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Chapter 1

Introduction

Governing equations representing mathematical description of continuum me-
chanics have often three spatial dimensions and one temporal dimension. How-
ever, their analytical solution is usually unattainable, and numerical approx-
imation of the solution unduly complicated and computationally demanding.
Therefore, these models are frequently simplified in various ways. One option
of a simplification is a reduction of the number of spatial dimensions. We fo-
cused on nonsteady Navier-Stokes equations for compressible nonlinearly viscous
fluids in a three-dimensional domain. These equations need a simplification, when
possible, to be effectively solved.

The existence of weak solutions for three-dimensional models of fluid dy-
namics has already been studied. For instance, Pierre-Louis Lions proved the
global solvability of Navier-Stokes equations for compressible linearly viscous flu-
ids [17]. Further, Eduard Feireisl extensively studied global existence theory for
the full Navier-Stokes-Fourier system [11]. A comprehensive overview on results
achieved in the case of Newtonian compressible fluids is given in [22]. Concerning
non-Newtonian fluids, Mamontov [18, 19] proved the existence of a global weak
solution for compressible Navier-Stokes equations. This knowledge allows us to
step forward in finding the solution (or at least its approximation). One possi-
bility to achieve that is by performing a dimension reduction of the equations.
Without the proven existence of a weak solution, it would be pointless to study

the asymptotic behavior of the equations.



An asymptotic analysis was performed in linear elasticity for rods and beams
[13, 14, 24], and for plates and shells [1, 6, 7], at first. Subsequently, rigor-
ous derivation of lower-dimensional models was done also for fluids. An asymp-
totic analysis of three-dimensional steady Navier-Stokes equations based on the
asymptotic expansion was presented in [21]. For comparison, the same result
was achieved directly in [28] without the need to apply any asymptotic expan-
sion. Regarding nonsteady Navier-Stokes equations for incompressible fluids,
they were simplified into a lower-dimensional model in [12]. Further, a three-
dimensional system for barotropic Navier-Stokes equations was asymptotically
analyzed and the resulting one-dimensional and two-dimensional models were
presented in [27] and [20], respectively. It was also shown that weak solutions of
both three-dimensional Navier-Stokes equations for barotropic flows and three-
dimensional full Navier-Stokes-Fourier equations tend to strong solutions of the
respective one-dimensional system as the three-dimensional model tends to the
one-dimensional model [3, 5]. Recently, Ducomet et al. [3] presented a rigorous
derivation of a two-dimensional model from the three-dimensional compressible
barotropic Navier-Stokes-Poisson system with radiation.

New difficulties arise by considering non-Newtonian fluids (i. e. fluids having
nonlinear viscous stress tensor). This problem was tackled for the first time
in [26], where a two-dimensional model was derived by a suitable scaling from
nonsteady Navier-Stokes equations for compressible fluids. Our aim is to extend
the current framework by dealing with nonsteady Navier-Stokes equations for
compressible nonlinearly viscous fluids.

We study the dynamics of a compressible fluid in a thin pipe Q. C R? (see
Chapter 3) and in a curved three-dimensional domain Q. with two dominant
dimensions (see Chapter 4). The motion of a compressible fluid is described by
its velocity u and density p. The time evolution of u and p is governed by the

continuity and momentum equations
Op + div (pu) = 0, (1.1)

O (pu) +div(pu®@u) + Vp =div S+ pf in Q2 x (0,7), (1.2)
9



where T > 0, p is the pressure, S stands for the viscous stress tensor and f
represents the external forces [15].
Let us suppose that the fluid is isothermal and non-Newtonian. It means that

(without the loss of generality)
S = P(|Du[)Du, p=p.

Similarly as in [20], we assume that the function P satisfies, for any U, V
belonging to Orlicz class [Ly;(Q)]° (see Definition 2.9, in section 2.3), the following

five conditions

/PMWWsz/dﬂwnw7 (1.3)
Q Q

| @Qupy = PV @ - V) do 2 0 (1.4)
Q
P(z)|z|? is a convex function for z > 0, (1.5)

/QN(P(|U])|U]) dr < C (1 +/QM(]U|) dx) , (1.6)

P(U = V(U = AV) X P(JU|)U, for A — 0. (1.7)

For example, function

satisfies all conditions (1.3)-(1.7).

First, we introduce Orlicz spaces and Young functions with a logarithmic
and an exponential growth (see Chapter 2), because this knowledge is neces-
sary to prove our main results. Additionally, Chapter 2 summarizes the basic
notation used throughout the thesis. Afterwards, we study the dynamics of a
compressible fluid in thin domains with only one dominant dimension. In Chap-
ter 3, a rigorous derivation of a one-dimensional model from the three-dimensional
Navier-Stokes equations is presented. Our first main result, concerning the one-

dimensional model, is summarized in Theorem 3.4 (section 3.4). Subsequently, we

10



deal with nonsteady Navier-Stokes equations for compressible nonlinearly viscous
fluids in a deformed three-dimensional domain. Chapter 4 focuses on a rigorous
derivation of a two-dimensional model. Our second main result, concerning the

two-dimensional model in a curved domain, is stated in Theorem 4.3 (section 4.5).

11



Chapter 2

Preliminaries

The basic notation is summarized in this section. Afterwards, we pay our
attention to Young functions and their properties. Subsequently, we give a brief
introduction to Orlicz spaces. More information and details about the Orlicz
spaces can be found in [16]. In addition, we focus on a special class of Young
functions with an exponential growth and their complementary functions, be-
cause the theory concerning these Young functions and respective Orlicz spaces

is needed in the subsequent sections.

2.1 Basic notation

We adopt the notation ”-” and ”:” for the scalar product of vectors and tensors,
respectively, and ”"®” for the tensor product. The Cartesian product of two sets
is denoted by ” x” as well as the cross product of two vectors without danger of
confusion. Symbol | - | stands for either the Lebesgue measure of a measurable
set or the Euclidean norm defined as |Z| = \/m , where Z € R™" m, n € N.
We use Einstein summation convention for notational brevity. Symbols C' and
C,, n € N, stand for unspecified positive constants.

We emphasize the connection of a function to €. and €. by subscript e,

-7 "7, respectively. On the other hand, objects without

and symbols 77”7 and ”

- ~

symbol ” 77 or 777 are connected to the referential domain € (see sections 3.1

and 4.1). Since ¢ is always positive, we write only ¢ — 0 instead of ¢ — 07 for

12



simplicity. Symbols D, D and D represent a symmetric part of the gradient, i. e.
Dyju. = 29y j + Ojie;), Dijae = 2(Oiie j + Ojiic ;) and Dyju = L (dyu; + 0ju;).
Let @ C R, n € N, be a bounded domain. We denote by 9@ the boundary
of Q. Bounded domain () is called a Lipschitz domain if its boundary can be
expressed by Lipschitz continuous functions (see [10] for the precise definition).

We write 0Q € C%!. The following three options of writing a matrice are used:

11 Q12 Qi3
1 .2 .3
A:(ava7a): a1 a22 a3 )
a31r 32 G433

where a/ = (a1, asj, az;)T. All vectors x € R? in the text are column vectors.
We employ the standard notation of the following function spaces and their

norms:

Spaces of continuously differentiable

functions up to order m = C™(@Q), |- lem (o)
Lebesgue spaces - LP@Q), |- I

Sobolev spaces - W@Q), || - llip

Duals of W1P(Q) - [Wlp( QN - ey
Orlicz spaces - ( ), I lze@
Sobolev-Orlicz spaces - Ls(Q), || - HWqu)(Q)
Duals of Wchb(Q) - [Wl[@(Q)]*» -1l W'La(Q)]*
Bochner spaces — LP(O T X), || - |zeo,r:x),

|
(<7 >7 )7 || ||Cm(0T> X)

where Q C R", n € N, is a bounded domain, p € (1, +00) U {+o0}, m € NU{0}
and X is a Banach space. In addition, Ci*(Q) denotes spaces of continuously
differentiable functions up to order m, m € N U {0}, with compact support.
Naturally, C°(Q) = C(Q) is the space of continuous functions. Next, we denote the
space of smooth and compactly supported functions endowed with the inductive

limit topology by D(Q). Its dual space is denoted by D*(Q).

13



2.2 Young functions and their properties

A generalization of Lebesgue spaces was the motivation for the concept of

Young functions and Orlicz spaces. A function u defined on ) C R™ belongs to
Q) if
/ B(ju(z))) do = / u(@)]? de < +oo,
Q Q

where ®(z) = zP. It is possible to substitute the function ® with a more general

function called a Young function.

Definition 2.1. ® is a Young function, if there exists a function ¢ such that

(ii) ¢(s) > 0 for s > 0,
(ili) ¢ is right continuous,
(iv) ¢ is non-decreasing,

(v) lim ¢(s) = +o0.

s——+00

Definition 2.2. Let ¢ be the first derivative of a Young function ®, which means

that

The function ¥ is called the complementary function to the Young function
o if
v = [ o) ds
0

where 1(z) = sup{s,p(s) < z}, z > 0. If there exists an inversion of ¢, then
="
14



Remark 2.3. If function ¥ is a complementary function to ®, then also ® is
complementary to . In addition, ¥ is a Young function. Therefore, we can call

®, U as a pair of complementary Young functions.

There is a special class of Young functions which plays an important role in

the theory of Orlicz spaces.

Definition 2.4. A Young function ® satisfies the As-condition, if there exist
C' > 0 and zy > 0 such that

D(22) < CP(2), Vz> z.
If z9 = 0, we say that ® satisfies the global As-condition (we write & € Ay).

Sometimes, the explicit formula for a Young function is unknown and only its

complementary function can be used to decide, whether a Young function belongs

to AQ.

Theorem 2.5. A Young function ® satisfies the As-condition if and only if there
exist C' > 0 and zy > 0 such that

1
< — >
U(z) < 20\11(02), Vz > 2z,

where VU is the complementary function to P.

Proof: see [10], page 139.

Two special types of ordering can be introduced for Young functions. The

first ordering concerns the equivalence property of Young functions.

Definition 2.6. Let ®; and ®, be two Young functions. If there exist C' > 0
and zg > 0 such that
D1(2) < Do(C2), Vz> z,

then we write

D < Py
If &; < &, and also 5 < &, we say that &; and $, are equivalent.

15



The second ordering of Young functions is useful for the embedding theorem

of Orlicz spaces (see Theorem 2.20).
Definition 2.7. Let ®; and ®5 be two Young functions. If

o 9i(2)
1 =
A 00 =

for any A > 0, then we write

O, << bs.

Lemma 2.8. Let ®; and Oy be two Young functions, Wy and Wy be the respective
complementary functions. If &1 << Pq, then Wi > Vs,

Proof: see [15], page 114.

2.3 Orlicz spaces

Orlicz spaces generalize the concept of Lebesgue spaces. Prior to the definition

of Orlicz spaces, we define Orlicz classes.

Definition 2.9. Let ® be a Young function and @ C R", n € N, is an open
subset. We say that u € Le(Q), if

/ B(|u(x)|)de < +oo.
Q

The set Lgy(Q) is called an Orlicz class.

We remark that the equality of elements in f)¢(Q) is the equality almost
everywhere (similarly as in Lebesgue spaces) and the elements of Le(Q) are still
called ”functions” without a confusion. The following two theorems are useful to

obtain a better notion about Orlicz classes.

Theorem 2.10. Let |Q| < +oo and u € L'(Q). Then there exists a Young
function ® such that u € Le(Q).

16



Proof: see [10], page 131.

It follows from Theorem 2.10 that L'(Q) can be viewed as the union of all
Orlicz classes. The hierarchy of Orlicz classes is given by their respective Young

functions.

Theorem 2.11. Let us assume that |Q| < +o0o and ®,, Oy are two Young func-
tions. It holds that

E‘I’2 (Q) C ‘E(I’l (Q)
if and only if
Di(2) < CDPy(z2), Vz > 2z,

for some C' > 0 and zy > 0.

Proof: see [10], page 140.

An Orlicz class is only a convex subset of L'(Q) (see [10], page 130), in general.

Therefore, we define Orlicz spaces.

Definition 2.12. Let v : Q@ — R, @ C R", n € N, be a measurable function
and let ®, U be a pair of complementary Young functions. The set Lqg(Q) of all
u such that |[u||r,@) < +oo is called the Orlicz space. The positive number

lullLo(q) is defined as

Illzaier = sup | ue)o(e)ide
where the supremum is taken over all functions v € EW(Q) satisfying condition
J, W (jo(@))de < 1.

Theorem 2.13. The Orlicz space Ly(Q) is a Banach space and || - || 1, (q) is the

norm on Le(Q).

Proof: see [10], pages 145 and 156.

Orlicz spaces can be alternatively defined as follows.

17



Definition 2.14. Let ® be a Young function. The space Eg(Q) is defined as the
closure of the set of all bounded measurable functions defined on ) with respect

to the norm || - ||z, (@)

In general, Definitions 2.12 and 2.14 are not equivalent. They coincide if and

only if the As-condition holds (see Definition 2.4).

Theorem 2.15. Let ® be a Young function. It holds that

Es(Q) € La(Q) € La(Q).

In addition, ® satisfies the Ag-condition if and only if

Es(Q) = La(Q) = La(Q).

Proof: see [10], page 164.

Theorem 2.16. Let ® and V be a pair of Young functions. In general, it holds
that Ly (Q) = [E«(Q)]".

Proof: see [10], pages 169 and 171.

The hierarchy of Orlicz spaces is clarified in the following statements. It

depends on the respective Young functions.

Theorem 2.17. Let us suppose that ®; and ®5 are Young functions. Then
Lo, (Q) — Le,(Q) if and only if &1 = Dy.

Proof: see [10], pages 185 and 187.

Remark 2.18. We note that the inclusion Le, (Q) C Le,(Q) is equivalent to the
embedding Lg, (Q) < Le,(Q) in case of Orlicz spaces (see [16], page 187).

Corollary 2.19. Young functions ®; and ®, are equivalent if and only if

L<I>1 (Q) = Lq’Q (Q)

18



Proof: The assertion is a consequence of Definition 2.6, Theorem 2.17 and

Remark 2.18.

Theorem 2.20. Let &y and $y be Young functions. If &1 == Oy, then

L‘IH (Q) — E<I>2 (Q)

Proof: see [10], page 189.

Besides the strong convergence in the Orlicz space Lg(Q) given in terms of

the norm || - ||1,(q), we can also define the Ey-weak convergence.

Definition 2.21. A sequence {u,}% C Lo(Q) converges Eg-weakly to u €
Le(Q), if
lim [ (up(z) —u(x))v(x)de =0, Yo e Eg(Q).

n——+o00 Q

. N
We write u,, — u.

Remark 2.22. It follows from Theorem 2.16 that the weak-* convergence in
Le(Q) is equivalent to the Ey-weak convergence. Therefore, the boundedness
of sequence {u,}2] in Lg(Q) implies the existence of Ey-weakly convergent

subsequence of {u, }.t29.

Frequently, we are not interested in functions only but we are concerned also
with their derivatives. Therefore, we define Sobolev-Orlicz spaces. The definition
of the Sobolev-Orlicz spaces is similar to the definition of Sobolev spaces, which

were constructed from Lebesgue spaces.

Definition 2.23. The Sobolev-Orlicz space W!Lg(Q) is the set of all func-

tions w such that

lullwiza@ = [ D 1Dull3, g < +oo,

o,al<1

19



where D* denotes distributional derivatives, and || - [[w1r,(@) is the norm of
W'Le(Q). Further, WlEs(Q) and WiLs(Q) are the closures of C*°(Q) and
C5°(Q), respectively, with respect to || - |lwizq(0)-

Finally, we present inequalities which are necessary for deriving estimates in

the subsequent sections.

Theorem 2.24. (Hélder’s inequality)
Let u € Lo(Q) and v € Ly(Q), where ®, U is a pair of complementary Young
functions. Then uv € LY(Q) and

/ u(@)o(@)ldz < lullza@llvlze@. (2.1)

Proof: see [10], page 152.

Theorem 2.25. (Young’s inequality)
Let a, b € (0,400) and ®, U be a complementary Young functions. It holds that

ab < ®(a) + VU (b). (2.2)
Proof: see [10], page 65.

Corollary 2.26. Assume that ®, U is a pair of complemetary Young functions.

Further, we suppose that u € Le(Q) and v € Ly(Q). Then

/|u |da:</Q(I>(|u(x)|) dx+/Q\I/(|v(x)|) dx (2.3)

and therefore uv € L'(Q).

Proof: see [16], page 136.

20



Corollary 2.27. Let u € Lg(Q). It holds that
oo < /Q B(Ju(x) )z + 1. (2.4)

Hence, Le(Q) C Lo (Q).

Proof: see [10], page 145.

Theorem 2.28. (Jensen’s inequality)
Let us assume that ® : R — R is a convex function and «o(z) is positive almost

everywhere in Q C R", n € N. Then

o (fQ a(x)u(m)dx) _ fQ a(z)®(u(z))dx 2.5)

fQ a(z)dz - fQ a(x)dx

for any non-negative function u : QQ — R supposing that all the integrals in (2.5)

are meaningful.

Proof: see [16], page 133.

2.4 Special Young functions

We focus on Young functions with a logarithmic or an exponential growth.
These Young functions are used in the following sections to analyze the asymp-

totic behavior of solutions to the equations (1.1) and (1.2).

Definition 2.29. Let us define Young functions ®.(z) = (1 + 2)In” (1 + 2),
v > 1, and ®1(2) = zIn (2 + 1). Functions V., v > 1, denote the complementary
functions to ®,, v > 1. Subsequently, we define M(z) = e¢* — z — 1 and its
complementary function N(z) = (1+2)In(1+z) —z. Further, we denote ®4,(2),

1/«

a € (1,+00), the Young functions with growth zIn"/*z, 2 > 2, > 0, and their

complementary functions ¥y ,,(2).

21



It is apparent that ®.(z) = O(zIn" z), v > 0, and M (z) = O(e?*). Further-
more, ¥, (2) = O(e*""), v > 0, and N(z) = O(zInz). Hence, pairs ®(z) and
N(z), and ¥y(z) and M (z) are equivalent.

Lemma 2.30. Functions ®1(z) and N(z) are equivalent Young functions. Sim-
ilarly, Wi(z) and M(2) are also equivalent Young functions, because they are

complementary functions to ®1(z) and N(z), respectively. Therefore, Le, (Q) =
Ln(Q) and also Ly, (Q) = Lu(Q).

Proof: Tt is sufficient to prove that ®;(z) and N(z) are equivalent. The rest of
the statement is a direct consequence of Lemma 2.8 and Corollary 2.19. Since

z > 1In(1+ z), for all z > 0, we get
N(z)=®1(2) +In(l 4+ 2) — 2 < Py(2), Vz2>0.
On the other hand,
P(z) < P1(2) +In(1 +22) + 2(In(1 4+ 22) — 2) <
< 2zIn(1 + 22) + In(1 + 22) — 22 = N(22), Vz>0.5(e® — 1),

because In(1 + 2z) > 2, for all z > 0.5(e? — 1). O

Remark 2.31. Since O(z) < O(zIn? 2) < O(2F) < O(e*'""), for any v > 0 and
p > 2, it stems from Theorem 2.17 that

L¥(Q) = Lw,(Q) = L(Q) = La, (Q) = L1(Q).

By applying a similar approach as in [25], we prove the following two proper-

ties of Young functions with a logarithmic growth.
Lemma 2.32. Young functions ®,, v > 1, satisfy the global Ay-condition.
Proof: Directly, from the properties of logarithmic functions, we have
D,(22) = (1422)In"(1+22) <2(1+2)In"(1 +2)* <
<214+ 2)In" (14 2) =277, (2), Vy > 1.

22



Similarly for ®,, we get

®1(22) = 2zIn(1 +22) < 2zIn(1 4+ 2)* <
< 4zIn(l+ z) = 49, (z).

O

Lemma 2.33. Let us suppose that v, > v > 1, then ®,, =~ ., and hence also
U, << ,,.

Proof: We define C' € R such that C =0, if v, =1, and C =1, if vy > 1. Let

us calculate the limit from Definition 2.7:

. D (2) , (C+2)In" (1 + 2)
lim — 2
sotoe B, (A2) | soee (1+ Az) I (1 + Az)

In"(1+ 2)

1
< — =
= X2t (In A + In(1 + 2))

for A € (0,1) and

el
z=to0 @ (Az)  z=too (14 A2) In™?(1 + Az)
ga!
< In" (1 + 2) o
T z—+oo ln”(l + Z)
for A > 1. OJ

Remark 2.34. It follows from Theorem 2.20 and Lemmas 2.32 and 2.33 that:

e Ifu € Ly, (Q), v > 1, then [, ®,(Ju(z)]) dz < +oo, because the Ap-
condition holds and thus L (Q) = E@W(Q).

o Ifue Ly (Q),y>1,then fQ U (Ju(z)|) de < +oo, for all v/ > v, because
U, = W and therefore Ly, (Q) — Eg_,(Q) C I/\I;’Y,(Q)
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Chapter 3

Derivation of a 1D model

We focus on derivation of a one-dimensional model from equations (1.1)-(1.2)
under Navier boundary conditions [1]. The problem in question is described in
detail in section 3.1. Subsequently, the transformation of governing equations
and energy equality is performed in section 3.2. Finally, section 3.3 contains the

proof of our main result, which is stated in section 3.4.

3.1 Statement of the problem

We study the motion of a compressible fluid in a thin pipe. The dynamics of
a compressible fluid is governed by equations (1.1)-(1.2). We employ notation u.
and p. for the velocity and the density, respectively, in equations (1.1)-(1.2) to
highlight the connection to €2.. Similar notation is applied also for other functions
connected to €),.

Domain Q. C R? is defined by the use of a referential domain = (0,1) x S
with S C R2, |S| =1 and 9S € C*!, and mapping R, : Q© — Q. so that

R. : (21,29, 23) — (71, %9, €13).

It means that 2. = (0,1)xeS. As well as in [22], section 4.17.2.4, we suppose that
Q) is not axially symmetric. Axial symmetry would mean that the appearance of
() remains unchanged if rotated around an axis along the first spatial dimension.

Symbols n and n. stand for unit outward normals to {2 and ()., respectively.

Similarly, t and t. are vectors from the corresponding tangent planes. We employ
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the following notation for the borders of domains €2 and §2.:

'y =(0,1) x9S, T'y ={0,1} x S,
Fl,e = Rs (Fl) 5 FQ,E = Re <F2) .

To ensure the well-posedness of our problem [26], we prescribe Navier bound-

ary conditions

t.- (P(|Du.)Du.n.) + h(e)u. -t. =0 onTy. x (0,7), (3.1)
t.- (P(|Du.])Du.n.) + qu.-t. =0 on Ty, x (0,7), (3.2)
4. -0, =0 on 9 x (0,7). (3.3)

We suppose that k() > 0 behaves like O(g) and ¢ > 0. The asymptotic behavior

of h(e) will be discussed during derivation of weak convergences of density and
velocity field (section 3.3.3).

We consider the initial conditions for the density and the momentum

The variational formulation of our problem is

T
/ / (p:0:p + p-u. - V@) dzdt = 0, (3.4)
0 e

T
/ / (ﬁ&ﬁg . aﬂzf + P @ U D?JJ + ﬁadivqj)) dzdt
0 <
T — — - — — _
= [ [ (PUDuDu s D~ pik - 0) o
0 <

T T
h(e) / / i, didt + g / / i - dldt, (3.5)
0 Fl,s 0 F2,s

for any ¢ € D(R® x (0,T)) and ¢ € C°(0,T;C>(€,)?) satisfying condition
Y- fic|og. x(0.1) = 0.
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3.2 Transformation and related results

We transform the governing equations and the energy equality to the referen-

tial domain. First, we denote

. Qx(0,T) = R?,
pe 1 2 x(0,T) - R,

where u.(z,t) = u.(R.(x),t) and p.(z,t) = p-(Re(x),t), for all x € Q. Since
z =R.(x), T € Q., we can write u.(z,t) = u.(Z,t) and p.(x,t) = p(z,1).

We express the spatial gradient of a scalar function ¢ according to the chain
rule as

?@(i" t) = VSD(Rs_l(x)vt) = VESO’

where gradient V. = (01,6 10s,7105). Additionally, divergence div. is defined
as divep = 01 + e Ly + e 10500.
Similarly, we transform the symmetric part of the gradient of a vector function

. and arrive at D (7,t) = Du. (R (2),t) = w.(u.(z,t)), where

D11 ¢ %(31’&2,5 + e ' Ohuy ) %(alu?),s + e ' O5uy )
we(ue) = : e 10quy . s HOouz . + Oguar) | . (3.6)
sym . e 103us3..

3.2.1 Transformation of the governing equations

According to [7], we use the following equalities
dz = &% duz,
dll = edl’ on I}y,
dll = 2 dl' on Ty
to arrive at the transformed equations of the variational formulation (3.4)—(3.5).

Now, we can divide both equations by 2 and arrive at transformed governing

equations

T
/ /(pgﬁtgp + peu. - Vo) dzdt = 0, (3.7)
0o Ja
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T
/ / [peuc - Oh + peue @ ue @ we (V) + pediveyy] dadt
0 Q
T
_ / / [P (o () wn(n) : we(®)) — pof. - 0]

+@/OT/FIUE.¢drdt+q/OT/Mug-wdrdt, (3.8)

for any ¢ € D (R* x (0,T)) and ¢ € C5°(0, T;[C*(Q)]*), ¢ - n|aax01) = 0.
Imposing the same transformation also to the renormalized continuity equa-

tion (see [17] or [19] for its original form) leads to

/ / b(p:)0uo + b(po)ue - Ve + [(b(p:) — peb(pe) diveus] g dedt =0, (3.9)

for any p € D (R? x (0,7)).

3.2.2 Energy equality and its transformation

For any t € (0,7T), we have the energy equality expressed by the following

formula [19]

/ (pe<t>@+p€<t>ln<pa<m) a7 +

Q.

+/t/ P(|Du.|)Du. : Di. dz ds + h(e) /t/ G.|”dT ds +
0 QE 0 Fl,s

t t
—l—q/ / la.|> dTds :/ / ot - a. dzds +
0 Iac 0 Qe

Jr/ﬂs (M + Do hl(po,a)> dz. (3.10)

2ﬁ0,£
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By transforming (3.10), we obtain

/ (’)5“)%+ﬂs( >1n<pg<t>)) dz

// (Jws(u)]) Jwe(u) [ dads +

t
—1——)/ lu.|? d'ds + q/ lu.|? dl'ds =
0 Jry

0
2
//pgg8 Ve dxds+/ (](p;;;;) o +,00781n(,00,€)) de.  (3.11)
Q €

for any t € (0,T'), where

ga = (fl,aa 5_1f2,87 5_1f3,a)7

Ve = (Ul,esa EUY ¢, 5“3,5)’

It is obvious that g. - v. = f. - u., but we need to use this notation for making a
priori estimates (see inequality 3.17), because a variant of Korn’s inequality holds

for v. (see Lemma 3.2).

3.2.3 Related results

It is necessary to mention that equations (3.7)-(3.8) with non-slip boundary
conditions have a weak solution in a sufficiently regular domain for any ¢ €
(0,1). Moreover, any weak solution satisfies the energy equality (3.11) and it
can be constructed as a limit of Rothe approximations (see [19], Theorem 3.5).
The non-slip boundary conditions mean that surface integrals in (3.8) and (3.11)
disappears. We remark that v > 7/2 in [19], while our result was achieved for
a slightly more general v > 3.

According to [20], we can treat the case of slip boundary conditions similarly as
the barotropic case [22]. In our case, we use the Navier boundary conditions (3.1)-
(3.3), because the slip boundary conditions are their special case (h(e) = ¢ = 0)

and the generalization poses no additional technical problems to the existence
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proof. The case of non-slip boundary conditions would lead to the zero velocity
in the limit. Thus, it was not an interesting choice of boundary conditions for us.

Since we are dealing with a domain which has a shape similar to a cylinder, the
assumption on the regularity of the boundary of €2 can be relaxed by simplifying

and slightly modifying the approach presented in [10)].

3.3 Derivation of the limiting 1D equations

The first step of the proof concerns a variant of the first Korn’s inequality
(see section 3.3.1). We need this inequality to perform a priori estimates in
section 3.3.2 and afterwards show the boundedness of {p.}.c(,1) and {u:}cc(,1)
and perform weak limits. Subsequently, we pass to limits in equations (3.7)-(3.8)
in section 3.3.3. Finally in section 3.3.4, the limit passage is performed also for

the energy equality (3.11).

3.3.1 Korn’s inequality

From [J], we know that for any w € [W'P(Q)]3, p > 2, there exists constant
C > 0 such that the following estimate holds

Iwly,, < ¢ (I1Dwl, + Iwl,) (3.12)

Lemma 3.1. Let (3.12) hold for any w € [W'P(Q)]?, p > 2. Then, there exists
constant C(2,p) > 0 such that

1wl < C(2p) (1w, + Wl )

Proof: Let us suppose the contrary: without loss of generality, there exist

a sequence {w, } 129 C [W?(Q)]* such that [|w,||, , =1 and

> (I|Dwall, + [Walls) -

SEES
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Then (passing to a subsequence if necessary), we get
w, — w in [LP(Q)]?,

Vw, — Vw in [LP(Q)],

]9

3-

Dw, — 0 in [LP(Q)
L*(I)]

w, = 0 in |
From (3.12), Vw, — Vw in [L?(Q)]? and thus [w]|, = 1. However, Dw = 0

and w|r = 0. It means that w = 0 (see [7], Theorem 1.7-3) and we arrive at

contradiction with [[wl[, , = 1. O

Without the loss of generality, we denote u. = u.(t) in the following theorem.

Variable t € (0,T) is arbitrary but fixed.

Theorem 3.2. Let u. € [W'P(Q)]3, p > 3, be such thatu.-n =0 onT = {0} xS.
We define v. = (uy ., cus ., cuz.) € [WH(Q)]2. Then, there exists C = C(Q,p) >
0, such that

IVelliy < € (Jlwoe(wll, + ucllor) . V>0, (3.13)
where w.(u.) is defined by (3.6).

Proof: Let us assume the contrary. Without the loss of generality, there exists
a sequence {v., }12 defined by {u., }!>, where &, — 0 as n tends to infinity,

such that |v.,|,, =1 and

2 [|we,, (e, )], + [[ue, llp -

S|

Hence,

u., — 0in [L2(D)]?, w., (u.,) — 0in [LP(Q))°. (3.14)
From boundedness of sequence {v., },;:> and embedding W?(Q) —— C(), we
deduce the following convergences (passing to a subsequence if necessary)
v., = v in [W"P(Q))?, (3.15)
v, — v in[C(Q)]* (3.16)
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According to the definition of v, , it holds that

1 1
D, F(Owse, +¢, Dure,) F(01use, +¢, Osuie,)
Dv., = : EnOatia e, 2 (Oquse, + Osuag, )
sym . €n03Us ¢,

Due to the second convergence in (3.14) and definition of w,, (u.,) given by rela-
tion (3.6), we arrive at Dv., — 0 in [LP(Q)]°.
Finally, we prove that [v|, , = 1 and simultaneously v = 0 to arrive at

a contradiction. We apply the Korn’s inequality (see Lemma 3.1) as follows

IVeulliy < C@20) (IDVe I, + Vel ) -

Since u., — 0 in [L*(T)]?, also v., — 0 in [L*(T")]*. Furthermore, Dv., — 0
in [LP(Q2)]°. Thus, it implies convergence v., — 0 in [W!P(Q)]*, which together
with (3.15) give us v, — v = 0 in [W'P(Q)]3. This strong convergence and
[ve,ll,, = 1 mean that also [|v[|, , = 1. To sum it up, v=0in Q and ||v|, , = 1,

which is a contradiction. [l

3.3.2 Boundedness and weak limits

Now, we make a priori estimates. Equation (3.7) implies the conservation of

mass which can be expressed as

/pg(t) dz = / poe dx, Vte (0,7).
0 0

Therefore, the first integral on the right-hand side of the energy equality (3.11)

can be estimated as follows

t
/ / p=ge - v dzds
0 JOQ

S/O IIVE(S)Iloollge(S)lloo/QPE(S) dzds

t
SC@%@J/H%@Wmd& >3
0
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In the view of inequalities (1.3) and (3.13), and the Young’s inequality, we

t
//,Oggs-v8 dzds
0 Ja

arrive at

<ofaf P e o) Pt

t
+01/ / |ug\2d5d$ + 02(01)) y (317)
0 J{0}xS

where C; > 0 can be made arbitrarily small.

Due to (1.3) and (3.17), we obtain from (3.11) boundedness

{V/pe [ucl} o) in L% (0, T3 L*(9)) (3.18)
{pe}oco) in L7(0,T; Lo, (£2)) (3.19)
{w=(u)}oeony 0 [Lar (2% (0, 7)), (3.20)

Vehacou i L2700, T3 [W(Q)F) 0 20,75 [L200)F)  (3.21)
for any p > 3. From (3.21), we get immediately the boundedness
{ur}eeo,n) in LP (0, T; WHP(Q)) N L* (0, T; L*(09)) . (3.22)
Boundedness (3.20) gives us the following convergences
Oauge + Osuge — 0, Oqline — 0, in Ly (92 x (0,7)), a =2,3.

Now, we can prove even the boundedness of {6‘1%75}56(0,1), a = 2,3, in
Ly (2 x(0,7)). Let us denote w. = (e 'ug ., e 'ug ). We begin with the Korn’s

inequality in a two-dimensional space [J]:

HWusLp(s) < (”Dwe”m(s) + ”WEHLP(S)) ;P> 2 (3.23)

where z; € (0,1) and ¢t € (0,7) are arbitrary but fixed. From (3.23) and axial
non-symmetry of 2, via the standard compactness argument (as in [22] for proving

inequality (4.17.19)), we deduce

||W€||LP(S) <Gy ||DW6||LP(S) : (3.24)
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Due to compact embedding of W'*(S) in L>°(S) and inequality (3.24), we

can arrive from (3.23) to the following inequality
||CW6||poo(s) < ||DW5||I£p(S)7 p>2,

where C' = C(S,p) > 0. Applying Young function ¥, and Jensen’s inequality

gives us
/\I/p(\ng\p)dxgdxg < Cg/ U, (|Dw.|P)dzodzs, p > 2.
s s

Since W, (2?) behaves like M(z), we arrive at

/M(]C’W€|)dx2dx3 < (4 (/ M(|Dw.|)dzodzs + 1) :
S s

After integrating over z; € (0,1) and ¢t € (0,7"), we get

/OT/QM(|CW5Dd:Edt < Cy (/OT/QM(|DWE|)dxdt+T> . (3.25)

Let us remark that (see inequality (2.4))

T
C el o g/o /QM(]OwabdxdtJrl. (3.26)

Inequalities (3.25) and (3.26) give us

T
Wl o < Cs (/0 /S)M(|Dw€|)dxdt+T> +1 (3.27)

The right-hand side of inequality (3.27) is bounded for any ¢ € (0,1) due
to (3.20). Thus, it ensures the boundedness

{e  aetecon) in La(Q2 % (0,7)), o =2,3. (3.28)

Boundedness of {p:}_c ) in L>(0,T Le, (€2)) can be extended to the space
L>*(0,T; Ly, (€2)). We remind that v > 3 (see Theorem 3.4 in section 3.4).
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We proceed in the following way. First, we test the equation (3.9) by function
o =(t) € C5°(0,T) with b(z) = ®,(2). We get

/ /Q D, (=)' (t) + [(D4(pe) — p-, (p2)) diveuc] p(t) dedt =0,  (3.29)

Function @, (z)—2®! () behaves asymptotically like ®.,_;(2). Furthermore, there
exists 1 > 0 such that ®; (®,_1(2)) < Cy (®,(2) + 1) for z > 0 [26]. Due to
equivalence of Young functions M and ¥, relations (1.3), (3.20) and the Young’s

inequality, we deduce the estimate

psq);(pe)) div.u, dzdt (3.30)

/ / L(p2) + P (jwe(u)) o () ?) dedt+1]

where C(T') > 0. With respect to (3.29), (3.30), (3.66) and the Gronwall’s lemma,

we obtain the boundedness of

{95}56(071) in L>(0,T; Lg, (€2)). (3.31)

In the following step, we focus on boundedness of {0;p.} 01y Let us test

ee(
equation (3.7) by function ¢(x,t) = ¢, (t)¥(z), where p; € LP(0,T), 1/p+1/p =
1,p>3,and ¢ € [W'Ly _ (Q)]?, v > 3. We can write

90/1 ©1

peu. - Vo dxdt’ =
Q

P dxdt’ =
Q

T
01 | pe(ur 019 + 6_1U2,68277/J + 5_1u37€83@/}) dxdt‘ ) (3.32)
0 Q

From (3.28) and (3.32), we get the boundedness of

{0ip<}oc0q) I LF (0,T; WLy, (D)) - (3.33)
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For instance, boundedness of the last term on the right-hand side of equa-

tion (3.32) can be demonstrated as follows

T
/0 /9/3551103,59015’31# dzdt| < H571U3,5HLM(QX(O7T)) 1221059l 1\ (2x (0,7)) -

where the boundedness of the first norm on the right-hand has been already

proved — see (3.28). The second norm is less or equal than (see inequality (2.4))

T
/ / N(pelnllasel) dedt +1 <
0 Q

T
< [ [ 10101001N o) + p 0|V on]) + pel N (05]) ddt + C.
0 Q

where "the worst term” can be finally estimated as

T T
[ tel [ 1owoiN (o) daae < [l [ a0 + @ 0.) doa <

L°°(O,T)> .

By the use of (3.19)-(3.21), (3.31), (3.33), compact embedding of W*(£2) in

< lerllorom, ( [ wstowl) az+ H [ st00) @

Ey, (), isometric isomorphism of [Ey,(0,1)]* and Le,(0,1), continuous embed-
ding of [W'?(Q)]* in [W'Ly_ (2)]* and theorem on compact embedding [23], we

get (passing to subsequences if necessary)

p- = p in L*(0,T; Lo, (), (3.34)

pe = p i C({0,T); (WP (Q)]), (3.35)
we(ue) = ¢ (3.36)
uie —uy in LP (0, T3 WHP(Q)) N L2 (0,75 L2(99Y)) . (3.37)

Let us remind that we already have (from (3.28))

Une > 0=1uy, 1In Ly (Qx(0,7T)), a=2,3, (3.38)
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which means that uy = uz = 0 almost everywhere in 2 x (0, 7).

We prove that the limiting function u does not depend on the second and the

third spatial variables. Boundedness (3.20) implies the following convergences
881UO¢75 + Gaul,a — 0, in LM(Q X (0, T)), o = 2, 3.

With respect to (3.38), we arrive at d,u; = 0 almost everywhere in §2 x (0,7),
a = 2,3. Hence, we get u; = uy(x1,t) € LP(0,T;WP(0,1)) with u1(0,t) =
ui(1,8) =0, t € (0, 7).

Let us pay our attention to convergences of nonlinear terms in equation (3.8).

Convergences (passing to subsequences if necessary)

peure — puy in LP(0,T; Ly (€2)) (3.39)
Petlae — 0 in Lg _ (2 x (0,7)), a =2,3, (3.40)

where v > 3 (see Theorem 3.4), are immediate consequences of (3.35), (3.37),
(3.38) and theorem concerning compact embedding [23]. For instance, we prove

convergences (3.40). According to the Hélder’s inequality, it holds that
T
||p€ua,6||L®%1(QX(o7T)) = S?Op/o /Q|P5Ua,590‘ dzdt <
< Clluaellr,, @xom) Sl;P 1021l 1y (x(0,7))

where the supremum is taken over all functions ¢ € E%_l (2 x (0, 7)) such that

T
/ / U,_1(]¢|) dedt < 1.
o Ja

From (3.38), we already know that ||uacll;, x — 0. Therefore, it is suffi-

0,7))

cient to show the boundedness of [|p-]| @ x(0,r)) for proving (3.40). The equiv-
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alence of Orlicz spaces Ly and Lg,, and the Young’s inequality give us

T
”PESOHLN(QX((),T)) < /0 /Q‘bl(pg‘QOD dxdt + C <

T T
< [ [ptnteh dsdes [ [ fopoutp) dott e @
0 Q 0 Q

The second integral on the right-hand side of (3.41) is "the worst” and it is less

/OT/Q%_l(!son dxdt+/0T/Qc1>,y_1(q>1(pE)) dzdt <

T T
g/ /\P7_1(|<p|) dxdt+C’/ /qu/(pg) dadt.
o Jo o Ja

Hence, we conclude that convergences (3.40) hold true.

or equal than

To overcome the second term on the left-hand side in equation (3.8), we
consider "the worst integrals” in (3.8) and prove their boundedness. First, we

show that (3.22), (3.31) and (3.38) lead to boundedness of

T
/ / pu: @ U, : we (1) dadt (3.42)
0 Jo

for any ¢ € (0,1) and test function 1 such that ¢ - n|sox@mr) = 0. There

are three types of terms in (3.42), but we analyze in detail only ”the worst
one”: Py Ugelwe(V)]as, o, = 2,3. Let us apply notation [w.(¥(x,t))]as =
e lo(t)d(z) with ¢ € LI(0,T) and ¢ € Ey (Q), 2/p+1/qg =1 and v > 3 (see
Theorem 3.4 in section 3.4).

By the use of Holder’s inequality, we get

T
/ /paua76u5,€5_1g07,@ dzdt| <
0 Jo

S ”8_1“0@5“5,5“&?2 (Q2x(0,T)) ||p5%0,J}HLq)2(Q><(O,T)) (343)
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Both norms on the right-hand side of inequality (3.43) are bounded. Regard-

ing [|= a5l oo it holds that

T
Hg_lua’euﬁ’sHL\IIQ(QX(O,T)) - S;llp/o /Q|5_1Ua,suﬁ,5901| drdt <

-1
< ||u047€HLM(Q><(O,T)) Sglp Hg uﬁ»s(leLN(Qx(O,T)) g
where @1 € Lg,(Q x (0,7)) such that fOT Jo, @2(|ep1]) dadt < 1. From (3.38), we
know that [[tacll,,, x )y — 0- Further, we can write that
T
le™ useor ]l oy = Sup/ / e ug 10| dadt <
p2 JO Q
-1

S Hg uB’EHij(QX(O,T)) S}:2p Hg01g02HLN(Q><(O,T)) ’
where the first norm is bounded (see 3.28) and @, € Ly (Q x (0,T)) such that
fOT Jo M(|¢2|) dedt < 1. Finally,

T
||901902HLN(Q><(0,T)) < CI/ /(I)l(’@1902|)dl‘dt+ 1,
0 Q

where the integral on the right-hand side is lower or equal than

s (/OT/Q|902|<I>1(|¢1|)+ |901|(I>1(|<,02|)dxdt) <

<Cs (/OT/QM(|902|)da:dt+/OT/Q(I)Q(|901|)da:dt) <204

Hence, ||e™ uq cug . —0ase—0.

HL\I,Q(QX(O,T))
Concerning the second norm on the right-hand side of inequality (3.43), we

justify its boundedness in the following way

T
1P| L, (2% (0.1)) S/ /g)q)z(PalSOHQ/JD dzdt + C; <
0
T B T B
< / / l161Da(p.) dedt + / / p-Ba(lold]) dadt +
0 0

T
2 / / B1(p) 1 (|l|B]) dedt + Co,
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where "the worst term” can be estimated as

T
[ [retiesten) awar <
0 Q

< Ol (H/Qq)a,(ps) dx

W, o(|¢]) dz ) .
B A ] )

In summary, the first norm on the right hand side of inequality (3.43) converges

to zero and the second norm is bounded. It implies that

T
/ / pauaﬁuﬁﬁe_lgpz@ dxdt’ — 0 fore— 0.
0o Jo

We conclude that integral (3.42) is bounded for any ¢ € (0, 1) and test function
¢ such that ¢ nlpoxor) = 0, ¢ € L2(0,T) and ¢ € [Ey. (2)]°. Subsequently, we

show that also
/0 /QP(|wE(uE)|)wa(ua) :we (1) dadt (3.44)

is bounded for any € € (0,1). For the sake of simplicity, we employ the same
notation in the decomposition of 1 into its spatial and temporal part as in the
analysis of integral (3.42), 1. e. ¥(x,t) = p(t)y(x), where € By, 0,T), a>2,
and QZ c [WIE\IJI/2<Q)]3, 82& = 83’1; =0.
We remark that
O 3002 501
we(¥) = w(y) = ' 0 0 :
sym . 0

which is not longer dependent on €. Due to Young’s inequality, it holds that

/ ' JRACACR) PACSETOR dxdt‘ _ (|Q| [ " il i

# [ e (Pllostu Do (a o)) ) (3.45)

where o > 2. For brevity, let us denote w. = P(Jw:(u.)|)|w:(u.)|. Since w. €

L, (2%x(0,7T)) implies we € La, ,,,,(0,T; Lo, , (§2)), which follows from Jensen’s
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inequality and estimate
Q(a_l)/a(@l/a(z)) < 2@1(2) +C, z>0, (346)

the second term on the right-hand side of (3.45) is less or equal than

/oT /Q W) @1/a(we) + we1/a(jw()]) dodt <

= /oT /Q P(a-1)/a(P1/a(we)) + Wiay/a(|w(®)]) dzdt +
+/OT / Py (w.) + U1 (Pya(|w(i)])) dadt <

=3 / / By (P (u.)]) e (u.) ) ddt +

# [ [ v G anat+ [ [ s (@) s+,

where a > 2. Due to property (1.6), we conclude that integral (3.44) is bounded.

Terms (3.42) and (3.44) represent ”the worst integrals” in (3.8). Thus, we omit
the estimates of the others and take 1(x,t) = p(t)y(x), where ¢ € Ey,,,(0,7T)
with o > 2, and ¢ € [W'Ey, ,(Q)]* such that ¢ = (¢1(x1),0,0) and complies
with ¥,(0) = ¥;(1) = 0, as a test function. By the use of estimates (3.42)
and (3.44), we demonstrate how to perform a limit passage in the second term
on the left-hand side of equation (3.8). Let us test the equation (3.8) by func-
tion ¢(x,t) = @(t)(z), where ¢ € C°(0,T) and ¢ € [W'Eqy, ,(Q), ¢ =

(¢1(21),0,0) and 1 (0) = b, (1) = 0. We get

T T
[ ¢ [ panianat| <[4l [ (oo o)l + il
0 0

HP (|ws(ue) ) we(ue) : w(@)] + |pefs - ¥) dadt +

h T -
S [ it drae (3.47)
€ Jo Ny
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Let us remark that

T
q/ m/ . - | dPdt = 0
0 Ty

due to the choice of test function (¢ = 0 on I'y).

Considering the density of C§°(0,7) in Ey,,(0,T), embedding Ly, ,, (0,7
— By, ,(0,T) C [N/\pm(O,T), a > 2, and boundedness of all terms on the right-
hand side of the inequality (3.47) — see (3.42) and (3.44), we deduce boundedness

{at/spaua dzowsteeoy in La, ,, (0,7} ([Wqu,l/Q(O, D). (3.48)

By the use of (3.39), (3.48), compact embedding of W?(0,1) in Ey,(0,1),
isometric isomorphism of [Ey,(0,1)]* and Le,(0,1), continuous embedding of
[(WhP(0,1)]* in [W'Lyg,(0,1)]* and theorem concerning compact embedding [23],

we get (passing to subsequences if necessary)

/p6ul,E dzodrs —>/pu1 dzodxs
S S

in C((0,T); [W"P(0,1)]%). (3.49)

In order to perform a limit passage in the second term on the left-hand side
of equation (3.8), we need the following lemma which can be proven in a similar

way as Proposition 3.2 in [27] and Lemma 6.2 in [2].

Lemma 3.3. Assume that {u.}.c(,1) satisfies condition (3.20) and {ve}oc(01),
where V. = (U1.,EUs.,cUs.), satisfies condition (3.21). Then for any p > 3

(passing to a subsequence if necessary), it holds that

1
Hul,s — E / U e dxgdxgHLP(()’T;LOO(Q)) — 0, fOT' e — 0. (350)
S
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Lemma 3.3 can be applied in the following way. It holds that

T 1
/ / /psul,sul,sw dxodzsdrdt =
0 0 S
T 1 1
:/ / /paul,a(ul,a - _/u17gdx2dx3)¢ daodzsdr,dt +
o Jo Js S| Js

T ,l 1
+/ / </ Pl ¢ dxgdxg) (—/ul,ededx?)) Y dadt
o Jo \Js 5] Js

where ¢ € C§°(0,7;C>(R2)), 090 = 031 = 0. The first integral on the right-
hand side tends to zero for ¢ — 0 due to convergence (3.39) and Lemma 3.3.
Concerning the second integral, we apply strong convergence (3.49) and weak

convergence
/uhE drodry — / uy dwedas in LP(0,T; WHP(0, 1)),
s S

which follows from (3.37). In addition, it holds that

/pu1 d&?gdlﬂg = ﬁul
S

/Ul d[L‘QdCL’g = Uy,
S

where p = f ¢ p dzadzs, because u is independent of x5 and x3. Hence, conver-

T T 1
/ / peuy Uy 2 dadt — / / puiurt) dadt (3.51)
0o Jo o Jo

is an immediate consequence of (3.37), (3.49) and (3.50). Convergence (3.51) is

gence

applied in the next section to overcome the nonlinearity in the second term on

the left-hand side of (3.8)

3.3.3 Limit of the governing equations

Now, we can perform limit passages in (3.7) and (3.8). Throughout this

section, we denote an integral of a function in the second and third spatial variable
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over set S by symbol ” "7 over the function. Obviously, these integrals depend
only on x;. For example, we write p = fs p dxodxs.

We remark that prescribed behavior (3.66) enables us to use the Gronwall’s
lemma in the proof of boundedness (3.31). Further, we assume that h(g) > 0 in
(3.8) satisfies the condition h(e) ~ O(g) to ensure the convergence of @ to a
real positive number.

First, we test the equation (3.7) by function ¢ € D(R x (0,T")). We arrive at

T
/ / paat@ + ngLgal(,O dzdt = 0.
0 Q

Subsequently, we perform the limit passage for e — 0, apply convergences (3.35)
and (3.39), and get

T rl
0 0

for any ¢ € D(R x (0,7)).
Second, we test the equation (3.8) by function ¢ = (¢1(z1,t),0,0), where
Yy € C§P(0,T;C>((0,1))) complies with 9, (0,¢) = v¢1(1,t) =0, for all t € (0,7T).

We will show the limit passage for each term in (3.8) separately.

(a) Pelc - 3{(#

Since convergence (3.39) holds, we get

T T 1
/ / peu. - O dadt — / / pu10ppy dxqdt,
o Jao o Jo

for e — 0.

(b) peue @ u. : we (1)
From the definition of the test function v, we know that

o 00
we(¥) = w(¥) = - 00 |. (3.53)
.0

sym
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After applying convergence (3.51), we conclude that

T T 1
/ / Pele ® U : we(w) dzdt — / / ﬁu%aﬂ/}l dxldt7
0 Q 0 0

for e — 0.

(C) pediver)

Since div.¢ = 019, we have (see convergence (3.34))

T T 1
/ / pdivey dedt — / / POy dadt,
o Jo o Jo

for e — 0.

(d) P (|we(ue)]) we(ue) : we(v)
It holds that (see convergence (3.36))
T T
/ /P(|wa(u5)|)w5(u€) we (1) dadt —>/ /P(|C|)§ cw(v) dadt,
o Jo o Jo
for ¢ — 0, where w(v) is defined by (3.53) and

O1uy G2 (i3
¢= R C RN CT I I (3.54)

sym - (a3

Later, we will show that

t . t pl
/ /P(|§|)C cw(v) dads = |S|/ / P(|01u1])01u1 019y dads,
0o Ja 0o Jo
for any t € (0,7).

(e) pefe -2
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Since f. - ¢ = fi.11, convergence (3.34) holds and f. — £ in [L=(Q x (0,7))?

(see assumptions of Theorem 3.4 in section 3.4), we obtain

T T
/ / p.f. - dadt — / / T dandt,
0 Q 0 0

for e — 0, where f; denotes the limit of f ..

(f) @ue 0

According to the supposed behavior of h(e), i. e. h(e) ~ O(e), we can use

convergence (3.37) to derive

T T 1
el/ / h(e)u, - dUdt — yasm/ / uyypy dzydt
0 I'y 0 0

for e — 0, where h is a positive constant.

(g) U - ¢

Due to the choice of test function v, we have

T T
/ / - dTdt = / / oty dTdE = 0,
0 I's 0 I

for all € € (0,1). Thus, this integral vanishes in the limit of the governing

equations.

Finally, we arrive at

T 1
/ / purdgby + puidihy + poydadt =
0o Jo

:/OT/QW:M(W d:cdt—/OT/OlpAﬁwldxldtJr

T 1
0 0
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3.3.4 Limit of the energy equality

Applying similar approach as in section 3.3.3, convexity and Jensen’s inequal-
ity, we perform the limit passage for € — 0 also in the energy equality (3.11). We

arrive at the following inequality

’u1’2 2
Al L pin(p) dm+ [ PUCHICE duds +
0
+|85!h/ / lup|* daqds §/ / pfiuy dzids + (3.56)
0 Jo
’ 1

By the use of a similar procedure as in [19], Lemmas 3.2 and 3.3, based on the

renormalized continuity equation and the Steklov function, we derive the energy

1 2 t
AN@ @MﬁAAPMMM®Mm+

t 1 t 1
+|0S\h/ / ‘U,1’2 dQJldS = / / pf1u1 d:clds + (357)
0 Jo
‘ 1
1

from (3.52) and (3.55), where w(u) is defined in the same way as w(%)) in rela-

equality

tion (3.53). It means that its only nonzero term is [w(u)];; = d1u;.

Since function P(|z|)z is monotone, we get

0 < lim / /Q (P(Jw. (w)w:(u.) — P(TT) : (wo(u.) — T) dads =

e—0 0

i [ [ Pt Pands -

—/O /QP(|§|)<:T+P(|T|)T:<+P(|T|)|T|2 dzds (3.58)
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for any symmetric T € [Ly(Q x (0,7))]°. As a consequence of (3.11), (3.57),

convexity and Jensen’s inequality, we arrive at

i [ [ P () et s =

. |U-z-:|2
=lim|— [ p. + p-In(p.) do —
Q 2

e—0

h t t
—ﬁ/ lu.|? dl'ds — q/ lu.|? dl'ds +

/ /psf u. dzds + |p5 u.) d:il:—i—/po,8 In(po.) d:c) <
2/)06
b
<—1[p 5 +pln(p )dx—|8$|h |u1| dzds +
| 1

// pfius d$1d8+/ / poIn(pg) doy =
:/ /P(|§|)(:w(u) dads (3.59)

0 Jo

Hence and from (3.58), we get

o< [ [ (PUCIE= PUTIT) - (w(u) = T) dods.
Taking 7' = w(u) + Aw(y) and T' = w(u) — Aw(), for A > 0, ¥ = (11,0, 0), where

Py € C°(0,T;C(Q)) is such that 9ytpy = 310 = 0 and 1 (0,¢) = 91 (1,t) = 0
for all t € (0,T"), we conclude that

/Ot/ﬂmiw(w)dxds: yS\/Ot/; P(lw()Jw(u) : w(w) dzids =

t 1
= |S|/ / P(|81U1|)81U181’¢1 dZL‘ldS. (360)
0 JO
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3.4 Main theorem for the 1D model

To sum it up, the limit equations together with the energy equality are given

by the following formulas

T rl
/ / ﬁatQO + ﬁulalgo dl’ldt = 0, (361)
0 0

for any ¢ € D (R x (0,7)),

T 4
/ / pur0phy + puidihy + poyhrdadt =
o Jo

T 1 T 1
= |S|/ / P(]@lul\)alulalgbl dxldt—/ / pflwldfﬁldt—f—
0 0 0 0
T 1
0 0

for any ¢ = (¢1(21),0,0), where ¢, € C3°(0,7;C>*({0,1))) complies with condi-
tion ¢1(0,t) = ¢ (1,t) =0, for all t € (0,7,

U |?
/p‘ 2| + pln(p )dx1+\S|// (|O1ur|) |Orus|* daryds +

+|8S|h// |y |2 dIldS—/ / pf1u1 dzds + (3.63)

|(pu)o|*

/— 1+/0 poIn(po) dry. (3.64)

2po

Finally, we summarize our main result in the following theorem.
Theorem 3.4. Let us assume that couples (p.,u.), € € (0,1), satisfying
pe € L(0,T; Ly, (£2)),

ve € LP(0, T3 [WHP(Q)]F) 0 L0, T [L*(0Q)]),

with ve = (U1, cuge,cug.) and Q being not azially symmetric, 0Q € C*', are

weak solutions to the equations (3.7)-(3.8) and (3.11) with initial states py. €
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Lo () and ‘(p;;l—g)go'z € LY(Q) satisfying

/pQE In(pg.) dzadas — poln(pg) in L'(0,1), (3.65)
S
/q) (poe) daodzs — D (po) in LY(0,1), (3.66)
| U)o [(pu)ol® . 1
d odrs - ——— in L(0,1), 3.67
2/006 2P0 ( ) ( )

for arbitrary but fized v > 3 and p > 3. In addition, we assume that Navier
boundary conditions (3.1)-(3.3) hold and w.(u.) € [Lp (2 x (0,T))]°.

Further, we suppose that function P complies with conditions (1.3)-(1.7), f. —
£ in [L=(Q2x(0,7))]3, h(e) > 0 behaves like O(¢), see (3.1), and q > 0, see (3.2).

Then (passing to subsequences if necessary)
Pe = P in L™ (07T7 L‘?q(Q)) )
pe = p in C((0,T); [W(Q)]),

we(u) = w(u)
ue = uy in LP (0, T; WHP(Q)) N L* (0, T; L*(09))
Une — 0 in Ly (Q % (0,7)), a=2,3.

In addition, couple (p,uq), where uy = uq (1) and p = fsp dxodxs, is a weak so-

lution to the equations (3.61)-(3.62) and complies with the energy equality (5.63).
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Chapter 4

Derivation of a 2D model
in a curved domain

We focus on a rigorous derivation of a two-dimensional model from equa-
tions (1.1)-(1.2) over a curved domain under Navier boundary conditions [2].
First, we describe the problem in section 4.1. In section 4.2, the deformation of
the domain in question is expressed in the curvilinear coordinates. The trans-
formation of the both governing equations and energy equality is performed in
section 4.3. Finally, section 4.4 contains the proof of our main result, which is

formulated in section 4.5.

4.1 Statement of the problem

We are interested in the motion of a compressible fluid in a thin domain. The
dynamics of a compressible fluid are described by the continuity and momentum
equations (1.1)-(1.2). We denote the velocity and the density as 4. and g,
respectively, in equations (1.1)-(1.2) to highlight the connection to €2.. We employ
similar notation also for other functions connected to Qa.

The domain . C R? is defined by the use of a reference domain = S x (0,1),
S CcR2 95 € €%, and the mapping O, : Q — Q. so that

O : (1, 2, x3) — O(21, T2) + cx3a3(71, T2),

20



where 6 : S — R? and

a; = (3191,3192,3193)T7
as = (5291,829273293)T,

a; X as
ag = —.
’ a1 % aq|

We suppose that a;, d,a; and 325613 € [L>()]3, where a, B =1,2and j = 1,2,3.
Symbols n and fi, stand for unit outward normals to Q and Q., respectively.

Similarly, t (resp. t.) is any vector from the corresponding tangent plane. We

denote the boundaries of domains {2 and QE as follows:

[ =05 % (0,1), 'y =5 x{0,1},
fl,a - @a (Fl) 3 f?,a - @E (FQ) .

To ensure the well-posedness of our problem [26], we prescribed the set of

Navier boundary conditions

.- (P(\Dﬁg\)[)ﬁsﬁs> 4gi . =0, on Ty x (0,7), (4.1)
i - <P(|Dﬁ€|)DﬁEﬁ€> (). T =0, on Ty x (0,7), (4.2)
o, - 0. =0, on 99 x (0,7). (4.3)

We suppose that h(e) > 0 behaves like O(¢) and ¢ > 0. The asymptotic behavior

of h(e) will be discussed during derivation of weak convergences of density and
velocity field (section 4.4.3).

We consider the initial conditions for the density and the momentum

Hence, the variational formulation of our problem is

T
/ / (p;atga + e, - ﬁ@) didt = 0, (4.4)
0 Qe
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T
/ / (ﬁsﬁg O + pot. @, D+ ﬁediw;) dzdt
0 -
r ~ ~ ~ o~ ~ ~
- [ [ (PUDuDDa. D ik ) ara
0 <

T T
+q / / i, - dLdt + h(e) / / u. - ¢ dUdt, (4.5)
0 1:‘1’5 0 l:2,5

for any ¢ € D (R* x (0,T)) and v € C3°(0,T; C®({Q.}7)?), where {2}~ stands

for the closure of €., satisfying the condition 1) - fi.| 6. x(0,1) = 0-

4.2 Curvilinear coordinates

We transform the equations (4.4) and (4.5) to the reference domain € by the

use of mapping ©.. First, we define the covariant basis (see [7], section 1.2)
g1e = 8165 =a; + 81’381&3, (46)
82 = 62@5 = as + 51‘38283, (47)
83 = 30, = cay, (4.8)

the covariant metric tensor G,

[Gs]ij = Gije = Bie * 8jes (4.9)

and its determinant g. = det (G.). Further, we also define the contravariant basis
by the relations
g gj. =0 (4.10)

J

It is known from [7], Theorem 1.2-1, that

where = O.(x).
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For convenience, we denote the determinant of submatrix ([Ga]ij)zz,jzl as d..

Relations (4.6)-(4.8) and (4.10) enable us to express the contravariant basis:

g = d" (|g2:°81e — (81e - 82.)82)
g2 = d" (81’2 — (81 - 824)81c) 5
g7 — g, (4.11)

We emphasize that subscripts are used for the covariant basis {g;.}?_; and su-

perscripts for the contravariant basis {g}?_, (the same notation as in [7]).
The contravariant basis is well-defined, because d. > 0 (see section 4.2.1 for

details). For further calculations, we determine explicitly also the matrix G, and

its inverse:

gue Yg12e O gite gl2¢ g
GE = ° 922,6 0 5 Ge_l = . g2275 0 ,
Sy1m . 62 sym ] 872

where

2 2 9 2
Ji1e = |a; | + 2ex3a; - Ohag + ¢ $3|31a3| )

2 2
J12 = A1 Az + €T3 (al - Ohaz + ay - 6’1213) + e“x30,a3 - Oras,

92275 = |32|2 + 281’3&2 . 82a3 + 82$§|8233|2,

11,e _ -1
g = 922,5d5 )
12, _ -1
g7 = —giad,
26 _ -1
g = 911,ed5 .

Terms g3, and go3. are equal to zero, because
= 2 Doaz = 0
g1 83 =€a;-az+ e xzag - dhag = 0.

The last equality is due to orthogonality of a; and ag, and equality az - drag =

13,e 23, _ 0

%(92|ag,|2 = %821 = 0. Similarly, gs3. = 0 and thus also g">° =g
Mapping ©. can be decomposed into two parts: deformation and contraction.

Therefore, matrix G, as well as the inverse matrix G, can be decomposed into
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two parts. In the following sections, we need the decomposition of G-'. Thus,

we denote
1 0 O
E= . 1 0o |,
sym g7t
g™ g1 [ash
R.= (e, 0 r%) = | [g"], (g% [as]y |- (4.12)
ghels [g°%]s [asls

It holds that G;' = E.R'R.E.. Tt is an easy matter to demonstrate that
det(RI'R.) = d_', g. = d.e* and

gll,a 12, 0
RIR, = .og®F 0 . (4.13)

sym . 1

Q

From the relations (4.6)-(4.11), it is simple to prove that RI R. is a symmetric
positive definite matrix. Hence, d-' > 0 and therefore /d. > 0 is well-defined.
Furthermore, it stems from Cauchy’s inequality that d. would equal zero if and
only if g . = g2.. However, this situation cannot occur because g; . and g, . are

linearly independent.

4.2.1 Convergence of covariant and contravariant bases

Before we pass to the limit in the variational formulation (4.4)—(4.5), we
mention necessary convergences concerning the covariant and contravariant bases.

For ¢ — 0, we have

gl,e — aj, g2,€ — ag, g3,5 — 0 In [WLOO(Q)]37 (414>

|31’2 a] - ag 0
G.—G= : lag|? 0 in [L>=(Q))°, (4.15)
sym . 0

d_l‘aQP —d_lal ) 0
R'R. -+ RTR = : dYa;|> 0 in [L=(Q)]?, (4.16)
sym . 1
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ge =0, d.—d=(Jay||as])* — (a; -az)* in L=(Q). (4.17)

Therefore, d. > 0 > 0 and the contravariant basis is well-defined by rela-

tions (4.11). It immediately follows from the above convergences that

g'® = a' =d' (Jasl’a; — (a - az)ay) in [WH(Q))°, (4.18)
g’ —»a’=d ' (Jai[’ay — (a1 - az)a;) in [WH2(Q)]°. (4.19)
Hence,
'y (2% [ash
R = [ai% [@%, [as]s | . (4.20)

[a'l; [’ [as]s
Let us remark that all these limit functions depend only on x; and x5, because

a;, as, a3 as well as a', a? are independent of x3.

4.3 Transformation

4.3.1 Transformation of partial derivatives
For transformed velocity and density, we employ the notation

u. : Qx(0,T) = R?,
pe 1 2 x(0,T) - R,

where u.(z,t) = 0.(0.(z),t) and p.(x,t) = p(O:(x),1t), for all z € Q. We
denote ¥ = O.(r) and also z = ©-1(2). Thus, we can write u.(z,t) = u.(7,1)
and pe(z,1) = pe(,1).

We express the first spatial partial derivative of a scalar function ¢ according

to the chain rule in the following way

0;0(,t) = 0;0(07 (), 1) = Op(x, ) [8"];.
Similarly, we derive the first spatial partial derivative of a vector function u. as
follows
0yt o (%, 1) = juic(071(2),) = Qi (w, 1)[g"]; = Ouc(w, 1) - g [g"]il8™],
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where the last equality follows from

k,s]

7.

alui,e - [alus]i - alues - Bk [g

The transformation of the symmetric part of the gradient can be performed

in the following way

D)y = [@e(uo)]y, [fPLr) = [Rloc(u) R, < fwe(ua)];,  (4.21)
where
alua . gLE % (81116 . gQ’8 + 82116 . gl,a) % alug-sa?,ta:ius'gl,s
w:(u) = . Oou. - g L 82ua-ea3+583u5~g2,5 :
Sym %

(4.22)

In the following sections, we need the equivalence of w.(u.) and w,(u.) in the
LP-norm, p > 3, and also in the Lj;-norm. Since this equivalence can be proven
simultaneously, let us denote any of these norms as ||-||. There exist r(X),

r9(X) > 0 such that for all € € (0, 1) the following relation holds

1 (X) [[@e(ue) [l x < flwe (o) [l < 72(X) floe(ue) I x (4.23)

because R. is convergent for ¢ — 0 in WH>*(Q) due to (4.18) and (4.19). Fur-
thermore, R. does not tend to zero for € — 0 as formula (4.20) holds.

The transformation of @, - V leads to
;-0 = w; 0p[g""); = ul R.E.Vp.
The transformation of divvﬁ is done similarly
divip = 0y = Oi[g'e); = Vi : R.E.. (4.24)
We remark that term Vi : R.E. is the trace of w.(1)), because divy is the trace

of [)1;
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4.3.2 Transformation of the governing equations

According to [7], we use the following equalities
dz = /g. dx = e/ d;. duz,
dl' = |R.E.n|\/g. A’ = |R.E.n|e\/d. dT,

to arrive at the transformed equations of the variational formulation (4.4)—(4.5).

It holds that n = (ny,n9,0) on I';, n = (0,0, 41) on I'y. Therefore,

|R.E.n| =

2
E n;g¥en;, on I'y,

ij—=1
|R.En| =&, onTy.

Now, we can divide both equations by € and arrive at the transformed varia-

tional formulation

T
/ / (p-0up + p-ul R.E.V ) \/d. dadt = 0, (4.25)
0 Q

T
| [0+ pon ) + .90 5 RED VL daa
0 Q
T
= /0 /Q[P (’wa(u£>’)wa(ua) : wa(Q/J) — pgfa . ¢] \/Z dzdt+

T T
+q/ / u. - | R.E.n|\/d. drdt+@/ / u. - /d. dTdt, (4.26)
0 Jr € Jo Jry

for any ¢ € D(R*x (0,7)) and ¢ € C°(0,T5[C*(D)]*), ¥ - nloaxor) = 0.
Similarly as in section 3.2.3, we remark that for any ¢ € (0,1), there exists at
least one weak solution of equations (4.25)-(4.26).

After imposing the same transformation as for the variational formulation to

renormalized continuity equation (see [17] or [19] for its original form), we get

T
[ [ 0000 + Mo RES 6 0p) — 06(0.)) Ve BE] /- dadt =0,
0 Q

(4.27)
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for any ¢ € D (R? x (0,7)).

4.3.3 Energy equality and its transformation

For any t € (0,7), we have the energy equality expressed by the following

formula [19]

o Ja@)) 3 )

/Q (Ps(t)#—l-pg(t)ln(ps(t))) dz +

t 5 B _ t ~
+/ / P(|Du.|)Du, : Du. dz ds+q/ / a.|*dl ds +

0 NE 0 fl,s

t B t ~
5)/ / .| dFds:/ / pef. - 0. dids +
0 IN—‘Q,E 0 ~E

- / (W—E)()'erﬁo,e ln(ﬁo,€)> dz. (4.28)

2p0,€

By transforming (4.28), we obtain
()P
/<ps(t)%+pg t) In(p-(t )\/_d:lf
Q
t
[ ] Pl et VA dads +
0 Q
! 2 h(e) ! 2
+q lu.|?|R.E.n|\/d. dT'ds + — lu.|?\/d. dT'ds =
0 JIy 0 JI'g
t
:/ /pgfa-vg\/al_a dzds +
0 Q
2
+/<M+ps P05>\/_d37 (4.29)
Q

2p0,5

for any ¢t € (0,7, where

I:E = (fe : g17€7 fE : g27€7 f&‘ : g375>a

Ve = (ue *81e, Ue * 826, Ue * g3,€)7
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It is obvious that

fs * Ve = fi,z—:vi,s = (fe : gif)(us : gi,s)
= (fs : gi75)gi,a : (115 : gj,a)gj’6 = fa *Ue.

We need to use f. - v. instead of f. - u. for making a priori estimates (see inequal-
ity 4.34), because a variant of Korn’s inequality holds for v. (see Theorem 4.1).

It has to be remarked that concerning the existence of a weak solution to
equations (4.25)-(4.26) satisfying the energy equality (4.29), we are in a similar
situation as in the Chapter 3. Thus, we refer to section 3.2.3 for details connected

to this issue.

4.4 Derivation of the limiting 2D equations

The first step of the proof concerns a variant of the first Korn’s inequality
which is proven in section 4.4.1. This inequality is necessary to perform a prior
estimates in section 4.4.2 and subsequently show the boundedness of {p.}.c(01)
and {V.}.c(,1), and perform weak limits. In section 4.4.3, we pass to the limits
in the governing equations (4.25)-(4.26). As the last step, we perform the limit
passage also for the energy equality (4.29) in section 4.4.4.

4.4.1 Korn’s inequality

In this section, we prove a variant of the first Korn’s inequality for functions
from [W'P(Q)]3, p > 3. This inequality is subsequently used to derive prior
estimates for p. and u. in section 4.4.2.

From [9], we know that there exists C' > 0 such that
Iwly,, < ¢ (IDwl, + Iwl,) (4.30)

holds for any w € [WHP(Q)]?, p > 2.
As a consequence (see Lemma 3.1 and its proof), there exists C'(Q,p) > 0
such that
Wi, < C@.p) (1w, + Iwll) (4.31)
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From inequality (4.31), we can deduce the following theorem. Although its proof
employes similar ideas as the proof of Theorem 3.2, we do not omit it, because
it requires also other considerations due to more complex situation induced by
the curvilinear coordinates. Without the loss of generality, we denote u. = u.(t).

Variable ¢ € (0,7) is arbitrary but fixed.

Theorem 4.1. Let u. € [W'(Q)], p > 3, be such that u. -n = u. -az = 0
onT' =S5 x {0}. We define v. = (u: - 81, Uc - 82, U, - €a3). Then there exists
C =C(,p) >0, such that

Iv.lly, < € (I@eua)l, + uellyr) e >0, (4:32)

where w.(u.) is defined by (4.22).

Proof: Assume the contrary: without loss of generality, there exists a sequence
{v., }2 generated by {u.,}!>, where ¢, — 0 as n approaches infinity, such

that [v.,|,, =1 and

S|

2 ||(D5n (uan)Hp + Hu5n||2,F :

Hence,

u., — 0, in [L*(D)]*, @, (u.,)— 0, in [LP(Q))°. (4.33)

In addition, from definition of v, , it follows that v3., = 0 on I'. From bound-

edness of sequence {v. }1> and embedding WP(Q) —— C(Q), we get the

n=1

convergences (passing to a subsequence if necessary)

Ve, =V in [Wl’p(Q)]?’,

v., — v in[C(Q)]
We will arrive at a contradiction in three steps:

1. We prove that {Dv., },/> is convergent in [LP(Q)]°.
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Let us analyze the terms of @, (u.,) one by one. We know that
€
Osu., -agl| < .
|0y, -asll, <

Hence, Osu., - ag = 03(u., - az) — O3(u-az) = 0 in LP(2). However, (u -
az)(z1,29,0) = 0 for all (x1,25) € S (in other words u-az; = 0 on I'). Thus,
vg=u-az=01in Q.

Next, [w., (u.,)]11 can be written as
8111877, : gl,gn = 81 (uan : gl,an) - uEn : algl,an'
From the definition of g; ., , it follows that d1g; ., = d1a; +&,230% as. Therefore,

D181, € [L(Q)]? can be written as

D181e, = C1e,81en T C2,6,82¢, T 3,83,

where co ., = 0181, - 89" — ¢ In L®(Q), @ = 1,2, and ¢35, = 0181, a3 — C3
in L*>(Q2) due to convergences (4.14), (4.18) and (4.19). Hence, u., - 0181, —
c1v1 + covg in L®(Q). Together with the convergence dju., - g1, — 0 in LP(£2),
we get

81(u€n . gl,sn) = 81111’5” — ¢V + vy In LP<Q)

Similarly, we show that also the remaining terms of Dv, converge in LP(2).
2. We show that {v_, }t2 is convergent in [IW1P(Q)]3.

The Korn’s inequality (see Lemma 3.1) can be used in order to prove the
statement of this step. We already know that u., — 0 in [L*(T")]>. Hence, also

v, — 01in [L*(T")]3. Together with the convergence of Dv., we get
Ve, = Veulliy < C@Qp) (IDVe, = DV [, + Ve, = Ve lr )

which implies the convergence of {v. }2 in [W1P(Q)]3.

3. To arrive at a contradiction, we prove that [[v[|, , =1 and simultaneously

v =0.
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From v., — v in [W'?(Q)]* and |v,||,, = 1, it stems that [[v],, = 1.
According to the definition of g,.,, @ = 1,2, we know that 05g,., = €,0,as.

We can write
O, - €,a3 + 3U,,, - 81, = O1U3, + O301, — 265U, - 01 a3.

It holds that e, u., - d1as = e,(dic, Us, - 81, + doe,Ue, - 82.,) — 0 in L®(Q),
where d, ., = O1a3 - g¥*" — d, in L*(Q), a = 1,2, due to convergences (4.18),
(4.19) and the second step of this proof.

Due to 0iu., - e,a3 + Osu., - 81, — 0 and g,u., - d1az — 0 in LP(Q), also

0103, + 0301, — 0 in LP(Q2). In addition,

/ Ovs e, do = — / en(ue, -a3)op doe — 0,
Q Q

where ¢ € D(Q2). Hence, both 0yv5., — 0 and Jsv1 ., — 0 in D*(£2). In addition
with respect to the results of the second step of this proof, we have djvs., — 0
and Osvy ., — 0 in LP(Q2). Therefore, 0307 = 0 almost everywhere. Similarly,
we can show that d3v, = 0 almost everywhere. However, relation (4.33) gives us
vi(z1,22,0) = 0, ¢ = 1,2, for all (z1,x2) € S, which together with dsv; = 0 gives
us v; = 0 in €.

Let us remind that in the first part of this proof, we already showed that

vg = 0. To sum it up, v =0 in 2 and we arrive at a contradiction. O

4.4.2 Boundedness and weak limits

First, we make prior estimates. Equation (4.25) implies the conservation of

mass, i.e.

/pe(t)\/d_edx = poﬁ\/d—sdx, vt € (0,7T).
Q Q

Therefore due to assumptions of Theorem 4.3 (see section 4.5) on f., the first

integral on the right-hand side of the energy equality (4.29) can be estimated as
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follows

t t
/ / pof. - vor/d: dads| < / V() ool B (5) oo / p-(5)v/dz dads
0 Q 0 Q

t
< Clpo. £ / 1Ve(8) 11 ds.
0

In view of the Young’s inequality, property (1.3), inequality (4.32) and esti-

mate (4.23), we arrive at

t
/ / pf. - v. dads
0 Ja

<cfe | [P et o) Pt

t
+Cl/ / |ua|2d5’ds + 02(01)) s (434)
0 JSx{0}

where C > 0 can be made arbitrarily small.

Due to (1.3) and (4.34), we obtain from (4.29) the boundedness

(Ve [ucl} oy in L (0,5 L*(9)) (4.35)
{pf}ee(o,l) in L> (07 T; L‘I:‘l (Q>> ) (436>
{we(u)} ooy in [Lar (2 % (0,7)))°, (4.37)

{Vedicoy In LP(0, T5 WHP(Q)]) M L2, T3 [L*(0Q)]) - (4.38)
for any p > 3. From (4.38), we get the boundedness
{u. - garteeony in LP (0, T; WHP(Q)) N L? (0,T; L*(0Q)) , a =1,2. (4.39)

However, we do not have any information on the boundedness of {u. - ag}.c(01)

yet. Therefore, we prove that
u.-az — 0, in Ly (Q x(0,7)). (4.40)

Due to (4.37), we have the boundedness of e 'dsu, - a3 in Ly (Q x (0,7)). It

means that dsu. - a3 = d5(u. - a3) — 0. In addition, it holds that

|(u. - a3)(xy, x2, 23) — (ue - az)(xy, 22,0)| =

/ a3(115 : 33)(131,%279) dy| .
0
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According to the boundary conditions, we have
(ue : ag)(xl, ZT9, 0) = (ue : 1’1)((131,1‘2, 0) = 0.

Thus,
1
(. - ay)] < / 195(u, - a3)| das.
0

Multiplying this inequality by e~*

1
”5_1(‘16 ' a3)||LM(Q><(O,T)) < H/o e '05(u. - a3) duy

= sup e 103(u, - a3) drs

< sup/ // |€_183 3)| dl’g |¢1| dl’ldl’gdygdt =

—sup/ / /|6_163 ag)||vn| dzdtdys,

where ¢, = ¥y (21, T2, y3) € Ly(Q x (0,T)) satisfies

T
0 Q

Ly (2x(0,T))

91| dzpdaedysdt <

and applying norm [|-[|; . (o7 lead to

(4.41)

Next, we apply Holder’s inequality to the last term in (4.41). It turns out that

Hg_l(ue : a3)HLM(Q><(O,T)) <

1
-1
< [le70s(u. - a3)HLM(Q><(O,T)) S};p/o 111l @ 07y s <
1

< Hg*lag(us . a3)HLM(QX(07T)) S:plp/ (/ /N [t1]) dzydzodysdt + 1> dzs <

<2 Hf_lai%(ua " a3 HLM (Qx(0,T)) = <G ||[w€(u8)]33||LM(Q><(O ) =

< /OT/QM(H%(uE)]ggD dudt + Ci.
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Hence, we arrive at the boundedness of sequence

{7 (u. - a3) }ec(o) in Las(Q2 % (0,7)). (4.42)

Therefore, the convergence (4.40) holds true.

The boundedness of {p:}.c ) in L>(0,T7; Le, (2)) can be extended to the
space L>(0,T; Ly, (€2)). We remind that v > 3 (see Theorem 4.3). We proceed
in the following way. First, we test the equation (4.27) by function ¢ = ¢(t) €
C5°(0,T) with b(z) = ®,(2). We arrive at

/ / O, (o) (t)+ [(B4(pe) — p @, (p2)) V. : R.E.] (t)\/d. dadt = 0. (4.43)

Function ®,(z) —2®/ (2) behaves assymptotically as ®,_;(z). Furthermore, there
exists a positive constant C' such that ®1 (®,_1(2)) < C(P,(2) +1) for z > 0
[26]. Due to equivalence of Young functions M and Wy, relations (1.3), (4.37)

and the Young’s inequality, we deduce the estimate

/ / [(®5(p2) = p-®',(p-)) Ve : R.E.] /d. dadt (4.44)

<c@) | [ [ @00+ P (o)) oulw) 2) VA dodi 1.

where C(T") > 0. With respect to (4.43), (4.44), (4.80) and the Gronwall’s lemma,

we obtain the boundedness of

{pE}EG(O,l) in L>(0, T; f/@, (). (4.45)

We focus on the boundedness of {0;p:}. (o) in the next step. Let us test
the equation (4.25) by function ¢(x,t) = o1 (t)¢(z), where ¢, € LP(0,T), 1/p +
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1/p=1,p>3,and ¢ € [W'Ly__ (Q)]%, v > 3. We can write

T T
/ o / py/de dxdt‘ = / 1 / peul R.E.Vyn/d. dadt| =
0 Q 0 Q

T
/ o1 /Qp( (0. - i)™ + (u. - g2.)g™] - (8",8%°) Vi +
0

+eH(u, - a3)631p> V. dxdt’ , (4.46)

where Vi) = (011, 90)T. Tt is sufficient to estimate only the last term on the
right-hand side of (4.46), because it is "the worst term”. It holds that

T
/ / p1p-e M (u, - ag)ﬁgw\/d—g dxdt‘ <
o Ja

< Hg_l(ua ’ a3)HLZ\/[(Q><(D7T)) ||p59018377b“LN(Q><(0,T)) H \% dE“OO’

where the first norm is bounded — see (4.42), and the second norm is less or equal

than

T T
/ / N(pelollase]) dedt +1 < / / o105 N (o) dadt +
0 Q 0 Q

T T
T / / 02|05 N (1]) dadt + / / ool N(105]) dadt + C. (4.47)

Subsequently, the three integrals on the right-hand side of (4.47) can be estimated

as follows:

T T
[ [lliowinen are< e [ w(/ D (p.) + (|0 dx) at <
0 Q 0 Q

+ / V-1 (|0s9)]) dx) :
L>(0,T) Q

<Gl o (H [ 2000 o

/OT/Q/JEW;:,WN(WH) dzdt < Cy /OT N(l¢1]) (/Q O (p.) + \1:7(|a3¢|)dx> dt <

YRR dx)
L (0,T) Q
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and

T T
/ /ps\sollN(lasw!) dadt < 03/ |1 (/ D, (p.) + U (|059)) dx) dt <
0 Q 0 Q

+ﬁ/’wv«w%¢4>dx),
L>(0,T) Q

s%wmwﬂwéa@Mx

where v >~ >~y — 1.
Finally, we conclude that (4.37), (4.39), (4.42) and (4.45) lead to the bound-

edness of
{01pe}econy i L (0,75 W' Lo, (Q)]). (4.48)
By the use of (4.14), (4.36)-(4.38), (4.45), (4.48) and theorem on compact
embedding [23], we get (passing to subsequences if necessary)
p- = p in L®(0,T; Le. (), (4.49)
pe —p i C((0,T);[W'La, ()], (4.50)
we(us) = ¢ (4.51)

W weay in 27 (0.T5W(Q)) 1 L2 (0.7: L2(99))
a=1,2 (4.52)

Concerning the third projection of u. into the covariant basis, convergence
u.-ag—u-azg=0in Ly (2 x (0,7)) (4.53)

holds true due to (4.42).

From the definition of w.(u.), we can see that

8111 s ap % (8111 -ag + 6211 . al) <13
¢(=R" : Dot - ay Gz | R. (4.54)

sym : (33
We prove that the limiting function u does not depend on the third spa-
tial variable. From (4.37), we know that {e7! (d1u. - cag + dsu. - 1) }ee0,1) 18

bounded in L/(Q x (0,7)). It holds that

5_1 (alus -€ag + 63115 ' gl,e) = a1 (ua : aB) + 5_1@3<u5 : gl,s) - 2115 ' 8133.
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After multiplying this equation by € and by a test function ¢ € D(Q), and

integrating over €2, we get
/Q@g(u8 g1e)p dr = 5/95_1 (1. - cag + Osu. - g1.) p do
+€/Q (2u. - 01a3 — 01 (u. - a3)) ¢ dz.

Therefore, the following estimate holds true

<e

/(ue . g175)63(,0 dl’
Q

/ 6_1 (01115 -eas + 83116 : gl,a) ¥ dz
Q

+e + 2 . (4.55)

/(ua . a3)81g0 d{L‘
Q

/(ua . 8133)@ dZL‘
Q

With respect to (4.37), (4.39) and (4.40), the right-hand side of inequal-
ity (4.55) tends to zero for € — 0. Finally, we have

=0,

/(u -ay)0sp dx
Q

and thus 0;(u - a;) = 0 almost everywhere.
Similarly, we can conclude that 03(u-as) = 0 almost everywhere. In summary

and together with (4.40), we arrive at
Osu =0, (4.56)

almost everywhere, which means that u is independent of z3.
As the next step, we pay our attention to convergences of nonlinear terms in

equation (4.26). Convergences (passing to subsequences if necessary)

po(W - gas) 2 p(u-ay), a=1,2, (4.57)
pe(u: -ag) = p(u-az) =0, in Le__, (2 x (0,7)), (4.58)

where v > 3 (see Theorem 4.3 in section 4.5), are immediate consequences of

(4.40), (4.50), (4.52) and theorem concerning compact embedding [23].
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We prove convergences (4.57) in two steps. The first step concerns the bound-

edness of {p-(u: - 8ae)}.c (o) in Lo, (€2 x (0,T)). Since it holds that

T
Hpe(llg . ga,g)HL%(Qx(QT)) S / /Q(I)W(pehlg . ga,el) dxdt + Cl S
0

T T
< 02/ /\ua-ga,s!%(pe) dxdt—l—Cz/ /p€<1>7<|u€-ga,e|) dzdt + C; <
0 Q 0 Q

_l’_
Lo°(0,T)

< CQ ”us . ga,5|’Lp(()7T;Loo(Q)) H/S;(I)WQOE) dx

T
+C4/ / pelue - ga,5|2 dzdt + Cs,
0o Jo

where the second term on the right-hand side is less or equal than

2
Cs HPeHLoo(o,T;Ll(Q) [u. - ga,aHLp(o,T;Loo(Q) ’

\Ij S —
we arrive at (passing to subsequences if necessary) p.(u: - gac) — p(u-a,),

a=1,2.
In the second step, we show that p.(u.-ga) converges to p(u-a,), for e — 0,

in the sense of distributions. We begin with

/OT/Q (p(u: - o) — p(u-a,)) ¢ dadt = /()T/Q(pE — (W, - gas)p dadt —

_/OT/Qp((us.gw)_ (u-a,)) dadt, (4.59)

where ¢ € D(Q x (0,7)). Since strong convergence (4.50) implies convergence
pe — pin C ({0, T); [WP(Q2)]*) and convergences (4.52) hold, the right-hand side
of (4.59) tends to zero for ¢ — 0. This concludes the proof of convergences (4.57).

In the following, we demonstrate that also convergence (4.58) holds true.

According to the Holder’s inequality, we can start with

T
R P —— / / pe(u. - a)p| dedt <
vt ¢ Jo Jo

< [Ju. - a3||LM(Q><(0,T)) Sup H/)eSOHLN(Qx(o,T)) 5
%)
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where the supremum is taken over all functions ¢ € Ilp%l(Q x (0,7)) such that

T
/ / U,_1(]¢|) dzdt < 1.
o Ja

From (4.40), we know that |lu. - as||;, (qx(or) — 0- Therefore, it is sufficient to
show the boundedness of [|p-¢[;, . x(or)) for proving (4.58). The equivalence of

Orlicz spaces Ly and Lg, (see Lemma 2.30), and the Young’s inequality gives us

T
102l 1 @x 01y S/ /Q‘Dl(f)a|90|) dedt + C' <
0

T T
< / / 9.0 (|o]) dadt + / / 0| ®1(p) dzdt +C. (4.60)
0 Q 0 Q

Subsequently due to the Young’s inequality, the first integral on the right-hand
side of (4.60) is less or equal than

// (pe) dzzrdt—{—// D1(|¢])) dadt <
/ / (p:) dxdt—i—Cl/ / (Je|) dedt + Cs,

where v > +' > v — 1. The second integral on the right-hand side of (4.60) is less

or equal than

/OT/Q%_l(IsoD dxdt+/(]T/§2(I>7_1(<I>1(pE)) dzdt <
= /oT/Q\IJ”‘l(M) ddeC/OT/Q‘Pw(pa) ddt.

Hence, we conclude that convergence (4.58) holds true.

To overcome the second term on the left-hand side in equation (4.26), some
sort of strong convergence of p.(u. - g,.) is needed. We consider ”the worst

integrals” in (4.26) and prove their boundedness. First, we show that from (4.39),
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(4.40) and (4.45) follow the boundedness of

T
/ /paug ®u. : w.(¢)V/de dadt (4.61)
0 Q

for any ¢ € (0,1) and test function v such that 1 - n|oax@r) = 0. Let us use
formulas (4.21) and (4.22), and perform the following reasoning:

U @ we (V) = wicuge [ (V)] [rkﬁ]i[rl’a]j =
= (u. - rkﬁ)(ue : rl’s) [0 (¥)] . - (4.62)

We remark that g; . and g, determines the same plane as g and g (the
normal vector of this plane is a3). Therefore, the boundedness of sequences
{u. - gactec) in LP (0, T; WP (Q)) N L? (0,T; L*(99)) implies the boundedness
of {u. - g*°}.c(,1) in the same space, for o = 1, 2.

There are three types of terms in (4.62) and we analyze them one by one.

Since r*® = g*¢ for a = 1,2, and r®¢ = a3, we can write:

(a) pe(u. - g*)(u. - gﬁ78)[@6(w>]a67 a,B=1,2

Let us assume that ¢ € L9(0,T; [W'Ly_ (Q)]*), where 2/p+1/q =1, v > 3. The

estimate is performed directly as follows:

| pelus ™) (u, 879 [@:(¢)]apV/d- dadt| <

< ||p€||L°°(O,T;L4W(Q)) [u. - ga’€||Lp(o,T;Loo(Q)) Hue : gﬂ’eHLp(ovT;Loo(Q))

180 o079 2 g 1/ el

(b) pe(“e ) ga’s)(ue : a3)[®a(w)]a37 a=1,2

We denote e Lo(t)(z) = [@.(¥(x,1))]as for convenience, where ¢ € L9(0,T),
2/p+1/g=1, and ¢ € [Ey, ,(Q)]°. From Hélder’s inequality, we get

pg u, - )(u. - ag)e” gp@bv dxdt

< ||\/da||oo|!€_1(ue - a3) || Lasx 0.1 || P (0 - %)Y || Ly (x (0.7
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where (4.42) gives us the boundedness of |[e™!(u. - a3)||1,, x(0,1)) and

T
oo (e - 8ot L iax o) < / / By (p:Ju. - g%l [d]) dadt + O, <
0 Q
T B T B
< / / . - g% l|$|®1 (p.) dadt + / / ool |91, (. - g*=) dedt +
0 Q 0

T
+ / / pelu. - g°°|%1 (¢][d]) dadt + Cb. (4.63)
0 (9]

Further, we estimate the three integrals on the right-hand side of relation (4.63)

as follows:

T
[ 6l [ ne gt ) dade <
0 Q

<[ "1l - 20 o ([ 1oteo dx) at <
<0 [ el g e ([ @100 s+ [0 dx+c4) it <

< Cj (HSOHLP’((),T) +[[ue - g% || e 0,70 (

+/Q\I/71(W|) dx+C4> :

where 1/p+1/p’ =1 (and thus p’' < q),

_l’_
Loo(o,T)
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[ [ oteliionin g2 dnit <

< [ 1ot gl ([ ol o) ar <

< [ 1ot gl ([ 000+ 000D o ) ar <

< [ 1t g1+ 0) ([ 000+ 0,00 @) e <

_l’_
L>°(0,T)

< el zacory (e - %20 0120 (2)) + C) (H/Q‘IH(PE) dz

+ [ w04 dx) ,

T
/ / . - %19 ([l 7)) dadt <
0 Q

< /OT l(ue - %) |0 (/Qp5<1>1(|ng¢’) d:c) dt <

T — —_
< / (e - ) 1 ( / Pl @1 (13]) + 2121 (Je) dx) dt 4 C.
0 (9]

We conclude this part by estimating
T —
[l ([ st as)ar <
0
T —
: Cl/ elll(u: - &)l (/ @, (p.) + W(|) do + Oz> dt <
0 Q

+
L*=(0,T)

< Cullollom e - €l woirien (H [ .00 as

+/Q\IJ,Y/(W\) dx+Cg),
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withy >~ >~v—1and 1/p+1/p' =1, and

/ "ol (- g7l ([ it o) <

< | P + Ol - ) o ([ @00+ w030) ar) ar <

< (el oo v - 8 oo miz=()) + Cllue - 8|1 07:0(2)))

(H/Q%(pa) da Lm(O,T)+/Q\D”(W) dx>’

(c) pe(uc - ag)?[we ()]s

For convenience, let us denote e 1o (¢)Y(x) = [w-((z,t))]s3, where p € L1(0,T),
2/p+1/g=1, and ¥ € [Ey, ,(Q)]°. By the use of Hélder’s inequality, we get

T
/ / p-(u. - ag)’eLpP/d. dadt| <
0 Q

<V delloolle™ (e - a3)?[| 1, (@x 00 1Pl Loy 2x 0.7

Let us remark that M and W, are equivalent Young functions (see Lemma 2.30),
and Wy(2*) ~ Wy(z). Thus, the norm [[e!(u. - a3)?||L,, @x (1) tends to zero,
for e — 0, due to convergence (4.40) and boundedness (4.42). We estimate the

remaining norm || p. || La,(2x(0,7)) 10 the following way:

T
[P || L, (2% (0.1)) S/ /Qq)g(pglgon/zl) dzdt + O <
0
T B T B
< / / l151Da(p.) dadt + / / 9. (|l|F]) dadt +
0 Q 0 Q

T
9 / / 1 (p2)®1 (|o||]) dadt + C,

where
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T
[ [ 1elaieston are <
0 Q
T

<0 [ 1ol ([ @100+ 0205 e ) at <

< Cllollmon (H [ o) ac ) dx) ,
L>(0,T)

/OT/QPE%(IMWD dmdtS/OTM (/st%(w) dx) dt +
. /OT@(m) ([ it ar) a2 /OTq)luso\) ([ ity )i c =

< /OT ] (/Q @, (pe) + Wy (|9]) dx) dt +

+/OT (I ( JRACER AT dx) at +

+Cy /OT Py (|¢l) (/Q D, (p) + V. (Y] dx) O e
L°°(0,T) Jr/Q\Ijv’(WD d:p) +

sl 20 (H / UOLE I / W, () dx)+
Lo (0,T

+Call (o) 20 (H [otaas| & [ dx> ‘c
Q L>(0,T) Q

< CifellLrom) (H/Q(I)W(pg) dz

with v >+ >+ — 2, and
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/OT/Q‘I’l(Pe)@l(IMI@/}I) dadt <

< [ Lol ([ eutoomution as) e+

+ [ ool ([ oot an)ars o <

<G /OT |l </Q @, (pe) + Wy (19]) dx) dt +

+o [ ullo ([ @000+ w00 dr) a0 <

+/\If,y,(|1ﬁ|) d:zt) +
Lo (0,T) Q

Gl (I o (H [ewra] v e dx) e
Q L>(0,T) Q

< Clielloom (H [ 0001 o

where vy — 1>+ >~ —2.

We conclude that the integral (4.61) is bounded for any ¢ € (0,1) and % such
that ¢ - n|poxor) =0, ¢ € LI(0,T) and ¥ € [Ey._,(Q)]°. Subsequently, we show
that also

/O /Q P (Jw.(u))) we () : we(¥)\/de dzdt (4.64)

is bounded for any € € (0,1) and ¢(z,t) = ¢(t)¥(x), ¥ - n|saxor) = 0, where
¢ € Ey,, (0,7), «>2,and ¢ € [WIE\I,I/Q(Q)]?’, 03¢ = 0. We remark that

Ot - g1 % (811/_1 "82e T Do) - gl,e) 5’11& - ag
: 82¢ +as RE;

8277Z) c 82

N[ D0 =

wewj) = RaT (
0

sym

which is bounded for ¢ — 0 in [Ey, ,(2)]°. Due to Young’s inequality, it holds
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that

P (Jw:(uo)|) we(ue) = we(p \/_dsndt‘
< IVl (mr [ watio ars

/ [ v (Pl tuloswlnt) asat ). (4.65)

where o > 2. For simplicity, we denote w. = P(|lw.(u.)|)|w:(u.)|. It follows
from Jensen’s inequality and estimate (3.46) that w. € Lg, (2 x (0,7")) implies
we € Ly, ,,,,(0,T; Ly, (§2)). Therefore, the second term on the right-hand side
of (4.65) is less or equal than

/0 /Q e (D)) By (102) + 101 (0o (D)) dadlt + Cy <

< /0 /Qq)(a—l)/oz(q)l/oc(we)) + \Il(a—l)/a(lwa(lz)l) +

+ 01 (we) + U1 (P10 (Jw:(¥)]) dadt + C; <

<3 / / By (P (| (1)) |we (uo)]) daedt +

/ / (a—1)/c ‘Wg dl’dt—i—/ /\111/2 ’U)E dl‘dt—{—CQ,

where a > 2. Due to property (1.6), we conclude that integral (4.64) is bounded.

Terms (4.61) and (4.64) represent ”the worst integrals” in (4.26). Thus,
we omit the estimates of the others and take v (z,t) = @(t)i(z) satisfying
¥ - Dlsaxomr) = 0, where ¢ € Ey,, (0,7), a > 2, and ¢ € [W'Ey, ,(Q),

05¢ = 0, as a test function.

By the use of estimates (4.61) and (4.64), we demonstrate how to perform a
limit passage in the second term on the left-hand side of equation (4.26). Let us

test the equation (4.26) by function ¥ (x,t) = 1 (z)p(t), where ¢ € C°(0,T) and
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P € [W!'Eqy, ,,(Q)], O31p =0, -a2 =0, a3 =0 (to control term V1) : R.E,)
and ) - n|yn = 0. Since

= (¢-a)a; + (¢-a’)ay + (¢ - az)ag = (V- a')ay,

we get
T —
/ QDI/Qpa((us : gl,fs)glﬁ + (ue - g2,e)g27€) X \/@ dzdt| <
0
T — —
S/ |s0|/ (|peue ® ue : w.(¥)] + [V : R.E.|+
0 Q
+[ P (|we ()] we(ue) = we ()] + [pefs - 9]) Vde dadi +
T
+Q/ |90|/ lu. - || R.En|/d. dTdt +
0 r
h T _
Me) / ol / [u. - [+/d. drdt, (4.66)
€ Jo Ty
where

= (pa(ua : gl,a)ghE - 5Z1,5) ' 7[]7

with Z1, = pe(ug : g275)(fb3g2’6 : 8133)211.

LP(0,T; [Le, (2)]?) follows from convergences (4.14), (4.18) and (4.19), and from
boundedness (4.38) and (4.45). Therefore,

The boundedness of {z;.}.c(0,1) in

ez1. — 0 in LP(0,T; [Ls., ()]?), (4.67)

and thus also in [Le_(Q x (0,7))]°.
Considering the density of C§°(0,7) in Ey, ,(0,T), embedding Ly, ,, (0,7

— By, ,(0,T) C [N/q,m(O,T), a > 2, and the boundedness of all terms on the
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right-hand side of the inequality (4.66) — see (4.61) and (4.64), we deduce the

boundedness of
1
0 [ (putue )8 — em.) Vi discion
0
in L, (0,T; ((W'Ly, ,(9)])?), a>2. (4.68)

Similarly, testing the equation (4.26) by function ¥(x,t) = 9(z)¢(t), where
@ € C(0,T) and ¢ € [W'Ey, (), 03¢ = 0, ¥ -a' =0, ¥-ag = 0 and

¥ -n|aq = 0, leads to the boundedness of

1
{8t/ (ps(ua : gZ,E)gZE - €Z2,E) \/@ dl’g}ge(o,l)
0

in Lg,,, (0,T; ((W'Ly, ,(9)]*)?), a>2 (4.69)

where zy. = p.(u. - g1.)(z3g"° - Drag)a®.

Similarly as convergence (4.50), we get (passing to subsequences if necessary)

1 1
/ (p=(Ue * 8o )8V — €20n ) Vde doz — / p(u-a,)a’Vd ds
0 0
in C ((0,T); ((W'Ly,(9)])?), a=1,2 (4.70)
by the use of (4.14), (4.18), (4.19), (4.57), (4.68), (4.69) and theorem concerning
compact embedding [23].
In order to perform a limit passage in the second term on the left-hand side

of equation (4.26), we prove the following lemma.

Lemma 4.2. Let us denote v, = (081 -, Us-8a o, Uorcag). Assume that {u.}oc(on)
satisfies condition (4.57) and {Vv.}.c1) satisfies condition (4.38). Then for any

p > 3 (passing to a subsequence if necessary), it holds that

1
|Vae — / Ve A3 o000y = 0, fore =0 and o =1,2. (4.71)
0
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Proof: We prove the assertion by a contradiction. Let us suppose the existence

of fixed p > 3 with a positive constant ¢; and {e,} /> tending to zero such that

1
||Uoc,5n —/ Va,en dI3||Lp(0,T;L°o(Q)) >c >0, Vn e N. (4-72)
0

Obviously, there exist a nonempty set I, ., C (0,7) and fixed § > 0 sufficiently

small such that

1
C1

[voe () — /0 tea8) Aol > S for almost all ¢ € Ly (473
We will arrive at a contradiction in several steps. At the beginning of each
step, we emphasize a statement which is proven within a particular step. Finally,

the statements are used to demonstrate that there is a contradiction.

(i) There exists a positive constant co = ¢a(¢q) such that |1, .| > ¢ > 0, for

all n € N.

If not, then (passing to a subsequence if necessary) |1, .,| — 0 for ¢, tending to
zero. Let us consider ¢ € R such that ¢ > p. Due to the boundedness of {v., };>
in L9(0, T; [W'2(Q)]?), for any ¢ > p, the following inequality contradicts the
relation (4.72):

1
Hva,an - / Va,en dx3HLp(0»T3L°°(Q)) =
0

1
= / Ve, (1) _/ Vae, (1) dzs||5% dt + / |- []8 dt <
0

(OvT)\IEnycl Ifnycl
1
C1 D =P n—+oo C1
< 146 + [[vasen, _/0 Vaven dx?)Hm(@j;;;oo(Q))‘Isn,m| ! ’ 110 <.

(ii) We show that there exist a nonempty set J., ., C (0,7), for ¢5 > 0 large
enough, such that the following inequality holds

[Vaen (B)l2,00 + ID12ve, (B)]|, < 3, for almost all t € J., ., (4.74)

where Diov,, is 2 X 2 submatrix of Dv.  constituted of the first two rows

and columuns.
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If not, then without the loss of generality there exists a sequence {c3(n,t)}123,

c3(n,t) = 400, for almost all ¢t € (0,T), such that
[Vac, (D)ll5,00 + ID12Ve, ()], > cs(n, 1),

which would be a contradiction with the boundedness of {v., }'*] — see condi-

tion (4.38).
(ili) It holds that sup, .y |[(0,T) \ Je, 5| — 0 for ¢5 — +o00.

If not, then there exist a sequence {c3(m)}} >, c3(m) — +oo, and a positive

constant K such that sup,cy [(0,7) \ Jz, csm)l = K1 > 0, Veg(m) > c3(mo),

n,C3

+o0o

mo € N. It implies (passing to a subsequence of {e,},/%] if necessary)

|Va.en (t)HZ,BQ + [[Digve, (B, > c3(m), for almost all ¢ € (0,7 \ Je,, c5(m),

where n = n(m), and we would get a contradiction with the boundedness of

sequence {v., } 2 — see condition (4.38).

(iv) For convenience, we simplify the notation v, ., = va., (t) € WP(Q). We

justify that

IDsve, |l + |vse,ll2,00 — 0, for almost all ¢ € (0,7), (4.75)
where
0 0 % (81’0375,1 + 8321175”)
Dyv,, = : 0 % (Opv3e, + Osvac,)

sym - 0303 ¢,

Comparing D3v,, and term (4.22), the statement of this step follows from defi-
nitions of v., and Dsv,, , and boundedness (4.37), (4.38) and (4.42).

(v) According to part (iii), sup,en [le,.c; \ Jen.cs| tends to zero for any ¢; and c;
approaching +o0o as I, ., C (0,7). Therefore, we get I, o, N Je, s = Iz e
for ¢3 — +00. Hence, we can assume that both conditions (4.73) and (4.74)

hold for almost all ¢ € I, .,. We prove that

1
[vaen (£) = /0 Vaen (£) dslloc < e([D3ve, (D)llp + 13, (t)ll200),  (4.76)
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for almost all t € I, .,, where ¢ = ¢(c1,¢3) > 0. For simplicity, we denote

Vaen = Vae, (t) € WHP(Q) again.

There are two options for the behavior of ||v,e, — fol Vae, d3]loo. First, let us

assume that

1
Hva,en _/ Va,en, dx?;Hoo — 400, for n — +o00.
0

For contradiction with (4.76), we further suppose that

1
cEn = H/UOHEH _/ va,gn dx3HOO > n(HD?)VEn b, + ”v,?),gnHQ,BQ)-
0

Dividing this inequality by c., leads to

1
1=w%%—/%%m¢mu>nwmwwu+wwwwm
0

where w,, = cZ'v.,. We divide also (4.74) by ¢, and get the convergences
Dw., — 0 in L?(Q) and w,., — 0 in L?*(0Q). From the Korn’s inequality
(see Lemma 4.30), we conclude that w,., — 0 in W'?(Q) (and also in L>(£2)
from the compact embedding), which is a contradiction with the unit norm of
W — i e, s,

Second, let us suppose that
1
Hvaﬁn _/ Va,en dxi’)”oo <K< +00, Vn € N.
0

For contradiction with (4.76), we further assume that

1
K 2 [|vag, —/ Vaen d3lloc > 1([D3ve, [lp + |03, [l2.00)- (4.77)
0

Considering inequalities (4.74), (4.77) and classical Korn’s inequality, we arrive

“+o00

at the boundedness of {||vac,|l1p}no7- Therefore (passing to a subsequence if

necessary), it follows from the compact embedding that v,., — v, in L>(Q).
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Due to (4.75), Osvse, — 0 in LP(§2) which together with the convergence
v3e, — 0 in L?(09), gives us vs., — 0 in LP(Q2) (we remind that Q = S x
(0,1)). Hence, 04v3., — 0 in D*(Q2) and also O3v4,., — 0 in D*(£2) due to the
convergence (4.75). To conclude, O5v,., — 0 in D*(§2) implies v, = fol vodas

which contradicts the inequality (4.73).
(vi) There is a contradiction.

Since convergence (4.75) and inequality (4.76) holds (see steps (iv) and (v)), we
arrive at a contradiction with inequality (4.73). It means that the statement of

this lemma holds true. O

Let us remind that v. = (u. - g1, U. - 82, U, - €a3). We apply Lemma 4.2 in

the following way. First, it holds that

T 1
/ / / psva,svﬂ,sgaﬁ’ew V de dwzdrdt =
0o JsJo
T 1 1
:/ // PV (Vg —/ vg,sdazg)gaﬁ’sw\/ds dxsdzdt +
0o JsJo

0

T 1 1
+/ // PeVae (/ U,B,sdx?,) gaﬁ’siﬁ\/d—g dl’gdi’dt =
0 S J0o 0

T 1 1
= / / / psva,s(vﬁ,s - / Uﬁ,sde)ga&Ew\/d_s dzsdzdt +
0 S JO

0

T 1 1
+/ / (/ psva,sgaﬂys\/d_s dx?)) (/ Uﬁﬁdl'g) w dzdt
0 S 0 0

where ¢ € C3°(0,75C>*()), d& = dxydzy and a, 8 = 1,2. The first integral on
the right-hand side tends to zero for ¢ — 0 due to Lemma 4.2. Concerning the
second integral on the right-hand side, it holds that (due to convergences (4.67)
and (4.70))

1 1
/ pava,sga/g’g V ds de = / (pE’Uoz,ngé/B’Z5 - Eza,s : gﬁﬁ) V da dx?) +
0 0

1 1
+5/ Zog gB’E V da dl’g — / pevagaﬁ\/a dx3’
0 0
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where the first integral converges in C({0,T); [W'Ly,(S)]*) and the second inte-
gral converges in LP(0,7; Ly (S)), and also

1 1
/ vge deg — / vg dwz in LP(0,T; WP(S)),
0 0

which follows from (4.52). In addition, it holds that

1
/ pevagaﬁ\/c_i dzs = ﬁvagaﬂ\/g
0

1
/ vg dog = vg,
0

where p = fol p dzs, because v (as well as u, see (4.56)) is independent of z3.

HGHCG, convergences

T
/ / pe(ua : ga,a)(ua . g57€)gaﬁ,e¢\/z dl’dt —
0 Q

T
— / /[)(u ca,)(u- aﬁ)gaﬁgb\/a dzdt, a, B =1,2, (4.78)
o Js

are immediate consequences of (4.52), (4.70) and (4.71). Convergences (4.78) are
applied in the next section to overcome the nonlinearity in the second term on

the left-hand side of (4.26)

4.4.3 Limit of the governing equations

We prescribe the behavior of initial states for ¢ — 0 by formulas
1
/ 00, In(po<)\/de dzs — poln(pe)Vd in LY(S), (4.79)
0
1
/ ~(po.e) \/d_E dzs — @7(,00)\/3 in L'(S), v > 3, (4.80)

/ [(peuc)o ’\/_d 2) “va i LY(S), (4.81)

2p0 ¢ Po

where all limits on the right-hand sides do not depend on x3. We remark that the

prescribed behavior (4.80) enables us to use the Gronwall’s lemma in the proof
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of boundedness (4.45). Further, we assume that h(¢) > 0 in (4.26) satisfies the
condition h(e) ~ O(e) to assure the convergence of @ to a real positive number.

In this section, we denote an integral of a function in the third spatial variable
over interval (0, 1) by symbol ” *” over the function. Obviously, these mean values

depend only on z; and z5. For example, we write p = fol p dxs. Sinceu-az =0

—see (4.53), and u is independent of x3 — see (4.56), it holds that

A

1
u:/ udrs=u=(u-a;)a’ + (u-ay)a’.
0

Now, we can perform the limit in (4.25) and (4.26). We use convergences
mentioned in section 4.2.1. First, we test the equation (4.25) by function ¢ €

D(R? x (0,T)). We arrive at

T
/ / (p-0rp + poul (ghe, g%, &%) (D1, Do, 0)7) V/d. dadt = 0.
0 Q

Subsequently, we expand u. into the covariant basis. Since g®¢ -ag = 0, for

a = 1,2, we obtain

T
/ /Q <p€8t%0 + p(u: - g1)8" + (u. - g2-)g™"] " (g8, g“WS@) V de dzdt =0,
0

where Vo = (01, Oap).  Afterwards, we perform the limit for ¢ — 0, apply

convergence (4.57) and get

T
/ / [ﬁ@tcp + ﬁﬁT312v¢] Vd didt =0, (4.82)
0 S

for any ¢ € D(R* x (0,7T)), where R'? = (a',a?) is a submatrix of R and
dz = dz;das.

Second, we test the equation (4.26) by function ¢ € C°(0, T; [C>(£2)]?) such
that ¢ - a3 = 0, 0310 = 0 and ¥ - n|psx ) = 0. We will show the limit passage
for each term in (4.26) independently.

(a) peua : at¢
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We expand u. into the covariant basis. Since ¢ - a3 = 0 and convergences (4.57)

hold, we get

T T
/ / pg“a'atwd_gdxdt:/ / pel(ue-g1.)g" + (U g0, )g>] - Op/do ddt,
0 Q 0 (9]

which converges to
T
/ / ot - OV d dadt,
0o Js
for e — 0, due to (4.57).
(b) peu. @ u. : w (1)

As 03¢ = 0 and ¢ - a3 = 0, we know that [@.(¢)]33 = 0 and also that [@.(1))]as =
(0.7 - a3)/2, a = 1,2. After expanding u. into the covariant basis and applying
convergences (4.58) and (4.78), we conclude that

T
/ / P @ U, ¢ we(¥)y/de dadt =
0 Q

T
— /0 /st(llg . giﬁ)(ug . gj’e)gij,s[we(w)]ij\/d—g dxdt7

where the sum is taken over i, 7 = 1, 2, 3, converges to

/OT /S plu-aq)(u-ag)g* [w(¥)]asVd dedt =
- /OT/Sﬁﬁ ® 6 w(Y)Vd didt,

for e — 0 (the sum is taken over «, 8 = 1, 2), where

0y - ay % (O - ay + 0p) - &) %31¢ ag
w(®y) = RT : Do) - as 100 -a; | R.

sym
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Since R.E. = (g'¢, g"*, e 'a3), we have

/ /pE (01, 0o, O30) : (g e tay) \/_dxdt:
/ / (1, Do) - L) /d. dzdt,

which tends to (see convergence (4.49))

T
/ / PV : RV d didt,
0 S
for e — 0.

(d) P (Jwe(ue)]) we(ue) = w:(4)

It holds that (see convergence (4.51))

/ ' P sl ) () Vi e [ ! | PTG otV azar,

for ¢ — 0, where ( is defined by (4.54). Later, we will show that

// (ICH¢ = w( \/_dxds—// (|ew(a L w()Vd dids,

for any t € (0, 7).

(e> pz—:fe ’ w

After expanding f. into the contravariant basis and applying the relation ¢-az = 0,
we arrive at (see also convergence (4.49) and assumptions of Theorem 4.3 in

section 4.5)

T T
/ / pele -/ de dxdt:/ / pel(E - g + (£ - £2%)gn.] - ¥1/de dadt
0 Q 0 Q

which tends to
T
/ / pF - V/d didt,
0o Js

for e — 0, where F = (f - a')a; + (f - a?)ay and f denotes the limit of f..
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(f) u. - Y|R.E.n]|
Since n = (n1, ny,0)T on I'y, we have
U - 77Z)|}%5E‘€n| = U ¢|(g1’€7g2’6)ﬁ|7

where fi = (nq,ny). Due to (4.40) and (4.52), we arrive at

T T
/ /ue-wleEsnIJd_dedt%/ / @t - | R™2A)vVd dSdt,
o Jm; o Jas
as € tends to zero.

<g> @ue ' w

According to the supposed behavior of h(e), i. e. h(e) ~ O(e), we can use
convergences (4.40) and (4.52) and get

T T
51/ / h(e)u, - ¥+/d. dth—>2h/ /ﬁ-¢¢& dzdt,
0 Jry 0o Js
for e — 0, where h is a positive constant.

Finally, we arrive at
T A

/ /[ﬁﬁ~8tw+ﬁﬁ®ﬁ:w(w)+ﬁvw:R”]\/Ed:%dt:

0 S
T T

:/ /P(\Q)g:w(w)\/ﬁ dxdt—/ /pF-w\/& didt +
0 Q 0 S
T T

+q/ / - | RZA|Vd det+2h/ /ﬁ-wx/é dzdt, (4.83)
0 aS 0 S

for 1 € C5°(0, T; [C*°(Q)]?) such that ¢ - a3 = 0, 93¢ = 0 and ¥ - n|ssx(0) = 0.
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4.4.4 Limit of the energy equality

Applying similar approach as in section 4.4.3, convexity and Jensen’s inequal-
ity, we perform the limit for ¢ — 0 also in the energy equality (4.29). We arrive

at the following inequality:

/S<p§+p1n( ))\/Ezclm/t/wﬁdxdﬁ

t
-I—q/ 42| R™A[Vd des+2h/ /|u|2f dids < (4.84)
0

¢ 2
g/ /pF-ﬁ\/E dids+/m\/a dx+/p01n(p0)\/3 de.
0 Js s 2po s

By the use of the same procedure as in [19], Lemmas 3.2 and 3.3, based on the
renormalized continuity equation and the Steklov function, we can derive from

(4.82) and (4.83) the energy equality

/S(p’—+pln )\/_d.fc+// (IC) ¢ : w(t)Vd dads +

+q// [G*| R A \deds+2h/ /|u|2\/_d:)3ds— (4.85)

//pFu\/_dxd—l—/l

Since the function P(|z|)z is monotone, we get

/ poIn(po)Vd dz.

- lﬂ%/ / (Jws(u.) |Wg(llg)| dzds —
- [ [P0 7+ PUTIT <6+ PATDT dsas (4.56)

for any symmetric T € [Ly(Q x (0,7))]°. As a consequence of (4.29), (4.85),

89



convexity and Jensen’s inequality, we arrive at

t
lim/ /P(!wa(ugﬂ) |w. (u.)[Pdads =

e=0 /5 Jo

o ucf?

_}:1_1}(1) <_/Q<ps 9 hl ps \/_dQJ—

! h(e
—q/ lu.|?|R.E.n|\/d. dT'ds —Q/ lu|?v/d. dT'ds +

//pef ue\/_dxds—i— leeue)ol o 4+

2p0 €
’ 2

/poysln Poe)V de dx) < —/ (pu—’—l—pln( )) Vd di —
Q S 2

t t
—q/ )| R4 Vd des—Qh/ /yﬁWE dids +

//pFu\Fdxd+/’ ‘fd+
—i—/SpO ln(po)\/a dx:/o /szw(ﬁ)\/ﬁ dads. (4.87)

Consequently from (4.86), we get

0< /Ot/Q (PUCIC ~ PUTNT) : (w(2) — T) dads,

Taking T' = w() £ Aw(v), for X > 0, ¢ € C°(0,T; [C**(2)]?) such that ¢-a3 = 0,
031 = 0 and ¥ - n|pgx 0,y = 0, we conclude that

[ [ PR wtwtads = [ [ Pla@beta) v wss)

4.5 Main theorem for the 2D model

To sum it up, the limit equations together with the energy equality are given

by the following formulas

T
/ / [ﬁ@tgo + ﬁﬁTRHW] Vd didt = 0, (4.89)
0 S
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for any p € D (R? x (0,T)),

T
/ /[pﬁ.atw+pﬁ®ﬁ:w(¢)+ﬁw:R“‘]\/Ed:zdt:

/ / (|w(ia ()\/_dxdt—/ /pF YVd dedt +

+q/ / - | RZA|Vd det+2h/ /ﬁ-wx/é dzdt, (4.90)
0 oS 0 S

for any ¢ € C5°(0,T;[C>®(2)]?) such that d3¢p = 0, ¢ -a3 = 0in Q x (0,7) and

Y- 1|agx 0, =0,

/S<pu+pln )\/_da:Jr// (lw(@))) |lw(@)|?Vd dids +

t
+q/ 2| R™2h[Vd des+2h/ /|u|2\/_ dids = (4.91)
0

//pF aVd dids +/| \/_d +/p01n(p0)\/adf.

Finally, the main result of this chapter is summarized in the following theorem.

Theorem 4.3. Let us assume that couples (pe,u.), € € (0, 1), satisfying

pe € L(0,T; Lo, (),
ve € LP(0,T; [WH(Q)]°) N L*(0, T; [L*(99)]%)

with ve = (Ue - 81, U, - 8o, Ue - 83.) for arbitrary but fived v > 3 and p > 3,
are weak solutions to the transformed equations (4.25)-(4.26) with initial states
poe € Lo (2) and %\/d_6 € LY(Q) satisfying (4.79)-(4.81). In addition, we

assume that Navier boundary conditions (4.1)-(4.3) hold and w.(u.) € [Lp (€ x
0, 7))

Further, we suppose that function P complies with conditions (1.3)-(1.7), f. —
£ n [L°(Qx(0,7))]® and f.-g?< € [L>=(2x (0,7))]*, 7 = 1,2,3, h(e) > 0 behaves
like O(g), ¢ > 0 and covariant basis {a;,as, az} C [L=(Q)]® satisfies conditions
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Jwa; and 3§5a3 € [L>®(Q)]3, where a, B =1,2 and j = 1,2,3. Then (passing to

subsequences if necessary)

pe = p in L= (0,T; Ls, (),
pe—=p inC((0,T);[W'Lg ()],
we(ue) = w(u)
W —u-a, in LP(0,T;WHP(Q)) N L2 (0,T; LX(09)),
a=12,

u.-ag— 0 in Ly (2 x (0,7)).

In addition, couple (p,0), where p = fol p dzz and @ = (u-aj)a’ + (u-az)a?,
0 - 0psx01) = 0, is a weak solution to the equations (4.89)-(4.90) and complies

with the energy equality (4.91).
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Chapter 5

Conclusion

Three dimensional model describing fluid motion was considered. In par-
ticular, we studied the dynamics of compressible non-Newtonian fluids in thin

domains. Thus, we dealt with nonsteady Navier-Stokes equations

Op + div (pu) = 0,
O (pu) + div (pu ® u) + Vp = div (P(|Du|)Du) + pf in Q x (0,7,

where ) was either a thin pipe (Chapter 3) or a curved three-dimensional domain
with only two dominant dimensions (Chapter 4). Our aim was to perform a rigor-
ous derivation of respective lower-dimensional models. New results in the theory
of asymptotic analysis were presented in this thesis. Our both main contributions
were published in peer-reviewed journals [, 2].

Prior to the derivation of lower-dimensional models, an introduction to Young
functions and Orlicz spaces was given in Chapter 2. Further, we studied Young
functions with a logarithmic and an exponential growth. Orlicz spaces defined
by the use of these specific Young functions were subsequently applied to prove
our main results.

Chapter 3 focused on a rigorous derivation of a one-dimensional model from
the three-dimensional Navier-Stokes equations. After proving a variant of the first
Korn’s inequality and making a priori estimates, we demonstrated boundedness
of sequences of densities and rescaled velocity fields. The boundedness allowed

us to perform weak limits and pass to the limit in both the governing equations
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and energy equality. Theorem 3.4 (section 3.4) summarizes our first main result.

Chapter 4 was devoted to an asymptotic analysis of the three-dimensional
Navier-Stokes equations acting over a curved domain. We applied a similar ap-
proach as in Chapter 4 to arrive at the limit of the governing equations and
energy equality. However, the deformation of the domain introduced new diffi-
culties which had to be addressed. Finally, we overcame all the difficulties and

presented our second main contribution in Theorem 4.3 (section 4.5).
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1 Abstract

Governing equations representing mathematical description of continuum me-
chanics have often three spatial dimensions and one temporal dimension. How-
ever, their analytical solution is usually unattainable, and numerical approxima-
tion of the solution unduly complicated and computationally demanding. Thus,
these models are frequently simplified in various ways. One option of a simplifica-
tion is a reduction of the number of spatial dimensions. We focused on nonsteady
Navier-Stokes equations for compressible nonlinearly viscous fluids in a three-
dimensional domain. These equations need a simplification, when possible, to
be effectively solved. Therefore, we performed a dimension reduction for this
type of model. First, we studied the dynamics of a compressible fluid in thin do-
mains where only one dimension is dominant. We presented a rigorous derivation
of a one-dimensional model from the three-dimensional Navier-Stokes equations.
Second, we extended the current framework by dealing with nonsteady Navier-
Stokes equations for compressible nonlinearly viscous fluids in a deformed three-
dimensional domain. We focused on a rigorous derivation of the two-dimensional
model. The deformation of a domain introduced new difficulties in the asymptotic

analysis, because it affects the limit equations in a non-trivial way.

Key words: Navier-Stokes equations, Compressible fluids, Nonlinear viscosity,
Asymptotic analysis, Dimension reduction, Curved domain, Curvilinear coordi-

nates



2 Abstrakt v ceském jazyce

Zakladni rovnice, které reprezentuji matematicky popis mechaniky kontinua,
maji casto tii prostorové dimenze a jednu casovou. Jejich nevyhodou je, ze jejich
analytické TeSeni je ¢asto nedosazitelné a jeho numericka aproximace vypocetné
velmi naro¢na. 7 téchto duvodu jsou takovéto modely ¢asto ruznymi zpusoby
zjednodusovany. Jednou z moznosti, jak model zjednodusit, je snizeni poc¢tu pros-
torovych dimenzi. Otazkou ovsem zustava, jak dimenzionalni redukei provést
matematicky korektné. Zabyvali jsme se nestacionarnimi Navier-Stokesovymi
rovnicemi pro stlacitelné nelinearné viskézni tekutiny v trojrozmérné oblasti.
Nejprve jsme studovali dynamiku stlacitelnych tekutin v oblastech, kde domin-
uje pouze jedna prostorova dimenze. Predstavili jsme odvozeni jednorozmérného
modelu z trojrozmérnych Navier-Stokesovych rovnic. Naésledné jsme rozsitili
soucCasny ramec poznani tim, ze jsme aplikovali dimenzionalni redukci na nesta-
cionarni Navier-Stokesovy rovnice pro stlacitelné nelinearné viskéz-ni tekutiny
v deformované trojrozmérné oblasti se dvéma dominantnimi prostorovymi di-
menzemi. Zjistili jsme, ze deformace oblasti netrividlne ovliviiuje vysledné limitni

rovnice.

Klicova slova: Navier-Stokesovy rovnice, Stlacitelné tekutiny, Nelinearni visko-
zita, Asymptotickd analyza, Redukce dimenze, Deformovand oblast, Kiivocaré

souradnice



3 Introduction

Governing equations representing mathematical description of continuum me-
chanics have often three spatial dimensions and one temporal dimension. How-
ever, their analytical solution is usually unattainable, and numerical approx-
imation of the solution unduly complicated and computationally demanding.
Therefore, these models are frequently simplified in various ways. One option
of a simplification is a reduction of the number of spatial dimensions. The thesis
is devoted to nonsteady Navier-Stokes equations for compressible nonlinearly vis-
cous fluids in a three-dimensional domain. These equations need a simplification,
when possible, to be effectively solved.

The thesis studies the dynamics of a compressible fluid in a thin pipe Q. C R?
and in a curved three-dimensional domain Qg with two dominant dimensions. The
motion of a compressible fluid is described by its velocity u and density p. The

time evolution of u and p is governed by the continuity and momentum equations

Op + div (pu) = 0, (1)
O (pu) +div(pu®@u) + Vp =div S+ pf in Q x (0,7), (2)

where T > 0, p is the pressure, S stands for the viscous stress tensor and f
represents the external forces [15].
It is supposed that the fluid is isothermal and non-Newtonian. It means that

(without the loss of generality)
S = P(|Du[)Du, p=p.

Similarly as in [20], it is assumed that the function P satisfies, for any U, V'

belonging to Orlicz class [L(©)]?, the following five conditions
[ POuDR o= [ arqu) d, ®)
Q Q

AUMWW—PWWW:W—VMMZQ (4)
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P(z)|z|? is a convex function for z > 0, (5)

[ vy < e (1 [ ar ar). (6)

P(|U = AV)(U = AV) X PUU, for A — 0. (7)

4 Recent state summary

The existence of weak solutions for three-dimensional models of fluid dy-
namics has already been studied. For instance, Pierre-Louis Lions proved the
global solvability of Navier-Stokes equations for compressible linearly viscous flu-
ids [17]. Further, Eduard Feireisl extensively studied global existence theory for
the full Navier-Stokes-Fourier system [ 1]. A comprehensive overview on results
achieved in the case of Newtonian compressible fluids is given in [22]. Concerning
non-Newtonian fluids, Mamontov [18, 19] proved the existence of a global weak
solution for compressible Navier-Stokes equations. This knowledge allows us to
step forward in finding the solution (or at least its approximation). One possi-
bility to achieve that is by performing a dimension reduction of the equations.
Without the proven existence of a weak solution, it would be pointless to study
the asymptotic behavior of the equations.

An asymptotic analysis was performed in linear elasticity for rods and beams
[13, 14, 24], and for plates and shells [, 6, 7], at first. Subsequently, rigor-
ous derivation of lower-dimensional models was done also for fluids. An asymp-
totic analysis of three-dimensional steady Navier-Stokes equations based on the
asymptotic expansion was presented in [21]. For comparison, the same result
was achieved directly in [28] without the need to apply any asymptotic expan-
sion. Regarding nonsteady Navier-Stokes equations for incompressible fluids,
they were simplified into a lower-dimensional model in [12]. Further, a three-
dimensional system for barotropic Navier-Stokes equations was asymptotically

analyzed and the resulting one-dimensional and two-dimensional models were
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presented in [27] and [20], respectively. It was also shown that weak solutions of
both three-dimensional Navier-Stokes equations for barotropic flows and three-
dimensional full Navier-Stokes-Fourier equations tend to strong solutions of the
respective one-dimensional system as the three-dimensional model tends to the
one-dimensional model [3, 5]. Recently, Ducomet et al. [3] presented a rigorous
derivation of a two-dimensional model from the three-dimensional compressible
barotropic Navier-Stokes-Poisson system with radiation.

New difficulties arise by considering non-Newtonian fluids (i. e. fluids having
nonlinear viscous stress tensor). This problem was tackled for the first time
in [26], where a two-dimensional model was derived by a suitable scaling from

nonsteady Navier-Stokes equations for compressible fluids.

5 Thesis objectives

The thesis is aimed on obtaining new contributions to the theory of rigor-
ous asymptotic analysis of nonsteady Navier-Stokes equations for compressible
nonlinearly viscous fluids in a three dimensional domain. There are two main
objectives of the thesis. First, the motion of a compressible fluid in a thin pipe is
studied. We present a derivation of a one-dimensional model from equations (1)-
(2) under Navier boundary conditions [I].The second aim is to investigate the
motion of a compressible fluid in a thin deformed domain. We focus on a deriva-
tion of a two-dimensional model from equations (1)-(2) under Navier boundary
conditions [2].

Since nonsteady Navier-Stokes equations for compressible nonlinearly viscous
fluids need a simplification, when possible, to be effectively solved, achieving
the objectives of the thesis is particularly valuable. Obtained lower-dimensional

models can be subsequently used in real-world applications by practitioners.



6 Theoretical framework

The theoretical framework can be summarized into three main parts. First,
Young functions and Orlicz spaces along with their properties are studied in the
thesis. Afterwards, both problems in question are separately described in detail

and transformation of governing equations is performed.

6.1 Young functions and Orlicz spaces

A brief introduction to Young functions and Orlicz spaces is presented in the
thesis. Let u: Q — R, Q C R", n € N, be a measurable function and let &, ¥
be a pair of complementary Young functions. The set Lg(Q) of all u such that
lullLe(@) < +o0 is called the Orlicz space. The positive number ||ul/z,q) is

defined as

sl za @) = sup /Q fu(z)o(a)|dz,

where the supremum is taken over all functions v € Ly (Q) satisfying condition
fQ U(|v(x)])dz < 1. The Orlicz space Lg(Q) is a Banach space and || - || 1,(q) is
the norm on Lg(Q).

Orlicz spaces and their properties are described in the thesis. In addition, the
thesis is focused on a special class of Young functions with an exponential growth
and their complementary functions, because the theory concerning these Young
functions and respective Orlicz spaces is needed in the subsequent derivation of
lower-dimensional models.

Let us define Young functions needed for reaching the objectives of the thesis
as ©.(z) = (142)In" (1 + 2), with v > 1, and ®(2) = zIn (2 + 1). Functions V.,
7 > 1, denote the complementary functions to ®,, v > 1. Subsequently, we define
M(z) =e* — z — 1 and its complementary function N(z) = (1+ 2)In(1 + z) — z.
Further, we denote ®/,(2), a € (1,400), the Young functions with growth

1/a

zIn"/* z, 2 > 2y > 0, and their complementary functions Wy /().



6.2 Fluid flow in a thin pipe

Let us employ notation . and p. for the velocity and the density, respectively,
in equations (1)-(2) to highlight the connection to €2.. Similar notation (subscript
e and accent ” ~7) is applied also for other functions connected to Q..

Domain €2, C R? is defined by the use of a referential domain Q = (0,1) x S
with S C R?, |S| =1 and 9S € C%!, and mapping R, : Q — €. so that

R. : (1,29, 23) — (21, €29, £3).

It means that 2. = (0,1) xeS. As well as in [22], section 4.17.2.4, we suppose that
Q) is not axially symmetric. Axial symmetry would mean that the appearance of
(2 remains unchanged if rotated around an axis along the first spatial dimension.

Symbols n and n. stand for unit outward normals to 2 and €., respectively.
Similarly, t and t. are vectors from the corresponding tangent planes. We employ

the following notation for the borders of domains €2 and §2.:
I = (O, 1) X 85, FQ = {O, 1} X S,

Fl,e - Re (Fl) ; P2,6 - Rs (F2) .

To ensure the well-posedness of our problem [26], we prescribe Navier bound-

ary conditions

t.- (P(|Du.|)Du.n.) + h(e)u. -t. =0 onTy. x (0,7), (8)
t.- (P(|Du.])Du.n.) + qu.-t. =0 on Ty, x (0,7), (9)
u.-n. =0 ondQ. x (0,7). (10)

It is supposed that h(e) > 0 behaves like O(¢) and ¢ > 0.

We consider the initial conditions for the density and the momentum
ﬁg(i’,O) = ﬁO,E(i‘) Z 07 Vi' € Qe
(peu.) (2,0) = (peue), (7,0), VZ € Q..

The variational formulation of our problem is

T
/ / (p=00p + et - Vi) dzdt = 0, (11)
0 e

10



T
/ / (pete - O + petie @ 0, = D + pdive) dzdt
0 Qe
T — — [ — —
= / / (P(|Du.|)Du. : DY — p.f. - ) dedt
0 <

T T
5)// ﬁg-wdfdtntq// . - 0 didt, (12)
0 Fl,s 0 FQ,E

for any ¢ € D(R?x (0,7)) and ¢ € C§°(0,T;C>(€.)?) satisfying condition
Y - ficlon. x(01) = 0.

Variational formulation (11)—(12) can be transformed into

T
/ /(paatSO + peu. - Vo) dadt =0, (13)
0 Q

T
/ / [psus -Op + pouc @, Ws(w) + psdivﬂp] dxdt
0 Q

- /0 [ [P st et s ) = puf 0] dad

i)/OT/F ug-wdf‘dt—i—q/OT/F u. - dldt, (14)

for any ¢ € D (R? x (0,7)) and ¢ € C5°(0,T; [C=(Q)]*), ¥ - n|aaxo.1) = 0.

By transforming the energy equality (see [19] for its original form), we obtain

/Q (ps(t)w + pe(t) hl(ps(t))) dz

- t [Pt fon (o) dads +

t t
+@/ lu.|? d'ds + q/ lu.|? dl'ds =
0 Jre

2
/ /pggE Ve da:ds+/ (er Ue)ol —i—poﬁln(,og,g)) dz. (15)
Q 20,

for any ¢t € (0,T), where g. = (f1.,6 ' for, e f3e), Ve = (U e, EUae, EUs,).
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6.3 Fluid flow in a thin deformed domain

Let us employ notation u. and p. for the velocity and the density, respectively,
in equations (1)-(2) to highlight the connection to Q.. Similarly, we denote also
other functions connected to €. with subscript ¢ and accent ” ™.

The domain Q. C R3 is defined by the use of a reference domain Q = §x (0, 1),
S CR% 39S e €%, and the mapping O, : Q — Q. so that

O @ (71,29, 23) — 021, 22) + ex3a3(w1, T2),
where 6 : S — R3 and

a; = (81Q1,319273193)T7
A = (329178292,3293)T,

a. — a; X as
’ la; x ag||

We suppose that a;, d,a; and 825513 € [L>()]3, where a, B =1,2and j = 1,2,3.
Symbols n and @i, stand for unit outward normals to  and €., respectively.
Similarly, t (resp. t.) is any vector from the corresponding tangent plane. We
denote the boundaries of domains {2 and QE as follows:
I'' =05 x(0,1), I'y =85 x{0,1},
fl,e - @5 (F1> ; fQ,E - 65 (F2) .

To ensure the well-posedness of our problem [26], we prescribed the set of

Navier boundary conditions

i (P(|Dﬁ€\)l~)ﬁ5ﬁ€> 4qi T =0, on Ty x (0,7), (16)
&« (P(IDi)) Ditchi. ) + he)i - & = 0, on T x (0.7), (17)
4. - 0. = 0, on 99, x (0,7). (18)

We suppose that h(e) > 0 behaves like O(g) and ¢ > 0. The asymptotic behavior
of h(e) will be discussed during derivation of weak convergences of density and

velocity field.
12



We consider the initial conditions for the density and the momentum

ﬁE(I,O) = ﬁO,e(I) >0,
(p-0.) (2,0) = (pe.), (2,0), in Q..

Hence, the variational formulation of our problem is

/oTﬁ <ﬁ 0 + pelie W) didt = 0,

T
/ / (ﬁeﬁs O+ pe @ . DY+ ﬁsdiw;) didt
0 Ja.
T —~ =~ ~ o~ ~ ~
= [ [ (PaDuDu: DI - k) ara
0 E

T T
+q/ / u. -y dI'dt + h(s)/ / u. -y dI'de,
0 fl,a 0 f2,s

(19)

(20)

for any ¢ € D (R® x (0,T)) and v € C3°(0, T; C®({€.}7)?), where {€.}~ stands

for the closure of ., satisfying the condition ) - n.| o6 x(0,1) = 0-

After transforming equations (19)-(20), we get

T
PO+ pul ReE.Np) \/d. dzdt =0,
0 Q

T
/ / [peuc - Oh + peue. @ g we (V) 4+ pV : R.E.] \/d_g dudt
0 Q
T
— /O /Q [P (Jwe(0.)]) we () : we(®) — pefs - 9] \/de dadt+

T h T
+q/ / u. - |R.E.n|\/d. dmwg/ / u. - /d. dIde,
0 Fl 0 F2

for any ¢ €D (R?) X (07 T)) and w € 080(07T7 [COO(Q>]3)7 w ' n‘QQX(O,T) = 0.

13
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Similarly, transforming the energy equality [19] leads to

()2
/(pa(t)m;)' + pe(t) In(pe(t )\/_dw
Q

t
+/ /P(|w5(u5)|)|w5(u5)|2\/d_sdxds—l—

0 Q

t h(g) t
+q// \ug|2|REE5n]\/d_5dFds+—// lu.|?y/d. dT'ds =

0 JIy € 0 JTy

t
:/ /psfg-ve\/d_E dads +

0 Q

+/Q(!(psue)o|2+p o In(po. ) . da. (23)

2P0,5

for any ¢t € (0,T), where
fa = (fa : g1,57 fa : g2’€7 fa : g378)7

Ve = (115 “ 81, Ue * 826, Ue * g3,6)7

7 Original results and summary

Three dimensional model describing fluid motion is considered. In particular,
we study the dynamics of compressible non-Newtonian fluids in thin domains.

Thus, we deal with nonsteady Navier-Stokes equations

Oyp + div (pu) = 0,
O (pu) + div (pu ® u) + Vp = div (P(|Du|)Du) + pf in Q x (0,7,

where () is either a thin pipe or a curved three-dimensional domain with only
two dominant dimensions. New results in the theory of asymptotic analysis are
presented in this thesis. Both main contributions were published in peer-reviewed
journals [1, 2].

First, the thesis is focused on a rigorous derivation of a one-dimensional model

from the three-dimensional Navier-Stokes equations. After proving a variant of

14



the first Korn’s inequality and making a priori estimates, we demonstrated bound-
edness of sequences of densities and rescaled velocity fields. The boundedness
allowed us to perform weak limits and pass to the limit in both the governing
equations and energy equality. The limit equations together with the energy

equality are given by:

T 1
/ / ﬁ@tgo + ﬁulalgo dl’ldt = O, (24)
0 0

for any p € D (R x (0,7T)),
T 1
/ / P10y + puioiy + porprdrdt =
0 0
T 1 T 1
== |S|/ / P(|61U1|)81U181’¢1 dl’ldt —/ / pf1¢1dxldt+
0 0 0 0

T 1
0 0

for any ¢ = (¢1(z1),0,0), where 1, € C3°(0,7;C>({0,1))) complies with condi-
tion 1 (0,t) = ¢4 (1,t) =0, for all ¢ € (0,7, and

U wl)r t
[ o5+ pm@ an sl [ [ Powploal ars+
0 0 JQ

t o t 1
+\8S|h/ / |ui|? dzids = / / pfiug drids + (26)
0 Jo 0 Jo

1 2 1
+/ M dxy +/ poln(pg) dz;. (27)
0 2po 0

The following theorem summarizes our first main result.
Theorem 1. Let us assume that couples (pe,u.), € € (0, 1), satisfying
pe € L(0,T; Lo, (£2)),

ve € LP(0, 75 [WHP(Q)]*) 0 L0, T3 [L*(0Q)]),

with ve = (Ui, cuge,cug.) and Q being not azially symmetric, 0Q € C*', are

weak solutions to the equations (13)-(14), complying with energy equality (15),
15



with initial states po. € Lo () and M € LY(Q) satisfying

/Po,s In(po) doedzs — poln(pe) in L'(0,1), (28)
s
/<I> (poe) dzodzs — P4(po) in LI(O, 1), (29)
| PeUe )o |(pu)0|2 L
d odrs — m L(0,1), 30
2,005 2po 0.1 (30)

for e = 0, and for arbitrary but fixed v > 3 and p > 3. In addition, we assume

that Navier boundary conditions (8)-(10) hold and w.(u.) € [La(Q x (0,T))]°.
Further, we suppose that function P complies with conditions (3)-(7), f. — £

n [L®(Q x (0,7))], h(g) > 0 behaves like O(¢), see (8), and q¢ > 0, see (9).

Then (passing to subsequences if necessary)
pe = p in L% (0,T; Lo (Q)) ,
pe = p in C((0,T); [WH(Q)"),
we(u:) = w(u)
Ure —uy in LP (O,T; Wl’p(Q)) N L? ((), T, Lz(aQ)) ,
Une — 0 in Ly (Q % (0,7)), a=2,3.

In addition, couple (p,uy), where u; = uy(z1) and p = fsp daodxs, is a weak

solution to the equations (24)-(25) and complies with the energy equality (20).

Second, the thesis is devoted to a rigorous asymptotic analysis of the three-
dimensional Navier-Stokes equations acting over a curved domain. We applied
a similar approach as in [!] to arrive at the limit of the governing equations
and energy equality. However, the deformation of the domain introduced new
difficulties which had to be addressed. Finally, we overcame all the difficulties

and presented the limit equations and energy equality as

T
/ / [ﬁ@tgo -+ [sﬁTRHW] Vd dzdt = 0, (31)
0 S
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for any p € D (R? x (0,T)),

T
/ /[ﬁﬁ-@tw+ﬁﬁ®ﬁ:w(w)+,5vw:R”]\/Ed:i“dt:

/ / (Jw(@ Pw ()\/_da:dt—/ /pF YVd dzdt +

+q/ / - | RZA|Vd det+2h/ /ﬁ.wa didt, (32)
0 as 0 S

for any ¢ € C5°(0,T;[C>(Q)]?) such that 93¢ = 0, ¢ -az = 0 in Q x (0,7) and

Y - n|pgx o) = 0, and

/S(p‘——f—pln )\/_dx+// (lw(@))) |lw(@)|?Vd dids +

+q/ / | R"?4|Vd des+2h/ /|ﬁ|2\/3 dids = (33)

//pF v/d dids +/| of /3 az +/p01n(p0)\/3dz.

Our second main contribution is summarized in the following theorem.
Theorem 2. Let us assume that couples (pe,u.), € € (0,1), satisfying

pe € L=(0,T; Lo, (Q2)),
ve € LP(0,T; [WH(Q)]°) N L*(0, T; [L*(99)]%)
with ve = (Uc - 816, U; - 8o, Ue - 83.) for arbitrary but fived v > 3 and p > 3,

are weak solutions to the transformed equations (21)-(22), complying with energy

equality (23), with initial states po. € Lo (€2) and KP;:;—OE):P\/CZ_E € LY(Q) satisfying

/0 pocIn(po)V/de dzs — poln(po)Vd in L(S), (34)
[ oV s eV 1), 8 )
/1 2‘; o /- dy - >| REEOL Vi LM(S), (36)
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for e = 0. In addition, we assume that Navier boundary conditions (16)-(18)
hold and w.(u.) € [Ly (2 x (0,7))]°.

Further, we suppose that function P complies with conditions (3)-(7), f. —
in [L®(Qx (0,7))]* and £.- g’ € [L>®°(Q2 x (0,T))]3, 7 = 1,2,3, h(¢) > 0 behaves
like O(g), ¢ > 0 and covariant basis {a;,as, a3} C [L=(Q)]? satisfies conditions
Oaa; and 8§5a3 € [L=(Q)]?, where a, f=1,2 and j = 1,2,3. Then (passing to

subsequences if necessary)

pe = p in L% (0,T; Le, (Q)),
p: = p i C((0,T);[W'Le, (Q)]*),
we(ue) N w(u)
U ga —u-a, in LP(0,T;WHP(Q)) N L* (0,T; L*(09)) ,
a=1,2,
u.-ag — 0 in Ly (Qx(0,7)).

In addition, couple (p,Q), where p = fol p drz and @ = (u-aj)a' + (u-ay)a?,
U-1|osx 0, = 0, is a weak solution to the equations (31)-(32) and complies with

the energy equality (33).
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