q \int_{0}^{T} \int_{\Gamma_{1}} \mathbf{u}_{\varepsilon} \cdot \psi\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t+\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{T} \int_{\Gamma_{2}} \mathbf{u}_{\varepsilon} \cdot \psi \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} t \tag{22}
\end{gather*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{3} \times(0, T)\right)$ and $\psi \in C_{0}^{\infty}\left(0, T ;\left[C^{\infty}(\bar{\Omega})\right]^{3}\right),\left.\psi \cdot \mathbf{n}\right|_{\partial \Omega \times(0, T)}=0$.

Similarly, transforming the energy equality [19] leads to

$$
\begin{align*}
& \int_{\Omega}\left(\rho_{\varepsilon}(t) \frac{\left|\mathbf{u}_{\varepsilon}(t)\right|^{2}}{2}+\rho_{\varepsilon}(t) \ln \left(\rho_{\varepsilon}(t)\right)\right) \sqrt{d_{\varepsilon}} \mathrm{d} x \\
& +\int_{0}^{t} \int_{\Omega} P\left(\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|\right)\left|\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right)\right|^{2} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} s+ \\
& +q \int_{0}^{t} \int_{\Gamma_{1}}\left|\mathbf{u}_{\varepsilon}\right|^{2}\left|R_{\varepsilon} E_{\varepsilon} \mathbf{n}\right| \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} s+\frac{h(\varepsilon)}{\varepsilon} \int_{0}^{t} \int_{\Gamma_{2}}\left|\mathbf{u}_{\varepsilon}\right|^{2} \sqrt{d_{\varepsilon}} \mathrm{d} \Gamma \mathrm{~d} s= \\
& =\int_{0}^{t} \int_{\Omega} \rho_{\varepsilon} \overline{\mathbf{f}}_{\varepsilon} \cdot \mathbf{v}_{\varepsilon} \sqrt{d_{\varepsilon}} \mathrm{d} x \mathrm{~d} s+ \\
& +\int_{\Omega}\left(\frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}}+\rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right)\right) \sqrt{d_{\varepsilon}} \mathrm{d} x . \tag{23}
\end{align*}
$$

for any $t \in\langle 0, T\rangle$, where

$$
\begin{aligned}
\overline{\mathbf{f}}_{\varepsilon} & =\left(\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{1, \varepsilon}, \mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{2, \varepsilon}, \mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{3, \varepsilon}\right), \\
\mathbf{v}_{\varepsilon} & =\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{3, \varepsilon}\right),
\end{aligned}
$$

7 Original results and summary

Three dimensional model describing fluid motion is considered. In particular, we study the dynamics of compressible non-Newtonian fluids in thin domains. Thus, we deal with nonsteady Navier-Stokes equations

$$
\begin{aligned}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u}) & =0 \\
\partial_{t}(\rho \mathbf{u})+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\nabla \rho & =\operatorname{div}(P(|D \mathbf{u}|) D \mathbf{u})+\rho \mathbf{f} \quad \text { in } \Omega \times(0, T),
\end{aligned}
$$

where Ω is either a thin pipe or a curved three-dimensional domain with only two dominant dimensions. New results in the theory of asymptotic analysis are presented in this thesis. Both main contributions were published in peer-reviewed journals [1, 2].

First, the thesis is focused on a rigorous derivation of a one-dimensional model from the three-dimensional Navier-Stokes equations. After proving a variant of
the first Korn's inequality and making a priori estimates, we demonstrated boundedness of sequences of densities and rescaled velocity fields. The boundedness allowed us to perform weak limits and pass to the limit in both the governing equations and energy equality. The limit equations together with the energy equality are given by:

$$
\begin{equation*}
\int_{0}^{T} \int_{0}^{1} \hat{\rho} \partial_{t} \varphi+\hat{\rho} u_{1} \partial_{1} \varphi \mathrm{~d} x_{1} \mathrm{~d} t=0 \tag{24}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}(\mathbb{R} \times\langle 0, T\rangle)$,

$$
\begin{align*}
& \int_{0}^{T} \int_{0}^{1} \hat{\rho} u_{1} \partial_{t} \psi_{1}+\hat{\rho} u_{1}^{2} \partial_{1} \psi_{1}+\hat{\rho} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t= \\
& =|S| \int_{0}^{T} \int_{0}^{1} P\left(\left|\partial_{1} u_{1}\right|\right) \partial_{1} u_{1} \partial_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t-\int_{0}^{T} \int_{0}^{1} \widehat{\rho f_{1}} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t+ \\
& +|\partial S| h \int_{0}^{T} \int_{0}^{1} u_{1} \psi_{1} \mathrm{~d} x_{1} \mathrm{~d} t \tag{25}
\end{align*}
$$

for any $\psi=\left(\psi_{1}\left(x_{1}\right), 0,0\right)$, where $\psi_{1} \in \mathcal{C}_{0}^{\infty}\left(0, T ; \mathcal{C}^{\infty}(\langle 0,1\rangle)\right)$ complies with condition $\psi_{1}(0, t)=\psi_{1}(1, t)=0$, for all $t \in(0, T)$, and

$$
\begin{align*}
& \int_{0}^{1} \hat{\rho} \frac{\left|u_{1}\right|^{2}}{2}+\hat{\rho} \ln (\hat{\rho}) \mathrm{d} x_{1}+|S| \int_{0}^{t} \int_{\Omega} P\left(\left|\partial_{1} u_{1}\right|\right)\left|\partial_{1} u_{1}\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} s+ \\
& +|\partial S| h \int_{0}^{t} \int_{0}^{1}\left|u_{1}\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} s=\int_{0}^{t} \int_{0}^{1} \widehat{\rho f_{1}} u_{1} \mathrm{~d} x_{1} \mathrm{~d} s+ \tag{26}\\
& +\int_{0}^{1} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \mathrm{~d} x_{1}+\int_{0}^{1} \rho_{0} \ln \left(\rho_{0}\right) \mathrm{d} x_{1} . \tag{27}
\end{align*}
$$

The following theorem summarizes our first main result.
Theorem 1. Let us assume that couples $\left(\rho_{\varepsilon}, \mathbf{u}_{\varepsilon}\right), \varepsilon \in(0,1)$, satisfying

$$
\begin{aligned}
& \rho_{\varepsilon} \in L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right) \\
& \mathbf{v}_{\varepsilon} \in L^{p}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{3}\right) \cap L^{2}\left(0, T ;\left[L^{2}(\partial \Omega)\right]^{3}\right)
\end{aligned}
$$

with $\mathbf{v}_{\varepsilon}=\left(u_{1, \varepsilon}, \varepsilon u_{2, \varepsilon}, \varepsilon u_{3, \varepsilon}\right)$ and Ω being not axially symmetric, $\partial \Omega \in \mathcal{C}^{0,1}$, are weak solutions to the equations (13)-(14), complying with energy equality (15),
with initial states $\rho_{0, \varepsilon} \in L_{\Phi_{\gamma}}(\Omega)$ and $\frac{\left|\left(\rho_{\rho} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \in L^{1}(\Omega)$ satisfying

$$
\begin{align*}
\int_{S} \rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} & \rightarrow \rho_{0} \ln \left(\rho_{0}\right) \quad \text { in } L^{1}(0,1) \tag{28}\\
\int_{S} \Phi_{\gamma}\left(\rho_{0, \varepsilon}\right) \mathrm{d} x_{2} \mathrm{~d} x_{3} & \rightarrow \Phi_{\gamma}\left(\rho_{0}\right) \quad \text { in } L^{1}(0,1) \tag{29}\\
\int_{S} \frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \mathrm{~d} x_{2} \mathrm{~d} x_{3} & \rightarrow \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \quad \text { in } L^{1}(0,1), \tag{30}
\end{align*}
$$

for $\varepsilon \rightarrow 0$, and for arbitrary but fixed $\gamma>3$ and $p>3$. In addition, we assume that Navier boundary conditions (8)-(10) hold and $\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \in\left[\tilde{L}_{M}(\Omega \times(0, T))\right]^{9}$.

Further, we suppose that function P complies with conditions (3)-(7), $\mathbf{f}_{\varepsilon} \rightarrow \mathbf{f}$ in $\left[L^{\infty}(\Omega \times(0, T))\right]^{3}, h(\varepsilon)>0$ behaves like $O(\varepsilon)$, see (8), and $q>0$, see (9). Then (passing to subsequences if necessary)

$$
\begin{aligned}
& \rho_{\varepsilon} \stackrel{*}{\rightharpoonup} \rho \text { in } L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right), \\
& \rho_{\varepsilon} \rightarrow \rho \text { in } \mathcal{C}\left(\langle 0, T\rangle ;\left[W^{1, p}(\Omega)\right]^{*}\right), \\
& \omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \stackrel{N}{\rightharpoonup} \omega(\mathbf{u}) \\
& u_{1, \varepsilon} \rightharpoonup u_{1} \quad \text { in } L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right), \\
& u_{\alpha, \varepsilon} \rightarrow 0 \quad \text { in } L_{M}(\Omega \times(0, T)), \alpha=2,3 .
\end{aligned}
$$

In addition, couple $\left(\hat{\rho}, u_{1}\right)$, where $u_{1}=u_{1}\left(x_{1}\right)$ and $\hat{\rho}=\int_{S} \rho \mathrm{~d} x_{2} \mathrm{~d} x_{3}$, is a weak solution to the equations (24)-(25) and complies with the energy equality (26).

Second, the thesis is devoted to a rigorous asymptotic analysis of the threedimensional Navier-Stokes equations acting over a curved domain. We applied a similar approach as in [1] to arrive at the limit of the governing equations and energy equality. However, the deformation of the domain introduced new difficulties which had to be addressed. Finally, we overcame all the difficulties and presented the limit equations and energy equality as

$$
\begin{equation*}
\int_{0}^{T} \int_{S}\left[\hat{\rho} \partial_{t} \varphi+\hat{\rho} \hat{\mathbf{u}}^{\mathrm{T}} R^{12} \hat{\nabla} \varphi\right] \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t=0 \tag{31}
\end{equation*}
$$

for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{2} \times\langle 0, T\rangle\right)$,

$$
\begin{align*}
& \int_{0}^{T} \int_{S}\left[\hat{\rho} \hat{\mathbf{u}} \cdot \partial_{t} \psi+\hat{\rho} \hat{\mathbf{u}} \otimes \hat{\mathbf{u}}: \omega(\psi)+\hat{\rho} \hat{\nabla} \psi: R^{12}\right] \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t= \\
& =\int_{0}^{T} \int_{S} P(|\omega(\hat{\mathbf{u}})|) \omega(\hat{\mathbf{u}}): \omega(\psi) \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t-\int_{0}^{T} \int_{S} \widehat{\rho \mathbf{F}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t+ \\
& +q \int_{0}^{T} \int_{\partial S} \hat{\mathbf{u}} \cdot \psi\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} t+2 h \int_{0}^{T} \int_{S} \hat{\mathbf{u}} \cdot \psi \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} t, \tag{32}
\end{align*}
$$

for any $\psi \in \mathcal{C}_{0}^{\infty}\left(0, T ;\left[\mathcal{C}^{\infty}(\Omega)\right]^{3}\right)$ such that $\partial_{3} \psi=0, \psi \cdot \mathbf{a}_{3}=0$ in $\Omega \times(0, T)$ and $\left.\psi \cdot \mathbf{n}\right|_{\partial S \times(0, T)}=0$, and

$$
\begin{align*}
& \int_{S}\left(\hat{\rho} \frac{|\hat{\mathbf{u}}|^{2}}{2}+\hat{\rho} \ln (\hat{\rho})\right) \sqrt{d} \mathrm{~d} \hat{x}+\int_{0}^{t} \int_{S} P(|\omega(\hat{\mathbf{u}})|)|\omega(\hat{\mathbf{u}})|^{2} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+ \\
& +q \int_{0}^{t} \int_{\partial S}|\hat{\mathbf{u}}|^{2}\left|R^{12} \hat{\mathbf{n}}\right| \sqrt{d} \mathrm{~d} S \mathrm{~d} s+2 h \int_{0}^{t} \int_{S}|\hat{\mathbf{u}}|^{2} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s= \tag{33}\\
& =\int_{0}^{t} \int_{S} \widehat{\rho \mathbf{F}} \cdot \hat{\mathbf{u}} \sqrt{d} \mathrm{~d} \hat{x} \mathrm{~d} s+\int_{S} \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \sqrt{d} \mathrm{~d} \tilde{x}+\int_{S} \rho_{0} \ln \left(\rho_{0}\right) \sqrt{d} \mathrm{~d} \tilde{x} .
\end{align*}
$$

Our second main contribution is summarized in the following theorem.
Theorem 2. Let us assume that couples $\left(\rho_{\varepsilon}, \mathbf{u}_{\varepsilon}\right), \varepsilon \in(0,1)$, satisfying

$$
\begin{aligned}
& \rho_{\varepsilon} \in L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right) \\
& \mathbf{v}_{\varepsilon} \in L^{p}\left(0, T ;\left[W^{1, p}(\Omega)\right]^{3}\right) \cap L^{2}\left(0, T ;\left[L^{2}(\partial \Omega)\right]^{3}\right)
\end{aligned}
$$

with $\mathbf{v}_{\varepsilon}=\left(\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{1, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{2, \varepsilon}, \mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{3, \varepsilon}\right)$ for arbitrary but fixed $\gamma>3$ and $p>3$, are weak solutions to the transformed equations (21)-(22), complying with energy equality (23), with initial states $\rho_{0, \varepsilon} \in L_{\Phi_{\gamma}}(\Omega)$ and $\frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \sqrt{d_{\varepsilon}} \in L^{1}(\Omega)$ satisfying

$$
\begin{align*}
& \int_{0}^{1} \rho_{0, \varepsilon} \ln \left(\rho_{0, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \rho_{0} \ln \left(\rho_{0}\right) \sqrt{d} \quad \text { in } L^{1}(S), \tag{34}\\
& \int_{0}^{1} \Phi_{\gamma}\left(\rho_{0, \varepsilon}\right) \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \Phi_{\gamma}\left(\rho_{0}\right) \sqrt{d} \quad \text { in } L^{1}(S), \gamma>3, \tag{35}\\
& \int_{0}^{1} \frac{\left|\left(\rho_{\varepsilon} \mathbf{u}_{\varepsilon}\right)_{0}\right|^{2}}{2 \rho_{0, \varepsilon}} \sqrt{d_{\varepsilon}} \mathrm{d} x_{3} \rightarrow \frac{\left|(\rho \mathbf{u})_{0}\right|^{2}}{2 \rho_{0}} \sqrt{d} \quad \text { in } L^{1}(S), \tag{36}
\end{align*}
$$

for $\varepsilon \rightarrow 0$. In addition, we assume that Navier boundary conditions (16)-(18) hold and $\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \in\left[\tilde{L}_{M}(\Omega \times(0, T))\right]^{9}$.

Further, we suppose that function P complies with conditions (3)-(7), $\mathbf{f}_{\varepsilon} \rightarrow \mathbf{f}$ in $\left[L^{\infty}(\Omega \times(0, T))\right]^{3}$ and $\mathbf{f}_{\varepsilon} \cdot \mathbf{g}^{j, \varepsilon} \in\left[L^{\infty}(\Omega \times(0, T))\right]^{3}, j=1,2,3, h(\varepsilon)>0$ behaves like $O(\varepsilon), q>0$ and covariant basis $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\} \subset\left[L^{\infty}(\Omega)\right]^{3}$ satisfies conditions $\partial_{\alpha} \mathbf{a}_{j}$ and $\partial_{\alpha \beta}^{2} \mathbf{a}_{3} \in\left[L^{\infty}(\Omega)\right]^{3}$, where $\alpha, \beta=1,2$ and $j=1,2,3$. Then (passing to subsequences if necessary)

$$
\begin{gathered}
\rho_{\varepsilon} \stackrel{*}{\rightharpoonup} \rho \text { in } L^{\infty}\left(0, T ; L_{\Phi_{\gamma}}(\Omega)\right), \\
\rho_{\varepsilon} \rightarrow \rho \text { in } \mathcal{C}\left(\langle 0, T\rangle ;\left[W^{1} L_{\Phi_{\gamma}}(\Omega)\right]^{*}\right), \\
\omega_{\varepsilon}\left(\mathbf{u}_{\varepsilon}\right) \stackrel{N}{\rightharpoonup} \omega(\mathbf{u}) \\
\mathbf{u}_{\varepsilon} \cdot \mathbf{g}_{\alpha, \varepsilon} \rightharpoonup \mathbf{u} \cdot \mathbf{a}_{\alpha} \quad \text { in } L^{p}\left(0, T ; W^{1, p}(\Omega)\right) \cap L^{2}\left(0, T ; L^{2}(\partial \Omega)\right), \\
\alpha=1,2 \\
\mathbf{u}_{\varepsilon} \cdot \mathbf{a}_{3} \rightarrow 0 \quad \text { in } L_{M}(\Omega \times(0, T)) .
\end{gathered}
$$

In addition, couple $(\hat{\rho}, \hat{\mathbf{u}})$, where $\hat{\rho}=\int_{0}^{1} \rho \mathrm{~d} x_{3}$ and $\hat{\mathbf{u}}=\left(\mathbf{u} \cdot \mathbf{a}_{1}\right) \mathbf{a}^{1}+\left(\mathbf{u} \cdot \mathbf{a}_{2}\right) \mathbf{a}^{2}$, $\left.\hat{\mathbf{u}} \cdot \hat{\mathbf{n}}\right|_{\partial S \times(0, T)}=0$, is a weak solution to the equations (31)-(32) and complies with the energy equality (33).

List of publications

- Andrášik, R., VodÁk, R.: Compressible nonlinearly viscous fluids: Asymptotic analysis in a 3D curved domain, J. Math. Fluid Mech. 21: 13 (2019), https://doi.org/10.1007/ s00021-019-0412-y.
- Favilli, F., Bíl, M., Sedoník, J., Andrášik, R., Kasal, P., Agreiter, A., Streifeneder, T.: Application of KDE+ software to identify collective risk hotspots of ungulate-vehicle collisions in South Tyrol, Northern Italy, European Journal of Wildlife Research 64(5), 59 (2018).
- Andrášik, R., VodÁk, R.: Rigorous derivation of a 1D model from the 3D non-steady Navier-Stokes equations for compressible nonlinearly viscous fluids, Electronic Journal of Differential Equations 114, 1 - 21 (2018).
- Bíl, M., Dobiáš, M., Andrášik, R., BÍlová, M., Hejna, P.: Cycling fatalities: When a helmet is useless and when it might save your life, Safety Science 105, 71 - 76 (2018).
- Bartonička, T., Andrášik, R., Dul’a, M., Sedoník, J., Bíl, M.: Identification of Local Factors Causing Clustering of Animal-Vehicle Collisions on Roads, Journal of Wildlife Management 82(5), 940 - 947 (2018).
- Bíl, M., Andrášik, R., Bartonička, T., Křivánková, Z., Sedoník, J.: An evaluation of odor repellent effectivness in prevention of wildlife-vehicle collisions, Journal of Environmental Management 205, 209 - 214 (2018).
- Bíl, M., Andrášik, R., Nezval, V., Bílová, M.: Identifying locations along railway networks with the highest tree fall hazard, Applied Geography 87, 45 - 53 (2017).
- Juríčková, L., Ivanová, K., Dobiáš, M., Andrášik, R., Ondra, P.: Manner of death of older people with regard to blood alcohol concentration, Central European Journal of Public Health 25(4), 266 - 270 (2017).
- Bíl, M., Kubeček, J., Sedoník, J., Andrášik, R.: Srazenazver.cz: A system for evidence of animal-vehicle collisions along transportation networks, Biological Conservation 213, 167 - 174 (2017).
- Andrášik, R., BÍL, M.: Efficient Road Geometry Identification from Digital Vector Data, Journal of Geographical Systems 18(3), 249 - 264 (2016).
- Bíl, M., Bílová, M., Dobiáš, M., Andrášik, R.: Circumstances and Causes of Fatal Cycling Crashes in the Czech Republic, Traffic Injury Prevention 17(4), 394 - 399 (2016).
- Bíl, M., Andrášik, R., Sedoník, J., Svoboda, T.: The KDE+ software: a tool for effective identification and ranking of animal-vehicle collision hotspots along networks, Landscape Ecology 31(2), 231 - 237 (2016).
- Bíl, M., Andrášik, R., Zahradníček, P., Kubeček, J., Sedoník, J., Štěpánek, P.: Total Water Content Thresholds for Shallow Landslides, Outer Western Carpathians, Landslides 13, 337 - 347 (2016).
- Bíl, M., Andrášik, R., Kubeček, J.: How comfortable are your cycling tracks? A new method for objective bicycle vibration measurement, Transportation Research Part C: Emerging Technologies 56, 415 - 425 (2015).
- AndrášIk R.: Practical Aspects of Primal-Dual Nonlinear Rescaling Method with Dynamic Scaling Parameter Update, Advances in Electrical and Electronic Engineering $12(2), 144-153$ (2014).
- Bíl M., Kubeček J., Andrášik R.: An epidemiological approach to determining the risk of road damage due to landslides, Natural Hazards 73(3), 1323 - 1335 (2014).
- Andrášík R.: Nonlinear rescaling method and self-concordant functions, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 52(2), 5-19 (2013).
- Andrášík R., Bíl M., Janoška Z., Valentová V.: Identification of curves and straight sections on road network from digital vector data, Transactions of Transport Sciences 6(2), 73 - 80 (2013).
- BÍl M., Andrášik R., Janoška Z.: Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation, Accident Analysis and Prevention 55, 265 - 273 (2013).

List of conferences

- Roadkill and wildlife-vehicle collisions on transportation infrastructure: Causes, outcomes and mitigation, Brno (CZ): "WVC hotspots with large mammals: Which factors make them dangerous?", November 15, 2018.
- ICSC 2018 International Cycling Safety Conference, Barcelona (ES): "An analysis of bicycle crash time-series, Czechia, 1995-2017" (poster), October 10 - 11, 2018.
- IENE 2018 International Conference, Eindhoven (NL): "Animal-vehicle collisions: Improvement of regression models with the use of cluster analysis", "Which factors are different between WVC hotspots with large mammals and randomly selected sites along roads?", "KDE+ workshop: new approaches to WVC hotspot identification" (workshop co-organizer), September 10 - 14, 2018.
- Olomoucian Days of Applied Mathematics ODAM 2017, Olomouc (CZ): "Compressible nonlinearly viscous fluids: Asymptotic analysis in a 3D curved domain", May 31 - June 2, 2017.
- International Conference on Ecology and Transportation ICOET 2017, Salt Lake City (US): "What are the traffic intensities of crashes with animals?" (poster), May $14-18$, 2017.
- European Safety and Reliability Conference ESREL 2016, Glasgow (UK): "How (not) to work with small probabilities: Evaluating the individual risk of railway transport", "Traffic accident hotspots: Identifying the boundary between the signal and the noise", September 25-29, 2016.
- IENE 2016 International Conference, Lyon (FR): "A comparison of certain methods for spatial analysis of animal-vehicle collisions", "A workshop on KDE+: A method for identification of animal-vehicle-collision hotspots" (workshop co-organizer), August 30 September 2, 2016.
- EUSTO Final International Conference, Dresden (DE): "Vulnerability of network systems", Dresden, May $26-27,2016$.
- European Geosciences Union General Assembly 2016, Vienna (AT): "RUPOK - a webbased application for assessment of impacts of natural hazards on the transportation infrastructure" (poster), April $17-22,2016$.
- Mathematics and Computer Science in Practice: Potential and Reality, Prague (CZ), December 9 - 11, 2015 (participant).
- European Safety and Reliability Conference ESREL 2015, Zürich (CH): "Traffic accidents: Random or pattern occurrence?", September 7 - 10, 2015.
- Young Researchers Seminar 2015, Rome (IT): "KDE+ method: Clustering of traffic accidents", June 17 - 19, 2015.
- ICSC 2014 International Cycling Safety Conference, Göteborg (SE): "Fatal cycling accidents in the Czech Republic: Factors and causes of death" (poster), November 18 - 19, 2014.
- IENE 2014 International Conference, Malmö (SE): "A new method for identification of clusters of animal-vehicle collisions on road network" (poster, awarded for the best poster), September 15 - 19, 2014.
- Particles in Flows, Summer School and Workshop, Prague (CZ), August 25 - 31, 2014 (participant).
- International Symposium on Modern Mathematics and Mechanics in Olomouc, Olomouc (CZ), June 23 - 27, 2014 (co-organizer).
- Modern mathematical methods in engineering (3mi), Horní Lomná (CZ): "Inverse problems with application to the derivative reconstruction and the inverse Laplace transform from noisy data", June 2-4, 2014.
- Equadiff 2013, Prague (CZ): "Primal-dual nonlinear rescaling method with dynamic scaling parameter update for optimization arising from 3D contact problems", August 26 - 30, 2013.
- Olomoucian Days of Applied Mathematics ODAM 2013, Olomouc (CZ): "Nonlinear rescaling method and self-concordant functions", June 12 - 14, 2013.
- Modern mathematical methods in engineering (3mi), Horní Lomná (CZ): "Primal-dual nonlinear rescaling method with dynamic scaling parameter update for convex optimization problems", June 3-5, 2013.
- Mathematical Theory in Fluid Mechanics, the 13th School, Kácov (CZ), May 24 - 31, 2013 (participant).

References

[1] Andrášik, R., VodÁk, R.: Rigorous derivation of a 1D model from the 3D non-steady Navier-Stokes equations for compressible nonlinearly viscous fluids, Electron. J. Differential Equations 114, 1 - 21 (2018).
[2] Andrášík, R., Vodák, R.: Compressible nonlinearly viscous fluids: Asymptotic analysis in a 3D curved domain, J. Math. Fluid Mech. 21: 13 (2019), https://doi.org/10.1007/ s00021-019-0412-y.
[3] Bella, P., Feireisl, E., NovotnÝ, A.: Dimension reduction for compressible viscous fluids, Acta Appl. Math. 134, 111 - 121 (2014).
[4] Blouza, A., Le Dret, H.: Existence and uniqueness for the linear Koiter model for shells with little regularity, Q. Appl. Math. 57(2), 317 - 337 (1999).
[5] Březina, J., Kreml, O., Mácha, V.: Dimension reduction for the full Navier-StokesFourier system, J. Math. Fluid Mech. 19, 659 - 683 (2017).
[6] Ciarlet, P. G.: Mathematical Elasticity Volume II: Theory of plates, Studies in Mathematics and its Applications 29, North-Holland Publishing Co., Amsterdam (2000).
[7] Ciarlet, P. G.: Mathematical Elasticity Volume III: Theory of shells, Studies in Mathematics and its Applications 29, North-Holland Publishing Co., Amsterdam (2000).
[8] Ducomet, B., Nečasová, Š., Pokorný, M., Rodríguez-Bellido, M. A.: Derivation of the Navier-Stokes-Poisson System with Radiation for an Accretion Disk, Journal of Mathematical Fluid Mechanics 20(2), 667 - 719 (2018).
[9] Durán, R. G., Muschietti, M. A.: The Korn inequality for Jones domains, Electronic Journal of Differential Equations 127, 1 - 10 (2004).
[10] Feireisl, E., NovotnÝ, A., Petzeltová, H.: On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid, Math. Methods in the Appl. Sci. 11(12), 1045 - 1073 (2002).
[11] Feireisl, E.: Dynamics of Viscous Compressible Fluids, Exford Lecture Series in Mathematics and its Applications 26, Oxford: Oxford University Press (2004).
[12] Iftimie, D., Raugel, G., Sell, G. R.: Navier-Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J. 56(3), 1083 - 1156 (2007).
[13] Jurak, M., Tambača, J.: Derivation and justification of a curved rod model, Math. Models and Methods Appl. Sci. 9(7), 991 - 1016 (1999).
[14] Jurak, M., Tambača, J.: Linear curved rod model. General curve, Math. Models and Methods Appl. Sci. 11(7), 1239 - 1252 (2001).
[15] Krasnosel'skii, M. A., Rutickii, J. B.: Convex functions and Orlicz spaces, Noordhoff, Groningen (1961).
[16] Kufner, A., John, O., Fučík, S.: Function spaces, Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Leyden: Noordhoff International Publishing, Prague: Publishing House of the Czechoslovak Academy of Sciences, XV (1977).
[17] Lions, P.-L.: Mathematical topics in fluid mechanics. Volume 2: Compressible models, Oxford Lecture Series in Mathematics and its Applications 10, Oxford: Clarendon Press, XIV (1998).
[18] Mamontov, A. E.: Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity I, Siberian Mathematical Journal 40(2), 351 - 362 (1999).
[19] Mamontov, A. E.: Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinearly viscous fluid II. I, Siberian Mathematical Journal $40(3), 541$ - 555 (1999).
[20] Maltese, D., Novotný, A.: Compressible Navier-Stokes equations on thin domains, J. Math. Fluid Mech. 16, 571 - 594 (2014).
[21] Nazarov, S. A.: Asymptotic solution of the Navier-Stokes problem on the flow of a thin layer of fluid, Sib. Math. J. 31(2), 296 - 307 (1990).
[22] Novotný, A., Straškraba, I.: Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications 27, Oxford: Oxford University Press, XX (2004).
[23] Simon, J.: Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pura Appl., IV. Ser. 146, $65-96$ (1987).
[24] Tiba, D., VodÁk, R.: A general asymptotic model for Lipschitzian curved rods, Adv. Math. Sci. Appl. 15(1), 137 - 198 (2005).
[25] VodÁk, R.: Existence řešení Navierových-Stokesových rovnic pro proudění izotermálních stlačitelných tekutin a jeho kvalitativní vlastnosti, Dissertation thesis, defended at Palacký University Olomouc (2003).
[26] VodÁk, R.: Asymptotic analysis of three dimensional Navier-Stokes equations for compressible nonlinearly viscous fluids, Dynamics of PDE 5(4), 299 - 311 (2008).
[27] VodÁk, R.: Asymptotic analysis of steady and nonsteady Navier-Stokes equations for barotropic compressible flow, Acta Appl. Math. 110, 991 - 1009 (2010).
[28] VodÁk, R.: Justification of asymptotic two-dimensional model for steady Navier-Stokes equations for incompressible flow, Acta Appl. Math. 112, 21 - 33 (2010).

