
PALACKÝ UNIVERSITY OLOMOUC
FACULTY OF SCIENCE

DISSERTATION THESIS

Mathematical and physical models of fluids
– properties of solutions

Department of Mathematical Analysis and Applications of Mathematics
Supervisor: RNDr. Rostislav Vodák, Ph.D.
Author: RNDr. Richard Andrášik
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Chapter 1

Introduction

Governing equations representing mathematical description of continuum me-

chanics have often three spatial dimensions and one temporal dimension. How-

ever, their analytical solution is usually unattainable, and numerical approx-

imation of the solution unduly complicated and computationally demanding.

Therefore, these models are frequently simplified in various ways. One option

of a simplification is a reduction of the number of spatial dimensions. We fo-

cused on nonsteady Navier-Stokes equations for compressible nonlinearly viscous

fluids in a three-dimensional domain. These equations need a simplification, when

possible, to be effectively solved.

The existence of weak solutions for three-dimensional models of fluid dy-

namics has already been studied. For instance, Pierre-Louis Lions proved the

global solvability of Navier-Stokes equations for compressible linearly viscous flu-

ids [17]. Further, Eduard Feireisl extensively studied global existence theory for

the full Navier-Stokes-Fourier system [11]. A comprehensive overview on results

achieved in the case of Newtonian compressible fluids is given in [22]. Concerning

non-Newtonian fluids, Mamontov [18, 19] proved the existence of a global weak

solution for compressible Navier-Stokes equations. This knowledge allows us to

step forward in finding the solution (or at least its approximation). One possi-

bility to achieve that is by performing a dimension reduction of the equations.

Without the proven existence of a weak solution, it would be pointless to study

the asymptotic behavior of the equations.
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An asymptotic analysis was performed in linear elasticity for rods and beams

[13, 14, 24], and for plates and shells [4, 6, 7], at first. Subsequently, rigor-

ous derivation of lower-dimensional models was done also for fluids. An asymp-

totic analysis of three-dimensional steady Navier-Stokes equations based on the

asymptotic expansion was presented in [21]. For comparison, the same result

was achieved directly in [28] without the need to apply any asymptotic expan-

sion. Regarding nonsteady Navier-Stokes equations for incompressible fluids,

they were simplified into a lower-dimensional model in [12]. Further, a three-

dimensional system for barotropic Navier-Stokes equations was asymptotically

analyzed and the resulting one-dimensional and two-dimensional models were

presented in [27] and [20], respectively. It was also shown that weak solutions of

both three-dimensional Navier-Stokes equations for barotropic flows and three-

dimensional full Navier-Stokes-Fourier equations tend to strong solutions of the

respective one-dimensional system as the three-dimensional model tends to the

one-dimensional model [3, 5]. Recently, Ducomet et al. [8] presented a rigorous

derivation of a two-dimensional model from the three-dimensional compressible

barotropic Navier-Stokes-Poisson system with radiation.

New difficulties arise by considering non-Newtonian fluids (i. e. fluids having

nonlinear viscous stress tensor). This problem was tackled for the first time

in [26], where a two-dimensional model was derived by a suitable scaling from

nonsteady Navier-Stokes equations for compressible fluids. Our aim is to extend

the current framework by dealing with nonsteady Navier-Stokes equations for

compressible nonlinearly viscous fluids.

We study the dynamics of a compressible fluid in a thin pipe Ωε ⊂ R3 (see

Chapter 3) and in a curved three-dimensional domain Ω̃ε with two dominant

dimensions (see Chapter 4). The motion of a compressible fluid is described by

its velocity u and density ρ. The time evolution of u and ρ is governed by the

continuity and momentum equations

∂tρ+ div (ρu) = 0, (1.1)

∂t (ρu) + div (ρu⊗ u) +∇p = div S + ρf in Ω× (0, T ), (1.2)
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where T > 0, p is the pressure, S stands for the viscous stress tensor and f

represents the external forces [18].

Let us suppose that the fluid is isothermal and non-Newtonian. It means that

(without the loss of generality)

S = P (|Du|)Du, p = ρ.

Similarly as in [26], we assume that the function P satisfies, for any U , V

belonging to Orlicz class [L̃M(Ω)]9 (see Definition 2.9, in section 2.3), the following

five conditions ∫
Ω

P (|U |)|U |2 dx ≥
∫

Ω

M(|U |) dx, (1.3)

∫
Ω

(P (|U |)U − P (|V |)V ) : (U − V ) dx ≥ 0, (1.4)

P (z)|z|2 is a convex function for z ≥ 0, (1.5)∫
Ω

N(P (|U |)|U |) dx ≤ C

(
1 +

∫
Ω

M(|U |) dx

)
, (1.6)

P (|U − λV |)(U − λV )
M
⇀ P (|U |)U, for λ→ 0. (1.7)

For example, function

P (z) =

{
M(z)
z

, for z 6= 0,
0, for z = 0

satisfies all conditions (1.3)-(1.7).

First, we introduce Orlicz spaces and Young functions with a logarithmic

and an exponential growth (see Chapter 2), because this knowledge is neces-

sary to prove our main results. Additionally, Chapter 2 summarizes the basic

notation used throughout the thesis. Afterwards, we study the dynamics of a

compressible fluid in thin domains with only one dominant dimension. In Chap-

ter 3, a rigorous derivation of a one-dimensional model from the three-dimensional

Navier-Stokes equations is presented. Our first main result, concerning the one-

dimensional model, is summarized in Theorem 3.4 (section 3.4). Subsequently, we
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deal with nonsteady Navier-Stokes equations for compressible nonlinearly viscous

fluids in a deformed three-dimensional domain. Chapter 4 focuses on a rigorous

derivation of a two-dimensional model. Our second main result, concerning the

two-dimensional model in a curved domain, is stated in Theorem 4.3 (section 4.5).
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Chapter 2

Preliminaries

The basic notation is summarized in this section. Afterwards, we pay our

attention to Young functions and their properties. Subsequently, we give a brief

introduction to Orlicz spaces. More information and details about the Orlicz

spaces can be found in [16]. In addition, we focus on a special class of Young

functions with an exponential growth and their complementary functions, be-

cause the theory concerning these Young functions and respective Orlicz spaces

is needed in the subsequent sections.

2.1 Basic notation

We adopt the notation ”·” and ”:” for the scalar product of vectors and tensors,

respectively, and ”⊗” for the tensor product. The Cartesian product of two sets

is denoted by ”×” as well as the cross product of two vectors without danger of

confusion. Symbol | · | stands for either the Lebesgue measure of a measurable

set or the Euclidean norm defined as |Z| =
√
ZijZij, where Z ∈ Rm,n, m, n ∈ N.

We use Einstein summation convention for notational brevity. Symbols C and

Cn, n ∈ N, stand for unspecified positive constants.

We emphasize the connection of a function to Ωε and Ω̃ε by subscript ε,

and symbols ”¯” and ”˜”, respectively. On the other hand, objects without

symbol ”¯” or ”˜” are connected to the referential domain Ω (see sections 3.1

and 4.1). Since ε is always positive, we write only ε → 0 instead of ε → 0+ for
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simplicity. Symbols D̄, D̃ and D represent a symmetric part of the gradient, i. e.

D̄ijūε = 1
2
(∂̄iūε,j + ∂̄jūε,i), D̃ijūε = 1

2
(∂̃iũε,j + ∂̃jũε,i) and Diju = 1

2
(∂iuj + ∂jui).

Let Q ⊂ Rn, n ∈ N, be a bounded domain. We denote by ∂Q the boundary

of Q. Bounded domain Q is called a Lipschitz domain if its boundary can be

expressed by Lipschitz continuous functions (see [16] for the precise definition).

We write ∂Q ∈ C0,1. The following three options of writing a matrice are used:

A =
(
a1, a2, a3

)
=

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where aj = (a1j, a2j, a3j)
T. All vectors x ∈ R3 in the text are column vectors.

We employ the standard notation of the following function spaces and their

norms:

Spaces of continuously differentiable
functions up to order m – Cm(Q̄), ‖ · ‖Cm(Q̄)

Lebesgue spaces – Lp(Q), ‖ · ‖p
Sobolev spaces – W 1,p(Q), ‖ · ‖1,p

Duals of W 1,p(Q) – [W 1,p(Q)]∗, ‖ · ‖[W 1,p(Q)]∗

Orlicz spaces – LΦ(Q), ‖ · ‖LΦ(Q)

Sobolev-Orlicz spaces – W 1LΦ(Q), ‖ · ‖W 1LΦ(Q)

Duals of W 1LΦ(Q) – [W 1LΦ(Q)]∗, ‖ · ‖[W 1LΦ(Q)]∗

Bochner spaces – Lp(0, T ;X), ‖ · ‖Lp(0,T ;X),
Cm(〈0, T 〉;X), ‖ · ‖Cm(〈0,T 〉;X)

where Q ⊂ Rn, n ∈ N, is a bounded domain, p ∈ 〈1,+∞) ∪ {+∞}, m ∈ N ∪ {0}

and X is a Banach space. In addition, Cm0 (Q̄) denotes spaces of continuously

differentiable functions up to order m, m ∈ N ∪ {0}, with compact support.

Naturally, C0(Q̄) = C(Q̄) is the space of continuous functions. Next, we denote the

space of smooth and compactly supported functions endowed with the inductive

limit topology by D(Q). Its dual space is denoted by D∗(Q).
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2.2 Young functions and their properties

A generalization of Lebesgue spaces was the motivation for the concept of

Young functions and Orlicz spaces. A function u defined on Q ⊂ Rn belongs to

Lp(Q) if ∫
Q

Φ(|u(x)|) dx =

∫
Q

|u(x)|p dx < +∞,

where Φ(z) = zp. It is possible to substitute the function Φ with a more general

function called a Young function.

Definition 2.1. Φ is a Young function, if there exists a function ϕ such that

Φ(z) =

∫ z

0

ϕ(s) ds, z ≥ 0

and the following conditions hold:

(i) ϕ(0) = 0,

(ii) ϕ(s) > 0 for s > 0,

(iii) ϕ is right continuous,

(iv) ϕ is non-decreasing,

(v) lim
s→+∞

ϕ(s) = +∞.

Definition 2.2. Let ϕ be the first derivative of a Young function Φ, which means

that

Φ(z) =

∫ z

0

ϕ(s) ds.

The function Ψ is called the complementary function to the Young function

Φ if

Ψ(z) =

∫ z

0

ψ(s) ds,

where ψ(z) = sup{s, ϕ(s) ≤ z}, z ≥ 0. If there exists an inversion of ϕ, then

ψ = ϕ−1.
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Remark 2.3. If function Ψ is a complementary function to Φ, then also Φ is

complementary to Ψ. In addition, Ψ is a Young function. Therefore, we can call

Φ, Ψ as a pair of complementary Young functions.

There is a special class of Young functions which plays an important role in

the theory of Orlicz spaces.

Definition 2.4. A Young function Φ satisfies the ∆2-condition, if there exist

C > 0 and z0 ≥ 0 such that

Φ(2z) ≤ CΦ(z), ∀z ≥ z0.

If z0 = 0, we say that Φ satisfies the global ∆2-condition (we write Φ ∈ ∆2).

Sometimes, the explicit formula for a Young function is unknown and only its

complementary function can be used to decide, whether a Young function belongs

to ∆2.

Theorem 2.5. A Young function Φ satisfies the ∆2-condition if and only if there

exist C > 0 and z0 > 0 such that

Ψ(z) ≤ 1

2C
Ψ(Cz), ∀z ≥ z0,

where Ψ is the complementary function to Φ.

Proof: see [16], page 139.

Two special types of ordering can be introduced for Young functions. The

first ordering concerns the equivalence property of Young functions.

Definition 2.6. Let Φ1 and Φ2 be two Young functions. If there exist C > 0

and z0 > 0 such that

Φ1(z) ≤ Φ2(Cz), ∀z ≥ z0,

then we write

Φ1 ≺ Φ2.

If Φ1 ≺ Φ2 and also Φ2 ≺ Φ1, we say that Φ1 and Φ2 are equivalent.
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The second ordering of Young functions is useful for the embedding theorem

of Orlicz spaces (see Theorem 2.20).

Definition 2.7. Let Φ1 and Φ2 be two Young functions. If

lim
z→+∞

Φ1(z)

Φ2(λz)
= 0,

for any λ > 0, then we write

Φ1 ≺≺ Φ2.

Lemma 2.8. Let Φ1 and Φ2 be two Young functions, Ψ1 and Ψ2 be the respective

complementary functions. If Φ1 ≺≺ Φ2, then Ψ1 �� Ψ2.

Proof: see [15], page 114.

2.3 Orlicz spaces

Orlicz spaces generalize the concept of Lebesgue spaces. Prior to the definition

of Orlicz spaces, we define Orlicz classes.

Definition 2.9. Let Φ be a Young function and Q ⊂ Rn, n ∈ N, is an open

subset. We say that u ∈ L̃Φ(Q), if∫
Q

Φ(|u(x)|)dx < +∞.

The set L̃Φ(Q) is called an Orlicz class.

We remark that the equality of elements in L̃Φ(Q) is the equality almost

everywhere (similarly as in Lebesgue spaces) and the elements of L̃Φ(Q) are still

called ”functions” without a confusion. The following two theorems are useful to

obtain a better notion about Orlicz classes.

Theorem 2.10. Let |Q| < +∞ and u ∈ L1(Q). Then there exists a Young

function Φ such that u ∈ L̃Φ(Q).
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Proof: see [16], page 131.

It follows from Theorem 2.10 that L1(Q) can be viewed as the union of all

Orlicz classes. The hierarchy of Orlicz classes is given by their respective Young

functions.

Theorem 2.11. Let us assume that |Q| < +∞ and Φ1, Φ2 are two Young func-

tions. It holds that

L̃Φ2(Q) ⊂ L̃Φ1(Q)

if and only if

Φ1(z) ≤ CΦ2(z), ∀z ≥ z0,

for some C > 0 and z0 > 0.

Proof: see [16], page 140.

An Orlicz class is only a convex subset of L1(Q) (see [16], page 130), in general.

Therefore, we define Orlicz spaces.

Definition 2.12. Let u : Q → R, Q ⊂ Rn, n ∈ N, be a measurable function

and let Φ, Ψ be a pair of complementary Young functions. The set LΦ(Q) of all

u such that ‖u‖LΦ(Q) < +∞ is called the Orlicz space. The positive number

‖u‖LΦ(Q) is defined as

‖u‖LΦ(Q) = sup
v

∫
Q

|u(x)v(x)|dx,

where the supremum is taken over all functions v ∈ L̃Ψ(Q) satisfying condition∫
Q

Ψ(|v(x)|)dx ≤ 1.

Theorem 2.13. The Orlicz space LΦ(Q) is a Banach space and ‖ · ‖LΦ(Q) is the

norm on LΦ(Q).

Proof: see [16], pages 145 and 156.

Orlicz spaces can be alternatively defined as follows.
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Definition 2.14. Let Φ be a Young function. The space EΦ(Q) is defined as the

closure of the set of all bounded measurable functions defined on Q with respect

to the norm ‖ · ‖LΦ(Q).

In general, Definitions 2.12 and 2.14 are not equivalent. They coincide if and

only if the ∆2-condition holds (see Definition 2.4).

Theorem 2.15. Let Φ be a Young function. It holds that

EΦ(Q) ⊆ L̃Φ(Q) ⊆ LΦ(Q).

In addition, Φ satisfies the ∆2-condition if and only if

EΦ(Q) = L̃Φ(Q) = LΦ(Q).

Proof: see [16], page 164.

Theorem 2.16. Let Φ and Ψ be a pair of Young functions. In general, it holds

that LΨ(Q) = [EΦ(Q)]∗.

Proof: see [16], pages 169 and 171.

The hierarchy of Orlicz spaces is clarified in the following statements. It

depends on the respective Young functions.

Theorem 2.17. Let us suppose that Φ1 and Φ2 are Young functions. Then

LΦ1(Q) ↪→ LΦ2(Q) if and only if Φ1 � Φ2.

Proof: see [16], pages 185 and 187.

Remark 2.18. We note that the inclusion LΦ1(Q) ⊂ LΦ2(Q) is equivalent to the

embedding LΦ1(Q) ↪→ LΦ2(Q) in case of Orlicz spaces (see [16], page 187).

Corollary 2.19. Young functions Φ1 and Φ2 are equivalent if and only if

LΦ1(Q) = LΦ2(Q).
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Proof: The assertion is a consequence of Definition 2.6, Theorem 2.17 and

Remark 2.18.

Theorem 2.20. Let Φ1 and Φ2 be Young functions. If Φ1 �� Φ2, then

LΦ1(Q) ↪→ EΦ2(Q).

Proof: see [16], page 189.

Besides the strong convergence in the Orlicz space LΦ(Q) given in terms of

the norm ‖ · ‖LΦ(Q), we can also define the EΨ-weak convergence.

Definition 2.21. A sequence {un}+∞
n=1 ⊂ LΦ(Q) converges EΨ-weakly to u ∈

LΦ(Q), if

lim
n→+∞

∫
Q

(un(x)− u(x))v(x)dx = 0, ∀v ∈ EΨ(Q).

We write un
Ψ
⇀ u.

Remark 2.22. It follows from Theorem 2.16 that the weak-* convergence in

LΦ(Q) is equivalent to the EΨ-weak convergence. Therefore, the boundedness

of sequence {un}+∞
n=1 in LΦ(Q) implies the existence of EΨ-weakly convergent

subsequence of {un}+∞
n=1.

Frequently, we are not interested in functions only but we are concerned also

with their derivatives. Therefore, we define Sobolev-Orlicz spaces. The definition

of the Sobolev-Orlicz spaces is similar to the definition of Sobolev spaces, which

were constructed from Lebesgue spaces.

Definition 2.23. The Sobolev-Orlicz space W 1LΦ(Q) is the set of all func-

tions u such that

‖u‖W 1LΦ(Q) =

√ ∑
α,|α|≤1

‖Dαu‖2
LΦ(Q) < +∞,
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where Dα denotes distributional derivatives, and ‖ · ‖W 1LΦ(Q) is the norm of

W 1LΦ(Q). Further, W 1EΦ(Q) and W 1
0LΦ(Q) are the closures of C∞(Q̄) and

C∞0 (Q̄), respectively, with respect to ‖ · ‖W 1LΦ(Q).

Finally, we present inequalities which are necessary for deriving estimates in

the subsequent sections.

Theorem 2.24. (Hölder’s inequality)

Let u ∈ LΦ(Q) and v ∈ LΨ(Q), where Φ, Ψ is a pair of complementary Young

functions. Then uv ∈ L1(Q) and∫
Q

|u(x)v(x)|dx ≤ ‖u‖LΦ(Q)‖v‖LΨ(Q). (2.1)

Proof: see [16], page 152.

Theorem 2.25. (Young’s inequality)

Let a, b ∈ 〈0,+∞) and Φ, Ψ be a complementary Young functions. It holds that

ab ≤ Φ(a) + Ψ(b). (2.2)

Proof: see [16], page 65.

Corollary 2.26. Assume that Φ, Ψ is a pair of complemetary Young functions.

Further, we suppose that u ∈ L̃Φ(Q) and v ∈ L̃Ψ(Q). Then∫
Q

|u(x)v(x)| dx ≤
∫
Q

Φ(|u(x)|) dx+

∫
Q

Ψ(|v(x)|) dx (2.3)

and therefore uv ∈ L1(Q).

Proof: see [16], page 136.
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Corollary 2.27. Let u ∈ LΦ(Q). It holds that

‖u‖LΦ(Q) ≤
∫
Q

Φ(|u(x)|)dx+ 1. (2.4)

Hence, L̃Φ(Q) ⊂ LΦ(Q).

Proof: see [16], page 145.

Theorem 2.28. (Jensen’s inequality)

Let us assume that Φ : R → R is a convex function and α(x) is positive almost

everywhere in Q ⊂ Rn, n ∈ N. Then

Φ

(∫
Q
α(x)u(x)dx∫
Q
α(x)dx

)
≤
∫
Q
α(x)Φ(u(x))dx∫
Q
α(x)dx

(2.5)

for any non-negative function u : Q→ R supposing that all the integrals in (2.5)

are meaningful.

Proof: see [16], page 133.

2.4 Special Young functions

We focus on Young functions with a logarithmic or an exponential growth.

These Young functions are used in the following sections to analyze the asymp-

totic behavior of solutions to the equations (1.1) and (1.2).

Definition 2.29. Let us define Young functions Φγ(z) = (1 + z) lnγ (1 + z),

γ > 1, and Φ1(z) = z ln (z + 1). Functions Ψγ, γ ≥ 1, denote the complementary

functions to Φγ, γ ≥ 1. Subsequently, we define M(z) = ez − z − 1 and its

complementary function N(z) = (1+z) ln(1+z)−z. Further, we denote Φ1/α(z),

α ∈ (1,+∞), the Young functions with growth z ln1/α z, z ≥ z0 > 0, and their

complementary functions Ψ1/α(z).
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It is apparent that Φγ(z) = O(z lnγ z), γ > 0, and M(z) = O(ez). Further-

more, Ψγ(z) = O(ez
1/γ

), γ > 0, and N(z) = O(z ln z). Hence, pairs Φ1(z) and

N(z), and Ψ1(z) and M(z) are equivalent.

Lemma 2.30. Functions Φ1(z) and N(z) are equivalent Young functions. Sim-

ilarly, Ψ1(z) and M(z) are also equivalent Young functions, because they are

complementary functions to Φ1(z) and N(z), respectively. Therefore, LΦ1(Q) =

LN(Q) and also LΨ1(Q) = LM(Q).

Proof: It is sufficient to prove that Φ1(z) and N(z) are equivalent. The rest of

the statement is a direct consequence of Lemma 2.8 and Corollary 2.19. Since

z ≥ ln(1 + z), for all z ≥ 0, we get

N(z) = Φ1(z) + ln(1 + z)− z ≤ Φ1(z), ∀z ≥ 0.

On the other hand,

Φ1(z) ≤ Φ1(z) + ln(1 + 2z) + z(ln(1 + 2z)− 2) ≤

≤ 2z ln(1 + 2z) + ln(1 + 2z)− 2z = N(2z), ∀z ≥ 0.5(e2 − 1),

because ln(1 + 2z) ≥ 2, for all z ≥ 0.5(e2 − 1). �

Remark 2.31. Since O(z) < O(z lnγ z) < O(zp) < O(ez
1/γ

), for any γ > 0 and

p ≥ 2, it stems from Theorem 2.17 that

L∞(Q) ↪→ LΨγ (Q) ↪→ Lp(Q) ↪→ LΦγ (Q) ↪→ L1(Q).

By applying a similar approach as in [25], we prove the following two proper-

ties of Young functions with a logarithmic growth.

Lemma 2.32. Young functions Φγ, γ ≥ 1, satisfy the global ∆2-condition.

Proof: Directly, from the properties of logarithmic functions, we have

Φγ(2z) = (1 + 2z) lnγ(1 + 2z) ≤ 2(1 + z) lnγ(1 + z)2 ≤

≤ 2γ+1(1 + z) lnγ(1 + z) = 2γ+1Φγ(z), ∀γ > 1.
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Similarly for Φ1, we get

Φ1(2z) = 2z ln(1 + 2z) ≤ 2z ln(1 + z)2 ≤

≤ 4z ln(1 + z) = 4Φ1(z).

�

Lemma 2.33. Let us suppose that γ2 > γ1 ≥ 1, then Φγ2 �� Φγ1 and hence also

Ψγ2 ≺≺ Ψγ1.

Proof: We define C ∈ R such that C = 0, if γ1 = 1, and C = 1, if γ1 > 1. Let

us calculate the limit from Definition 2.7:

lim
z→+∞

Φγ1(z)

Φγ2(λz)
= lim

z→+∞

(C + z) lnγ1(1 + z)

(1 + λz) lnγ2(1 + λz)

≤ 1

λ
lim

z→+∞

lnγ1(1 + z)

(lnλ+ ln(1 + z))γ2
= 0,

for λ ∈ (0, 1) and

lim
z→+∞

Φγ1(z)

Φγ2(λz)
= lim

z→+∞

(C + z) lnγ1(1 + z)

(1 + λz) lnγ2(1 + λz)

≤ lim
z→+∞

lnγ1(1 + z)

lnγ2(1 + z)
= 0,

for λ ≥ 1. �

Remark 2.34. It follows from Theorem 2.20 and Lemmas 2.32 and 2.33 that:

• If u ∈ LΦγ (Q), γ ≥ 1, then
∫
Q

Φγ(|u(x)|) dx < +∞, because the ∆2-

condition holds and thus LΦγ (Q) = L̃Φγ (Q).

• If u ∈ LΨγ (Q), γ ≥ 1, then
∫
Q

Ψγ′(|u(x)|) dx < +∞, for all γ′ > γ, because

Ψγ �� Ψγ′ and therefore LΨγ (Q) ↪→ EΨγ′
(Q) ⊂ L̃Ψγ′

(Q).
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Chapter 3

Derivation of a 1D model

We focus on derivation of a one-dimensional model from equations (1.1)-(1.2)

under Navier boundary conditions [1]. The problem in question is described in

detail in section 3.1. Subsequently, the transformation of governing equations

and energy equality is performed in section 3.2. Finally, section 3.3 contains the

proof of our main result, which is stated in section 3.4.

3.1 Statement of the problem

We study the motion of a compressible fluid in a thin pipe. The dynamics of

a compressible fluid is governed by equations (1.1)-(1.2). We employ notation ūε

and ρ̄ε for the velocity and the density, respectively, in equations (1.1)-(1.2) to

highlight the connection to Ωε. Similar notation is applied also for other functions

connected to Ωε.

Domain Ωε ⊂ R3 is defined by the use of a referential domain Ω = (0, 1)× S

with S ⊂ R2, |S| = 1 and ∂S ∈ C0,1, and mapping Rε : Ω→ Ωε so that

Rε : (x1, x2, x3) 7−→ (x1, εx2, εx3).

It means that Ωε = (0, 1)×εS. As well as in [22], section 4.17.2.4, we suppose that

Ω is not axially symmetric. Axial symmetry would mean that the appearance of

Ω remains unchanged if rotated around an axis along the first spatial dimension.

Symbols n and n̄ε stand for unit outward normals to Ω and Ωε, respectively.

Similarly, t and t̄ε are vectors from the corresponding tangent planes. We employ
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the following notation for the borders of domains Ω and Ωε:

Γ1 = (0, 1)× ∂S, Γ2 = {0, 1} × S,

Γ1,ε = Rε (Γ1) , Γ2,ε = Rε (Γ2) .

To ensure the well-posedness of our problem [26], we prescribe Navier bound-

ary conditions

t̄ε ·
(
P (|D̄ūε|)D̄ūεn̄ε

)
+ h(ε)ūε · t̄ε = 0 on Γ1,ε × (0, T ), (3.1)

t̄ε ·
(
P (|D̄ūε|)D̄ūεn̄ε

)
+ qūε · t̄ε = 0 on Γ2,ε × (0, T ), (3.2)

ūε · n̄ε = 0 on ∂Ωε × (0, T ). (3.3)

We suppose that h(ε) > 0 behaves like O(ε) and q > 0. The asymptotic behavior

of h(ε) will be discussed during derivation of weak convergences of density and

velocity field (section 3.3.3).

We consider the initial conditions for the density and the momentum

ρ̄ε(x̄, 0) = ρ̄0,ε(x̄) ≥ 0, ∀x̄ ∈ Ωε

(ρ̄εūε) (x̄, 0) = (ρ̄εūε)0 (x̄, 0), ∀x̄ ∈ Ωε.

The variational formulation of our problem is

∫ T

0

∫
Ωε

(
ρ̄ε∂tϕ̄+ ρ̄εūε · ∇̄ϕ̄

)
dx̄dt = 0, (3.4)

∫ T

0

∫
Ωε

(
ρ̄εūε · ∂tψ̄ + ρ̄εūε ⊗ ūε : D̄ψ̄ + ρ̄εd̄ivψ̄

)
dx̄dt

=

∫ T

0

∫
Ωε

(
P (|D̄ūε|)D̄ūε : D̄ψ̄ − ρ̄εf̄ε · ψ̄

)
dxdt

+h(ε)

∫ T

0

∫
Γ1,ε

ūε · ψ̄ dΓ̄dt+ q

∫ T

0

∫
Γ2,ε

ūε · ψ̄ dΓ̄dt, (3.5)

for any ϕ̄ ∈ D (R3 × (0, T )) and ψ̄ ∈ C∞0 (0, T ;C∞(Ω̄ε)
3) satisfying condition

ψ̄ · n̄ε|∂Ωε×(0,T ) = 0.
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3.2 Transformation and related results

We transform the governing equations and the energy equality to the referen-

tial domain. First, we denote

uε : Ω× 〈0, T 〉 → R3,

ρε : Ω× 〈0, T 〉 → R,

where uε(x, t) = ūε(Rε(x), t) and ρε(x, t) = ρ̄ε(Rε(x), t), for all x ∈ Ω. Since

x̄ = Rε(x), x̄ ∈ Ωε, we can write uε(x, t) = ūε(x̄, t) and ρε(x, t) = ρ̄ε(x̄, t).

We express the spatial gradient of a scalar function ϕ̄ according to the chain

rule as

∇̄ϕ̄(x̄, t) = ∇̄ϕ̄(R−1
ε (x), t) = ∇εϕ,

where gradient ∇ε = (∂1, ε
−1∂2, ε

−1∂3). Additionally, divergence divε is defined

as divεϕ = ∂1ϕ+ ε−1∂2ϕ+ ε−1∂3ϕ.

Similarly, we transform the symmetric part of the gradient of a vector function

ūε and arrive at D̄ūε(x̄, t) = D̄ūε(R
−1
ε (x), t) = ωε(uε(x, t)), where

ωε(uε) =

 ∂1u1,ε
1
2
(∂1u2,ε + ε−1∂2u1,ε)

1
2
(∂1u3,ε + ε−1∂3u1,ε)

· ε−1∂2u2,ε
1
2
ε−1(∂2u3,ε + ∂3u2,ε)

sym · ε−1∂3u3,ε

 . (3.6)

3.2.1 Transformation of the governing equations

According to [7], we use the following equalities

dx̄ = ε2 dx,

dΓ̄ = ε dΓ on Γ1,

dΓ̄ = ε2 dΓ on Γ2

to arrive at the transformed equations of the variational formulation (3.4)–(3.5).

Now, we can divide both equations by ε2 and arrive at transformed governing

equations ∫ T

0

∫
Ω

(ρε∂tϕ+ ρεuε · ∇εϕ) dxdt = 0, (3.7)
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∫ T

0

∫
Ω

[ρεuε · ∂tψ + ρεuε ⊗ uε : ωε(ψ) + ρεdivεψ] dxdt

=

∫ T

0

∫
Ω

[P (|ωε(uε)|)ωε(uε) : ωε(ψ)− ρεfε · ψ] dxdt

+
h(ε)

ε

∫ T

0

∫
Γ1

uε · ψ dΓdt+ q

∫ T

0

∫
Γ2

uε · ψ dΓdt, (3.8)

for any ϕ ∈ D (R3 × (0, T )) and ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3), ψ · n|∂Ω×(0,T ) = 0.

Imposing the same transformation also to the renormalized continuity equa-

tion (see [17] or [19] for its original form) leads to

T∫
0

∫
Ω

b(ρε)∂tϕ+ b(ρε)uε · ∇εϕ+ [(b(ρε)− ρεb′(ρε)) divεuε]ϕ dxdt = 0, (3.9)

for any ϕ ∈ D (R3 × (0, T )).

3.2.2 Energy equality and its transformation

For any t ∈ 〈0, T 〉, we have the energy equality expressed by the following

formula [19]

∫
Ωε

(
ρ̄ε(t)

|ūε(t)|2

2
+ ρ̄ε(t) ln(ρ̄ε(t))

)
dx̄+

+

∫ t

0

∫
Ωε

P (|D̄ūε|)D̄ūε : D̄ūε dx̄ ds+ h(ε)

∫ t

0

∫
Γ1,ε

|ūε|2 dΓ̄ ds+

+q

∫ t

0

∫
Γ2,ε

|ūε|2 dΓ̄ds =

∫ t

0

∫
Ωε

ρ̄εf̄ε · ūε dx̄ds+

+

∫
Ωε

(
|(ρ̄εūε)0|2

2ρ̄0,ε

+ ρ̄0,ε ln(ρ̄0,ε)

)
dx̄. (3.10)
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By transforming (3.10), we obtain

∫
Ω

(
ρε(t)

|uε(t)|2

2
+ ρε(t) ln(ρε(t))

)
dx

+

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2 dxds+

+
h(ε)

ε

∫ t

0

∫
Γ1

|uε|2 dΓds+ q

∫ t

0

∫
Γ2

|uε|2 dΓds =

=

∫ t

0

∫
Ω

ρεgε · vε dxds+

∫
Ω

(
|(ρεuε)0|2

2ρ0,ε

+ ρ0,ε ln(ρ0,ε)

)
dx. (3.11)

for any t ∈ 〈0, T 〉, where

gε = (f1,ε, ε
−1f2,ε, ε

−1f3,ε),

vε = (u1,ε, εu2,ε, εu3,ε),

It is obvious that gε · vε = fε · uε, but we need to use this notation for making a

priori estimates (see inequality 3.17), because a variant of Korn’s inequality holds

for vε (see Lemma 3.2).

3.2.3 Related results

It is necessary to mention that equations (3.7)-(3.8) with non-slip boundary

conditions have a weak solution in a sufficiently regular domain for any ε ∈

(0, 1). Moreover, any weak solution satisfies the energy equality (3.11) and it

can be constructed as a limit of Rothe approximations (see [19], Theorem 3.5).

The non-slip boundary conditions mean that surface integrals in (3.8) and (3.11)

disappears. We remark that γ > 7/2 in [19], while our result was achieved for

a slightly more general γ > 3.

According to [26], we can treat the case of slip boundary conditions similarly as

the barotropic case [22]. In our case, we use the Navier boundary conditions (3.1)-

(3.3), because the slip boundary conditions are their special case (h(ε) = q = 0)

and the generalization poses no additional technical problems to the existence
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proof. The case of non-slip boundary conditions would lead to the zero velocity

in the limit. Thus, it was not an interesting choice of boundary conditions for us.

Since we are dealing with a domain which has a shape similar to a cylinder, the

assumption on the regularity of the boundary of Ω can be relaxed by simplifying

and slightly modifying the approach presented in [10].

3.3 Derivation of the limiting 1D equations

The first step of the proof concerns a variant of the first Korn’s inequality

(see section 3.3.1). We need this inequality to perform a priori estimates in

section 3.3.2 and afterwards show the boundedness of {ρε}ε∈(0,1) and {uε}ε∈(0,1),

and perform weak limits. Subsequently, we pass to limits in equations (3.7)-(3.8)

in section 3.3.3. Finally in section 3.3.4, the limit passage is performed also for

the energy equality (3.11).

3.3.1 Korn’s inequality

From [9], we know that for any w ∈ [W 1,p(Ω)]3, p ≥ 2, there exists constant

C > 0 such that the following estimate holds

‖w‖1,p ≤ C
(
‖Dw‖p + ‖w‖p

)
. (3.12)

Lemma 3.1. Let (3.12) hold for any w ∈ [W 1,p(Ω)]3, p ≥ 2. Then, there exists

constant C̄(Ω, p) > 0 such that

‖w‖1,p ≤ C̄(Ω, p)
(
‖Dw‖p + ‖w‖2,Γ

)
.

Proof: Let us suppose the contrary: without loss of generality, there exist

a sequence {wn}+∞
n=1 ⊂ [W 1,p(Ω)]3 such that ‖wn‖1,p = 1 and

1

n
≥
(
‖Dwn‖p + ‖wn‖2,Γ

)
.
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Then (passing to a subsequence if necessary), we get

wn → w in [Lp(Ω)]3,

∇wn ⇀ ∇w in [Lp(Ω)]9,

Dwn → 0 in [Lp(Ω)]9,

wn → 0 in [L2(Γ)]3.

From (3.12), ∇wn → ∇w in [Lp(Ω)]9 and thus ‖w‖1,p = 1. However, Dw = 0

and w|Γ = 0. It means that w = 0 (see [7], Theorem 1.7-3) and we arrive at

contradiction with ‖w‖1,p = 1. �

Without the loss of generality, we denote uε = uε(t) in the following theorem.

Variable t ∈ 〈0, T 〉 is arbitrary but fixed.

Theorem 3.2. Let uε ∈ [W 1,p(Ω)]3, p > 3, be such that uε ·n = 0 on Γ = {0}×S.

We define vε = (u1,ε, εu2,ε, εu3,ε) ∈ [W 1,p(Ω)]3. Then, there exists C = C(Ω, p) >

0, such that

‖vε‖1,p ≤ C
(
‖ωε(uε)‖p + ‖uε‖2,Γ

)
, ∀ε > 0, (3.13)

where ωε(uε) is defined by (3.6).

Proof: Let us assume the contrary. Without the loss of generality, there exists

a sequence {vεn}+∞
n=1 defined by {uεn}+∞

n=1, where εn → 0 as n tends to infinity,

such that ‖vεn‖1,p = 1 and

1

n
≥ ‖ωεn(uεn)‖p + ‖uεn‖2,Γ .

Hence,

uεn → 0 in [L2(Γ)]3, ωεn(uεn)→ 0 in [Lp(Ω)]9. (3.14)

From boundedness of sequence {vεn}+∞
n=1 and embedding W 1,p(Ω) ↪→↪→ C(Ω̄), we

deduce the following convergences (passing to a subsequence if necessary)

vεn ⇀ v in [W 1,p(Ω)]3, (3.15)

vεn → v in [C(Ω̄)]3. (3.16)
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According to the definition of vεn , it holds that

Dvεn =

 ∂1u1,εn
εn
2

(∂1u2,εn + ε−1
n ∂2u1,εn) εn

2
(∂1u3,εn + ε−1

n ∂3u1,εn)
· εn∂2u2,εn

εn
2

(∂2u3,εn + ∂3u2,εn)
sym · εn∂3u3,εn

 .

Due to the second convergence in (3.14) and definition of ωεn(uεn) given by rela-

tion (3.6), we arrive at Dvεn → 0 in [Lp(Ω)]9.

Finally, we prove that ‖v‖1,p = 1 and simultaneously v = 0 to arrive at

a contradiction. We apply the Korn’s inequality (see Lemma 3.1) as follows

‖vεn‖1,p ≤ C̄(Ω, p)
(
‖Dvεn‖p + ‖vεn‖2,Γ

)
.

Since uεn → 0 in [L2(Γ)]3, also vεn → 0 in [L2(Γ)]3. Furthermore, Dvεn → 0

in [Lp(Ω)]9. Thus, it implies convergence vεn → 0 in [W 1,p(Ω)]3, which together

with (3.15) give us vεn → v = 0 in [W 1,p(Ω)]3. This strong convergence and

‖vεn‖1,p = 1 mean that also ‖v‖1,p = 1. To sum it up, v = 0 in Ω and ‖v‖1,p = 1,

which is a contradiction. �

3.3.2 Boundedness and weak limits

Now, we make a priori estimates. Equation (3.7) implies the conservation of

mass which can be expressed as∫
Ω

ρε(t) dx =

∫
Ω

ρ0,ε dx, ∀t ∈ (0, T ).

Therefore, the first integral on the right-hand side of the energy equality (3.11)

can be estimated as follows∣∣∣∣∫ t

0

∫
Ω

ρεgε · vε dxds

∣∣∣∣ ≤ ∫ t

0

‖vε(s)‖∞‖gε(s)‖∞
∫

Ω

ρε(s) dxds

≤ C(ρ0,ε,gε)

∫ t

0

‖vε(s)‖1,p ds, p > 3.

31



In the view of inequalities (1.3) and (3.13), and the Young’s inequality, we

arrive at∣∣∣∣∫ t

0

∫
Ω

ρεgε · vε dxds

∣∣∣∣ ≤ C

(
C1

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2dxds

+C1

∫ t

0

∫
{0}×S

|uε|2dSds+ C2(C1)

)
, (3.17)

where C1 > 0 can be made arbitrarily small.

Due to (1.3) and (3.17), we obtain from (3.11) boundedness

{√ρε |uε|}ε∈(0,1) in L∞
(
0, T ;L2(Ω)

)
, (3.18)

{ρε}ε∈(0,1) in L∞ (0, T ;LΦ1(Ω)) , (3.19)

{ωε(uε)}ε∈(0,1) in [L̃M (Ω× (0, T ))]9, (3.20)

{vε}ε∈(0,1) in Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3) (3.21)

for any p > 3. From (3.21), we get immediately the boundedness

{u1,ε}ε∈(0,1) in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
. (3.22)

Boundedness (3.20) gives us the following convergences

∂2u3,ε + ∂3u2,ε → 0, ∂αuα,ε → 0, in LM(Ω× (0, T )), α = 2, 3.

Now, we can prove even the boundedness of {ε−1uα,ε}ε∈(0,1), α = 2, 3, in

LM(Ω× (0, T )). Let us denote wε = (ε−1u2,ε, ε
−1u3,ε). We begin with the Korn’s

inequality in a two-dimensional space [9]:

‖wε‖W 1,p(S) ≤ C1

(
‖Dwε‖Lp(S) + ‖wε‖Lp(S)

)
, p > 2, (3.23)

where x1 ∈ (0, 1) and t ∈ (0, T ) are arbitrary but fixed. From (3.23) and axial

non-symmetry of Ω, via the standard compactness argument (as in [22] for proving

inequality (4.17.19)), we deduce

‖wε‖Lp(S) ≤ C2 ‖Dwε‖Lp(S) . (3.24)
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Due to compact embedding of W 1,p(S) in L∞(S) and inequality (3.24), we

can arrive from (3.23) to the following inequality

‖Cwε‖pL∞(S) ≤ ‖Dwε‖pLp(S) , p > 2,

where C = C(S, p) > 0. Applying Young function Ψp and Jensen’s inequality

gives us ∫
S

Ψp(|Cwε|p)dx2dx3 ≤ C3

∫
S

Ψp(|Dwε|p)dx2dx3, p > 2.

Since Ψp(z
p) behaves like M(z), we arrive at∫

S

M(|Cwε|)dx2dx3 ≤ C3

(∫
S

M(|Dwε|)dx2dx3 + 1

)
.

After integrating over x1 ∈ (0, 1) and t ∈ (0, T ), we get

∫ T

0

∫
Ω

M(|Cwε|)dxdt ≤ C3

(∫ T

0

∫
Ω

M(|Dwε|)dxdt+ T

)
. (3.25)

Let us remark that (see inequality (2.4))

C ‖wε‖LM (Ω×(0,T ) ≤
∫ T

0

∫
Ω

M(|Cwε|)dxdt+ 1. (3.26)

Inequalities (3.25) and (3.26) give us

C ‖wε‖LM (Ω×(0,T ) ≤ C3

(∫ T

0

∫
Ω

M(|Dwε|)dxdt+ T

)
+ 1. (3.27)

The right-hand side of inequality (3.27) is bounded for any ε ∈ (0, 1) due

to (3.20). Thus, it ensures the boundedness

{ε−1uα,ε}ε∈(0,1) in LM(Ω× (0, T )), α = 2, 3. (3.28)

Boundedness of {ρε}ε∈(0,1) in L∞(0, T ;LΦ1(Ω)) can be extended to the space

L∞(0, T ;LΦγ (Ω)). We remind that γ > 3 (see Theorem 3.4 in section 3.4).
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We proceed in the following way. First, we test the equation (3.9) by function

ϕ = ϕ(t) ∈ C∞0 (0, T ) with b(z) = Φγ(z). We get

T∫
0

∫
Ω

Φγ(ρε)ϕ
′(t) +

[(
Φγ(ρε)− ρεΦ′γ(ρε)

)
divεuε

]
ϕ(t) dxdt = 0, (3.29)

Function Φγ(z)−zΦ′γ(z) behaves asymptotically like Φγ−1(z). Furthermore, there

exists C1 > 0 such that Φ1 (Φγ−1(z)) ≤ C1 (Φγ(z) + 1) for z ≥ 0 [26]. Due to

equivalence of Young functions M and Ψ1, relations (1.3), (3.20) and the Young’s

inequality, we deduce the estimate∣∣∣∣∫ T

0

∫
Ω

(
Φγ(ρε)− ρεΦ′γ(ρε)

)
divεuε dxdt

∣∣∣∣ (3.30)

≤ C(T )

∫ T

0

∫
Ω

(
Φγ(ρε) + P (|ωε(uε)|) |ωε(uε)|2

)
dxdt+ 1

 ,

where C(T ) > 0. With respect to (3.29), (3.30), (3.66) and the Gronwall’s lemma,

we obtain the boundedness of

{ρε}ε∈(0,1) in L∞(0, T ;LΦγ (Ω)). (3.31)

In the following step, we focus on boundedness of {∂tρε}ε∈(0,1). Let us test

equation (3.7) by function ϕ(x, t) = ϕ1(t)ψ(x), where ϕ1 ∈ Lp
′
(0, T ), 1/p+1/p′ =

1, p > 3, and ψ ∈ [W 1LΨγ−1(Ω)]3, γ > 3. We can write

∣∣∣∣∫ T

0

ϕ′1

∫
Ω

ρεψ dxdt

∣∣∣∣ =

∣∣∣∣∫ T

0

ϕ1

∫
Ω

ρεuε · ∇εψ dxdt

∣∣∣∣ =

=

∣∣∣∣∫ T

0

ϕ1

∫
Ω

ρε(u1,ε∂1ψ + ε−1u2,ε∂2ψ + ε−1u3,ε∂3ψ) dxdt

∣∣∣∣ . (3.32)

From (3.28) and (3.32), we get the boundedness of

{∂tρε}ε∈(0,1) in Lp
(
0, T ; [W 1LΨγ−1(Ω)]∗

)
. (3.33)
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For instance, boundedness of the last term on the right-hand side of equa-

tion (3.32) can be demonstrated as follows∣∣∣∣∫ T

0

∫
Ω

ρεε
−1u3,εϕ1∂3ψ dxdt

∣∣∣∣ ≤ ∥∥ε−1u3,ε

∥∥
LM (Ω×(0,T ))

‖ρεϕ1∂3ψ‖LN (Ω×(0,T )) ,

where the boundedness of the first norm on the right-hand has been already

proved – see (3.28). The second norm is less or equal than (see inequality (2.4))

∫ T

0

∫
Ω

N(ρε|ϕ1||∂3ψ|) dxdt+ 1 ≤

≤
∫ T

0

∫
Ω

|ϕ1||∂3ψ|N(ρε) + ρε|∂3ψ|N(|ϕ1|) + ρε|ϕ1|N(|∂3ψ|) dxdt+ C,

where ”the worst term” can be finally estimated as

∫ T

0

|ϕ1|
∫

Ω

|∂3ψ|N(ρε) dxdt ≤
∫ T

0

|ϕ1|
∫

Ω

Ψγ−1(|∂3ψ|) + Φγ(ρε) dxdt ≤

≤ ‖ϕ1‖L1(0,T )

(∫
Ω

Ψγ−1(|∂3ψ|) dx+

∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

)
.

By the use of (3.19)-(3.21), (3.31), (3.33), compact embedding of W 1,p(Ω) in

EΨ1(Ω), isometric isomorphism of [EΨ1(0, 1)]∗ and LΦ1(0, 1), continuous embed-

ding of [W 1,p(Ω)]∗ in [W 1LΨγ (Ω)]∗ and theorem on compact embedding [23], we

get (passing to subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
, (3.34)

ρε → ρ in C(〈0, T 〉 ; [W 1,p(Ω)]∗), (3.35)

ωε(uε)
N
⇀ ζ (3.36)

u1,ε ⇀ u1 in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
. (3.37)

Let us remind that we already have (from (3.28))

uα,ε → 0 = uα in LM(Ω× (0, T )), α = 2, 3, (3.38)
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which means that u2 = u3 = 0 almost everywhere in Ω× (0, T ).

We prove that the limiting function u does not depend on the second and the

third spatial variables. Boundedness (3.20) implies the following convergences

ε∂1uα,ε + ∂αu1,ε → 0, in LM(Ω× (0, T )), α = 2, 3.

With respect to (3.38), we arrive at ∂αu1 = 0 almost everywhere in Ω × (0, T ),

α = 2, 3. Hence, we get u1 = u1(x1, t) ∈ Lp (0, T ;W 1,p(0, 1)) with u1(0, t) =

u1(1, t) = 0, t ∈ (0, T ).

Let us pay our attention to convergences of nonlinear terms in equation (3.8).

Convergences (passing to subsequences if necessary)

ρεu1,ε ⇀ ρu1 in Lp(0, T ;LΦγ (Ω)) (3.39)

ρεuα,ε → 0 in LΦγ−1(Ω× (0, T )), α = 2, 3, (3.40)

where γ > 3 (see Theorem 3.4), are immediate consequences of (3.35), (3.37),

(3.38) and theorem concerning compact embedding [23]. For instance, we prove

convergences (3.40). According to the Hölder’s inequality, it holds that

‖ρεuα,ε‖LΦγ−1
(Ω×(0,T )) = sup

ϕ

∫ T

0

∫
Ω

|ρεuα,εϕ| dxdt ≤

≤ C ‖uα,ε‖LM (Ω×(0,T )) sup
ϕ
‖ρεϕ‖LN (Ω×(0,T ))

where the supremum is taken over all functions ϕ ∈ L̃Ψγ−1(Ω× (0, T )) such that

∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt ≤ 1.

From (3.38), we already know that ‖uα,ε‖LM (Ω×(0,T )) → 0. Therefore, it is suffi-

cient to show the boundedness of ‖ρεϕ‖LN (Ω×(0,T )) for proving (3.40). The equiv-
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alence of Orlicz spaces LN and LΦ1 , and the Young’s inequality give us

‖ρεϕ‖LN (Ω×(0,T )) ≤
∫ T

0

∫
Ω

Φ1(ρε|ϕ|) dxdt+ C ≤

≤
∫ T

0

∫
Ω

ρεΦ1(|ϕ|) dxdt+

∫ T

0

∫
Ω

|ϕ|Φ1(ρε) dxdt+ C. (3.41)

The second integral on the right-hand side of (3.41) is ”the worst” and it is less

or equal than

∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt+

∫ T

0

∫
Ω

Φγ−1(Φ1(ρε)) dxdt ≤

≤
∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt+ C

∫ T

0

∫
Ω

Φγ(ρε) dxdt.

Hence, we conclude that convergences (3.40) hold true.

To overcome the second term on the left-hand side in equation (3.8), we

consider ”the worst integrals” in (3.8) and prove their boundedness. First, we

show that (3.22), (3.31) and (3.38) lead to boundedness of

∫ T

0

∫
Ω

ρεuε ⊗ uε : ωε(ψ) dxdt (3.42)

for any ε ∈ (0, 1) and test function ψ such that ψ · n|∂Ω×(0,T ) = 0. There

are three types of terms in (3.42), but we analyze in detail only ”the worst

one”: ρεuα,εuβ,ε[ωε(ψ)]αβ, α, β = 2, 3. Let us apply notation [ωε(ψ(x, t))]αβ =

ε−1ϕ(t)ψ̄(x) with ϕ ∈ Lq(0, T ) and ψ̄ ∈ EΨγ (Ω), 2/p + 1/q = 1 and γ > 3 (see

Theorem 3.4 in section 3.4).

By the use of Hölder’s inequality, we get

∣∣∣∣∫ T

0

∫
Ω

ρεuα,εuβ,εε
−1ϕψ̄ dxdt

∣∣∣∣ ≤
≤
∥∥ε−1uα,εuβ,ε

∥∥
LΨ2

(Ω×(0,T ))

∥∥ρεϕψ̄∥∥LΦ2
(Ω×(0,T ))

(3.43)
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Both norms on the right-hand side of inequality (3.43) are bounded. Regard-

ing ‖ε−1uα,εuβ,ε‖LΨ2
(Ω×(0,T )), it holds that

∥∥ε−1uα,εuβ,ε
∥∥
LΨ2

(Ω×(0,T ))
= sup

ϕ1

∫ T

0

∫
Ω

|ε−1uα,εuβ,εϕ1| dxdt ≤

≤ ‖uα,ε‖LM (Ω×(0,T )) sup
ϕ1

∥∥ε−1uβ,εϕ1

∥∥
LN (Ω×(0,T ))

,

where ϕ1 ∈ L̃Φ2(Ω× (0, T )) such that
∫ T

0

∫
Ω

Φ2(|ϕ1|) dxdt ≤ 1. From (3.38), we

know that ‖uα,ε‖LM (Ω×(0,T )) → 0. Further, we can write that

∥∥ε−1uβ,εϕ1

∥∥
LN (Ω×(0,T ))

= sup
ϕ2

∫ T

0

∫
Ω

|ε−1uβ,εϕ1ϕ2| dxdt ≤

≤
∥∥ε−1uβ,ε

∥∥
LM (Ω×(0,T ))

sup
ϕ2

‖ϕ1ϕ2‖LN (Ω×(0,T )) ,

where the first norm is bounded (see 3.28) and ϕ2 ∈ L̃M(Ω × (0, T )) such that∫ T
0

∫
Ω
M(|ϕ2|) dxdt ≤ 1. Finally,

‖ϕ1ϕ2‖LN (Ω×(0,T )) ≤ C1

∫ T

0

∫
Ω

Φ1(|ϕ1ϕ2|)dxdt+ 1,

where the integral on the right-hand side is lower or equal than

C2

(∫ T

0

∫
Ω

|ϕ2|Φ1(|ϕ1|) + |ϕ1|Φ1(|ϕ2|)dxdt

)
≤

≤ C3

(∫ T

0

∫
Ω

M(|ϕ2|)dxdt+

∫ T

0

∫
Ω

Φ2(|ϕ1|)dxdt

)
≤ 2C3

Hence, ‖ε−1uα,εuβ,ε‖LΨ2
(Ω×(0,T )) → 0 as ε→ 0.

Concerning the second norm on the right-hand side of inequality (3.43), we

justify its boundedness in the following way

‖ρεϕψ̄‖LΦ2
(Ω×(0,T )) ≤

∫ T

0

∫
Ω

Φ2(ρε|ϕ||ψ̄|) dxdt+ C1 ≤

≤
∫ T

0

∫
Ω

|ϕ||ψ̄|Φ2(ρε) dxdt+

∫ T

0

∫
Ω

ρεΦ2(|ϕ||ψ̄|) dxdt+

+2

∫ T

0

∫
Ω

Φ1(ρε)Φ1(|ϕ||ψ̄|) dxdt+ C2,
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where ”the worst term” can be estimated as∫ T

0

∫
Ω

|ϕ||ψ̄|Φ2(ρε) dxdt ≤

≤ C‖ϕ‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ−2(|ψ̄|) dx

)
.

In summary, the first norm on the right hand side of inequality (3.43) converges

to zero and the second norm is bounded. It implies that∣∣∣∣∫ T

0

∫
Ω

ρεuα,εuβ,εε
−1ϕψ̄ dxdt

∣∣∣∣→ 0 for ε→ 0.

We conclude that integral (3.42) is bounded for any ε ∈ (0, 1) and test function

ψ such that ψ ·n|∂Ω×(0,T ) = 0, ϕ ∈ Lq(0, T ) and ψ̄ ∈ [EΨγ (Ω)]9. Subsequently, we

show that also ∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ωε(ψ) dxdt (3.44)

is bounded for any ε ∈ (0, 1). For the sake of simplicity, we employ the same

notation in the decomposition of ψ into its spatial and temporal part as in the

analysis of integral (3.42), i. e. ψ(x, t) = ϕ(t)ψ̄(x), where ϕ ∈ EΨ1/α
(0, T ), α > 2,

and ψ̄ ∈ [W 1EΨ1/2
(Ω)]3, ∂2ψ̄ = ∂3ψ̄ = 0.

We remark that

ωε(ψ̄) = ω(ψ̄) =

 ∂1ψ̄1
1
2
∂1ψ̄2

1
2
∂1ψ̄3

· 0 0
sym · 0

 ,

which is not longer dependent on ε. Due to Young’s inequality, it holds that∣∣∣∣∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ω(ψ̄)ϕ dxdt

∣∣∣∣ ≤ (|Ω| ∫ T

0

Ψ1/α(|ϕ|) dt+

+

∫ T

0

∫
Ω

Φ1/α

(
P (|ωε(uε)|)|ωε(uε)||ω(ψ̄)|

)
dxdt

)
, (3.45)

where α > 2. For brevity, let us denote wε = P (|ωε(uε)|)|ωε(uε)|. Since wε ∈

LΦ1(Ω×(0, T )) implies wε ∈ LΦ(α−1)/α
(0, T ;LΦ1/α

(Ω)), which follows from Jensen’s
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inequality and estimate

Φ(α−1)/α(Φ1/α(z)) ≤ 2Φ1(z) + C, z ≥ 0, (3.46)

the second term on the right-hand side of (3.45) is less or equal than

∫ T

0

∫
Ω

|ω(ψ̄)|Φ1/α(wε) + wεΦ1/α(|ω(ψ̄)|) dxdt ≤

≤
∫ T

0

∫
Ω

Φ(α−1)/α(Φ1/α(wε)) + Ψ(α−1)/α(|ω(ψ̄)|) dxdt+

+

∫ T

0

∫
Ω

Φ1(wε) + Ψ1(Φ1/α(|ω(ψ̄)|)) dxdt ≤

≤ 3

∫ T

0

∫
Ω

Φ1 (P (|ωε(uε)|)|ωε(uε)|) dxdt+

+

∫ T

0

∫
Ω

Ψ(α−1)/α

(
|ω(ψ̄)|

)
dxdt+

∫ T

0

∫
Ω

Ψ1/2

(
|ω(ψ̄)|

)
dxdt+ C,

where α > 2. Due to property (1.6), we conclude that integral (3.44) is bounded.

Terms (3.42) and (3.44) represent ”the worst integrals” in (3.8). Thus, we omit

the estimates of the others and take ψ(x, t) = ϕ(t)ψ̄(x), where ϕ ∈ EΨ1/α
(0, T )

with α > 2, and ψ̄ ∈ [W 1EΨ1/2
(Ω)]3 such that ψ̄ = (ψ̄1(x1), 0, 0) and complies

with ψ̄1(0) = ψ̄1(1) = 0, as a test function. By the use of estimates (3.42)

and (3.44), we demonstrate how to perform a limit passage in the second term

on the left-hand side of equation (3.8). Let us test the equation (3.8) by func-

tion ψ(x, t) = ϕ(t)ψ̄(x), where ϕ ∈ C∞0 (0, T ) and ψ̄ ∈ [W 1EΨ1/2
(Ω)]3, ψ̄ =

(ψ̄1(x1), 0, 0) and ψ̄1(0) = ψ̄1(1) = 0. We get

∣∣∣∣∫ T

0

ϕ′
∫

Ω

ρεuε · ψ̄ dxdt

∣∣∣∣ ≤ ∫ T

0

|ϕ|
∫

Ω

(
|ρεuε ⊗ uε : ω(ψ̄)|+ |ρε∂1ψ̄|+

+|P (|ωε(uε)|)ωε(uε) : ω(ψ̄)|+ |ρεfε · ψ̄|
)

dxdt+

+
h(ε)

ε

∫ T

0

|ϕ|
∫

Γ1

|uε · ψ̄| dΓdt. (3.47)
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Let us remark that

q

∫ T

0

|ϕ|
∫

Γ2

|uε · ψ̄| dΓdt = 0

due to the choice of test function (ψ̄ = 0 on Γ2).

Considering the density of C∞0 (0, T ) in EΨ1/2
(0, T ), embedding LΨ1/α

(0, T )

↪→ EΨ1/2
(0, T ) ⊂ L̃Ψ1/2

(0, T ), α > 2, and boundedness of all terms on the right-

hand side of the inequality (3.47) – see (3.42) and (3.44), we deduce boundedness

{∂t
∫
S

ρεuε dx2x3}ε∈(0,1) in LΦ1/α
(0, T ; ([W 1LΨ1/2

(0, 1)]∗)3). (3.48)

By the use of (3.39), (3.48), compact embedding of W 1,p(0, 1) in EΨ1(0, 1),

isometric isomorphism of [EΨ1(0, 1)]∗ and LΦ1(0, 1), continuous embedding of

[W 1,p(0, 1)]∗ in [W 1LΨ1(0, 1)]∗ and theorem concerning compact embedding [23],

we get (passing to subsequences if necessary)∫
S

ρεu1,ε dx2dx3 →
∫
S

ρu1 dx2dx3

in C(〈0, T 〉 ; [W 1,p(0, 1)]∗). (3.49)

In order to perform a limit passage in the second term on the left-hand side

of equation (3.8), we need the following lemma which can be proven in a similar

way as Proposition 3.2 in [27] and Lemma 6.2 in [2].

Lemma 3.3. Assume that {uε}ε∈(0,1) satisfies condition (3.20) and {vε}ε∈(0,1),

where vε = (u1,ε, εu2,ε, εu3,ε), satisfies condition (3.21). Then for any p > 3

(passing to a subsequence if necessary), it holds that

‖u1,ε −
1

|S|

∫
S

u1,ε dx2dx3‖Lp(0,T ;L∞(Ω)) → 0, for ε→ 0. (3.50)

41



Lemma 3.3 can be applied in the following way. It holds that∫ T

0

∫ 1

0

∫
S

ρεu1,εu1,εψ dx2dx3dx1dt =

=

∫ T

0

∫ 1

0

∫
S

ρεu1,ε(u1,ε −
1

|S|

∫
S

u1,εdx2dx3)ψ dx2dx3dx1dt+

+

∫ T

0

∫ 1

0

(∫
S

ρεu1,ε dx2dx3

)(
1

|S|

∫
S

u1,εdx2dx3

)
ψ dx1dt

where ψ ∈ C∞0 (0, T ; C∞(Ω̄)), ∂2ψ = ∂3ψ = 0. The first integral on the right-

hand side tends to zero for ε → 0 due to convergence (3.39) and Lemma 3.3.

Concerning the second integral, we apply strong convergence (3.49) and weak

convergence ∫
S

u1,ε dx2dx3 ⇀

∫
S

u1 dx2dx3 in Lp(0, T ;W 1,p(0, 1)),

which follows from (3.37). In addition, it holds that∫
S

ρu1 dx2dx3 = ρ̂u1∫
S

u1 dx2dx3 = u1,

where ρ̂ =
∫
S
ρ dx2dx3, because u is independent of x2 and x3. Hence, conver-

gence ∫ T

0

∫
Ω

ρεu1,εu1,εψ dxdt→
∫ T

0

∫ 1

0

ρ̂u1u1ψ dx1dt (3.51)

is an immediate consequence of (3.37), (3.49) and (3.50). Convergence (3.51) is

applied in the next section to overcome the nonlinearity in the second term on

the left-hand side of (3.8)

3.3.3 Limit of the governing equations

Now, we can perform limit passages in (3.7) and (3.8). Throughout this

section, we denote an integral of a function in the second and third spatial variable
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over set S by symbol ”ˆ” over the function. Obviously, these integrals depend

only on x1. For example, we write ρ̂ =
∫
S
ρ dx2dx3.

We remark that prescribed behavior (3.66) enables us to use the Gronwall’s

lemma in the proof of boundedness (3.31). Further, we assume that h(ε) > 0 in

(3.8) satisfies the condition h(ε) ∼ O(ε) to ensure the convergence of h(ε)
ε

to a

real positive number.

First, we test the equation (3.7) by function ϕ ∈ D(R× 〈0, T 〉). We arrive at∫ T

0

∫
Ω

ρε∂tϕ+ ρεu1,ε∂1ϕ dxdt = 0.

Subsequently, we perform the limit passage for ε→ 0, apply convergences (3.35)

and (3.39), and get ∫ T

0

∫ 1

0

ρ̂∂tϕ+ ρ̂u1∂1ϕ dx1dt = 0, (3.52)

for any ϕ ∈ D (R× 〈0, T 〉).

Second, we test the equation (3.8) by function ψ = (ψ1(x1, t), 0, 0), where

ψ1 ∈ C∞0 (0, T ; C∞(〈0, 1〉)) complies with ψ1(0, t) = ψ1(1, t) = 0, for all t ∈ (0, T ).

We will show the limit passage for each term in (3.8) separately.

(a) ρεuε · ∂tψ

Since convergence (3.39) holds, we get∫ T

0

∫
Ω

ρεuε · ∂tψ dxdt→
∫ T

0

∫ 1

0

ρ̂u1∂tψ1 dx1dt,

for ε→ 0.

(b) ρεuε ⊗ uε : ωε(ψ)

From the definition of the test function ψ, we know that

ωε(ψ) = ω(ψ) =

 ∂1ψ1 0 0
· 0 0

sym · 0

 . (3.53)
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After applying convergence (3.51), we conclude that

∫ T

0

∫
Ω

ρεuε ⊗ uε : ωε(ψ) dxdt→
∫ T

0

∫ 1

0

ρ̂u2
1∂1ψ1 dx1dt,

for ε→ 0.

(c) ρεdivεψ

Since divεψ = ∂1ψ1, we have (see convergence (3.34))

∫ T

0

∫
Ω

ρεdivεψ dxdt→
∫ T

0

∫ 1

0

ρ̂∂1ψ1 dx1dt,

for ε→ 0.

(d) P (|ωε(uε)|)ωε(uε) : ωε(ψ)

It holds that (see convergence (3.36))

∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ωε(ψ) dxdt→
∫ T

0

∫
Ω

P (|ζ|)ζ : ω(ψ) dxdt,

for ε→ 0, where ω(ψ) is defined by (3.53) and

ζ =

 ∂1u1 ζ12 ζ13

· ζ22 ζ23

sym · ζ33

 . (3.54)

Later, we will show that

∫ t

0

∫
Ω

P (|ζ|)ζ : ω(ψ) dxds = |S|
∫ t

0

∫ 1

0

P (|∂1u1|)∂1u1∂1ψ1 dx1ds,

for any t ∈ (0, T ).

(e) ρεfε · ψ
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Since fε · ψ = f1,εψ1, convergence (3.34) holds and fε → f in [L∞(Ω × (0, T ))]3

(see assumptions of Theorem 3.4 in section 3.4), we obtain

∫ T

0

∫
Ω

ρεfε · ψ dxdt→
∫ T

0

∫ 1

0

ρ̂f1ψ1 dx1dt,

for ε→ 0, where f1 denotes the limit of f1,ε.

(f) h(ε)
ε

uε · ψ

According to the supposed behavior of h(ε), i. e. h(ε) ∼ O(ε), we can use

convergence (3.37) to derive

ε−1

∫ T

0

∫
Γ1

h(ε)uε · ψ dΓdt→ |∂S|h
∫ T

0

∫ 1

0

u1ψ1 dx1dt

for ε→ 0, where h is a positive constant.

(g) uε · ψ

Due to the choice of test function ψ, we have

∫ T

0

∫
Γ2

uε · ψ dΓdt =

∫ T

0

∫
Γ2

u1,εψ1 dΓdt = 0,

for all ε ∈ (0, 1). Thus, this integral vanishes in the limit of the governing

equations.

Finally, we arrive at

∫ T

0

∫ 1

0

ρ̂u1∂tψ1 + ρ̂u2
1∂1ψ1 + ρ̂∂1ψ1dx1dt =

=

∫ T

0

∫
Ω

P (|ζ|)ζ : ω(ψ) dxdt−
∫ T

0

∫ 1

0

ρ̂f1ψ1dx1dt+

+|∂S|h
∫ T

0

∫ 1

0

u1ψ1dx1dt. (3.55)
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3.3.4 Limit of the energy equality

Applying similar approach as in section 3.3.3, convexity and Jensen’s inequal-

ity, we perform the limit passage for ε→ 0 also in the energy equality (3.11). We

arrive at the following inequality

∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx1 +

∫ t

0

∫
Ω

P (|ζ|) |ζ|2 dxds+

+|∂S|h
∫ t

0

∫ 1

0

|u1|2 dx1ds ≤
∫ t

0

∫ 1

0

ρ̂f1u1 dx1ds+ (3.56)

+

∫ 1

0

|(ρu)0|2

2ρ0

dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1.

By the use of a similar procedure as in [19], Lemmas 3.2 and 3.3, based on the

renormalized continuity equation and the Steklov function, we derive the energy

equality

∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx1 +

∫ t

0

∫
Ω

P (|ζ|) ζ : ω(u) dx1ds+

+|∂S|h
∫ t

0

∫ 1

0

|u1|2 dx1ds =

∫ t

0

∫ 1

0

ρ̂f1u1 dx1ds+ (3.57)

+

∫ 1

0

|(ρu)0|2

2ρ0

dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1.

from (3.52) and (3.55), where ω(u) is defined in the same way as ω(ψ) in rela-

tion (3.53). It means that its only nonzero term is [ω(u)]11 = ∂1u1.

Since function P (|z|)z is monotone, we get

0 ≤ lim
ε→0

∫ t

0

∫
Ω

(P (|ωε(uε)|)ωε(uε)− P (|T |)T ) : (ωε(uε)− T ) dxds =

= lim
ε→0

∫ t

0

∫
Ω

P (|ωε(uε)|)|ωε(uε)|2dxds−

−
∫ t

0

∫
Ω

P (|ζ|)ζ : T + P (|T |)T : ζ + P (|T |)|T |2 dxds (3.58)
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for any symmetric T ∈ [L̃M(Ω × (0, T ))]9. As a consequence of (3.11), (3.57),

convexity and Jensen’s inequality, we arrive at

lim
ε→0

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2dxds =

= lim
ε→0

(
−
∫

Ω

ρε
|uε|2

2
+ ρε ln(ρε) dx −

−h(ε)

ε

∫ t

0

∫
Γ1

|uε|2 dΓds− q
∫ t

0

∫
Γ2

|uε|2 dΓds+

+

∫ t

0

∫
Ω

ρεfε · uε dxds+

∫
Ω

|(ρεuε)0|2

2ρ0,ε

dx+

∫
Ω

ρ0,ε ln(ρ0,ε) dx

)
≤

≤ −
∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx̂− |∂S|h

∫ t

0

∫ 1

0

|u1|2 dx1ds+

+

∫ t

0

∫ 1

0

ρ̂f1u1 dx1ds+

∫ 1

0

|(ρu)0|2

2ρ0

dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1 =

=

∫ t

0

∫
Ω

P (|ζ|) ζ : ω(u) dxds (3.59)

Hence and from (3.58), we get

0 ≤
∫ t

0

∫
Ω

(
P (|ζ|)ζ − P (|T |)T

)
: (ω(u)− T ) dxds.

Taking T = ω(u)+λω(ψ) and T = ω(u)−λω(ψ), for λ > 0, ψ = (ψ1, 0, 0), where

ψ1 ∈ C∞0 (0, T ; C∞(Ω̄)) is such that ∂2ψ1 = ∂3ψ1 = 0 and ψ1(0, t) = ψ1(1, t) = 0,

for all t ∈ (0, T ), we conclude that

∫ t

0

∫
Ω

P (|ζ|)ζ : ω(ψ)dxds = |S|
∫ t

0

∫ 1

0

P (|ω(u)|)ω(u) : ω(ψ) dx1ds =

= |S|
∫ t

0

∫ 1

0

P (|∂1u1|)∂1u1∂1ψ1 dx1ds. (3.60)

47



3.4 Main theorem for the 1D model

To sum it up, the limit equations together with the energy equality are given

by the following formulas∫ T

0

∫ 1

0

ρ̂∂tϕ+ ρ̂u1∂1ϕ dx1dt = 0, (3.61)

for any ϕ ∈ D (R× 〈0, T 〉),∫ T

0

∫ 1

0

ρ̂u1∂tψ1 + ρ̂u2
1∂1ψ1 + ρ̂∂1ψ1dx1dt =

= |S|
∫ T

0

∫ 1

0

P (|∂1u1|)∂1u1∂1ψ1 dx1dt−
∫ T

0

∫ 1

0

ρ̂f1ψ1dx1dt+

+|∂S|h
∫ T

0

∫ 1

0

u1ψ1dx1dt, (3.62)

for any ψ = (ψ1(x1), 0, 0), where ψ1 ∈ C∞0 (0, T ; C∞(〈0, 1〉)) complies with condi-

tion ψ1(0, t) = ψ1(1, t) = 0, for all t ∈ (0, T ),∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx1 + |S|

∫ t

0

∫
Ω

P (|∂1u1|) |∂1u1|2 dx1ds+

+|∂S|h
∫ t

0

∫ 1

0

|u1|2 dx1ds =

∫ t

0

∫ 1

0

ρ̂f1u1 dx1ds+ (3.63)

+

∫ 1

0

|(ρu)0|2

2ρ0

dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1. (3.64)

Finally, we summarize our main result in the following theorem.

Theorem 3.4. Let us assume that couples (ρε,uε), ε ∈ (0, 1), satisfying

ρε ∈ L∞(0, T ;LΦγ (Ω)),

vε ∈ Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3),

with vε = (u1,ε, εu2,ε, εu3,ε) and Ω being not axially symmetric, ∂Ω ∈ C0,1, are

weak solutions to the equations (3.7)-(3.8) and (3.11) with initial states ρ0,ε ∈
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LΦγ (Ω) and |(ρεuε)0|2
2ρ0,ε

∈ L1(Ω) satisfying

∫
S

ρ0,ε ln(ρ0,ε) dx2dx3 → ρ0 ln(ρ0) in L1(0, 1), (3.65)∫
S

Φγ(ρ0,ε) dx2dx3 → Φγ(ρ0) in L1(0, 1), (3.66)∫
S

|(ρεuε)0|2

2ρ0,ε

dx2dx3 →
|(ρu)0|2

2ρ0

in L1(0, 1), (3.67)

for arbitrary but fixed γ > 3 and p > 3. In addition, we assume that Navier

boundary conditions (3.1)-(3.3) hold and ωε(uε) ∈ [L̃M(Ω× (0, T ))]9.

Further, we suppose that function P complies with conditions (1.3)-(1.7), fε →

f in [L∞(Ω×(0, T ))]3, h(ε) > 0 behaves like O(ε), see (3.1), and q > 0, see (3.2).

Then (passing to subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
,

ρε → ρ in C
(
〈0, T 〉 ; [W 1,p(Ω)]∗

)
,

ωε(uε)
N
⇀ ω(u)

u1,ε ⇀ u1 in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
,

uα,ε → 0 in LM(Ω× (0, T )), α = 2, 3.

In addition, couple (ρ̂, u1), where u1 = u1(x1) and ρ̂ =
∫
S
ρ dx2dx3, is a weak so-

lution to the equations (3.61)-(3.62) and complies with the energy equality (3.63).
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Chapter 4

Derivation of a 2D model
in a curved domain

We focus on a rigorous derivation of a two-dimensional model from equa-

tions (1.1)-(1.2) over a curved domain under Navier boundary conditions [2].

First, we describe the problem in section 4.1. In section 4.2, the deformation of

the domain in question is expressed in the curvilinear coordinates. The trans-

formation of the both governing equations and energy equality is performed in

section 4.3. Finally, section 4.4 contains the proof of our main result, which is

formulated in section 4.5.

4.1 Statement of the problem

We are interested in the motion of a compressible fluid in a thin domain. The

dynamics of a compressible fluid are described by the continuity and momentum

equations (1.1)-(1.2). We denote the velocity and the density as ũε and ρ̃ε,

respectively, in equations (1.1)-(1.2) to highlight the connection to Ω̃ε. We employ

similar notation also for other functions connected to Ω̃ε.

The domain Ω̃ε ⊂ R3 is defined by the use of a reference domain Ω = S×(0, 1),

S ⊂ R2, ∂S ∈ C0,1, and the mapping Θε : Ω→ Ω̃ε so that

Θε : (x1, x2, x3) 7−→ θ(x1, x2) + εx3a3(x1, x2),
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where θ : S → R3 and

a1 = (∂1θ1, ∂1θ2, ∂1θ3)T,

a2 = (∂2θ1, ∂2θ2, ∂2θ3)T,

a3 =
a1 × a2

‖a1 × a2‖
.

We suppose that aj, ∂αaj and ∂2
αβa3 ∈ [L∞(Ω)]3, where α, β = 1, 2 and j = 1, 2, 3.

Symbols n and ñε stand for unit outward normals to Ω and Ω̃ε, respectively.

Similarly, t (resp. t̃ε) is any vector from the corresponding tangent plane. We

denote the boundaries of domains Ω and Ω̃ε as follows:

Γ1 = ∂S × (0, 1), Γ2 = S × {0, 1},

Γ̃1,ε = Θε (Γ1) , Γ̃2,ε = Θε (Γ2) .

To ensure the well-posedness of our problem [26], we prescribed the set of

Navier boundary conditions

t̃ε ·
(
P (|D̃ũε|)D̃ũεñε

)
+ qũε · t̃ε = 0, on Γ̃1,ε × (0, T ), (4.1)

t̃ε ·
(
P (|D̃ũε|)D̃ũεñε

)
+ h(ε)ũε · t̃ε = 0, on Γ̃2,ε × (0, T ), (4.2)

ũε · ñε = 0, on ∂Ω̃ε × (0, T ). (4.3)

We suppose that h(ε) > 0 behaves like O(ε) and q > 0. The asymptotic behavior

of h(ε) will be discussed during derivation of weak convergences of density and

velocity field (section 4.4.3).

We consider the initial conditions for the density and the momentum

ρ̃ε(x, 0) = ρ̃0,ε(x) ≥ 0,

(ρ̃εũε) (x, 0) = (ρ̃εũε)0 (x, 0), in Ω̃ε.

Hence, the variational formulation of our problem is∫ T

0

∫
Ω̃ε

(
ρ̃ε∂tϕ̃+ ρ̃εũε · ∇̃ϕ̃

)
dx̃dt = 0, (4.4)
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∫ T

0

∫
Ω̃ε

(
ρ̃εũε · ∂tψ̃ + ρ̃εũε ⊗ ũε : D̃ψ̃ + ρ̃εd̃ivψ̃

)
dx̃dt

=

∫ T

0

∫
Ω̃ε

(
P (|D̃ũε|)D̃ũε : D̃ψ̃ − ρ̃εf̃ε · ψ̃

)
dxdt

+q

∫ T

0

∫
Γ̃1,ε

ũε · ψ̃ dΓ̃dt+ h(ε)

∫ T

0

∫
Γ̃2,ε

ũε · ψ̃ dΓ̃dt, (4.5)

for any ϕ̃ ∈ D (R3 × (0, T )) and ψ̃ ∈ C∞0 (0, T ;C∞({Ω̃ε}−)3), where {Ω̃ε}− stands

for the closure of Ω̃ε, satisfying the condition ψ̃ · ñε|∂Ω̃ε×(0,T ) = 0.

4.2 Curvilinear coordinates

We transform the equations (4.4) and (4.5) to the reference domain Ω by the

use of mapping Θε. First, we define the covariant basis (see [7], section 1.2)

g1,ε = ∂1Θε = a1 + εx3∂1a3, (4.6)

g2,ε = ∂2Θε = a2 + εx3∂2a3, (4.7)

g3,ε = ∂3Θε = εa3, (4.8)

the covariant metric tensor Gε

[Gε]ij = gij,ε = gi,ε · gj,ε, (4.9)

and its determinant gε = det (Gε). Further, we also define the contravariant basis

by the relations

gi,ε · gj,ε = δij. (4.10)

It is known from [7], Theorem 1.2-1, that

[
G−1
ε

]ij
= gij,ε = gi,ε · gj,ε.

and also (see [7], proof of Theorem 1.3), that

[gi,ε(x)]k = ∂̃kΘ
−1
i,ε (x̃),

where x̃ = Θε(x).
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For convenience, we denote the determinant of submatrix ([Gε]ij)
2
i,j=1 as dε.

Relations (4.6)-(4.8) and (4.10) enable us to express the contravariant basis:

g1,ε = d−1
ε

(
|g2,ε|2g1,ε − (g1,ε · g2,ε)g2,ε

)
,

g2,ε = d−1
ε

(
|g1,ε|2g2,ε − (g1,ε · g2,ε)g1,ε

)
,

g3,ε = ε−1a3. (4.11)

We emphasize that subscripts are used for the covariant basis {gi,ε}3
i=1 and su-

perscripts for the contravariant basis {gi,ε}3
i=1 (the same notation as in [7]).

The contravariant basis is well-defined, because dε > 0 (see section 4.2.1 for

details). For further calculations, we determine explicitly also the matrix Gε and

its inverse:

Gε =

 g11,ε g12,ε 0
. g22,ε 0

sym . ε2

 , G−1
ε =

 g11,ε g12,ε 0
. g22,ε 0

sym . ε−2

 ,

where

g11,ε = |a1|2 + 2εx3a1 · ∂1a3 + ε2x2
3|∂1a3|2,

g12,ε = a1 · a2 + εx3 (a1 · ∂2a3 + a2 · ∂1a3) + ε2x2
3∂1a3 · ∂2a3,

g22,ε = |a2|2 + 2εx3a2 · ∂2a3 + ε2x2
3|∂2a3|2,

g11,ε = g22,εd
−1
ε ,

g12,ε = −g12,εd
−1
ε ,

g22,ε = g11,εd
−1
ε .

Terms g13,ε and g23,ε are equal to zero, because

g1,ε · g3,ε = εa1 · a3 + ε2x3a3 · ∂2a3 = 0.

The last equality is due to orthogonality of a1 and a3, and equality a3 · ∂2a3 =

1
2
∂2|a3|2 = 1

2
∂21 = 0. Similarly, g23,ε = 0 and thus also g13,ε = g23,ε = 0.

Mapping Θε can be decomposed into two parts: deformation and contraction.

Therefore, matrix Gε, as well as the inverse matrix G−1
ε , can be decomposed into
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two parts. In the following sections, we need the decomposition of G−1
ε . Thus,

we denote

Eε =

 1 0 0
. 1 0

sym . ε−1

 ,

Rε =
(
r1,ε, r2,ε, r3,ε

)
=

 [g1,ε]1 [g2,ε]1 [a3]1
[g1,ε]2 [g2,ε]2 [a3]2
[g1,ε]3 [g2,ε]3 [a3]3

 . (4.12)

It holds that G−1
ε = EεR

T
ε RεEε. It is an easy matter to demonstrate that

det(RT
ε Rε) = d−1

ε , gε = dεε
2 and

RT
ε Rε =

 g11,ε g12,ε 0
. g22,ε 0

sym . 1

 . (4.13)

From the relations (4.6)-(4.11), it is simple to prove that RT
ε Rε is a symmetric

positive definite matrix. Hence, d−1
ε > 0 and therefore

√
dε > 0 is well-defined.

Furthermore, it stems from Cauchy’s inequality that dε would equal zero if and

only if g1,ε = g2,ε. However, this situation cannot occur because g1,ε and g2,ε are

linearly independent.

4.2.1 Convergence of covariant and contravariant bases

Before we pass to the limit in the variational formulation (4.4)–(4.5), we

mention necessary convergences concerning the covariant and contravariant bases.

For ε→ 0, we have

g1,ε → a1, g2,ε → a2, g3,ε → o in [W 1,∞(Ω)]3, (4.14)

Gε → G =

 |a1|2 a1 · a2 0
. |a2|2 0

sym . 0

 in [L∞(Ω)]9, (4.15)

RT
ε Rε → RTR =

 d−1|a2|2 −d−1a1 · a2 0
. d−1|a1|2 0

sym . 1

 in [L∞(Ω)]9, (4.16)
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gε → 0, dε → d = (|a1||a2|)2 − (a1 · a2)2 in L∞(Ω). (4.17)

Therefore, dε ≥ δ > 0 and the contravariant basis is well-defined by rela-

tions (4.11). It immediately follows from the above convergences that

g1,ε → a1 = d−1
(
|a2|2a1 − (a1 · a2)a2

)
in [W 1,∞(Ω)]3, (4.18)

g2,ε → a2 = d−1
(
|a1|2a2 − (a1 · a2)a1

)
in [W 1,∞(Ω)]3. (4.19)

Hence,

R =

 [a1]1 [a2]1 [a3]1
[a1]2 [a2]2 [a3]2
[a1]3 [a2]3 [a3]3

 . (4.20)

Let us remark that all these limit functions depend only on x1 and x2, because

a1, a2, a3 as well as a1, a2 are independent of x3.

4.3 Transformation

4.3.1 Transformation of partial derivatives

For transformed velocity and density, we employ the notation

uε : Ω× 〈0, T 〉 → R3,

ρε : Ω× 〈0, T 〉 → R,

where uε(x, t) = ũε(Θε(x), t) and ρε(x, t) = ρ̃ε(Θε(x), t), for all x ∈ Ω. We

denote x̃ = Θε(x) and also x = Θ−1
ε (x̃). Thus, we can write uε(x, t) = ũε(x̃, t)

and ρε(x, t) = ρ̃ε(x̃, t).

We express the first spatial partial derivative of a scalar function ϕ̃ according

to the chain rule in the following way

∂̃jϕ̃(x̃, t) = ∂̃jϕ(Θ−1
ε (x̃), t) = ∂lϕ(x, t)[gl,ε]j.

Similarly, we derive the first spatial partial derivative of a vector function ũε as

follows

∂̃jũi,ε(x̃, t) = ∂̃jui,ε(Θ
−1
ε (x̃), t) = ∂lui,ε(x, t)[g

l,ε]j = ∂luε(x, t) · gk,ε[gk,ε]i[gl,ε]j,
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where the last equality follows from

∂lui,ε = [∂luε]i = ∂luε · gk,ε[gk,ε]i.

The transformation of the symmetric part of the gradient can be performed

in the following way

[D̃ũε]ij = [ω̄ε(uε)]lk [rk,ε]i[r
l,ε]j =

[
RT
ε ω̄ε(uε)Rε

]
ij

def
= [ωε(uε)]ij , (4.21)

where

ω̄ε(uε) =


∂1uε · g1,ε

1
2

(∂1uε · g2,ε + ∂2uε · g1,ε)
1
2

(
∂1uε·εa3+∂3uε·g1,ε

ε

)
· ∂2uε · g2,ε

1
2

(
∂2uε·εa3+∂3uε·g2,ε

ε

)
sym · ∂3uε·εa3

ε2

 ,

(4.22)

In the following sections, we need the equivalence of ω̄ε(uε) and ωε(uε) in the

Lp-norm, p ≥ 3, and also in the LM -norm. Since this equivalence can be proven

simultaneously, let us denote any of these norms as ‖·‖X . There exist r1(X),

r2(X) > 0 such that for all ε ∈ (0, 1) the following relation holds

r1(X) ‖ω̄ε(uε)‖X ≤ ‖ωε(uε)‖X ≤ r2(X) ‖ω̄ε(uε)‖X , (4.23)

because Rε is convergent for ε → 0 in W 1,∞(Ω) due to (4.18) and (4.19). Fur-

thermore, Rε does not tend to zero for ε→ 0 as formula (4.20) holds.

The transformation of ũε · ∇̃ϕ̃ leads to

ũi,ε∂̃iϕ̃ = ui,ε∂lϕ[gl,ε]i = uT
ε RεEε∇ϕ.

The transformation of d̃ivψ̃ is done similarly

d̃ivψ̃ = ∂̃iψ̃i = ∂lψi[g
l,ε]i = ∇ψ : RεEε. (4.24)

We remark that term ∇ψ : RεEε is the trace of ωε(ψ), because d̃ivψ̃ is the trace

of D̃ψ̃.
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4.3.2 Transformation of the governing equations

According to [7], we use the following equalities

dx̃ =
√
gε dx = ε

√
dε dx,

dΓ̃ = |RεEεn|
√
gε dΓ = |RεEεn|ε

√
dε dΓ,

to arrive at the transformed equations of the variational formulation (4.4)–(4.5).

It holds that n = (n1, n2, 0) on Γ1, n = (0, 0,±1) on Γ2. Therefore,

|RεEεn| =

√√√√ 2∑
i,j=1

nigij,εnj, on Γ1,

|RεEεn| = ε−1, on Γ2.

Now, we can divide both equations by ε and arrive at the transformed varia-

tional formulation∫ T

0

∫
Ω

(
ρε∂tϕ+ ρεu

T
ε RεEε∇ϕ

)√
dε dxdt = 0, (4.25)

∫ T

0

∫
Ω

[ρεuε · ∂tψ + ρεuε ⊗ uε : ωε(ψ) + ρε∇ψ : RεEε]
√
dε dxdt

=

∫ T

0

∫
Ω

[P (|ωε(uε)|)ωε(uε) : ωε(ψ)− ρεfε · ψ]
√
dε dxdt+

+q

∫ T

0

∫
Γ1

uε · ψ|RεEεn|
√
dε dΓdt+

h(ε)

ε

∫ T

0

∫
Γ2

uε · ψ
√
dε dΓdt, (4.26)

for any ϕ ∈ D (R3 × (0, T )) and ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3), ψ · n|∂Ω×(0,T ) = 0.

Similarly as in section 3.2.3, we remark that for any ε ∈ (0, 1), there exists at

least one weak solution of equations (4.25)-(4.26).

After imposing the same transformation as for the variational formulation to

renormalized continuity equation (see [17] or [19] for its original form), we get

T∫
0

∫
Ω

[
b(ρε)∂tϕ+ b(ρε)u

T
ε RεEε∇ϕ (b(ρε)− ρεb′(ρε))∇uε : RεEε

]
ϕ
√
dε dxdt = 0,

(4.27)
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for any ϕ ∈ D (R3 × (0, T )).

4.3.3 Energy equality and its transformation

For any t ∈ (0, T ), we have the energy equality expressed by the following

formula [19]

∫
Ω̃ε

(
ρ̃ε(t)

|ũε(t)|2

2
+ ρ̃ε(t) ln(ρ̃ε(t))

)
dx̃+

+

∫ t

0

∫
Ω̃ε

P (|D̃ũε|)D̃ũε : D̃ũε dx̃ ds+ q

∫ t

0

∫
Γ̃1,ε

|ũε|2 dΓ̃ ds+

+h(ε)

∫ t

0

∫
Γ̃2,ε

|ũε|2 dΓ̃ds =

∫ t

0

∫
Ω̃ε

ρ̃εf̃ε · ũε dx̃ds+

+

∫
Ω̃ε

(
|(ρ̃εũε)0|2

2ρ̃0,ε

+ ρ̃0,ε ln(ρ̃0,ε)

)
dx̃. (4.28)

By transforming (4.28), we obtain

∫
Ω

(
ρε(t)

|uε(t)|2

2
+ ρε(t) ln(ρε(t))

)√
dε dx

+

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2
√
dε dxds+

+q

∫ t

0

∫
Γ1

|uε|2|RεEεn|
√
dε dΓds+

h(ε)

ε

∫ t

0

∫
Γ2

|uε|2
√
dε dΓds =

=

∫ t

0

∫
Ω

ρεf̄ε · vε
√
dε dxds+

+

∫
Ω

(
|(ρεuε)0|2

2ρ0,ε

+ ρ0,ε ln(ρ0,ε)

)√
dε dx. (4.29)

for any t ∈ 〈0, T 〉, where

f̄ε = (fε · g1,ε, fε · g2,ε, fε · g3,ε),

vε = (uε · g1,ε,uε · g2,ε,uε · g3,ε),
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It is obvious that

f̄ε · vε = f̄i,εvi,ε = (fε · gi,ε)(uε · gi,ε)

= (fε · gi,ε)gi,ε · (uε · gj,ε)gj,ε = fε · uε.

We need to use f̄ε ·vε instead of fε ·uε for making a priori estimates (see inequal-

ity 4.34), because a variant of Korn’s inequality holds for vε (see Theorem 4.1).

It has to be remarked that concerning the existence of a weak solution to

equations (4.25)-(4.26) satisfying the energy equality (4.29), we are in a similar

situation as in the Chapter 3. Thus, we refer to section 3.2.3 for details connected

to this issue.

4.4 Derivation of the limiting 2D equations

The first step of the proof concerns a variant of the first Korn’s inequality

which is proven in section 4.4.1. This inequality is necessary to perform a prior

estimates in section 4.4.2 and subsequently show the boundedness of {ρε}ε∈(0,1)

and {vε}ε∈(0,1), and perform weak limits. In section 4.4.3, we pass to the limits

in the governing equations (4.25)-(4.26). As the last step, we perform the limit

passage also for the energy equality (4.29) in section 4.4.4.

4.4.1 Korn’s inequality

In this section, we prove a variant of the first Korn’s inequality for functions

from [W 1,p(Ω)]3, p > 3. This inequality is subsequently used to derive prior

estimates for ρε and uε in section 4.4.2.

From [9], we know that there exists C > 0 such that

‖w‖1,p ≤ C
(
‖Dw‖p + ‖w‖p

)
(4.30)

holds for any w ∈ [W 1,p(Ω)]3, p ≥ 2.

As a consequence (see Lemma 3.1 and its proof), there exists C̄(Ω, p) > 0

such that

‖w‖1,p ≤ C̄(Ω, p)
(
‖Dw‖p + ‖w‖2,Γ

)
. (4.31)
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From inequality (4.31), we can deduce the following theorem. Although its proof

employes similar ideas as the proof of Theorem 3.2, we do not omit it, because

it requires also other considerations due to more complex situation induced by

the curvilinear coordinates. Without the loss of generality, we denote uε = uε(t).

Variable t ∈ (0, T ) is arbitrary but fixed.

Theorem 4.1. Let uε ∈ [W 1,p(Ω)]3, p > 3, be such that uε · n = uε · a3 = 0

on Γ = S × {0}. We define vε = (uε · g1,ε,uε · g2,ε,uε · εa3). Then there exists

C = C(Ω, p) > 0, such that

‖vε‖1,p ≤ C
(
‖ω̄ε(uε)‖p + ‖uε‖2,Γ

)
, ∀ε > 0, (4.32)

where ω̄ε(uε) is defined by (4.22).

Proof: Assume the contrary: without loss of generality, there exists a sequence

{vεn}+∞
n=1 generated by {uεn}+∞

n=1, where εn → 0 as n approaches infinity, such

that ‖vεn‖1,p = 1 and

1

n
≥ ‖ω̄εn(uεn)‖p + ‖uεn‖2,Γ .

Hence,

uεn → 0, in [L2(Γ)]3, ω̄εn(uεn)→ 0, in [Lp(Ω)]9. (4.33)

In addition, from definition of vεn , it follows that v3,εn = 0 on Γ. From bound-

edness of sequence {vεn}+∞
n=1 and embedding W 1,p(Ω) ↪→↪→ C(Ω̄), we get the

convergences (passing to a subsequence if necessary)

vεn ⇀ v in [W 1,p(Ω)]3,

vεn → v in [C(Ω̄)]3.

We will arrive at a contradiction in three steps:

1. We prove that {Dvεn}+∞
n=1 is convergent in [Lp(Ω)]9.
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Let us analyze the terms of ω̄εn(uεn) one by one. We know that

‖∂3uεn · a3‖p ≤
εn
n
.

Hence, ∂3uεn · a3 = ∂3(uεn · a3) → ∂3(u · a3) = 0 in Lp(Ω). However, (u ·

a3)(x1, x2, 0) = 0 for all (x1,x2) ∈ S (in other words u · a3 = 0 on Γ). Thus,

v3 = u · a3 = 0 in Ω.

Next, [ω̄εn(uεn)]11 can be written as

∂1uεn · g1,εn = ∂1(uεn · g1,εn)− uεn · ∂1g1,εn .

From the definition of g1,εn , it follows that ∂1g1,εn = ∂1a1 +εnx3∂
2
11a3. Therefore,

∂1g1,εn ∈ [L∞(Ω)]3 can be written as

∂1g1,εn = c1,εng1,εn + c2,εng2,εn + c3,εna3,

where cα,εn = ∂1g1,εn ·gα,εn → cα in L∞(Ω), α = 1, 2, and c3,εn = ∂1g1,εn ·a3 → c3

in L∞(Ω) due to convergences (4.14), (4.18) and (4.19). Hence, uεn · ∂1g1,εn →

c1v1 + c2v2 in L∞(Ω). Together with the convergence ∂1uεn · g1,εn → 0 in Lp(Ω),

we get

∂1(uεn · g1,εn) = ∂1v1,εn → c1v1 + c2v2 in Lp(Ω).

Similarly, we show that also the remaining terms of Dvεn converge in Lp(Ω).

2. We show that {vεn}+∞
n=1 is convergent in [W 1,p(Ω)]3.

The Korn’s inequality (see Lemma 3.1) can be used in order to prove the

statement of this step. We already know that uεn → 0 in [L2(Γ)]3. Hence, also

vεn → 0 in [L2(Γ)]3. Together with the convergence of Dvεn we get

‖vεn − vεm‖1,p ≤ C̄(Ω, p)
(
‖Dvεn −Dvεm‖p + ‖vεn − vεm‖2,Γ

)
which implies the convergence of {vεn}+∞

n=1 in [W 1,p(Ω)]3.

3. To arrive at a contradiction, we prove that ‖v‖1,p = 1 and simultaneously

v = 0.
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From vεn → v in [W 1,p(Ω)]3 and ‖vεn‖1,p = 1, it stems that ‖v‖1,p = 1.

According to the definition of gα,εn , α = 1, 2, we know that ∂3gα,εn = εn∂αa3.

We can write

∂1uεn · εna3 + ∂3uεn · g1,εn = ∂1v3,εn + ∂3v1,εn − 2εnuεn · ∂1a3.

It holds that εnuεn · ∂1a3 = εn(d1,εnuεn · g1,εn + d2,εnuεn · g2,εn) → 0 in L∞(Ω),

where dα,εn = ∂1a3 · gα,εn → dα in L∞(Ω), α = 1,2, due to convergences (4.18),

(4.19) and the second step of this proof.

Due to ∂1uεn · εna3 + ∂3uεn · g1,εn → 0 and εnuεn · ∂1a3 → 0 in Lp(Ω), also

∂1v3,εn + ∂3v1,εn → 0 in Lp(Ω). In addition,∫
Ω

∂1v3,εnϕ dx = −
∫

Ω

εn(uεn · a3)∂1ϕ dx→ 0,

where ϕ ∈ D(Ω). Hence, both ∂1v3,εn → 0 and ∂3v1,εn → 0 in D∗(Ω). In addition

with respect to the results of the second step of this proof, we have ∂1v3,εn → 0

and ∂3v1,εn → 0 in Lp(Ω). Therefore, ∂3v1 = 0 almost everywhere. Similarly,

we can show that ∂3v2 = 0 almost everywhere. However, relation (4.33) gives us

vi(x1, x2, 0) = 0, i = 1,2, for all (x1,x2) ∈ S, which together with ∂3vi = 0 gives

us vi = 0 in Ω.

Let us remind that in the first part of this proof, we already showed that

v3 = 0. To sum it up, v = 0 in Ω and we arrive at a contradiction. �

4.4.2 Boundedness and weak limits

First, we make prior estimates. Equation (4.25) implies the conservation of

mass, i.e. ∫
Ω

ρε(t)
√
dεdx =

∫
Ω

ρ0,ε

√
dεdx, ∀t ∈ (0, T ).

Therefore due to assumptions of Theorem 4.3 (see section 4.5) on f̄ε, the first

integral on the right-hand side of the energy equality (4.29) can be estimated as
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follows∣∣∣∣∫ t

0

∫
Ω

ρεf̄ε · vε
√
dε dxds

∣∣∣∣ ≤ ∫ t

0

‖vε(s)‖∞‖f̄ε(s)‖∞
∫

Ω

ρε(s)
√
dε dxds

≤ C(ρ0,ε, f̄ε)

∫ t

0

‖vε(s)‖1,p ds.

In view of the Young’s inequality, property (1.3), inequality (4.32) and esti-

mate (4.23), we arrive at∣∣∣∣∫ t

0

∫
Ω

ρεf̄ε · vε dxds

∣∣∣∣ ≤ C

(
C1

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2dxds

+C1

∫ t

0

∫
S×{0}

|uε|2dSds+ C2(C1)

)
, (4.34)

where C1 > 0 can be made arbitrarily small.

Due to (1.3) and (4.34), we obtain from (4.29) the boundedness

{√ρε |uε|}ε∈(0,1) in L∞
(
0, T ;L2(Ω)

)
, (4.35)

{ρε}ε∈(0,1) in L∞ (0, T ;LΦ1(Ω)) , (4.36)

{ωε(uε)}ε∈(0,1) in [L̃M (Ω× (0, T ))]9, (4.37)

{vε}ε∈(0,1) in Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3) (4.38)

for any p > 3. From (4.38), we get the boundedness

{uε · gα,ε}ε∈(0,1) in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
, α = 1, 2. (4.39)

However, we do not have any information on the boundedness of {uε · a3}ε∈(0,1)

yet. Therefore, we prove that

uε · a3 → 0, in LM(Ω× (0, T )). (4.40)

Due to (4.37), we have the boundedness of ε−1∂3uε · a3 in L̃M(Ω × (0, T )). It

means that ∂3uε · a3 = ∂3(uε · a3)→ 0. In addition, it holds that

|(uε · a3)(x1, x2, x3)− (uε · a3)(x1, x2, 0)| =
∣∣∣∣∫ x3

0

∂3(uε · a3)(x1, x2, y) dy

∣∣∣∣ .
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According to the boundary conditions, we have

(uε · a3)(x1, x2, 0) = (uε · n)(x1, x2, 0) = 0.

Thus,

|(uε · a3)| ≤
∫ 1

0

|∂3(uε · a3)| dx3.

Multiplying this inequality by ε−1 and applying norm ‖·‖LM (Ω×(0,T )) lead to

∥∥ε−1(uε · a3)
∥∥
LM (Ω×(0,T ))

≤
∥∥∥∥∫ 1

0

ε−1∂3(uε · a3) dx3

∥∥∥∥
LM (Ω×(0,T ))

=

= sup
ψ1

∫ T

0

∫
Ω

∣∣∣∣∫ 1

0

ε−1∂3(uε · a3) dx3

∣∣∣∣ |ψ1| dx1dx2dy3dt ≤

≤ sup
ψ1

∫ T

0

∫
Ω

∫ 1

0

|ε−1∂3(uε · a3)| dx3 |ψ1| dx1dx2dy3dt =

= sup
ψ1

∫ 1

0

∫ T

0

∫
Ω

|ε−1∂3(uε · a3)||ψ1| dxdtdy3, (4.41)

where ψ1 = ψ1(x1, x2, y3) ∈ L̃N(Ω× (0, T )) satisfies

∫ T

0

∫
Ω

N(|ψ1|)dx1dx2dy3dt ≤ 1.

Next, we apply Hölder’s inequality to the last term in (4.41). It turns out that∥∥ε−1(uε · a3)
∥∥
LM (Ω×(0,T ))

≤

≤
∥∥ε−1∂3(uε · a3)

∥∥
LM (Ω×(0,T ))

sup
ψ1

∫ 1

0

‖ψ1‖LN (Ω×(0,T )) dy3 ≤

≤
∥∥ε−1∂3(uε · a3)

∥∥
LM (Ω×(0,T ))

sup
ψ1

∫ 1

0

(∫ T

0

∫
Ω

N(|ψ1|) dx1dx2dy3dt+ 1

)
dx3 ≤

≤ 2
∥∥ε−1∂3(uε · a3)

∥∥
LM (Ω×(0,T ))

≤ C1 ‖[ωε(uε)]33‖LM (Ω×(0,T )) ≤

≤ C1

∫ T

0

∫
Ω

M(|[ωε(uε)]33|) dxdt+ C1.
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Hence, we arrive at the boundedness of sequence

{ε−1(uε · a3)}ε∈(0,1) in LM(Ω× (0, T )). (4.42)

Therefore, the convergence (4.40) holds true.

The boundedness of {ρε}ε∈(0,1) in L∞(0, T ;LΦ1(Ω)) can be extended to the

space L∞(0, T ;LΦγ (Ω)). We remind that γ > 3 (see Theorem 4.3). We proceed

in the following way. First, we test the equation (4.27) by function ϕ = ϕ(t) ∈

C∞0 (0, T ) with b(z) = Φγ(z). We arrive at

T∫
0

∫
Ω

Φγ(ρε)ϕ
′(t)+

[(
Φγ(ρε)− ρεΦ′γ(ρε)

)
∇uε : RεEε

]
ϕ(t)

√
dε dxdt = 0. (4.43)

Function Φγ(z)−zΦ′γ(z) behaves assymptotically as Φγ−1(z). Furthermore, there

exists a positive constant C such that Φ1 (Φγ−1(z)) ≤ C (Φγ(z) + 1) for z ≥ 0

[26]. Due to equivalence of Young functions M and Ψ1, relations (1.3), (4.37)

and the Young’s inequality, we deduce the estimate∣∣∣∣∣∣
T∫

0

∫
Ω

[(
Φγ(ρε)− ρεΦ′γ(ρε)

)
∇uε : RεEε

]√
dε dxdt

∣∣∣∣∣∣ (4.44)

≤ C(T )

 T∫
0

∫
Ω

(
Φγ(ρε) + P (|ωε(uε)|) |ωε(uε)|2

)√
dε dxdt+ 1

 ,

where C(T ) > 0. With respect to (4.43), (4.44), (4.80) and the Gronwall’s lemma,

we obtain the boundedness of

{ρε}ε∈(0,1) in L∞(0, T ; L̃Φγ (Ω)). (4.45)

We focus on the boundedness of {∂tρε}ε∈(0,1) in the next step. Let us test

the equation (4.25) by function ϕ(x, t) = ϕ1(t)ψ(x), where ϕ1 ∈ Lp
′
(0, T ), 1/p+
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1/p′ = 1, p > 3, and ψ ∈ [W 1LΨγ−1(Ω)]3, γ > 3. We can write∣∣∣∣∫ T

0

ϕ′1

∫
Ω

ρεψ
√
dε dxdt

∣∣∣∣ =

∣∣∣∣∫ T

0

ϕ1

∫
Ω

ρεu
T
ε RεEε∇ψ

√
dε dxdt

∣∣∣∣ =

=

∣∣∣∣∫ T

0

ϕ1

∫
Ω

ρε

( [
(uε · g1,ε)g

1,ε + (uε · g2,ε)g
2,ε
]
·
(
g1,ε,g2,ε

)
∇̂ψ +

+ ε−1(uε · a3)∂3ψ
)√

dε dxdt
∣∣∣ , (4.46)

where ∇̂ψ = (∂1ψ, ∂2ψ)T. It is sufficient to estimate only the last term on the

right-hand side of (4.46), because it is ”the worst term”. It holds that∣∣∣∣∫ T

0

∫
Ω

ϕ1ρεε
−1(uε · a3)∂3ψ

√
dε dxdt

∣∣∣∣ ≤
≤
∥∥ε−1(uε · a3)

∥∥
LM (Ω×(0,T ))

‖ρεϕ1∂3ψ‖LN (Ω×(0,T )) ‖
√
dε‖∞,

where the first norm is bounded – see (4.42), and the second norm is less or equal

than ∫ T

0

∫
Ω

N(ρε|ϕ1||∂3ψ|) dxdt+ 1 ≤
∫ T

0

∫
Ω

|ϕ1||∂3ψ|N(ρε) dxdt+

+

∫ T

0

∫
Ω

ρε|∂3ψ|N(|ϕ1|) dxdt+

∫ T

0

∫
Ω

ρε|ϕ1|N(|∂3ψ|) dxdt+ C. (4.47)

Subsequently, the three integrals on the right-hand side of (4.47) can be estimated

as follows:∫ T

0

∫
Ω

|ϕ1||∂3ψ|N(ρε) dxdt ≤ C1

∫ T

0

|ϕ1|
(∫

Ω

Φγ(ρε) + Ψγ−1(|∂3ψ|) dx

)
dt ≤

≤ C1 ‖ϕ1‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ−1(|∂3ψ|) dx

)
,

∫ T

0

∫
Ω

ρε|∂3ψ|N(|ϕ1|) dxdt ≤ C2

∫ T

0

N(|ϕ1|)
(∫

Ω

Φγ(ρε) + Ψγ(|∂3ψ|)dx
)

dt ≤

≤ C3 ‖N(|ϕ1|)‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ(|∂3ψ|) dx

)
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and∫ T

0

∫
Ω

ρε|ϕ1|N(|∂3ψ|) dxdt ≤ C3

∫ T

0

|ϕ1|
(∫

Ω

Φγ(ρε) + Ψγ′(|∂3ψ|) dx

)
dt ≤

≤ C3 ‖ϕ1‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ′(|∂3ψ|) dx

)
,

where γ > γ′ ≥ γ − 1.

Finally, we conclude that (4.37), (4.39), (4.42) and (4.45) lead to the bound-

edness of

{∂tρε}ε∈(0,1) in Lp
′ (

0, T ; [W 1LΦγ−1(Ω)]∗
)
. (4.48)

By the use of (4.14), (4.36)-(4.38), (4.45), (4.48) and theorem on compact

embedding [23], we get (passing to subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
, (4.49)

ρε → ρ in C
(
〈0, T 〉 ; [W 1LΦγ (Ω)]∗

)
, (4.50)

ωε(uε)
N
⇀ ζ (4.51)

uε · gα,ε ⇀ u · aα in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
,

α = 1, 2. (4.52)

Concerning the third projection of uε into the covariant basis, convergence

uε · a3 → u · a3 = 0 in LM(Ω× (0, T )) (4.53)

holds true due to (4.42).

From the definition of ωε(uε), we can see that

ζ = RT

 ∂1u · a1
1
2

(∂1u · a2 + ∂2u · a1) ζ13

· ∂2u · a2 ζ23

sym · ζ33

R. (4.54)

We prove that the limiting function u does not depend on the third spa-

tial variable. From (4.37), we know that {ε−1 (∂1uε · εa3 + ∂3uε · g1,ε)}ε∈(0,1) is

bounded in L̃M(Ω× (0, T )). It holds that

ε−1 (∂1uε · εa3 + ∂3uε · g1,ε) = ∂1(uε · a3) + ε−1∂3(uε · g1,ε)− 2uε · ∂1a3.
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After multiplying this equation by ε and by a test function ϕ ∈ D(Ω), and

integrating over Ω, we get∫
Ω

∂3(uε · g1,ε)ϕ dx = ε

∫
Ω

ε−1 (∂1uε · εa3 + ∂3uε · g1,ε)ϕ dx

+ε

∫
Ω

(2uε · ∂1a3 − ∂1(uε · a3))ϕ dx.

Therefore, the following estimate holds true∣∣∣∣∫
Ω

(uε · g1,ε)∂3ϕ dx

∣∣∣∣ ≤ ε

∣∣∣∣∫
Ω

ε−1 (∂1uε · εa3 + ∂3uε · g1,ε)ϕ dx

∣∣∣∣
+ε

∣∣∣∣∫
Ω

(uε · a3)∂1ϕ dx

∣∣∣∣+ 2ε

∣∣∣∣∫
Ω

(uε · ∂1a3)ϕ dx

∣∣∣∣ . (4.55)

With respect to (4.37), (4.39) and (4.40), the right-hand side of inequal-

ity (4.55) tends to zero for ε→ 0. Finally, we have∣∣∣∣∫
Ω

(u · a1)∂3ϕ dx

∣∣∣∣ = 0,

and thus ∂3(u · a1) = 0 almost everywhere.

Similarly, we can conclude that ∂3(u ·a2) = 0 almost everywhere. In summary

and together with (4.40), we arrive at

∂3u = 0, (4.56)

almost everywhere, which means that u is independent of x3.

As the next step, we pay our attention to convergences of nonlinear terms in

equation (4.26). Convergences (passing to subsequences if necessary)

ρε(uε · gα,ε)
Ψγ
⇀ ρ(u · aα), α = 1, 2, (4.57)

ρε(uε · a3) → ρ(u · a3) = 0, in LΦγ−1(Ω× (0, T )), (4.58)

where γ > 3 (see Theorem 4.3 in section 4.5), are immediate consequences of

(4.40), (4.50), (4.52) and theorem concerning compact embedding [23].
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We prove convergences (4.57) in two steps. The first step concerns the bound-

edness of {ρε(uε · gα,ε)}ε∈(0,1) in LΦγ (Ω× (0, T )). Since it holds that

‖ρε(uε · gα,ε)‖LΦγ (Ω×(0,T )) ≤
∫ T

0

∫
Ω

Φγ(ρε|uε · gα,ε|) dxdt+ C1 ≤

≤ C2

∫ T

0

∫
Ω

|uε · gα,ε|Φγ(ρε) dxdt+ C2

∫ T

0

∫
Ω

ρεΦγ(|uε · gα,ε|) dxdt+ C3 ≤

≤ C2 ‖uε · gα,ε‖Lp(0,T ;L∞(Ω))

∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

+C4

∫ T

0

∫
Ω

ρε|uε · gα,ε|2 dxdt+ C5,

where the second term on the right-hand side is less or equal than

C6 ‖ρε‖L∞(0,T ;L1(Ω) ‖uε · gα,ε‖
2
Lp(0,T ;L∞(Ω) ,

we arrive at (passing to subsequences if necessary) ρε(uε · gα,ε)
Ψγ
⇀ ρ(u · aα),

α = 1, 2.

In the second step, we show that ρε(uε ·gα,ε) converges to ρ(u ·aα), for ε→ 0,

in the sense of distributions. We begin with∫ T

0

∫
Ω

(ρε(uε · gα,ε)− ρ(u · aα))ϕ dxdt =

∫ T

0

∫
Ω

(ρε − ρ)(uε · gα,ε)ϕ dxdt−

−
∫ T

0

∫
Ω

ρ ((uε · gα,ε)− (u · aα))ϕ dxdt, (4.59)

where ϕ ∈ D(Ω × (0, T )). Since strong convergence (4.50) implies convergence

ρε → ρ in C(〈0, T 〉; [W 1,p(Ω)]∗) and convergences (4.52) hold, the right-hand side

of (4.59) tends to zero for ε→ 0. This concludes the proof of convergences (4.57).

In the following, we demonstrate that also convergence (4.58) holds true.

According to the Hölder’s inequality, we can start with

‖ρε(uε · a3)‖LΦγ−1
(Ω×(0,T )) = sup

ϕ

∫ T

0

∫
Ω

|ρε(uε · a3)ϕ| dxdt ≤

≤ ‖uε · a3‖LM (Ω×(0,T )) sup
ϕ
‖ρεϕ‖LN (Ω×(0,T )) ,
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where the supremum is taken over all functions ϕ ∈ L̃Ψγ−1(Ω× (0, T )) such that

∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt ≤ 1.

From (4.40), we know that ‖uε · a3‖LM (Ω×(0,T )) → 0. Therefore, it is sufficient to

show the boundedness of ‖ρεϕ‖LN (Ω×(0,T )) for proving (4.58). The equivalence of

Orlicz spaces LN and LΦ1 (see Lemma 2.30), and the Young’s inequality gives us

‖ρεϕ‖LN (Ω×(0,T )) ≤
∫ T

0

∫
Ω

Φ1(ρε|ϕ|) dxdt+ C ≤

≤
∫ T

0

∫
Ω

ρεΦ1(|ϕ|) dxdt+

∫ T

0

∫
Ω

|ϕ|Φ1(ρε) dxdt+ C. (4.60)

Subsequently due to the Young’s inequality, the first integral on the right-hand

side of (4.60) is less or equal than

∫ T

0

∫
Ω

Φγ(ρε) dxdt+

∫ T

0

∫
Ω

Ψγ(Φ1(|ϕ|)) dxdt ≤

≤
∫ T

0

∫
Ω

Φγ(ρε) dxdt+ C1

∫ T

0

∫
Ω

Ψγ′(|ϕ|) dxdt+ C2,

where γ > γ′ ≥ γ− 1. The second integral on the right-hand side of (4.60) is less

or equal than

∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt+

∫ T

0

∫
Ω

Φγ−1(Φ1(ρε)) dxdt ≤

≤
∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt+ C

∫ T

0

∫
Ω

Φγ(ρε) dxdt.

Hence, we conclude that convergence (4.58) holds true.

To overcome the second term on the left-hand side in equation (4.26), some

sort of strong convergence of ρε(uε · gα,ε) is needed. We consider ”the worst

integrals” in (4.26) and prove their boundedness. First, we show that from (4.39),
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(4.40) and (4.45) follow the boundedness of∫ T

0

∫
Ω

ρεuε ⊗ uε : ωε(ψ)
√
dε dxdt (4.61)

for any ε ∈ (0, 1) and test function ψ such that ψ · n|∂Ω×(0,T ) = 0. Let us use

formulas (4.21) and (4.22), and perform the following reasoning:

uε ⊗ uε : ωε(ψ) = ui,εuj,ε [ω̄ε(ψ)]lk [rk,ε]i[r
l,ε]j =

= (uε · rk,ε)(uε · rl,ε) [ω̄ε(ψ)]lk . (4.62)

We remark that g1,ε and g2,ε determines the same plane as g1,ε and g2,ε (the

normal vector of this plane is a3). Therefore, the boundedness of sequences

{uε · gα,ε}ε∈(0,1) in Lp (0, T ;W 1,p(Ω))∩L2 (0, T ;L2(∂Ω)) implies the boundedness

of {uε · gα,ε}ε∈(0,1) in the same space, for α = 1, 2.

There are three types of terms in (4.62) and we analyze them one by one.

Since rα,ε = gα,ε, for α = 1, 2, and r3,ε = a3, we can write:

(a) ρε(uε · gα,ε)(uε · gβ,ε)[ω̄ε(ψ)]αβ, α, β = 1, 2

Let us assume that ψ ∈ Lq(0, T ; [W 1LΨγ (Ω)]3), where 2/p+ 1/q = 1, γ > 3. The

estimate is performed directly as follows:∣∣∣∣∫ T

0

∫
Ω

ρε(uε · gα,ε)(uε · gβ,ε)[ω̄ε(ψ)]αβ
√
dε dxdt

∣∣∣∣ ≤
≤ ‖ρε‖L∞(0,T ;LΦγ (Ω)) ‖uε · g

α,ε‖Lp(0,T ;L∞(Ω))

∥∥uε · gβ,ε∥∥Lp(0,T ;L∞(Ω))

‖ψ‖Lq(0,T ;[W 1LΨγ (Ω)]3) ‖
√
dε‖∞.

(b) ρε(uε · gα,ε)(uε · a3)[ω̄ε(ψ)]α3, α = 1, 2

We denote ε−1ϕ(t)ψ̄(x) = [ω̄ε(ψ(x, t))]α3 for convenience, where ϕ ∈ Lq(0, T ),

2/p+ 1/q = 1, and ψ̄ ∈ [EΨγ−1(Ω)]9. From Hölder’s inequality, we get∣∣∣∣∫ T

0

∫
Ω

ρε(uε · gα,ε)(uε · a3)ε−1ϕψ̄
√
dε dxdt

∣∣∣∣ ≤
≤ ‖
√
dε‖∞‖ε−1(uε · a3)‖LM (Ω×(0,T ))‖ρε(uε · gα,ε)ϕψ̄‖LN (Ω×(0,T )),
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where (4.42) gives us the boundedness of ‖ε−1(uε · a3)‖LM (Ω×(0,T )) and

‖ρε(uε · gα,ε)ϕψ̄‖LN (Ω×(0,T )) ≤
∫ T

0

∫
Ω

Φ1(ρε|uε · gα,ε||ϕ||ψ̄|) dxdt+ C1 ≤

≤
∫ T

0

∫
Ω

|uε · gα,ε||ϕ||ψ̄|Φ1(ρε) dxdt+

∫ T

0

∫
Ω

ρε|ϕ||ψ̄|Φ1(|uε · gα,ε|) dxdt+

+

∫ T

0

∫
Ω

ρε|uε · gα,ε|Φ1(|ϕ||ψ̄|) dxdt+ C2. (4.63)

Further, we estimate the three integrals on the right-hand side of relation (4.63)

as follows:∫ T

0

|ϕ|
∫

Ω

|uε · gα,ε||ψ̄|Φ1(ρε) dxdt ≤

≤
∫ T

0

|ϕ|‖(uε · gα,ε)‖∞
(∫

Ω

|ψ̄|Φ1(ρε) dx

)
dt ≤

≤ C3

∫ T

0

|ϕ|‖(uε · gα,ε)‖∞
(∫

Ω

Φγ(ρε) dx+

∫
Ω

Ψγ−1(|ψ̄|) dx+ C4

)
dt ≤

≤ C3

(
‖ϕ‖Lp′ (0,T ) + ‖uε · gα,ε‖Lp(0,T ;L∞(Ω))

)(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

+

∫
Ω

Ψγ−1(|ψ̄|) dx+ C4

)
,

where 1/p+ 1/p′ = 1 (and thus p′ < q),
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∫ T

0

∫
Ω

ρε|ϕ||ψ̄|Φ1(|uε · gα,ε|) dxdt ≤

≤
∫ T

0

|ϕ|Φ1(‖uε · gα,ε‖∞)

(∫
Ω

ρε|ψ̄| dx

)
dt ≤

≤
∫ T

0

|ϕ|Φ1(‖uε · gα,ε‖∞)

(∫
Ω

Φγ(ρε) + Ψγ(|ψ̄|) dx

)
dt ≤

≤
∫ T

0

|ϕ|
(
‖uε · gα,ε‖2

∞ + C
)(∫

Ω

Φγ(ρε) + Ψγ(|ψ̄|) dx

)
dt ≤

≤ ‖ϕ‖Lq(0,T )

(
‖uε · gα,ε‖2

Lp(0,T ;L∞(Ω)) + C
)(∥∥∥∥∫

Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

+

∫
Ω

Ψγ(|ψ̄|) dx

)
,

∫ T

0

∫
Ω

|uε · gα,ε|ρεΦ1(|ϕ||ψ̄|) dxdt ≤

≤
∫ T

0

‖(uε · gα,ε)‖∞
(∫

Ω

ρεΦ1(|ϕ||ψ̄|) dx

)
dt ≤

≤
∫ T

0

‖(uε · gα,ε)‖∞
(∫

Ω

ρε|ϕ|Φ1(|ψ̄|) + ρε|ψ̄|Φ1(|ϕ|) dx

)
dt+ C.

We conclude this part by estimating

∫ T

0

|ϕ|‖(uε · gα,ε)‖∞
(∫

Ω

ρεΦ1(|ψ̄|) dx

)
dt ≤

≤ C1

∫ T

0

|ϕ|‖(uε · gα,ε)‖∞
(∫

Ω

Φγ(ρε) + Ψγ′(|ψ̄|) dx+ C2

)
dt ≤

≤ C1‖ϕ‖Lp′ (0,T )‖uε · gα,ε‖Lp(0,T ;L∞(Ω))

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

+

∫
Ω

Ψγ′(|ψ̄|) dx+ C2

)
,
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with γ > γ′ ≥ γ − 1 and 1/p+ 1/p′ = 1, and

∫ T

0

Φ1(|ϕ|)‖(uε · gα,ε)‖∞
(∫

Ω

ρε|ψ̄| dx

)
dt ≤

≤
∫ T

0

(|ϕ|2 + C)‖(uε · gα,ε)‖∞
(∫

Ω

Φγ(ρε) + Ψγ(|ψ̄|) dx

)
dt ≤

≤
(
‖ϕ‖2

Lq(0,T )‖uε · gα,ε‖Lp(0,T ;L∞(Ω)) + C‖uε · gα,ε‖L1(0,T ;L∞(Ω))

)
(∥∥∥∥∫

Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ(|ψ̄|) dx

)
,

(c) ρε(uε · a3)2[ω̄ε(ψ)]33

For convenience, let us denote ε−1ϕ(t)ψ̄(x) = [ω̄ε(ψ(x, t))]33, where ϕ ∈ Lq(0, T ),

2/p+ 1/q = 1, and ψ̄ ∈ [EΨγ−2(Ω)]9. By the use of Hölder’s inequality, we get

∣∣∣∣∫ T

0

∫
Ω

ρε(uε · a3)2ε−1ϕψ̄
√
dε dxdt

∣∣∣∣ ≤
≤ ‖
√
dε‖∞‖ε−1(uε · a3)2‖LΨ2

(Ω×(0,T ))‖ρεϕψ̄‖LΦ2
(Ω×(0,T )).

Let us remark that M and Ψ1 are equivalent Young functions (see Lemma 2.30),

and Ψ2(z2) ∼ Ψ1(z). Thus, the norm ‖ε−1(uε · a3)2‖LΨ2
(Ω×(0,T )) tends to zero,

for ε → 0, due to convergence (4.40) and boundedness (4.42). We estimate the

remaining norm ‖ρεϕψ̄‖LΦ2
(Ω×(0,T )) in the following way:

‖ρεϕψ̄‖LΦ2
(Ω×(0,T )) ≤

∫ T

0

∫
Ω

Φ2(ρε|ϕ||ψ̄|) dxdt+ C1 ≤

≤
∫ T

0

∫
Ω

|ϕ||ψ̄|Φ2(ρε) dxdt+

∫ T

0

∫
Ω

ρεΦ2(|ϕ||ψ̄|) dxdt+

+2

∫ T

0

∫
Ω

Φ1(ρε)Φ1(|ϕ||ψ̄|) dxdt+ C2,

where
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∫ T

0

∫
Ω

|ϕ||ψ̄|Φ2(ρε) dxdt ≤

≤ C

∫ T

0

|ϕ|
(∫

Ω

Φγ(ρε) + Ψγ−2(|ψ̄|) dx

)
dt ≤

≤ C‖ϕ‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ−2(|ψ̄|) dx

)
,

∫ T

0

∫
Ω

ρεΦ2(|ϕ||ψ̄|) dxdt ≤
∫ T

0

|ϕ|
(∫

Ω

ρεΦ2(|ψ̄|) dx

)
dt+

+

∫ T

0

Φ2(|ϕ|)
(∫

Ω

ρε|ψ̄| dx

)
dt+ 2

∫ T

0

Φ1(|ϕ|)
(∫

Ω

ρεΦ1(|ψ̄|) dx

)
dt+ C ≤

≤ C1

∫ T

0

|ϕ|
(∫

Ω

Φγ(ρε) + Ψγ′(|ψ̄|) dx

)
dt+

+

∫ T

0

Φ2(|ϕ|)
(∫

Ω

Φγ(ρε) + Ψγ(|ψ̄|) dx

)
dt+

+C2

∫ T

0

Φ1(|ϕ|)
(∫

Ω

Φγ(ρε) + Ψγ′(|ψ̄|) dx

)
dt+ C ≤

≤ C1‖ϕ‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ′(|ψ̄|) dx

)
+

+‖Φ2(|ϕ|)‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ(|ψ̄|) dx

)
+

+C2‖Φ1(|ϕ|)‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ′(|ψ̄|) dx

)
+ C,

with γ > γ′ ≥ γ − 2, and
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∫ T

0

∫
Ω

Φ1(ρε)Φ1(|ϕ||ψ̄|) dxdt ≤

≤
∫ T

0

|ϕ|
(∫

Ω

Φ1(ρε)Φ1(|ψ̄|) dx

)
dt+

+

∫ T

0

Φ1(|ϕ|)
(∫

Ω

Φ1(ρε)|ψ̄| dx

)
dt+ C ≤

≤ C1

∫ T

0

|ϕ|
(∫

Ω

Φγ(ρε) + Ψγ′(|ψ̄|) dx

)
dt+

+C2

∫ T

0

Φ1(|ϕ|)
(∫

Ω

Φγ(ρε) + Ψγ−1(|ψ̄|) dx

)
dt+ C ≤

≤ C1‖ϕ‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ′(|ψ̄|) dx

)
+

+C2‖Φ1(|ϕ|)‖L1(0,T )

(∥∥∥∥∫
Ω

Φγ(ρε) dx

∥∥∥∥
L∞(0,T )

+

∫
Ω

Ψγ−1(|ψ̄|) dx

)
+ C,

where γ − 1 > γ′ ≥ γ − 2.

We conclude that the integral (4.61) is bounded for any ε ∈ (0, 1) and ψ such

that ψ ·n|∂Ω×(0,T ) = 0, ϕ ∈ Lq(0, T ) and ψ̄ ∈ [EΨγ−2(Ω)]9. Subsequently, we show

that also ∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ωε(ψ)
√
dε dxdt (4.64)

is bounded for any ε ∈ (0, 1) and ψ(x, t) = ϕ(t)ψ̄(x), ψ · n|∂Ω×(0,T ) = 0, where

ϕ ∈ EΨ1/α
(0, T ), α > 2, and ψ̄ ∈ [W 1EΨ1/2

(Ω)]3, ∂3ψ̄ = 0. We remark that

ωε(ψ̄) = RT
ε

 ∂1ψ̄ · g1,ε
1
2

(
∂1ψ̄ · g2,ε + ∂2ψ̄ · g1,ε

)
1
2

(
∂1ψ̄ · a3

)
· ∂2ψ̄ · g2,ε

1
2

(
∂2ψ̄ · a3

)
sym · 0

Rε,

which is bounded for ε → 0 in [EΨ1/2
(Ω)]9. Due to Young’s inequality, it holds
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that ∣∣∣∣∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ωε(ψ̄)ϕ
√
dε dxdt

∣∣∣∣ ≤
≤ ‖
√
dε‖∞

(
|Ω|
∫ T

0

Ψ1/α(|ϕ|) dt+

∫ T

0

∫
Ω

Φ1/α

(
P (|ωε(uε)|)|ωε(uε)||ωε(ψ̄)|

)
dxdt

)
, (4.65)

where α > 2. For simplicity, we denote wε = P (|ωε(uε)|)|ωε(uε)|. It follows

from Jensen’s inequality and estimate (3.46) that wε ∈ LΦ1(Ω × (0, T )) implies

wε ∈ LΦ(α−1)/α
(0, T ;LΦ1/α

(Ω)). Therefore, the second term on the right-hand side

of (4.65) is less or equal than

∫ T

0

∫
Ω

|ωε(ψ̄)|Φ1/α(wε) + wεΦ1/α(|ωε(ψ̄)|) dxdt+ C1 ≤

≤
∫ T

0

∫
Ω

Φ(α−1)/α(Φ1/α(wε)) + Ψ(α−1)/α(|ωε(ψ̄)|) +

+Φ1(wε) + Ψ1(Φ1/α(|ωε(ψ̄)|)) dxdt+ C1 ≤

≤ 3

∫ T

0

∫
Ω

Φ1 (P (|ωε(uε)|)|ωε(uε)|) dxdt+

+

∫ T

0

∫
Ω

Ψ(α−1)/α

(
|ωε(ψ̄)|

)
dxdt+

∫ T

0

∫
Ω

Ψ1/2

(
|ωε(ψ̄)|

)
dxdt+ C2,

where α > 2. Due to property (1.6), we conclude that integral (4.64) is bounded.

Terms (4.61) and (4.64) represent ”the worst integrals” in (4.26). Thus,

we omit the estimates of the others and take ψ(x, t) = ϕ(t)ψ̄(x) satisfying

ψ · n|∂Ω×(0,T ) = 0, where ϕ ∈ EΨ1/α
(0, T ), α > 2, and ψ̄ ∈ [W 1EΨ1/2

(Ω)]3,

∂3ψ̄ = 0, as a test function.

By the use of estimates (4.61) and (4.64), we demonstrate how to perform a

limit passage in the second term on the left-hand side of equation (4.26). Let us

test the equation (4.26) by function ψ(x, t) = ψ̄(x)ϕ(t), where ϕ ∈ C∞0 (0, T ) and
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ψ̄ ∈ [W 1EΨ1/2
(Ω)]3, ∂3ψ̄ = 0, ψ̄ · a2 = 0, ψ̄ · a3 = 0 (to control term ∇ψ̄ : RεEε)

and ψ̄ · n|∂Ω = 0. Since

ψ̄ = (ψ̄ · a1)a1 + (ψ̄ · a2)a2 + (ψ̄ · a3)a3 = (ψ̄ · a1)a1,

we get

∣∣∣∣∫ T

0

ϕ′
∫

Ω

ρε((uε · g1,ε)g
1,ε + (uε · g2,ε)g

2,ε) · ψ̄
√
dε dxdt

∣∣∣∣ ≤
≤
∫ T

0

|ϕ|
∫

Ω

(
|ρεuε ⊗ uε : ωε(ψ̄)|+ |ρε∇ψ̄ : RεEε|+

+|P (|ωε(uε)|)ωε(uε) : ωε(ψ̄)|+ |ρεfε · ψ̄|
)√

dε dxdt+

+q

∫ T

0

|ϕ|
∫

Γ1

|uε · ψ̄||RεEεn|
√
dε dΓdt+

h(ε)

ε

∫ T

0

|ϕ|
∫

Γ2

|uε · ψ̄|
√
dε dΓdt, (4.66)

where

ρε
(
(uε · g1,ε)g

1,ε + (uε · g2,ε)g
2,ε
)
· ψ̄ =

ρε
(
(uε · g1,ε)g

1,ε + (uε · g2,ε)g
2,ε
)
·
(
(ψ̄ · a1)g1,ε − (ψ̄ · a1)εx3∂1a3

)
=

= ρε(uε · g1,ε)g
1,ε · ψ̄ − ερε(uε · g2,ε)(x3g

2,ε · ∂1a3)a1 · ψ̄ =

=
(
ρε(uε · g1,ε)g

1,ε − εz1,ε

)
· ψ̄,

with z1,ε = ρε(uε · g2,ε)(x3g
2,ε · ∂1a3)a1. The boundedness of {z1,ε}ε∈(0,1) in

Lp(0, T ; [LΦγ (Ω)]3) follows from convergences (4.14), (4.18) and (4.19), and from

boundedness (4.38) and (4.45). Therefore,

εz1,ε → 0 in Lp(0, T ; [LΦγ (Ω)]3), (4.67)

and thus also in [LΦγ (Ω× (0, T ))]3.

Considering the density of C∞0 (0, T ) in EΨ1/2
(0, T ), embedding LΨ1/α

(0, T )

↪→ EΨ1/2
(0, T ) ⊂ L̃Ψ1/2

(0, T ), α > 2, and the boundedness of all terms on the
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right-hand side of the inequality (4.66) – see (4.61) and (4.64), we deduce the

boundedness of

{∂t
∫ 1

0

(
ρε(uε · g1,ε)g

1,ε − εz1,ε

)√
dε dx3}ε∈(0,1)

in LΦ1/α
(0, T ; ([W 1LΨ1/2

(S)]∗)3), α > 2. (4.68)

Similarly, testing the equation (4.26) by function ψ(x, t) = ψ̄(x)ϕ(t), where

ϕ ∈ C∞0 (0, T ) and ψ̄ ∈ [W 1EΨ1/2
(Ω)]3, ∂3ψ̄ = 0, ψ̄ · a1 = 0, ψ̄ · a3 = 0 and

ψ̄ · n|∂Ω = 0, leads to the boundedness of

{∂t
∫ 1

0

(
ρε(uε · g2,ε)g

2,ε − εz2,ε

)√
dε dx3}ε∈(0,1)

in LΦ1/α
(0, T ; ([W 1LΨ1/2

(S)]∗)3), α > 2 (4.69)

where z2,ε = ρε(uε · g1,ε)(x3g
1,ε · ∂2a3)a2.

Similarly as convergence (4.50), we get (passing to subsequences if necessary)

∫ 1

0

(ρε(uε · gα,ε)gα,ε − εzα,ε)
√
dε dx3 →

∫ 1

0

ρ(u · aα)aα
√
d dx3

in C
(
〈0, T 〉 ; ([W 1LΨ1(S)]∗)3

)
, α = 1, 2 (4.70)

by the use of (4.14), (4.18), (4.19), (4.57), (4.68), (4.69) and theorem concerning

compact embedding [23].

In order to perform a limit passage in the second term on the left-hand side

of equation (4.26), we prove the following lemma.

Lemma 4.2. Let us denote vε = (uε·g1,ε,uε·g2,ε,uε·εa3). Assume that {uε}ε∈(0,1)

satisfies condition (4.37) and {vε}ε∈(0,1) satisfies condition (4.38). Then for any

p > 3 (passing to a subsequence if necessary), it holds that

‖vα,ε −
∫ 1

0

vα,ε dx3‖Lp(0,T ;L∞(Ω)) → 0, for ε→ 0 and α = 1, 2. (4.71)
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Proof: We prove the assertion by a contradiction. Let us suppose the existence

of fixed p > 3 with a positive constant c1 and {εn}+∞
n=1 tending to zero such that

‖vα,εn −
∫ 1

0

vα,εn dx3‖Lp(0,T ;L∞(Ω)) ≥ c1 > 0, ∀n ∈ N. (4.72)

Obviously, there exist a nonempty set Iεn,c1 ⊂ (0, T ) and fixed δ > 0 sufficiently

small such that

‖vα,εn(t)−
∫ 1

0

vα,εn(t) dx3‖∞ ≥
c1

(1 + δ)T 1/p
, for almost all t ∈ Iεn,c1 . (4.73)

We will arrive at a contradiction in several steps. At the beginning of each

step, we emphasize a statement which is proven within a particular step. Finally,

the statements are used to demonstrate that there is a contradiction.

(i) There exists a positive constant c2 = c2(c1) such that |Iεn,c1| ≥ c2 > 0, for

all n ∈ N.

If not, then (passing to a subsequence if necessary) |Iεn,c1| → 0 for εn tending to

zero. Let us consider q ∈ R such that q > p. Due to the boundedness of {vεn}+∞
n=1

in Lq(0, T ; [W 1,p(Ω)]3), for any q > p, the following inequality contradicts the

relation (4.72):

‖vα,εn −
∫ 1

0

vα,εn dx3‖Lp(0,T ;L∞(Ω)) =

= p

√√√√ ∫
(0,T )\Iεn,c1

‖vα,εn(t)−
∫ 1

0

vα,εn(t) dx3‖p∞ dt+

∫
Iεn,c1

‖ · ‖p∞ dt <

<
c1

1 + δ
+ ‖vα,εn −

∫ 1

0

vα,εn dx3‖pLq(0,T ;L∞(Ω))|Iεn,c1|
q−p
q

n→+∞−→ c1

1 + δ
< c1.

(ii) We show that there exist a nonempty set Jεn,c3 ⊂ (0, T ), for c3 > 0 large

enough, such that the following inequality holds

‖vα,εn(t)‖2,∂Ω + ‖D12vεn(t)‖p ≤ c3, for almost all t ∈ Jεn,c3 , (4.74)

where D12vεn is 2 × 2 submatrix of Dvεn constituted of the first two rows

and columns.
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If not, then without the loss of generality there exists a sequence {c3(n, t)}+∞
n=1,

c3(n, t)→ +∞, for almost all t ∈ (0, T ), such that

‖vα,εn(t)‖2,∂Ω + ‖D12vεn(t)‖p > c3(n, t),

which would be a contradiction with the boundedness of {vεn}+∞
n=1 – see condi-

tion (4.38).

(iii) It holds that supn∈N |(0, T ) \ Jεn,c3 | → 0 for c3 → +∞.

If not, then there exist a sequence {c3(m)}+∞
m=1, c3(m) → +∞, and a positive

constant K1 such that supn∈N |(0, T ) \ Jεn,c3(m)| ≥ K1 > 0, ∀c3(m) ≥ c3(m0),

m0 ∈ N. It implies (passing to a subsequence of {εn}+∞
n=1 if necessary)

‖vα,εn(t)‖2,∂Ω + ‖D12vεn(t)‖p > c3(m), for almost all t ∈ (0, T ) \ Jεn,c3(m),

where n = n(m), and we would get a contradiction with the boundedness of

sequence {vεn}+∞
n=1 – see condition (4.38).

(iv) For convenience, we simplify the notation vα,εn = vα,εn(t) ∈ W 1,p(Ω). We

justify that

‖D3vεn‖p + ‖v3,εn‖2,∂Ω → 0, for almost all t ∈ (0, T ), (4.75)

where

D3vεn =

 0 0 1
2

(∂1v3,εn + ∂3v1,εn)
· 0 1

2
(∂2v3,εn + ∂3v2,εn)

sym · ∂3v3,εn

 .

Comparing D3vεn and term (4.22), the statement of this step follows from defi-

nitions of vεn and D3vεn , and boundedness (4.37), (4.38) and (4.42).

(v) According to part (iii), supn∈N |Iεn,c1 \Jεn,c3| tends to zero for any c1 and c3

approaching +∞ as Iεn,c1 ⊂ (0, T ). Therefore, we get Iεn,c1 ∩ Jεn,c3 → Iεn,c1

for c3 → +∞. Hence, we can assume that both conditions (4.73) and (4.74)

hold for almost all t ∈ Iεn,c1 . We prove that

‖vα,εn(t)−
∫ 1

0

vα,εn(t) dx3‖∞ ≤ c(‖D3vεn(t)‖p + ‖v3,εn(t)‖2,∂Ω), (4.76)

81



for almost all t ∈ Iεn,c1 , where c = c(c1, c3) > 0. For simplicity, we denote

vα,εn = vα,εn(t) ∈ W 1,p(Ω) again.

There are two options for the behavior of ‖vα,εn −
∫ 1

0
vα,εn dx3‖∞. First, let us

assume that

‖vα,εn −
∫ 1

0

vα,εn dx3‖∞ → +∞, for n→ +∞.

For contradiction with (4.76), we further suppose that

cεn = ‖vα,εn −
∫ 1

0

vα,εn dx3‖∞ > n(‖D3vεn‖p, + ‖v3,εn‖2,∂Ω).

Dividing this inequality by cεn leads to

1 = ‖wα,εn −
∫ 1

0

wα,εn dx3‖∞ > n(‖D3wεn‖p + ‖w3,εn‖2,∂Ω),

where wεn = c−1
εn vεn . We divide also (4.74) by cεn and get the convergences

Dwεn → 0 in Lp(Ω) and wα,εn → 0 in L2(∂Ω). From the Korn’s inequality

(see Lemma 4.30), we conclude that wα,εn → 0 in W 1,p(Ω) (and also in L∞(Ω)

from the compact embedding), which is a contradiction with the unit norm of

wα,εn −
∫ 1

0
wα,εn dx3.

Second, let us suppose that

‖vα,εn −
∫ 1

0

vα,εn dx3‖∞ ≤ K < +∞, ∀n ∈ N.

For contradiction with (4.76), we further assume that

K ≥ ‖vα,εn −
∫ 1

0

vα,εn dx3‖∞ > n(‖D3vεn‖p + ‖v3,εn‖2,∂Ω). (4.77)

Considering inequalities (4.74), (4.77) and classical Korn’s inequality, we arrive

at the boundedness of {‖vα,εn‖1,p}+∞
n=1. Therefore (passing to a subsequence if

necessary), it follows from the compact embedding that vα,εn → vα in L∞(Ω).
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Due to (4.75), ∂3v3,εn → 0 in Lp(Ω) which together with the convergence

v3,εn → 0 in L2(∂Ω), gives us v3,εn → 0 in Lp(Ω) (we remind that Ω = S ×

(0, 1)). Hence, ∂αv3,εn → 0 in D∗(Ω) and also ∂3vα,εn → 0 in D∗(Ω) due to the

convergence (4.75). To conclude, ∂3vα,εn → 0 in D∗(Ω) implies vα =
∫ 1

0
vαdx3

which contradicts the inequality (4.73).

(vi) There is a contradiction.

Since convergence (4.75) and inequality (4.76) holds (see steps (iv) and (v)), we

arrive at a contradiction with inequality (4.73). It means that the statement of

this lemma holds true. �

Let us remind that vε = (uε · g1,ε,uε · g2,ε,uε · εa3). We apply Lemma 4.2 in

the following way. First, it holds that∫ T

0

∫
S

∫ 1

0

ρεvα,εvβ,εg
αβ,εψ

√
dε dx3dx̂dt =

=

∫ T

0

∫
S

∫ 1

0

ρεvα,ε(vβ,ε −
∫ 1

0

vβ,εdx3)gαβ,εψ
√
dε dx3dx̂dt+

+

∫ T

0

∫
S

∫ 1

0

ρεvα,ε

(∫ 1

0

vβ,εdx3

)
gαβ,εψ

√
dε dx3dx̂dt =

=

∫ T

0

∫
S

∫ 1

0

ρεvα,ε(vβ,ε −
∫ 1

0

vβ,εdx3)gαβ,εψ
√
dε dx3dx̂dt+

+

∫ T

0

∫
S

(∫ 1

0

ρεvα,εg
αβ,ε
√
dε dx3

)(∫ 1

0

vβ,εdx3

)
ψ dx̂dt

where ψ ∈ C∞0 (0, T ; C∞(Ω̄)), dx̂ = dx1dx2 and α, β = 1, 2. The first integral on

the right-hand side tends to zero for ε → 0 due to Lemma 4.2. Concerning the

second integral on the right-hand side, it holds that (due to convergences (4.67)

and (4.70))∫ 1

0

ρεvα,εg
αβ,ε
√
dε dx3 =

∫ 1

0

(ρεvα,εg
αβ,ε − εzα,ε · gβ,ε)

√
dε dx3 +

+ε

∫ 1

0

zα,ε · gβ,ε
√
dε dx3 →

∫ 1

0

ρεvαg
αβ
√
d dx3,
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where the first integral converges in C(〈0, T 〉; [W 1LΨ1(S)]∗) and the second inte-

gral converges in Lp(0, T ;LΦγ (S)), and also∫ 1

0

vβ,ε dx3 ⇀

∫ 1

0

vβ dx3 in Lp(0, T ;W 1,p(S)),

which follows from (4.52). In addition, it holds that∫ 1

0

ρεvαg
αβ
√
d dx3 = ρ̂vαg

αβ
√
d

∫ 1

0

vβ dx3 = vβ,

where ρ̂ =
∫ 1

0
ρ dx3, because v (as well as u, see (4.56)) is independent of x3.

Hence, convergences∫ T

0

∫
Ω

ρε(uε · gα,ε)(uε · gβ,ε)gαβ,εψ
√
dε dxdt→

→
∫ T

0

∫
S

ρ̂(u · aα)(u · aβ)gαβψ
√
d dx̂dt, α, β = 1, 2, (4.78)

are immediate consequences of (4.52), (4.70) and (4.71). Convergences (4.78) are

applied in the next section to overcome the nonlinearity in the second term on

the left-hand side of (4.26)

4.4.3 Limit of the governing equations

We prescribe the behavior of initial states for ε→ 0 by formulas∫ 1

0

ρ0,ε ln(ρ0,ε)
√
dε dx3 → ρ0 ln(ρ0)

√
d in L1(S), (4.79)

∫ 1

0

Φγ(ρ0,ε)
√
dε dx3 → Φγ(ρ0)

√
d in L1(S), γ > 3, (4.80)

∫ 1

0

|(ρεuε)0|2

2ρ0,ε

√
dε dx3 →

|(ρu)0|2

2ρ0

√
d in L1(S), (4.81)

where all limits on the right-hand sides do not depend on x3. We remark that the

prescribed behavior (4.80) enables us to use the Gronwall’s lemma in the proof
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of boundedness (4.45). Further, we assume that h(ε) > 0 in (4.26) satisfies the

condition h(ε) ∼ O(ε) to assure the convergence of h(ε)
ε

to a real positive number.

In this section, we denote an integral of a function in the third spatial variable

over interval (0, 1) by symbol ”ˆ” over the function. Obviously, these mean values

depend only on x1 and x2. For example, we write ρ̂ =
∫ 1

0
ρ dx3. Since u · a3 = 0

– see (4.53), and u is independent of x3 – see (4.56), it holds that

û =

∫ 1

0

u dx3 = u = (u · a1)a1 + (u · a2)a2.

Now, we can perform the limit in (4.25) and (4.26). We use convergences

mentioned in section 4.2.1. First, we test the equation (4.25) by function ϕ ∈

D(R2 × (0, T )). We arrive at

∫ T

0

∫
Ω

(
ρε∂tϕ+ ρεu

T
ε (g1,ε,g2,ε,g3,ε)(∂1ϕ, ∂2ϕ, 0)T

)√
dε dxdt = 0.

Subsequently, we expand uε into the covariant basis. Since gα,ε · a3 = 0, for

α = 1, 2, we obtain∫ T

0

∫
Ω

(
ρε∂tϕ+ ρε[(uε · g1,ε)g

1,ε + (uε · g2,ε)g
2,ε]T(g1,ε,g2,ε)∇̂ϕ

)√
dε dxdt = 0,

where ∇̂ϕ = (∂1ϕ, ∂2ϕ). Afterwards, we perform the limit for ε → 0, apply

convergence (4.57) and get

∫ T

0

∫
S

[
ρ̂∂tϕ+ ρ̂ûTR12∇̂ϕ

]√
d dx̂dt = 0, (4.82)

for any ϕ ∈ D (R2 × 〈0, T 〉), where R12 = (a1, a2) is a submatrix of R and

dx̂ = dx1dx2.

Second, we test the equation (4.26) by function ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3) such

that ψ · a3 = 0, ∂3ψ = 0 and ψ · n|∂S×(0,T ) = 0. We will show the limit passage

for each term in (4.26) independently.

(a) ρεuε · ∂tψ
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We expand uε into the covariant basis. Since ψ · a3 = 0 and convergences (4.57)

hold, we get

∫ T

0

∫
Ω

ρεuε ·∂tψ
√
dε dxdt =

∫ T

0

∫
Ω

ρε[(uε ·g1,ε)g
1,ε+(uε ·g2,ε)g

2,ε] ·∂tψ
√
dε dxdt,

which converges to ∫ T

0

∫
S

ρ̂û · ∂tψ
√
d dx̂dt,

for ε→ 0, due to (4.57).

(b) ρεuε ⊗ uε : ωε(ψ)

As ∂3ψ = 0 and ψ · a3 = 0, we know that [ω̄ε(ψ)]33 = 0 and also that [ω̄ε(ψ)]α3 =

(∂αψ · a3)/2, α = 1, 2. After expanding uε into the covariant basis and applying

convergences (4.58) and (4.78), we conclude that

∫ T

0

∫
Ω

ρεuε ⊗ uε : ωε(ψ)
√
dε dxdt =

=

∫ T

0

∫
Ω

ρε(uε · gi,ε)(uε · gj,ε)gij,ε[ωε(ψ)]ij
√
dε dxdt,

where the sum is taken over i, j = 1, 2, 3, converges to

∫ T

0

∫
S

ρ̂(u · aα)(u · aβ)gαβ[ω(ψ)]αβ
√
d dxdt =

=

∫ T

0

∫
S

ρ̂û⊗ û : ω(ψ)
√
d dx̂dt,

for ε→ 0 (the sum is taken over α, β = 1, 2), where

ω(ψ) = RT

 ∂1ψ · a1
1
2

(∂1ψ · a2 + ∂2ψ · a1) 1
2
∂1ψ · a3

· ∂2ψ · a2
1
2
∂2ψ · a3

sym · 0

R.

(c) ρε∇ψ : RεEε
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Since RεEε = (g1,ε,g1,ε, ε−1a3), we have∫ T

0

∫
Ω

ρε(∂1ψ, ∂2ψ, ∂3ψ) : (g1,ε,g1,ε, ε−1a3)
√
dε dxdt =

=

∫ T

0

∫
Ω

ρε(∂1ψ, ∂2ψ) : (g1,ε,g1,ε)
√
dε dxdt,

which tends to (see convergence (4.49))∫ T

0

∫
S

ρ̂∇̂ψ : R12
√
d dx̂dt,

for ε→ 0.

(d) P (|ωε(uε)|)ωε(uε) : ωε(ψ)

It holds that (see convergence (4.51))∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ωε(ψ)
√
dε dxdt→

∫ T

0

∫
Ω

P (|ζ|)ζ : ω(ψ)
√
d dxdt,

for ε→ 0, where ζ is defined by (4.54). Later, we will show that∫ t

0

∫
Ω

P (|ζ|)ζ : ω(ψ)
√
d dxds =

∫ t

0

∫
S

P (|ω(û)|)ω(û) : ω(ψ)
√
d dx̂ds,

for any t ∈ (0, T ).

(e) ρεfε · ψ

After expanding fε into the contravariant basis and applying the relation ψ·a3 = 0,

we arrive at (see also convergence (4.49) and assumptions of Theorem 4.3 in

section 4.5)∫ T

0

∫
Ω

ρεfε · ψ
√
dε dxdt =

∫ T

0

∫
Ω

ρε[(fε · g1,ε)g1,ε + (fε · g2,ε)g2,ε] · ψ
√
dε dxdt

which tends to ∫ T

0

∫
S

ρ̂F · ψ
√
d dx̂dt,

for ε→ 0, where F = (f · a1)a1 + (f · a2)a2 and f denotes the limit of fε.
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(f) uε · ψ|RεEεn|

Since n = (n1, n2, 0)T on Γ1, we have

uε · ψ|RεEεn| = uε · ψ|(g1,ε,g2,ε)n̂|,

where n̂ = (n1, n2). Due to (4.40) and (4.52), we arrive at

∫ T

0

∫
Γ1

uε · ψ|RεEεn|
√
dε dΓdt→

∫ T

0

∫
∂S

û · ψ|R12n̂|
√
d dSdt,

as ε tends to zero.

(g) h(ε)
ε

uε · ψ

According to the supposed behavior of h(ε), i. e. h(ε) ∼ O(ε), we can use

convergences (4.40) and (4.52) and get

ε−1

∫ T

0

∫
Γ2

h(ε)uε · ψ
√
dε dΓdt→ 2h

∫ T

0

∫
S

û · ψ
√
d dx̂dt,

for ε→ 0, where h is a positive constant.

Finally, we arrive at

∫ T

0

∫
S

[
ρ̂û · ∂tψ + ρ̂û⊗ û : ω(ψ) + ρ̂∇̂ψ : R12

]√
d dx̂dt =

=

∫ T

0

∫
Ω

P (|ζ|)ζ : ω(ψ)
√
d dxdt−

∫ T

0

∫
S

ρ̂F · ψ
√
d dx̂dt+

+q

∫ T

0

∫
∂S

û · ψ|R12n̂|
√
d dSdt+ 2h

∫ T

0

∫
S

û · ψ
√
d dx̂dt, (4.83)

for ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3) such that ψ · a3 = 0, ∂3ψ = 0 and ψ · n|∂S×(0,T ) = 0.
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4.4.4 Limit of the energy equality

Applying similar approach as in section 4.4.3, convexity and Jensen’s inequal-

ity, we perform the limit for ε→ 0 also in the energy equality (4.29). We arrive

at the following inequality:

∫
S

(
ρ̂
|û|2

2
+ ρ̂ ln(ρ̂)

)√
d dx̂+

∫ t

0

∫
Ω

P (|ζ|) |ζ|2
√
d dxds+

+q

∫ t

0

∫
∂S

|û|2|R12n̂|
√
d dSds+ 2h

∫ t

0

∫
S

|û|2
√
d dx̂ds ≤ (4.84)

≤
∫ t

0

∫
S

ρ̂F · û
√
d dx̂ds+

∫
S

|(ρu)0|2

2ρ0

√
d dx+

∫
S

ρ0 ln(ρ0)
√
d dx.

By the use of the same procedure as in [19], Lemmas 3.2 and 3.3, based on the

renormalized continuity equation and the Steklov function, we can derive from

(4.82) and (4.83) the energy equality

∫
S

(
ρ̂
|û|2

2
+ ρ̂ ln(ρ̂)

)√
d dx̂+

∫ t

0

∫
Ω

P (|ζ|) ζ : ω(û)
√
d dxds+

+q

∫ t

0

∫
∂S

|û|2|R12n̂|
√
d dSds+ 2h

∫ t

0

∫
S

|û|2
√
d dx̂ds = (4.85)

=

∫ t

0

∫
S

ρ̂F · û
√
d dx̂ds+

∫
S

|(ρu)0|2

2ρ0

√
d dx+

∫
S

ρ0 ln(ρ0)
√
d dx.

Since the function P (|z|)z is monotone, we get

0 ≤ lim
ε→0

∫ t

0

∫
Ω

(P (|ωε(uε)|)ωε(uε)− P (|T |)T ) : (ωε(uε)− T ) dxds =

= lim
ε→0

∫ t

0

∫
Ω

P (|ωε(uε)|)|ωε(uε)|2dxds−

−
∫ t

0

∫
Ω

P (|ζ|)ζ : T + P (|T |)T : ζ + P (|T |)|T |2 dxds (4.86)

for any symmetric T ∈ [L̃M(Ω × (0, T ))]9. As a consequence of (4.29), (4.85),
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convexity and Jensen’s inequality, we arrive at

lim
ε→0

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2dxds =

= lim
ε→0

(
−
∫

Ω

(
ρε
|uε|2

2
+ ρε ln(ρε)

)√
dε dx −

−q
∫ t

0

∫
Γ1

|uε|2|RεEεn|
√
dε dΓds− h(ε)

ε

∫ t

0

∫
Γ2

|uε|2
√
dε dΓds+

+

∫ t

0

∫
Ω

ρεfε · uε
√
dε dxds+

∫
Ω

|(ρεuε)0|2

2ρ0,ε

√
dε dx+

+

∫
Ω

ρ0,ε ln(ρ0,ε)
√
dε dx

)
≤ −

∫
S

(
ρ̂
|û|2

2
+ ρ̂ ln(ρ̂)

)√
d dx̂−

−q
∫ t

0

∫
∂S

|û|2|R12n̂|
√
d dSds− 2h

∫ t

0

∫
S

|û|2
√
d dx̂ds+

+

∫ t

0

∫
S

ρ̂F · û
√
d dx̂ds+

∫
S

|(ρu)0|2

2ρ0

√
d dx+

+

∫
S

ρ0 ln(ρ0)
√
d dx =

∫ t

0

∫
Ω

P (|ζ|) ζ : ω(û)
√
d dxds. (4.87)

Consequently from (4.86), we get

0 ≤
∫ t

0

∫
Ω

(
P (|ζ|)ζ − P (|T |)T

)
: (ω(û)− T ) dxds.

Taking T = ω(û)±λω(ψ), for λ > 0, ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3) such that ψ ·a3 = 0,

∂3ψ = 0 and ψ · n|∂S×(0,T ) = 0, we conclude that∫ t

0

∫
Ω

P (|ζ|)ζ : ω(ψ)dxds =

∫ t

0

∫
S

P (|ω(û)|)ω(û) : ω(ψ)dx̂ds. (4.88)

4.5 Main theorem for the 2D model

To sum it up, the limit equations together with the energy equality are given

by the following formulas∫ T

0

∫
S

[
ρ̂∂tϕ+ ρ̂ûTR12∇̂ϕ

]√
d dx̂dt = 0, (4.89)
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for any ϕ ∈ D (R2 × 〈0, T 〉),

∫ T

0

∫
S

[
ρ̂û · ∂tψ + ρ̂û⊗ û : ω(ψ) + ρ̂∇̂ψ : R12

]√
d dx̂dt =

=

∫ T

0

∫
S

P (|ω(û)|)ω(û) : ω(ψ)
√
d dx̂dt−

∫ T

0

∫
S

ρ̂F · ψ
√
d dx̂dt+

+q

∫ T

0

∫
∂S

û · ψ|R12n̂|
√
d dSdt+ 2h

∫ T

0

∫
S

û · ψ
√
d dx̂dt, (4.90)

for any ψ ∈ C∞0 (0, T ; [C∞(Ω)]3) such that ∂3ψ = 0, ψ · a3 = 0 in Ω × (0, T ) and

ψ · n|∂S×(0,T ) = 0,

∫
S

(
ρ̂
|û|2

2
+ ρ̂ ln(ρ̂)

)√
d dx̂+

∫ t

0

∫
S

P (|ω(û)|) |ω(û)|2
√
d dx̂ds+

+q

∫ t

0

∫
∂S

|û|2|R12n̂|
√
d dSds+ 2h

∫ t

0

∫
S

|û|2
√
d dx̂ds = (4.91)

=

∫ t

0

∫
S

ρ̂F · û
√
d dx̂ds+

∫
S

|(ρu)0|2

2ρ0

√
d dx̃+

∫
S

ρ0 ln(ρ0)
√
d dx̃.

Finally, the main result of this chapter is summarized in the following theorem.

Theorem 4.3. Let us assume that couples (ρε,uε), ε ∈ (0, 1), satisfying

ρε ∈ L∞(0, T ;LΦγ (Ω)),

vε ∈ Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3)

with vε = (uε · g1,ε,uε · g2,ε,uε · g3,ε) for arbitrary but fixed γ > 3 and p > 3,

are weak solutions to the transformed equations (4.25)-(4.26) with initial states

ρ0,ε ∈ LΦγ (Ω) and |(ρεuε)0|2
2ρ0,ε

√
dε ∈ L1(Ω) satisfying (4.79)-(4.81). In addition, we

assume that Navier boundary conditions (4.1)-(4.3) hold and ωε(uε) ∈ [L̃M(Ω×

(0, T ))]9.

Further, we suppose that function P complies with conditions (1.3)-(1.7), fε →

f in [L∞(Ω×(0, T ))]3 and fε ·gj,ε ∈ [L∞(Ω×(0, T ))]3, j = 1, 2, 3, h(ε) > 0 behaves

like O(ε), q > 0 and covariant basis {a1, a2, a3} ⊂ [L∞(Ω)]3 satisfies conditions
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∂αaj and ∂2
αβa3 ∈ [L∞(Ω)]3, where α, β = 1, 2 and j = 1, 2, 3. Then (passing to

subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
,

ρε → ρ in C
(
〈0, T 〉 ; [W 1LΦγ (Ω)]∗

)
,

ωε(uε)
N
⇀ ω(u)

uε · gα,ε ⇀ u · aα in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
,

α = 1, 2,

uε · a3 → 0 in LM(Ω× (0, T )).

In addition, couple (ρ̂, û), where ρ̂ =
∫ 1

0
ρ dx3 and û = (u · a1)a1 + (u · a2)a2,

û · n̂|∂S×(0,T ) = 0, is a weak solution to the equations (4.89)-(4.90) and complies

with the energy equality (4.91).

92



Chapter 5

Conclusion

Three dimensional model describing fluid motion was considered. In par-

ticular, we studied the dynamics of compressible non-Newtonian fluids in thin

domains. Thus, we dealt with nonsteady Navier-Stokes equations

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u) +∇ρ = div (P (|Du|)Du) + ρf in Ω× (0, T ),

where Ω was either a thin pipe (Chapter 3) or a curved three-dimensional domain

with only two dominant dimensions (Chapter 4). Our aim was to perform a rigor-

ous derivation of respective lower-dimensional models. New results in the theory

of asymptotic analysis were presented in this thesis. Our both main contributions

were published in peer-reviewed journals [1, 2].

Prior to the derivation of lower-dimensional models, an introduction to Young

functions and Orlicz spaces was given in Chapter 2. Further, we studied Young

functions with a logarithmic and an exponential growth. Orlicz spaces defined

by the use of these specific Young functions were subsequently applied to prove

our main results.

Chapter 3 focused on a rigorous derivation of a one-dimensional model from

the three-dimensional Navier-Stokes equations. After proving a variant of the first

Korn’s inequality and making a priori estimates, we demonstrated boundedness

of sequences of densities and rescaled velocity fields. The boundedness allowed

us to perform weak limits and pass to the limit in both the governing equations
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and energy equality. Theorem 3.4 (section 3.4) summarizes our first main result.

Chapter 4 was devoted to an asymptotic analysis of the three-dimensional

Navier-Stokes equations acting over a curved domain. We applied a similar ap-

proach as in Chapter 4 to arrive at the limit of the governing equations and

energy equality. However, the deformation of the domain introduced new diffi-

culties which had to be addressed. Finally, we overcame all the difficulties and

presented our second main contribution in Theorem 4.3 (section 4.5).
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1 Abstract

Governing equations representing mathematical description of continuum me-

chanics have often three spatial dimensions and one temporal dimension. How-

ever, their analytical solution is usually unattainable, and numerical approxima-

tion of the solution unduly complicated and computationally demanding. Thus,

these models are frequently simplified in various ways. One option of a simplifica-

tion is a reduction of the number of spatial dimensions. We focused on nonsteady

Navier-Stokes equations for compressible nonlinearly viscous fluids in a three-

dimensional domain. These equations need a simplification, when possible, to

be effectively solved. Therefore, we performed a dimension reduction for this

type of model. First, we studied the dynamics of a compressible fluid in thin do-

mains where only one dimension is dominant. We presented a rigorous derivation

of a one-dimensional model from the three-dimensional Navier-Stokes equations.

Second, we extended the current framework by dealing with nonsteady Navier-

Stokes equations for compressible nonlinearly viscous fluids in a deformed three-

dimensional domain. We focused on a rigorous derivation of the two-dimensional

model. The deformation of a domain introduced new difficulties in the asymptotic

analysis, because it affects the limit equations in a non-trivial way.

Key words: Navier-Stokes equations, Compressible fluids, Nonlinear viscosity,

Asymptotic analysis, Dimension reduction, Curved domain, Curvilinear coordi-

nates
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2 Abstrakt v českém jazyce

Zakladńı rovnice, které reprezentuj́ı matematický popis mechaniky kontinua,

maj́ı často tři prostorové dimenze a jednu časovou. Jejich nevýhodou je, že jejich

analytické řešeńı je často nedosažitelné a jeho numerická aproximace výpočetně

velmi náročná. Z těchto d̊uvod̊u jsou takovéto modely často r̊uznými zp̊usoby

zjednodušovány. Jednou z možnost́ı, jak model zjednodušit, je sńıžeńı počtu pros-

torových dimenźı. Otázkou ovšem z̊ustává, jak dimenzionálńı redukci provést

matematicky korektně. Zabývali jsme se nestacionárńımi Navier-Stokesovými

rovnicemi pro stlačitelné nelineárně viskózńı tekutiny v trojrozměrné oblasti.

Nejprve jsme studovali dynamiku stlačitelných tekutin v oblastech, kde domin-

uje pouze jedna prostorová dimenze. Představili jsme odvozeńı jednorozměrného

modelu z trojrozměrných Navier-Stokesových rovnic. Následně jsme rozš́ı̌rili

současný rámec poznáńı t́ım, že jsme aplikovali dimenzionálńı redukci na nesta-

cionárńı Navier-Stokesovy rovnice pro stlačitelné nelineárně viskóz-ńı tekutiny

v deformované trojrozměrné oblasti se dvěma dominantńımi prostorovými di-

menzemi. Zjistili jsme, že deformace oblasti netriviálne ovlivňuje výsledné limitńı

rovnice.

Kĺıčová slova: Navier-Stokesovy rovnice, Stlačitelné tekutiny, Nelineárńı visko-

zita, Asymptotická analýza, Redukce dimenze, Deformovaná oblast, Křivočaré

souřadnice
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3 Introduction

Governing equations representing mathematical description of continuum me-

chanics have often three spatial dimensions and one temporal dimension. How-

ever, their analytical solution is usually unattainable, and numerical approx-

imation of the solution unduly complicated and computationally demanding.

Therefore, these models are frequently simplified in various ways. One option

of a simplification is a reduction of the number of spatial dimensions. The thesis

is devoted to nonsteady Navier-Stokes equations for compressible nonlinearly vis-

cous fluids in a three-dimensional domain. These equations need a simplification,

when possible, to be effectively solved.

The thesis studies the dynamics of a compressible fluid in a thin pipe Ωε ⊂ R3

and in a curved three-dimensional domain Ω̃ε with two dominant dimensions. The

motion of a compressible fluid is described by its velocity u and density ρ. The

time evolution of u and ρ is governed by the continuity and momentum equations

∂tρ+ div (ρu) = 0, (1)

∂t (ρu) + div (ρu⊗ u) +∇p = div S + ρf in Ω× (0, T ), (2)

where T > 0, p is the pressure, S stands for the viscous stress tensor and f

represents the external forces [18].

It is supposed that the fluid is isothermal and non-Newtonian. It means that

(without the loss of generality)

S = P (|Du|)Du, p = ρ.

Similarly as in [26], it is assumed that the function P satisfies, for any U , V

belonging to Orlicz class [L̃M(Ω)]9, the following five conditions∫
Ω

P (|U |)|U |2 dx ≥
∫

Ω

M(|U |) dx, (3)

∫
Ω

(P (|U |)U − P (|V |)V ) : (U − V ) dx ≥ 0, (4)
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P (z)|z|2 is a convex function for z ≥ 0, (5)∫
Ω

N(P (|U |)|U |) dx ≤ C

(
1 +

∫
Ω

M(|U |) dx

)
, (6)

P (|U − λV |)(U − λV )
M
⇀ P (|U |)U, for λ→ 0. (7)

4 Recent state summary

The existence of weak solutions for three-dimensional models of fluid dy-

namics has already been studied. For instance, Pierre-Louis Lions proved the

global solvability of Navier-Stokes equations for compressible linearly viscous flu-

ids [17]. Further, Eduard Feireisl extensively studied global existence theory for

the full Navier-Stokes-Fourier system [11]. A comprehensive overview on results

achieved in the case of Newtonian compressible fluids is given in [22]. Concerning

non-Newtonian fluids, Mamontov [18, 19] proved the existence of a global weak

solution for compressible Navier-Stokes equations. This knowledge allows us to

step forward in finding the solution (or at least its approximation). One possi-

bility to achieve that is by performing a dimension reduction of the equations.

Without the proven existence of a weak solution, it would be pointless to study

the asymptotic behavior of the equations.

An asymptotic analysis was performed in linear elasticity for rods and beams

[13, 14, 24], and for plates and shells [4, 6, 7], at first. Subsequently, rigor-

ous derivation of lower-dimensional models was done also for fluids. An asymp-

totic analysis of three-dimensional steady Navier-Stokes equations based on the

asymptotic expansion was presented in [21]. For comparison, the same result

was achieved directly in [28] without the need to apply any asymptotic expan-

sion. Regarding nonsteady Navier-Stokes equations for incompressible fluids,

they were simplified into a lower-dimensional model in [12]. Further, a three-

dimensional system for barotropic Navier-Stokes equations was asymptotically

analyzed and the resulting one-dimensional and two-dimensional models were

7



presented in [27] and [20], respectively. It was also shown that weak solutions of

both three-dimensional Navier-Stokes equations for barotropic flows and three-

dimensional full Navier-Stokes-Fourier equations tend to strong solutions of the

respective one-dimensional system as the three-dimensional model tends to the

one-dimensional model [3, 5]. Recently, Ducomet et al. [8] presented a rigorous

derivation of a two-dimensional model from the three-dimensional compressible

barotropic Navier-Stokes-Poisson system with radiation.

New difficulties arise by considering non-Newtonian fluids (i. e. fluids having

nonlinear viscous stress tensor). This problem was tackled for the first time

in [26], where a two-dimensional model was derived by a suitable scaling from

nonsteady Navier-Stokes equations for compressible fluids.

5 Thesis objectives

The thesis is aimed on obtaining new contributions to the theory of rigor-

ous asymptotic analysis of nonsteady Navier-Stokes equations for compressible

nonlinearly viscous fluids in a three dimensional domain. There are two main

objectives of the thesis. First, the motion of a compressible fluid in a thin pipe is

studied. We present a derivation of a one-dimensional model from equations (1)-

(2) under Navier boundary conditions [1].The second aim is to investigate the

motion of a compressible fluid in a thin deformed domain. We focus on a deriva-

tion of a two-dimensional model from equations (1)-(2) under Navier boundary

conditions [2].

Since nonsteady Navier-Stokes equations for compressible nonlinearly viscous

fluids need a simplification, when possible, to be effectively solved, achieving

the objectives of the thesis is particularly valuable. Obtained lower-dimensional

models can be subsequently used in real-world applications by practitioners.
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6 Theoretical framework

The theoretical framework can be summarized into three main parts. First,

Young functions and Orlicz spaces along with their properties are studied in the

thesis. Afterwards, both problems in question are separately described in detail

and transformation of governing equations is performed.

6.1 Young functions and Orlicz spaces

A brief introduction to Young functions and Orlicz spaces is presented in the

thesis. Let u : Q → R, Q ⊂ Rn, n ∈ N, be a measurable function and let Φ, Ψ

be a pair of complementary Young functions. The set LΦ(Q) of all u such that

‖u‖LΦ(Q) < +∞ is called the Orlicz space. The positive number ‖u‖LΦ(Q) is

defined as

‖u‖LΦ(Q) = sup
v

∫
Q

|u(x)v(x)|dx,

where the supremum is taken over all functions v ∈ L̃Ψ(Q) satisfying condition∫
Q

Ψ(|v(x)|)dx ≤ 1. The Orlicz space LΦ(Q) is a Banach space and ‖ · ‖LΦ(Q) is

the norm on LΦ(Q).

Orlicz spaces and their properties are described in the thesis. In addition, the

thesis is focused on a special class of Young functions with an exponential growth

and their complementary functions, because the theory concerning these Young

functions and respective Orlicz spaces is needed in the subsequent derivation of

lower-dimensional models.

Let us define Young functions needed for reaching the objectives of the thesis

as Φγ(z) = (1+z) lnγ (1 + z), with γ > 1, and Φ1(z) = z ln (z + 1). Functions Ψγ,

γ ≥ 1, denote the complementary functions to Φγ, γ ≥ 1. Subsequently, we define

M(z) = ez − z − 1 and its complementary function N(z) = (1 + z) ln(1 + z)− z.

Further, we denote Φ1/α(z), α ∈ (1,+∞), the Young functions with growth

z ln1/α z, z ≥ z0 > 0, and their complementary functions Ψ1/α(z).
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6.2 Fluid flow in a thin pipe

Let us employ notation ūε and ρ̄ε for the velocity and the density, respectively,

in equations (1)-(2) to highlight the connection to Ωε. Similar notation (subscript

ε and accent ”¯”) is applied also for other functions connected to Ωε.

Domain Ωε ⊂ R3 is defined by the use of a referential domain Ω = (0, 1)× S

with S ⊂ R2, |S| = 1 and ∂S ∈ C0,1, and mapping Rε : Ω→ Ωε so that

Rε : (x1, x2, x3) 7−→ (x1, εx2, εx3).

It means that Ωε = (0, 1)×εS. As well as in [22], section 4.17.2.4, we suppose that

Ω is not axially symmetric. Axial symmetry would mean that the appearance of

Ω remains unchanged if rotated around an axis along the first spatial dimension.

Symbols n and n̄ε stand for unit outward normals to Ω and Ωε, respectively.

Similarly, t and t̄ε are vectors from the corresponding tangent planes. We employ

the following notation for the borders of domains Ω and Ωε:

Γ1 = (0, 1)× ∂S, Γ2 = {0, 1} × S,

Γ1,ε = Rε (Γ1) , Γ2,ε = Rε (Γ2) .

To ensure the well-posedness of our problem [26], we prescribe Navier bound-

ary conditions

t̄ε ·
(
P (|D̄ūε|)D̄ūεn̄ε

)
+ h(ε)ūε · t̄ε = 0 on Γ1,ε × (0, T ), (8)

t̄ε ·
(
P (|D̄ūε|)D̄ūεn̄ε

)
+ qūε · t̄ε = 0 on Γ2,ε × (0, T ), (9)

ūε · n̄ε = 0 on ∂Ωε × (0, T ). (10)

It is supposed that h(ε) > 0 behaves like O(ε) and q > 0.

We consider the initial conditions for the density and the momentum

ρ̄ε(x̄, 0) = ρ̄0,ε(x̄) ≥ 0, ∀x̄ ∈ Ωε

(ρ̄εūε) (x̄, 0) = (ρ̄εūε)0 (x̄, 0), ∀x̄ ∈ Ωε.

The variational formulation of our problem is∫ T

0

∫
Ωε

(
ρ̄ε∂tϕ̄+ ρ̄εūε · ∇̄ϕ̄

)
dx̄dt = 0, (11)
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∫ T

0

∫
Ωε

(
ρ̄εūε · ∂tψ̄ + ρ̄εūε ⊗ ūε : D̄ψ̄ + ρ̄εd̄ivψ̄

)
dx̄dt

=

∫ T

0

∫
Ωε

(
P (|D̄ūε|)D̄ūε : D̄ψ̄ − ρ̄εf̄ε · ψ̄

)
dxdt

+h(ε)

∫ T

0

∫
Γ1,ε

ūε · ψ̄ dΓ̄dt+ q

∫ T

0

∫
Γ2,ε

ūε · ψ̄ dΓ̄dt, (12)

for any ϕ̄ ∈ D (R3 × (0, T )) and ψ̄ ∈ C∞0 (0, T ;C∞(Ω̄ε)
3) satisfying condition

ψ̄ · n̄ε|∂Ωε×(0,T ) = 0.

Variational formulation (11)–(12) can be transformed into∫ T

0

∫
Ω

(ρε∂tϕ+ ρεuε · ∇εϕ) dxdt = 0, (13)

∫ T

0

∫
Ω

[ρεuε · ∂tψ + ρεuε ⊗ uε : ωε(ψ) + ρεdivεψ] dxdt

=

∫ T

0

∫
Ω

[P (|ωε(uε)|)ωε(uε) : ωε(ψ)− ρεfε · ψ] dxdt

+
h(ε)

ε

∫ T

0

∫
Γ1

uε · ψ dΓdt+ q

∫ T

0

∫
Γ2

uε · ψ dΓdt, (14)

for any ϕ ∈ D (R3 × (0, T )) and ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3), ψ · n|∂Ω×(0,T ) = 0.

By transforming the energy equality (see [19] for its original form), we obtain∫
Ω

(
ρε(t)

|uε(t)|2

2
+ ρε(t) ln(ρε(t))

)
dx

+

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2 dxds+

+
h(ε)

ε

∫ t

0

∫
Γ1

|uε|2 dΓds+ q

∫ t

0

∫
Γ2

|uε|2 dΓds =

=

∫ t

0

∫
Ω

ρεgε · vε dxds+

∫
Ω

(
|(ρεuε)0|2

2ρ0,ε

+ ρ0,ε ln(ρ0,ε)

)
dx. (15)

for any t ∈ 〈0, T 〉, where gε = (f1,ε, ε
−1f2,ε, ε

−1f3,ε), vε = (u1,ε, εu2,ε, εu3,ε).
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6.3 Fluid flow in a thin deformed domain

Let us employ notation ũε and ρ̃ε for the velocity and the density, respectively,

in equations (1)-(2) to highlight the connection to Ω̃ε. Similarly, we denote also

other functions connected to Ω̃ε with subscript ε and accent ”˜”.

The domain Ω̃ε ⊂ R3 is defined by the use of a reference domain Ω = S×(0, 1),

S ⊂ R2, ∂S ∈ C0,1, and the mapping Θε : Ω→ Ω̃ε so that

Θε : (x1, x2, x3) 7−→ θ(x1, x2) + εx3a3(x1, x2),

where θ : S → R3 and

a1 = (∂1θ1, ∂1θ2, ∂1θ3)T,

a2 = (∂2θ1, ∂2θ2, ∂2θ3)T,

a3 =
a1 × a2

‖a1 × a2‖
.

We suppose that aj, ∂αaj and ∂2
αβa3 ∈ [L∞(Ω)]3, where α, β = 1, 2 and j = 1, 2, 3.

Symbols n and ñε stand for unit outward normals to Ω and Ω̃ε, respectively.

Similarly, t (resp. t̃ε) is any vector from the corresponding tangent plane. We

denote the boundaries of domains Ω and Ω̃ε as follows:

Γ1 = ∂S × (0, 1), Γ2 = S × {0, 1},

Γ̃1,ε = Θε (Γ1) , Γ̃2,ε = Θε (Γ2) .

To ensure the well-posedness of our problem [26], we prescribed the set of

Navier boundary conditions

t̃ε ·
(
P (|D̃ũε|)D̃ũεñε

)
+ qũε · t̃ε = 0, on Γ̃1,ε × (0, T ), (16)

t̃ε ·
(
P (|D̃ũε|)D̃ũεñε

)
+ h(ε)ũε · t̃ε = 0, on Γ̃2,ε × (0, T ), (17)

ũε · ñε = 0, on ∂Ω̃ε × (0, T ). (18)

We suppose that h(ε) > 0 behaves like O(ε) and q > 0. The asymptotic behavior

of h(ε) will be discussed during derivation of weak convergences of density and

velocity field.
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We consider the initial conditions for the density and the momentum

ρ̃ε(x, 0) = ρ̃0,ε(x) ≥ 0,

(ρ̃εũε) (x, 0) = (ρ̃εũε)0 (x, 0), in Ω̃ε.

Hence, the variational formulation of our problem is

∫ T

0

∫
Ω̃ε

(
ρ̃ε∂tϕ̃+ ρ̃εũε · ∇̃ϕ̃

)
dx̃dt = 0, (19)

∫ T

0

∫
Ω̃ε

(
ρ̃εũε · ∂tψ̃ + ρ̃εũε ⊗ ũε : D̃ψ̃ + ρ̃εd̃ivψ̃

)
dx̃dt

=

∫ T

0

∫
Ω̃ε

(
P (|D̃ũε|)D̃ũε : D̃ψ̃ − ρ̃εf̃ε · ψ̃

)
dxdt

+q

∫ T

0

∫
Γ̃1,ε

ũε · ψ̃ dΓ̃dt+ h(ε)

∫ T

0

∫
Γ̃2,ε

ũε · ψ̃ dΓ̃dt, (20)

for any ϕ̃ ∈ D (R3 × (0, T )) and ψ̃ ∈ C∞0 (0, T ;C∞({Ω̃ε}−)3), where {Ω̃ε}− stands

for the closure of Ω̃ε, satisfying the condition ψ̃ · ñε|∂Ω̃ε×(0,T ) = 0.

After transforming equations (19)-(20), we get

∫ T

0

∫
Ω

(
ρε∂tϕ+ ρεu

T
ε RεEε∇ϕ

)√
dε dxdt = 0, (21)

∫ T

0

∫
Ω

[ρεuε · ∂tψ + ρεuε ⊗ uε : ωε(ψ) + ρε∇ψ : RεEε]
√
dε dxdt

=

∫ T

0

∫
Ω

[P (|ωε(uε)|)ωε(uε) : ωε(ψ)− ρεfε · ψ]
√
dε dxdt+

+q

∫ T

0

∫
Γ1

uε · ψ|RεEεn|
√
dε dΓdt+

h(ε)

ε

∫ T

0

∫
Γ2

uε · ψ
√
dε dΓdt, (22)

for any ϕ ∈ D (R3 × (0, T )) and ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3), ψ · n|∂Ω×(0,T ) = 0.
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Similarly, transforming the energy equality [19] leads to∫
Ω

(
ρε(t)

|uε(t)|2

2
+ ρε(t) ln(ρε(t))

)√
dε dx

+

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2
√
dε dxds+

+q

∫ t

0

∫
Γ1

|uε|2|RεEεn|
√
dε dΓds+

h(ε)

ε

∫ t

0

∫
Γ2

|uε|2
√
dε dΓds =

=

∫ t

0

∫
Ω

ρεf̄ε · vε
√
dε dxds+

+

∫
Ω

(
|(ρεuε)0|2

2ρ0,ε

+ ρ0,ε ln(ρ0,ε)

)√
dε dx. (23)

for any t ∈ 〈0, T 〉, where

f̄ε = (fε · g1,ε, fε · g2,ε, fε · g3,ε),

vε = (uε · g1,ε,uε · g2,ε,uε · g3,ε),

7 Original results and summary

Three dimensional model describing fluid motion is considered. In particular,

we study the dynamics of compressible non-Newtonian fluids in thin domains.

Thus, we deal with nonsteady Navier-Stokes equations

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u) +∇ρ = div (P (|Du|)Du) + ρf in Ω× (0, T ),

where Ω is either a thin pipe or a curved three-dimensional domain with only

two dominant dimensions. New results in the theory of asymptotic analysis are

presented in this thesis. Both main contributions were published in peer-reviewed

journals [1, 2].

First, the thesis is focused on a rigorous derivation of a one-dimensional model

from the three-dimensional Navier-Stokes equations. After proving a variant of
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the first Korn’s inequality and making a priori estimates, we demonstrated bound-

edness of sequences of densities and rescaled velocity fields. The boundedness

allowed us to perform weak limits and pass to the limit in both the governing

equations and energy equality. The limit equations together with the energy

equality are given by: ∫ T

0

∫ 1

0

ρ̂∂tϕ+ ρ̂u1∂1ϕ dx1dt = 0, (24)

for any ϕ ∈ D (R× 〈0, T 〉),∫ T

0

∫ 1

0

ρ̂u1∂tψ1 + ρ̂u2
1∂1ψ1 + ρ̂∂1ψ1dx1dt =

= |S|
∫ T

0

∫ 1

0

P (|∂1u1|)∂1u1∂1ψ1 dx1dt−
∫ T

0

∫ 1

0

ρ̂f1ψ1dx1dt+

+|∂S|h
∫ T

0

∫ 1

0

u1ψ1dx1dt, (25)

for any ψ = (ψ1(x1), 0, 0), where ψ1 ∈ C∞0 (0, T ; C∞(〈0, 1〉)) complies with condi-

tion ψ1(0, t) = ψ1(1, t) = 0, for all t ∈ (0, T ), and∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx1 + |S|

∫ t

0

∫
Ω

P (|∂1u1|) |∂1u1|2 dx1ds+

+|∂S|h
∫ t

0

∫ 1

0

|u1|2 dx1ds =

∫ t

0

∫ 1

0

ρ̂f1u1 dx1ds+ (26)

+

∫ 1

0

|(ρu)0|2

2ρ0

dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1. (27)

The following theorem summarizes our first main result.

Theorem 1. Let us assume that couples (ρε,uε), ε ∈ (0, 1), satisfying

ρε ∈ L∞(0, T ;LΦγ (Ω)),

vε ∈ Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3),

with vε = (u1,ε, εu2,ε, εu3,ε) and Ω being not axially symmetric, ∂Ω ∈ C0,1, are

weak solutions to the equations (13)-(14), complying with energy equality (15),
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with initial states ρ0,ε ∈ LΦγ (Ω) and |(ρεuε)0|2
2ρ0,ε

∈ L1(Ω) satisfying∫
S

ρ0,ε ln(ρ0,ε) dx2dx3 → ρ0 ln(ρ0) in L1(0, 1), (28)∫
S

Φγ(ρ0,ε) dx2dx3 → Φγ(ρ0) in L1(0, 1), (29)∫
S

|(ρεuε)0|2

2ρ0,ε

dx2dx3 →
|(ρu)0|2

2ρ0

in L1(0, 1), (30)

for ε → 0, and for arbitrary but fixed γ > 3 and p > 3. In addition, we assume

that Navier boundary conditions (8)-(10) hold and ωε(uε) ∈ [L̃M(Ω× (0, T ))]9.

Further, we suppose that function P complies with conditions (3)-(7), fε → f

in [L∞(Ω × (0, T ))]3, h(ε) > 0 behaves like O(ε), see (8), and q > 0, see (9).

Then (passing to subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
,

ρε → ρ in C
(
〈0, T 〉 ; [W 1,p(Ω)]∗

)
,

ωε(uε)
N
⇀ ω(u)

u1,ε ⇀ u1 in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
,

uα,ε → 0 in LM(Ω× (0, T )), α = 2, 3.

In addition, couple (ρ̂, u1), where u1 = u1(x1) and ρ̂ =
∫
S
ρ dx2dx3, is a weak

solution to the equations (24)-(25) and complies with the energy equality (26).

Second, the thesis is devoted to a rigorous asymptotic analysis of the three-

dimensional Navier-Stokes equations acting over a curved domain. We applied

a similar approach as in [1] to arrive at the limit of the governing equations

and energy equality. However, the deformation of the domain introduced new

difficulties which had to be addressed. Finally, we overcame all the difficulties

and presented the limit equations and energy equality as

∫ T

0

∫
S

[
ρ̂∂tϕ+ ρ̂ûTR12∇̂ϕ

]√
d dx̂dt = 0, (31)
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for any ϕ ∈ D (R2 × 〈0, T 〉),∫ T

0

∫
S

[
ρ̂û · ∂tψ + ρ̂û⊗ û : ω(ψ) + ρ̂∇̂ψ : R12

]√
d dx̂dt =

=

∫ T

0

∫
S

P (|ω(û)|)ω(û) : ω(ψ)
√
d dx̂dt−

∫ T

0

∫
S

ρ̂F · ψ
√
d dx̂dt+

+q

∫ T

0

∫
∂S

û · ψ|R12n̂|
√
d dSdt+ 2h

∫ T

0

∫
S

û · ψ
√
d dx̂dt, (32)

for any ψ ∈ C∞0 (0, T ; [C∞(Ω)]3) such that ∂3ψ = 0, ψ · a3 = 0 in Ω × (0, T ) and

ψ · n|∂S×(0,T ) = 0, and

∫
S

(
ρ̂
|û|2

2
+ ρ̂ ln(ρ̂)

)√
d dx̂+

∫ t

0

∫
S

P (|ω(û)|) |ω(û)|2
√
d dx̂ds+

+q

∫ t

0

∫
∂S

|û|2|R12n̂|
√
d dSds+ 2h

∫ t

0

∫
S

|û|2
√
d dx̂ds = (33)

=

∫ t

0

∫
S

ρ̂F · û
√
d dx̂ds+

∫
S

|(ρu)0|2

2ρ0

√
d dx̃+

∫
S

ρ0 ln(ρ0)
√
d dx̃.

Our second main contribution is summarized in the following theorem.

Theorem 2. Let us assume that couples (ρε,uε), ε ∈ (0, 1), satisfying

ρε ∈ L∞(0, T ;LΦγ (Ω)),

vε ∈ Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3)

with vε = (uε · g1,ε,uε · g2,ε,uε · g3,ε) for arbitrary but fixed γ > 3 and p > 3,

are weak solutions to the transformed equations (21)-(22), complying with energy

equality (23), with initial states ρ0,ε ∈ LΦγ (Ω) and |(ρεuε)0|2
2ρ0,ε

√
dε ∈ L1(Ω) satisfying

∫ 1

0

ρ0,ε ln(ρ0,ε)
√
dε dx3 → ρ0 ln(ρ0)

√
d in L1(S), (34)

∫ 1

0

Φγ(ρ0,ε)
√
dε dx3 → Φγ(ρ0)

√
d in L1(S), γ > 3, (35)

∫ 1

0

|(ρεuε)0|2

2ρ0,ε

√
dε dx3 →

|(ρu)0|2

2ρ0

√
d in L1(S), (36)
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for ε → 0. In addition, we assume that Navier boundary conditions (16)-(18)

hold and ωε(uε) ∈ [L̃M(Ω× (0, T ))]9.

Further, we suppose that function P complies with conditions (3)-(7), fε → f

in [L∞(Ω× (0, T ))]3 and fε ·gj,ε ∈ [L∞(Ω× (0, T ))]3, j = 1, 2, 3, h(ε) > 0 behaves

like O(ε), q > 0 and covariant basis {a1, a2, a3} ⊂ [L∞(Ω)]3 satisfies conditions

∂αaj and ∂2
αβa3 ∈ [L∞(Ω)]3, where α, β = 1, 2 and j = 1, 2, 3. Then (passing to

subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
,

ρε → ρ in C
(
〈0, T 〉 ; [W 1LΦγ (Ω)]∗

)
,

ωε(uε)
N
⇀ ω(u)

uε · gα,ε ⇀ u · aα in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
,

α = 1, 2,

uε · a3 → 0 in LM(Ω× (0, T )).

In addition, couple (ρ̂, û), where ρ̂ =
∫ 1

0
ρ dx3 and û = (u · a1)a1 + (u · a2)a2,

û · n̂|∂S×(0,T ) = 0, is a weak solution to the equations (31)-(32) and complies with

the energy equality (33).
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• B́ıl M., Kubeček J., Andrášik R.: An epidemiological approach to determining the
risk of road damage due to landslides, Natural Hazards 73(3), 1323 – 1335 (2014).
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